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Abstract

As the cloud computing paradigm has gained prominence, the need for verifiable com-

putation has grown urgent. Protocols for verifiable computation enable a weak client to

outsource difficult computations to a powerful, but untrusted, server. These protocols pro-

vide the client with a (probabilistic) guarantee that the server performed the requested

computations correctly, without requiring the client to perform the computations herself.

Surprisingly powerful protocols for verifying outsourced computations were discovered

within the computer science theory community in the 1980s and 1990s, in the form of inter-

active proofs and their brethren. However, these protocols were considered to be primarily

of theoretical interest, far too inefficient for actual deployment. This thesis seeks to overturn

this viewpoint.

We make progress along two interrelated directions. The first seeks to render interactive

proofs suitable for applications involving massive data. To this end, we introduce two new

computational models, dubbed streaming interactive proofs and annotated data streams. In

these models, a streaming algorithm (modeling a cloud computing user lacking the resources

to store the massive input locally) makes a single pass over an adversarially-ordered input,

which is also observed by a powerful but untrusted prover (modeling a cloud computing

service). Afterward, the prover sends the user the answer to queries about the stream, and

proves that the answers are correct. Our study of these models reveals a rich theory, and we

give protocols achieving essentially optimal tradeoffs between proof length and the verifier’s
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space usage for a variety of significant problems.

The second direction revisits some of the most powerful protocols in the theory literature

and substantially improves their efficiency. Specifically, we describe a refinement of a powerful

general-purpose interactive proof protocol originally due to Goldwasser, Kalai, and Rothblum

(2008). Our refinements reduce the runtime of the prover in this protocol from Ω(S3) to

O(S logS), where S is the size of an arithmetic circuit computing the function of interest.

We also show how to further reduce the prover’s runtime for computations that are sufficiently

structured, including arbitrary data parallel computation. We complement our analysis with

implementations that demonstrate the genuine scalability of our protocols.
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Chapter 1

Introduction and Summary

Protocols for verifiable computation enable a computationally weak verifier V to offload

computations to a powerful but untrusted prover P . These protocols aim to provide the

verifier with a guarantee that the prover performed the requested computations correctly,

without requiring the verifier to perform the computations herself.

Surprisingly powerful protocols for verifiable computation were discovered within the

computer science theory community several decades ago, in the form of interactive proofs and

their brethren: interactive arguments and probabilistically checkable proofs (PCPs). In these

protocols, the prover P solves a problem using her (possibly vast) computational resources,

and tells V the answer. P and V then have a conversation, i.e., they engage in a randomized

protocol involving the exchange of one or more messages. During this conversation, P ’s goal

is to convince V that the answer is correct.

More precisely, any protocol for verifiable computation must satisfy two properties. The

first is called completeness ; this property roughly requires that an honest prover will be able

to convince the verifier that the claimed answer is correct. The second property is called

soundness ; this property roughly requires that if the claimed answer is incorrect, then the

verifier will reject the answer with high probability no matter what the prover says to try
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to convince her otherwise. In the case of interactive proofs, soundness must hold against

computationally unbounded provers.

Results quantifying the power of interactive proofs, interactive arguments, and PCPs

represent some of the most celebrated results in all of computational complexity theory, but

until recently they were considered primarily of theoretical interest, far too inefficient for

actual deployment.

However, the surging popularity of cloud computing has brought renewed interest in pos-

itive applications of protocols for verifiable computation. A typical motivating scenario is as

follows. A business – call it ArthurSystems – processes billions or trillions of transactions a

day. The volume is sufficiently high that ArthurSystems cannot or will not store and pro-

cess the transactions on its own. Instead, it offloads the processing to a commercial cloud

computing service – call it MerlinSystems. The offloading of any computation raises issues

of trust. ArthurSystems may be concerned about relatively benign errors: perhaps Merlin-

Systems dropped some of the transactions, executed a buggy algorithm, or experienced an

uncorrected hardware fault. Alternatively, ArthurSystems may be more cautious and fear

that MerlinSystems is deliberately deceptive or has been externally compromised. Either

way, each time ArthurSystems poses a query to MerlinSystems, it may demand that Merlin-

Systems provide not only the answer but also some proof that the returned answer is correct.

This is precisely what protocols for verifiable computation accomplish, with MerlinSystems

acting as the prover in the protocol, and ArthurSystems acting as the verifier.

This thesis describes progress toward achieving protocols for verifiable computation that

are efficient enough for use in the real world. All of our results hold in variants of the

interactive proofs model, meaning they are secure even against computationally unbounded

cheating provers.
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Structure of this thesis

• Chapter 2 introduces the standard interactive proofs model, discusses seminal work in

the area, and reviews prior work that forms the foundation of this thesis, including the

well-known sum-check protocol of Lund, Fortnow, Karloff, and Nisan [77].

• Chapter 3 introduces the annotated data streams model. In this setting, a computa-

tionally weak verifier (modeling ArthurSystems in the scenario of the Introduction),

who lacks the resources to store the entire input locally, is given access to a power-

ful but untrusted prover (modeling the cloud computing service). The verifier must

execute within the confines of the restrictive data streaming paradigm, i.e., it must

process the input sequentially in whatever order it arrives, using space that is substan-

tially sublinear in the total size of the input. The prover is allowed to annotate the

data stream as it is read, with the goal of convincing the verifier of the correct answer.

The streaming restriction for the verifier fits the cloud computing setting well, as the

verifier’s streaming pass over the input can occur while uploading data to the cloud.

In this chapter, we present annotated data streaming protocols achieving non-trivial

tradeoffs between the amount of annotation used and the space required to verify

it. We also prove lower bounds on such tradeoffs, often nearly matching the upper

bounds, via notions related to Merlin-Arthur communication complexity. Our anno-

tated data streaming protocols, as well as our lower bounds, cover classic data stream

problems such as selection and frequency moments, and fundamental graph problems

such as triangle-freeness and connectivity. Finally, this chapter describes how to ex-

ploit sophisticated Fast Fourier Transform algorithms to ensure that the prover in our

protocols runs quickly, as well as experimental results demonstrating scalability.

• While many of the protocols of Chapter 3 are optimal, such optimality holds only for
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streams whose length is commensurate with the size of the data universe. In contrast,

many real-world data sets are relatively sparse, including graphs that contain only

o(n2) edges, and IP traffic streams that contain much fewer than the total number

of possible IP addresses, 2128 in IPv6. In Chapter 4, we describe protocols that allow

both the annotation and the space usage to be sublinear in the total number of stream

updates rather than the size of the data universe. On the other hand, we give a lower

bound that, for the first time, rules out smooth tradeoffs between annotation and space

usage for a specific problem.

• Chapter 5 describes background on the powerful general-purpose interactive proof pro-

tocol due to Goldwasser, Kalai, and Rothblum [57].

• Chapter 6 introduces the model of streaming interactive proofs, which extends the

annotated data streams model to allow for multiple rounds of interaction between

the prover and verifier. This chapter presents some preliminary results on streaming

interactive proofs, and in particular reveals an exponential separation between the

annotated data stream and streaming interactive proofs models.

• Chapter 7 revisits Goldwasser, Kalai, and Rothblum’s general-purpose interactive proof

protocol (henceforth GKR protocol), and shows how to reduce the runtime of the prover

from Ω(S3) to O(S logS), where S is the size of an arithmetic circuit computing the

function of interest. This chapter also describes a full implementation of the proto-

col, demonstrating much greater scalability than one might have expected. Finally, we

describe a parallel implementation of the protocol that leverages Graphics Process-

ing Units (GPUs), and experimentally demonstrate the GKR protocol’s substantial

amenability to parallelization.

• Chapter 8 describes further refinements and extensions of the GKR protocol. A major
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message of this chapter is that the more structure that exists in a computation, the

more efficiently it can be verified, and that this structure exists in many real-world

computations. Our first refinement applies to circuits whose wiring pattern is suffi-

ciently “regular”; for these circuits, we bring the runtime of the prover down from

O(S logS) as achieved in Chapter 7 to O(S). That is, our prover can evaluate the

circuit with a guarantee of correctness, while suffering only a constant-factor blowup

in work compared to evaluating the circuit without any guarantee. We argue that

our refinements capture a large class of circuits, and complement our theoretical re-

sults with experiments on problems such as matrix multiplication and determining the

number of distinct elements in a data stream. Experimentally, our refinements yield

a prover that is less than 10x slower than a C++ program that simply evaluates the

circuit. Leveraging similar techniques, we also describe a protocol targeted at general

data parallel computation. Compared to prior work, this protocol can more efficiently

verify complicated computations as long as the computation is applied independently

to many different pieces of data. Finally, we describe a special-purpose protocol for

matrix multiplication that is of interest in its own right.

• Chapter 9 concludes, by comparing the approach to verifiable computation taken in

this thesis to several parallel lines of work, and describing some important directions

for future work.
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Chapter 2

Background and Preliminaries

This chapter introduces the standard interactive proofs model, elaborates on seminal

work in the area, and reviews prior work that forms the foundation of this thesis. The main

technical tools upon which we draw in subsequent chapters are the well-known sum-check

protocol of Lund, Fortnow, Karloff, and Nisan [77] (introduced in this chapter), and the

powerful general-purpose interactive proof protocol due to Goldwasser, Kalai, and Rothblum

[57] (introduced in Chapter 5).

2.1 Interactive Proofs

We give here a standard definition of interactive proofs.

Definition 2.1.1. An interactive proof system for a language L ⊆ {0, 1}∗ consists of a

probabilistic polynomial time verifier V and a prover P who are given a common input x ∈

{0, 1}n. P and V exchange a sequence of messages to produce a transcript t = (V(r),P)(x),

where r denotes V ’s internal randomness. After the transcript is produced, V decides whether

to output accept or reject based on r, t, and x. We denote by out(V , x, r,P) the output of

verifier V on input x given prover strategy P and that V ’s internal randomness is equal to r.
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We say the interactive proof system has completeness error δc and soundness error δs if

the following two properties hold.

1. (Completeness) There exists a prover strategy P such that for every x ∈ L,

Pr[out(V , x, r,P) = accept] ≥ 1− δc.

2. (Soundness) For every x /∈ L and every prover strategy P ′, Pr[out(V , x, r,P ′) =

accept] ≤ δs.

We say interactive proof system is valid if δc, δs ≤ 1/3. The complexity class IP is the

class of all languages possessing valid interactive proof systems.

If V and P exchange at most m messages for every pair (x, r), we refer to dm/2e as the

round complexity of the interactive proof system.

Several clarifying remarks are in order. First, notice that the soundness requirement in

Definition 2.1.1 is required to hold even against computationally unbounded provers P ′.

Second, Definition 2.1.1 implicitly assumes that the total number of messages exchanged by

P and V is poly(n), as V must run in poly(n) time over the entire course of the interaction.

Third, notice that in an interactive proof system, V ’s randomness is internal, and in particular

is not visible to the prover.

Interactive proofs were introduced in 1985 by Goldwasser, Micali, and Rackoff [58]. At the

same conference, Babai [9] independently introduced the Arthur-Merlin class hierarchy, which

captures constant-round interactive proof systems, with the additional requirement that the

verifier’s randomness is public – that is, visible to the prover. Goldwasser and Sipser [59]

subsequently proved that any constant-round private coin interactive proof system can be

simulated by a constant-round public coin system.

See the chapter by Arora and Barak [8, Chapter 8] for an excellent overview of founda-

tional work on interactive proofs.
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2.1.1 On Interactive Proofs for Languages Versus Functions

Given a language L, let fL(x) = 1 if x ∈ L and fL(x) = 0 otherwise. Notice that Definition

2.1.1 requires that if fL(x) = 1 then there is some prover that will cause the verifier to accept

with high probability, and if fL(x) = 0 then there is no such prover. In particular, for x 6∈ L,

Definition 2.1.1 does not require there to be a “convincing proof” of the fact that fL(x) = 0.

Later in this thesis, we will consider interactive proofs for non-Boolean valued functions

f , and we will typically give protocols that allow the the prover to convince the verifier of the

value of f(x) for all x. Equivalently, we will give interactive proof systems for the language

Lf = {(x, y) : y = f(x)}.

2.2 Schwartz-Zippel Lemma

Throughout this thesis, we will frequently make use of the following basic property of

polynomials. This lemma is commonly known as the Schwartz-Zippel lemma [88,109].

Lemma 2.2.1. Let F be any field, and let f : Fm → F be a nonzero polynomial of total

degree at most d. Then on any finite set S ⊆ F,

Pr
x←Sm

[f(x) = 0] ≤ d/|S|.

In words, if x is chosen uniformly at random from Sm, then the probability that f(x) = 0 is

at most d/|S|. In particular, any two distinct polynomials of total degree at most d can agree

on at most d/|S| fraction of points in Sm.

2.3 Sum-Check Protocol

The sum-check protocol of Lund, Fortnow, Karloff, and Nisan [77] underlies many of the

results of this thesis. We present what is now the standard variant of this protocol.
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Suppose we are given a v-variate polynomial g defined over a finite field F. The purpose

of the sum-check protocol is to compute the sum:

H :=
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

g(b1, . . . , bv).

In applications, this sum will be over a very large number of terms, so the verifier will not

have the resources to compute the sum on her own. Instead, she uses the sum-check protocol

to force the prover to compute the sum for her.

Remark 1. In full generality, the sum-check protocol can compute the sum
∑

b∈Bmg(b) for

any B ⊆ F, but we will only require B = {0, 1} for most of the applications in this thesis.

For presentation purposes, we assume here that the verifier has oracle access to g, i.e., V

can evaluate g(r1, . . . , rv) for a randomly chosen vector (r1, . . . , rv) ∈ Fv with a single query

to an oracle, though this will not be the case in applications. In our applications, V will

either be able to efficiently evaluate g(r1, . . . , rv) on her own, or if this is not the case, V will

ask the prover to tell her g(r1, . . . , rv), and P will subsequently prove this claim is correct

via further applications of the sum-check protocol.

The protocol proceeds in v rounds as follows. In the first round, the prover sends a

polynomial g1(X1), and claims that g1(X1) =
∑

(x2,...,xv)∈{0,1}v−1 g(X1, x2, . . . , xv). Observe

that if g1 is as claimed, then H = g1(0) + g1(1).

Throughout the remainder of this chapter, we use degi(p) to denote the degree of p in

variable i. Observe that the polynomial g1(X1) has degree deg1(g). Hence g1 can be specified

with deg1(g) + 1 field elements, for example by sending the evaluation of g1 at each point in

the set {0, 1, . . . , deg1(g)}.

Then, in round j > 1, V chooses a value rj−1 uniformly at random from F and sends rj−1

to P . We will often refer to this step by saying that variable j − 1 gets bound to value rj−1.
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In return, the prover sends a polynomial gj(Xj), and claims that

gj(Xj) =
∑

(xj+1,...,xv)∈{0,1}v−j

g(r1, . . . , rj−1, Xj, xj+1, . . . , xv). (2.1)

The verifier compares the two most recent polynomials by checking gj−1(rj−1) = gj(0) +

gj(1), and rejecting otherwise. The verifier also rejects if the degree of gj is too high: each gj

should have degree degj(g), the degree of variable xj in g.

In the final round, the prover has sent gv(Xv) which is claimed to be g(r1, . . . , rv−1, Xv).

V now checks that gv(rv) = g(r1, . . . , rv) (recall that we assumed V has oracle access to

g). If this test succeeds, and so do all previous tests, then the verifier is convinced that

H = g1(0) + g1(1).

The protocol is summarized in Figure 2.1.

The following proposition formalizes the completeness and soundness properties of the

sum-check protocol.

Proposition 2.3.1. Let g be a v-variate polynomial of total degree at most d defined over a

finite field F. For any H ∈ F, let L be the language of of polynomials g (given as an oracle)

such that

H =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

g(b1, . . . , bv).

The sum-check protocol is an interactive proof system for L with completeness error δc = 0

and soundness error δs ≤ vd/|F|.

Proof. Completeness is evident: if the prover sends the prescribed polynomial gj(Xj) at all

rounds j, then V will accept with probability 1.

The proof of soundness is by induction on v. In the case v = 1, P ’s only message

specifies a degree d univariate polynomial g1(X1). If g1(X1) 6= g(X1), then by Lemma 2.2.1,
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• Fix an H ∈ F.

• In the first round, P sends the univariate polynomial

g1(X1) :=
∑

x2,...,xv∈{0,1}v−1

g(X1, x2, . . . , xv),

and sends g1 to V. V checks that g1 is a univariate polynomial of degree at most

deg1(g), and that H = g1(0) + g1(1), rejecting if not.

• V chooses a random element r1 ∈ F, and sends r1 to P.

• In the jth round, for 1 < j < v, P sends to V the univariate polynomial

gj(Xj) =
∑

(xj+1,...,xv)∈{0,1}v−j

g(r1, . . . , rj−1, Xj , xj+1, . . . , xv).

V checks that gj is a univariate polynomial of degree at most degj(g), and that

gj−1(rj−1) = gj(0) + gj(1), rejecting if not.

• V chooses a random element rj ∈ F, and sends rj to P.

• In Round v, P sends the univariate polynomial

gv(Xv) = g(r1, . . . , rv−1, Xv)

to V. V checks that gv is a univariate polynomial of degree at most degv(g),

rejecting if not.

• V chooses a random element rv ∈ F and evaluates g(r1, . . . , rv) with a single

oracle query to g. V checks that gv(rv) = g(r1, . . . , rv), rejecting if not.

• If V has not yet rejected, V halts and accepts.

Figure 2.1: Description of Sum-Check Protocol.
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g1(r1) 6= g(r1) with probability at least 1 − d/|F| over the choice of r1, and hence V ’s final

check will cause V to reject with probably at least 1− d/|F|.

Assume by way of induction that for all v−1-variate polynomials, the sum-check protocol

has soundness error at most (v− 1)d/|F|. Suppose P sends a polynomial h1(X1) 6= g1(X1) =∑
x2,...,xv∈{0,1}v−1 g(X1, x2, . . . , xv) in Round 1. Then by Lemma 2.2.1, h1(r1) 6= g1(r1) with

probability at least 1 − d/|F|. Conditioned on this event, P is left to prove the false claim

in Round 2 that h1(r1) =
∑

x2,...,xv∈{0,1}v−1 g(r1, x2, . . . , xv). Since g(r1, x2, . . . , xv) is a v − 1-

variate polynomial of total degree d, the inductive hypothesis implies the V will reject at

some subsequent round of the protocol with probability at least 1− d(v− 1)/|F|. Therefore,

V will reject with probability at least

1− Pr[h1(r1) 6= g1(r1)]− (1− Pr[V rejects in some Round j > 1|h1(r1) 6= g1(r1)])

≥ 1− d

|F| −
d(v − 1)

|F| = 1− dv

|F| .

Discussion of costs. Observe that there is one round in the sum-check protocol for each

of the v variables of g. The total communication is
∑v

i=1 degi(g) + 1 = v+
∑v

i=1 degi(g) field

elements. In particular, if degi(g) = O(1) for all j, then the communication cost is O(v) field

elements.

The running time of the verifier over the entire execution of the protocol is proportional to

the total communication, plus the cost of a single oracle query to g to compute g(r1, . . . , rv).

Determining the running time of the prover is less straightforward. Recall that P can

specify gj by sending for each i ∈ {0, . . . , degj(g)} the value:

gj(i) =
∑

(xj+1,...,xv)∈{0,1}v−j

g(r1, . . . , rj−1, i, xj+1, . . . , xv). (2.2)
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An important insight is that the number of terms defining the value gj(i) in Equation (2.2)

falls geometrically with j: in the jth sum, there are only 2v−j terms, each corresponding to a

Boolean vector in {0, 1}v−j. Thus, the total number of terms that must be evaluated over the

course of the protocol is
∑v

j=1 degj(g)2v−j = O(2v) if degj(g) = O(1) for all j. Consequently,

if P is given oracle access to g, then P will require just O(2v) time.

In all of our applications in this thesis, P will not have oracle access to the truth table

of g, and the key to many of our results in Chapters 6, 7, and 8 is to show that in our

applications P can nonetheless evaluate g at all of the necessary points in close to O(2v)

total time.
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Chapter 3

Annotations in Data Streams

The surging popularity of commercial cloud computing services has rendered the following

scenario increasingly plausible. A business such as ArthurSystems from Chapter 1 processes

billions or trillions of transactions a day. The volume is sufficiently high that ArthurSystems

cannot or will not store and process the transactions on its own. Instead, it offloads the

processing to a commercial cloud computing service – MerlinSystems from Chapter 1.

The offloading of any computation raises issues of trust. ArthurSystems may be con-

cerned about relatively benign errors: perhaps the cloud dropped some of the transactions,

executed a buggy algorithm, or experienced an uncorrected hardware fault. Alternatively,

ArthurSystems may be more cautious and fear that the cloud operator is deliberately de-

ceptive or has been externally compromised. Either way, each time ArthurSystems poses a

query to MerlinSystems, it may demand that the cloud provide not only the answer but also

some proof that the returned answer is correct.

In this chapter and the next, we consider a computationally weak verifier (modeling

ArthurSystems in the above scenario), who lacks the resources to store the entire input

locally, and is given access to a powerful but untrusted prover (modeling the cloud comput-

ing service). The verifier must execute within the confines of the restrictive data streaming
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paradigm, i.e., it must process the input sequentially in whatever order it arrives, using

space that is substantially sublinear in the total size of the input. The prover is allowed to

annotate the data stream as it is read, with the goal of convincing the verifier of the correct

answer. The streaming restriction for the verifier fits the cloud computing setting well, as

the verifier’s streaming pass over the input can occur while uploading data to the cloud.

Our approach is naturally related to interactive proofs as introduced in Chapter 2, as well

as Merlin-Arthur communication complexity (introduced in Section 3.2) but differs in two

important regards. Firstly, the verifier must process both the original data and the advice

provided by the helper under the usual restrictions of the data stream model. Secondly,

we focus on annotations that can be provided online, i.e., annotation that depends only

on data that has arrived before the annotation is written. Note that in interactive proofs

and Merlin-Arthur communication, it is assumed that the helper is omniscient and that the

advice he provides can take into account data held by any of the players. In the stream model,

this would correspond to prescience, where the annotation in the stream at any particular

position may depend on data that is yet to arrive. In contrast, we are primarily interested in

designing algorithms with online annotation; this corresponds to a helper who sees the data

concurrently with the verifier.

3.1 Our Contributions

Our first contribution in this chapter is to formally define the relevant models: traditional

and online Merlin-Arthur communication, and streaming models with either prescient or on-

line annotations. We then investigate the complexity of a range of problems in these models,

including selection, frequency moments, and graph problems such as triangle-counting, con-

nectivity, and bipartite perfect matching. Estimating frequency moments in particular has
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become a canonical problem when exploring variants of the data stream model such as ran-

dom order streams [29] and read/write streams [12]. In contrast, we give annotation protocols

– which we call schemes – for solving the frequency moments problem and its generalizations

exactly. The fact that we obtain schemes that solve the exact frequency moments problem

is essential, as it allows us to use these schemes as primitives to solve more complicated

problems that on their surface appear to have nothing to do with frequency moments.

We now give a detailed overview of the results in this chapter. We use the shorthand

“(ca, cv)-scheme” for streaming algorithm that uses O(ca) bits of annotation and requires

O(cv)-space; a scheme could be either prescient or online. In general, our streams have

length N and consist of tokens from the data universe [n] := {1, 2, . . . , n}. In the case of

graph streams, we consider tokens from the universe [n]× [n].

Selection. The problem of finding the median of N values in the range [n] highlights the

difference between prescient and online annotation. For arbitrary positive integers x and

y, with xy ≥ n, we present an online (x log n, y log n)-scheme. Furthermore, we show that

this trade-off is optimal up to polylogarithmic factors. In contrast, a trivial O(log n)-space

algorithm can verify O(log n) bits of prescient annotation, implying a prescient (log n, log n)-

scheme.

Frequency Moments and Frequent Items. We next consider properties of {fi}i∈[n]

where fi is the frequency of the token “i” in the stream. For arbitrary positive integers x

and y, with xy ≥ n, we present an online (φ−1 log2 n+x log n, y log n)-scheme that computes

the set of tokens whose frequency exceeds φN .

For any positive integers x, y with xy ≥ n, we also present an online (k2x log n, ky log n)-

scheme that computes the kth frequency moment Fk :=
∑

i f
k
i exactly, where k is a positive

integer. This scheme is based on a beautiful, nearly optimal MA communication protocol for
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the set-disjointness problem (henceforth, disj) developed by Aaronson and Wigderson [3]

using algebraic techniques analogous to those in the sum-check protocol presented Chapter

2. We will informally refer to this class of schemes and techniques as sum-check schemes

and techniques. The tradeoff between annotation length and space usage of our Fk scheme

is optimal up to polylogarithmic factors even if the algorithm is allowed to use prescient

annotation. To prove this, we present the first Merlin-Arthur communication bounds for

multi-party set-disjointness.

Additionally, we generalize the scheme for Fk to any frequency-based function, i.e., a

function of the form
∑

i∈[n] g(fi) for some g : Z+ → Z+. Assuming N = O(n), we obtain

a prescient (n2/3 log n, n2/3 log n)-scheme and an online (n2/3 log4/3 n, n2/3 log4/3 n) scheme for

this important class of functions, as well as improved schemes for skewed data streams.

Matrix-Vector Multiplication Further extending the sum-check techniques, we give an

online scheme for multiplying an n×n matrix with integer entries by an n-dimensional integer

vector. Specifically, for any positive integers x and y with xy ≥ n2 and x ≥ n, we give an

(x log n, y log n) protocol for matrix-vector multiplication. These tradeoffs are optimal up to

logarithmic factors, and this scheme serves as a critical primitive in the development of the

schemes for graph problems described next.

Graph Problems. We present optimal or nearly-optimal schemes for the following graph

problems.

• Counting Triangles. For any positive integers x and y, with xy ≥ n3, we present

an online (x log n, y log n)-scheme for counting triangles in the graph. We also give an

online (n2 log n, log n)-scheme for this problem.

• Connectivity and Bipartiteness. For any positive integers x and y with x ≥ n and
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xy ≥ n2, we present online (x log n, y log n)-schemes for determining whether a graph

is connected or bipartite.

• Bipartite Perfect Matching. For any positive integers x and y with x ≥ log n

and xy ≥ n2, we present online (x log n, y log n)-schemes for solving bipartite perfect

matching. These tradeoffs between annotation length and space usage for the verifier

are optimal up to logarithmic factors.

• Shortest s-t Path. Given a directed graph G with non-negative integer edge weights

and designated nodes s and t, let d be the maximum distance between s and any node

reachable from s. For any positive integers x, y such that xy ≥ dn2 and x ≥ dn, we

give an online (x log n, y log n) protocol for computing the shortest s-t path. These

tradeoffs are essentially optimal for small-diameter graphs. The scheme relies on linear

programming duality and the total unimodularity of the shortest s-t path problem, in

conjunction with sum-check techniques.

• Minimum Weight Bipartite Perfect Matching (MWBPM). Suppose we are

given a bipartite graph G with non-negative integer edge weights. For any positive

integers x, y such that xy ≥ n3wmax and x ≥ nwmax, we give an (x log n, y log n)

protocol for MWBPM, where wmax is the maximum weight of any edge.

Algorithm Simulation. Next, we present a general-purpose online scheme for simulating

an arbitrary deterministic algorithm in the standard RAM model. In this scheme, the verifier

requires only log n space, and the annotation length is O(m log n+ T log n), where T is the

runtime of the algorithm, where m is the input length. As an immediate corollary, we derive

online (m log n, log n)-schemes for the following problems on graphs with m edges on n

vertices: connectivity, bipartiteness, minimum spanning tree, and maximum matching. We
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show that our algorithms are optimal in many cases, in the sense that the annotation length

cannot be decreased without increasing the space usage above O(log n).

Implementation and Experiments. We close the chapter by presenting experimental

results based on an implementation of several of our schemes (F2 and matrix-vector multipli-

cation). Using Fast Fourier Transform techniques, we bring the runtime of the prover in our

sum-check schemes down to O(n log n), from O(can) in a naive implementation, where ca is

the annotation length. Our experimental results demonstrate that our schemes require just

a few MBs of space and annotation even when the data universe size is in the trillions, that

our verifier additionally runs extremely quickly (processing millions of stream updates per

second), and that our FFT-based prover implementation processes several hundred thousand

updates per second, allowing the prover implementation to easily scale to streams over data

universes of size in the billions.

3.2 Models, Notation, and Terminology

Many of the algorithms (schemes) in Chapter 4 use randomization in subtle ways, mak-

ing it important to properly formalize several models of computation. While the schemes

presented in this chapter use randomization in a more straightforward manner, our careful

treatment of randomness as we introduce the models will pay dividends in Chapter 4.

We begin with Merlin–Arthur communication models, a topic first studied by Babai,

Frankl and Simon [10], which we eventually use to derive lower bounds. We then turn to

annotated data stream models. At the end of the section we set up some notation and

terminology for the rest of Chapters 3 and 4.
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3.2.1 Communication Models

Let F : X × Y → {0, 1} be a function, where X and Y are both finite sets. This

naturally gives a 2-player number-in-hand communication problem, where the first player,

Alice, holds an input x ∈ X, and the second player, Bob, holds an input y ∈ Y . The players

wish to compute F (x, y) by executing a (possibly randomized) communication protocol that

correctly outputs F (x, y) with “high” probability. In Merlin–Arthur communication, there

is additionally a “super-player,” called Merlin, who knows the entire input (x, y), and can

help Alice and Bob by interacting with them. The precise pattern of interaction matters

greatly and gives rise to distinct models. Merlin’s goal is to get Alice and Bob to output

“1” regardless of the actual value of F (x, y), and so Merlin is not to be blindly trusted.

Intuitively, one can think of F (x, y) as the indicator function of a property of (x, y), and

Merlin’s goal is to convince Alice and Bob that the input satisfies the property (even if it

does not).

One important departure we make from prior work is that we allow Merlin to use private

random coins during the protocol. Most prior work on MA (and AM) communication (e.g.

[10,70,71]) defined Merlin to be deterministic, which does not make a difference in the basic

setting where Merlin knows the entire input (x, y) when communicating with Alice and Bob.

But in this work we are concerned with “online MA” models, where the distinction does

matter, and these online MA models are in close correspondence with the annotated data

stream models that are our eventual topic of study.

MA Communication. In a Merlin–Arthur protocol (henceforth, “MA protocol”) for F ,

Merlin begins by sending a help message h(x, y, rM), using a private random string rM . The

help message is seen by both Alice and Bob. Then Alice and Bob (the pair that constitutes

the entity “Arthur”) run a randomized communication protocol Q, using a public random
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string rA, eventually outputting a bit outQ(x, y, rA, h). Importantly, rA is not known to

Merlin at the time he sends h. The protocol Q is δs-sound and δc-complete if there exists a

function h : X × Y × {0, 1}∗ → {0, 1}∗ such that the following conditions hold.

1. If F (x, y) = 1 then PrrM ,rA [outQ(x, y, rA, h(x, y, rM)) = 0] ≤ δc.

2. If F (x, y) = 0 then ∀ h′ ∈ {0, 1}∗ : PrrA [outQ(x, y, rA, h
′) = 1] ≤ δs.

We define err(Q) to be the minimum value of max{δs, δc} such that the above conditions

hold. We define the help cost hcost(Q) to be 1 + maxx,y,rM |h(x, y, rM)| (forcing hcost ≥

1, even for traditional Merlin-free protocols), and the verification cost vcost(Q) to be the

maximum number of bits communicated by Alice and Bob over all x, y and rA. We define

MAδ(F ) = min{vcost(Q) + hcost(Q) : Q is an MA protocol for F with err(Q) ≤ δ}, and

MA(F ) = MA1/3(F ). The constant 1/3 is chosen by convention, and can be replaced by any

constant in (0, 1/2) without affecting the theory.

Online MA Communication. An online MA protocol is defined to be an MA protocol,

as above, but with the communication pattern required to obey the following sequence. (1)

Input x is revealed to Alice and Merlin; (2) Merlin sends Alice a help message h1(x, rM) using

a private random string rM ; (3) Input y is revealed to Bob and Merlin; (4) Merlin sends Bob

a help message h2(x, y, rM); (5) Alice sends a message to Bob (this message can depend on

a public random string rA that is not known to Merlin at the time he sends h1(x, rM) or

h2(x, y, rM)), who then gives a 1-bit output. We see this model as the natural MA variant

of one-way communication, and the analogy with the gradual revelation of a streamed input

should be obvious.

For such a protocol Q, we define hcost(Q) to be 1+maxx,y,rM (|h1(x, rM)|+ |h2(x, y, rM)|)

We define soundness, completeness, err(Q), and vcost(Q) as for MA. Define MA→δ (F ) =
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min{hcost(Q) + vcost(Q) : Q is an online MA protocol for F with err(Q) ≤ δ} and write

MA→(F ) = MA→1/3(F ).

Online AMA Communication. An online AMA protocol is a souped-up version of an

online MA protocol, where public random coins can be tossed at the start (and revealed to

all parties), before any input is revealed. The number of such coin tosses is added to the

vcost of the protocol. This models the cost of an initial round of communication between

Arthur (i.e., Alice + Bob) and Merlin. Note that the second public random string, used when

Alice talks to Bob, does not count towards the vcost.

Multiparty MA Communication. We also will have reason to consider a generalization

of the MA communication model to settings in which there are more than two non-Merlin

players. Let f : X1 × · · · × Xt → {0, 1} be a function, where each Xi is a finite set. This

naturally gives a t-player number-in-hand communication problem, where Player i holds an

input xi ∈ Xi and the players wish to output f(x1, . . . , xt) correctly, with high probability.

Merlin knows the entire input x = (x1, . . . , xt). Merlin begins by sending a help message

h(x, rM), using a private random string rM , that is seen by all t other players. Then Players

1 through t run a randomized protocol Q, using a public random string R, eventually out-

putting a bit outQ(x, R, h(x, rM)). To clarify, R is not known to Merlin at the time he writes

h(x, rM). We define soundness, completeness, err(Q), hcost(Q), and vcost(Q) as for MA.

On Merlin’s Use of Randomness. In an MA protocol, Merlin can deterministically

choose a help message that maximizes Arthur’s acceptance probability. However, Merlin

cannot do so in the online MA model, because he does not know the entire input when he

talks to Alice. This is why we allow Merlin to use randomness in these definitions.

Several recent papers, including one on which this chapter is based [30, 72], use “online
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MA” to mean a more restrictive model where a deterministic Merlin talks only to Bob and

not to Alice. With Merlin required to be deterministic, this communication restriction is

irrelevant, as Merlin cannot tell Alice anything she does not already know. However, we

permit Merlin to be probabilistic, and in this case we do not know that Merlin can avoid

talking to Alice. That is, we do not know how to show that for every protocol in which a

randomized Merlin talks to Alice, there is a protocol of similar cost in which Merlin does

not talk to Alice. Our online MA communication model, which permits Merlin to both be

randomized and talk to Alice, may therefore be strictly more powerful than the variant

considered in [30,72] in which Merlin cannot talk to Alice at all.

As noted earlier, our goal in defining the communication models this way is to closely

correspond to annotated data stream models. In several of our online schemes in Chapter 4

(see, e.g., Section 4.5), the helper provides initial annotation that specifies a random “hash”

function, h, and the completeness guarantee of the subsequent protocol depends crucially on

h having “low collision” properties. Since h must be chosen without seeing all of the input,

such low collision properties cannot be guaranteed by picking a fixed h in advance. However,

if the helper chooses h at random, then we do have such guarantees for each fixed input,

with high probability.

3.2.2 Data Stream Models

We now define our annotated data stream models. Recall that a (traditional) data stream

algorithm computes a function F of an input sequence x ∈ UN , where N is the number of

stream updates, and U is some data universe, such as {0, 1}b or [n] = {0, . . . , n − 1}: the

algorithm uses a limited amount of working memory and has access to a random string. The

function F may or may not be Boolean.

An annotated data stream algorithm, or a scheme, is a pair Q = (h,V), consisting of a
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help function h : UN ×{0, 1}∗ → {0, 1}∗ used by a prover (henceforth, P) and a data stream

algorithm run by a verifier, V . Prover P provides h(x, rP) as annotation to be read by V .

We think of h as being decomposed into (h1, . . . , hN), where the function hi : UN → {0, 1}∗

specifies the annotation supplied to V after the arrival of the ith token xi. That is, h acts on

x (using rP) to create an annotated stream xh,rP defined as follows:

xh,rP := (x1, h1(x, rP), x2, h2(x, rP), . . . , xN , hN(x, rP)) .

Note that this is a stream over U ∪{0, 1}, of length N+
∑

i |hi(x, rP)|. The streaming verifier

V , who uses w bits of working memory and has access to a (private) random string rV , then

processes this annotated stream, eventually giving an output outV(xh,rP , rV).

Prescient Schemes. The scheme Q = (h,V) is said to be δs-sound and δc-complete for

the function F if the following conditions hold:

1. For all x ∈ UN , we have PrrP ,rV [outV(xh,rP , rV) 6= F (x)] ≤ δc.

2. For all x ∈ UN , h′ = (h′1, h
′
2, . . . , h

′
N) ∈ ({0, 1}∗)N , we have PrrV [outV(xh′ , rV) 6∈

{F (x),⊥}] ≤ δs.

If δc = 0, the scheme satisfies perfect completeness ; otherwise it has imperfect completeness.

An output of “⊥” indicates that V rejects P ’s claims in trying to convince V to output a

particular value for F (x).

We note two important things. First, the definition of a scheme allows the annotation

hi(x, rP) to depend on the entire stream x, thus modeling prescience: the advice from the

prover can depend on data that the verifier has not seen yet. Second, P must convince V of

the value of F (x) for all x. This is stricter than the traditional definitions of interactive proofs

and MA communication complexity (including our own, above) for decision problems, which

place different requirements on the cases F (x) = 0 and F (x) = 1. In Chapter 4 (Section
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4.6), we briefly consider a relaxed definition of schemes that is in the spirit of the traditional

definition.

We define err(Q) to be the minimum value of max{δs, δc} such that the above conditions are

satisfied. We define the annotation length hcost(Q)=maxx,rP

∑
i |hi(x, rP)|, the total size of

P ’s communications, and the verification space cost vcost(Q) = w, the space used by the

verifier V . We say that Q is a prescient (ca, cv)-scheme if hcost(Q) = O(ca), vcost(Q) = O(cv)

and err(Q) ≤ 1
3
.

Online Schemes. We call Q = (h,V) a δ-error online scheme for F if, in addition to

the conditions in the previous definition, each function hi depends only on (x1, . . . , xi).

We define error, hcost, and vcost as above and say that Q is an online (ca, cv)-scheme if

hcost(Q) = O(ca), vcost(Q) = O(cv), and err(Q) ≤ 1
3
.

Note that in this thesis we do not always assume that the universe size n and stream length

N are polynomially related; it is possible that N = no(1). This becomes relevant particularly

in Chapter 4. Therefore we must be much more careful about logarithmic factors than in

some of the publications on which this chapter is based [30,40].

Notice that the help function can be made deterministic in a prescient scheme, but not

necessarily so in an online scheme. This is directly analogous to the situation for MA and

online MA communication models, as discussed at the end of Section 3.2.1.

AMA Schemes. We also consider what we call AMA schemes, where there is a common

source of public randomness, in addition to the verifier’s private random coins. The AMA

scheme model is identical to the one considered by Gur and Raz [61], who referred to it as

the “Arthur–Merlin streaming model.”

An online AMA scheme is identical to a (standard) online scheme, except that the data

stream algorithm and help function both have access to a source of public random bits. The
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number of random bits used is also counted in both the hcost and the vcost of the scheme.

On Practicality and the Plausibility of Prescience. Although our definition of a

scheme allows annotation to be sent after each stream update, with just one exception (the

prescient Subset protocol of Lemma 3.8.1), all the schemes we design require annotation only

before the start or after the end of the stream. As a practical matter, this avoids the need

for fine-grained coordination between the annotation and the data stream, and permits the

annotation to be sent to the verifier as an email attachment, or posted on a website for the

verifier to retrieve at her convenience.

Online annotation schemes have the appealing property that the prover need not “see

into the future” to execute them; at any time t, the prover’s message only depends on

stream updates that arrived before time t. While the online restriction appears most natural,

prescient schemes may still be suitable in some settings, such as when P has already seen the

full input prior to V beginning to read it. Consider a volunteer computing scenario where the

verifier farms out many computations to volunteers, and only inspects a particular input if a

volunteer has already looked at that input and claims to have found something interesting.

In brief, in some settings the prover may naturally see the input before the verifier, and in

this case a prescient scheme will be feasible.

3.2.3 Relationship Between MA Protocols and Schemes

Any prescient (resp. online) (ca, cv)-scheme Q = (h,V) for a function F can be converted

into an MA (resp. online MA) protocol for F in the natural way: Merlin sends the output

of the ith help function hi to Alice—who receives a prefix of the input stream—or Bob, de-

pending on which of the players possesses the ith piece of the input. Alice runs the streaming

algorithm V on her input as well as any annotation she received, and sends the state of the
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algorithm to Bob. Bob uses this state to continue running V on his input and the annotation

he received, and then outputs the end result. The hcost of this protocol is at most ca logN ,

since Merlin has to specify which stream update i each piece of annotation is associated with,

and the vcost of this protocol is at most cv. Thus, lower bounds on usual (resp. online) MA

communication protocols imply related lower bounds on the costs of prescient (resp. online)

annotated data stream algorithms.

3.2.4 Additional Notation and Terminology

A data stream specifies an input x incrementally. Typically, x can be thought of as a

vector (although more generally it may represent a graph or a matrix). Each update in the

stream is of the form (i, δ) where i ∈ U identifies an element of the data universe, and δ ∈ Z

describes the change to the frequency of i. The frequency of universe item i is defined as

fi(x) :=
∑

(jk,δk)∈x:jk=i δk. We refer to the vector f(x) = (f1(x), . . . , fn(x)) as the frequency

vector of x, where n denotes the size of the data universe. When the stream x is apparent,

we will often omit x and refer to the frequency vector as f = (f1, . . . , fn). We use Z+ to

denote the set of non-negative integers.

We consider several different update models. In the most general update model, the non-

strict turnstile model, the δ values may be negative, and so fi may also be negative. In the

strict turnstile model, the δ values may be negative, but it is assumed that the frequencies

fi always remain non-negative. In the insert-only model, the δ values must be non-negative.

Orthogonal to these, in the unit-update version of each model, the δ values are assumed to

have absolute value 1. Each of our results applies to a subset of these models, and we specify

within the statement of each theorem which update models it applies to.

Throughout, n will denote the size of the data universe, N will denote the total number

of stream updates, m will denote the total number of items with non-zero frequency at the
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end of the stream, and M will refer to the total number of distinct items that ever appear

within some stream update. We will refer to N as the length of the stream, to m as sparsity

of the stream, and to M as the footprint of the stream. Notice that it is always the case

that m ≤M ≤ N . In the case of insert-only streams, m = M , but for streams in the (strict

or general) turnstile models it is possible for m to be much smaller than M . Note also that

while whenever we talk about “sparse” streams in this thesis, we refer to the relative size of

n and m, not the absolute size. Indeed, we assume that m is typically large, too large for V

to store the stream explicitly (else the problems can become trivial).

Throughout this thesis, when analyzing the runtime of the prover or verifier in any

protocol, an addition or multiplication within a finite field is assumed to require a single

time step.

3.2.5 A Preliminary Lemma: Fingerprints

We often make use of fingerprint functions of streams, which enable a streaming verifier

to test whether two large streams have the same frequency vector. The verifier chooses a

fingerprint function g(x) at random from some family of functions satisfying the property

that (over the random selection of the function g),

Pr[g(x) = g(y) | f(x) 6= f(y)] < 1/p

for a parameter p. Typically, g(x) is an element of a finite field of size poly(p), and hence

the number of bits required to store the value g(x) (as well as g itself) is O(log p). Further,

there are known constructions of fingerprint functions where g(x) can be computed in space

O(log p) by a streaming algorithm in the non-strict turnstile update model, as formalized in

the following lemma.
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Lemma 3.2.1 (Fingerprints). Given a prime q, let Fq denote the finite field with q elements.

Let G = {gα : α ∈ Fq} denote the family of functions defined as follows:

gα(f(x)) =
n∑
i=1

fi(x)αi.

Then given data streams x and y defined over a universe of size n,

Pr
α←Fq

[gα(x) = gα(y) | f(x) 6= f(y)] ≤ n/q,

and for any fixed α, gα(f(x)) can be computed from the data stream x by a streaming algo-

rithm in O(log q) space.

Proof. To prove the inequality, suppose x and y are two data streams defined over a universe

of size n such that f(x) 6= f(y). Let px(α) =
∑n

j=1 fi(x)αi and py(α) =
∑n

j=1 fi(y)αi. Since

f(x) 6= f(y), px and py are distinct polynomials in α of degree n. Because two distinct

polynomials of degree n can agree on at most n points, it holds that Prα←Fq [g(x) = g(y) |

f(x) 6= f(y)] ≤ n/q.

To compute the fingerprint of f(x), a streaming algorithm can store a single element

z ∈ Fq, and process each update (i, δ) via z ← z + δαi. This requires O(log q) space, and it

is easily seen that z equals gα(f(x)) at the end of the stream.

Lemma 3.2.1 implies that if the field size q is sufficiently large, say, polynomial in n and

m, then Prα←Fq [g(x) = g(y) | f(x) 6= f(y)] can be made polynomially small while keeping

the space usage of the verifier logarithmic in n.

3.3 Index and Selection

In this section, we present an online scheme for the selection problem. Our definition

of the Selection problem assumes all frequencies fi :=
∑

(jk,δk):jk=i δk are non-negative,

and so this definition is only valid for the strict turnstile update model.
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Definition 3.3.1. The Selection problem is defined in terms of the quantity N ′ =∑
i∈[n] fi, the sum of all the frequencies. Given a desired rank ρ ∈ [N ′], output an item j from

the stream x = 〈(j1, δ1), . . . , (jN , δN)〉, such that
∑

(jk,δk):jk<j
δk < ρ and

∑
(jk,δk):jk>j

δk ≥

N ′ − ρ.

An easy prescient (log n, log n)-scheme is for the helper to give a claimed answer s as

annotation at the start of the stream. The verifier need only count how many items in the

stream are (a) smaller than s and (b) greater than s. The verifier then outputs s if the rank

of s satisfies the necessary conditions, and outputs ⊥ otherwise.

However, our goal is to present (almost) matching upper and lower bounds when only

online annotation is allowed. To do this, we first consider the online MA complexity of the

communication problem of index: Alice holds a string x ∈ {0, 1}N , Bob holds an integer

i ∈ [N ], and the goal is for Bob to output index(x, i) := xi. The lower bound for selection

will follow from the lower bound for index and a key idea for the selection upper bound is

taken from the communication protocol for index seen in the proof of the following theorem.

Theorem 3.3.2 (Online MA complexity of index). Let ca > 1 and cv be integers such

that ca · cv ≥ N . There is an online MA protocol Q for index, with hcost(Q) ≤ ca and

vcost(Q) = O(cv log ca). Futhermore, any online MA protocol Q for index must have

hcost(Q) vcost(Q) = Ω(N). Thus, in particular, MA→(index) = Θ̃(
√
N).

Proof. For the lower bound, we use an online MA protocol Q to build a (Merlin-less) ran-

domized one-way index protocol Q′. Here, a one-way protocol is a one in which Alice sends

a message to Bob, with no communication from Bob to Alice.

We first consider the case where Merlin does not send any message to Alice at all and

then explain how to modify the proof to cover the case where Merlin sends a message to

Alice (possibly based on Merlin’s internal randomness rM) that does not depend on Bob’s
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input. Let ca = hcost(Q). Let B(n, p) denote the binomial distribution with parameters

n and p, and let k be the smallest integer such that X ∼ B(k, 1
3
) ⇒ Pr[X > k/2] ≤

2−ca/3. A standard Chernoff bound gives k = Θ(h). Let a(x,RA) denote the message that

Alice sends in Q when her random string is RA (notice a(x,RA) does not depend on any

help message h1(x, rM) from Merlin, since we have assumed no such help message is sent),

and let b(a, h2) be the bit Bob outputs in Q upon receiving message a from Alice and h2

from Merlin. In the protocol Q′, Alice chooses k independent random strings R1, . . . , Rk

and sends Bob a(x,R1), . . . , a(x,Rk). Bob then outputs 1 iff there exists a ca-bit string h

such that majority (b(a(x,R1), h2), . . . , b(a(x,Rk), h2)) = 1. Let C be the number of bits

communicated in this protocol. Clearly, C ≤ k · vcost(Q) = O(hcost(Q) vcost(Q)). We

claim that Q′ is a 1
3
-error protocol for index whence, by a standard lower bound (see, e.g.,

Ablayev [4]), C = Ω(N).

To prove the claim, consider the case when xi = 1. By the correctness of Q there ex-

ists a suitable help message h2 from Merlin that causes Pr[b(a(x,RA), i, h2) = 0] ≤ 1
3
.

Thus, by construction and our choice of k, the probability that Bob outputs 0 in Q′ is

at most 2−ca/3. Now suppose xi = 0. Then, every possible message h2 from Merlin satisfies

Pr[b(a(x,RA), i, h2) = 1] ≤ 1
3
. Arguing as before, and using a union bound over all 2h possible

messages h, we see that Bob outputs 1 with probability at most 2ca · 2−ca/3 = 1
3
.

Now consider the case in which Merlin sends a message to Alice (possibly based on

Merlin’s internal randomness rM) that does not depend on Bob’s input. Assume that the

soundness probability of the protocol is 1/13-complete (this can be achieved by repeating

the whole protocol O(1) times and taking the majority vote, which increases the costs by

only constant factors). In this case, we construct a one-way randomized (Merlin-less) com-

munication protocol for index as follows. Alice chooses a random string rM herself. Since

Merlin’s message to Alice, h1(x, rM), does not depend on Bob’s input y, Alice can compute
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h1(x, rM) herself. Alice sends to Bob the messages a(x,R1, h1(x, rM)), . . . , a(x,Rk, h1(x, rM))

that she would have sent in the online MA protocol given Merlin’s message h1(x, rM), and

Bob outputs 1 if and only if there exists a ca-bit string h that would have caused him to

accept on a majority of Alice’s messages.

Consider the case when xi = 1. By the correctness of Q, with probability at least 3/4

over the choice of rM , there exists a suitable help message h2 from Merlin that causes

Pr[b(a(x,RA, h1(x, rM)), i, h2) = 0] ≤ 1
3

(otherwise, with probability at least 1/4 ·1/3 = 1/12

over the choice of both rM and RA, Merlin will fail to convince Bob to output 1, contra-

dicting the fact that the protocol is 1/13-complete.) Call such a choice of rM “good”. By

construction and our choice of k, if rM is good then the probability that Bob outputs 0 in Q′

is at most 2−ca/3. Thus, in the case xi = 1, our one-way randomized communication protocol

outputs 1 with probability at least 3/4− 2−ca/3 > 2/3.

In the case xi = 0, the argument that our one-way randomized communication protocol

outputs 0 with probability at least 2/3 proceeds exactly as in the case where Merlin did

not send any message to Alice, since it holds that for every message h1 to Alice and every

possible message h2 to Bob, the protocol satisfies Pr[b(a(x,RA, h1), i, h2) = 1] ≤ 1
3
.

The upper bound follows as a special case of the two-party set-disjointness protocol

in [3, Theorem. 7.4] since the protocol there is actually online. We give a more direct protocol,

which establishes intuition for our selection result. Write Alice’s input string x as x =

y(1) · · · y(v), where each y(j) is a string of at most ca bits, and fix a prime q with 3ca < q < 6ca.

Let y(k) be the substring that contains the desired bit xi. Merlin sends Bob a string z of

length at most ca, claiming that it equals y(k). Alice picks a random α ∈ Fq and sends Bob

α and the strings gα(y(1)), . . . , gα(y(v)), where gα is defined as in Lemma 3.2.1. This requires

communicating O(v log q) = O(v log ca) bits. Bob checks if gα(z) = gα(y(k)), outputting ⊥

if not. If the check passes, Bob assumes that z = y(k), and outputs xi from z under this
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assumption. By Lemma 3.2.1, the error probability is at most ca/q < 1/3.

It is worth making the following two remarks on the above proof.

1. The above lower bound argument in fact shows that an online MA protocolQ for an ar-

bitrary two-party communication problem F satisfies hcost(Q) vcost(Q) = Ω(R→(F )),

where R→(F ) is the one-way, randomized communication complexity of F . Thus,

MA→(F ) = Ω(
√

R→(F )). A similar result was proved by Aaronson [2].

2. The upper bound for index presented above works more or less unchanged when

Alice’s string is in ΣN , for an arbitrary finite alphabet Σ. In view of Lemma 3.2.1,

one simply needs to choose the prime q such that 3|Σ|h < q < 6|Σ|h to bound the

error probability below 1/3. This leads to a protocol P with hcost(P) ≤ h log |Σ|

and vcost(P) = O(v(log |Σ| + log h)). Henceforth, we shall refer to this generalized

protocol simply as “the index protocol” — the alphabet Σ will usually be clear from

the context.

Theorem 3.3.3. For all ca, cv such that ca · cv ≥ n, there is an online (ca log n, cv log n)-

scheme for selection. Furthermore, any online (ca, cv)-scheme for selection must have

ca · cv = Ω(n).

Proof. Conceptually, the verifier builds a vector r = (r1, . . . , rn) ∈ Zn+ where rk =
∑

j<k fk.

This is done by inducing a new stream x′ from the input stream x: each tuple (xk, δk) in A

causes virtual tokens (xk+1, δk), (xk+2, δk), . . . , (n, δk) to be inserted into A′. Then r = f(A′);

note that ‖r‖1 = O(nN). We apply the index protocol to this vector, with q = Θ(m2) to

retrieve the ranks of elements surrounding the claimed answer s. This information is sufficient

to check that s has the claimed rank.

For the lower bound, we use a standard reduction from the index problem. Given the

string x ∈ {0, 1}N , Alice transforms it into the stream over universe [2N ] whose jth tuple is
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(2j − xj, 1), for each j. Given the index i ∈ [N ], Bob transforms it into a stream consisting

of i copies of (2N, 1) and N − i copies of (1, 1). Consequently, the median of the combined

length-(2N) stream is 2i− xi, from which the value of xi can be recovered. To complete the

proof, observe that any online scheme to compute this median would imply an online MA

protocol for index with the same cost; and that all players can perform this reduction online

without extra space or annotation.

Notice that in the above scheme the information computed by the verifier is independent

of ρ, the rank of the desired element. Therefore these algorithms work even when ρ is revealed

at the end of the stream.

3.4 A First Result for Frequent Items

The φ-heavy hitters (also known as the frequent items) are those items whose frequency

of occurrence in the data stream exceeds a φ fraction of the total count N ′ =
∑

i∈[n] fi. This

definition assumes all frequencies fi :=
∑

(jk,δk):jk=i δk are non-negative, and so this definition

is only valid for the strict turnstile update model. This problem has a long history in the

data streams literature. In the traditional data stream model exact computation of heavy

hitters requires linear space [80]. As a result, many algorithms that recover approximate

heavy hitters from a data stream have been developed [32,41].

In order to identify the heavy hitters, a prescient helper can list the set of claimed

frequent items, along with their frequencies, for the verifier to check against the stream. But

we must also ensure that the helper is not able to omit any items whose frequencies exceed

the threshold.

Theorem 3.4.1. For all ca, cv such that ca ·cv ≥ n, there is an online (caφ
−1 log2 n, cv log n)-

scheme and a prescient (φ−1 log2 n, φ−1 log2 n)-scheme for demonstrating the φ-heavy hitters
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Figure 3.1: Illustration of the witness set introduced in the proof of Theorem 3.4.1.

in the strict turnstile update model.

Proof. Given the threshold T = φN ′, the set of heavy hitters is {j : fj > T}. We impose a

binary tree T over the data, whose leaves are the elements of the universe [n], and partition

the (2n− 1) nodes of T into cv groups G1, . . . , Gv, with each |Gi| ≤ 2ca. For each node w of

T , let p(w) denote the parent of w, and let L(w) denote the set of leaves of the subtree of

T rooted at w. We define f̂(w) =
∑

i∈L(w) fi.

The f̂ -values for the nodes in each group Gi form a vector with entries in {0, 1, . . . , N ′}.

As the verifier processes the stream it maintains an O(log n)-bit basic fingerprint of each

such vector; this is easy to do since each token arrival simply causes a linear update to each

vector. Once the end of the stream is reached, the helper can then convince the verifier of

any f̂(w) value using the index protocol: he simply supplies the vector for the group Gi

that contains w, using at most 2ca log(N ′+1) = O(ca log n) bits of annotation. In particular,

he can identify all the heavy hitters. But he must also convince the verifier that no heavy

hitters have been omitted.

To this end, we consider a witness set, W , of nodes of T which together cover the universe.

The set W , given threshold T , consists of all leaves ` with f̂(`) > T , plus all nodes u such

that f̂(u) ≤ T but f̂(p(u)) > T . Each node of the latter type is witness to the fact that no
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leaves j ∈ L(u) can have fj > T . The sets L(u) for such u together with {j : fj > T} cover

all of [n]. Further, because of the lower bound on f̂(p(u)), there can be at most 2φ−1 such

nodes u at any level of T , as the sum of f̂(w) over all nodes w at the parent level is exactly

m. Hence |W | = O(φ−1 log n).

This concept is illustrated in Figure 3.1. The figure shows a frequency distribution of

[2, 3, 9, 4, 1, 3, 2, 0]. Over these leaves, we impose a binary tree, and for each internal node w

in the tree we show f̂(w). With a threshold of φ = 0.24, we seek to find all leaves of weight

6 or above. There is only one such leaf, with weight 9. For the witness set, we also include

the fourth leaf, since its parent exceeds the threshold. Other nodes at higher levels in the

tree are also included in the witness set when their parent exceeds the threshold but they

individually do not. Nodes in the witness set are indicated by a red fill.

The prover presents the verifier with each node u in W , in increasing order of minL(u),

together with a convincing proof of the value of f̂(u). The verifier, besides checking the

proofs using the stored fingerprints, checks that the sets L(u) do cover all of [n] (outputting

⊥ if they do not) and outputs those u that are leaves of T with f̂(u) > T . In total, hcost =

O(|W | · ca log n) = O(caφ
−1 log2 n) and vcost = O(cv log n). Note that the stated vcost does

not explicitly account for the verifier storing the O(φ−1 log n) claimed heavy hitters, as in

some settings (e.g., Theorem 3.7.1, later in this chapter) this is not required.

In the prescient case, the helper provides W upfront, which requires O(|W | log n) =

O(φ−1 log2 n) bits of annotation. The verifier stores it and then computes all f̂ -values for

nodes in W , checking that these satisfy the requirements on a witness set. In this case, the

stated vcost does account for the verifier storing the O(φ−1 log n) claimed heavy hitters.

In Section 3.6, we return to this problem and present more involved protocols with a

lower cost. Specifically, Theorem 3.6.1 shows how to exploit sum-check techniques to allow

the frequencies of all items in W to be confirmed with essentially the same cost as a single
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item. It also shows how the size of the witness set W can be reduced by a logarithmic factor

in the prescient case.

3.5 Frequency Moments and Generalizations

In this section we continue the study of properties of the frequency distribution f(x) =

(f1(x), . . . , fn(x)) of a given stream x. In particular, we study the computation of frequency

moments, which has a long history in the data streams literature, like the frequent items

problem discussed earlier.

Definition 3.5.1. The kth frequency moment of the stream x is defined as Fk = Fk(f) :=∑
j∈[n] f

k
j = ‖f(x)‖kk. Slightly abusing notation, we also define Fk(v) := ‖v‖kk for a vector v.

It is well known that in the traditional data stream model, exact computation of Fk

(k 6= 1) requires Ω(n) space. Even constant factor approximation requires Ω(n1−2/k) space

for k ≥ 2 [31].

3.5.1 Schemes for Frequency Moments

We now show a family of schemes that exhibit an optimal tradeoff between verification

space and annotation length for the exact computation of Fk as a special case. This scheme

is a good example of a sum-check scheme as described in Section 3.1, and is based on the

Aaronson–Wigderson MA protocol for disj [3].

Theorem 3.5.2. Let f (1), . . . , f (`) denote the frequency vectors of ` data streams, each over

the universe [n]. Let g be an `-variate polynomial of total degree d over the integers. Let

F =
∑n

i=1 g(f
(1)
i , . . . , f

(`)
i ), and let o be an a priori upper bound on |F |. Then for positive

integers ca, cv with cacv ≥ n, there is an online (dca(log n+ log o), `cv(log n+ log o))-scheme

for computing F in the non-strict turnstile update model.
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Proof. We work on Fq, the finite field with q elements, for a suitably large prime q; the

choice q > 2d(n+ o)2 suffices. V treats each n-dimensional vector f (j) as a ca× cv array with

entries in Fq, using any canonical injection from [n] to [ca] × [cv], and interpreting integers

as elements of Fq in the natural way. Through interpolation, this defines a unique bivariate

polynomial f̃ (j)(X, Y ) ∈ Fq[X, Y ] of degree ca − 1 in X and cv − 1 in Y , such that for all

x ∈ [ca], y ∈ [cv], f̃
(j)(x, y) = f (j)(x, y).

The polynomials f̃ (j) can then be evaluated at locations outside [ca] × [cv], so in the

scheme V picks a random position r ∈ Fq, and evaluates f (j)(r, y) for all j ∈ [`] and y ∈ [cv];

V can do this using cv words of memory per vector f (j) in a streaming manner as follows.

To maintain each f̃ (j)(r, y) for y ∈ [cv], note that upon reading a new token i ∈ [n] in

stream j that maps to (a, b) ∈ [ca] × [cv], the necessary update is of the form f̃ (j)(r, y) ←

f̃ (j)(r, y) + χa,b(r, y), where χa,b is the Lagrange polynomial

χa,b(X, Y ) :=
∏

i∈[ca]\{a}

(X − i)(a− i)−1 ·
∏

j∈[cv ]\{b}

(Y − j)(b− j)−1 .

Since χa,b(r, y) = 0 for any y ∈ [cv] \ {b}, the verifier need only update the single value

f̃ (j)(r, b), by adding χa,b(r, b), upon reading this token. Using a table of O(ca) appropriate

precomputed values, this update can be computed quickly. For ca ≤
√
n, this takes a constant

number of arithmetic operations per update without affecting the asymptotic space cost.

Let g̃ denote the total-degree-d polynomial over Fq that agrees with g at all inputs in F`q.

P then presents a polynomial p(X) of degree at most d(ca−1) that is claimed to be identical

to
∑

y∈[cv ] g̃(f̃ (1)(X, y), . . . , f̃ (`)(X, y)).

V checks that p(r) =
∑

y∈[cv ] g̃
(
f̃ (1)(r, y), . . . , f̃ (`)(r, y)

)
. If this sum check passes, then

V believes P ’s claim and accepts
∑

x∈[ca] p(x) as the correct answer. It is evident that this

scheme satisfies perfect completeness. The proof of soundness follows from the Schwartz-
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Zippel lemma: if P ’s claim is false, then

Pr

[
p(r) =

∑
y∈[cv ]

g̃
(
f̃ (1)(r, y), . . . , f̃ (`)(r, y)

)]
≤ d(ca − 1)/q .

By setting ` = 1 and g(fi) = fki , we obtain the following immediate corollary.

Theorem 3.5.3. Suppose ca and cv are positive integers with ca · cv ≥ n. Then, for integers

k ≥ 1, there exists an online (k2ca logm, kcv logm)-scheme for computing Fk exactly in the

non-strict turnstile update model.

Numerous problems such as computing Hamming distances and inner products, and

approximating F2 and F∞, can be solved using Fk as a primitive or using related techniques.

We proceed to outline the relevant schemes and the results they provide.

Approximate F2. We obtain an AMA scheme that can approximate F2 up to a (1 + ε)

factor from an integer linear sketch of size O(1/ε2) [5, 62, 101]. In particular, if CSw(A) de-

notes a length-w Count-Sketch vector of the stream A built using 4-wise independent hash

functions, then F2(CSw(A)) estimates F2(A) with relative error ε = w−1/2 with constant

probability [101]. Thus, if the verifier and helper have access to a source of public random-

ness to define the hash functions used by the sketch, the above F2 scheme yields an online

(ε−2α logm, ε2α−2 logm)-scheme for any α ∈ [0, 1]. This follows from the combination of

sum-check techniques with the observation that the verifier can track linear updates to their

sketch efficiently.

Approximate F∞. Recall that F∞ = maxj∈[n] fj and note that F t
∞ ≤ Ft ≤ nF t

∞. Hence,

if t = log n/ log(1 + ε), then (Ft)
1/t is at most a factor 1 + ε from F∞. This yields an online

((1
ε

log n)2ca logm, (1
ε

log n)cv logm)-scheme for approximating F∞ for any ca, cv such that

ca · cv ≥ n. We make use of this scheme in Section 3.7.1.
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Inner Product and Hamming Distance. Consider a stream consisting of a string x ∈

{0, 1}N followed by a string y ∈ {0, 1}N . Exact computation of F2 implies online schemes

for certain functions of x and y. For example, the inner product x ·y is (F2(x+y)−F2(x)−

F2(y))/2 and the Hamming distance between x and y is |{i : xi = 1}|+ |{i : yi = 1}|−2x ·y.

Hence we get an online (ca logN, cv logN)-scheme for each of these functions, for every pair

of positive integers ca, cv satisfying ca · cv ≥ N . Alternately, Theorem 3.5.2 can be used to

more directly generate schemes for these problems with the same bounds, by treating x and

y as two separate data streams, and setting g(fi(x), fi(y)) = fi(x) · fi(y).

3.5.2 Lower Bounds on Frequency Moments

We now present lower bounds on the tradeoffs possible for the exact and approximate

computation of the nontrivial frequency moments Fk. The first part of the theorem below

shows that the tradeoff given by Theorem 3.5.3 is nearly tight.

Theorem 3.5.4. Suppose k ≥ 0 and k 6= 1. Let Q be a (ca, cv)-scheme (online or prescient)

for computing Fk even in the insert-only unit-update model.

(1) If Q computes Fk exactly, then it requires ca · cv = Ω(n).

(2) If Q approximates Fk up to a constant factor, then it requires ca · cv = Ω(n1−5/k).

Proof. Both results follow from lower bounds on the MA complexity of disjn,t : {0, 1}nt →

{0, 1}, the t-party set disjointness problem, which is defined as follows. The input is a t ×

n Boolean matrix, with Player i holding the ith row, for i ∈ [t]. We call an input x =

(xij)i∈[t],j∈[n] valid if every column of x has weight either 0 or 1 or t, and at most one column

has weight t. The desired output is

disjn,t(x) := ¬ ∨nj=1 ∧ti=1xij ,
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i.e., 1 iff the subsets of [n] represented by the rows of x are disjoint. Note that disjn,t is

naturally related to frequency moments: for any valid input x, Fk(S) ≥ tk if disjn,t(x) = 0

and Fk(S) ≤ n if disjn,t(x) = 1 where S is the multiset {j : xij = 1}. Thus, reductions from

disjn,2 and disjn,O(n1/k) establish the first and second parts of the theorem, respectively, in

a straightforward manner.

To complete the proof, we need a lower bound for disjn,t itself. This is given in the next

theorem, which generalizes a result by Klauck [70] and also resolves a question of Feigenbaum

et al. [50].

Theorem 3.5.5. Let Q be an ε-error t-party MA protocol for disjn,t, where ε ≤ 1/3. Then

hcost(Q) · vcost(Q) = Ω(n/t4). In particular, MA(disjn,t) = Ω(
√
n/t2).

Proof. A rectangle is defined as a subset of inputs of the form X1 × · · · × Xt, where each

Xi ⊆ {0, 1}n is a subset of the set of all possible inputs for Player i. A basic fact about

deterministic communication protocols is that the inverse image of any transcript of such a

protocol must be a rectangle; this is usually called the rectangle property. Let A = disj−1
n,t(1)

and B = disj−1
n,t(0). The following lemma was proved by Alon, Matias and Szegedy [6],

generalizing a result due to Razborov [84].

Lemma 3.5.6 (Lemma 3.4 of [6]). There exists a distribution µ over valid inputs such that

(1) µ(A) = µ(B) = 1/2, and

(2) every rectangle T satisfies µ(T ∩B) ≥ (2e)−1µ(T ∩ A)− t2−n/2t4.

Returning to our theorem, assume t = ω(n1/4) since otherwise the bound is trivial. Put

ca = hcost(Q) and cv = vcost(Q). An input x ∈ A is said to be covered by a message

h from Merlin if PrR[outQ(x, R, h) = 0] ≤ ε. By correctness, every such input must be

covered, so there exists a help message h∗ that covers every input in a set G ⊆ A, with

41



µ(G) ≥ 2−caµ(A) = 2−ca−1. Fix Merlin’s message inQ to h∗ and amplify the correctness of the

resulting randomized Merlin-free protocol by repeating itO(ca) times and taking the majority

of the outputs. This gives us a randomized protocol Q′ for disjn,t with communication cost

c = O(ca · cv) whose error, on every input in G ∪B, is at most 2−2ca .

Let µ′ denote the distribution µ conditioned on G ∪ B. Note that, by condition (1) of

Lemma 3.5.6,

∀x ∈ {0, 1}nt : either µ′(x) = 0 or µ(x) ≤ µ′(x) ≤ 2µ(x) . (3.1)

By fixing the random coins of Q′ we can obtain a deterministic protocol Q′′, for disjn,t, that

communicates c bits and satisfies errµ′(Q′′) ≤ 2−2ca . By the rectangle property, there exist

disjoint rectangles T1, T2, . . . , T2c such that outQ
′′
(x) = 1 if and only if x ∈ ⋃2c

i=1 Ti. Therefore

2c∑
i=1

µ′(Ti ∩B) ≤ 2−2ca , and (3.2)

µ′

(
A \

2c⋃
i=1

Ti

)
≤ 2−2ca . (3.3)

By (3.1), we have µ′(A) = µ′(G) ≥ µ(G) ≥ 2−ca−1. Using (3.1), and a rearrangement of (3.3):

2c∑
i=1

µ(Ti ∩ A) ≥ 1

2

2c∑
i=1

µ′(Ti ∩ A) ≥ 1

2

(
µ′(A)− 2−2ca

)
≥ 2−ca−3 .

Suppose c ≤ n/5t4 and n is large enough. Applying condition (2) of Lemma 3.5.6 to each

term in the leftmost sum above, we get

2c∑
i=1

µ(Ti ∩B) ≥ 2−ca−3

2e
− 2ct · 2−n/2t4 ≥ 2−ca−6 .

However, by (3.1) and (3.2), we have
∑2c

i=1 µ(Ti∩B) ≤ 2−2ca , a contradiction. Hence ca ·cv =

Ω(c) = Ω(n/t4).
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3.6 Frequent Items

In this section, we provide further results on finding exact frequent items. Our new

results for frequent items improve over Theorem 3.4.1 in two ways: Firstly, we show that in

the online case, the frequencies of all items in the witness set can be simultaneously checked

with essentially the same cost as checking a single frequency, thereby saving some polynomial

factors. Secondly, we show that in the prescient case it is possible to use a more compact

witness set relative to Theorem 3.4.1, thereby saving logarithmic factors.

Theorem 3.6.1. Let T = φN ′, where N ′ =
∑

i∈[n] fi is the sum of the frequencies of a data

stream over a universe of size n. For every pair of positive integers ca, cv satisfying ca ·cv ≥ n,

there is an online (φ−1 log2 n+ ca log n, cv log n)-scheme for finding {j : fj > T} in the strict

turnstile update model, as well as a prescient (φ−1 log n, φ−1 log n)-scheme. Any online or

prescient (ca, cv)-scheme for this problem, even in the unit-update insert-only model, must

have ca · cv = Ω(n).

Proof. We begin with the online scheme. Let W be the witness set from Theorem 3.4.1.

Recall that W is a subset of the nodes of a binary tree T imposed over the data universe,

and in the scheme of Theorem 3.4.1, P sends to V a claimed value for f̂(w) =
∑

i∈L(w) fi,

where L(w) denotes the set of all leaves in the subtree rooted at W .

We show how V can check that f̂(w) is as claimed for all items w ∈ W . Let z denote the

2n−1-dimensional vector such that zw = 1 if w ∈ W , and zw = 0 otherwise. Let f ∗ denote the

2n−1-dimensional vector such that f ∗w equals the claimed value of f̂(w) if w ∈ W , and f ∗w = 0

otherwise. Abusing notation, we will also think of f̂ itself as a 2n−1-dimensional vector such

that f̂w = f̂(w). Then f̂(w) = f ∗w for all w ∈ W if and only if 0 =
∑

j∈[2n−1] zj(f̂w − f ∗w)2.

Theorem 3.5.2 gives an online scheme for computing the quantity
∑

j∈[2n−1] zj(f̂w − f ∗w)2:

within the statement of Theorem 3.5.2, we let ` = 3, f (1) = f̂ , f (2) = f ∗, and f (3) = z. It is
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easy for V to run the scheme of Theorem 3.5.2 on derived streams defining these three vectors;

for any ca, cv such that cacv ≥ n, Theorem 3.5.2 yields a scheme with hcost = O(ca log n)

and vcost = O(cv log n).

Thus, the total hcost of our scheme is φ−1 log2 n + ca log n, where the φ−1 log2 n term is

the annotation required to specify the items in W and the claimed values for f̂w : w ∈ W ,

while the ca log n term is the annotation required to check that the claimed f̂w values are

correct. The verifier’s space usage is cv log n, yielding the claimed result.

For the prescient scheme, we specify a witness set that is more succinct than that of

Theorem 3.4.1. Consider a binary tree T whose leaves are the elements of the universe [n],

as in Theorem 3.4.1. We will specify a witness set W of size O(φ−1) to identify to identify all

leaves j with fj > T ; we base W on the concept of Hierarchical Heavy Hitters (HHHs) [37].

Below, we refer to the set of Hierarchical Heavy Hitters as H.

We define H inductively, beginning with the leaves and working our way to the root.

We include a leaf in H if its frequency exceeds T . Let u be a node at distance l from the

root (i.e., at level l of T ), and assume inductively that we have determined all HHHs at

levels greater than l. Let H(u) denote the set of descendants of u that have been included in

H, and let L(u) denote the set of leaves of the subtree rooted at u. Finally, define S(u) :=

L(u) \
(
∪v∈H(u) L(v)

)
. Intuitively, S(u) is the set of leaves in L(u) that have not already

contributed their frequency to an HHH descendant of u. Define the conditioned count of u

as g(u) :=
∑

j∈S(u) fj; we include u in H if g(u) > T . Observe there are at most φ−1 items

in H since T = φN ′: each leaf contributes its frequency to g(u) for exactly one u ∈ H, and

therefore |H|T ≤∑u∈H g(u) ≤ N ′.

We now define our witness set W as all leaves j in H in addition to all nodes u such that

u’s parent is in H but u is not in H. Observe that each node u ∈ W is witness to the fact

that no leaves j ∈ S(u) can have fj > T . We also include the root r in W to account for any
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leaves that are not descendants of any node in H. The sets S(u) for u ∈ W form a partition

of [n]. Notice that |W | = O(φ−1) since |H| ≤ φ−1.

In the prescient scheme, the helper lists all nodes u ∈ W sorted by the natural order

on nodes, and the verifier remembers this information. The verifier may then compute the

conditioned count of each u ∈ W using space O(|W | log n) = O(φ−1 log n): each time an item

j appears in the stream, the verifier determines the unique u ∈ W such that j ∈ S(u) (u

is simply the ancestor of j in W farthest from the root), and increments g(u). The verifier

checks that g(j) > T for all leaf nodes j ∈ W , and that g(u) ≤ T for all internal nodes in

W and outputs ⊥ otherwise. Since the sets S(u) partition [n], this latter check ensures that

the helper does not omit any leaves j with fj > T .

We prove the lower bound by an easy reduction from two-party set-disjointness, disjn,2.

Consider Alice and Bob with respective inputs x, y ∈ {0, 1}n. Alice’s input x induces a

stream A by placing one copy of token j in the stream if xj = 1. Then Bob places one copy

of item j in the stream if yj = 1. We may assume Bob knows |{j : xj = 1}|, and hence knows

the number of non-zero entries N ′ in the stream; if not Alice can tell Bob |{j : xj = 1}| at

an additive cost of logarithmically many bits. Now x and y are disjoint if and only if the set

{j : fj > 1 = φN ′} for φ = 1/N ′ is non-empty. Thus, determining the frequent items for

T = 1 solves two-party set disjointness, proving the bound by Theorem 3.5.5.

3.7 Frequency-Based Functions

It is natural to ask whether the Fk scheme of Theorem 3.5.3 generalizes to more com-

plicated functions. We demonstrate that this is indeed the case by presenting non-trivial

algorithms for the class of all frequency based functions. A frequency based function is any

function G on frequency vectors f = (f1, . . . , fn) of the form G(f) =
∑

j∈[n] g(fj) for some

45



G

S
H

R
f

Figure 3.2: Example to illustrate Theorem 3.7.1

g : Z+ → Z+.

Frequency-based functions have a number of important special cases, including frequency

moments, F0 (the number of distinct items in the stream), and point and range queries on

the frequency distribution, and can also be used to compute F∞, the highest frequency in the

frequency vector. These functions occupy an important place in the streaming world: Alon,

Matias, and Szegedy asked for a precise characterization of which frequency-based functions

can be approximated efficiently in the standard streaming model in their seminal paper

[6]. Braverman and Ostrovsky [22] gave a zero-one law for approximating monotonically

increasing functions of frequencies that are zero at the origin. This can be contrasted with

our result that, in the annotation model, all frequency-based functions have non-trivial exact

schemes.

Theorem 3.7.1. Assume g(x) ≤ nc for some constant c, so that each value in the range of

g and G can be represented using O(log n) bits. Suppose N = O(n). Let G(f) =
∑

j∈[n] g(fj)

be any frequency-based function. Then G has a prescient (n2/3 log n, n2/3 log n)-scheme and

an online (n2/3 log4/3 n, n2/3 log4/3 n)-scheme, both in the non-strict turnstile update model.

Proof. We first describe the prescient scheme. It is natural to attempt to directly apply

the scheme of Theorem 3.5.2 (with ` = 1) to the given function g. However, this does not

yield a useful result. The problem with this approach is that while the function g within the

definition of G may be viewed through polynomial interpolation as a polynomial g̃ over the
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integers or the relevant finite field, the degree of g̃ may be large – as large as 2N , since we

need it to hold that g̃(x) = g(x) for all possible frequencies x ∈ {−N, . . . , N}. If N = Ω(n),

it would be more efficient for the helper to just repeat the stream in sorted order.

The solution is to reduce the degree of g̃ by removing the heavy hitters from x with the

aid of the prover. That is, we run the prescient heavy hitters scheme from Theorem 3.6.1 to

determine H :=
∑

j∈S g(fj)−|S|g(0), where S := {j : fj ≥ nβ} and β < 1 is a parameter we

will fix later. Note that this requires communication O((N/nβ) log n) = O(n1−β log n) since

N = O(n) by assumption. Intuitively, H represents the contribution of the heavy hitters to

the frequency-based function, and the verifier then “removes” these items from the stream

by setting fj = 0 for all j ∈ S. This ensures that the removed items do not contribute to the

sum R =
∑

j∈[n] g(fj). The verifier and prover then run the scheme of Theorem 3.5.2 on the

modified frequency vector, and the final result is given by H +R. From now on, let f denote

this modified vector.

Figure 3.2 gives an illustation of the central idea: the frequency distribution is concep-

tually split into two pieces, the set of heavy hitters S and the residual distribution f . The

contributions of each piece are calculated as H and R respectively, and summed to obtain

the answer G.

When running the scheme of Theorem 3.5.2, we exploit the fact that each entry of f lies

in {0, 1, . . . , nβ}. This lets us use a degree-nβ polynomial g̃ within the scheme of Theorem

3.5.2. For any ca, cv such that ca · cv ≥ n, Theorem 3.5.2 yields an online (nβca log n, cv log n)

scheme for computing
∑

i∈[n] g̃(fi).

It remains to show that we can set the parameters ca, cv, and β of the above protocol to

achieve hcost = vcost = O(n2/3 log n). The help cost isO(n1−β log n) bits for the heavy hitters

scheme plus O(can
β log n) bits for the scheme of Theorem 3.5.2. The respective verification

costs are O(n1−β log n) and O(cv log n). Setting β = 1
3
, ca = n1/3, and cv = n2/3 achieves the
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desired costs.

In order to achieve an online (n2/3 log4/3 n, n2/3 log4/3 n)-scheme for G, observe that the

only place where the above scheme used prescience was to identify heavy hitters. So we simply

substitute the online heavy hitters scheme of Theorem 3.6.1, with parameter α ∈ [0, 1],

in place of the prescient version. In this case, the help cost is O(n1−β log2 n + nα log n)

bits for the heavy hitters scheme and O(can
β log n) bits for the scheme of Theorem 3.5.2.

The respective verification costs are O(n1−α log n) and O(cv log n). Balancing these costs by

setting nβ = n1/3 log2/3 n, nα = n2/3, ca = n1/3/ log1/3 n, and cv = n2/3 log1/3 n gives the

desired overall costs.

Applications. Theorem 3.7.1 provides annotation schemes for the problems described

below.

• We can compute F0, the number of items with non-zero count. This follows by observing

that F0 is equivalent to computing
∑

i∈[u] g(fi) for the function g given by g(0) = 0

and g(x) = 1 for x > 0. This yields a prescient (n2/3 log n, n2/3 log n)-scheme for F0,

and an online (n2/3 log4/3 n, n2/3 log4/3 n)-scheme.

• More generally, we can compute functions on the inverse distribution, i.e., queries of

the form “How many items occur exactly k times in the stream?” We do this by setting

g(k) = 1 and g(x) = 0 for x 6= k; here we think of k as being fixed. In the case of

k = 1, this function is known as rarity [45]. One can build on this to compute, e.g., the

number of items that occurred between k and k′ times, the median of this distribution,

etc.

• We obtain a protocol for F∞ = maxj∈[n] fj, with a little more work. The helper first

claims a lower bound ` on F∞ by providing the index of an item with frequency
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F∞, which the verifier checks by running the generalized index protocol from Sec-

tion 3.3 (see Remark 2 after Theorem 3.3.2). Then the verifier runs the above protocol

with g(x) = 0 for x ≤ ` and g(x) = 1 for i > `; if
∑

j∈[n] g(fj) = 0, then the

verifier is convinced that no item has frequency higher than `, and concludes that

F∞ = `. We therefore achieve a prescient (n2/3 log n, n2/3 log n)-scheme and an online

(n2/3 log4/3 n, n2/3 log4/3 n)-scheme for F∞.

3.7.1 Frequency-Based Functions for Skewed Streams

In practice, the frequency distributions of data streams are often skewed, in the sense

that a small number of frequent items make up a large portion of the stream. We observe

that, if the stream is sufficiently skewed, so that there are few heavy hitters, we can achieve

more efficient schemes for frequency-based functions. To see this, notice that in the scheme

of Theorem 3.7.1, the verifier, after learning the heavy hitters from the helper, only needs

to know an approximate upper bound on F∞(A′), where A′ is the stream obtained from

the input stream A by deleting all the heavy hitters. That is, the helper only needs to

convince the verifier that he has presented “enough” of the true heavy hitters (and their

exact frequencies) so that F∞(A′) ≤ b for some upper bound b = Θ(nβ)—then we may

define g̃ to agree with g on [b], so that the degree of g̃ remains O(nβ).

Observe that if there are not many heavy items, the helper can send a list L of heavy

hitters and their frequencies (proving the frequencies are truthful as in Theorem 3.6.1) and

then appending a proof of an approximate upper bound (within factor 1 + ε) as per Section

3.5.1 on the quantity F∞(A′).

It suffices to let ε be any positive constant in order to achieve b = O(nβ). When there

are fewer than ` items with frequency greater than nβ, the index queries, if they are on-

line, require annotation O(` log n+ ca log n) and space O(cv log n) for the verifier, while the
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approximate F∞ scheme requires annotation O(ca log3 n) and space O(cv log2 n). Therefore,

we will obtain an (` log n+ ca log3 n, cv log2 n) scheme for identifying the set of heavy hitters

and an upper bound u on F∞(A′).

For concreteness, we will analyze the costs of our improved scheme under the assumption

that the frequencies of items in the stream follow a Zipfian distribution, a power law distribu-

tion that accurately approximates many real-world data sets. Under the Zipfian distribution,

the ith largest frequency is (at most) Ni−z for parameter z. Setting this equal to nβ and

rearranging, we obtain that there are at most (N/nβ)1/z heavy hitters to identify.

Therefore, if N = Θ(n), we can reduce the cost of the heavy hitters sub-protocol

within the scheme of Theorem 3.7.1 to (n(1−β)/z log n + capolylog n, cvpolylog n). Adding

in the annotation cost of sending the polynomial g̃ ◦ f̃ , and the space cost to the veri-

fier, the entire scheme therefore requires Õ(n(1−β)/z + can
β) annotation and Õ(cv) space,

where the Õ notation hides factors polylogarithmic in n. Assume z ≤ 2. Balancing ex-

ponents by setting β = (2 − z)/(2 + z), ca = nz/(2+z), and cv = n/ca, we obtain an

(n2/(2+z)polylog n, n2/(2+z)polylog n) scheme.

This strictly improves on Theorem 3.7.1 as long as z > 1. For example, if z = 2, we

obtain an online (n1/2polylog n, n1/2polylog n)-scheme, which essentially matches the cost of

our online scheme for F2 from Theorem 3.5.3.

3.8 Set and Multiset Inclusion

Building on some of the results and techniques in Section 3.5, we now address a family of

abstract problems that involve a helper proving a subset (inclusion) relation to a streaming

verifier. Both sets and multisets are of interest. For example, we may need to prove that

A ⊆ B for two sets A and B, or we may need to prove that a set A is exactly the support
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set of a multiset B. These abstract problems turn out to be common subproblems arising

in a number of applications that we shall consider later (see, e.g., Theorems 3.10.5, 3.10.6,

and 3.10.7).

Throughout this section, the size of a multiset is the number of elements in it, counting

multiplicities. A fingerprint of a multiset is a basic fingerprint, as in Definition 3.2.1, of its

characteristic (frequency) vector.

Lemma 3.8.1. Let A ⊆ [n] be a set and B ⊆ [n] a multiset of size t. Let B′ be the set

formed by removing all duplicate elements from B. Then, given a stream which begins with

the elements of A followed by the elements of B, there is a prescient (t log n, log n)-scheme

that establishes whether B′ = A.

Proof. As the elements of A are observed in the stream, the helper annotates each a ∈ A

with the multiplicity, fa, of a in B. Once A has been observed, the helper then lists each

element b in the set difference B′ \ A, along with the corresponding multiplicity fb in B.

Obviously there are no such elements iff B′ = A. From the provided information, the verifier

constructs a fingerprint of the multiset in which each a ∈ A ∪ B′ appears with multiplicity

fa.

Then, while observing the elements of the multiset B, the verifier incrementally constructs

a fingerprint of B, as in Lemma 3.2.1. The verifier accepts iff the two fingerprints match.

In the remainder of this section, we give three schemes achieving tradeoffs between hcost

and vcost for (multi)-set inclusion, in order of generality. First, we give an essentially optimal

online (ca log n, cv log n)-scheme, for any positive integers ca and cv with ca · cv ≥ n, for the

special case when B is a set rather than a multiset.

Theorem 3.8.2. Let X, Y ⊆ [n] be sets. Then given a stream with elements of X and Y

arbitrarily interleaved, there is an online (ca log n, cv log n)-scheme for determining whether
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X ⊆ Y for any ca and cv such that ca · cv ≥ n. Moreover, any online (ca, cv)-scheme requires

ca · cv = Ω(n).

Proof. Let x, y ∈ {0, 1}n be the characteristic vectors of X and Y respectively. Notice F2(y−

x) = |X∆Y |. Thus, X ⊆ Y if and only if F2(y−x) = |Y |−|X|. Consequently, the helper can

run the F2 scheme of Theorem 3.5.3 on the vector y − x to determine if the above equality

holds.

The lower bound follows from a straightforward reduction from index. Take N = n.

Given the string x ∈ {0, 1}n, Alice transforms it into the stream over [n] representing the

set Y = {j : xj = 1}. Given the index i ∈ [n], Bob transforms it into a stream representing

the singleton set X = {i}. Then xi = 1 if and only if X ⊆ Y .

We now show how to use the result for frequency-based functions to handle duplicated

items; in this case X and Y are multisets rather than sets. The next theorem lets us efficiently

handle a small number of duplicates.

Theorem 3.8.3. Let X, Y ⊆ [n] be multisets. Assume k is a known upper bound on the

maximum frequency of any element in X or in Y . Then given a stream with elements of X

and Y arbitrarily interleaved, there is a online (kca log n, cv log n)-scheme for determining

whether X ⊆ Y , for any ca and cv with cacv ≥ n.

Proof. Let x, y be the characteristic vectors of X and Y respectively. Then X ⊆ Y if and only

if yi− xi ≥ 0 for all i. The bound on the maximum frequency implies that −k ≤ yi− xi ≤ k

for all 1 ≤ i ≤ n. Let g̃ be defined through interpolation as the polynomial of degree

2k over the finite field Fp such that g̃(x) = 0 for x ∈ {0, 1, . . . , k}, and g̃(x) = 1 for

x ∈ {−k,−k+ 1, . . . ,−1}. Then
∑

i g̃(yi−xi) = 0 if and only if X ⊆ Y ; intuitively, g̃ acts as

an indicator function for the set of possible negative entries in the vector y−x. Applying the
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polynomial-agreement protocol defined in the proof of Theorem 3.7.1 under this definition

of g̃, we obtain a (kca log n, cv log n)-scheme for checking X ⊆ Y whenever ca · cv ≥ n.

Finally, we give an online (n2/3 log n, n2/3 log n)-scheme for the general multiset inclusion

problem, as long as t = O(n).

Theorem 3.8.4. Let X, Y ⊆ [n] be multisets of size at most t. Then given a stream with

elements of X and Y arbitrarily interleaved, there is there is an online (n2/3 log n, n2/3 log n)-

scheme for determining whether X ⊆ Y assuming t = O(n).

Proof. Let x, y be the characteristic vectors of X and Y respectively. It holds that X ⊆ Y if

and only if yi−xi ≥ 0 for all i. Define g : {−t,−t+1, . . . , 0, 1, . . . , t} → {0, 1} by g(x) = 0 for

x ∈ {0, . . . , t} and g(x) = 1 for x ∈ {−t,−t+1, . . . ,−1}. The theorem holds by applying the

protocol of Theorem 3.7.1 to G(f), where f is the vector y− x and G is the frequency-based

function defined by g. (As stated, the protocol of Theorem 3.7.1 applies only to g : Z+ → Z+,

but it applies without modification to any function g defined on a suitably small domain,

such as ours).

3.9 Matrix-Vector Multiplication

We now give a scheme achieving essentially optimal tradeoffs between annotation length

and space usage for multiplying a b× c integer matrix A by a c-dimensional vector x.

Theorem 3.9.1. Consider a data stream containing entries of a b × c matrix A and a

c-dimensional vector x, in some arbitrary order, possibly interleaved. We assume that all

entries of A and x are integers of absolute value polynomial in b and c. For any positive

integers ca, cv such that cacv ≥ c, there is an online (bca log(b + c), cv log(b + c))-scheme for

computing product Ax. Moreover, any (ca, cv) protocol requires ca · cv = Ω(min(c, b)2) bits for

matrices with Ω(b · c) non-zero entries.
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Proof. We begin with the upper bound. The protocol for verifying inner-products, which

follows from Theorem 3.5.2 treats a c dimensional vector (such as a row of A) as a ca × cv

array H, where ca · cv ≥ c. This then defines a bivariate polynomial h over a suitably large

field Fq, such that h has degree ca in its first variable and cv in its second variable, and such

that h(x, y) = Hx,y for all (x, y) ∈ [ca]× [cv]. For an inner-product between two vectors (such

as a row of A and the vector x, treated as arrays H and G respectively), we wish to compute∑
x∈[ca],y∈[cv ] Gx,yHx,y =

∑
x∈[ca],y∈[cv ] g(x, y)h(x, y) for the corresponding arrays G,H and

polynomials g, h. These polynomials can then be evaluated at locations outside [ca]× [cv], so

in the protocol V picks a random position r and evaluates h(r, y) and g(r, y) for 1 ≤ y ≤ cv.

P then presents a degree ca polynomial p(X) which is claimed to be
∑cv

y=1 g(X, y)h(X, y).

V checks that p(r) =
∑cv

y=1 g(r, y)h(r, y), and if so accepts
∑ca

x=1 p(x) as the correct answer.

In Theorem 3.5.2 it is shown how V can compute h(r, y) efficiently as H is defined

incrementally in the stream: each addition of δ to a particular index is mapped to (x, y) ∈

[ca]× [cv], which causes h(r, y)← h(r, y) + δ · χx,y(r), where χx,y is a Lagrange polynomial.

Equivalently, the final value of h(r, y) over updates in the stream where the jth update is

tj = (δj, xj, yj) is f(r, y) =
∑

tj :yj=y δj · χxj ,y(r).

To run this protocol over multiple vectors in parallel naively would require keeping the

h(r, y) values implied by each different vector separately, which would be costly, as it would

increase both the annotation and the space usage by a factor of b relative to a single inner

product query. Our observation is that rather than keep these values explicitly, it is sufficient

to keep only a fingerprint of these values, using the linearity of fingerprint functions to finally

test whether the polynomials provided by P for each vector together agree with the stored

values.

In our setting, the b×c matrix A implies b bivariate polynomials h1, . . . , hb of degree ca in

the first variable and cv in the second. We evaluate each polynomial at (r, y) for 1 ≤ y ≤ cv
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for the same value of r: since each test is fooled by P with small probability, the chance that

none of them is fooled can be kept high by choosing the field to evaluate the polynomials over

to have size polynomial in b+ c. Thus, conceptually, the parallel invocation of b instances of

this protocol require us to store hi(r, y) for 1 ≤ y ≤ cv and 1 ≤ i ≤ b (for the b rows of A), as

well as g(r, y) for 1 ≤ y ≤ cv (where g is the polynomial derived from x). Rather than store

this set of b · cv values explicitly, V instead stores only cv fingerprints, one for each value of

y, where each fingerprint captures the vector b values of hi(r, y).

From the definition of our fingerprinting function in Lemma 3.2.1, this means over stream

updates tj = (δj, ij, xj, yj) of weight δj to row ij and column indexed by xj and yj we compute

one fingerprint zy for each value y ∈ [cv]:

zy =
b∑
i=1

hi(r, y)αi =
b∑
i=1

∑
tj :yj=y,ij=i

δj · χxj ,y(rj)αi,

where α is chosen uniformly at random from Fq as in Lemma 3.2.1. Observe that for each y

this can be computed incrementally in the stream by storing only r and the current value of

zy.

To verify the correctness, V receives the b polynomials pi, one for each row, and incre-

mentally builds a fingerprint z∗ of the b-dimensional vector whose ith entry is pi(r). V then

tests whether
cv∑
y=1

zyg(r, y) = z∗.

To see the correctness of this, we expand the left hand side as

cv∑
y=1

zyg(r, y) =
cv∑
y=1

( b∑
i=1

hi(r, y)αi
)
g(r, y)

=
cv∑
y=1

( b∑
i=1

g(r, y)hi(r, y)αi
)

=
b∑
i=1

( cv∑
y=1

g(r, y)hi(r, y)
)
αi
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Likewise, if all pi’s are as claimed, then

z∗ =
b∑
i=1

pi(r)α
i =

b∑
i=1

(
cv∑
y=1

g(r, y)hi(r, y)
)
αi

Thus, if the pi’s are as claimed, then these two fingerprints will match. Moreover, by

the Schwartz-Zippel lemma (Lemma 2.2.1), and the fact that α and r are picked uniformly

at random from Fq by V and not known to P , the fingerprints will not match with high

probability if the pi’s are not as claimed, when the polynomials are evaluated over a field of

size polynomial in (b+ c).

To analyze the vcost, we observe that V can compute all fingerprints in O(cv) space. As

P provides each polynomial pi(x) in turn, V can incrementally compute z∗ and check that

this matches
∑cv

y=1 zyg(r, y). At the same time, V also computes
∑b

i=1

∑ca
x=1 pi(x), as the

value of Ax. Note that if each pi is sent one after another, V can forget each previous oi after

the required fingerprints and evaluations have been made; and if ca is larger than cv, V does

not even need to keep pi in memory, but can instead evaluate it term by term in parallel for

each value of x. Thus the total space needed by V is dominated by the cv fingerprints and

check values.

The total size of the information sent by P is dominated by the b polynomials of degree

ca.

To prove the lower bound, we give a simple reduction of index to matrix-vector multi-

plication. Suppose we have an instance (x, k) of index where x ∈ {0, 1}n2
, k ∈ [n2]. Alice

constructs an n × n matrix A from x alone, in which Ai,j = 1 if xf(i,j)=1, where f is a 1-1

correspondence [n]× [n]→ [n2], and Ai,j = 0 otherwise. Assume f(i, j) = k. Bob then con-

structs a vector x ∈ Rn such that xi = 1 and all other entries of x are 0. Then the j’th entry

of Ax is 1 if and only if xf(i,j)=1, and therefore the value of xf(i,j) can be extracted from the

vector Ax. Therefore, if we had a (ca, cv) protocol for verifying matrix-vector multiplication

given an n× n matrix A (even for a stream in which all entries of A come before all entries
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of x), we would obtain a (
√
ca,
√
cv) protocol for index. The lower bound for matrix-vector

multiplication thus holds by a lower bound for index given in Theorem 3.3.2.

3.10 Graph Problems

In this section we consider computing properties of graphs with n vertices, determined by

a stream of m edges [48, 64] (possibly with deletions of edges). That is, each stream update

specifies an edge in [n]×[n] to be inserted or deleted. We present tight results for connectivity

of sparse graphs, bipartiteness, determining if a bipartite graph has a perfect matching,

counting triangles, shortest s-t path, and minimum weight bipartite perfect matching. Our

(standard) bipartite perfect matching result achieves optimal tradeoffs up to logarithmic

factors, as does our shortest s-t path result for small-diameter graphs.

3.10.1 Counting Triangles via Matrix Multiplication

Estimating the number of triangles in a graph has received significant attention because

of its relevance to database query optimization—knowing the degree of transitivity of a

relation is useful when estimating the cost of evaluation plans for certain relational queries—

and investigating structural properties of the web-graph and social graphs [11,25,67]. In the

absence of annotation, any single-pass algorithm to determine if there is a non-zero number

of triangles requires Ω(n2) bits of space, where n is the number of vertices in the graph [11].

In contrast, we show that the exact number of triangles can be verified in logarithmic space,

with the help of O(n2 log n) bits of annotation. The following theorem, proved using ideas

from Bar-Yossef et al. [11] coupled with Theorem 3.5.5, shows that this amount of annotation

is nearly optimal, for a log-space verifier.

Theorem 3.10.1. Any (ca, cv)-scheme for counting triangles on graphs with n vertices must
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have ca · cv = Ω(n2) for graphs with Ω(n2) edges, even in the insert-only update model.

Proof. We show a reduction from disj(n2/9),2. We represent an instance of disj as a pair of

(n/3) × (n/3) Boolean matrices X, Y in the natural way. We proceed to construct a graph

that has a triangle if and only if Xij = Yij = 1 for some i, j ∈ [n/3]. The nodes are partitioned

into sets U, V,W so that |U | = |V | = |W | = n/3. Insert edges {(ui, wi) : i ∈ [n/3]}∪{(ui, vj) :

Xij = 1} ∪ {(wi, vj) : Yij = 1}. There is a triangle (ui, vj, wi) iff Xij = Yij = 1, and there is

no other way to form a triangle. The result follows from Theorem 3.5.5.

We now outline an online scheme with vcost = O(log n) and hcost = O(n2 log n). A major

subroutine of our algorithm is the verification of (integer) matrix multiplication in our model.

That is, given n × n matrices A,B and C with integer entries, verify that AB = C. Our

technique extends the classic result of Frievalds [53] by showing that if the prover presents

the results in an appropriate order, the verifier needs only O(log n) bits to check the claim.

Note that this much annotation is necessary if the prover is to provide C in his stream.

Theorem 3.10.2. There exists an online (n2 log n, log n)-scheme for multiplying two n× n

integer matrices.

Proof. Let q be a prime larger than 2n · o2 + 1, where o is an a priori upper bound on the

absolute values of all entries of A and B. By the result of Kimbrel and Sinha [68], the verifier

can check AB = C by picking r uniformly from Fq and checking that A(BrT) = CrT, in

the field Fq, for vector r = (r0, r1, . . . , rn−1). This fails to identify an incorrect product with

probability at most n/q. Rather than computing A(BrT) and CrT explicitly, the verifier will

compare fingerprints of CrT and ABrT. These are computed as yCrT and yABrT, for a

vector y = (y0, y1, . . . , yn−1) where y is picked uniformly from Fq. This fingerprinting fails

to distinguish distinct vectors with probability at most n/q.
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We observe that (1) yCrT =
∑

i,j s
irjCij can be computed easily whatever order the

entries of C are presented in. (2) yABrT = (yA)(BrT) is the inner product of two n-

dimensional vectors, and that (yA)i =
∑

j y
jAij and (BrT)i =

∑
j r

jBji. Therefore, if the

prover presents the ith column of A followed by the ith row of B for each i in turn, the

verifier can easily compute sABrT in O(log q) space. Picking q ≥ 6n ensures that the verifier

is fooled with probability at most 1/3, and the total space used by the verifier to store r, y

and intermediate values is O(log n).

With this primitive, arbitrary matrix products A`A`−1 · · ·A2A1 are verified with O(`n2 log n)

annotation by verifying A(2) := A2A1, then A(3) := A3A
(2), etc. Matrix powers A` are verified

with O(n2 log ` log n) annotation, using repeated squaring. Here, we assume that the entries

computed do not grow too large, and so can be represented within O(log n) bits.

Theorem 3.10.3. There is an online (n2 log n, log n)-scheme for counting triangles in a

graph with n nodes.

Proof. Denote the graph adjacency matrix by A, with Aii := 0. The prover lists Avw and

A2
vw for all pairs (v, w) in some canonical order. The verifier computes

∑
v,w AvwA

2
vw as the

number of triangles. The verifier uses fingerprints to check that A matches the original set

of edges, and the scheme in Theorem 3.10.2 to ensure that A2 is as claimed.

We also show that it is possible to trade off the computation with the prover in a “smooth”

manner. The approach is based on the following observation of Bar-Yossef et al. [11].

From the given stream of edges of a graph, we can create a derived stream, of length

m(n − 2), by replacing each edge (u, v) with the set of triples {(u, v, w) : w 6∈ {u, v}}.

The frequency moments of this derived stream can be expressed in terms of the numbers of

triples of nodes with exactly zero, one, two and three edges between them. It follows that

the number of triangles can be expressed in terms of the frequency moments of this derived
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stream, as (F3−3F2 +2F1)/6. By using the scheme of Theorem 3.5.3, we obtain the following

theorem.

Theorem 3.10.4. For every pair of positive integers ca, cv such that ca · cv ≥ n3, there is an

online (ca log n, cv log n)-scheme for counting triangles in a graph with n nodes.

3.10.2 Bipartite Perfect Matching

We present an online scheme for determining whether a bipartite graph on n nodes has a

perfect matching. Our scheme achieves optimal tradeoffs between hcost and vcost for dense

graphs (i.e., graphs with Ω(n2) edges), up to logarithmic factors. Graph matchings have been

considered in the stream model [48,108] and it can be shown that any single-pass algorithm

for determining the exact size of the maximum matching requires Ω(n2) space. We show that

for any positive integers ca, cv satisfying cacv ≥ n we can off-load this computation to the

prover such that, with only O(nca log n) annotation, the answer can be verified in O(cv log n)

space. This is shown to be best possible by combining a reduction from [48] coupled with

Theorem 3.3.2. Later (see Theorem 3.11.1), we also present an online (m log n, log n) scheme

for this problem. Here, m denotes the number of edges in the graph – this corresponds to

the sparsity of the stream of edges, and so this notation is consistent with the use of m to

denote stream sparsity throughout this chapter and the next.

Theorem 3.10.5. Let ca, cv be positive integers such that cacv ≥ n. There exists an online

(nca log n, cv log n)-scheme for bipartite perfect matching on graphs with n nodes. Any online

(ca, cv)-scheme for bipartite perfect matching requires ca · cv = Ω(n2) for graphs with Ω(n2)

edges, even in the insert-only update model.

Proof. We begin with the upper bound. Our scheme follows the following outline: if G has a

perfect matching, the prover provides the matching, while if G has no perfect matching, the
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prover demonstrates this via Hall’s Theorem. The details follow.

If there is a perfect matchingM, the annotation lists all edges inM, followed by a proof

that M⊆ E. More specifically, for any ca · cv ≥ n2, Theorem 3.8.2 describes how to obtain

an online (ca log n, cv log n)-scheme for showing M ⊆ E, assuming no duplicate edges. This

can be extended to a (kca log n, cv log n)-scheme if edges may be duplicated up to k times by

Theorem 3.8.3. The prover uses this scheme to demonstrateM⊆ E, and the verifier checks

that M is a matching by comparing a fingerprint of M to one of the set {1, 2, . . . , n}.

If the graph does not have a perfect matching, let (L,R) be a bipartition, and let L′ ⊆ L

be such that |L′| > |Γ(L′)|. We will use the online (nca log n, cv log n)-scheme for integer

n× n matrix-vector multiplication given in Theorem 3.9.1. The verifier must check that (1)

L is a bipartition of n; (2) L′ ⊆ L; and (3) |L′| > |Γ(L′)|. Let x ∈ {0, 1}n be the indicator

vector of L, and let A be the adjacency matrix of G, i.e., Aij = 1 if there is an edge between

i and j in G and Aij = 0 otherwise. Condition (1) is equivalent to xTAx = 0, which can be

checked using integer matrix-vector multiplication to verify Ax, followed by an inner-product

scheme to verify xTAx. Condition (2) can be checked trivially while the prover specifies L

by requiring the nodes of L′ to be marked. To check (3), notice that |Γ(L′)| is equal to the

number of non-zero entries in the vector Ax. This can be computed while the verifier checks

(1), and that |Γ(L′)| < |L′|.

The result is an online (knca log n, cv log n)-scheme, where k is an a priori upper bound

on the number of times each edge may be duplicated.

3.10.3 Bipartiteness

The problem of determining if a graph is bipartite was considered in the standard stream

model [48, 49], and it can be shown that any one-pass algorithm without annotations needs

Ω(n) bits of space. We prove later (see Theorem 3.11.1) that in our model, the prover can
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convince a verifier with O(log n) space whether a graph is bipartite, using only O(m log n)

annotation, and we show that this is essentially the best possible for sparse graphs where

m = O(n) using a reduction from disjn,2 to bipartiteness. Here, we achieve tradeoffs between

hcost and vcost for dense graphs, obtaining an online (nca log n, cv log n)-scheme for every

pair of positive integers ca, cv such that cacv ≥ n.

Theorem 3.10.6. Let ca, cv be positive integers such that ca · cv ≥ n. There exists an on-

line (nca log n, cv log n)-scheme for bipartiteness on graphs with n nodes. Any (ca, cv)-scheme

(online or prescient) for bipartiteness requires ca · cv = Ω(n) even when m = O(n), where m

is the number of edges.

Proof. In our scheme, the prover proves that a graph is non-bipartite by providing an odd

cycle C. The verifier must check that the number of edges in C is odd, that C is a cycle,

and that C ⊆ E. The verifier can easily perform the first two checks in logarithmic space.

The verifier checks that C ⊆ E using Theorem 3.8.2.

The prover proves that a graph is bipartite by specifying all nodes L in the left set of a

bipartition. Checking that L is indeed a bipartition of G can be done exactly as in Theorem

3.10.5.

For the lower bound, we reduce an instance (x, y) ∈ {0, 1}n × {0, 1}n of disjn,2 to an

instance of bipartiteness on a graph withO(n) edges over nodes (vij)i∈[3],j∈[n]. For each j ∈ [n],

create edges (v1j, v2j); if xj = 1, add the edge (v1j, v3j), and if yj = 1, add the edge (v2j, v3j).

The resulting graph contains an odd cycle if and only if x and y are not disjoint.

3.10.4 Connectivity

The problem of determining if a graph is connected was considered in the standard

stream model [48, 64] and the multi-pass W-stream model [46]. In both models, it can be
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shown that any constant-pass algorithm without annotations needs Ω(n) bits of space. Later

(see Theorem 3.11.1), we show that we can off-load this computation to the prover such

that, with only O(m log n) annotation, the answer can be verified in O(log n) space. This is

essentially the best possible for sparse graphs where m = O(n) by combining a reduction

from [48] with Theorem 3.3.2. Here, we achieve tradeoffs between hcost and vcost for dense

graphs, obtaining an online (nca log n, cv log n)-scheme for every pair of positive integers ca, cv

such that cacv ≥ n.

Theorem 3.10.7. Let ca, cv be positive integers such that ca · cv ≥ n. There exists an on-

line (nca log n, cv log n)-scheme for connectivity on graphs with n nodes. Any (ca, cv)-scheme

(online or prescient) for connectivity in the insert-only update model requires ca · cv = Ω(n)

even when m = O(n), where m is the number of edges.

Proof. Our scheme follows the following conceptual outline: if G is connected, the prover

demonstrates this by providing a spanning tree; if G is disconnected, the prover identifies

a connected component of the graph. In the first case, the prover provides a set of edges T

claimed to be a spanning tree, and the verifier must check that (1) T is spanning and that

(2) T ⊆ E. Checking (1) is accomplished by appropriate labeling of the O(n) edges, with

O(n) annotation as follows. T can be chosen to be directed towards the root, such that there

is an injective labeling of the nodes ` : V → [n] such that each non-root node with label j

is linked to exactly one node with label greater than j. The prover outputs such a function

`, and the verifier ensures that it is an injection. Then each (directed) edge (u, v) in T and

its labels `(u) < `(v) is presented in decreasing order of `(u). The verifier checks this order,

and ensures that it is consistent with ` via fingerprinting (as per Lemma 3.8.1). By Theorem

3.8.2, condition (2) can be checked with space O(cv log n) and annotation O(nca log n).

If G is disconnected, the prover presents a set L ⊂ V , L 6= V , and claims that L is

disconnected from V \ L. Let A be the adjacency matrix of G, and let x ∈ {0, 1}n be the
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indicator vector of L. To check that L is as claimed, it suffices for the verifier to compute

Ax, and check that the each non-zero entry of Ax corresponds to vertices in L (intuitively,

this means the set L′ of vertices at distance one from L is contained in L). The first step uses

the integer matrix-vector multiplication scheme of Theorem 3.9.1. This allows the verifier to

ensure that the set {i : (Ax)i 6= 0} matches L, via fingerprints.

For the lower bound, we reduce an instance of disjn,2 to connectivity of a graph with

O(n) edges over nodes v0,0 . . . v3,n: create edges (vj,0, vj,i) for j ∈ {0, 2, 3} and i ∈ [n]. Then

if xi = 1, add edge (v0,i, v1,i), else add edge (v1,i, v2,i); and if yi = 1, add edge (v1,i, v3,i) else

add edge (v2,i, v3,i). The resulting graph is connected only if x and y are not disjoint. The

result follows from Theorem 3.5.5.

3.10.5 Totally Unimodular Integer Programs

Consider a linear program of the form max{cTx | Ax ≤ b,}. where b is a b-dimensional

vector and c is a c-dimensional vector. The dual of this program is of the form

{min bTy|ATy = c,y ≥ 0}.

Weak LP duality implies that any feasible solution y to the dual linear program yields

an upper bound on the value of the primal linear program. Strong LP duality implies that

given an optimal solution x to the primal linear program, there is in fact a dual solution

whose value equals that of x, thereby witnessing the optimality of x. This suggests a natural

approach to developing a scheme for linear programs: P tells V a (claimed) optimal solution

x to the linear program, as well as a (claimed) optimal solution y for the dual program, and

then proves that x and y are primal and dual feasible respectively, and that their values

are equal. Of course, it is necessary (and often non-trivial) to ensure that optimal solutions

x and y can be specified succinctly, and that V can check their feasibility and values with

minimal space and annotation.

64



Definition 3.10.8. An integer matrix A is totally unimodular if all sub-determinants of A

have absolute value 1.

Consider an integer program of the form max{cTx | Ax ≤ b,b ∈ Zc}. It is well-

known [87, Corollary 19.1a] that if the constraint matrix A of an integer program is totally

unimodular, then any extreme point solution y to the dual of the linear programming relax-

ation of the integer program is in fact integral. Hence, the suggested approach to developing

schemes for linear programs in fact applies to totally unimodular integer programs: P can

specify an optimal solution x to the primal program and prove its optimality by specifying

an integral optimal solution y to the LP relaxation of the dual. We execute this approach

below to develop schemes for two important graph problems that can be formulated as to-

tally unimodular integer programs: shortest s-t path, and minimum weight bipartite perfect

matching (MWBPM).

Shortest s-t Path. We start with a lower bound on the space/annotation tradeoffs achiev-

able by any online scheme that even approximates the shortest s-t path problem up to a

factor 4/3.

Theorem 3.10.9. For any nodes s and t, any online (ca, cv)-scheme that approximates the

length of the shortest s-t path to within a factor 4/3 requires ca · cv ≥ n2 for graphs on n

nodes with Ω(n2) edges, even in the insert-only update model.

Proof. The lower bound follows from a straightforward reduction from index, for which a

lower bound linear in hcost · vcost was proven in 3.3.2.

Given an instance (x, k) of index where x ∈ {0, 1}(n
2), k ∈ [

(
n
2

)
], we construct a graph

G, with VG = [n + 2], and EG = EA ∪ EB. The edge set EA = {(i, j) : x(i,j) = 1} is created

from x alone, where, without loss of generality, we assume that x is indexed by edges (i, j)

with 1 ≤ i < j ≤ n. Then EB is created from k alone, as EB = {(n + 1, i), (j, n + 2)}
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using (i, j) = k. Note that EA and EB can be created by V incrementally as the stream is

seen, using O(log n) bits of memory, to generate an implicit edge stream. The shortest path

between nodes n+ 1 and n+ 2 is 3 if xk = 1 and is 4 or more otherwise. Hence, solving the

s-t path problem with hcost · vcost = o(n2) would also solve the index problem with this

bound, contradicting the linear (in the length of x) bound from Theorem 3.3.2. This also

implies that any approximation within
√

4/3 requires hcost · vcost = Ω(n2).

We now give an online scheme achieving space/annotation tradeoffs that are essentially

optimal for small-diameter graphs. A key insight is that for the relevant totally unimodular

integer program, any dual solution is quite compact, requiring O(n log n) bits to specify,

while a primal optimal solution can be succinctly specified by directly demonstrating a path

which obtains the claimed length.

Theorem 3.10.10. Given a graph G with n vertices specified as a stream of weighted directed

edges such that each edge appears at most once, let d(s, w) denote the shortest-path distance

from s to w in G, and let Cs be the set of nodes reachable from s. Let d = maxw∈Cs d(s, w)

be the maximum distance from s to any node reachable from s. For any ca, cv such that

cacv ≥ dn2 and ca ≥ dn, there is an online (ca log n, cv log n) scheme for shortest s-t path on

directed graphs with non-negative integer edge weights.

Proof. Our protocol handles graphs with non-negative integer edge weights; notice however

that the lower bound of ca · cv = Ω(n2) from Corollary 3.10.9 applies even to unweighted

graphs with constant diameter, so our protocol is optimal in this regime. We assume an

upper bound on d is known in advance, and later show how to remove this assumption at

the cost of a logarithmic factor in space, and no asymptotic increase in annotation.

To aid in the computation, V tracks properties of an (implicit) derived matrix X. Before

observing the stream, V conceptually sets all entries of X to d, where d is the (assumed)
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upper bound on the distances. Then V sees the set of weights wij while observing the stream

and treats each as an addition of wij − d to entry (i, j) of X; this has the effect of setting

Xij = wij. This requires the assumption that each edge (i, j) appears at most once in the

stream. At the end of the stream, Xij = wij if (i, j) ∈ E, and Xij = d otherwise. We note

that it is straightforward for V to check in parallel that each edge appears at most once

by tracking the matrix Y which counts the number of times each edge (i, j) is seen, and

verifying that the squared Frobenius norm of Y , ‖Y ‖2
F =

∑
i,j Y

2
ij , satisfies ‖Y ‖2

F = m, using

the F2 protocol described above.

First we handle the case where an s-t path exists.

Upper bound on path length. To prove an upper bound on the value of the shortest

path, P lists the edges in a valid s-t path P .

To compute the cost of P , the inner-product protocol that follows from Theorem 3.5.2 is

used to compute P ·X, where we treat P as an indicator matrix, i.e. Pij = 1 iff (i, j) is an

edge in P , and 0 otherwise. If P includes any edges (i, j) not present in E, then Xij = d and

so these are charged at a cost of d. That is, the cost of P is made higher than the bound on

distances, so it is easily detected if P contains edges not in E. This protocol requires O(ca)

annotation and O(cv) space for any ca · cv ≥ n2.

Lower bound on path length. To prove a lower bound on the value of the shortest path,

we leverage the total unimodularity of the integer program for the problem. The dual integer

program for shortest s-t path has a variable yi for every i ∈ V and a constraint for every

edge (i, j) ∈ E:

maximize yt − ys subject to yj − yi ≤ wij for all (i, j) ∈ E.

At a high level, P will prove a lower bound on the value of the shortest s-t path by
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presenting a feasible solution y to the above linear program. Importantly, we note that the

solution is compact: y has only n variables. We present a carefully posed protocol allowing

V to check that y satisfies all m constraints using sublinear annotation.

First, we show that there exists an optimal solution to the dual such that ys = 0 and all

y are non-negative integers with yi ≤ d for all i, where d = maxv∈Cs d(s, v) and Cs is the set

of nodes reachable from s. Let yv = d for all v not reachable from s, and let yv = d(s, v) if v

is reachable from s. All dual constraints are satisfied by y: if not, suppose yj − yi > w(i, j)

for some edge (i, j). Then clearly yi < d since edge weights are non-negative and yj ≤ d,

and hence i is reachable from s. But then j is reachable from s as well, and this contradicts

that yj = d(s, j), as there is a path from s to j of cost yi + w(i, j) < yj.

Specifying y requires O(n log n) bits of annotation since there are n dual variables (more

precisely, it requires n′ log n bits where n′ = |Cs|, since there are only n′ variables not set to

d). V immediately outputs ⊥ if any variable yi in the solution is non-integral, if ys 6= 0, or

if yv > d for any v.

Given the dual assignment y, let W ∈ Zn2
be the matrix defined by

Wij = wij − yj + yi if (i, j) ∈ E and Wij = d− yj + yi if (i, j) 6∈ E.

It is clear that the yi’s constitute a feasible assignment to the dual if and only if Wij ≥ 0

for all (i, j) ∈ E: if (i, j) ∈ E, Wij ≥ 0 only if the constraint corresponding to edge (i, j) is

satisfied, and if (i, j) 6∈ E, the addition of d to Wij ensures Xij ≥ 0, which corresponds to

“no constraint”. We also observe that Wij = Xij − yj + yi for X as described above.

Let wmax be the heaviest edge in G. We can assume wmax ≤ d since V can filter away any

edges with wmax > d, as these edges will not effect the value of the shortest s− t path.

We apply the online scheme of Theorem 3.5.2 to W , using the lowest-degree polynomial

g over Fp such that g(x) = 0 for x ∈ {1, . . . , d + wmax} and g(x) = 1 for x ∈ {−d, . . . , 0}. g

has degree wmax + 2d = O(d), and clearly
∑

i,j∈[n] g(wi,j) = 0 if and only if y is feasible for
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the dual LP, as for all (i, j), −d ≤ Wij ≤ wmax + d. The cost of the scheme of Theorem 3.5.2

l is thus O(dca) annotation and O(cv) space for any ca · cv ≥ n2. Lastly, note that V can

apply the scheme of Theorem 3.5.2 on the matrix X derived from the stream, and updated

by performing the necessary additions and subtractions of yi and yj values to all affected

coordinates.

We now remove the assumption that d is known in advance, at the cost of a logarithmic

increase in space. At a high level, while observing the stream V can keep logarithmically

many “guesses” for the value of d, and after the stream is seen, P can tell V which guess

is the tightest upper bound on the value of all variables in the optimal solution to the dual

LP. Then V can forget about the other guesses and simply complete the execution of the

protocol corresponding to the best guess.

More formally, it suffices for V , while observing the stream, to run O(log n) instances of

the above protocol in parallel, with the i’th instance run with parameter d = 2i. This ensures

that one instance will be run with parameter d ≤ maxi yi < 2d. We require P to prepend

the annotation with the value d∗ = min{2i : yj ≤ 2i for all j}. V then needs only to continue

the instance of the protocol run with parameter d = d∗. If d∗ is not as claimed, V will detect

this when a dual variable yj is presented with yj > d∗, and output ⊥. Thus, the protocol is

valid. The space cost increases by a logarithmic factor compared to when the true value of

d is known in advance, since V must run O(log n) instances of the protocol while observing

the stream. The annotation cost does not increase asymptotically, since the only instance of

the protocol V continues to run after the stream has been observed satisfies 2d ≤ maxi yi

i.e. was run with a “guess” for d that was within a factor of two of the true value of d.

No path from s to t. If the shortest s-t path is infinite (there is no s-t path), let Ct ⊆ V

be the connected component of t. Then the dual assignment with yi = 1 for i ∈ Ct and yi = 0
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for all other i satisfies yi − yj = 0 for all (i, j) ∈ E, and the value of the dual objective

function yt − ys is positive. By Farkas’ Lemma, this serves as a witness to the fact that the

primal is infeasible. V can check y is as claimed by running the sum-check scheme of Theorem

3.5.2 on the vector Y with Yij = yi − yj if (i, j) ∈ E, and Yij = yi − yj − 3 if (i, j) 6∈ E and

using the degree-5 polynomial g over Fp such that g(0) = g(−4) = g(−3) = g(−2) = 0 and

g(−1) = g(1) = 1. We can construct the derived stream in the same manner as X and W

above. It is clear that if (i, j) 6∈ E then Yij ∈ {−4,−3,−2}, if (i, j) ∈ E with yi−yj = 0 then

Yij = 0, and otherwise Yij ∈ {−1, 1}. Thus,
∑

i,j g(Yij) = 0 if and only if y is as claimed;

this instance of the sum-check scheme of Theorem 3.5.2 requires annotation O(ca) and space

O(cv) for any ca · cv ≥ n2.

Remark 2. If d is not known in advance, then neither P nor V knows the annotation cost

of the protocol of Theorem 3.10.10 until after observing the stream. Only the space usage cv

can be fixed in advance in this case, and the annotation cost will be O(n2d/cv).

We note that the protocol of Theorem 3.10.10, as well as Theorem 3.10.11 below, does

not handle edge weights that are specified incrementally. The reason is that V must be able

to derive a stream specifying the matrices X and W , which we know how to do only in

the absence of duplicate edges. This is in contrast to schemes such as the matrix vector

multiplication scheme Theorem 3.9.1, which works even when the entries of the matrix and

the vector are specified incrementally.

Minimum Weight Bipartite Perfect Matching.

Theorem 3.10.11. Let wmax be the heaviest edge in a graph G on n vertices. For any ca, cv

such that ca · cv ≥ n3wmax and ca ≥ nwmax, there is an online (ca log n, cv log n) scheme for

MWBPM with non-negative integer edge weights.

In particular, Theorem 3.10.11 implies that both the annotation length and space us-
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age can be chosen sublinear in the stream length if the number of edges m satisfies m =

n3/2+δw1/2
max for some δ > 0.

Proof. Upper bound. To prove an upper bound on the value of the minimum weight perfect

matching, P sends the edges in a valid perfect matching M. It is straightforward for V to

storeM and verify that it is perfect matching over n nodes in O(n) space. As in the previous

protocol, V can compute the cost of this matching as an inner product M · X, where Xij

is set to wij if (i, j) is an edge, or 2nwmax otherwise. Hence, if M includes edges not present

in E, it will have excessively high cost, and can be rejected. V can check M is a perfect

matching by comparing a fingerprint of the set {1, . . . , n} to that of the (multi)set of nodes

incident to an edge in M. If the fingerprints match, then with high probability, each node

in n is incident to exactly one edge in M.

Lower bound. A lower bound on the cost of the optimal matching is proven via a feasible

solution to the dual linear program. The dual is given by:

maximize
∑
i∈A

yi +
∑
j∈B

yj

subject to yi + yj ≤ wij for all (i, j) ∈ E,

where A and B are the two sides of the bipartition of G, and wij is the cost of edge (i, j).

Given a dual solution y ∈ Zn, let X ∈ {0, 1}n2
be the vector with Xij = yi + yj − wij if

(i, j) ∈ E and Xij = yi + yj − 2d′ otherwise, where d′ is an upper bound on the value of any

variable y. We show below d′ = nwmax is sufficient. y is a feasible solution to the dual if and

only if all entries of X are less than or equal to zero.

The scheme now proceeds essentially identically to that of Theorem 3.10.10, although

here we can only guarantee the existence of a dual-optimal assignment y with |yi| ≤ nwmax

for all i. This results in increased annotation requirements compared to those of Theorem
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3.10.10. We remark that this bound is tight, in that there are graphs for which any dual-

optimal solution y has |yi| = Ω(nwmax) for some i; one such example is a simple path on n

vertices, with wi,i+1 = wmax if i is odd and wi,i+1 = 0 if i is even.

To argue that there always exists a dual-optimal y with |yi| ≤ nwmax for all i, note

that Cramer’s Rule implies any extreme point solution y to the dual LP can be written

yi = det(Ũi)

det(U)
for some submatrix U of the constraint matrix of the dual, where Ũi obtained

from U by replacing the i’th column with the vector w of edge weights. Furthermore, it

follows from the total unimodularity of the dual program that det(U) = ±1, and hence

for any extreme point |yi| ≤ |det(Ũi)| ≤ nwmax, where the last inequality can be seen by

performing cofactor expansion along the i’th column of Ũi. Since there is always a dual

optimal solution that is an extreme point, there is always an integral dual optimal solution

y for which |yi| ≤ nwmax.

To conclude, we apply the sum-check scheme of Theorem 3.5.2 to the vector X with

Xij = yi + yj − wij if (i, j) ∈ E and Xij = yi + yj − 2nwmax otherwise. V can construct a

derived stream defining X just as in Theorem 3.10.10, and the sum-check scheme of Theorem

3.5.2 is applied using a polynomial g such that g(x) = 1 for x ∈ {1, . . . , 2nwmax} and g(x) = 0

for x ∈ {−4nwmax, . . . , 0}. g has degree O(nwmax), and
∑

i,j∈[n] g(wi,j) = 0 if and only if y is

feasible for the dual LP. This scheme has hcost = O(canwmax) and vcost = O(cv) for for any

ca · cv = Ω(n2) and ca ≥ nwmax.

If no perfect matching exists, Farkas’ Lemma implies this can be proven by demonstrating

a dual solution y such that yi + yj = 0 for all (i, j) ∈ E, and
∑

i∈A yi +
∑

j∈B yj > 0. V can

check this similarly to the scheme of Theorem 3.10.10 when no s-t path exists.
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3.11 Simulating Non-Streaming Algorithms

Next, we give protocols by appealing to known non-streaming algorithms for graph prob-

lems. At a high level, we can imagine the prover running an algorithm on the graph, and

presenting a “transcript” of operations carried out by the algorithm as the proof to V that

the final result is correct. Equivalently, we can imagine that V runs the algorithm, but since

the data structures are large, they are stored by P , who provides the contents of memory

needed for each step. There may be many choices of the algorithm to simulate and the

implementation details of the algorithm: our aim is to choose ones that result in smaller

annotations.

To make this concrete, consider the case of requiring the graph to be presented in a par-

ticular order, such as depth first order. Starting from a given node, the exploration retrieves

nodes in order, based on the pattern of edges. Assuming an adjacency list representation, a

natural implementation of the search in the traditional model of computation maintains a

stack of edges representing the current path being explored. Edges incident on the current

node being explored are pushed, and pops occur whenever all nodes connected to the current

node have already been visited. P can allow V to recreate this exploration by providing at

each step the next node to push, or the new head of the stack when a pop occurs, and so on.

To ensure the correctness of the protocol, additional checking information can be provided,

such as pointers to the location in the stack when a node is visited that has already been

encountered.

With care, this idea of “augmenting a transcript” of a traditional algorithm can be

made to work on an algorithm-by-algorithm basis. However, while the resulting protocols

are lightweight, it rapidly becomes tedious to provide appropriate protocols for other com-

putations based on this idea. Instead, we introduce a more general approach, which argues

that any (deterministic) algorithm to solve a given problem can be converted into a protocol
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in our model. The running time of the algorithm in the RAM model becomes the size of the

proof in our setting.

Our main technical tool is the off-line memory checker of Blum et al. [18], which we use

to efficiently verify a sequence of accesses to a large memory. Consider a memory transcript

of a sequence of read and write operations to this memory (initialized to all zeros). Such a

transcript is valid if each read of address i returns the last value written to that address. The

protocol of Blum et al. requires each read to be accompanied by the timestamp of the last

write to that address; and to treat each operation (read or write) as a read of the old value

followed by the write of a new value. Then to ensure validity of the transcript, it suffices

to check that a fingerprint of all write operations (augmented with timestamps) matches a

fingerprint of all read operations (using the provided timestamps), along with some simple

local checks on timestamps. Consequently, any valid (timestamp-augmented) transcript is

accepted by V , while any invalid transcript is rejected by V with high probability.

We use this memory checker to obtain the following general simulation result.

Theorem 3.11.1. Suppose P is a graph problem possessing a deterministic algorithm A in

the random-access memory model that, when given G = (V,E) in adjacency list or adjacency

matrix form, outputs P (G) in time t(m,n), where m = |E| and n = |V |. Then there is an

online (m log n+ t(m,n) log n, log n) scheme for P.

Proof. P first repeats (the non-zero locations of) a valid adjacency list or matrix represen-

tation G, as writes to the memory (which is checked by V); V uses fingerprints to ensure

the edges included in the representation precisely correspond to those that appeared in the

stream, and can use local checks to ensure the representation is otherwise valid. This requires

O(m) annotation and effectively initializes memory for the subsequent simulation. There-

after, P provides a valid augmented transcript T ′ of the read and write operations performed

by algorithm A, which is checked by V using the memory checking protocol of [18]. V rejects
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if the memory checking protocol rejects T ′, or if any read or write operation executed in T ′

does not agree with the prescribed action of A. As only one read or write operation is per-

formed by A in each timestep, the length of T ′ is O(t(m,n)), resulting in an (m+ t(m,n), 1)

protocol for P .

Although Theorem 3.11.1 only allows the simulation of deterministic algorithms, P can

non-deterministically “guess” an optimal solution S and prove optimality by invoking The-

orem 3.11.1 on a (deterministic) algorithm that merely checks whether S is optimal. Un-

surprisingly, it is often the case that the best-known algorithms for verifying optimality are

more efficient than those finding a solution from scratch (see e.g. the MST protocol below),

and this gives the simulation theorem considerable power. We specify some easy corollaries

below. These are our first results that improve over the schemes of previous sections for

sparse graphs – these schemes allow the product of the annotation length and the space

usage to be Õ(m), while all previous schemes required the product to be Ω(n2), even if

m = o(n2). However, the algorithm simulation approach does not allow for both space usage

and annotation length to be sublinear in m. We will achieve this for a wide range of problems

in Chapter 4.

Theorem 3.11.2. Let G be a graph with n vertices and m edges. There is an online

(m log n, log n) scheme to find a minimum cost spanning tree in G; online (m log n, log n)

schemes for connectivity, bipartiteness, and bipartite perfect matching in G; an online

(m log n + n log2 n, log2 n) scheme to verify single-source shortest paths in G; and online

(m log n, log n) schemes for max-flow and min-cut in G.

Proof. We first prove the bound for MST. Given a spanning tree T , there exists a linear-

time algorithm A for verifying that T is minimum (see e.g. [69]). Let A′ be the linear-time

algorithm that, given G and a subset of edges T in adjacency matrix form, first checks that
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T is a spanning tree by ensuring |T | = n− 1 and T is connected (by using e.g. breadth-first

search), and then executes A to ensure T is minimum. We obtain an online (m log n, log n)

scheme for MST by having P provide a minimum spanning tree T and using Theorem 3.11.1

to simulate algorithm A′.

The upper bounds for connectivity and bipartiteness follow from the fact the breadth-first

such runs in O(m) time, and the upper bound for bipartite perfect matching follows from the

fact that there exist simple O(m)-time algorithms for checking that a (claimed) matching is

valid, and for checking that |N(S)| ≤ |S| for a set S whose existence is guaranteed by Hall’s

Theorem if a bipartite graph G lacks a perfect matching.

The upper bound for single-source shortest path follows from Theorem 3.11.1 and the

fact that there exist implementations of Djikstra’s algorithm that run in time m+ n log n.

The upper bound for max-flow and min-cut follow from the fact that, given a flow and

a cut can be specified with O(m log n) annotation, and the feasibility and value of both the

max-flow and the min-cut can be checked by a RAM algorithm in time O(m). The max-flow,

min-cut theorem (which is a special case of strong LP duality) implies that if the values of

the flow and the cut are equal, then the flow is a max-flow and the cut is a min-cut.

3.12 Improving the Runtime of the Prover and Exper-

imental Results.

3.12.1 Fast Proofs via Fast Fourier Transforms

In this section, we describe how to drastically speed up P ’s computation for essentially

all sum-check based schemes developed in this chapter. In these schemes, P often needs to

evaluate a low-degree extension (i.e. the polynomial f̃ within the scheme of Theorem 3.5.2)
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at a large number of locations, which can be the bottleneck. Here, we show how to reduce

the cost of this step to near linear, via Fast Fourier Transform (FFT) methods.

For concreteness, we describe the approach in the context of the F2 scheme of Theorem

3.5.3. Our initial experiments with a naive implementation of this scheme that did not use

FFTs identified the prover’s runtime as the principal bottleneck in the protocol. In this

naive implementation, P required Θ(n3/2) time, and consequently the implementation failed

to scale for n > 107. Here, we show that FFT techniques can dramatically speed up the

prover, leading to a protocol that easily scales to streams consisting of billions of items.

We stress that while our experiments focus on the F2 and matrix-vector multiplication

problems, our FFT techniques apply to all of the sum-check based schemes in this thesis,

including graph problems such as testing connectivity and identifying perfect matchings.

Thus, by developing a scalable, practical implementation for F2 and matrix-vector multipli-

cation, we also achieve big improvements in protocols for a host of important (and seemingly

unrelated) problems.

Non-interactive F2 and matrix-vector multiplication Protocols. We first briefly

recall the F2 scheme from 3.5.3. This construction yields a (ca log n, cv log n) protocol for

positive integers ca, cv satisfying cacv ≥ n, i.e., it allows a tradeoff between the amount of

communication and space used by V ; for brevity we describe the protocol when ca = cv =
√
n.

Assume for simplicity that n is a perfect square. We treat the n dimensional vector f as

a
√
n ×√n array. This implies a two-variate polynomial f̃ over a suitably large finite field

Fq, such that

∀(x, y) ∈ [
√
n]× [

√
n] : f̃(x, y) = fx,y.
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To compute F2, we wish to compute

∑
x∈[
√
n],y∈[

√
n]

f 2
x,y =

∑
x∈[
√
n],y∈[

√
n]

f̃ 2(x, y).

The low-degree extension f̃ can also be evaluated at locations outside [
√
n] × [

√
n]. In

the scheme, the verifier V picks a random position r ∈ Fq, and evaluates f̃(r, y) for every

y ∈ [
√
n]. The proof given by P is in the form of a degree 2(

√
n − 1) polynomial p(X)

which is claimed to be
∑

y∈[
√
n] f̃(X, y)2. V uses the values of f̃(r, y) to check that p(r) =∑

y∈[
√
n] f̃(r, y)2, and if so accepts

∑
x∈[
√
n] p(x) as the correct answer.

3.12.2 Breaking the Bottleneck

Since p(X) has degree at most 2
√
n− 1 it is uniquely specified by its values at any 2

√
n

locations. We show how P can quickly evaluate all values in the set

S := {(x, p(x)) : x ∈ [2
√
n]}.

Since p(X) =
∑

y∈[
√
n] f̃(X, y)2, given all values in the set

T := {(x, y, f̃(x, y)) : x ∈ [2
√
n], y ∈ [

√
n]},

all values in S can be computed in time linear in n. A naive implementation calculates each

value in T independently. This requires Θ(n1/2) time for each value (x, y) ∈ ([2
√
n] \ [

√
n])×

[
√
n], and hence Θ(n3/2) time overall. Indeed, for each x ∈ [2

√
n] \ [

√
n], and each y ∈ [

√
n],

computing f̃(x, y) requires computing S(x), where S is the univariate polynomial of degree

at most
√
n− 1 defined via interpolation as follows: on input x′ ∈ [

√
n], S(x′) is satisfies the

identity S(x′) = f(x′, y). As S(x′) is defined via its values on
√
n points, computing S(x)

via polynomial interpolation requires Θ(
√
n) time.

We show how FFT techniques allow us to calculate T much faster. The task of computing

T boils down to multi-point evaluation of the polynomial f . It is known how to perform fast
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multi-point evaluation of univariate degree t polynomials in time O(t log t), and bivariate

polynomials in subquadratic time, if the polynomial is specified by its coefficients [81]. How-

ever, there is substantial overhead in converting f̃ to a coefficient representation. It is more

efficient for us to directly work with and exchange polynomials in an implicit representation,

by specifying their values at sufficiently many points.

Representing as a convolution. We are given the values of f̃ at all points located on

the [
√
n]× [

√
n] “grid”. We leverage this fact to compute T efficiently in nearly linear time

by a direct application of the Fast Fourier Transform. For (x, y) ∈ [
√
n] × [

√
n], f̃(x, y) is

just fx,y, which P can store explicitly while processing the stream. It remains to calculate

(x, y, f̃(x, y)) for
√
n ≤ x < 2

√
n. For fixed y ∈ [

√
n], we may write f̃(X, y) explicitly as

f̃(X, y) =
∑
i∈[
√
n]

fi,yχi(X),

where χi is the Lagrange polynomial – the unique polynomial of degree
√
n such that χi(i) =

1, while for all j ∈ [
√
n] such that j 6= i, it holds that χi(j) = 0. Here, the inverse is the

multiplicative inverse within the field.

χi(j) =
∏

x∈[
√
n]\{i}

(x− j)(x− i)−1

If j 6∈ [
√
n], then we may write

f̃(j, y) =
∑
i∈[
√
n]

h(j)by(i)g(j − i) (3.4)

where by(i) = fi,y
∏

x∈[
√
n]\{i}

(x− i)−1,

h(j) =

j∏
k=(j+1−

√
n)

k,

and g(j − i) = (j − i)−1.
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As a result f̃(j, y) can be computed as a circular convolution of by and g, scaled by h(j).

That is, for a fixed y, all values in the set Ty := {(x, y, f̃(x, y)) : x ∈ [2
√
n]} can be found

by computing the convolution in Equation 3.4, then scaling each entry by the appropriate

value of h(j).

Computing the Convolution. We represent by and g by vectors of length 2
√
n over a

suitable field, and take the Discrete Fourier Transform (DFT) of each. The convolution is

the inverse transform of the inner product of the two transforms [73, Chapter 5]. There is

some freedom to choose the field over which to perform the transform. We can compute

the DFT of f̃y and g over the complex field C using O(
√
n log n) arithmetic operations via

standard techniques such as the Cooley-Tukey algorithm [36], and simply reduce the final

result modulo q, rounded to the nearest integer. Logarithmically many bits of precision past

the decimal point suffice to obtain a sufficiently accurate result. Since we compute O(
√
n)

such convolutions, we obtain the following result:

Theorem 3.12.1. The honest prover in the F2 protocol of 3.5.3 requires O(n log n) arith-

metic operations on numbers of bit-complexity O(log n).

In practice, however, working over C can be slow and requires us to deal with precision

issues. Since the original data resides in some finite field Fq, and can be represented as fixed-

precision integers, it is preferable to also compute the DFT over the same field. Here, we

exploit the fact that in designing our protocol, we can choose to work over any sufficiently

large finite field Fq.

There are two issues to address: we need that there exists a DFT for sequences of length

2
√
n (or thereabouts) in Fq, and further that this DFT has a corresponding (fast) Fourier

Transform algorithm. We can resolve both issues with the Prime Factor Algorithm (PFA)

for the DFT in Fq [26]. The “textbook” Cooley-Turkey FFT algorithm operates on sequences
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whose length is a power of two. Instead, the PFA works on sequences of length N = N1×N2×

. . .×Nk, where the Ni’s are pairwise coprime. The time cost of the transform is O((
∑

iNi)N).

The algorithm is typically applied over the complex numbers, but also applies over Fq: it

works by breaking the large DFT up into a sequence of smaller DFTs, each of size Ni for

some i. These base DFTs for sequences of length Ni exist for Fq whenever there exists a

primitive Ni’th root of unity in Fq. This is the case whenever Ni is a divisor of q − 1. So we

are in good shape so long as q − 1 has many distinct prime factors.

Here, we use our freedom to fix q, and choose q = 261 − 1.1 Notice that

261 − 2 = 2× 32 × 52 × 7× 11× 13× 31× 41× 61× 151× 331× 1321,

and so there are many such divisors Ni to choose from when working over Fq. If 2
√
n is not

equal to a factor of q − 1, we can simply pad the vectors fy and g such that their lengths

are factors of 261 − 2. Since 261 − 2 has many small factors, we never have to use too much

padding: we calculated that we never need to pad any sequence of length 100 ≤ N ≤ 109

(good for n up to 1018) by more than 16% of its length. This is better than the Cooley-Tukey

method, where padding can double the length of the sequence.

As an example, we can work with the length N = 2×5×7×9×11×13 = 90090, sufficient

for inputs of size n = (N/2)2, which is over 109. The cost scales as (2+5+7+9+11+13)N =

47N . Therefore, the PFA approach offers a substantial improvement over naive convolution

in Fq, which takes time Θ(N2).

Parallelization. This protocol is highly amenable to parallelization. Observe that P per-

forms O(
√
n) independent convolutions of each of length O(

√
n) (one for each column y of

the matrix fx,y), followed by computing
∑

y f
2
x,y for each row x of the result. The convolu-

tions can be done in parallel, and once complete, the sum of squares of each row can also

1Arithmetic in this field can also be done quickly, see Section 7.4.1.
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be parallelized. This protocol also possesses a simple two-round MapReduce protocol. In the

first round, we assign each column y of the matrix fx,y a unique key, and have each reducer

perform the convolution for the corresponding column. In the second round, we assign each

row x a unique key, and have each reducer compute
∑

y f
2
x,y for its row x.

3.12.3 Implications

As we experimentally demonstrate, the results of this section make practical the fun-

damental building block for all the sum-check based protocols of this thesis. Indeed, by

combining Theorem 3.12.1 with schemes developed earlier in this chapter we obtain the

following immediate corollaries. We stress that while we invoke Theorem 3.12.1 to obtain

asymptotic results, in practice it is desirable to work over a finite field and use the Prime

Factor Algorithm as described above. All runtimes below are stated assuming that addition

multiplication on O(log n) bit numbers can be done in O(1) machine operations.

Corollary 3.12.2. 1. (Extending Theorem 3.5.3) For any ca · cv ≥ n, there is an online

(ca log n, cv log n) scheme for computing the inner product and Hamming distance of

two n-dimensional vectors, where V runs in time O(n) and P runs in time O(n log n).

2. (Extending Theorem 3.9.1) For any ca · cv ≥ c, there is an online (b · ca log n, cv log n)

scheme for b× c integer matrix-vector multiplication, where V runs in time O(bc) and

P runs in time O(bc log n).

3. (Extending Theorem 3.10.4) For any ca · cv ≥ n3, there is an online (ca log n, cv log n)

scheme for counting the number of triangles in a graph with n vertices and m edges,

where V runs in time O(mn) and P runs in time O(n3 log n).

4. (Extending Theorem 3.10.7) For any ca · cv ≥ n2, ca ≥ n, there is an online

(ca log n, cv log n) scheme for graph connectivity on graphs with n nodes and m edges,
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where P runs in time O(n2 log n) and V runs in time O(m).

5. (Extending Theorem 3.10.5) For any ca · cv ≥ n2, ca ≥ n, there is an online

(ca log n, cv log n) scheme for bipartite perfect matching on graphs with n nodes and m

edges, where V runs in time O(m) and P runs in time O(t(n)+n2 log n), where t(n) is

the time required to find a perfect matching if one exists, or to find a counter-example

(via Hall’s Theorem) otherwise.

3.12.4 Experiments

We now describe our experiments with the schemes developed in this chapter. To focus

our study, we concentrate on two problems in particular: F2 and matrix-vector multiplication.

As both of these schemes are based on sum-check techniques, the results are representative

for all sum-check based schemes developed in this chapter.

We evaluated the schemes on a multi-core machine with 64-bit AMD Opteron processors

and 32 GB of memory available. Our scalability results here use a single core, though we

also briefly describe results for parallel operation. The large amount of memory allowed us

to experiment with universes of size several billion, with the prover able to store the full data

in memory.

Summary of Experimental Results

The high-level conclusion we draw from our experiments in this section is similar to

the conclusions we will draw for the interactive protocols we develop later in Chapters 5-8.

Specifically, the costs of our protocols are attractive from the verifier’s perspective – the space

and communication costs of our schemes, as well as the verifier’s runtime, are all reasonable.

The bottleneck in our protocols is the runtime of the prover. We show that while a naive

implementation of our prover fails to scale to large inputs, the FFT techniques of Section
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3.12.1 yield non-interactive protocols that easily scale to streams with billions of updates,

improving over a naive implementation by three orders of magnitude. Detailed results follow.

F2: We compare our non-interactive F2 scheme developed in this chapter to two interac-

tive protocols developed later in this thesis. The first multi-round protocol is a specialized

interactive protocol for F2 given in Chapter 6 (MRS). The second multi-round protocol is

based on the general-purpose circuit-checking approach of Chapter 7 based on the GKR

protocol (CC). We compared these multi-round protocols against two implementations of

our non-interactive F2 scheme from this chapter: the first involves a naive implementation

of the prover (NI), while the second prover implementation utilizes our FFT techniques de-

veloped in Section 3.12.1 (NI-FFT). Figures 3.3(b) and 3.3(c) illustrate the verifier’s time

and space costs for all four protocols, while Figure 3.3(a) illustrates the prover’s runtime for

these protocols. Note that in the case of NI and NI-FFT, the verifier behaves identically: the

prover computes the same messages in both cases, but more quickly using FFT.

The main observation from Figures 3.3(b) and 3.3(c) is that the verifier’s costs are ex-

tremely low for all four protocols. V processed over 20 million items/s across all stream

lengths for all protocols. The space usage and communication cost for both interactive pro-

tocols (CC and MRS) is less than 1 kilobyte across all stream lengths tested, while the space

usage for the non-interactive case is much larger but still reasonable (comfortably under a

megabyte even for stream lengths in excess of 1 billion).

Figure 3.3(a) shows a clear separation between the four methods in P ’s effort in generating

the proof. For large streams, it is clear that NI is not scalable, with P ’s runtime growing like

n3/2; this implementation failed to process streams larger than about 40 million updates. In

contrast, the FFT-based implementation of the non-interactive protocol processed between

350, 000 and 750, 000 items per second for all tested values of n, even for values of n well

into the billions. Thus, the FFT techniques of Section 3.12.1 speed up P ’s computation
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Figure 3.3: Experimental Results for both multi-round and non-interactive F2 protocols.

by several orders of magnitude compared to the naive implementation, and allowed the

protocol to easily scale to streams with billions of items. As mentioned in Section 3.12.1, a

wide variety of more complicated protocols use this protocol as a subroutine, and therefore

these non-interactive techniques are as powerful as they are general.

For the multi-round protocols, circuit checking (CC) eventually outpaces NI, and scales

linearly: the CC prover processed about 20,000 items per second across all stream lengths.

Finally, the MRS prover processed 20-21 million items per second.

Matrix-Vector Multiplication: Figure 3.4 shows the behavior of our FFT-based implementa-

tion of the non-interactive protocol for matrix-vector multiplication given in Theorem 3.9.1.

Recall that for an n × n matrix, Theorem 3.9.1 yielded an online (nca, cv) for any positive

integers ca, cv satisfying cacv ≥ n. In the following, we write ca = nα. A convenient feature of

this protocol is that when α = 0, the honest prover’s message consists simply of the correct

answer i.e. the vector Ax. Consequently, we obtain an (n, n) protocol for which the prover

can handle enormous throughputs: 30-50 million items/second as evidenced in Figure 3.4(b).

In outsourcing settings where one can tolerate space usage O(n) for the verifier, this protocol

is truly ideal, as the prover need do nothing more than solve the problem, and the verifier’s
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Table 3.1: Experimental results for the matrix-vector multiplication scheme of Theorem 3.9.1.

α Space Annotation Length P time (s) V time (s)
0 78.1 KB 78.1 KB 1.6 4.3

.15 19.9 KB 468.8 KB 33.9 3.0

.20 12.8 KB 937.5 KB 58.9 2.8

.25 7.8 KB 1.52 MB 61.5 2.6

Results are for matrices of size 10,000 × 10,000 (763 MBs of data). Here, α is a parameter

that controls the tradeoff between space and annotation length.

computation consists only of maintaining n fingerprints. That is, this (n, n) protocol allows

the user to obtain a strong security guarantee on the integrity of the query, almost for free.

Note that for this problem, the size of the input is O(n2) for an n×n matrix, so O(n) space

at the verifier is still much smaller than the full input size.

The behavior becomes more interesting when we set α > 0—in this case, in addition

to providing the correct answer, the prover has to do non-trivial computation to prove

correctness. Because higher values of α mean less space but more communication (see Figure

3.4(c)), setting α > 0 may be needed when the verifier is severely space-limited. It may also be

necessary when the matrix is very wide: in full generality the protocol has communication

and space cost (mnα, n1−α) for an m × n matrix. We show how different costs vary as a

function of α: V ’s time to process the input (Figure 3.4(a)), P ’s time (Figure 3.4(b)), the

communication cost (Figure 3.4(d)), and the space used by V (Figure 3.4(c)). Across all

values of α, P can process in excess of 1 million items per second using our FFT techniques.

The verifier runs over the stream slightly faster for higher values of α, because V maintains

fewer fingerprints for larger α’s. When α = 0, V processed about 20 million items per second,

and when α = .25, V processed in excess of 30 million items per second. For concreteness,

Table 3.1 displays the costs of the protocol when run on matrices of size 10,000 × 10,000.
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Figure 3.4: Experiments on non-interactive matrix-vector multiplication protocols.

Parallel Implementations

The prover’s computations in all of the non-interactive protocols studied here are highly

parallelizable, as noted previously. Indeed, using just three OpenMP2 statements, we were

able to achieve more than a 7-fold speedup over the sequential implementation of the FFT

protocol, by using all 8 cores of the multi-core machine our experiments were run on. Conse-

quently, with 8 processors, the ratio between the speed of the MR and NI-FFT protocols for

F2 drops from 20-60 to 3-8. In theory, the interactive F2 protocol is just as easy to parallelize

as the non-interactive protocol; however, we did not find this to be the case in practice. The

prover’s computations in the multi-round protocol are so light-weight (as evidenced by its

2http://www.openmp.org
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very high throughput) that memory access forms the principle bottleneck.

3.13 Related Work

On MA Communication Complexity. Babai, Frankl, and Simon [10] introduced the

communication complexity analogs of many fundamental Turing Machine complexity classes.

Most relevant to us, they introduced the model of Merlin-Arthur (MA) communication com-

plexity. Aaronson and Wigderson [3] gave a beautiful MA communication protocol for disj

using algebraic techniques analogous to those in the famous sum-check protocol of Lund et

al. [77]. Theorem 3.5.2 is based on Aaronson and Wigderson’s MA protocol. Their protocol

is nearly optimal, essentially matching a lower bound of Klauck [70]. Theorem 3.5.4, in turn,

generalizes the lower bound of Klauck to multiparty MA communication complexity. This

generalization is critical to showing that higher frequency moments are hard even to approx-

imate in the annotations model. Aaronson [2] studied the hardness of the index problem

in a restricted version of the MA communication model, as well as in a quantum variant of

this model. His classical model is similar to the online MA communication model that we

consider.

Other existing results have primarily focused on quantum or multiparty variants of MA-

communication complexity. Klauck [71] proved an Ω(n1/3) lower bound on the quantum

Merlin-Arthur communication complexity of two-party set disjointness. Raz and Shpilka [83]

gave a problem whose quantum communication complexity is exponentially smaller than its

MA-communication complexity. Gavinsky and Sherstov [54] proved a separation between co-

NP and MA in the setting of number-on-the-forehead multiparty communication complexity,

and their lower bound was further refined by Sherstov in [94,95].

As can be seen from the above summary, only a handful of researchers have studied
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MA communication complexity, probably because the model was considered somewhat es-

oteric [71]. However, the relatively recent work of Aaronson and Wigderson [3] gave a new

motivation for studying the communication complexity analog of any Turing Machine com-

plexity class, and MA in particular: they showed that if a communication complexity class

C is not contained within another communication complexity class D, then a certain class

of proof techniques (called algebraizing techniques) will not suffice to show that the Tur-

ing Machine analog of C is contained within the Turing Machine analog of D. We view the

connection between MA communication complexity and annotated data stream models as

another significant motivation for studying MA communication complexity.

Proof Systems for Space-Bounded Verifiers. Early work on interactive proof systems

studied the power of space-bounded verifiers (the survey by Condon [35] provides a compre-

hensive overview), but many of the protocols developed in this line of work require the verifier

to store the input, and therefore do not work in the annotations model, where the verifier

must be streaming. An exception is work by Lipton [76], who relied on using fingerprinting

techniques to allow a log-space streaming verifier to ensure that the prover correctly plays

back the transcript of an algorithm in an appropriate computational model. This approach

does not lead to protocols with sublinear annotation length. More recently, Das Sarma et

al. studied the “best order streaming model,” which can be thought of as the annotations

model where the annotation is restricted to be a permutation of the input [43].

Other Work. There has also been more applied work which implicitly defines annotation

schemes. Tucker et al. [102] considered stream punctuations, which, in our terminology, are

simple prescient annotations, indicating facts such as that there are no more tuples relevant

to timestamp t in the remainder of the stream. Yi et al. [106], in their work on stream out-

sourcing, study the problem of verifying that a claimed “grouping” corresponds to the input
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data. They solve exact and approximate versions of the problem by using a linear amount of

annotation. Lastly, the work of Li et al. [74] on proof infused streams answers various selec-

tion and aggregation queries (e.g. range sum) over sliding windows with logarithmic space

and linear annotation. However, a critical difference is that Li et al. require that the helper

and verifier agree on a one-way (cryptographic) hash function, for which it is assumed the

helper cannot find collisions. Our results are in a stronger model without this assumption.

Independent work subsequent to this chapter. Two recent works have considered

variants of the annotated data stream model. Klauck and Prakash [72] study a restricted

version of the annotations model in which the annotation must essentially end by the final

stream update. Gur and Raz [61] give protocols for a class of problems in a model that is

similar to annotated data streams, but more powerful in that the verifier has access to both

public and private randomness. This corresponds to the AMA communication and streaming

models. We briefly gave a scheme for approximate F2 in this model, and return to it again

in Section 4.7.2 of Chapter 4.

3.14 Open Problems

Up to logarithmic factors, we have resolved the cost of annotated data streaming proto-

cols for a number of fundamental streaming problems, including exact computation of in-

dex, frequency moments, bipartite perfect matching, and shortest s-t path in small-diameter

graphs. However, we have also presented several non-trivial annotated data streaming proto-

cols whose optimality we cannot yet establish. In particular, we highlight the following open

problems.

• Theorem 3.5.4 proves that any (ca, cv) scheme (online or prescient) that approximates

kth frequency moment, Fk, up to a constant factor requires cacv = Ω(n1−5/k). It is not
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possible to prove a lower bound better than cacv = Ω̃(n1−2/k) since there exist standard

(Merlin-less) streaming algorithms for computing Fk that use Õ(n1−2/k) space [7, 21].

(We clarify that it is not known how to achieve a (ca, cv)-scheme for all ca · cv = n1−2/k,

only for ca = O(1), cv = Θ̃(n1−2/k)). It would be interesting to close the gap between

the Õ(n1−2/k) upper bound and the Ω(n1−5/k) lower bound.

• Assume m = O(n). Determine whether there is a (ca, cv) scheme (online or prescient)

for exactly computing F0 for which ca and cv are both O(n2/3−δ) for some constant

δ > 0. A negative answer to this question would prove the optimality of Theorem

3.7.1. Note Gur and Raz have recently given a (
√
n · polylog n,

√
n · polylog n) AMA

scheme for this problem, but it remains open whether there exists a scheme of similar

costs that does not use public randomness.

• Determine whether there is an (online or standard) MA communication protocol of

cost O(n3/2−δ) for some constant δ > 0 (cf. [1]). A negative answer to this question

would prove the optimality of Theorem 3.10.4 and resolve the (online or standard) MA

communication complexity of counting triangles.

• Determine whether there is an (online or standard) MA communication protocol for

connectivity or bipartiteness of cost n1−δ for some constant δ > 0. A negative answer

to this question would resolve the (online or standard) MA communication complexity

of connectivity and bipartiteness. Such a protocol would be interesting even if it only

works under the promise that the graph is sparse, that is, that the graph contains

m = O(n) edges.
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Chapter 4

Annotations for Sparse Data Streams

4.1 Introduction

Chapter 3 provided considerable understanding of the power of annotated data streams,

revealing a surprisingly rich theory. A number of fundamental problems that possess no non-

trivial algorithms in the standard streaming model do have efficient schemes when the data

stream may be annotated by a prover. By exploiting powerful algebraic techniques originally

developed in the literature on interactive proofs, the results of Chapter 3 achieved essentially

optimal tradeoffs between annotation size and the space usage of the verifier for problems

ranging from frequency moments to bipartite perfect matching.

However, these schemes are only optimal for streams for which the total number of

updates is large relative to the size of the data universe. In contrast, many real-world data

sets are sparse: for example, many real-world graphs, though large, contain much fewer than

the maximum possible number
(
n
2

)
of edges, and IP traffic streams contain much fewer than

the total number of possible IP addresses, 2128 in IPv6.

In this chapter, we give the first schemes in the annotations model that allow both

the annotation size and space usage to be sublinear in the number of items with non-zero
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frequency in the data stream, rather than the size of the data universe n. On the negative side,

we also give a new lower bound that for the first time rules out smooth tradeoffs between

annotation size and space usage for a specific problem. The latter result is derived from a new

lower bound in the Merlin–Arthur (MA) communication model that may be of independent

interest.

4.2 Overview of Results and Techniques

We give an informal overview of our results and the techniques we use to obtain them.

Recall that n denotes the size of the data universe and m the number of items with non-zero

frequency at the end of a data stream (we refer to m as the “sparsity” of the stream).

Section 4.3 contains our first set of results. We begin by precisely characterizing the

complexity of the sparse PointQuery problem—a natural variant of the well-known in-

dex problem from communication complexity—giving an (x log n, y log n)-scheme whenever

xy ≥ m. We give similar upper bounds for the related problems Selection and Heavy-

Hitters. We also prove a lower bound showing that any (ca, cv)-scheme for these problems

requires cacv = Ω(m log(n/m)), improving by a log(n/m) factor over lower bounds that fol-

low from prior work on “dense” streams. By a dense stream we mean one where n is not

much larger than m. This log(n/m) factor may seem minor, but we show that it has the

following striking consequence: the (very) sparse index problem—where Alice’s n-bit string

has Hamming weight O(log n)—has one-way randomized communication complexity that is

within a logarithmic factor of its online MA communication complexity. This implies that no

non-trivial tradeoffs between Merlin’s and Alice’s message sizes are possible for this problem.

That is, it is not possible for Alice’s message to be more than a logarithmic factor smaller

than in the best Merlin-less protocol, unless Merlin’s message is very long (at least as long,
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up to a logarithmic factor, as the cost of the best Merlin-less protocol). To our knowledge

this is the first problem that provably exhibits this phenomenon.

Our scheme for sparse PointQuery relies on universe reduction: the prover succinctly

describes a mapping h : [n]→ [r] that maps the input stream, which is defined over the huge

data universe [n], down to a derived stream defined over a smaller universe [r]. By design,

if the prover is honest and the mapping h does not cause “too many collisions,” then the

answer on the original stream can be determined from the answer on the derived stream. We

then efficiently apply known schemes for dense streams to the derived stream.

For our lower bound in Section 4.3, we give a novel reduction from the standard (dense)

index problem to sparse index that is tailored to the MA communication model. We then

apply known lower bounds for dense index. Our technique also gives what is to our knowl-

edge the first polynomial separation between the online MA and AMA communication com-

plexities of a specific (and natural) problem.

For clarity, the remainder of this overview omits factors logarithmic in n and m when

stating the costs of schemes. Though these factors are important for Section 4.3 (the conse-

quences of our lower bound being most significant when n = mω(1)), we anticipate that in

practice n and m will usually be polynomially related.

Sections 4.4 and 4.5 contain the most interesting and technically involved results of the

chapter, namely, efficient schemes for size-m-set-disjointness (henceforth, m-disj) and

kth Frequency Moments (henceforth, Fk). The schemes here are substantially more complex

than those in Section 4.3 and represent the main technical contributions of this chapter.

Section 4.4 gives (m2/3,m2/3)-schemes for both problems, but the schemes rely on “pre-

scient” annotation, i.e., annotation provided at the start of the stream that depends on the

stream itself. The even more complex schemes of Section 4.5 eliminate the need for prescient

annotation and also achieve much more general tradeoffs between annotation length and
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space usage. Specifically, Section 4.5 gives (mc
−1/2
v , cv)-schemes for m-disj and Fk for any

cv < m. Notice that one recovers the costs achieved in Section 4.4 by setting cv = m2/3, and

thus the results of Section 4.5 almost subsume those of Section 4.4.1 However, Section 4.4

allows us to present a self-contained and easier proof of a weaker set of results that paves

the way for the results of Section 4.5.

These schemes are the first for these problems that allow both the annotation length and

space usage to be sublinear in m. At a very high level, there are three interlocking ideas that

allow us to achieve this.

1. The first idea is a careful application of universe reduction. We are able to use a

simple version of this idea to derive the upper bound for the PointQuery problem in

Section 4.3, but in the case of disj and Fk the universe-reduction mapping h : [n]→ [r]

specified by the prover is more complicated, requiring refinement in the form of the

additional ideas described below.

2. The second idea is addressed to ensuring that the prover performed the universe-

reduction step in an honest manner, in the sense that the answer on the original

stream can indeed be determined from the answer on the derived stream. The difficulty

of ensuring P is honest varies depending on the structure of the problem at hand. For

Fk, the verifier has to make sure that the universe-reduction mapping h is injective on

the items appearing in the data stream. This requires developing an efficient way for

V to detect collisions under h, even though V does not have the space to store all of

the values h(xi) for stream updates xi. For m-disj, a notion weaker than injectiveness

is sufficient.

1Two advantages of the schemes of Section 4.4 are that the schemes of Section 4.4 satisfy perfect com-
pleteness, while those of Section 4.5 do not, and that the schemes of Section 4.4 are more efficient by
polylogarithmic factors.
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3. The third idea pertains to allowing P to specify the universe-reduction mapping h

online. That is, for many problems it would be much simpler if P could determine the

mapping h in advance i.e., if P could be prescient and send h to V at the start of the

stream so that V can determine the derived “mapped-down” stream on her own (this

is the approach taken in Section 4.4). When P must specify h in an online fashion,

additional insight is required. At a high level, our approach is to have P specify a

“guess” as to the right hash function at the beginning of the steam and retroactively

modify the hash function after the stream has been observed. The challenging aspect

of this approach is to ensure that P ’s retroactive modification of the hash function

is consistent with the observed data stream, even though V cannot refer back to the

stream to enforce this.

We exploit similar ideas to allow V to avoid storing the universe-reduction mapping

h herself; this is the key to achieving general tradeoffs between annotation length and

space usage in Section 4.5. In some schemes, storing this mapping h would be the

bottleneck in V ’s space usage. We show how V can store only a partial description of

h, and ask P to fill in the remainder of the description at the end of the stream.

Section 4.6 exploits all of these results, applying them to several graph problems, in-

cluding counting triangles and demonstrating a perfect matching. Our schemes have costs

that depend on the number of edges in the graph, rather than the total number of possible

edges and demonstrate that the ideas underlying our m-disj and Fk schemes are broadly

applicable. We state clearly how our schemes improve over prior work throughout.

Section 4.7 considers the general turnstile stream update model, which allows items to

have negative frequencies (i.e., provides correct answers for problems such as frequency mo-

ments and inner products even when the entries of the “frequency vector” may be negative).
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These negative frequencies potentially break the “collision detection” sub-protocol used in

the previous sections, so we show how to exploit a source of public randomness to allow these

protocols to be carried out. Essentially, the public randomness specifies a remapping of the

input, so that the prover is highly unlikely to be able to use negative frequencies to “hide”

collisions. Because the protocols of Section 4.7 require public randomness, they work in the

AMA communication and streaming models, as opposed to the MA models in which all of

our other protocols operate.

4.3 Point Queries, Selection, and Heavy Hitters

4.3.1 Upper Bounds

Our first result is an efficient online annotation scheme for the PointQuery problem, a

generalization of the familiar index problem.

Definition 4.3.1. In the PointQuery problem, the data stream x consists of a sequence of

updates of the form (i, δ), followed by an index ι, and the goal is to determine the frequency

fι(x) =
∑

(jk,δk)∈x:jk=ι δk.

A prescient (log n, log n)-scheme for this problem is trivial as P can just tell V the index

ι at the start of the stream, and V can track the frequency of ι while observing the stream.

The vcost can be improved to O(logm) if V retains a hashed value of ι and tracks the

frequency of matching updates. The first scheme has perfect completeness, while the second

has completeness error polynomially small in m.

The costs of the scheme below are in terms of the stream sparsity m and not the stream

length N or the stream footprint M ; this is significant if m�M , which is the case, e.g., for

the well-known straggler and set-reconciliation problems that have been studied in traditional
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streaming and communication models [47,79]. Our lower bound in Theorem 4.3.8 shows our

scheme is essentially optimal for moderate universe sizes, i.e., when the universe size n is

sub-exponential in the sparsity m.

Theorem 4.3.2. For any pair of positive integers ca, cv such that ca ·cv ≥ m, there is an on-

line (ca log n, cv log n)-scheme in the non-strict turnstile update model for the PointQuery

problem with imperfect completeness. Any online (ca, cv) scheme with ca ≥ log n for this

problem requires ca · cv = Ω(m log(n/m)).

Proof. V requires P to specify at the start of the stream a hash function h : [n] → [cv].

V requires h to have description length O(ca), rejecting if this is not the case. We define

the derived streams xj ∈ UN based on h: we set xjk = xk iff h(xk) = j, and 0 otherwise.

Intuitively, the hash function h partitions the stream updates in x into cv disjoint buckets,

and the vector xj describes the contents of the jth bucket. V maintains fingerprints over a

field of size poly(n) of each of the cv different xj vectors.

At the end of the stream, given the desired index ι, P provides a description of the

(claimed) frequency vector in the h(ι)th derived stream, f(xh(ι)). V computes a fingerprint

of the claimed frequency vector and compares it to the fingerprint she computed from the

data stream, accepting if and only if the fingerprints match. Since each xj is sparse in

expectation, the cost of this description can be low: provided h does not map more than

O(ca) items with non-zero frequency to h(ι), P can just specify the item id and frequency

of the items with non-zero frequency in f(xh(ι)). In this case, the annotation size is just

O(ca log n). If P exceeds this amount of annotation, V will halt and reject (output ⊥).

Soundness follows from the fingerprinting guarantee: if P does not honestly provide xh(ι),

V ’s fingerprint of xh(ι) computed from the data stream will not match her fingerprint of the

claimed vector of frequencies.

To show (imperfect) completeness, we study the probability that the output of an hon-
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est prover is rejected. This happens only if m(xh(ι)), the number of non-zero entries in

xh(ι), is much larger than its expectation. By the pairwise independence of h, E[m(xh(ι))] =

m(x)/cv = ca. Thus, by Markov’s inequality, Pr[m(xh(ι)) > 10ca] < 1/10. So by specifying a

hash function chosen at random from a pairwise independent hash family and then honestly

playing back the items that map to the same region as ι, P can convince V to accept with

probability 9/10.

Notice that V does not need to enforce that P picks the hash function h at random from

a pairwise-wise independent hash family, as P has no incentive not to pick the hash functions

in this way. That is, since V will reject if too many items map to the same region as ι, it

is sufficient for P to pick h at random from a pairwise independent hash family in order to

convince V to accept with constant probability. But it is equally acceptable if P wants to

pick h another way; if he does so, P just risks that V will reject with a higher probability.

The lower bound follows from Theorem 4.3.8, which we prove in Section 4.3.2.

The scheme of Theorem 4.3.2 yields nearly optimal schemes for the HeavyHitters and

Selection problems, described below. Table 4.1 summarizes these results and compares to

prior work.

Selection. For the reader’s convenience, we reproduce the definition of the Selection

problem original defined in Definition 3.3.1. Our definition assumes all frequencies fi :=∑
(jk,δk):jk=i δk are non-negative, so this definition is valid only for the strict turnstile update

model.

Definition 4.3.3. The Selection problem is defined in terms of the quantity N ′ =∑
i∈[n] fi, the sum of all the frequencies. Given a desired rank ρ ∈ [N ′], output an item j from

the stream x = 〈(j1, δ1), . . . , (jN , δN)〉, such that
∑

(jk,δk):jk<j
δk < ρ and

∑
(jk,δk):jk>j

δk ≥

N ′ − ρ.
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Table 4.1: Comparison among PointQuery, Selection, and φ-HeavyHitters schemes.

Problem Scheme Costs Completeness Prescience Source

PointQuery (log n, log n) Perfect Prescient Ch. 3

PointQuery (m log n, log n) Perfect Online Thm 3.11.1

PointQuery (ca log n, cv log n): cacv ≥ n Perfect Online Thm. 3.3.2

PointQuery (ca log n, cv log n): cacv ≥ m Imperfect Online Thm 4.3.2

Selection (log n, log n) Perfect Prescient Ch. 3

Selection (ca log n, cv log n): cacv ≥ n Perfect Online Thm 3.3.3

Selection (m log n, log n) Perfect Online Thm 3.11.1

Selection (ca log2 n, cv log n): cacv ≥ m log n Imperfect Online Cor 4.3.4

φ-HeavyHitters ( logn
φ , lognφ ) Perfect Prescient Thm 3.6.1

φ-HeavyHitters ( log2 n
φ + ca log n, cv log n): cacv ≥ n Perfect Online Thm 3.6.1

φ-HeavyHitters (m log n, log n) Perfect Online Thm 3.11.1

φ-HeavyHitters ( logn
φ ca, cv log n): cacv ≥ m log n Imperfect Online Cor 4.3.6

φ-HeavyHitters ( logn
φ + ca log n, cv log n): cacv ≥ m log n Imperfect Online Cor 4.5.6

For all three problems, the schemes of this chapter are the first online schemes to achieve both

annotation and space usage sublinear in the stream sparsity m when m� √n, and strictly

improve over the online MA communication cost of prior schemes whenever m = o(n). For

brevity, we omit factors of logcv(m) from the statement of costs of the φ-HeavyHitters

scheme due to Corollary 4.5.6.

Corollary 4.3.4. For any pair of positive integers ca, cv such that cacv ≥ m log n, there is

an online (ca log2 n, cv log n)-scheme for Selection in the strict turnstile update model.

The corollary follows from a standard observation to reduce Selection to answering

prefix sum queries and hence to multiple instances of the PointQuery problem. V treats

each stream update (i, δ) in the stream x as an update to O(log n) dyadic ranges, where

a dyadic range is a range of the form [j2k, (j + 1)2k − 1] for some j and k. Thus, we can

view the set of dyadic range updates implied by x as a derived stream of sparsity m log n.

Notice we are using the fact that this transformation from the original stream of sparsity m
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results in a derived stream of sparsity at most m log n; a different derived stream was used in

Theorem 3.3.3 to address the Selection problem, but the sparsity of that derived stream

could be substantially larger than the sparsity of the original stream.

For any i, the quantity Ti :=
∑

(j,δ):j≤i δ can be written as the sum of the counts of

O(log n) dyadic ranges. Thus, at the end of the stream P can convince V that item i has

the desired Ti value by running log n PointQuery protocols as in Theorem 4.3.2 in parallel

on the derived stream of sparsity m log n. The verifier’s space usage is the same as for a

single PointQuery instance on this stream: V fingerprints each of the derived streams xj

defined in the proof of Theorem 4.3.2 and uses these fingerprints in all log n instances of the

PointQuery scheme. The annotation length is log n times larger than that required for a

single PointQuery instance because P may have to describe the frequency vectors of up

to log n derived streams.

Thus, we get an online (ca log2 n, cv log n)-scheme as long as cacv = Ω(m log n).

Frequent Items. We also reproduce the definition of he φ-HeavyHitters problem for the

reader’s convenience. Here, we assume all frequencies fi :=
∑

(jk,δk):jk=i δk are non-negative,

and so this definition is only valid for the strict turnstile update model.

Definition 4.3.5. The φ-HeavyHitters problem (also known as frequent items) is to list

those items i such that fi ≥ φN ′ where N ′ =
∑

i∈[n] fi, i.e., to list the items i whose frequency

of occurrence exceeds a φ fraction of the total count N ′.

We give a preliminary result for the φ-HeavyHitters problem in Corollary 4.3.6 below.

We give a substantially improved scheme in Section 4.5 using the ideas underlying our online

scheme for frequency moments.

Corollary 4.3.6. For all positive integers ca, cv such that cacv ≥ m log n, there is an online

(caφ
−1 log2 n, cv log n)-scheme for solving φ-HeavyHitters in the strict turnstile update
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model.

Corollary 4.3.6 follows from the following analysis. Theorem 3.4.1 describes how to re-

duce φ-HeavyHitters to demonstrating the frequencies of O(φ−1 log n) items in a derived

stream. Moreover, the derived stream has sparsity O(m log n) if the original stream has

sparsity m. We use the PointQuery scheme of Theorem 4.3.2. As in Corollary 4.3.4, the

annotation length blows up by a factor φ−1 log n relative to a single PointQuery, but the

space usage of V can remain the same as in a single PointQuery instance. Hence, we obtain

an online (caφ
−1 log2 n, cv log n)-scheme for any cacv ≥ m log n.

4.3.2 Lower Bound

In this section, we prove a new lower bound on the online MA communication complexity

of the (m,n)-Sparse index problem.

Definition 4.3.7. In the (m,n)-Sparse index problem, Alice is given a vector x ∈ {0, 1}n

of Hamming weight at most m, and Bob is given an index ι. Their goal is to output the

value xι.

We prove our lower bound by reducing the (dense) index problem (i.e., the (m,n)-Sparse

index problem with m = Θ(n)) in the MA communication model to the (m,n)-Sparse index

problem for small m. The idea is to replace Alice’s dense input with a sparser input over a

bigger universe and then take advantage of our sparse PointQuery protocol. A lower bound

on the online MA communication complexity of the dense index problem was proven in

Theorem 3.3.2. There, it was shown that any online MA communication protocol Q requires

hcost(Q) vcost(Q) ≥ n. Combining this with our reduction of the dense index problem to

the sparse version, we conclude that any protocol for sparse index must be costly.
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Theorem 4.3.8. Any online MA communication protocol Q for the (m,n)-Sparse index

problem for which hcost(Q) ≥ log n must have hcost(Q) vcost(Q)=Ω(m log(n/m)).

Proof. Assume we have an online MA communication protocol Q for (m,n)-sparse index.

We describe how to use this online MA protocol for the sparse index problem to design one

for the dense index problem on vectors of length n′ = m log(n/m).

Let k = log(n/m). Given an input x to the dense index problem, Alice partitions x

into n′/k blocks of length k, and constructs a 0-1 vector y of Hamming weight n′/k over the

universe {0, 1}(n′/k)·2k = {0, 1}n as follows. She replaces each block Bi with a 1-sparse vector

vi ∈ {0, 1}2k , where each entry of vi corresponds to one of the 2k possible values of block

Bi. That is, if block Bi of x equals the binary representation of the number j ∈ [2k], then

Alice replaces block Bi with the vector ej ∈ {0, 1}2k , where ej denotes the vector with a 1

in coordinate j and 0s elsewhere.

Alice now has an n′/k = m-sparse derived input y over the universe {0, 1}n. Merlin looks

at Bob’s input to identify the index ι of the dense vector x in which Bob is interested. Merlin

then tells Bob the index ` such that ` = 2k(i − 1) + j, where Bi is the block in which ι

is located, and block Bi of Alice’s input x equals the binary representation of the number

j ∈ [2k]. Notice that Merlin can specify ` using log n bits. If Bob is convinced that y` = 1,

then Bob can deduce the value of all the bits in block Bi of the original dense vector x, and

in particular, the value of xι.

The parties then run the assumed online MA protocol for (m,n)-Sparse index. The total

hcost of this protocol is hcost(Q) + log n = O(hcost(Q)), and the total vcost is vcost(Q).

Thus, by Theorem 3.3.2, hcost(Q) vcost(Q) = Ω(n′) = Ω(m log(n/m)) as claimed.

Theorem 4.3.8 should be contrasted with the following well-known upper bound.

Theorem 4.3.9. Assume n < mm. Then the one-way randomized communication complexity
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of the (m,n)-Sparse index Problem is O(m logm).

Proof. Alice chooses a hash function h : [n]→ [m3] at random from a pairwise independent

family and uses h to perform “universe reduction”. That is, she sends h along with the set S

of m values {h(j) : xj = 1}. Notice h can be specified with O(log n) = O(m logm) bits, and

S can be specified with O(m logm) bits. Bob outputs 1 if h(ι) ∈ S, and 0 otherwise. The

correctness of the protocol follows from the pairwise independence property of h: if xι = 0,

then with high probability ι will not collide under h with any j such that xj = 1. The total

cost of this protocol is O(m logm).

4.3.3 Implications of the Lower Bound

Our lower bound in Theorem 4.3.8 has interesting consequences when it is combined

with the upper bound in Theorem 4.3.9. Consider in particular the (m,n)-Sparse index

Problem, where n = 2m. Theorem 4.3.9 implies that the one-way randomized communication

complexity of this problem is O(m logm); that is, without any need of Merlin, Alice and Bob

can solve the problem with O(m logm) communication.

Meanwhile, Theorem 4.3.8 implies that even if Merlin’s message to Bob has length

Ω(log n) = Ω(m), Alice’s message to Bob must have length Ω(m log(n/m)/m) = Ω(m).

Indeed, Theorem 4.3.8 shows that for any protocol Q, if hcost(Q) ≥ log n = m, then we

must have hcost(Q) vcost(Q) = Ω(m log(n/m)) = Ω(m2). In particular, this means that if

hcost(Q) = m, vcost(Q) must be Ω(m). This trivially implies that for any protocol Q with

hcost(Q) less than m, vcost(Q) must still be Ω(m); otherwise we could achieve a protocol

with hcost(Q) = m and vcost(Q) = o(m) simply by running Q and adding in extraneous

bits to the proof to bring the proof length up to m.

Consequently, the online MA communication complexity of this problem is at least Ω(m),

which is at most a logarithmic factor smaller than the one-way randomized communication
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complexity. To our knowledge, this is the first problem that provably exhibits this behavior.

Specifically, this rules out smooth tradeoffs between annotation size and space usage in

any annotated streaming protocol for the (m, 2m)-Sparse index Problem: there is an online

(1,m logm)-scheme for this problem, but in order to reduce the space cost even to o(m), the

annotation length must be Ω(m).

Corollary 4.3.10. The one-way randomized communication complexity of the (m, 2m)-

Sparse index Problem is O(m logm). The online Merlin-Arthur communication complexity

is Ω(m).

Other Sparse Problems. A number of lower bounds in Chapter 3 are proved via re-

ductions from index that preserve stream length up to logarithmic factors. This holds for

Selection and HeavyHitters, as well as for the problem of determining the existence

of a triangle in a graph. For all such problems, the lower bound of Theorem 4.3.8 implies

corresponding new lower bounds for sparse streams, i.e., streams for which m = o(n). We

omit the details for brevity.

Separating Online MA and AMA Communication Complexity. Another implica-

tion of Theorem 4.3.8 is a polynomial separation between online MA communication com-

plexity and online AMA communication complexity. Indeed, there is an online AMA protocol

of cost Õ(
√
m) for the (m, 2

√
m)-Sparse index Problem, where the Õ notation hides factors

polylogarithmic in m: the first message, which consists of public random coins, is used to

specify a hash function h : [n]→ [m3] from a pairwise independent hash family; this message

has length O(log n) = O(
√
m). With high probability, h is injective on the set {j : xj = 1}.

The parties then run the online MA communication protocol of Theorem 4.3.2 on the inputs

h(x) and h(ι) and output the result. The total cost of this protocol is Õ(
√
m) as claimed.
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Meanwhile, the lower bound of Theorem 4.3.8 implies that the online MA communication

complexity of this problem is Ω(m3/4). Indeed, if we have a protocol Q with hcost(Q) =

m3/4 > log n, Theorem 4.3.8 implies that hcost(Q) vcost(Q) = Ω(m log(n/m)) = Ω(m3/2),

and hence vcost(Q) > m3/4.

To our knowledge, this is the first such separation between online AMA and online MA

communication complexity (we remark that polynomial separations between online MA and

MAMA communication complexity were already known for problems including index and

disj [3, 30]). Indeed, all previous lower bound methods that apply to online MA commu-

nication complexity, such as the proof of Theorem 3.3.2 and the methods of Klauck and

Prakash [72], in fact yield equivalent AMA lower bounds. At a high level, the reason is that

these methods work via round reduction – they remove the need for Merlin’s message. They

therefore turn any online MA protocol for a function F into an online “A” protocol for F ,

which is really just a one-way randomized protocol without a prover, allowing one to invoke

a known lower bound on the one-way randomized communication complexity of F . Similarly,

they turn an online AMA protocol for F into an online AA protocol, which is also just a

one-way randomized protocol for F .

The reason Theorem 4.3.8 is capable of separating online AMA from MA communication

complexity is that the reduction in the proof of Theorem 4.3.8 turns an online MA protocol

for the (m,n)-Sparse index Problem into an online MA protocol for the (dense) index

Problem with related costs. However, the natural variant of the reduction applied to an

online AMA protocol for the (m,n)-Sparse index Problem yields an online MAMA protocol

for the dense index Problem, not an online AMA protocol. And the dense index Problem

has an online MAMA protocol that is polynomially more efficient than any online AMA

protocol (see e.g., [3, 42]).
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Table 4.2: Comparison of m-disj schemes.

Scheme Costs Completeness Prescience Source

((m logm)2/3, (m logm)2/3): m = Ω(log n) Perfect Prescient Thm 4.4.2

(ca log n, cv log n): cacv ≥ n Perfect Online Thm 3.5.2

(m log n, log n) Perfect Online Thm 3.11.1

(ca log n logcv m, cv log n logvm): ca = mc
−1/2
v Imperfect Online Thm 4.5.1

The m-disj schemes of this chapter are the first to achieve annotation length and space usage

that are both sublinear in m for m� √n, and strictly improve over the MA communication

cost (online or prescient) of prior schemes whenever m = o(n).

4.4 Prescient Schemes for Sparse Disjointness and Fre-

quency Moments

In this section and the next, we describe schemes for the m-Disjointness (m-disj) and

Frequency Moment (Fk) problems. These schemes contain the main ideas of the chapter.

4.4.1 A Prescient Scheme for Sparse Disjointness

An important special case of the communication problem disj is when Alice’s and Bob’s

input sets are promised to be small, i.e., have size at most m� n. These should be thought

of as sparse instances. The sparsity parameter m has typically been denoted by the letter k

in the communication complexity literature, and the problem has typically been referred to

as k-disj rather than m-disj; we use m rather than k for consistency with our notation in

the rest of the thesis (where m denotes the sparsity of a data stream).

Among the original motivations for studying this variant is its relation to the clique-

vs.-independent-set problem introduced by Yannakakis [105] to study linear programming
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formulations for combinatorial optimization problems. More recent motivations include con-

nections to property testing [17]. A clever protocol of H̊astad and Wigderson [63] gives an

optimal O(m) communication protocol for m-disj, improving upon the trivial O(m log n)

and the easy O(m logm) bounds. This protocol requires considerable interaction between Al-

ice and Bob, a feature that turns out to be necessary. Recent results of Buhrman et al. [24]

and Dasgupta et al. [44] give tight Θ(m logm) bounds for m-disj in the one-way model.

Very recently, Brody et al. [23] and Sağlam and Tardos [86] have given tight rounds-vs.-

communication tradeoffs for m-disj.

Here we obtain the first nontrivial bounds for m-disj in the annotated streams model

and thus also in the online MA communication model.

Definition 4.4.1. In them-disj problem, the data stream specifies two multi-sets S, T ⊆ [n],

with ‖S‖0, ‖T‖0 ≤ m, where ‖S‖0 denotes the number of distinct items in S. An update

of the form ((0, i), δ) is interpreted as an insertion of δ copies of item i into set S, and an

update of the form ((1, i), δ) is interpreted as an insertion of δ copies of item i into T . The

goal is to determine whether or not S and T are disjoint.

Notice Definition 4.4.1 allows S and T to be multi-sets, but assumes the strict turnstile

update model, where the frequency of each item is non-negative (recall that the turnstile

model allows for updates to contains negative δ values, thereby modeling deletions, but the

strict turnstile model requires all frequencies to be non-negative at the end of the stream).

Theorem 4.4.2. Assume m > log n. There is a prescient ((m logm)2/3, (m logm)2/3)-scheme

for m-disj with perfect completeness in the strict turnstile update model. In particular, the

MA-communication complexity of m-disj is O((m logm)2/3). Any prescient (ca, cv) protocol

requires cacv = Ω(m).

Proof. Obviously if S and T are not disjoint, the prescient prover can provide an item
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i ∈ S ∩ T at the start of the stream and the verifier can check that i indeed appears in both

S and T . The total space usage and annotation length is just O(log n) in this case.

Suppose now that S and T are disjoint. We first recall that a (
√
n log n,

√
n log n)-scheme

for disj follows from Theorem 3.5.2, with f (1) and f (2) set to the indicator vectors of S and T

respectively, and g equal to the product function. We refer to this as the dense disj scheme,

because its cost does not improve if |S| and |T | are both o(n).

Our prescient scheme for m-disj works as follows. At the start of the stream, the prover

describes a hash function h : [n]→ [r], for some smaller universe [r], with the property that

h is injective on S∪T . We will write h(S) to denote the result of applying h to every member

of S. The parties can now run the dense disj scheme whereby P convinces V that h(S) and

h(T ) are disjoint. Given the existence of an injective function h, perfect completeness follows

from the fact that if S and T are disjoint, so are h(S) and h(T ), combined with the perfect

completeness of the dense disj scheme. Soundness follows from the fact that if i ∈ S ∩ T ,

then h(i) ∈ h(S) ∩ h(T ) i.e., if S and T are not disjoint, then the same holds trivially for

h(S) and h(T ).

The dense disj scheme run on h(S) and h(T ) requires annotation length and space usage

O(
√
r log r). We now show that, for a suitable choice of r, P ’s description of h is also limited

to O(
√
r log r) communication, balancing out the cost of the rest of the scheme.

A family of functions F ⊆ [r][n] is said to be κ-perfect if, for all S ⊆ [n] with |S| ≤ κ,

there exists a function h ∈ F that is injective when restricted to S. Fredman and Komlós [52]

have shown that for all n ≥ r ≥ κ, there exists a κ-perfect family F , with

|F| ≤ (1 + o(1))

(
κ log n

− log(1− t(r, κ))

)
,

where

t(r, κ) :=
κ−1∏
j=1

(
1− j

r

)
.
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For r ≥ 2κ, we can use the crude approximation

− log(1− t(r, κ)) ≥ t(r, κ) ≥
(

1− κ

r

)κ
≥ e−2κ2/r

to obtain the bound |F| = O(κe2κ2/r log n), which implies

log |F| = O(κ2/r) ,

for κ2/r = Ω(log κ) and κ = Ω(log n).

Let us pick a family F that is (2m)-perfect. Once P and V agree upon such a family F ,

the prover, upon seeing the input sets S and T , can pick h ∈ F that is injective on S ∪ T .

Describing h requires O(m2/r) bits; P sends this to V before the stream is seen, and V stores

it while observing the stream in order to run the dense disj scheme on h(S) and h(T ). To

balance out this communication with the O(
√
r log r) cost of running the dense disj scheme

on h(S) and h(T ), we choose r so that

m2

r
= Θ(

√
r log r) .

This is achieved by setting r = m4/3/ log2/3m. The resulting upper bound is that both the

annotation length and verifier’s space usage are O
(
(m logm)2/3

)
.

The lower bound follows from the lower bound for “dense” disj proved in Theorem

3.5.5.

4.4.2 A Prescient Scheme for Frequency Moments

We now present prescient schemes for the kth Frequency Moment problem, Fk, defined

in Definition 3.5.1.

The idea behind the scheme, as in the case of m-disj, is that P is supposed to specify a

“hash function” h to reduce the universe size in a way that does not introduce false collisions.

However, for Fk it is essential that V ensure h is truly injective on the items appearing in
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Table 4.3: Comparison of Fk schemes.

Scheme Costs Completeness Prescience Source

(k2ca log n, kcv log n): cacv ≥ n Perfect Online Thm 3.5.2

(m log n, log n) Perfect Online Thm 3.11.1

(k2m2/3 log n, km2/3 log n) Perfect Prescient Thm 4.4.3

(k2mc
−1/2
v log n logcv m, kcv log n logcv m): cv > 1 Imperfect Online Thm 4.5.1

The Fk schemes of this chapter are the first to achieve annotation length and space usage

that are both sublinear in m for m� √n, and strictly improve over the MA communication

cost of prior protocols (online or prescient) whenever m = o(n).

the data stream. This is in contrast to m-disj, where a weaker notion than injectiveness was

sufficient to guarantee soundness. The fundamental difference between the two problems

is that for m-disj, collisions only “hurt the prover’s claim” that the two sets are disjoint,

whereas for Fk the prover could try to use collisions to convince the verifier that the answer

to the query is higher or lower than the true answer.

Theorem 4.4.3. There is a prescient (k2m2/3 log n, km2/3 log n)-scheme for computing Fk

over a data stream of sparsity m in the strict turnstile update model. This scheme has perfect

completeness. Any prescient (ca, cv) protocol requires cacv = Ω(m).

Proof. The idea is to have the prover specify for the verifier a perfect hash function h : [n]→

[r], where r is to be determined later, i.e., P specifies a hash function h such that for all

x 6= y appearing in at least one update in the data stream, h(x) 6= h(y). The verifier stores

the description of h, and while observing the stream runs the dense Fk scheme of Theorem

3.5.2 on the derived stream in which each update (i, δ) is replaced with the update (h(i), δ).

As discussed above, it is essential that V ensure h is injective on the set of items that

have non-zero frequency, as otherwise P could try to introduce collisions to try to trick the
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verifier. To deal with this, we introduce a mechanism by which V can “detect” collisions.

Definition 4.4.4. Define the problem Injection as follows. We observe a stream of tuples

ti = ((xi, bi), δi). Each ti indicates that δi copies of item xi are placed in bucket bi ∈ [r]. We

allow δi to be negative, modeling deletions, and refer to the quantity f(j,b) =
∑

i:(xi,bi)=(j,b) δi

as the count of pair (j, b). We assume the strict turnstile model, so that for all pairs (j, b)

we have f(j,b) ≥ 0.

We say that the stream is an injection if for every two pairs (j, b) and (j′, b) with positive

counts, it holds that j = j′. Define the output as 1 if the stream defines an injection, and 0

otherwise.

Lemma 4.4.5. For any cacv ≥ r, there is an online (ca log r, cv log r)-scheme for determining

whether a stream in the strict turnstile model is an injection.

Proof. Say that bucket b is pure if there is at most one j ∈ [n] such that f(j,b) > 0. The

stream defines an injection if and only if every bucket b is pure.

Notice that a bucket b is pure if and only if the variance of the item identifiers mapping

to the bucket with positive count is zero. Intuitively, our scheme will compute the sum of the

these variances across all buckets b; this sum will be zero if and only if the stream defines

an injection. Details follow.

Define three r-dimensional vectors u, v, w as follows:

ub =
∑
j∈[n]

f(j,b),

vb =
∑
j∈[n]

f(j,b)j,

wb =
∑
j∈[n]

f(j,b)j
2.

It is easy to see that if bucket b is pure then v2
b = ub · wb. Moreover, if bucket b is impure

then v2
b < ubwb; this holds by the Cauchy-Schwarz inequality applied to the n-dimensional
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vectors whose jth entries are
√
f(j,b) and

√
f(j,b) · j respectively (the strict inequality holds

because for an impure bucket b, the vector given by
√
f(j,b) · j is not a scalar multiple of the

vector given by
√
f(j,b)). Here, we are exploiting the assumption that f(j,b) ≥ 0 for all pairs

(i, b), as this allows us to conclude that all
√
f(j,b) values are real numbers.

It follows that
∑

b∈[r] v
2
b =

∑
b∈[r] ub ·wb if and only if the stream defined an injection. Both

quantities can be computed using the “dense” scheme of Theorem 3.5.2. Notice that each

update ti = ((xi, bi), δi) contributes independently to each of the vectors u, v, and w, and

hence it is possible for V to run the scheme of Theorem 3.5.2 on these vectors as required.

This yields an online (ca log r, cv log r)-scheme for the injection problem for any cacv ≥ r as

claimed.

Returning to our Fk scheme, P specifies a hash function h claimed to be one-to-one on

the set of items that appear in one or more updates of the stream x. V verifies that h is

injective using the scheme of Lemma 4.4.5. If this claim is true, then Fk(x) = Fk(h(x)), the

frequency moment of the mapped-down stream, and P can prove this by running the scheme

of [30, Theorem 4.1] on the derived stream h(x).

Perfect completeness follows from P ’s ability to find a perfect hash function just as in

Theorem 4.4.2. Soundness follows from the soundness of the Injection scheme of Lemma

4.4.5, in addition to the soundness property of the Fk scheme of [30, Theorem 4.1].

To analyze the costs, note that by using the hash family of Fredman and Komlós [52],

the annotation length and space cost due to specifying and storing the hash function h is

O(m2 log n/r). The annotation length and space cost of the dense Fk scheme of Theorem

3.5.2 are O(k2ca log r) and O(kcv log r) for any cacv ≥ r. The annotation length and space

cost of the Injection scheme can be set to O(ca log r) and O(cv log r) respectively. Setting

r = m4/3 and ca = cv = m2/3 yields the desired costs.
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4.5 An Online Scheme for Frequency Moments

We now give an online version of the Fk scheme of Theorem 4.4.3. A simple modification

of this scheme yields the scheme for m-disj with analogous costs as claimed in Row 4 of

Table 4.2. In addition to avoiding the use of prescience, our online scheme avoids requiring

V to explicitly store the hash function sent by P , allowing us to achieve a much wider range

of tradeoffs between annotation size and space usage relative to Theorems 4.4.2 and 4.4.3.

Theorem 4.5.1. For any cv > 1, there is an online (k2mc
−1/2
v log n logcvm, kcv log n logcvm)-

scheme for Fk in the strict turnstile model for a stream of sparsity m over a universe of size

n. Any online (ca, cv)-scheme for this problem with ca ≥ log n requires cacv = Ω(m log(n/m)).

Notice that the annotation length is less than m log n for any cv = mΩ(1), and therefore

this protocol is not subsumed by the simple “sparse” scheme (second row of Table 4.3) in

which P just replays the entire stream in a sorted order, and V checks this is done correctly

using fingerprints. Notice also that the product of the space usage and annotation length is

k3mc
1/2
v log2 n log2

cv m, which is in o(n) for many interesting parameter settings. This improves

upon the dense sum-check scheme (first row of Table 4.3) in such cases.

4.5.1 An Overview of the Scheme

In order to achieve an online scheme, we examine how to construct perfect hash functions

such as those used in the prescient Fk scheme of Theorem 4.4.3. Let S be the set of m items

with non-zero frequency at the end of the stream: we want the hash function to be one-to-one

on S. Choose a hash function h at random from pairwise independent hash family mapping

[n] to [r], for r to be specified later – this requires just O(log n) bits to specify. We only

expect O(m2/r) pairs to collide under h, which means that with constant probability there

will be O(m2/r) collisions if h is chosen as specified. The final hash function h∗ is specified by
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writing down h (which takes only O(log n) bits), followed by the items involved in a collision

and some special locations for them. The total (expected) bit length to specify this hash

function is O(m2 log(n)/r).

In our online Fk scheme, P will send such an h at the start of the stream. Notice h does

not depend on the stream itself – it is just a random pairwise independent hash function

– so P is not using prescience. P also has no incentive not to choose h at random from a

pairwise independent hash family, since the only purpose of choosing h in this manner is to

minimize the number of collisions under h. If P chooses h in a different way, P simply risks

that there are too many collisions under h, causing V to reject.

Now while V observes the stream, she runs the online sum-check scheme for Fk given

in Theorem 3.5.2 on the mapped-down universe of size r, using h as the mapping-down

function. At the end of the stream, P is asked to retroactively specify a hash function h∗

that is one-to-one on S as follows. P provides a list L0 of all items in S that were involved in

a collision under h, accompanied by their frequencies. Assuming that these items and their

frequencies are honestly specified by P , V can compute their contribution to Fk and remove

them from the stream. By design, h∗ is then (claimed to be) injective on the remaining items.

V can confirm this tentatively using the Injection scheme of Lemma 4.4.5.

The remainder of the scheme is devoted to making the correctness a certainty by en-

suring that the items in L0 and their frequencies are as claimed (we stress that while our

exposition of the scheme is modular, all parts of the scheme are executed in parallel, with no

communication ever occurring from V to P). A naive approach to checking the frequencies

of the items in L0 would be to run |L0| independent PointQuery schemes, one for each

item in L; however there are too many items in L0 for this to be cost-effective. Instead, we

check all of the frequencies as a batch, with a (sub-)scheme whose cost is roughly equal to

that of a single Injection query.
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This (sub-)scheme can be understood as proceeding in stages, with each stage i using

a different pairwise independent hash function hi to map down the full original input. Say

that an item j is isolated by hi if j is not involved in a collision under hi with any other

item with non-zero frequency in the original data stream x. The goal of stage i is to isolate

a large fraction of items that were not isolated by any previous stage.

A key technical insight is that at each stage i, it is possible for V to “ignore” all items

that are not isolated at that stage. This enables V to check that the frequencies of all items

that are isolated at stage i are as claimed. We bound the number of stages that are required

to isolate all items if P behaves as prescribed – if P reaches an excessive number of stages,

then V will simply reject.

4.5.2 Details of the Scheme

Proof of Theorem 4.5.1: Let r = mc
1/2
v . P sends a hash function h : [n]→ [r] at the start

of the stream, claimed to be chosen at random from a pairwise independent hash family.

While observing the stream, V runs the dense online sum-check scheme for Fk given in

Theorem 3.5.2 on the mapped-down universe [r]. Let S be the set of items with non-zero

frequency at the end of the stream. After the stream is observed, P is asked to provide a

list L0 of all items with nonzero frequency that were involved in a collision, followed by a

claimed frequency f ∗i for each i ∈ L0.

Assuming that these items and their frequencies are honestly specified in L0 by P , V can

compute their contribution C0 =
∑

i∈L0
f ∗i to Fk and then remove them from the stream

by processing updates U = {(i,−f ∗i ) : i ∈ L0} within the dense Fk scheme. h is injective

on the remaining items. V can confirm this using the Injection scheme of Lemma 4.4.5

(conditioned on the assumed correctness of L0). Thus the dense Fk scheme will output

C1 =
∑

i 6∈L0
fki . Assuming all of V ’s checks within the dense Fk scheme pass, V outputs
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C0 + C1 as the answer.

The remainder of the scheme is directed towards determining that the frequency of items

in L0 are correctly reported. We abstract this goal as the following problem.

Definition 4.5.2. Define the `-MultiIndex problem as follows. Consider a data stream

x ◦L0, where ◦ denotes concatenation. x is a usual data stream in the strict turnstile model,

while L0 is a list of ` pairs (i, f ∗i ). Let f be the frequency vector of x. The desired output is

1 if fi = f ∗i for all i ∈ L0, and 0 otherwise.

We defer our solution to the `-MultiIndex problem to Section 4.5.3. For now, we state

our main result about the problem in the following lemma.

Lemma 4.5.3. For all cv > 1, the `-MultiIndex problem has an online

(mc
−1/2
v log n logcv `, cv log n logcv `)-scheme in the strict turnstile update model.

Analysis of Costs. Let S be the set of items with non-zero frequency when the stream

ends. First, we argue that if r is the size of the mapped-down universe, and P chooses the

hash function h at random from a pairwise independent hash family, then with probability

9/10, there will be at most 10m2/r items in S that collide under g. Indeed, by a union bound,

the probability any item i with non-zero count is involved in a collision is at most m/r, and

hence by linearity of expectation, the expected number of items involved in a collision is at

most m2/r.

So by Markov’s inequality, with probability at least 9/10, the total number of items

involved in a collision will be at most 10m2/r = O(mc
−1/2
v ) under the setting r = mc

1/2
v .

Conditioned on this event, P can specify the list L0 and the associated frequencies with

annotation length O(mc
−1/2
v log n), and V can use the MultiIndex scheme of Lemma 4.5.3

with ` = O(mc
−1/2
v ) to verify the frequencies of the items in L0 are as claimed. For any cv > 1,

Lemma 4.5.3 under this setting of ` yields an (mc−1
v log n · logcv `, cv log n · logcv `)-scheme.
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Running all of the sum-check schemes (i.e., the Injection scheme and the Fk scheme it-

self) on the mapped-down universe requires annotationO(k2rc−1
v log r) and spaceO(kcv log r)

for V ; in total, this provides an online (m2 log n/r+k2r log n/cv+kmc
−1
v log n·logcv m, cv log n·

logcv M)-scheme.

Since we set r = mc
1/2
v , we obtain a online (k2mc

−1/2
v logcv(m), kcv log n logv(m))-scheme

for any cv > 1.

The lower bound stated in Theorem 4.5.1 follows from Theorem 4.3.8 and an easy reduc-

tion from the (m,n)-sparse index problem.

4.5.3 A Scheme for MultiIndex: Proof of Lemma 4.5.3

Before presenting an efficient online scheme for the `-MultiIndex Problem, we define

two “sub”problems, which apply a function to only a subset of the desired input.

Definition 4.5.4. Define the problem SubInjection as follows. We observe a stream of

tuples ti = (xi, bi, δi), followed by a vector z ∈ {0, 1}r. As in the Injection problem, each

ti indicates that δi copies of item xi are placed in bucket bi ∈ [r].

We say that the stream defines a subinjection based on z if for every b such that zb ≥ 1, for

every two pairs (x, b) and (y, b) with positive counts, it holds that x = y. The SubInjection

problem is to decide whether the stream defines a subinjection based on z.

Notice that the Injection problem is a special case of the SubInjection problem with

zi = 1 for all i.

Lemma 4.5.5. For any cacv ≥ r, there is an online (ca log r, cv log r)-scheme for SubIn-

jection in the strict turnstile update model. Moreover, for any constant c > 0, this scheme

can be instantiated to have soundness error 1/rc.
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Proof. Define vectors u, v, and w exactly as in the proof of Lemma 4.4.5, and observe that

the stream defines a sub-injection if and only if
∑

b∈[r] zbv
2
b =

∑
b∈[r] zbubwb. V can compute

both quantities using the dense scheme of Theorem 3.5.2, with the same asymptotic costs

as the scheme of Lemma 4.4.5. The soundness error can be made smaller than 1/rc for any

constant c by running the scheme of Theorem 3.5.2 over a finite field of size poly(r), for a

sufficiently fast-growing polynomial in r.

We similarly define the problem SubF2 over a data universe of size n based on a vector

z ∈ {0, 1}n as
∑

i∈[n] zif
2
i , the sum of squared frequencies of items indicated by z. This too is

a low-degree polynomial function of the input values, and so Theorem 3.5.2 implies SubF2

can be computed by an online (ca log r, cv log r)-scheme in the general turnstile update model

for any ca, cv such that cacv ≥ r (and the soundness error in this protocol can be made smaller

than 1/rc for any desired constant c).

Online scheme for `-MultiIndex. The scheme can be thought of as proceeding in t stages

(t will be specified later), although these stages merely serve to partition the annotation:

there is no communication from V to P during these stages. Each stage j makes use of a

corresponding hash function hj : [n]→ [r] for r = mc
1/2
v . The t hash functions are provided

by P at the start of the stream, so that V has access to them throughout the stream. Each

hj is claimed to be chosen at random from a pairwise independent hash family: if they are,

then there are unlikely to be too many collisions, so P has no incentive not to choose hj

at random. Let f denote the vector of frequencies defined by the input stream, and let f (0)

denote the vector satisfying f
(0)
i = fi for i ∈ L0, and f

(0)
i = 0 for i 6∈ L0.

Stage j begins with a list Lj−1 of items. We will refer to these items as “exceptions”. P

provides a new list Lj ⊆ Lj−1 of items that remain exceptions in stage j; P implicitly claims

that no items in Lj−1 \ Lj collide with some other input items under hash function hj. Let
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z(j) denote the indicator vector of the list of buckets corresponding to Lj−1 \Lj, i.e. z
(j)
hj(i) = 1

if i ∈ Lj−1 \ Lj, and z(j) entries are 0 otherwise. To check that no items in Lj−1 \ Lj collide

under hj, V will use the SubInjection scheme based on the indicator vector z(j) over the

full original input f as mapped by the hash function hj. Note that since the original input

stream is in the strict turnstile update model, so is the stream on which the SubInjection

scheme is run (as the SubInjection scheme is simply run on the original input stream as

mapped by the hash function hj, based on the vector z(j)). Note also that Lj−1 and Lj are

provided explicitly, so V can compute z(j) easily.2

Having established that the items in Lj−1 \ Lj are no longer exceptions, V also wants to

ensure that the frequencies of these items were reported correctly in L0. To do so, V run

the SubF2 scheme over the vector f − f ∗ as mapped by hj to r buckets, based on the z(j)

indicator vector. The result is zero if and only if fi = f
(j)
i for all i where z

(j)
i = 1.

The stages continue until Lj = ∅, and there are no more exceptions. Provided all schemes

conclude correctly, and the number of stages to reach Lj = ∅ is at most t, V can accept the

result, and output 1 for the answer to the MultiIndex decision problem.

Lastly, note that V does not need to explicitly store any of the lists Lj. In fact, P can

implicitly specify all of the lists Lj while playing the list L0: for each item i ∈ L0, he provides

a number j, thereby implicitly claiming that i ∈ Lj′ for j′ ≤ j, and i 6∈ Lj′ for j′ > j.

Analysis of costs. If hj is chosen at random from a pairwise independent hash family, the

probability an item i in Lj−1 is involved in a collision with the original stream f under hj

is O(m/r) = O(c
−1/2
v ). Consider the probability that any item i survives as an exception

to stage t. The probability of this is O(c
−t/2
v ), and summed over all ` items, the expected

number is O(`c
−t/2
v ). Invoking Markov’s inequality, with constant probability it suffices to

2For example, V can add one to the corresponding entry of z(j) for each item that is marked as an
exception. This will cause z(j) to count the number of exceptions in each bucket, rather than indicate them,
but this does not affect the correctness.
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set t = O(logcv `) to ensure that we need at most t stages before no more exceptions need to

be reported.

In stage j, the SubInjection and SubF2 schemes cost (mc
−1/2
v log n, cv log n). Summing

over the t stages, we achieve for any cv > 1 an (mc
−1/2
v log(n) · logcv(m), cv log(n) · logcv(m))-

scheme as claimed in the statement of Lemma 4.5.3.

Formal Proof of Soundness. The soundness error of the protocol can be bounded by the

probability that any invocation of the SubInjection scheme or the SubF2 scheme returns

an incorrect answer. The soundness errors of both the SubInjection scheme and the SubF2

scheme can be made smaller than 1
rc

for any constant c > 0, and therefore a union bound

over all t = O(logcv `) invocations of each protocol implies that with high probability, no

invocation of either scheme returns an incorrect answer.

4.5.4 Implications of the Online Scheme for Frequency Moments

Our online scheme for Fk in Theorem 4.5.1 has a number of important consequences.

Inner Product and Hamming Distance. The discussion following Theorem 3.5.3 showed

that computing inner products and Hamming Distance can be directly reduced to (exact)

computation of the second Frequency Moment F2, so Theorems 4.4.3 and 4.5.1 immediately

yield schemes for these problems of identical cost.

An improved scheme for φ-HeavyHitters. We can use Lemma 4.5.3 to yield an online

scheme for the φ-HeavyHitters problem.

Corollary 4.5.6. For all ca, cv such that cacv ≥ m log n, there is an online (ca log n ·

logcv(m) + φ−1 log n, cv log n logcv(m))-scheme for solving φ-HeavyHitters in the strict

turnstile update model.

Corollary 4.5.6 follows from a similar analysis to Corollary 4.3.6. Theorem 3.6.1 describes
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how to reduce φ-HeavyHitters to demonstrating the frequencies of

O(φ−1 log n) items in a derived stream. Moreover, the derived stream has sparsity O(m log n)

if the original stream has sparsity m. We use the MultiIndex scheme of Lemma 4.5.3 to

verify these claimed frequencies.

Frequency-based functions. Theorem 3.7.1 shows how to extend the sum-check scheme of

Theorem 3.5.2 to efficiently compute arbitrary frequency-based functions, which are functions

of the form F (x) =
∑

i∈[n] g(fi(x)) for an arbitrary g : (−[N ]∪ [N ])→ Z. A similar but more

involved extension applies in the sparse setting considered in this chapter. We spell out the

details below, restricting ourselves to the prescient case for brevity; an online scheme with

essentially identical costs follows by using the ideas underlying Theorem 4.5.1.

Corollary 4.5.7. Let F (x) =
∑

i∈[n] g(fi(x)) be a frequency-based function. Then there

is a prescient (N3/4 log n, N3/4 log n)-scheme for computing F (x) in the strict unit-update

turnstile model. This scheme satisfies perfect completeness.

Proof. We use a natural modification of the frequency-based functions scheme of Theorem

3.7.1. P specifies a hash function h at the start of the stream mapping the universe [n] into

[N5/4]; P chooses h to be injective on the set of items that have non-zero frequency at the

end of the stream. Using the perfect hash functions of Fredman and Komlós [52], h can be

represented with O(N2/r log n) = O(N3/4 log n) bits. V stores h explicitly. After the stream

is observed, P and V run the φ-HeavyHitters scheme of Corollary 4.5.6, with φ = N−1/4.

Using the fact that
∑

i fi < N , by setting the parameters of Corollary 4.5.6 appropriately

we can ensure that this part of the scheme requires annotation length O(N3/4 log n) and has

space cost O(N3/4 log n). This scheme also allows V to determine the exact frequencies of the

items in H, allowing V to compute cont(H) :=
∑

i∈H g(fi(x)), which gives the contribution

of the items in H to the output F (x). Moreover, whenever V learns the frequency fi of an
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item in i ∈ H, V treats this as a deletion of fi occurrences of item i, thereby obtaining a

derived stream z in which all frequencies have absolute value at most N1/4.

P and V now run the sum-check scheme of Theorem 3.5.2 on the “mapped-down” input

h(z) over the universe [N5/4]. For any pair of positive integers ca, cv satisfying cacv ≥ r,

this scheme can achieve cost (F∞(z)ca log n, cv log n), where F∞(z) denotes maxi |fi(z)|, the

largest frequency in absolute value of any item (that is, the sum-check scheme of Theorem

3.5.2 is run using a polynomial g̃ of degree F∞ such that g̃(x) = g(x) for all x ∈ {0, F∞}.)

Setting cv = N3/4 and ca = N1/4, we obtain a prescient (N3/4 log n,N3/4 log n)-scheme as

claimed. V computes the final answer as F (x) = cont(H) + F (h(z))− |H|g(0).

The final issue is that V needs to verify that h is actually injective over the items that

appear in x. V can accomplish this using the Injection scheme of Lemma 4.4.5. This

does not affect the asymptotic costs of our scheme, as the Injection scheme can support

annotation cost ca log r and space cost cv log r for any cacv = Ω(N5/4).

Finally, we provide one additional corollary, which describes a protocol that will be useful

in the next section when building graph schemes.

Theorem 4.5.8. Let X, Y ⊆ [n] be sets with |X| ≤ |Y | ≤ m. Then given a stream in the

strict turnstile update model with elements of X and Y arbitrarily interleaved, there is an

online (mc
−1/2
v ·log(n)·logcv(m), cv ·log(n)·logcv(m))-scheme for determining whether X ⊆ Y

for any cv > 1.

Proof. If X 6⊆ Y , P can specify an x ∈ X \ Y and prove that x is indeed in X and not Y

with two point queries using the scheme of Theorem 4.3.2. For the other case, Theorem 3.8.2

shows how to directly reduce the case X ⊆ Y to computation of frequency moments. The

claimed costs follow from Theorem 4.5.1.

Table 4.4 provides a comparison of the Subset schemes given in this thesis.
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Table 4.4: Comparison of Subset schemes.

Scheme Costs Completeness Prescience Source

(|X| log n, log n) Perfect Prescient Lemma 3.8.1

(ca log n, cv log n): cacv ≥ n Perfect Online Thm 3.8.2

(m log n, log n) Perfect Online Thm 3.11.1

(mc
−1/2
v logcv (m) log n, cv log n logcv m): cv > 1 Imperfect Online Thm 4.5.8

The Subset scheme of this chapter is the first online Subset scheme to achieve annotation

length and space usage that are both sublinear in m for m� √n, and strictly improves over

the online MA communication cost of prior protocols whenever m = o(n).

4.6 Graph Problems

We now describe some applications of the techniques developed above to graph problems.

The main purpose of this section is to demonstrate that the techniques developed within the

Fk and m-disj schemes are broadly applicable to a range of settings.

We begin with several non-trivial graph schemes that are direct consequences of the

Subset scheme of Theorem 4.5.8. Recall that our definition of a scheme for a function F

requires a convincing proof of the value of F (x) for all values F (x). This is stricter than the

traditional definition of interactive proofs for decision problems, which just require that if

F (x) = 1 then there is some prover that will cause the verifier to accept with high probability,

and if F (x) = 0 there is no such prover. Here, we consider a relaxed definition of schemes

that is in the spirit of the traditional definition. We require only that a scheme A = (h,V)

satisfy:

1. For all x s.t. F (x) = 1, we have PrrP ,rV [outV(xh,rP , rV) 6= 1] ≤ 1/3.

2. For all x s.t. F (x) = 0, h′ = (h′1, h
′
2, . . . , h

′
N) ∈ ({0, 1}∗)N , we have PrrV [outV(xh′ , rV) =

1] ≤ 1/3.
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Theorem 4.6.1. Under the above relaxed definition of a scheme, each of the problems

perfect-matching, connectivity, and non-bipartiteness has an

(n log n + mc
−1/2
v log n logcv m, cv log n logcv m)-scheme on graphs with n vertices and m

edges for all cv > 1. All three schemes work in the strict turnstile update model and improve

over prior work if cv = ω(log2m) and cv = o(m).

Proof. In the case of perfect matching, the prover can prove a perfect matching exists by

sending a matching M, which requires n log n bits of annotation. In order to prove M is a

valid perfect matching, P needs to prove that every node appears in exactly one edge ofM,

and thatM⊆ E, where E is the set of edges appearing in the stream. V can check the first

condition by comparing a fingerprint of the nodes inM to a fingerprint of the set {1, . . . , n}.

V can check that M⊆ E using Theorem 4.5.8.

In the case of connectivity, the prover demonstrates the graph is connected by specifying

a spanning tree T . V needs to check T is spanning, which can be done as in Theorem 3.10.7,

and needs to check that T ⊆ E, which can be done using Theorem 4.5.8.

In the case of non-bipartiteness, P demonstrates an odd cycle C. V needs to check C is

a cycle, C has an odd number of edges, and that C ⊆ E. The first condition can be checked

by requiring P to play the edges of C in the natural order. The second condition can be

checked by counting. The third condition can be checked using Theorem 4.5.8.

Counting Triangles. Returning to our strict definition of a scheme, we give an online

scheme for counting the number of triangles in a graph.

Theorem 4.6.2. For any cv > 1, there is an online (ca log n logm, cv log n logm)-scheme,

with imperfect completeness, for counting the number of triangles in a graph on n nodes and

m edges, where ca = mnc
−1/2
v . The scheme is valid in the strict turnstile update model.

Proof. Theorem 3.10.4 showed how to reduce counting the number of triangles in a graph
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Table 4.5: Comparison of schemes for counting triangles.

Scheme Costs Completeness Prescience Source

(ca log n, cv log n): cacv ≥ n3 Perfect Online Thm 3.10.4

(n2 log n, log n) Perfect Online Thm 3.10.3

(ca log2 n, cv log2 n): ca = mnc
−1/2
v Imperfect Online Thm 4.6.2

Results are stated for graphs with n nodes and m edges. For concreteness, notice that by setting

cv = n, Theorem 4.6.2 achieves a (mn1/2 log2 n, n log2 n)-scheme, which improves over prior work

as long as m� n3/2.

to computing the first three frequency moments of a derived stream. The derived stream

has sparsity m(n − 2). Using the online scheme of Theorem 4.5.1 to compute the relevant

frequency moments of the derived stream yields the claimed bounds.

The scheme of Theorem 4.6.2 should be compared to the (n2, log n)-scheme from Theorem

3.10.3 based on matrix multiplication, referenced in Row 2 of Table 4.5 and the (ca, cv)-

scheme for any cacv ≥ n3 from Theorem 3.10.4, referenced in Row 1 of Table 4.5. To compare

to the former, notice that Theorem 4.6.2 yields a

(ca log2 n, cv log2 n)-scheme with ca < n2 as long as m < n
√
cv. To compare to the latter,

note that in our new scheme, cacv = mnc
1/2
v , which is less than n3 as long as c

1/2
v < n2

m
. In

particular, if we set cv = n, then Theorem 4.6.2 improves over both old schemes as long as

m < n3/2.

Unfortunately, Theorem 4.6.2 does not yield a non-trivial MA-protocol for showing no

triangle exists. Indeed, equalizing annotation length and space usage in our new protocol

occurs by setting both quantities to (mn)2/3. But Ω
(
(mn)2/3

)
< m only when m > n2,

which is to say that the MA communication complexity of this protocol is always larger than

m, a cost that can be achieved by the trivial MA protocol where Merlin is ignored and Alice
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just sends her whole input to Bob. That is, the interest in the new protocol is that it can

lower the space usage of V to less than m without drastically blowing up the message length

of P to n2 as in the matrix-multiplication based protocol from Theorem 3.10.3.

4.7 Non-strict Turnstile Update Model

All schemes in Sections 4.4 and 4.5 work in the strict turnstile update model. The reason

these schemes require this update model is that they use the Injection and SubInjection

schemes of Lemmata 4.4.5 and 4.5.5 as sub-routines, and these sub-routines assume the strict

turnstile update model.

In this section, we consider two ways to circumvent this issue. To focus the discussion,

we concentrate on the online Fk protocol of Theorem 4.5.1.

4.7.1 An Online Scheme

One simple method for handling streams in the non-strict turnstile update model is the

following. We use the scheme of Theorem 4.5.1, but within the SubInjection sub-routine,

we treat deletions of items in the input stream as insertions of items into the derived stream

of (xi, bi, δi) updates. This ensures that the Injection and SubInjection schemes correctly

output 1 if the derived stream is a subinjection (and the remainder of the scheme computes

the correct answer on the original stream). However it increases the expected number of

collisions under the universe-reduction mappings hi, from m · |Li−1|/r to M · |Li−1|/r. The

result is that we achieve the same costs as Theorem 4.5.1, except the costs depend on to the

stream footprint M rather than the stream sparsity m (see Section 3.2.4).

Corollary 4.7.1. For any cv > 1, there is a (k2Mc
−1/2
v ·log(n)·logcv(M), kcv·log(n)·logcv(M))

online scheme for Fk in the non-strict turnstile update model over a stream with footprint
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M over a universe of size n.

4.7.2 An Online AMA Scheme

In this section, we describe an AMA scheme for the Injection problem that works in

the non-strict turnstile stream update model i.e., the input may define a frequency vector

where some elements end with negative frequency. The scheme for Injection of Lemma

4.4.5 breaks down here, since there may be some cases where the checks performed by the

protocol indicate that a bucket is pure, when this is not the case: cancellations of item weights

in the bucket may give the appearance of purity. To address this, we use public randomness,

thereby yielding an AMA scheme. In essence, the verifier asks the prover to demonstrate

the purity of each of the r buckets via fingerprints of the bucket contents. However, if we

allow the prover to choose the fingerprint function, P could pick a function that leads to

false conclusions. Instead, V chooses the fingerprinting function using public randomness.

The players then execute a new Injection protocol using the data remapped under the

fingerprint function, which is intended to convince V of the purity of the buckets. This then

allows us to construct protocols with costs that depend on the stream sparsity m rather than

the footprint M as in Corollary 4.7.1.

In detail, the new AMA scheme proceeds as follows. Consider the Injection problem

as defined in Definition 4.4.4, but generalized to allow items with arbitrary integer counts.

Consider again a bucket b, and for 1 ≤ j ≤ log n define bj=` to be the frequency vector of

the subset of stream updates (xk, b, δk) placing items into bucket b, subject to the restriction

that the j’th bit of xk is equal to `. We observe the following property: if bucket b is pure,

then one of bj=0 and bj=1 must be the zero vector 0, for each j. Moreover, if b is not pure,

then there exists a j such that both bj=0 and bj=1 are not the zero vector.

A natural way to compactly test whether these vectors are equal to zero (probabilistically)
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is to use fingerprinting (discussed in Section 3.2.4). The verifier V could do this unaided for

a single bucket, but we wish to run this test in parallel for r buckets. At a high level, we

achieve this as follows. Given a stream of updates (xk, b, δk), we define two vectors z and o

of length r log n, such that each coordinate of z and o corresponds to a (bucket, coordinate)

pair (b, j) ∈ [r] × [log n]. In more detail, we will define z and o such that for each bucket b

and coordinate j ∈ [log n], the (b, j)th entry of z is a fingerprint of the vector bj=0, and the

(b, j)th entry of o is a fingerprint of the vector bj=1.

We choose the fingerprinting functions to satisfy two properties.

1. The fingerprint of the all-zeros vector 0 is always 0. This ensures that if all buckets

are pure, then the inner product of z and o is 0, as zb,j · ob,j is 0 for all pairs (b, j) ∈

[r]× [log n].

2. If there is an impure bucket, then the inner product of z and o will be non-zero with

high probability over the choice of fingerprint functions.

Therefore, in order to determine whether the stream defines an injection, it suffices to

compute
∑

(b,j)∈[r]×[logn] zb,j ·ob,j, which can be computed using Theorem 3.5.2 with annotation

length ca log n and space cost cv log n for any ca · cv ≥ r log n.

The idea allowing us to achieve the second property is as follows. If bucket b is im-

pure, then there is at least one coordinate j ∈ [log n] such that bj=0 and bj=1 are both not

equal to the all-zeros vector 0. By basic properties of fingerprints, this ensures that both zb,j

and ob,j are non-zero with high probability over the choice of fingerprint functions. More-

over, we choose the fingerprinting functions in such a way that non-zero terms in the sum∑
(b,j)∈[r]×[logn] zb,j · ob,j are unlikely to “cancel out” to zero.

Consequently, we can state an analog of Lemma 4.4.5.
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Lemma 4.7.2. For any cacv ≥ r log n, there is an online (ca log n, cv log n)-scheme for de-

termining whether a stream in the non-strict turnstile model is an injection.

Proof. Let Fq be a finite field of size q = poly(n), where the subsequent analysis determines

the required magnitude of q. V uses public randomness to choose two field elements α, and

β uniformly at random from Fq. For each bucket b ∈ [r], and each coordinate j ∈ [log n], we

define two “fingerprinting” functions gb,j,α and gb,j,β mapping an n-dimensional vector y as

follows:

gb,j,α(y) = αn(b·logn+j)
∑
`∈[n]

y`α
`,

and

gb,j,β(y) = βn(b·logn+j)
∑
`∈[n]

y`β
`,

where each entry y` of y is treated as an element of Fq in the natural manner.

We now (conceptually) construct two vectors z and o of dimension r log n, where for

each (b, j) ∈ [r] × [log n], zb,j = gb,j,α(bj=0) and ob,j = gb,j(b
j=1
i ). That is, the (b, j)th entry

of z equals the fingerprint of the frequency vector of items mapping to bucket b with a 0

in the jth bit of their binary representation. Observe that gb,j,α(0) = gb,j,β(0) = 0 for all

(b, j) ∈ [r]× [log n], as required by Property 1 above.

We now show that Property 2 holds, i.e., if there is an impure bucket, then the inner

product of z and o will be non-zero with high probability over the choice of α and β. In the

following, for an item ` ∈ [n] and bucket b ∈ [r], we let f`(b) denote the frequency with which

item ` is mapped to bucket b, and we let `j denote the j’th bit in the binary representation
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of `. We can write the inner product of z and o as

∑
(b,j)∈[r]×[logn]

gb,j,α(bj=0)gb,j,β(bj=1)

=
∑

(b,j)∈[r]×[logn]

αn(b·logn+j)βn(b·logn+j)

 ∑
`∈[n],`j=0

f`(b)α
`

 ∑
`∈[n],`j=1

f`(b)β
`


=

∑
(b,j)∈[r]×[logn]

αn(b·logn+j)βn(b·logn+j)
∑

(`,`′):`j=0,`′j=1

f`(b)f`′(b)α
`β`

′

We therefore see that the inner product of z and o is a polynomial in α and β of total degree

n2r log n in each variable. Moreover, the coefficient of the term αn(b·logn+j)+`βn(b·logn+j)+`′ is

precisely f`(b) · f`′(b) if `j = 0 and `′j = 1, and is 0 otherwise.

Recall that if bucket b is not pure, then there is at least one coordinate j ∈ [log n],

and items `, `′ ∈ [n] with `j = 0 and `′j = 1, such that f`(b) 6= 0 and f`′(b) 6= 0. The

above analysis implies that z · o is a non-zero polynomial in α and β, as the coefficient of

αn(b·logn+j)+`βn(b·logn+j)+`′ is non-zero. Hence, by the Schwartz-Zippel lemma, the probability

over a random choice of α and β that z · o = 0 is at most n2r log n/q. Setting q to be

polynomial in n, there is only negligible probability (over the choice of α and β) that z · o is

zero if the stream is not an injection.

Finally, notice that the verifier can apply the scheme of Theorem 3.5.2 to compute∑
(b,j)∈[r]×[logn] zb,j · ob,j, as each stream update (xk, b, δk) can be treated as log n updates

to the vectors z and o. For example, if the jth bit of xk is 0, then update (xk, b, δk) causes

zb,j to be incremented by δk · αn(b·logn+j)+xk .

Applications. We can apply this online scheme to compute Frequency Moments (and Inner

Product, Hamming Distance, Heavy Hitters etc.) over sparse data in the non-strict turnstile

update model. In particular, this lets us compute frequency moments even when the fre-

quency vectors may have negative entries, and it lets us compute the inner product of two
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vectors even when they may have negative entries. The costs of the resulting online AMA

scheme are similar to the costs of the online schemes for the same problems developed in pre-

vious sections. The only difference is that we have scaled m up by a log n factor, to account

for the fact that within the new AMA sub-scheme for Injection, we must run the dense pro-

tocol of Theorem 3.5.2 on vectors z and o of length r log n, rather than on vectors of length r

as in prior sections, and substitute the bounds from Lemma 4.7.2. For example, the analog of

Theorem 4.5.1 is that for any cv > 1, there is a (k2mc
−1/2
v · log2 n · logcv m, kcv · log n · logcv m)

online AMA scheme for Fk in the non-strict turnstile model.

4.8 Discussion and Open Problems

In this chapter, we have presented a number of protocols in the annotated data streaming

model that for the first time allows both the annotation length and the space usage of the

verifier to be sublinear in the stream sparsity, rather than just the size of the data universe.

Our protocols substantially improve on the applicability of prior work in natural settings

where data streams are defined over very large universes, such as IP packet flows and sparse

graph data.

A number of interesting questions remain for future work. The biggest open question is

to determine the precise dependence on the stream sparsity in problems such as m-disj and

frequency moments. When setting the annotation length and the space usage of the verifier

to be equal, our protocols have cost roughly m2/3, where m is the sparsity of the data stream.

The best known lower bound is roughly m1/2. We conjecture that our upper bound is tight

up to logarithmic factors, but proving any Merlin-Arthur communication lower bound larger

than m1/2 will require new lower bound techniques in communication complexity. Another

interesting open question is to give improved protocols for multiplying an n × n matrix
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A by a vector x, when A is sparse (i.e., has o(n2) non-zero entries), but x may be dense.

Achieving this would yield improved protocols for proving disconnectedness, bipartiteness,

or the non-existence of a perfect matching in a bipartite graph. Currently we do not know

of any protocols for these problems that leverage graph sparsity in any way.
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Chapter 5

The GKR Protocol

With the sum-check protocol described in Chapter 2 in hand, we are ready to present

Goldwasser, Kalai, and Rothblum’s interactive proof system (henceforth GKR protocol)

[57]. We begin with a high-level overview, before describing the technical details. The GKR

protocol is framed in the context of circuit evaluation. Given a layered arithmetic circuit C

of fan-in 2, the GKR protocol allows a prover to evaluate C, while providing a guarantee

that the output is correct.

5.1 The GKR Protocol From 10,000 Feet

In the GKR protocol, P and V first agree on an arithmetic circuit C of fan-in 2 over a

finite field F computing the function of interest (C may have multiple outputs). Each gate

of C performs an addition or multiplication over F. C is assumed to be in layered form,

meaning that the circuit can be decomposed into layers, and wires only connect gates in

adjacent layers. Suppose the circuit has depth d; we will number the layers from 1 to d with

layer d referring to the input layer, and layer 1 referring to the output layer. The reason we

use this numbering system is that the GKR protocol starts by examining the output layer
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of the circuit, and works its way one layer at a time toward the input layer.

In the first message, P tells V the (claimed) output of the circuit. The protocol then

works its way in iterations towards the input layer, with one iteration devoted to each layer.

The purpose of iteration i is to reduce a claim about the values of the gates at layer i to a

claim about the values of the gates at layer i+ 1, in the sense that it is safe for V to assume

that the first claim is true as long as the second claim is true. This reduction is accomplished

by applying the sum-check protocol to a certain polynomial.

More concretely, the GKR protocol starts with a claim about the values of the output

gates of the circuit, but V cannot check this claim without evaluating the circuit herself,

which is precisely what she wants to avoid. So the first iteration uses a sum-check protocol

to reduce this claim about the outputs of the circuit to a claim about the gate values at layer

2 (more specifically, to a claim about an evaluation of the multilinear extension of the gate

values at layer 2; multilinear extensions are formally defined in the next section). Once again,

V cannot check this claim herself, so the second iteration uses another sum-check protocol

to reduce the latter claim to a claim about the gate values at layer 3, and so on. Eventually,

V is left with a claim about the inputs to the circuit, and V can check this claim on her own.

In summary, the GKR protocol uses a sum-check protocol at each level of the circuit to

enable V to go from verifying a randomly chosen evaluation of the multilinear extension of

the gate values at layer i to verifying a (different) evaluation of the multilinear extension of

the gate values at layer i + 1. Importantly, apart from the input layer and output layer, V

does not ever see all of the gate values at a layer (in particular, P does not send these values

in full). Instead, V relies on P to do the hard work of actually evaluating the circuit, and

uses the power of the sum-check protocol as the main tool to force P to be consistent and

truthful over the course of the protocol.
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5.2 Notation

The notation introduced in this section will be used throughout Chapters 5-8.

For any d-variate polynomial p(x1, . . . , xd) : Fd → F, we use degi(p) to denote the degree

of p in variable i. We say p is said to be multilinear if degi(p) ≤ 1 for all i ∈ [d]. Given a

function V : {0, 1}d → {0, 1} whose domain is the d-dimensional Boolean hypercube, the

multilinear extension (MLE) of V over F, denoted Ṽ , is the unique multilinear polynomial

Fd → F that agrees with V on all Boolean-valued inputs. That is, Ṽ is the unique multilinear

polynomial over F satisfying Ṽ (x) = V (x) for all x ∈ {0, 1}d.

Suppose we are given a layered arithmetic circuit C of size S(n), depth d(n), and fan-in

two. For the purposes of this thesis, C will always be defined over a finite field F of prime

order. Let Si denote the number of gates at layer i of the circuit C. Assume Si is a power

of 2 and let Si = 2si . In order to explain how each iteration of the GKR protocol proceeds,

we need to introduce several functions, each of which encodes certain information about the

circuit.

To this end, number the gates at layer i from 0 to Si− 1, and let Vi : {0, 1}si → F denote

the function that takes as input a binary gate label and outputs the corresponding gate’s

value at layer i. The GKR protocol makes use of the multilinear extension Ṽi of the function

Vi.

The GKR protocol also makes use of the notion of a “wiring predicate” that encodes

which pairs of wires from layer i+ 1 are connected to a given gate at layer i in C. We define

two functions, addi and multi mapping {0, 1}si+2si+1 to {0, 1}, which together constitute the

wiring predicate of layer i of C. Specifically, these functions take as input three gate labels

(j1, j2, j3), and return 1 if gate j1 at layer i is the addition (respectively, multiplication)

of gates j2 and j3 at layer i + 1, and return 0 otherwise. Let ˜addi and ˜multi denote the

multilinear extensions of addi and multi respectively.
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Finally, let βsi(z, p) denote the function

βsi(z, p) =

si∏
j=1

((1− zj)(1− pj) + zjpj) .

It is straightforward to check that βsi is the multilinear extension of the function B(x, y) :

{0, 1}si × {0, 1}si → {0, 1} that evaluates to 1 if x = y, and evaluates to 0 otherwise.

5.2.1 Technical Outline of the GKR Protocol

The GKR protocol consists of d(n) iterations, one for each layer of the circuit. Each

iteration starts with P claiming a value for Ṽi(z) for some field element z ∈ Fsi . In the case

of iteration one and circuits with a single output gate, z = 0 and Ṽ1(0) corresponds to the

output value of the circuit.

In the case of iteration one and circuits with many output gates, Vu et al. [104] observe the

following: P may simply send V the (claimed) values of all output gates, thereby specifying

a function V ′1 : {0, 1}s1 → F claimed to equal V1. V can pick a random point z ∈ Fs1

and evaluate Ṽ ′1(z) on her own in O(S1) time. The Schwartz-Zippel Lemma (Lemma 2.2.1)

implies that if Ṽ ′ 6= Ṽ , then Ṽ ′1(z) 6= Ṽ (z) with probability at least 1−d/|F| over the random

choice of z. Thus, it is safe for V to believe that V ′1 indeed equals V1 as claimed, as long as

Ṽ1(z) = Ṽ ′1(z) (which will be checked in the remainder of the protocol).

The purpose of iteration i is to reduce the claim about the value of Ṽi(z) to a claim

about Ṽi+1(ω) for some ω ∈ Fsi+1 , in the sense that it is safe for V to assume that the first

claim is true as long as the second claim is true. To accomplish this, the iteration applies

the sum-check protocol to a specific polynomial derived from Ṽi+1, ˜addi, and ˜multi, and βsi .

137



Details for Each Iteration

Applying the Sum-Check Protocol. It can be shown (see Lemma 8.4.1) that for any

z ∈ Fsi ,

Ṽi(z) =
∑

(p,ω1,ω2)∈{0,1}si+2si+1

f (i)
z (p, ω1, ω2),

where

f (i)
z (p, ω1, ω2) =

βsi(z, p)·
(

˜addi(p, ω1, ω2)(Ṽi+1(ω1) + Ṽi+1(ω2)) + ˜multi(p, ω1, ω2)Ṽi+1(ω1) · Ṽi+1(ω2)
)
. (5.1)

Remark 3. Equation 5.1 is valid using any extensions of add and mult, not just the multi-

linear extensions. In fact, Goldwasser, Kalai, and Rothblum [57] use higher-degree extensions

derived from a circuit computing the functions addi and multi. We present the protocol as

using the multilinear extensions ˜add and ˜mult because their use is critical to our results in

Chapter 7.

Iteration i therefore applies the sum-check protocol to the polynomial f
(i)
z . There remains

the issue that V can only execute her part of the sum-check protocol if she can evaluate the

polynomial f
(i)
z at a random point f

(i)
z (r1, . . . , rsi+2si+1

). This is handled as follows.

Let p∗ denote the first si entries of the vector (r1, . . . , rsi+2si+1
), ω∗1 the next si+1 en-

tries, and ω∗2 the last si+1 entries. Evaluating f
(i)
z (p∗, ω∗1, ω

∗
2) requires evaluating β(z, p∗),

˜addi(p
∗, ω∗1, ω

∗
2), ˜multi(p

∗, ω∗1, ω
∗
2), Ṽi+1(ω∗1), and Ṽi+1(ω∗2).

V can easily evaluate β(z, p∗) in O(si) time. For many circuits, particularly those with

“regular” wiring patterns, V can evaluate ˜addi(p
∗, ω∗1, ω

∗
2) and ˜multi(p

∗, ω∗1, ω
∗
2) on her own

in poly(si, si+1) time as well.1

1Various suggestions have been put forth for what to do if this is not the case. For example, we note
in Chapter 7 that these computations can always be done by V in O(logS(n)) space as long as the circuit
is log-space uniform, which is sufficient in streaming applications where the space usage of the verifier is
paramount. Moreover, these computations can be done offline before the input is even observed, because
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V cannot however evaluate Ṽi+1(ω∗2), and Ṽi+1(ω∗1) on her own without evaluating the

circuit. Instead, V asks P to simply tell her these two values, and uses iteration i + 1 to

verify that these values are as claimed. However, one complication remains: the precondition

for iteration i+ 1 is that P claims a value for Ṽi(z) for a single z ∈ Fsi . So V needs to reduce

verifying both Ṽi+1(ω∗2) and Ṽi+1(ω∗1) to verifying Ṽi+1(ω∗) at a single point ω∗ ∈ Fsi+1 , in

the sense that it is safe for V to accept the claimed values of Ṽi+1(ω∗1) and Ṽi+1(ω∗2) as long

as the value of Ṽi+1(ω∗) is as claimed. This is done as follows.

Reducing to Verification of a Single Point. Let ` : F → Fsi+1 be some canonical line

passing through ω∗1 and ω∗2. For example, we can let ` be the unique line such that `(0) = ω∗1

and `(1) = ω∗2. P sends a degree-si+1 polynomial h claimed to be Ṽi+1 ◦ `, the restriction

of Ṽi+1 to the line `. V checks that h(0) = ω∗1 and h(1) = ω∗2 (rejecting if this is not the

case), picks a random point r∗ ∈ F, and asks P to prove that Ṽi+1(`(r∗)) = h(r∗). By the

Schwartz-Zippel Lemma (Lemma 2.2.1), as long as V is convinced that Ṽi+1(`(r∗)) = h(r∗),

it is safe for V to believe that the values of Ṽi+1(ω∗1) and Ṽi+1(ω∗2) are as claimed by P . This

completes iteration i; P and V then move on to the iteration for layer i + 1 of the circuit,

whose purpose is to verify that Ṽi+1(`(r∗)) has the claimed value.

The Final Iteration. Finally, at the final iteration d, V must evaluate Ṽd(ω
∗) on her own.

But the vector of gate values at layer d of C is simply the input x to C. We observe in

the next chapter that V can compute Ṽd(ω
∗) on her own in O(n log n) time, with a single

streaming pass over the input.

they only depend on the wiring of the circuit, and not on the input [39,57]. Finally, [104] notes that the cost
of this computation can be effectively amortized in a batching model, where many identical computations
on different inputs are verified simultaneously. See Chapter 8 for further discussion, and a protocol that
mitigates this issue in the context of data parallel computation.
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Discussion of Costs.

Observe that the polynomial f
(i)
z defined in Equation (5.1) is an (si + 2si+1)-variate

polynomial of degree at most 2 in each variable, and so the invocation of the sum-check

protocol at iteration i requires si + 2si+1 rounds, with three field elements transmitted per

round. Thus, the total communication cost is O(d(n) logS(n)) field elements, where d(n)

is the depth of the circuit C. We show in Chapter 7 that the verifier can be implemented

in a streaming manner, and moreover that the time cost to V is O(n log n + d(n) logS(n))

(recall that here and throughout this thesis, an addition or multiplication within a finite

field is assumed to require a single time step). The n log n term is due to the time required

to evaluate Ṽd(ω
∗) (see Lemma 6.3.1), and the d(n) logS(n) term is the time required for V

to send messages to P and process and check the messages from P .

As for P ’s runtime, for any iteration i of the GKR protocol, a naive implementation

of the prover in the corresponding instance of the sum-check protocol would require time

Ω(2si+2si+1), as the sum defining each of P ’s messages is over as many as 2si+2si+1 terms. This

cost can be Ω(S(n)3), which is prohibitively large in practice. However, we show in Chapter

7 that each gate at layers i and i + 1 of C contributes to only a single term of sum, and

exploit this to bring the runtime of the P down to O(S(n) logS(n)).
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Chapter 6

Streaming Interactive Proofs

In this chapter, we introduce the model of streaming interactive proofs, which extends the

annotated data streams model to allow for multiple rounds of interaction between the prover

and verifier. We then present some preliminary results on streaming interactive proofs: we

first observe that the GKR protocol can be made to work with a streaming verifier,1 before

presenting improved protocols for specific problems of fundamental importance in streaming

and database processing. Our results in this chapter reveal an exponential separation between

the annotated data streams model and the streaming interactive proofs model.

6.1 The Model

Definition 6.1.1 (Streaming Interactive Proofs). Consider a prover P and verifier V who

both observe a stream x of length N over a data universe of size n and wish to compute a

function F (x). We assume V has access to a private random string rV , and one-way access to

the data stream x. The stream is also observed by the prover P . After the stream is observed,

P and V exchange a sequence of messages. Denote the output of V on input x, given prover

1This observation is due to Guy Rothblum; we present the details for completeness.
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P and V ’s random bits rV , by out(V ,x, rV ,P). V can output ⊥ if V is not convinced that

P ’s claim is valid.

P is a valid prover with respect to V if for all data streams x, PrrV [out(V ,x, rV ,P) =

F (x)] = 1. We say V is a valid verifier for F with soundness error δs if there is at least one

valid prover P with respect to V , and for all provers P ′ and all inputs x, Pr[out(V ,x, rV ,P ′) /∈

{F (x),⊥}] ≤ δs. We say a prover-verifier pair (P ,V) is a valid streaming interactive proof

protocol for F if V is a valid verifier for F with soundness error 1/3, and P is a valid prover

with respect to V .

Notice that the streaming interactive proofs model permits multiple rounds of interaction

between the prover and verifier. This is in contrast to the annotated data streams model of

Chapters 3 and 4, where the prover had to send a single message to the verifier with no

communication allowed in the reverse direction. As such, streaming interactive proofs can

be thought of as a generalization of annotated data streams to allow for multiple rounds of

interaction between the prover and verifier. Alternatively, the streaming interactive proofs

model can be thought of as a restriction of the standard interactive proofs model defined in

Chapter 2, requiring the verifier be streaming.

We remark that the constant 1/3 used for the soundness error in Definition 6.1.1 is chosen

for consistency with the interactive proofs literature, where 1/3 is used by convention. As in

the annotated data stream protocols of Chapters 3 and 4, the soundness error in all of our

interactive proof protocols can be set arbitrarily small by appropriate choice of a parameter,

specifically the size of the finite field used. The space and communication costs of the protocol

will be proportional only to the logarithm of the field size, while the soundness error will

decrease linearly in the field size.

Notice for simplicity we require valid streaming interactive proof protocols to have com-

pleteness error 0 (i.e., perfect completeness), rather than completeness error at most 1/3 as
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in Definition 2.1.1. All of the methods developed in the remainder of this thesis naturally

satisfy the perfect completeness property.

As our first concern in a streaming setting is the space requirements of the verifier as

well as the communication cost for the streaming interactive proof protocol, we make the

following definition.

Definition 6.1.2. We say F possesses an r-message (ca, cv) streaming interactive proof

protocol, if there exists a valid verifier V for F such that:

1. V has access to only O(v) bits of working memory, both while processing the stream,

and while interacting with the prover.

2. There is a valid prover P for V such that P and V exchange at most r messages in

total, and the sum of the lengths of all messages is O(ca) bits.

We say an r-message streaming interactive proof protocol has dr/2e rounds.

6.2 Notation

For a vector b ∈ {0, 1}logn, let χb(x1, . . . , xlogn) =
∏logn

k=1 χbk
(xk), where χ0(xk) = 1 −

xk and χ1(xk) = xk. Notice that χb is the unique multilinear polynomial that takes b ∈

{0, 1}logn to 1 and all other values in {0, 1}logn to 0, i.e., it is the multilinear extension of

the indicator function for boolean vector b.

6.3 A General Theorem

Recall from Chapter 5 that the GKR protocol is defined in the context of circuit evalua-

tion: it allows a prover to evaluate a layered arithmetic circuit C, while providing a guarantee

that the output is correct. In this section, we show that the GKR protocol can be made to
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work with a streaming verifier. Before doing so, we must precisely state how the data stream

specifies the input to the circuit C.

Input Representation. Each element of the stream is a tuple (i, δ), where i ∈ [n] and δ

is an integer. The δ values may be negative, thereby modeling deletions. The data stream

implicitly defines a frequency vector f , where fi is the sum of all δ values associated with

i in the stream. When checking the evaluation of a circuit C, we consider the inputs to C

to be the entries of the frequency vector f , interpreted as elements of the field F in the

natural way. Here, we assume that F is a field of prime order, and that |F| > 2‖f‖∞. We

emphasize that the results below imply that, in order to run the GKR protocol on a circuit

C operating on a vector f , a streaming verifier only needs to see the raw stream and not the

aggregated frequency vector f (see Lemma 6.3.1 for details). Notice that we may interpret

the frequency vector f as an object other than a vector, such as a matrix or a string. For

example, in the MatMult problem that we consider prominently in Chapters 7 and 8, the

data stream defines two matrices to be multiplied.

Implementing the GKR Protocol with a Streaming Verifier. Within the GKR pro-

tocol, the verifier chooses a random vector ω∗ ∈ Flogn and evaluates Ṽd(ω
∗). Recall from

Chapter 5 that Ṽd denotes the multilinear extension of Vd, where Vd : {0, 1}logn → F is the

function that takes as input the binary representation of an integer i between 1 and n, and

outputs fi, the value of the ith input gate. This is the only information the verifier must

extract from the input in order to run the GKR protocol, and we show in Lemma 6.3.1 that

a streaming verifier can compute Ṽd(ω
∗) using O(log |F| · log n) bits of space. Notice that in

the presentation of Chapter 5, the verifier only chose ω∗ in the final iteration of the interac-

tive proof protocol. Here, V will choose ω∗ before observing the stream, store it explicitly in

memory, and keep it private from the prover until the final iteration of GKR protocol.

Lemma 6.3.1. Assume n is a power of two. Given a data stream x ∈ Fn and a vector
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ω∗ ∈ Flogn, V can compute Ṽd(ω
∗) with a single pass over the data stream x while storing

O(log n) field elements. V must perform O(log n) field operations per stream update, where

Ṽd is the multilinear extension of the function that maps i ∈ {0, 1}logn to the value of the ith

entry of x.

Proof. We exploit the following explicit expression for Ṽd:

Ṽd(p1, . . . , plogn) =
∑

b∈{0,1}logn

Vd(b)χb(p1, . . . plogn) (6.1)

Indeed, it is easy to check that the right hand side of Equation (6.1) is a multilinear poly-

nomial, and that it agrees with Vd on all Boolean inputs. Hence, the right hand side must

equal the multilinear extension of Vd.

In particular, by letting (p1, . . . , plogn) = ω∗ in Equation (6.1), we see that

Ṽd(ω
∗) =

∑
b∈{0,1}logn

Vd(b)χb(ω∗). (6.2)

Given any stream update (i, δ), let (i1, . . . , ilogn) denote the binary representation of i. No-

tice that update (i, δ) has the effect of increasing Vd(i1, . . . , ilogn) by δ, and does not affect

Vd(x1, . . . xlogn) for any (x1, . . . , xlogn) 6= (i1, . . . , ilogn). Thus, V can compute Ṽd(ω
∗) incre-

mentally from the raw stream by initializing Ṽd(ω
∗) ← 0, and processing each update (i, δ)

via:

Ṽd(ω
∗)← Ṽd(ω

∗) + δ · χ(i1,...,ilogn)(ω
∗).

V only needs to store Ṽd(ω
∗) and ω∗, which is O(log n) field elements in total. Moreover, for

any i, χ(i1,...,ilogn)(ω
∗) can be computed in O(log n) field operations, and thus V can compute

Ṽd(ω
∗) with one pass over the raw stream, using O(log n) words of space and O(log n) field

operations per update.

Recall that the the total communication of the GKR protocol is O(d(n) logS(n)) field

elements, where d(n) is the depth of the circuit C. Thus, Lemma 6.3.1 implies the following
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theorem.

Theorem 6.3.2. There are (polylog n, polylog n) streaming interactive proof protocols for

every function in log-space uniform NC.

Here, NC is the class of all problems decidable by Boolean circuits of polynomial size

and polylogarithmic depth. Any problem in this class also possesses an arithmetic circuit of

polynomial size and polylogarithmic depth, over a field, and the GKR protocol can be applied

to C. NC includes, for example, frequency moments, many fundamental matrix problems

(e.g., determinant, product, inverse), and graph problems (e.g., minimum spanning tree,

shortest paths) (see [8, Chapter 6]).

We showed in Chapter 3 that any (ca, cv) annotated data streaming scheme for the

second frequency moment problem requires ca · cv ≥ Ω(n), even if the scheme is allowed to

be prescient. Thus, Theorem 6.3.2 yields an exponential separation between the streaming

interactive proofs model and the (prescient) annotated data streaming model.

Despite its powerful generality, the protocol implied by Theorem 6.3.2 is not optimal

for many important functions in streaming and database applications. The remainder of

this chapter obtains improved, practical protocols for two fundamental streaming problems:

the second frequency moment problem and the heavy hitters problem. These examples are

meant to be illustrative, as every one of our sum-check schemes developed in Chapter 3 has

an interactive variant obtained by using the full-fledged sum-check protocol as presented in

Chapter 2 in place of the non-interactive techniques of Chapter 3.

6.4 Second Frequency Moment

Let x be a stream of length N over a universe of size n, and let f be the frequency

vector of x. Recall that the second frequency moment of x, denoted F2(x), is defined to be
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Figure 6.1: A circuit for F2 on 4 inputs.

F2(x) =
∑

i∈[n] f
2
i .

Let q be a prime larger than N2, and let Fq denote the finite field with cardinality q. The

function F2(x) is computed by a natural arithmetic circuit over Fq of size O(n) and depth

log n. This circuit is depicted in Figure 6.1 in the case n = 4. Naively applying the GKR

protocol to this circuit yields a (log3 n, log2 n) streaming interactive proof protocol requiring

Θ(log2 n) rounds. Using the results of Chapter 7, the honest prover in this protocol could be

made to run time O(n log n).

We give here a much simpler (log2 n, log2 n) streaming interactive proof protocol for F2

requiring log n rounds, based on a direct application of the sum-check protocol to a carefully

chosen polynomial. This protocol is illustrative of two techniques that we will use later in this

thesis in more general contexts. First, our F2 protocol makes use of a quadratic extension,

Ṽ 2
d , of the function Vd. In contrast, the GKR protocol applied to a circuit C only ever uses

multilinear extensions of the set of gate values at any layer of C. We crucially exploit the

use of quadratic extensions again in Chapter 8 (Theorem 8.7.2).

Second, in Theorem 6.4.2 we show how to implement the prover in our F2 protocol in

time O(n). To accomplish this, we develop a method that allows the prover to reuse work

across rounds of the sum-check protocol. We will exploit this technique in a much more
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general context in Chapter 8.

Theorem 6.4.1. There is a (log2 n, log2 n) streaming interactive proof protocol for F2 re-

quiring log n rounds, where n is the size of the data universe. The verifier runs in time

O(N log n), where N is the stream length, assuming all operations in a field of size poly(n)

require a unit time.

Proof. Assume for simplicity that n is a power of 2. Let Ṽd be as in Lemma 6.3.1. Then

F2(x) =
∑

(i1,...,ilogn)∈{0,1}logn Ṽ 2
d (i1, . . . , ilogn). This equality holds because Ṽ 2

d (i1, . . . , ilogn) =

f 2
i for all (i1, . . . , ilogn) ∈ {0, 1}logn, where i is the element of the data universe with binary

representation equal to (i1, . . . , ilogn). Hence, F2(x) can be computed by applying the sum-

check protocol of Proposition 2.3.1 to the polynomial Ṽ 2
d . In order to perform the final check

in this protocol, V needs to evaluate the polynomial Ṽ 2
d at a random point r ∈ Flogn. Lemma

6.3.1 implies that V can evaluate Ṽd(r) in with a single pass over the data stream x while

storing O(log n) field elements. V can then compute Ṽ 2
d (r) via the identity Ṽ 2

d (r) =
(
Ṽd(r)

)2

.

In total, there are log n rounds of the sum-check protocol, each requiring P to transmit

O(1) field elements. Thus, the total communication cost of the protocol is O(log2 n) bits and

the total space usage is O(log2 n) bits. The verifier’s runtime follows from Lemma 6.3.1.

Theorem 6.4.2. Given a stream of length N over a data universe of size n, the honest

prover in the streaming interactive proof protocol of Theorem 6.4.1 can be implemented to

run in time O(min{N log n, n}), assuming all operations in a field of size poly(n) require a

unit time.

Proof. In the jth round of the sum-check protocol applied to Ṽ 2
d , P must specify a polynomial

of the form

gj(Xj) =
∑

(xj+1,...,xlogn)∈{0,1}logn−j

g(r1, . . . , rj−1, Xj, xj+1, . . . , xlogn),
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where (r1 . . . rj−1) ∈ Fj−1 are the values to which variables 1 through j − 1 were bound in

the first j − 1 rounds observe the protocol. Observe that gj(Xj) is a polynomial of degree 2,

so it is sufficient for P to evaluate gj(xj) at three locations, say at xj = 0, 1, 2, to determine

gj(xj). For a location xj = c, we rewrite:

gj(c) =
∑

(xj+1,...,xlogn)∈{0,1}logn−j

Ṽ 2
d (r1, . . . , rj−1, c, xj+1, . . . xlogn)

=
∑

(xj+1,...,xlogn)∈{0,1}logn−j

( ∑
b∈{0,1}logn

Vd(b)χb(r1, . . . , rj−1, c, xj+1, . . . xlogn)

)2

=
∑

(xj+1,...,xlogn)∈{0,1}logn−j

∑
(b1,b2)∈{0,1}logn×{0,1}logn

Vd(b1)Vd(b2)

· χb1(r1, . . . , rj−1, c, xj+1, . . . xlogn) · χb2(r1, . . . , rj−1, c, xj+1, . . . xlogn)

=
∑

(b1,b2)∈{0,1}logn×{0,1}logn

(
Vd(b1)Vd(b2)

(
j−1∏
k=1

χb1,k
(rk)

)
· χb1,j

(c) ·
(
j−1∏
k=1

χb2,k
(rk)

)
·

χb2,j
(c) ·

∑
(xj+1...xlogn)∈{0,1}logn−j

( d∏
k=j+1

χb1,k
(xk)χb2,k

(xk)
))
.

Note that for xk ∈ {0, 1}, χbk
(xk) = 1 if xk = bk and 0 otherwise. Thus, for any pair

(b1,b2) ∈ {0, 1}logn × {0, 1}logn, we have

∑
(xj+1,...,xlogn)∈{0,1}logn−j

( d∏
k=j+1

χb1,k
(xk)χb2,k

(xk)

)
= 1

if and only if ∀j + 1 ≤ k ≤ d : b1,k = b2,k, and 0 otherwise. Thus,

gj(c) =
∑

(b1,b2)∈{0,1}logn×{0,1}logn,∀j+1≤k≤d:b1,k=b2,k

(
Vd(b1)Vd(b2)

j−1∏
k=1

χb1,k
(rk)

· χb1,j
(c)

j−1∏
k=1

χb2,k
(rk)χb2,j

(c)
)

=
∑

(bj+1,...,blogn)∈{0,1}logn−j

 ∑
(b1,...,bj)∈{0,1}j

Vd(b)χbj
(c)

j−1∏
k=1

χbk
(rk)

2

.

P can maintain Vd(b)

j−1∏
k=1

χbk
(rk) for each nonzero Vd(b), updating with the new rk in each

round as it is revealed in constant time. Thus the total time spent by the prover for the
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verification process can be bounded via O(m log n) = O(N log n), where m is the number of

nonzero Vd(b)’s. However, we also want to bound P ’s runtime by O(n), and to accomplish

this we observe that it is possible for P to “reuse work” between rounds.

Indeed, at the heart of P ’s computation in round j a summation over {0, 1}j for each

(bj+1, . . . ,blogn) ∈ {0, 1}logn−j. Notice that for each (bj+1, . . . ,blogn) ∈ {0, 1}logn−j,

∑
(b1,...,bj)∈{0,1}j

(
Vd(b)χbj

(c)

j−1∏
k=1

χbk
(rk)

)

=
1∑

bj=0

(
χbj

(c) ·
∑

b1,...,bj−1∈{0,1}j−1

(
Vd(b)

j−1∏
k=1

χbk
(rk)

))

And for each (bj, . . . ,blogn) ∈ {0, 1}logn−j+1, we can decompose

∑
(b1,...,bj−1)∈{0,1}j−1

(
Vd(b)

j−1∏
k=1

χbk
(rk)

)

=
1∑

bj−1=0

(
χbj−1

(rj−1)
∑

(b1,...,bj−2)∈{0,1}j−2

(
Vd(b)

j−2∏
k=1

χbk
(rk)

))
.

By storing Aj[bj . . .blogn] =
∑

(b1...bj−1)∈{0,1}j−1

(
Vd(b)

j−1∏
k=1

χbk
(rk)

)
, P computes

Aj+1[bj+1 . . .blogn] = χ0(rj)Aj[0,bj+1 . . .blogn] + χ1(rj)Aj[1,bj+1, . . .blogn]

in time O(n/2j). Thus, over all log n rounds of the sum-check protocol, P ’s total runtime

can be bounded by O(
∑logn

j=1 n/2
j) = O(n) as desired.

Experimental Results. We performed a brief experimental study to evaluate the practical

efficiency of the F2 protocol of Theorem 6.4.2 and more generally of the sum-check techniques

on which it is based. We compared the multi-round protocol of Theorem 6.4.2 to the non-

interactive protocol given in Theorem 3.5.2. We built a prototype implementation in C++:

it simulated the computations of both parties, and measured the resources consumed by the

protocols. All programs were compiled with g++ using the -O3 optimization flag. For the
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data, we generated synthetic streams where the number of occurrences of each item was

picked uniformly in the range [0, 1000]. Note that the choice of data does not affect the

efficiency of the protocols, as these costs only depend on the universe size n and the size of

the field over which we work. The computations were made over the field of size q = 261− 1,

giving a probability of 2 log n/q of the verifier being fooled by a dishonest prover, which

is less than 10−17 for all parameter values experimented upon. These computations were

executed using native 64-bit arithmetic. The failure probability could be reduced further to,

e.g., 127/(2127 − 1), at the cost of using 128 bit arithmetic (using a larger field size would

also be necessary to avoid “overflow” if the second frequency moment of the data stream

can be larger than 261 − 1, as when operating over a field of cardinality q for prime q, the

protocol effectively computes the second frequency moment modulo q).

We evaluated the protocols on a single core of a multi-core machine with 64-bit AMD

Opteron processors and 32 GB of memory available. The large amount of memory allowed

us to experiment with data universes containing several billion items, with the prover able

to store the entire frequency vector in memory. We measured the time for V to compute

the check information from the stream, for P to generate the proof, and for V to verify this

proof. We also measured the space required by V , and the size of the proof provided by P .

Figures 6.2, 6.3, and 6.4 show the behavior of the protocols as the size of the domain

n varies. First, Figure 6.2 shows the time for V to process the stream to evaluate Ṽd(r)

as the domain size increases. Both show a linear trend (here, plotted on log-log scale).

Moreover, both take roughly the same time (within a factor of two), with the multi-round

verifier processing about 21 million updates per second, and the single round V processing

35 million. The similarity is not surprising: both methods are taking each element of the

stream and computing the product of the frequency with a function of the element’s index

i and the random parameter r. The effort in computing this function is roughly similar in
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both cases. The single round V has a slight advantage, since it can compute and use lookup

tables within the O(
√
n) space bound, while the multi-round verifier, limited to logarithmic

space, must recompute some values multiple times. The time to check the proof is essentially

negligible: less than a millisecond across all data sizes. Hence, we do not consider this a

significant cost.

Figure 6.3 shows a clear separation between the two methods in P ’s effort in generating

the proof. Here, we measure total time across all rounds in the multi-round case, and the

time to generate the single round proof. For the single-round proof, we plot both the cost

of a naive prover implementation that does not utilize the FFT techniques of Corollary

3.12.2 and an implementation that does use the FFT techniques of Corollary 3.12.2. For

large streams, it is clear that the the prover in the non-interactive protocol is only scalable

if FFT techniques are used, as in the naive implementation P ’s runtime growing like n3/2;

this implementation failed to process streams over a universe of size larger than 40 million.

The FFT-based implementation of the non-interactive protocol processed between 350, 000
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and 750, 000 items per second for all tested values of n, even for values of n well into the

billions. Still, the cost in the multi-round case is dramatically lower: our multi-round prover

implementation based on Theorem 6.4.2 processed 20-21 million universe items per second.

The trend is similar for the space resources required to execute the protocol. In the single

round case, both the verifier’s space and size of the proof grow proportional to
√
n. This

is not impossibly large: Figure 6.4 shows that for u of the order of 1 billion, both these

quantities are comfortably under a megabyte. Nevertheless, it is still orders of magnitude

larger than the sizes seen in the multi-round protocol: there, the space required and proof

size are never more than 1KB even when handling gigabytes of data.

In summary, the methods we have developed in this chapter are applicable to genuinely

large data sets, defined over a domain of size in the billions. Our implementation is capable

of processing such datasets within a matter of seconds or minutes.

6.5 Heavy Hitters

We close this chapter by presenting a highly efficient protocol for the fundamental problem

of computing the φ-heavy hitters of a data stream. Recall that in this problem, the goal is

to list those items i such that fi ≥ T = φN ′, i.e. whose frequency of occurrence exceeds a

φ fraction of the total count N ′ =
∑

i∈[n] fi. The protocol we give is the natural interactive

variant of the online annotated data streaming scheme of Theorem 3.6.1.

Theorem 6.5.1. There is a (φ−1 log2 n + log2 n, log2 n) streaming interactive proof proto-

col requiring O(log n) rounds for identifying the φ-heavy hitters in a data stream over a

data universe of size n. The verifier runs in time O(N log n) and the prover runs in time

O(min{N log n, n}), and N is the stream length.

Proof. Let W be the witness set from Theorems 3.4.1 and 3.6.1. Recall that W is a subset of
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the nodes of a binary tree T imposed over the data universe, and in the schemes of Theorems

3.4.1 and 3.6.1, P sends to V a claimed value for f̂(w) =
∑

i∈L(w) fi, where L(w) denotes the

set of all leaves in the subtree rooted at W . The verifier must check that W , f̂(`) > T for

all leaves ` ∈ W , and that f̂(u) ≤ T for all all non-leaf nodes u ∈ W .

We show how V can check that f̂(w) is as claimed for all items w ∈ W , at the same

cost as a single point query. Let z denote the 2n − 1-dimensional vector such that zw = 1

if w ∈ W , and zw = 0 otherwise. Let f ∗ denote the 2n − 1-dimensional vector such that

f ∗w equals the claimed value of f̂(w) if w ∈ W , and f ∗w = 0 otherwise. Abusing notation,

we will also think of f̂ itself as a 2n − 1-dimensional vector such that f̂w = f̂(w). As in

the protocol of Theorem 3.6.1, we observe that f̂(w) = f ∗w for all w ∈ W if and only if

0 =
∑

j∈[2n−1] zj(f̂w − f ∗w)2.

Let F be a field of cardinality q for some prime q > 2(N ′)2. We now view the vectors z, f ∗,

and f̂ as functions mapping {0, 1}logn+1 to F: each of these functions take as input a Boolean

vector (i1, . . . , ilogn+1), interprets this vector as an integer i between 0 and 2n−1, and outputs

the ith entry of the corresponding vector. Let z̃, f̃ ∗, and
˜̂
f respectively denote the multilinear

extension of each of these functions. Then in order to compute
∑

j∈[2n−1] zj(f̂w − f ∗w)2, it

suffices to apply the sum-check protocol to the polynomial g = z̃ ·( ˜̂
f− f̃ ∗)2. The total number

of rounds in the sum-check protocol applied to g is log n + 1. Since g has degree 3 in each

variable, each of P ’s messages consists of 4 field elements, and so the total communication

cost of the sum-check protocol applied to G is O(log2 n) bits. Thus, the total communication

of the protocol as a whole is O(φ−1 log2 n) bits to specify the elements w of the witness set

W as well as the claimed values for f̂(w), and another O(log2 n) bits to apply the sum-check

protocol to the polynomial g.

To perform the required check in the final round of the sum-check protocol, V must

evaluate g at a random point r ∈ Flogn+1. V can do this by evaluating z̃(r),
˜̂
f(r), and f̃ ∗(r)2.
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As long as V stores the random vector r, which requires O(log |F| log n) bits of space, each

of these three quantities can be computed by V with a single streaming pass over the input

using the observations of Lemma 6.3.1. For example, given any update (i, δ) to the ith entry

of the vector f̂ , let (i1, . . . , ilogn+1) denote the binary representation of i. V can compute

˜̂
f(r) incrementally from the stream of updates to f̂ by initializing

˜̂
f(r)← 0, and processing

each update (i, δ) via:

˜̂
f(r)← ˜̂

f(r) + δ · χ(i1,...,ilogn+1)(r).

The bound on the verifier’s runtime follows from Lemma 6.3.1, while the bound on the

prover’s runtime can be derived using the techniques of Theorem 6.4.2.

6.6 Discussion

In this chapter, we introduced the model of streaming interactive proofs and demonstrated

that streaming interactive proofs require exponentially less space and communication than

annotated data streaming protocols for a large class of problems. We also observed that

the GKR protocol can be made to work with a streaming verifier and presented improved

protocols for two specific problems of fundamental importance in streaming and database

processing: F2 and heavy hitters. These protocols are meant to be illustrative, and although

they were tailored to specific problems, they introduced important techniques that we will

utilize repeatedly as we develop general-purpose protocols in Chapters 7 and 8.
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Chapter 7

Practical Verified Computation with

Streaming Interactive Proofs

In this chapter, we revisit the GKR protocol and show how to reduce the runtime of

the prover from Ω(S3) in a naive implementation down to O(S logS), where S is the size

of an arithmetic circuit computing the function of interest. We also describe a full imple-

mentation of the protocol, demonstrating much greater scalability than one might have ex-

pected. Finally, we describe a parallel implementation of the protocol that leverages Graphics

Processing Units (GPUs) and experimentally demonstrate the GKR protocol’s substantial

amenability to parallelization.

7.1 Overview and Statement of Results

Recall from Chapter 5 that in the GKR protocol, P and V first agree on an arithmetic

circuit C of size S and fan-in 2 over a finite field F computing the function of interest. The

protocol proceeds in iterations, with one iteration per layer of C. In the ith iteration, the
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sum-check protocol is applied to the polynomial f
(i)
z : Fsi+2si+1 → F defined via:

f (i)
z (p, ω1, ω2) =

βsi(z, p)·
(

˜addi(p, ω1, ω2)(Ṽi+1(ω1)+Ṽi+1(ω2))+ ˜multi(p, ω1, ω2)Ṽi+1(ω1) · Ṽi+1(ω2)
)
, (7.1)

where βsi ,
˜addi, ˜multi, and Ṽi+1 are as defined in Chapter 5. In the j’th round of this sum-

check protocol, P is required to send the univariate polynomial

gj(Xj)=
∑

(xj+1,...,xsi+2si+1
)∈{0,1}si+2si+1−j

f (i)
z (r

(i)
1 , . . . , r

(i)
j−1, Xj, xj+1, . . . , xsi+2si+1

).

The sum defining gj involves as many as S3 terms, and thus a naive implementation of P

would require Ω(S3) time per iteration of the protocol. However, we show that by exploiting

the multilinearity of the low-degree extensions ˜addi and ˜multi that we use in the definition

of fi, each gate at layer i contributes to exactly one term in the sum defining gj, as does each

gate at layer i+1.1 Thus, the polynomial gj can be computed with a single pass over the gates

at layer i, and a single pass over the gates at layer i+ 1. As the sum-check protocol requires

O(si + si+1) = O(logS(n)) messages for each layer of the circuit, P requires logarithmically

many passes over each layer of the circuit in total.

A complication in applying the above observation is that V must process the circuit

in order to pull out information about its structure necessary to check the validity of P ’s

messages. Specifically, each application of the sum-check protocol requires V to evaluate ˜addi

and ˜multi at a random point. Theorem 7.1.1 below follows from the fact that for any log-

space uniform circuit, V can evaluate the multilinear extension of the wiring predicates at

any point using O(logS(n) log |F|) bits of space. We present detailed proofs and discussions

of the following theorems in Section 7.2.

1In order to obtain an interactive proof protocol for log-space uniform NC in which the prover runs in
polynomial time and the verifier runs in quasi-linear time, Goldwasser, Kalai, and Rothblum used polyloga-
rithmic degree extensions of addi and multi. In contrast, we use the multilinear extensions ˜addi and ˜multi.
Our use of multilinear extensions is essential in lowering the prover’s runtime from O(S3) to O(S logS).
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Theorem 7.1.1. For any log-space uniform circuit C of size S(n) over finite field F, P can

run in O(S(n) logS(n)) time over the entire execution of the GKR protocol applied to C,

and V can make a single streaming pass over the input, using O(logS(n) log |F|) bits of space

over the entire execution of the protocol.

Moreover, we can strengthen Theorem 7.1.1 as follows. Because the circuit’s wiring pred-

icate is independent of the input, we can separate V ’s computation into an offline non-

interactive preprocessing phase, which occurs before the data stream is seen, and an online

interactive phase, which occurs after both P and V have seen the input. This is similar

to [57, Theorem 4] and ensures that V is space-efficient (but may require time O(S(n))) dur-

ing the offline phase), and that P is both time- and space-efficient in the online interactive

phase. In order to determine which circuit to use, V does need to know (an upper bound on)

the length of the input during the preprocessing phase.

Theorem 7.1.2. For any log-space uniform circuit C of size S(n) and depth d(n) over

finite field F, P can run in O(S(n) logS(n)) total time over the entire execution of the

GKR protocol applied to C. V can make a single streaming pass over the input, using

O(d(n) logS(n) log |F|) bits of space over the entire execution of the protocol. V can run

in time O(S(n)) using space O(d(n) logS(n) log |F|) in a non-interactive, data-independent

preprocessing phase, and run in time O(n log n+d(n) logS(n)) using O(d(n) logS(n) log |F|)

bits of space in an online interactive phase, where the O(n log n) term is due to the time

required to evaluate the low-degree extension of the input at a point.

Finally, Theorem 7.1.3 follows by assuming P can evaluate the multilinear extension of

the wiring predicate quickly. We believe that the hypothesis of Theorem 7.1.3 is extremely

mild, and we discuss this point at length in Section 7.3, identifying a diverse array of circuits

to which Theorem 7.1.3 applies. Moreover, the solutions we adopt in our circuit-checking
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experiments of Section 7.4 correspond to Theorem 7.1.3, and are both space- and time-

efficient for the verifier.

Theorem 7.1.3. Let C be any log-space uniform circuit of size S(n) and depth d(n) over

finite field F, and assume that for all i ∈ {1, . . . , d(n)}, there exists a O(logS(n) log |F|)-

space, poly(logS(n))-time algorithm for evaluating ˜addi and ˜multi at a point. Then in order

to to implement the GKR protocol applied to C, P requires O(S(n) logS(n)) time, and V

requires O(logS(n) log |F|) bits of space and time O(n log n+ d(n)poly(logS(n))), where the

O(n log n) term is due to the time required to evaluate the low-degree extension of the input

at a point.

7.2 Methodology and Proofs

7.2.1 Overview

In the j’th round of the sum-check protocol applied to f
(i)
z , P is required to send the

univariate polynomial

gj(Xj) =
∑

(xj+1,...,xsi+2si+1
)∈{0,1}si+2si+1−j

f (i)
z (r

(i)
1 , . . . , r

(i)
j−1, Xj, xj+1, . . . , xsi+2si+1

).

Theorems 7.1.1, 7.1.2, and 7.1.3 rely on the observation that, when ˜addi and ˜multi are

multilinear extensions, rather than arbitrary low-degree extensions, then each gate at layers

i and i+ 1 contributes to exactly one term in the sum.

More specifically, the key observation is that the multilinear extension of the wiring

predicate acts as a sum of variable-wise indicator functions on boolean-valued variables,

with one indicator function for each gate at the layer of interest. At any round j of the

sum-check protocol, the “unbound” variables (i.e., those appearing in the sum defining gj)

still only range over values in {0, 1}, and thus each gate b at the current layer of the circuit
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still contributes to only one term in the sum in intermediate rounds. Namely, b contributes

to the unique term of the sum that agrees with the trailing bits in the binary representation

of b, despite the fact that “bound” variables may take values outside of {0, 1}.

7.2.2 Decomposing ˜addi and ˜multi as Sums of Variable-Wise In-

dicator Functions

Since ˜addi and ˜multi are the multilinear extensions of the wiring predicate, we can write

them explicitly as follows.

As in Chapter 6, for b ∈ {0, 1}si+2si+1 let χb(x1, . . . , xsi+2si+1
) =

∏si+2si+1

k=1 χbk
(xk), where

χ0(xk) = 1 − xk and χ1(xk) = xk. χb is the unique multilinear polynomial that takes

b ∈ {0, 1}si+2si+1 to 1 and all other values in {0, 1}si+2si+1 to 0, i.e., it is the multilinear

extension of the indicator function for boolean vector b.

Notice that if (xj+1, . . . , xsi+2si+1
) ∈ {0, 1}si+2si+1−j, then for any (r1, . . . rj) ∈ Fj,

χb(r1, . . . , rj, xj+1, . . . , xsi+2si+1
) = (7.2)

∏j
l=1 χbl

(rl), if xk = bk for all k ≥ j + 1.

0, otherwise.

Informally, Equation (7.2) implies that one may think of χb acting as a variable-wise

indicator function on boolean-valued variables. Since ˜addi and ˜multi are multilinear exten-

sions, they can be written as a sum of these χb functions, where each gate at layer i + 1

contributes a term χb to the sum. Details follow.

Recall that we numbered the layers of the circuit so that the in-neighbors of a gate at

layer i are at layer i + 1. We will refer to the triple b = (b1,b2,b3) ∈ {0, 1}si+2si+1 as a

gate triple at layer i if the first and second in-neighbors of the gate with label b1 at layer i

are gates b2 and b3 at layer i + 1 respectively. We will say b = (b1,b2,b3) is an add triple
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(respectively, mult triple) if gate b1 at layer i is an addition (respectively, multiplication)

gate. With this terminology in hand, we may write:

˜addi(x1, . . . , xsi+2si+1
) =

∑
add triples b at layer i

χb(x1, . . . , xsi+2si+1
) (7.3)

and

˜multi(x1,. . . ,xsi+2si+1
) =

∑
mult triples b at layer i+1

χb(x1, . . . , xsi+2si+1
). (7.4)

It is straightforward to observe the expressions on the right hand sides of Equations (7.3) and

(7.4) are multilinear polynomials that agree with addi and multi on boolean-valued inputs,

and hence the right hand sides are equal to the unique multilinear extensions of addi and

multi respectively.

For any vector x = (xj+1, . . . xsi+2si+1
) ∈ {0, 1}si+2si+1−j, and for any (r1, . . . rj) ∈ Fj, let

x∗ denote the vector

x∗ := (r1, . . . , rj, xj+1, . . . , xsi+2si+1
) ∈ Fsi+2si+1 ,

and let Sx denote the set of gate triples at layer i given by {b ∈ {0, 1}si+2si+1 : bk =

xk for all k ≥ j + 1}. Equations 7.3 and 7.4 imply that

˜addi(x
∗) =

∑
add triples b∈Sx

(
j∏
l=1

χbl
(rl)

)
, (7.5)

and similarly

˜multi(x
∗) =

∑
mult triples b∈Sx

(
j∏
l=1

χbl
(rl)

)
(7.6)

Completing the Calculation. At round j of this sum-check protocol, the prover must

compute the message

gj(Xj) =
∑

xj+1...xsi+2si+1
∈{0,1}si+2si+1−j

f (i)
z (r

(i)
1 , . . . , r

(i)
j−1, Xj, xj+1 . . . xsi+2si+1

).
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Since gj has degree three if we are using multilinear extensions, it suffices for the prover to

send gj(rj) for rj ∈ {0, 1, 2}, as these evaluations uniquely define gj.

Using Equations (7.5) and (7.6), we can now easily observe that each gate at layer i

contributes to exactly one term in the sum. Specifically, for any term x = (xj+1 . . . xsi+2si+1
) ∈

{0, 1}si+2si+1−j in the sum, let x∗ denote the vector

x∗ := (r
(i)
1 , . . . , r

(i)
j , xj+1, . . . , xsi+2si+1

) ∈ Fsi+2si+1

as before, and let p∗ ∈ Fsi be the first si entries of this vector, ω∗1 ∈ Fsi+1 the middle si+1

entries, and ω∗2 ∈ Fsi+1 the final si+1 entries. Then combining Equations (7.5) and (7.6) with

(7.1), we see

f (i)
z (x∗) = βsi(z, p

∗) ·
(( ∑

add triples b∈Sx

(
j∏
l=1

χbl
(rl)

))(
Ṽi+1(ω∗1) + Ṽi(ω

∗
2)
)

+

( ∑
mult triples b∈Sx

(
j∏
l=1

χbl
(rl)

))
· Ṽi+1(ω∗1) · Ṽi+1(ω∗2)

)
. (7.7)

Each gate triple b at layer i is in Sx for exactly one x ∈ {0, 1}si+2si+1−j. Namely, x is the

boolean vector equal to the last si + 2si+1− j bits of the binary representation of b. Denote

this vector by x(b), and similarly let x∗(b), p∗(b), ω∗1(b) and ω∗2(b) denote the corresponding

vectors implied by x(b).

Equation (7.7) implies that b contributes only to the term x(b) of the sum defining gj(rj)

for rj ∈ {0, 1, 2}. That is, we may write

gj(rj) =

∑
add triples b at layer i

βsi(z, p
∗(b))

(
j∏
l=1

χbl
(rl)

)
(Ṽi+1(ω∗1(b))+Ṽi+1(ω∗2(b)))

+
∑

mult triples b at layer i

βsi(z, p
∗(b))

(
j∏
l=1

χbl
(rl)

)
·Ṽi+1(ω∗1(b))·Ṽi+1(ω∗2(b)).
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Thus, the prover can compute gj(0), gj(1), and gj(2) with a single pass over the gates at

layer i. By a similar calculation, all necessary Ṽi+1(ω1) and Ṽi+1(ω2) for each message of the

prover can be computed with a single pass over the gates at layer i+1. In conclusion, as long

as we use the multilinear extension of the circuit’s wiring predicate, the prover can compute

each message within the sum-check protocol at layer i with a single pass over the gates at

layer i and a single pass over the gates at layer i+ 1, performing a constant number of field

operations for each gate. Thus, the prover requires at most O((Si+Si+1) log(Si+Si+1)) time

during the sum-check protocol as applied to the ith layer of the circuit. It follows that, over

the entire execution of the GKR protocol, the prover requires at most O(S(n) logS(n)) time

to compute his messages within the various invocations of the sum-check protocol.

7.2.3 Reducing to Verification of a Single Point

Recall from Chapter 5 that in the ith iteration of the GKR protocol, after executing the

sum-check protocol, V is left with the task of verifying both Ṽi+1(ω∗1) and Ṽi+1(ω∗2). V reduces

these two tasks to the task of verifying Ṽi+1(ω∗) at a single point ω∗ ∈ Fsi+1 . V does this by

asking P to send a degree-si+1 polynomial claimed to be Ṽi+1 ◦ `, the restriction of Ṽi+1 to

the line `, where ` be the unique line F→ Fsi+1 such that `(0) = ω∗1 and `(1) = ω∗2. Thus, to

complete our the proof that the prover in the GKR protocol can run in time O(S(n) logS(n)),

we must show that P can compute Ṽi+1 ◦ ` in time O(Si+1 · si+1), as this will imply that

P spends O(
∑

i Si · si) = O(S(n) logS(n)) time on this calculation across all layers of the

circuit.

Since Ṽi+1 ◦ ` is a univariate polynomial of degree si+1, it can be specified by computing

its value at si+1 + 1 points, say the points in the set T = {0, . . . , si+1}. Thus, it suffices for

P to evaluate Ṽi+1 at the si+1 points `(j) : j ∈ T .
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For any point p ∈ Fsi+1 , we may write:

Ṽi+1(p) =
∑

b∈{0,1}si+1

Vi+1(b)χb(p1, . . . psi+1
) (7.8)

We will show that P can compute a table containing χb(p1, . . . psi+1
) for all b ∈ {0, 1}si+1 in

O(Si+1) time. This fact, combined with Equation 7.8, shows that once the circuit C has been

evaluated (thereby yielding the Vi+1(b) values), P can compute Ṽi+1(p) in O(2si+1) = O(Si+1)

time. Hence P can evaluate Ṽi+1 at all si+1 points `(j) : j ∈ T in O(Si+1 ·si+1) time as desired.

To compute all the χb(p1, . . . psi+1
) values, we use a simple memoization procedure. This

procedure will arise again in Lemma 8.3.1. The memoization procedure consists of si+1 stages,

where stage j constructs a table A(j) of size 2j, such that for any (b1, . . . , bj) ∈ {0, 1}j,

A(j)[(b1, . . . , bj)] =
∏j

i=1 χbi(pi). Notice A(j)[(b1, . . . , bj)] = A(j−1)[(b1, . . . , bj−1)] · χbj(pj), and

so the jth stage of the memoization procedure requires time O(2j). The total time across all

si+1 stages is therefore O(
∑si+1

j=1 2j) = O(2si+1) = O(Si+1) as desired.

7.2.4 Finishing the Proofs of Theorems 7.1.1 and 7.1.2

We have demonstrated that if the GKR protocol is instantiated with the multilinear

extensions of the circuits wiring predicate and gate value function, then P can be made

to run in time O(S(n) logS(n)). All that remains in proving Theorem 7.1.1 is to show that

for any log-space uniform circuit, the verifier can evaluate ˜addi(p, ω1, ω2) and ˜multi(p, ω1, ω2)

using O(logS(n) log |F|) bits of space. This holds because the verifier can make an “implicit”

pass over each layer of the circuit and compute the contribution of each gate to ˜addi and

˜multi. That is, the verifier considers each gate triple b in turn, and computes b’s contribution

to ˜addi and ˜multi using Equations (7.3) and (7.4). The space requirement is O(logS(n))

bits to enumerate the triples and O(logS(n) log |F|) to store the O(logS(n)) field elements

comprising (p, ω1, ω2). This requires O(S(n)) time in total, but only O(logS(n) log |F|) bits
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of space, since the verifier never needs to store an explicit representation of the circuit.

Theorem 7.1.1 follows.

Theorem 7.1.2 follows from the additional observation that ˜addi and ˜multi do not depend

on the input, nor do the random coins of the verifier, and these coins uniquely determine

the points at which V must evaluate ˜addi and ˜multi. Thus, V can toss all her coins in the

pre-processing phase and compute the necessary evaluations of ˜addi and ˜multi. V stores the

answers and the random coins for use in the online phase. In the online phase, V only needs

to spend O(1) time per round of the protocol to check P ’s messages for consistency, and

thus V takes time O(d(n) logS(n)) in the online phase.

In streaming contexts, where V is more space-constrained than time-constrained, this

may be acceptable. However, the solutions we adopt in our experimental implementation

correspond to the stronger Theorem 7.1.3, which further reduces the space and time costs

for the verifier.

7.3 Discussion and Applicability

Theorem 7.1.3 makes the assumption that that the multilinear polynomials ˜addi and

˜multi can be evaluated quickly by a small-space algorithm. In return for this assumption, we

avoid the need for an offline pre-processing phase for the verifier as required in Theorem 7.1.2,

which can be cumbersome in practice. We believe this assumption is mild in both theory

and practice, and we devote this section to discussing the applicability of Theorem 7.1.3 by

demonstrating several natural examples where it applies. In contrast, other work in this area

does require preprocessing in all cases – see e.g., [56, 82, 90–92, 104]. We view the ability of

our implementation to avoid an offline pre-processing phase under many circumstances as

an important advantage of our work.
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7.3.1 Motivating Problems

To focus our discussion and experimental study, we describe three key problems that

capture different aspects of computation, including data aggregation and linear algebra.

F2: Given a stream of N elements from [n], compute
∑

i∈[n] f
2
i where fi is the number of

occurrences of i in the stream. As discussed in prior chapters, this is also known as the second

frequency moment.

Distinct: Given a stream of N elements from [n], compute the number of distinct elements,

i.e., the number of i with fi 6= 0, where again fi is the number of occurrences of i in the

stream.

MatMult: Given a stream defining two n × n integer matrices A and B, compute the

product A ·B.

For simplicity, we will assume through this chapter that the stream length N and the

universe size n are on the same order of magnitude i.e., m = Θ(n).

All three problems require linear space in the streaming model to solve exactly (although

can be solved by space-efficient approximation algorithms [80]).

We demonstrate the applicability of Theorem 7.1.3 by showing that the three motivating

problems defined above possess succinct circuits to which Theorem 7.1.3 applies. In [39],

we further identify several other important circuits from the algorithmic literature to which

Theorem 7.1.3 also applies, but we omit this analysis from this thesis for brevity. In essence,

Theorem 7.1.3 applies to any circuit with a “highly regular” wiring pattern; this explains why

it applies to such a wide array of circuits. The details in the remainder of the section grow

lengthy at times, but the main idea remains clear: Theorem 7.1.3 applies to most circuits

that arise in both practical applications and theoretical constructions.
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7.3.2 Circuits For Motivating Problems

In this section, we describe natural arithmetic circuits computing our motivating prob-

lems. In Section 7.4, we report the performance of our implementation of the GKR protocol

when applied to these circuits.

Circuit for F2: The arithmetic circuit for F2 appeared in Chapter 6 and is quite straight-

forward: the inputs are entries of the frequency vector f , and the the first level of the circuit

computes the square of the input values, then subsequent levels sum these up pairwise to ob-

tain the sum of all squared values. The total depth d is O(log n). The GKR protocol applied

to this circuit yields a O(log2 n) message (log2 n, log2 n) protocol (as per Definition 6.1.2).

Circuit for Distinct : We describe a succinct arithmetic circuit over Fq, the field of cardi-

nality q, that computes Distinct. When q is a prime larger than n, Fermat’s Little Theorem

(FLT) implies that for x ∈ Fq, xq−1 = 1 if and only if x 6= 0. Consider the circuit that, for

each coordinate i of the input vector f , computes each f q−1
i via O(log q) multiplications, and

then sums the results. This circuit has total size O(n log q) and depth O(log q). Applying our

implementation of the GKR protocol to this circuit, we obtain a (log n log q, log n) protocol

where P runs in time O(n log n log q).

Circuit for MatMult : We describe an arithmetic circuit C of sizeO(n3) for multiplying two

n×n matrices A and B – this circuit essentially performs naive matrix multiplication. Let the

input gate labelled (0, i, j) ∈ {0, 1}× {0, 1}logn×{0, 1}logn correspond to Aij, and the input

labelled (1, i, j) ∈ {0, 1} × {0, 1}logn × {0, 1}logn correspond to Bij. The layer of C adjacent

to the input consists of n3 gates, where the gate labeled (i, j, k) ∈ {0, 1}logn × {0, 1}logn ×

{0, 1}logn computes Aik ·Bkj. All subsequent layers constitute a binary tree of addition gates

summing up the results and thereby computing
∑

k AikBkj for all (i, j) ∈ [n]× [n].
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Figure 7.1: A circuit for F2 on 4 inputs.

Wiring Predicates for F2, Distinct, and MatMult

We demonstrate that Theorem 7.1.3 applies to natural circuits computing all three of

our motivating problems.

1. F2: Recall that the circuit for F2 had a layer of multiplication gates used for computing

the square of each input, and then subsequent levels formed a binary tree of addition

gates used to sum up the results. A visual depiction of this circuit on n = 4 inputs was

provided in Figure 6.1, and is reproduced in Figure 7.1 for the reader’s convenience.

First, consider layer d− 1 immediately above the input gates, which consists of multi-

plication gates used to square each input; both the in-neighbors of gate i at layer d− 1

are equal to the i’th input gate. Therefore, if p = (p1, . . . , plogn) ∈ {0, 1}logn denotes the

boolean representation of a gate at layer d − 1, and ω1 = (ω1,1,. . . ,ω1,logn)∈{0, 1}logn

and ω2 = (ω2,1,. . . ,ω2,logn)∈{0, 1}logn denote the boolean representation of two gates

at the input layer, then multd evaluates to true if and only if p = ω1 = ω2, while

addd is identically zero. It is easily seen that the multilinear extension of multd is the

polynomial

˜multd(p,ω1,ω2)=
∏v

j=1

(
pjω1,jω2,j + (1− pj)(1− ω1j)(1− ω2,j)

)
,
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while the multilinear extension of addd is the zero polynomial. Clearly, ˜multd can be

evaluated at any point in F3 logn in time and space O(log n).

The rest of the circuit for F2 consists of a binary tree of addition gates, which is used

to sum up the squared item frequencies. Thus, ˜multi is the zero polynomial for all

i < d. Meanwhile, for i < d the predicate addi(p1, ω1, ω2) is as follows. Label the gates

at layers i and i + 1 in the natural way, so that the first input to the gate labelled

p = (p1, . . . , psi) ∈ {0, 1}si at layer i is the gate with label (p, 0) at layer i+ 1, and the

second input to gate p has label (p, 1). Here and throughout, (p, 0) denotes the (si+1)-

dimensional vector obtained by concatenating the entry 0 to the end of the vector p.

Interpreting p = (p1, . . . , psi) ∈ {0, 1}si as an integer between 0 and 2si − 1 with p1 as

the high-order bit and psi as the low-order bit, this says that the first in-neighbor of

p is 2p and the second is 2p + 1, when interpreting the binary vector p as an integer.

Thus, we may write:

˜addi(p, ω1, ω2) = (1− ω1,si+1)ω2,si+1 ·
si−1∏
j=1

(pjω1,jω2,j + (1− pj)(1− ω1,j)(1− ω2,j)) .

Conceptually, the leading factor (1 − ω1,si+1
)ω2,si+1

ensures that ω1 is even (i.e., its

first bit is 0) and ω2 is odd (i.e., its first bit is 1), while the expression

si+1−1∏
j=1

(pjω1,jω2,j + (1− pj)(1− ω1,j)(1− ω2,j))

ensures that the high-order si bits of ω1 and ω2 agree with the bits of p. ˜addi is

therefore the unique multilinear polynomial evaluating to 1 on boolean inputs (p, ω1, ω2)

if ω1 = 2p and ω2 = 2p+1, and evaluating to 0 otherwise. Clearly ˜addi can be evaluated

at any point in time and space O(si + si+1) = O(log n). This completes the description

of ˜addi and ˜multi for all layers of the circuit for F2.

2. Distinct: Recall that for each of the n inputs fj, the circuit for Distinct from Section

7.2 computes f q−1
j via O(log q) multiplications, and then sums the results via a binary
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a1  a2  a3  1 

x  x  x  x 

x  x  x  x  x  x 

x  x  x  x  x  x 

x  x  x  x  x  x 

Figure 7.2: The first several layers of a circuit for Distinct on three inputs (in place of a

fourth input is a “constant” gate with value one) over the field Fq with q = 261− 1. The first

layer from the bottom computes f 2
j for all j. The second layer from the bottom computes f 4

j

and f 2
j for all j. The third layer computes f 8

j and f 6
j = f 4

j ×f 2
j for all j, while the fourth layer

computes f 16
j and f 14

j = f 8
j × f 6

j for all j. The remaining layers (not shown) have structure

identical to the third and fourth layers until the value f q−1
j is computed for all j, and the

circuit culminates in a binary tree of addition gates.
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tree of addition gates. We have already seen the wiring predicate for binary trees,

so here we only sketch the wiring predicate for the f q−1
j computation, omitting some

details for brevity. We do so for the special case of q = 261 − 1, which is the value of

q used in our experiments, as this happens to have a particularly “regular” circuit for

computing f q−1
j ; the calculation would be similar but less symmetric for other values

of q.

We may write q − 1 = 261 − 2, whose binary representation is 60 1s followed by a

0. Thus, f q−1
j =

∏60
k=1 f

2k

j . The circuit computing f q−1
j repeatedly squares fj, and

multiplies together the results “as it goes”. In more detail, for i > 1 there are two

multiplication gates at each layer d − i of the circuit for computing f q−1
j ; the first

computes f 2i

j by squaring the corresponding gate at layer d − i + 1, and the second

computes
∏i−1

k=1 f
2k−1

j . See Figure 7.2 for a visual depiction of the first few layers of the

Distinct circuit.

At a high level then, the wiring predicate ˜multi(p, ω1, ω2) tests equality of ω1 and ω2

with two strings that depend on the parity of p, as even values of p correspond to gates

computing f 2j

i while odd values correspond to gates computing
∏i−1

k=1 f
2k−1

j . Thus, we

may write

˜multi(p, ω1, ω2)=(1− p1)χeven(p, ω1, ω2)+p1χodd(p, ω1, ω2),

where χodd and χeven are multilinear extensions of the appropriate equality predi-

cates, which do not depend on p1 (we omit a precise definition of χodd and χeven

for brevity, as this circuit is studied in considerable detail in Section 8.4.3). This can

clearly be evaluated in O(log n) time and space.

3. MatMult: Recall that the circuit for MatMult consists of a layer (layer ` = log n+1)

of multiplication gates in which the gate with label (i, j, k) ∈ {0, 1}logn × {0, 1}logn ×
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{0, 1}logn is connected to the input gates with labels (0, i, k) ∈ {0, 1} × {0, 1}logn ×

{0, 1}logn and (1, k, j) ∈ {0, 1} × {0, 1}logn × {0, 1}logn, followed by a binary of tree

of addition gates of depth log n. We have already analyzed the wiring predicate for

a binary tree of addition gates in the context of F2, so here we focus on the wiring

predicate of the remaining layer, layer `. Since layer ` consists only of multiplication

gates, ˜add` is the zero polynomial. Meanwhile, we can express ˜mult` as follows.

˜mult(p, ω1, ω2) = (1− ω1,1)ω2,1

(∏logn
k=1 (pkω1,k+1 + (1− pk)(1− ω1,k+1))

)
·
(∏logn

k=1 (plogn+kω2,logn+k+1 + (1− plogn+k)(1− ω2,logn+k+1))
)
·(∏logn

k=1 (p2 logn+kω1,logn+k+1ω2,k+1 + (1− p2 logn+k)(1− ω1,logn+k+1)(1− ω2,k+1))
)

Intuitively, the factor (1− ω1,1)ω2,1 in the above equation ensures that the first bit of

ω1 is 0 and the first bit of ω2 is 1. The second factor ensures that the first log n bits in

p equals the row-index in ω1, the third ensures that the second log n bits in p equals

the column-index in ω2, and the final factor ensures that the final log n bits in p equals

both the column index in ω1 and the row-index in ω2. Using the above expression for

˜mult, it is clear that ˜mult can be evaluated by V at a point in O(log n) time.

7.3.3 Circuit Design Issues

So far we have described the GKR protocol in the context of arithmetic circuits with

addition (+) and multiplication gates (×). This is sufficient to prove the power of this system,

since any efficiently computable boolean function on boolean inputs can be computed by an

(asymptotically) small arithmetic circuit. Typically such arithmetic circuits are obtained

by constructing a boolean circuit (with AND, OR, and NOT gates) for the function, and

then “arithmetizing” the circuit [8, Chapter 8]. However, we strive not just for asymptotic

efficiency, but genuine practicality, and the factors involved can grow quite quickly: every

layer of (arithmetic) gates in the circuit adds si+2si+1 rounds of interaction to the protocol.
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Hence, we further explore optimizations and implementation issues.

Extended Gates. The GKR circuit checking protocol [57] can be extended with any gates

that compute low-degree polynomial functions of their inputs. If g is a polynomial of degree

j, we can use gates computing g(x); this increases the communication complexity in each

round of the protocol by at most j − 2 words, as P must send a degree-j polynomial, rather

than a degree-2 polynomial.

The low-depth circuits we use to compute functions of interest such as Distinct make

use of the function f(x) = xq−1. Using only + and × gates, they require depth about

log2 q. If we also use gates computing g(x, y) = xjyj for a small j, we can reduce the

depth of the circuits to about log2j q; as the number of rounds in the protocol depends

linearly on the depth of the circuit, this reduces the number of rounds by a factor of about

log2 q/ log2j q = log2 2j = 1 + log2 j. At the same time this increases the communication

cost of each round by a factor of (at most) j − 2. We can optimize the choice of j. In our

experiments, we use j = 4 (so g(x, x) is x8) and j = 8 (g(x, x) = x16) to simultaneously

reduce the number of messages by a factor of about 3 and the communication cost and prover

runtime by significant factors as well.

Another optimization is possible. The circuits we use for F2 and Distinct eventually

compute the sum of a large number of values. Let g be the low-degree extension of the values

being summed. For functions of this form, V can use a single sum-check protocol [8, Chapter

8] to reduce the computation of the sum to computing g(r) for a random point r. V can then

use the GKR protocol to delegate computation of g(r) to P . Conceptually, this optimization

corresponds to replacing a binary tree of addition gates in an arithmetic circuit C with a

single ⊕ gate with large fan-in, which sums all its inputs. This optimization can reduce the

communication cost and the number of messages required by the protocol.

General Circuit Design. The circuit checking approach can be combined with existing
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compilers, such as that in the Fairplay system [78], that take as input a program in a high-

level programming language and output a corresponding boolean circuit. This boolean circuit

can then be arithmetized and “verified” by our implementation; this yields a full-fledged sys-

tem implementing statistically-secure verifiable computation. However, this system is likely

to remain impractical even though the prover P can be made to run in time linear in the size

of the arithmetic circuit. For example, in most hardware, one can compute the sum of two

32-bit integers x and y with a single instruction. However, when encoding this operation into

a boolean circuit, it is unclear how to do this with depth less than 32. At 3 log n rounds per

circuit layer, for reasonable parameters, single additions can turn into thousands of rounds.

The circuits we described above avoid this overhead by avoiding boolean circuits entirely

and instead view the input directly as elements over Fq, the finite field with q elements,

for a large prime q. For example, if the input is an array of 32-bit integers, then we view

each element of the array as a value of Fq in the natural way, and calculating the sum of

two integers requires a single depth-1 addition gate, rather than a depth-32 boolean circuit.

However, this approach seems to severely limit the functionality that can be implemented.

For instance, we know of no compact arithmetic circuit to test whether x > y for two integers

x and y.

This polylogarithmic blowup in circuit depth compared to input size appears inherent

in any construction that encodes computations as arithmetic circuits. Therefore, the devel-

opment of general purpose protocols that avoid this representation remains an important

direction for future work.
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7.4 Implementation and Experiments

7.4.1 Implementation Details

Our experimental setup was identical to that of our F2 implementation described in

Chapter 6. Specifically, we built our implementations in C++ and simulated the compu-

tations of both parties and measured the time and resources consumed by the protocols.

All computations are over the field of size q = 261 − 1, implying a very low probability of

the verifier being fooled by a dishonest prover. Our source code for the experiments of this

section is available online at [38].

For the experiments of this section, we evaluated the protocols on a multi-core machine

with 64-bit AMD Opteron processors and 32 GB of memory available. Our scalability results

here use a single core. The large amount of memory allowed us to experiment with universes

of size several billion, with the prover able to store the full data in memory. We measured

the time for V to compute the check information from the stream, for P to generate the

proof, and for V to verify the proof. We also measured the space required by V , and the size

of the proof provided by P .

Choice of Field Size. While all the protocols we implemented work over arbitrary finite

fields, our choice of Fq with q = 261−1 proves ideal for engineering practical protocols. First,

the field size is large enough to provide a minuscule probability of error, but small enough

that any field element can be represented with a single 64-bit data type. By using native

types, we achieve a speedup of several factors. Second, reducing modulo q can be done with

a bit shift, a bit-wise AND operation, and an addition [100] The same observation applies

to any field whose size equals a Mersenne Prime, including 289 − 1, 2107 − 1, and 2127 − 1.

2127 − 1 in particular is an excellent choice if one needs to deal with larger integer values,

as elements of this field can be represented as 2 64-bit words. We experienced a speedup of
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nearly an order of magnitude by switching to this specialized “mod” operation rather than

using “% q’ operation in C++.

The main potential issue with our choice of field size is that “overflow” can occur for

problems such as matrix multiplication if the entries of the input matrices are very large.

For example, with 512× 512 matrix multiplication, if the entries of the input matrices A,B

are larger than 226, an entry in the product matrix AB can be as large as 261, which is larger

than our field size. If this is a concern, a larger field size is appropriate. (Notice that for a

problem such as Distinct, there is no danger of overflow issues as long as the length of the

stream is smaller than 261 − 2, which is larger than any stream encountered in practice). A

second reason to use larger field sizes is to handle floating-point or rational arithmetic as

proposed by Setty et al. in [91].

All of our protocols can be instantiated over fields with more than 261− 1 elements, with

an implementation using these fields experiencing a slowdown proportional to the increased

cost of arithmetic over these fields.

7.4.2 Experimental Results

In this chapter, we have put significant effort into optimizing the runtime of the prover

within the GKR protocol, achieving an implementation for which P takes time nearly linear

in the size of the circuit. Nonetheless, this cost remains the chief limitation of the implemen-

tation.

We experimented with our implementation on circuits for our three motivating problems:

F2, Distinct, and MatMult. Results are summarized in Table 7.1. Throughout, when we

refer to P ’s runtime in an interactive protocol, we are referring to the total time over all

rounds of the protocol. The speed per gate can be very high: P processed circuits with tens of

millions of gates in a matter of minutes. For example, our basic implementation processed a
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Table 7.1: Experimental results with our implementation of the GKR protocol.

Problem Gates Size P time Rounds Communication V time
(gates) (s) (KBs) (s)

F2 +,× 0.4M 8.5 986 11.5 .01
F2 +,×,⊕ 0.2M 6.5 118 2.5 .01

Distinct +,× 16M 552.6 3730 87.4 .01
Distinct +,×, ˆ8 8.4M 462.2 1684 60.0 .01
Distinct +,×, ˆ16 6.4M 457.4 1399 65.8 .01
Distinct +,×,⊕ 15.8M 546.4 3355 78.4 .01
Distinct +,×, ˆ8,⊕ 8.2M 432.6 1310 51.0 .01
Distinct +,×, ˆ16,⊕ 6.2M 441.2 1024 56.8 .01
MatMult +,× 300.0M 9759.1 767 17.9 .10

The F2 and Distinct rows report on input vectors of length n = 217, while the MatMult

row reports on 512×512 matrix multiplication. For MatMult, the Communication column

does not count the cost of specifying the answer, only the additional communication required

to prove correctness.

circuit for Distinct with close to 16 million gates in under 9 minutes, or close to 30,000 gates

per second. However, since the circuit’s size was more than 100 times larger than the universe

over which the input is drawn, this translated to only about 300 items per second. The other

costs incurred are very low. The verifier’s space usage and the communication cost are never

more than a few dozen kilobytes, and the verifier processes close to thirty million updates per

second across all stream lengths. Indeed, for problems that require superlinear time to solve,

the verifier’s runtime in our protocol is less than the time required to solve the problem

locally, without the help of a prover. For example, for 512 × 512 matrix multiplication,

our verifier implementation requires .10 seconds to process the input stream, while a C++

program performing naive matrix multiplication with floating point arithmetic required 1.53

seconds. We stress that the savings for the verifier would be larger for more complicated
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problems and for larger input sizes, as the verifier’s runtime grows quasi-linearly with the

size of the input. The time for V to check the prover’s messages for consistency in our

implementation is negligible compared to the (already low) time to compute the required

low-degree extension of the input.

As we previously discussed in Section 7.3.3, adding additional gate types can reduce the

cost of circuit checking. We demonstrate experimentally that adding gates that compute the

8th power (ˆ8) or the 16th power (ˆ16) of their inputs achieves substantial reductions in the

size of the circuits needed (see Table 7.1). For Distinct, this reduced the number of rounds

by nearly a factor of three, the prover time by close to 20%, and the overall communication

cost by close to 30%. We also discuss in Section 7.3.3 how to (conceptually) replace a binary

tree of addition gates with a single ⊕ gate of very large fan-in which sums all its inputs. For

Distinct, this optimization further reduced both communication and number of rounds by

10-20%. The effect of ⊕ gates was much more pronounced for F2, where we saw an order of

magnitude reduction in the number of rounds, and 5-fold reduction in communication cost.

The change was larger here because the addition gates represent a much larger fraction of

the gates in F2 circuits than in Distinct circuits.

Summary. We conclude that the costs to the verifier of our implementation of the GKR

protocol are quite attractive. Our implementation saves the verifier time and space even

for small problem instances, and the communication cost is never more than a few dozen

kilobytes. The bottleneck in our implementation is the runtime of the prover. While our

methods achieve a prover runtime that is very close to linear in the size of the circuit,

and our prover implementation demonstrates significantly better scalability than one might

expect a priori, the prover runtime remains the bottleneck in the protocol. This bottleneck

is mitigated further in Chapter 8.
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7.5 GPU Implementation

In this section, we describe a parallel implementation of our protocol using graphics

processing units (GPUs). The primary purpose of this section is to demonstrate the GKR

protocol’s substantial amenability to parallelization, which can substantially mitigate the

bottlenecks of the sequential implementation already described. GPUs are not by any means

the only parallel platform suitable for our task, but the GPU is becoming a standard par-

allel platform, and it provides a good testing ground for implementation. While some of

the bottlenecks we identify in our parallel implementation are GPU-specific, several of our

design choices should be broadly applicable. For example, in this section we describe how to

structure the implementation to ensure memory coalescing, as well as how to minimize the

number of memory transfers when working within a memory hierarchy.

7.5.1 Overview

We begin by explaining the insights necessary to parallelize the computation of both the

prover and the verifier for the implementation of the GKR protocol described in this chapter.

Parallelizing P’s computation

In every one of P ’s responses in the GKR protocol, the prescribed message from P

is defined via a large sum over roughly S3 terms, where S is the size of the circuit, and

so computing this sum naively would take Ω(S3) time. Roughly speaking, We observed in

Section 7.1 that each gate of the circuit contributes to only a single term of this sum, and

thus this sum can be computed via a single pass over the relevant gates. The contribution

of each gate to the sum can be computed in constant time, and each gate contributes to

logarithmically many messages over the course of the protocol. Using these observations
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Figure 7.3: Illustration of parallel computation of the server’s message to the client in the

GKR protocol.

carefully reduces P ’s runtime from Ω(S3), to O(S logS), where again S is the circuit size.

The same observation reveals that P ’s computation can be parallelized: each gate con-

tributes independently to the sum in P ’s prescribed response. Therefore, P can compute

the contribution of many gates in parallel, save the results in a temporary array, and use a

parallel reduction to sum the results. We stress that all arithmetic is done within the finite

field F, rather than over the integers. Figure 7.3 illustrates this process.

Parallelizing V’s computation

The bulk of V ’s computation (by far) consists of computing Ṽd(r), an evaluation of the

multilinear extension of the input at a random point r ∈ Flogn. As observed in Lemma 6.3.1,

each input symbol contributes independently to Ṽd(r). Thus, V can compute the contribution

of many input symbols in parallel, and sum the results via a parallel reduction, just as

in the parallel implementation of P ’s computation. This speedup is perhaps of secondary

importance, as V runs extremely quickly even in our sequential implementation. However,
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parallelizing V ’s computation is still an appealing goal, especially as GPUs are becoming

more common on personal computers and mobile devices.

7.5.2 Architectural considerations

The primary issue with any GPU-based implementation of the prover in the GKR pro-

tocol is that the computation is extremely memory-intensive: for a circuit of size S (which

corresponds to S arithmetic operations in an unverifiable algorithm), the prover in the GKR

protocol has to store all S gates explicitly, because she needs the values of these gates to

compute her prescribed messages. We investigate three alternative strategies for managing

the memory overhead of the GKR protocol, which we refer to as the no-copying approach,

the copy-once-per-layer approach, and the copy-every-message approach.

The no-copying approach

The simplest approach is to store the entire circuit explicitly on the GPU. We call this the

no-copying approach. However, this means that the entire circuit must fit in device memory,

a requirement which is violated even for relatively small circuits, consisting of roughly tens

of million of gates.

The copy-once-per-layer approach

Another approach is to keep the circuit in host memory and copy information to the

device only when it is needed. This is possible because at any point in the protocol the

prover operates on only two layers of the circuit at a time, so only two layers of the circuit

need to reside in device memory. We refer to this as the copy-once-per-layer approach. This

is the approach we use the experiments in Section 7.5.3.

Care must be taken with this approach to prevent host-to-device copying from becoming
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a bottleneck. Fortunately, in the protocol for each layer there are several dozen messages to

be computed before the prover moves on to the next layer, and this ensures that the copying

from host to device makes up a very small portion of the runtime.

This method is sufficient to scale to very large circuits for circuits in which no single

layer is significantly larger than the problem input itself. However, this method remains

problematic for circuits that have (one or several) layers that are particularly wide, as an

explicit representation of all the gates within a single wide layer may still be too large to fit

in device memory.

The copy-every-message approach

In the event that there are individual layers that are too large to reside in device memory,

a third approach is to copy part of a layer at a time from the host to the device, and compute

the contribution of each gate in the part to the prover’s message before swapping the part

back to host memory and bringing in the next part. We call this the copy-every-message

approach. This approach is viable, but it raises a significant issue, alluded to in its name.

Namely, this approach requires host-to-device copying for every message, rather than just

once per layer of the circuit. That is, in any iteration i of the protocol, P cannot compute

her jth message until after the (j−1)th challenge from V is received. Thus, for each message

j, the entirety of the ith layer must be loaded piece-by-piece into device memory, swapping

each piece back to host memory after the piece has been processed. In contrast, the copy-

once-per-layer approach allows P to copy an entire layer i to the device and leave the entire

layer in device memory for the entirety of iteration i (which will consist of several dozen

messages). Thus, the slowdown inherent in the copy-every-message approach is not just that

P has to break each layer into parts, but that P has to do host-to-device and device-to-host

copying for each message, instead of copying an entire layer and computing several messages
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from that layer.

We did not perform a careful evaluation of the copy-every-message approach, but prelim-

inary experiments suggest that this approach is viable in practice, resulting in less than a 3×

slowdown compared to the copy-once-per-layer approach. Notice that even after paying this

slowdown, our GPU-based implementation would still achieve a 10-40× speedup compared

to the sequential implementation described earlier in this chapter.

Memory access

Recall that for each message in the ith iteration of the GKR protocol, we assign a thread

to each gate g at the ith layer of the circuit, as each gate contributes independently to the

prescribed message of the prover. The contribution of gate g depends only on the index of

g, the indices of the two gates feeding into g, and the values of the two gates feeding into g.

Given this data, the contribution of gate g to the prescribed message can be computed

using roughly 10-20 additions and multiplications within the finite field F (the precise number

of arithmetic operations required varies over the course of the iteration). As described in

Section 7.3.3, we choose to work over a field that allows for extremely efficient arithmetic;

for example, multiplying two field elements requires three machine multiplications of 64-bit

data types, and a handful of additions and bit shifts.

In all of the circuits we consider, the indices of g’s in-neighbors can be determined with

very little arithmetic and no global memory accesses. For example, if the wiring pattern of

the circuit forms a binary tree, then the first in-neighbor of g has index 2 · index(g), and the

second in-neighbor of g has index 2 · index(g) + 1. For each message, the thread assigned to

g can compute this information from scratch without incurring any memory accesses.

In contrast, obtaining the values of g’s in-neighbors requires fetching 8 bytes per in-

neighbor from global memory. Memory accesses are necessary because it is infeasible to
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compute the value of each gate’s in-neighbors from scratch each message, so we store these

values explicitly. As these global memory accesses can be a bottleneck in the protocol, we

strive to arrange the data in memory to ensure that adjacent threads access adjacent memory

locations. To this end, for each layer i we maintain two separate arrays, with the j’th entry

of the first (respectively, second) array storing the first (respectively, second) in-neighbor

of the j’th gate at layer i. During iteration i, the thread assigned to the jth gate accesses

location j of the first and second array to retrieve the value of its first and second in-neighbors

respectively. This ensures that adjacent threads access adjacent memory locations.

For all layers, the corresponding arrays are populated with in-neighbor values when we

evaluate the circuit at the start of the protocol (we store each layer i’s arrays on the host until

the i’th iteration of the protocol, at which point we transfer the array from host memory

to device memory as describe in Section 7.3.3). Notice this methodology sometimes requires

data duplication: if many gates at layer i share the same in-neighbor g1, then g1’s value

will appear many times in layer i’s arrays. We feel that slightly increased space usage is a

reasonable price to pay to ensure memory coalescing.

7.5.3 GPU Evaluation

Implementation details

Except where noted, we performed our experiments on an Intel Xeon 3 GHz workstation

with 16 GB of host memory. Our workstation also has an NVIDIA GeForce GTX 480 GPU

with 1.5 GB of device memory. We implemented all our GPU code in CUDA and Thrust [65]

with all compiler optimizations turned on. Our source code is available online at [98]. We

remark that no floating point operations were necessary in any of our implementations,

because all arithmetic is done over finite fields. Finally, we stress that in all reported costs

below, we do count the time taken to copy data between the host and the device, and all
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reported speedups relative to sequential processing take this cost into account. We do not

count the time to allocate memory for scratch space because this can be done in advance.

We ran our GPU-based implementation of the GKR protocol on four separate circuits,

which together capture several different aspects of computation, from data aggregation to

search, to linear algebra. The first three problems we consider, F2, Distinct, and MatMult,

were described and evaluated earlier in the chapter, while the fourth problem, Pm, is a classic

search problem, and is motivated, for example, by clients wishing to store (and search) their

email on the cloud. Specifically, in the pattern matching problem, the input is a stream

representing text T = (t0, . . . , tn−1) ∈ [n]n and a pattern P = (p0, . . . , pq−1) ∈ [n]q, and the

pattern P is said to occur at location i in t if, for every position j in P , pj = ti+j. The

pattern-matching problem is to determine the number of locations at which P occurs in T .

Description of circuits

We briefly review the circuits for our benchmark problems.

The circuit for F2 is by far the simplest and was described earlier in the Chapter (see

Figure 6.1 for an illustration). This circuit computes the square of each input wire using a

layer of multiplication gates, and then sums the results using a single sum-gate of very large

fan-in.

The circuit for F0 was also described earlier: it exploits Fermat’s Little Theorem, which

says that for prime q, aq−1 ≡ 1 mod q if and only if a 6≡ 0. Thus, this circuit computes the

q − 1’th power of each input wire (taking all non-zero inputs to 1, and leaving all 0-inputs

at 0), and sums the results via a single sum-gate of high fan-in.

The circuit for Pm is similar to that for F0: essentially, for each possible location of the

pattern, it computes a value that is 0 if the pattern is at the location, and non-zero otherwise.

It then computes the (q − 1)th power of each such value and sums the results (i.e., it uses
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the F0 circuit as a subroutine) to determine the number of locations where the pattern does

(not) appear in the input.

For our GPU experiments, the MatMult circuit we experimented on in this section

differs slightly from the one used in Section 7.3.2. The circuit we use here is slightly more

complicated – the reason is that the GPU experiments reported on here were performed prior

to the matrix multiplication experiments reported on in Section 7.4, and it was not until later

that we realized it was possible to use the simpler circuit of Section 7.3.2. While the matrix

multiplication circuit we used for the experiments of this section is slightly more complicated

than necessary, our results on this problem nonetheless demonstrate the amenability of the

GKR protocol to parallelization.

Specifically, the circuit we use here contains a single output gate, rather than n2 output

gates as in Section 7.3.2. This circuit computes the n2 entries in C = A ·B via naive matrix

multiplication just like the circuit from Section 7.3.2, but then it subtracts the corresponding

entry of C from each. It then computes the number of non-zero values using the F0 circuit

as a subroutine. The final output of the circuit is zero if and only if C = AB.

Scaling to large inputs

As described in Section 7.5.2, the memory-intensive nature of the GKR protocol made it

challenging to scale to large inputs, especially given the limited amount of device memory.

Indeed, with the no-copying approach (where we simply keep the entire circuit in device

memory), we were only able to scale to inputs of size roughly 150, 000 for the F0 problem,

and to 32 × 32 matrices for the MatMult problem on a machine with 1 GB of device

memory. Using the copy-once-per-layer approach, we were able to scale to inputs with over

2 million entries for the F0 problem, and 128 × 128 matrices for the MatMult problem.

By running on a NVIDIA Tesla C2070 GPU with 6 GBs of device memory, we were able to
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Figure 7.4: Comparison of prover and verifier runtimes between our sequential implementa-

tion of the GKR protocol and our GPU-based implementation. Note that all plots are on a

log-log scale. Plots (a), (b), (c), and (d) depict the prover runtimes for F0, F2, Pm, MatMult

respectively. Plot (e) depicts the verifier runtimes for the GKR protocol. We include only one

plot for the verifier, since its dominant cost in the GKR protocol is problem-independent.

push to 256 × 256 matrices for the MatMult problem; the data from this experiment is

reported in Table 7.2.

Experimental Results

Figure 7.4 demonstrates the performance of our GPU-based implementation of the GKR

protocol. Table 7.2 also gives a succinct summary of our results, showing the costs for the

largest instance of each problem we ran on. We consider the main takeaways of our experi-

ments to be the following.
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Table 7.2: Experimental results for our GPU implementation of the GKR protocol.

Problem Input Size Circuit Size GPU P Sequential Circuit GPU Sequential Unverified

(number of (number of Time P Time Eval V Time V Time Alg.

entries) gates) (s) (s) Time (s) (s) (s) Time (s)

F2 8.4 million 25.2 million 3.7 424.6 0.1 0.035 3.600 0.028

Distinct 2.1 million 255.8 million 128.5 8,268.0 4.2 0.009 0.826 0.005

Pm 524,288 76.0 million 38.9 1,893.1 1.2 0.004 0.124 0.006

MatMult 65,536 42.3 million 39.6 1,658.0 0.9 0.003 0.045 0.080

Server-side speedup obtained by GPU computing. Compared to the our sequential

implementation described earlier in the chapter, our GPU-based server implementation ran

close to 115× faster for the F2 circuit, about 60× faster for the F0 circuit, 45× faster for

Pm, and about 40× faster for MatMult (see Figure 7.4).

Notice that for the first three problems, we need to look at large inputs to see the

asymptotic behavior of the curve corresponding to the parallel prover’s runtime. Due to the

log-log scale in Figure 7.4, the curves for both the sequential and parallel implementations are

asymptotically linear, and the 45-120× speedup obtained by our GPU-based implementation

is manifested as an additive gap between the two curves. The explanation for this is simple:

there is considerable overhead relative to the total computation time in parallelizing the

computation at small inputs, but this overhead is more effectively amortized as the input

size grows.

In contrast, notice that for MatMult the slope of the curve for the parallel prover

remains significantly smaller than that of the sequential prover throughout the entire plot.

This is because our GPU-based implementation ran out of device memory well before the

overhead in parallelizing the prover’s computation became negligible. We therefore believe

the speedup for MatMult would be somewhat higher than the 40× speedup observed if we
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were able to run on larger inputs.

Server-side slowdown relative to unverifiable sequential algorithms. For F2, the

total slowdown for the prover was roughly 130× (3.7 seconds compared to 0.028 seconds

for the unverifiable algorithm, which simply iterates over all entries of the frequency vector

and computes the sum of the squares of each entry). We stress that it is likely that we

overestimate the slowdown resulting from our protocol, because we did not count the time

it takes for the unverifiable implementation to compute the number of occurrences of each

item i, that is, to aggregate the stream into its frequency vector representation (f1, . . . , fn).

Instead, we simply generated the vector of frequencies at random (we did not count the

generation time), and calculated the time to compute the sum of their squares. In practice,

this aggregation step may take much longer than the time required to compute the sum of

the squared frequencies once the stream is in aggregated form.

For Distinct, our GPU-based server implementation ran roughly 25,000× slower than

the obvious unverifiable algorithm which simply counts the number of non-zero items in a

vector. The larger slowdown compared to the F2 problem is unsurprising. Since Distinct is

a less arithmetic problem than F2, its circuit representation is much larger. Once again, it is

likely that we overestimate the slowdowns for this problem, as we did not count the time for

an unverifiable algorithm to aggregate the stream into its frequency-vector representation.

Despite the substantial slow-down incurred for F0 compared to a naive unverifiable algo-

rithm, it remains valuable as a primitive for use in heavier-duty computations like Pm and

MatMult.

For Pm, the bulk of the circuit consists of a Distinct sub-routine, and so the runtime of

our GPU-based implementation was similar to those for Distinct. However, the sequential

unverifiable algorithm for Pm takes longer than that for Distinct. Thus, our GPU-based

server implementation ran roughly 6,500× slower than the naive unverifiable algorithm,
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which exhaustively searches all possible locations for occurrences of the pattern.

For MatMult, our GPU-based server implementation ran roughly 500× slower than

naive matrix-multiplication for 256× 256 matrices. Moreover, this number is likely inflated

due to cache effects from which the naive unverifiable algorithm benefited. That is, the naive

unverifiable algorithm takes only 0.09 seconds for 256× 256 matrices, but takes 7.1 seconds

for 512 × 512 matrices, likely because the algorithm experiences very few cache misses on

the smaller matrix. We therefore expect the slowdown of our implementation to fall to under

100× if we were to scale to larger matrices. Furthermore, the GKR protocol is capable

of verifying matrix-multiplication over the finite field Fq rather than over the integers at

no additional cost. Naive matrix-multiplication over this field is between 2-3× slower than

matrix multiplication over the integers (even using the fast arithmetic operations available

for this field). Thus, if our goal was to work over this finite field rather than the integers, our

slowdown would fall by another 2-3×. It is therefore possible that our server-side slowdown

may be less than 50× at larger inputs compared to naive matrix multiplication over Fq.

Client-side speedup obtained by GPU computing. The bulk of V ’s computation con-

sists of evaluating the multilinear extension of the input at a point; this computation is inde-

pendent of the circuit being verified. For reasonably large inputs (see the row for F2 in Table

7.2), our GPU-based client implementation performed this computation over 100× faster

than the sequential implementation described earlier in this Chapter. For smaller inputs the

speedup was unsurprisingly smaller due to increased overhead relative to total computation

time. Still, we obtained a 15× speedup even for an input of length 65,536 (256× 256 matrix

multiplication).

Client-side speedup relative to unverifiable sequential algorithms. Our results on

matrix multiplication clearly demonstrate that for problems requiring super-linear time to

solve, even the sequential implementation of described earlier in the chapter will save the
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client time compared to doing the computation locally. Indeed, the runtime of the client is

dominated by the cost of evaluating the multilinear extension of the input at a single point,

and this cost grows quasi-linearly with the input size. Even for relatively small matrices of

size 256 × 256, the client in our sequential implementation saved time. For matrices with

tens of millions of entries, our results demonstrate that the client will still take just a few

seconds, while performing the matrix multiplication computation would require orders of

magnitude more time. Our results demonstrate that GPU computing can be used to reduce

the verifier’s computation time by another 100×.
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Chapter 8

Time-Optimal Interactive Proofs for

Circuit Evaluation

8.1 Introduction

In Chapter 7, we showed how to implement the prover in the GKR protocol in time

O(S logS), where S is the size of an arithmetic circuit computing the function of interest. In

this chapter, we describe further refinements to the GKR protocol, which apply to circuits

with sufficiently “regular” wiring patterns; for these circuits, we bring the runtime of the

prover down to O(S). That is, our prover can evaluate the circuit with a guarantee of cor-

rectness, with only a constant-factor blowup in work compared to evaluating the circuit with

no guarantee. The log S factor we save over the implementation of Chapter 7 is significant

– easily a factor of 20 even for circuits with a just a few million gates – and our approach

also leads to significant reductions in the communication costs and the number of rounds of

interaction required by the protocol.

We argue that our refinements capture a large class of circuits, and we complement our

theoretical results with experiments on problems such as matrix multiplication and deter-
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mining the number of distinct elements in a data stream. Experimentally, our refinements

yield a 200x speedup for the prover over the implementation of Chapter 7, and our prover

is less than 10x slower than a C++ program that simply evaluates the circuit. Moreover,

a parallel implementation of our prover using a graphics processing unit (GPU) is roughly

30x faster than our serial implementation, and therefore takes less time than that required

to evaluate the circuit in serial.

We also make progress toward addressing another issue of existing interactive proof im-

plementations: their applicability. The GKR protocol applies in principle to any problem

computed by a small-depth arithmetic circuit, but this is not the case when more fine-grained

considerations of prover and verifier efficiency are taken into account. In brief, existing im-

plementations of interactive proof protocols for circuit evaluation such as that of Chapter

7 as well as that by Vu et al. [104] all require that the circuit have a highly regular wiring

pattern. If this is not the case, then these implementations require the verifier to perform

an expensive (though data-independent) preprocessing phase to pull out information about

the wiring of the circuit, and they require a substantial factor blowup (logarithmic in the

circuit size) in runtime for the prover relative to evaluating the circuit without a guarantee

of correctness. Developing a protocol that avoids these pitfalls and applies to more general

computations remains an important open question.

Our approach is the following. We do not have a magic bullet for dealing with irregular

wiring patterns; if we want to avoid an expensive pre-processing phase for the verifier and

minimize the blowup in runtime for the prover, we do need to make an assumption about

the structure of the circuit we are verifying. Acknowledging this, we ask whether there is

some general structure in real-world computations that we can leverage for efficiency gains.

To this end, we design a protocol that is highly efficient for data parallel computation.

By data parallel computation, we mean any setting in which one applies the same computa-
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tion independently to many pieces of data. Many outsourced computations are data parallel,

with Amazon Elastic MapReduce1 being one prominent example of a cloud computing ser-

vice targeted specifically at data parallel computations. Crucially, we do not want to make

significant assumptions on the sub-computation that is being applied, and in particular we

want to handle sub-computations computed by circuits with highly irregular wiring patterns.

The verifier in our protocol still has to perform an offline phase to pull out information

about the wiring of the circuit, but the cost of this phase is proportional to the size of a

single instance of the sub-computation, avoiding any dependence on the number of pieces of

data to which the sub-computation is applied. Similarly, the blowup in runtime suffered by

the prover is the same as it would be if the prover had run the basic GKR protocol on a

single instance of the sub-computation.

Our final contribution is to describe a new protocol specific to matrix multiplication that

we believe to be of interest in its own right. This protocol is formalized in Theorem 8.7.2.

Given any unverifiable algorithm for n × n matrix multiplication that requires time T (n)

using space s(n), Theorem 8.7.2 allows the prover to run in time T (n) + O(n2) using space

s(n)+o(n2). Note that Theorem 8.7.2 (which is specific to matrix multiplication) is much less

general than Theorem 8.4.10 (which applies to any circuit with a sufficiently regular wiring

pattern). However, Theorem 8.7.2 achieves optimal runtime and space usage for the prover up

to leading constants, assuming there is no O(n2) time algorithm for matrix multiplication.

While these properties are also satisfied by a classic protocol due to Freivalds [53], the

protocol of Theorem 8.7.2 is significantly more amenable for use as a primitive when verifying

computations that repeatedly invoke matrix multiplication. For example, using the protocol

of Theorem 8.7.2 as a primitive, we give a natural protocol for computing the diameter of

an unweighted directed graph G. V ’s runtime in this protocol is O(m log n), where m is the

1http://aws.amazon.com/elasticmapreduce/
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number of edges in G, P ’s runtime matches the best known unverifiable diameter algorithm

up to a low-order additive term [89,107], and the total communication is just polylog (n). We

know of no other protocol achieving this. We complement Theorem 8.7.2 with experimental

results demonstrating its efficiency.

8.1.1 Roadmap for Chapter

We give a high-level overview of the ideas underlying our main results in Section 8.2.

Section 8.3 describes technical background. Section 8.4 contains the details of our time-

optimal protocol for circuit evaluation as formalized in Theorem 8.4.10. Section 8.5 describes

our experimental cases studies of the protocol described in Theorem 8.4.10. Section 8.6

describes our protocol for arbitrary data parallel computation. Section 8.7 describes some

additional optimizations that apply to specific important wiring patterns. In particular, this

section describes our special-purpose protocol for MatMult that achieves optimal prover

efficiency up to leading constants. Section 8.8 concludes.

8.2 Overview of the Ideas

8.2.1 Achieving Optimal Prover Runtime for Regular Circuits

In Theorem 8.4.10, we describe an interactive proof protocol for circuit evaluation that

brings P ’s runtime down to O(S(n)) for a large class of circuits, while maintaining the same

verifier runtime as in prior implementations of the GKR protocol. Informally, Theorem 8.4.10

applies to any circuit whose wiring pattern is sufficiently “regular”.

This protocol follows the same general outline as the GKR protocol, in that we proceed in

iterations from the output layer of the circuit to the input layer, using a sum-check protocol

at iteration i to reduce a claim about the gate values at layer i to a claim about the gate
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values at layer i + 1. However, at each iteration i we apply the sum-check protocol to a

carefully chosen polynomial that differs from the one used by GKR. In each round j of the

sum-check protocol, our choice of polynomial allows P to reuse work from prior rounds in

order to compute the prescribed message for round j, allowing us to shave a logS(n) factor

from the runtime of P relative to the O(S(n) logS(n))-time implementation of Chapter 7.

Specifically, at iteration i, the GKR protocol uses a polynomial f
(i)
z defined over logSi +

2 logSi+1 variables, where Si is the number of gates at layer i. The “truth table” of f
(i)
z is

sparse on the Boolean hypercube, in the sense that f
(i)
z (x) is non-zero for at most Si of the

Si · S2
i+1 inputs x ∈ {0, 1}logSi+2 logSi+1 . In Chapter 7, we leveraged this sparsity to bring the

runtime of P in iteration i down to O(Si logSi) from a naive bound of Ω(Si ·S2
i+1). The logSi

factor was due to the fact that P needed to make a pass over all of the gates at layer i for

each of the logSi rounds of the sum-check protocol. However, this same sparsity prevents P

from reusing work from prior iterations as we seek to do.

In contrast, we use a polynomial g
(i)
z defined over only logSi variables rather than logSi+

2 logSi+1 variables. Moreover, the truth table of g
(i)
z is dense on the Boolean hypercube, in

the sense that g
(i)
z (x) may be non-zero for all of the Si Boolean inputs x ∈ {0, 1}logSi . This

density allows P to reuse work from prior iterations in order to speed up her computation

in round i of the sum-check protocol.

In more detail, in each round j of the sum-check protocol, the prover’s prescribed mes-

sage is defined via a sum over a large number of terms, where the number of terms falls

geometrically fast with the round number j. Moreover, it can be shown that in each round j,

each gate at layer i+ 1 contributes to exactly one term of this sum. Essentially, what we do

is group the gates at layer i+ 1 by the term of the sum to which they contribute. Each such

group can be treated as a single unit, ensuring that in any round of the sum-check protocol,

the amount of work P needs to do is proportional to the number of terms in the sum rather
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than the number of gates Si at layer i.

We remark that a similar “reuse of work” technique was used in Theorem 6.4.2, which

gave an efficient special-purpose protocol for the the second frequency moment problem.

This frequency moment protocol was the direct inspiration for our refinements, though we

require additional insights to apply the reuse of work technique in the context of evaluating

general arithmetic circuits.

It is worth clarifying why our methods do not yield savings when applied to the poly-

nomial f
(i)
z used in the basic GKR protocol. The reason is that, since f

(i)
z is defined over

logSi + 2 logSi+1 variables instead of just logSi variables, the sum defining P ’s message in

round j is over a much larger number of terms when using f
(i)
z . It is still the case that each

gate contributes to only one term of the sum, but until the number of terms in the sum falls

below Si (which does not happen until round j = logSi+logSi+1 of the sum-check protocol),

it is possible for each gate to contribute to a different term. Before this point, grouping gates

by the term of the sum to which they contribute is not useful, since each group can have size

1.

8.2.2 Verifying General Data Parallel Computations

Theorem 8.4.10 below only applies to circuits with regular wiring patterns, as do other

existing implementations of interactive proof protocols for circuit evaluation [39, 104]. For

circuits with irregular wiring patterns, these implementations require the verifier to perform

an expensive preprocessing phase (requiring time proportional to the size of the circuit) to

pull out information about the wiring of the circuit, and they require a substantial factor

blowup (logarithmic in the circuit size) in runtime for the prover relative to evaluating the

circuit without a guarantee of correctness.

To address these bottlenecks, we do need to make an assumption about the structure
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of the circuit we are verifying. Ideally our assumption will be satisfied by many real-world

computations. To this end, Theorem 8.6.1 will describe a protocol that is highly efficient

for any data parallel computation, by which we mean any setting in which one applies the

same computation independently to many pieces of data. See Figure 8.2 in Section 8.6 for a

schematic of a data parallel computation.

The idea behind Theorem 8.6.1 is as follows. Let C be a circuit of size S with an arbitrary

wiring pattern, and let C∗ be a “super-circuit” that applies C independently to B different

inputs before possibly aggregating the results in some fashion. If one naively applied the

basic GKR protocol to the super-circuit C∗, V might have to perform a pre-processing phase

that requires time proportional to the size of C∗, which is Ω(B ·S). Moreover, when applying

the basic GKR protocol to C∗, P would require time Θ (B · S · log(B · S)).

In order to improve on this, the key observation is that although each sub-computation

C can have a complicated wiring pattern, the circuit is “maximally regular” between sub-

computations, as the sub-computations do not interact at all. Therefore, each time the basic

GKR protocol would apply the sum-check protocol to a polynomial derived from the wiring

predicate of C∗, we instead use a simpler polynomial derived only from the wiring predicate

of C. This immediately brings the time required by V in the pre-processing phase down to

O(S), which is proportional to the cost of executing a single instance of the sub-computation.

By using the reuse of work technique underlying Theorem 8.4.10, we are also able to bring

P ’s runtime down from Θ (B · S · log(B · S)) to Θ (B · S · logS), i.e., P ’s requires a factor

of O(logS) more time to evaluate the circuit with a guarantee of correctness, compared

to evaluating the circuit without such a guarantee. This O(logS) factor overhead does not

depend on the batch size B.

Our improvements are most significant when B � S, i.e., when a (relatively) small but

potentially complicated sub-computation is applied to a very large number of pieces of data.
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For example, given any very large database, one may ask “How many people in the database

satisfy Property P?” Our protocol allows one to verifiably outsource such counting queries

with overhead that depends minimally on the size of the database, but that necessarily

depends on the complexity of the property P .

8.2.3 A Special-Purpose Protocol for MatMult

We describe a special-purpose protocol for n× n MatMult in Theorem 8.7.2. The idea

behind this protocol is as follows. The GKR protocol, as well the protocols of Theorems

8.4.10 and 8.6.1, only make use of the multilinear extension Ṽi of the function Vi mapping

gate labels at layer i of the circuit to their values. In some cases, there is something to be

gained by using a higher-degree extension of Vi, and this is precisely what we exploit here.

In more detail, our special-purpose protocol can be viewed as an extension of our circuit-

checking techniques applied to a circuit C performing naive matrix multiplication, but using a

quadratic extension of the gate values in this circuit. This allows us to verify the computation

using a single invocation of the sum-check protocol. More importantly, P can evaluate this

higher-degree extension at the necessary points without explicitly materializing all of the

gate values of C, which would not be possible if we had used the multilinear extension of

the gate values of C.

In the protocol of Theorem 8.7.2, P just needs to compute the correct output (possibly

using an algorithm that is much more sophisticated than naive matrix multiplication), and

then perform O(n2) additional work to prove the output is correct. Since P does not have to

evaluate C in full, this protocol is perhaps best viewed outside the lens of circuit evaluation.

Still, the idea underlying Theorem 8.7.2 can be thought of as a refinement of our circuit

evaluation protocols, and we believe that similar ideas may yield further improvements to

general-purpose protocols in the future.
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8.3 Technical Background: Making V Fast vs.

Making V Streaming

Prior work has identified two methods for implementing the verifier in the GKR protocol.

We described the first method in Lemma 6.3.1. If the circuit to which the protocol is applied

is defined over the finite field F, and addition and multiplication in F require a constant

number of machine operations, then the method of Lemma 6.3.1 requires O(n log n) time

and allows V to make a single streaming pass over the input using O(log n log |F|) bits of

space. The second method is due to Vu et al. [104]. It enables V to compute Ṽd(ω
∗) in O(n)

time, but requires V to use O(n log |F|) bits of space. (Recall from Chapter 5 that Ṽd is the

multilinear extension of the input. We use the notation introduced there throughout this

chapter).

Lemma 8.3.1 (Vu et al. [104]). Let x ∈ Fn be the input to an arithmetic circuit C over

F, and let Ṽd be the multilinear extension of the function that maps i ∈ {0, 1}logn to the ith

entry of x. V can compute Ṽd(ω
∗) in O(n) time while using O(n log |F|) bits of space.

Proof. We again exploit the expression for Ṽd(ω
∗) in Equation (6.2). Notice the right hand

side of Equation (6.2) expresses Ṽd(ω
∗) as the inner product of two n-dimensional vectors,

where the bth entry of the first vector is Vd(b) and the bth entry of the second vector is

χb(ω
∗). This inner product can be computed in O(n) time given a table of size n whose bth

entry contains the quantity χb(ω
∗). Vu et al. show how to build such a table in time O(n)

using memoization – we used this same memoization procedure in Section 7.2.3 to ensure

that the prover in the GKR protocol runs quickly in the “reducing to verification of a single

point” phase.

The memoization procedure consists of log n stages, where Stage j constructs a table

A(j) of size 2j, such that for any (b1, . . . , bj) ∈ {0, 1}j, A(j)[(b1, . . . , bj)] =
∏j

i=1 χbi(ω
∗
i ).
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Notice A(j)[(b1, . . . , bj)] = A(j−1)[(b1, . . . , bj−1)] · χbj(ω∗j ), and so the jth stage of the mem-

oization procedure requires time O(2j). The total time across all log n stages is therefore

O(
∑logn

j=1 2j) = O(2logn) = O(n). This completes the proof.

Remark 4. In [103], Vu et al. further observe that if the input is presented in a specific

order, then V can evaluate Ṽd(ω
∗) using O(log n log |F|) bits of space. Compare this result to

Lemma 6.3.1, which requires O(n log n) time for V , but allows V to use O(log n log |F|) bits

of space regardless of the order in which the input is presented.

8.4 Time-Optimal Protocols for Circuit Evaluation

8.4.1 Protocol Outline and Section Roadmap

As with the GKR protocol, our protocol consists of d(n) iterations, one for each layer of

the circuit. Each iteration starts with P claiming a value for Ṽi(z) for some value z ∈ Fsi . The

purpose of the iteration is to reduce this claim to a claim about Ṽi+1(ω) for some ω ∈ Fsi+1 ,

in the sense that it is safe for V to assume that the first claim is true as long as the second

claim is true. As in the GKR protocol, this is done by invoking the sum-check protocol on a

certain polynomial.

In order to improve on the costs of the GKR protocol implementation of Chapter 7, we

replace the polynomial f
(i)
z in Equation (5.1) with a different polynomial g

(i)
z defined over a

much smaller domain. Specifically, g
(i)
z is defined over only si variables rather than si + 2si+1

variables as is the case of f
(i)
z . Using g

(i)
z in place of f

(i)
z allows P to reuse work across

iterations of the sum-check protocol, thereby reducing P ’s runtime by a logarithmic factor

relative to the implementation of Chapter 7, as formalized in Theorem 8.4.10 below.

The remainder of the presentation leading up to Theorem 8.4.10 proceeds as follows. After

stating a preliminary lemma, we describe the polynomial g
(i)
z that we use in the context
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of three specific circuits: a binary tree of addition or multiplication gates, and a circuit

computing the number of non-zero entries of an n-dimensional vector a. The purpose of this

exposition is to showcase the ideas underling Theorem 8.4.10 in concrete scenarios. Second,

we explain the algorithmic insights that allow P to reuse work across iterations of the sum-

check protocol applied to g
(i)
z . Finally, we state and prove Theorem 8.4.10, which formalizes

the class of circuits to which our methods apply.

8.4.2 A Preliminary Lemma

We will repeatedly invoke the following lemma, which allows us to express the value

Ṽi(z) in a manner amenable to verification via the sum-check protocol. This is essentially a

restatement of [85, Lemma 3.2.1].

Lemma 8.4.1. Let W be any polynomial Fsi → F that extends Vi, in the sense that for all

p ∈ {0, 1}si, W (p) = Vi(p). Then for any z ∈ Fsi,

Ṽi(z) =
∑

p∈{0,1}si

βsi(z, p)W (p). (8.1)

Proof. It is easy to check that the right hand side of Equation (8.1) is a multilinear polynomial

in z, and that it agrees with Vi on all Boolean inputs. Thus, the right hand side of Equation

(8.1), viewed as a polynomial in z, must be the multilinear extension Ṽi of Vi. This completes

the proof.

8.4.3 Polynomials for Specific Circuits

The Polynomial for a Binary Tree

Consider a circuit C that computes the product of all n of its inputs by multiplying them

together via a binary tree. Label the gates at layers i and i + 1 in the natural way, so that
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the first input to the gate labelled p = (p1, . . . , psi) ∈ {0, 1}si at layer i is the gate with label

(p, 0) at layer i − 1, and the second input to gate p has label (p, 1). Here and throughout,

(p, 0) denotes the si + 1-dimensional vector obtained by concatenating the entry 0 to the

end of the vector p. Interpreting p = (p1, . . . , psi) ∈ {0, 1}si as an integer between 0 and

2si − 1 with p1 as the high-order bit and psi as the low-order bit, this says that the first

in-neighbor of p is 2p and the second is 2p + 1. It follows immediately that for any gate

p ∈ {0, 1}si at layer i, Vi(p) = Ṽi+1(p, 0) · Ṽi+1(p, 1). Invoking Lemma 8.4.1, we obtain the

following proposition.

Proposition 8.4.2. Let C be a circuit consisting of a binary tree of multiplication gates.

Then Ṽi(z) =
∑

p∈{0,1}si g
(i)
z (p), where g

(i)
z (p) = βsi(z, p) · Ṽi+1(p, 0) · Ṽi+1(p, 1).

Remark 5. Notice that the polynomial g
(i)
z in Proposition 8.4.2 is a degree three polynomial

in each variable of p. When applying the sum-check protocol to g
(i)
z , the prover therefore needs

to send 4 field elements per round.

In the case of Proposition 8.4.2, the line ` : F → F2i+1 in the “Reducing to Verification

of a Single Point” step has an especially simple expression. Let r ∈ Fsi be the vector of

random field elements chosen by V over the execution of the sum-check protocol. Notice that

`(0) must equal the point (r, 0) ∈ Fsi+1 i.e., the point whose first si coordinates equal r and

whose last coordinate equals 0. Similarly, `(1) must equal (r, 1). We may therefore express

the line ` via the equation `(t) = (r, t). In this case, Ṽi+1 ◦ ` has degree 1 and is implicitly

specified when P sends the claimed values of Ṽi(r, 0) and Ṽi(r, 1).

The case of a binary tree of addition gates is similar to the case of multiplication gates.

Proposition 8.4.3. Let C be a circuit consisting of a binary tree of addition gates. Then

Ṽi(z) =
∑

p∈{0,1}si g
(i)
z (p), where g

(i)
z (p) = βsi(z, p)

(
Ṽi+1(p, 0) + Ṽi+1(p, 1)

)
.
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Remark 6. The polynomial g
(i)
z of Proposition 8.4.3 has degree 2 in all variables, rather

than degree 3 as in Proposition 8.4.2.

The Polynomials for DISTINCT

We now describe a circuit C for computing the number of non-zero entries of a vector

f ∈ Fn (this vector should be interpreted as the frequency vector of a data stream). A

similar circuit was used in conjunction with the GKR protocol in Chapter 7 to yield an

efficient protocol with a streaming verifier for Distinct, and we borrow heavily from the

presentation there. We remark that our refinements enable us to slightly simplify the circuit

used in Chapter 7 by avoiding the awkward use of a constant-valued input wire with value

set to 1. This causes some gates in our circuit to have fan-in 1 rather than fan-in 2, which is

easily supported by our protocol.

The circuit C is tailored for use over the field of cardinality equal to a Mersenne prime

q = 2k−1 for some k. Fields of cardinality equal to a Mersenne prime can support extremely

fast arithmetic, and as discussed in Section 7.3.3, there are several Mersenne primes of

appropriate magnitude for use within our protocols.

The circuit C exploits Fermat’s Little Theorem, computing f q−1
i for each input entry

fi before summing the results. As described in Section 7.3.3, verifying the summation sub-

circuit can be handled with a one invocation of the sum-check protocol, or less efficiently by

running our protocol for a binary tree of addition gates described in Proposition 8.4.3.

We now turn to describing the part of the circuit computing f q−1
i for each input entry

fi. We may write q − 1 = 2k − 2, whose binary representation is k − 1 1s followed by a 0.

Thus, f q−1
i =

∏k−1
j=1 f

2j

i . To compute f q−1
i , the circuit repeatedly squares f , and multiplies

together the results “as it goes”. In more detail, for j > 2 there are two multiplication gates

at each layer d(n)− j of the circuit for computing f q−1
i ; the first computes f 2j by squaring
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Figure 8.1: The first several layers of a circuit for F0 on four inputs over the field F with

q = 2k − 1 elements. The first layer from the bottom computes f 2
i for each input entry fi.

The second layer from the bottom computes f 4
i and f 2

i for all i. The third layer computes

f 8
i and f 6

i = f 4
i × f 2

i , while the fourth layer computes f 16
i and f 14

i = f 8
i × f 6

i . The remaining

layers (not shown) have structure identical to the third and fourth layers until the value f q−1
i

is computed for all i, and the circuit culminates in a binary tree of addition gates.

the corresponding gate at layer j − 1, and the second computes
∏j−1

`=1 f
2`−1

i . See Figure 8.1

for a depiction.

For our purposes there are k + 1 relevant circuit layers, all of which consist entirely of

multiplication gates. Layers 1 through k − 1 all contain 2n gates. Number the gates from 0

to 2n − 1 in the natural way. In what follows, we will abuse notation and use p to refer to

both a gate number as well as its binary representation.

An even-numbered gate p at layer i has both in-wires connected to gate p at layer i+ 1,

while an odd-numbered gate p has one in-wire connected to gate p and another connected to

gate p−1. Thus, the connectivity information of the circuit is a simple function of the binary

representation p of each gate at layer i. If the low-order bit psi of p is 0 (i.e., it is an even-

numbered gate), then both in-neighbors at layer i + 1 of gate p have binary representation

p. If the low-order bit psi is 1 (i.e., it is an odd-numbered gate), then the first in-neighbor of

gate p has binary representation p, and the second has binary representation (p−si , 0), where

p−si denotes p with the coordinate psi removed.
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Invoking Lemma 8.4.1, the following proposition is easily verified.

Proposition 8.4.4. Let C be the circuit described above. For layers i ∈ {1, . . . , k − 1},

Ṽi(z) =
∑

p∈{0,1}si g
(i)
z (p) where

g(i)
z (p) = βsi(z, p)

(
(1− psi)Ṽi+1(p−si , 0) · Ṽi+1(p−si , 0) + psi Ṽi+1(p−si , 1) · Ṽi+1(p−si , 0)

)
,

where p−si denotes p with the coordinate psi removed.

Remark 7. To check P ’s claim in the final round of the sum-check protocol applied to g
(i)
z ,

V needs to know Ṽi+1(r, 0) and Ṽi+1(r, 1) for some random vector r ∈ Fsi−1. This is identical

to the situation in the case of a binary tree of addition or multiplication gates, where the

“Reducing to Verification of a Single Point” step had an especially simple implementation.

At layer k, an even-numbered gate p has both in-wires connected to gate p/2 at layer

k + 1, while an odd-numbered gate p has its unique in-wire connected to gate (p − 1)/2 at

layer k + 1. Thus, for a gate at layer i = k, if the the low-order bit psi of the gate’s binary

representation p is 1 (i.e., it is an odd-numbered gate), then both in-neighbors at layer i+ 1

of have binary representation p−si . If the low-order bit psi is 0 (i.e., it is an even numbered

gate), then the unique in-neighbor of p at layer i+ 1 has binary representation p−si .

Invoking Lemma 8.4.1, the following is easily verified.

Proposition 8.4.5. Let C be the circuit described above. For layer i = k,

Ṽi(z) =
∑

p∈{0,1}si g
(i)
z (p) where

g(i)
z (p) = βsi(z, p)

(
(1− psi)Ṽi+1(p−si) · Ṽi+1(p−si) + psiṼi+1(p−si)

)
,

where p−si denotes p with coordinate psi removed.

Finally, at layer k + 1, each gate p has both in-wires connected to gate p at layer k + 2

(which is the input layer). Thus:
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Proposition 8.4.6. Let C be the circuit described above. For layer i = k + 1, Ṽi(z) =∑
p∈{0,1}si g

(i)
z (p) where

g(i)
z (p) = βsi(z, p)Ṽi+1(p) · Ṽi+1(p).

8.4.4 Reusing Work

Recall that our analysis of the costs of the sum-check protocol in Section 2.3 revealed

that, when applying a sum-check protocol to an si-variate polynomial g
(i)
z , P only needs to

evaluate g
(i)
z at O(2si) points across all rounds of the protocol. Our goal in this section is to

show how P can do this in time O(2si + 2si+1) = O(Si + Si+1) for all of the polynomials g
(i)
z

described in Section 8.4.3. This is sufficient to ensure that P takes O(
∑d(n)

i=1 Si) = O(S(n))

time across all iterations of our circuit-checking protocol.

To this end, notice that all of the polynomials gz described in Propositions 8.4.2-8.4.6 have

the following property: for any r ∈ Fsi , evaluating g
(i)
z (r) can be done in constant time given

β(z, r) and the evaluations of Ṽi+1 at a constant number of points. For example, consider

the polynomial g
(i)
z described in Proposition 8.4.4: g

(i)
z (r) can be computed in constant time

given βsi(z, r), Ṽi+1(r−si , 0), and Ṽi+1(r−si , 1).

Moreover, the points at which P must evaluate g
(i)
z within the sum-check protocol are

highly structured: in round j of the sum-check protocol, the points are all of the form

(r1, . . . , rj−1, t, bj+1, . . . , bsi) with t ∈ {0, 1, . . . , degj(g
(i)
z )} and (bj+1, . . . , bsi) ∈ {0, 1}si−j.

Computing the Necessary β(z, p) Values

Pre-processing. We begin by explaining how P can, in O(2si) time, compute an array C(0)

of length 2si of all values β(z, p) =
∏si

k=1(pkzk + (1− pk)(1− zk)) for p ∈ {0, 1}si . P can do

this computation in preprocessing before the sum-check protocol begins, as this computation

does not depend on any of V ’s messages. Naively, computing all entries of C(0) would require
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O(si2
si) time, as there are 2si values to compute, and each involves Ω(si) multiplications.

However, this can be improved using dynamic programming.

The dynamic programming algorithm proceeds in stages. In stage j, P computes an

array C(0,j) of length 2j. Abusing notation, we identify a number p in [2j] with its binary

representation in {0, 1}j. P computes

C0,j[p] =

j∏
k=1

(pkzk + (1− pk)(1− zk))

via the recurrence

C0,j[(p1, . . . , pj)] = C0,j−1[(p1, . . . , pj−1)] · (pjzj + (1− pj)(1− zj)).

Clearly C(0,si) equals the desired array C(0), and the total number of multiplications required

over the entire procedure is O(
∑si

j=1 2j) = O(2si). We remark that our dynamic programming

procedure is similar to the method used by Vu et al. to reduce the verifier’s runtime in the

GKR protocol from O(n log n) to O(n) in Lemma 8.3.1.

Overview of Online Processing. In round j of of the sum-check protocol, P needs to evaluate

the polynomial β(z, p) at O(2si−j) points, all of which are of the form

(r1, . . . , rj−1, t, bj+1, . . . , bsi) for t ∈ [degj(g
(i)
z )] and (bj+1, . . . , bsi) ∈ {0, 1}si−j. P will do this

using the help of intermediate arrays C(j) defined as follows.

Define C(j) to be the array of length 2si−j such that for (pj+1, . . . , psi) ∈ {0, 1}si−j:

C(j)[(pj+1, . . . , psi)] =

(
j∏

k=1

(rkzk + (1− rk)(1− zk))
)
·

 si∏
k=j+1

(pkzk + (1− pk)(1− zk))

 ,

Efficiently Constructing C(j) Arrays. Inductively, assume P has computed the array C(j−1)

in the previous round. As the base case, we explained how P can evaluate C(0) in O(2si)

time in pre-processing. Now observe that P can compute C(j) given C(j−1) in O(2si−j) time

using the following recurrence:

C(j)[(pj+1, . . . , psi)] = z−1
j C(j−1)[(1, pj+1, . . . , psi)] · (rjzj + (1− rj)(1− zj)). (8.2)
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Remark 8. Equation (8.2) is only valid when zj 6= 0. To avoid this issue, we can have V

choose zj at random from F∗ rather than from F, and this will affect the soundness probability

by at most an additive O(d(n) · logS(n)/|F|) term.

Remark 9. Since computing multiplicative inverses in a finite field is not a constant-time

operation, it is important to note that z−1
j only needs to be computed once when determining

the entries of C(j), i.e., it need not be recomputed for each entry of C(j). Therefore, across

all si rounds of the sum-check protocol, only Õ(si) time in total is required to compute these

multiplicative inverses, which does not affect the asymptotic costs for P . We discount the

costs of computing z−1
j for the remainder of the discussion.

Thus, at the end of round j of the sum-check protocol, when V sends P the value rj, P

can compute C(j) from C(j−1) using Equation (8.2) in O(2si−j) time.

Using the C(j) Arrays. Observe that given any point of the form

p = (r1, . . . , rj−1, t, bj+1, . . . , bsi) with (bj+1, . . . , bsi) ∈ {0, 1}si−j, β(z, p) can be evaluated in

constant time using the array C(j−1), using the equality

β(z, p) = C(j−1)[(1, pj+1, . . . , psi)] · z−1
j · (tzj + (1− t)(1− zj)).

As above, note that z−1
j can be computed just once and used for all points p, and this

does not affect the asymptotic costs for P .

Putting Things Together. In round j of the sum-check protocol, P uses the array C(j−1) to

evaluate the O(2si−j) required β(z, p) values in O(2si−j) time. At the end of round j, V sends

P the value rj, and P computes C(j) from C(j−1) in O(2si−j) time. In total across all rounds

of the sum-check protocol, P spends O(
∑si

j=1 2si−j) = O(2si) time to compute the β(z, p)

values.
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Computing the Necessary Ṽi+1(p) Values

For concreteness and clarity, we restrict our presentation within this subsection to the

polynomial g
(i)
z described in Proposition 8.4.4. Theorem 8.4.10 abstracts this analysis into a

general result capturing a large class of wiring patterns.

Recall that all of the polynomials g
(i)
z described in Propositions 8.4.2-8.4.6 have the

following property: for any p ∈ Fsi , evaluating g
(i)
z (p) can be done in constant time given

β(z, p) and the evaluations of Ṽi+1 at a constant number of points. We have already shown

how P can evaluate all of the necessary β(z, p) values in O(2si) time. It remains to show how

P can evaluate all of the Ṽi+1 values in time O(2si + 2si+1). We remark that in the context

of Proposition 8.4.4, si = si+1; however, we still distinguish between these two quantities

throughout this subsection in order to ensure maximal consistency with the general derivation

of Theorem 8.4.10.

Recall that the polynomial g
(i)
z in Proposition 8.4.4 was defined as follows:

g(i)
z (p) = βsi(z, p)

(
(1− psi)Ṽi+1(p−si , 0) · Ṽi+1(p−si , 0) + psiṼ (p−si , 1) · Ṽ (p−si , 0)

)
.

In round j of the sum-check protocol, P needs to evaluate gz at all points in the set

S(j) ={(r1, . . . , rj−1, t, bj+1, . . . , bsi) : t ∈ {0, . . . ,degj(g
(i)
z )} ∧ (bj+1, . . . , bsi) ∈ {0, 1}si−j}.

By inspection of g
(i)
z , it suffices for V to evaluate Ṽi+1 at the same set of points. To show

how to accomplish this efficiently, we exploit the following explicit expression for Ṽi+1. This

expression was derived for the case i + 1 = d in Equation (6.1) within Lemma 6.3.1; we

re-derive it here in the general case.

For a vector b ∈ {0, 1}si+1 let χb(x1, . . . , xsi+1
) =

∏si+1

k=1 χbk(xk), where χ0(xk) = 1 − xk

and χ1(xk) = xk. With this definition in hand, we may write:
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Ṽi+1(p1, . . . , psi+1
) =

∑
b∈{0,1}si+1

Vi+1(b)χb(p1, . . . psi+1
), (8.3)

To see that Equation (8.3) holds, notice that the right hand side of Equation (8.3) is

a multilinear polynomial in the variables (p1, . . . , bpi+1
), and that it agrees with Vi+1 at all

points p ∈ {0, 1}si+1 . Hence, it must be the unique multilinear extension of Vi+1.

The intuition behind our optimizations is the following. In round j of the sum-check

protocol, there are |S(j)| points at which Ṽi+1 must be evaluated. Equation (8.3) can be

exploited to show that each gate at layer i + 1 of the circuit contributes to Ṽi+1(p) for at

most one point p ∈ S(j); namely the point p whose last si+1−j coordinates agrees with those

of p. This observation alone is enough to achieve an O(Si+1 logSi) runtime for P in total

across all iterations of the sum-check protocol, because there are Si+1 gates at layer i + 1,

and only si = logSi rounds of the sum-check protocol – this is precisely how we enabled the

prover in the GKR protocol to run in total time O(S logS) in Chapter 7. However, we need

to go further in order to shave off the last logSi factor from P ’s runtime. Essentially, what

we do is group the gates at layer i+ 1 by the point p ∈ S(j) to which they contribute. Each

such group can be treated as a single unit, ensuring that the work P has to do in any round

of the sum-check protocol in order to evaluate Ṽi+1 at all points in S(j) is proportional to

|S(j)| rather than to Si+1. Since the size of S(j) falls geometrically with j, our desired time

bounds follow.

Pre-processing. P will begin by computing an array V (0), which is simply defined to be

the vector of gate values at layer i + 1, i.e., identifying a number 0 < j < Si+1 with its

binary representation in {0, 1}si+1 , P sets V (0)[(j1, . . . , jsi+1
)] = Vi+1(j1, . . . , jsi+1

) for each

(j1, . . . , jsi+1
) ∈ {0, 1}si+1 . The right hand side of this equation is simply the value of the jth

gate at layer i + 1 of C. So P can fill in the array V (0) when she evaluates the circuit C,

before receiving any messages from V .
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Overview of Online Processing. In round j of of the sum-check protocol, P needs to evaluate

the polynomial Ṽi+1 at the O(2si−j) points in the set S(j). P will do this using the help of

intermediate arrays V (j) defined as follows.

Define V (j) to be the length 2si+1−j array such that for (pj+1, . . . , psi+1
) ∈ {0, 1}si+1−j,

V (j)[(pj+1, . . . , psi+1
)] =

∑
(b1,...,bj)∈{0,1}j

Vi+1(b1, . . . , bj, pj+1, . . . , psi+1
) ·

j∏
k=1

χbk(rk),

Efficiently Constructing V (j) Arrays. Inductively, assume P has computed in the previous

round the array V (j−1) of length 2si+1−j+1.

As the base case, we explained how P can fill in V (0) in the process of evaluating the

circuit C. Now observe that P can compute V (j) given V (j−1) in O(2si+1−j) time using the

following recurrence:

V (j)[(pj+1, . . . , psi+1)]=V (j−1)[(0, pj+1, . . . , psi)] · χ0(rj) + V (j−1)[(1, pj+1, . . . , psi)] · χ1(rj).

Thus, at the end of round j of the sum-check protocol, when V sends P the value rj, P can

compute V (j) from V (j−1) in O(2si+1−j+1) time.

Using the V (j) Arrays. We now show how to use the array V (j−1) to evaluate Ṽi+1(p) in con-

stant time for any point of the form p = (r1, . . . , rj−1, t, bj+1, . . . , bsi+1
) with (bj+1, . . . , bsi+1

) ∈
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{0, 1}si+1−j. We exploit the following sequence of equalities:

Ṽi+1(r1, . . . , rj−1, t, bj+1, . . . , bsi)

=
∑

c∈{0,1}si+1

Vi+1(c)χc(r1, . . . , rj−1, t, bj+1, . . . , bsi+1
)

=
∑

(c1,...,cj)∈{0,1}j

∑
(cj+1,...,csi+1 )∈{0,1}si+1−j

Vi+1(c)χc(r1, . . . , rj−1, t, bj+1, . . . , bsi+1
)

=
∑

(c1,...,cj)∈{0,1}j

∑
(cj+1,...,csi+1 )∈{0,1}si+1−j

Vi+1(c)

(
j−1∏
k=1

χck(rk)

)(
χcj(t)

)( si+1∏
k=j+1

χck(bk)

)

=
∑

(c1,...,cj)∈{0,1}j
Vi+1(cj+1, . . . , cj, bj+1, . . . , bsi+1

)

(
j−1∏
k=1

χck(rk)

)
· χcj(t)

=V (j−1)[(0, bj+1, . . . , bsi+1
)] · χ0(t) + V (j−1)[(1, bj+1, . . . , bsi+1

)] · χ1(t).

Here, the first equality holds by Equation (8.3). The third holds by definition of the function

χc. The fourth holds because for Boolean values bk, ck ∈ {0, 1}, χck(bk) = 1 if ck = bk, and

χck(bk) = 0 otherwise. The final equality holds by definition of the array V (j−1).

Putting Things Together. In round j of the sum-check protocol, P uses the array V (j−1)

to evaluate Ṽi+1(p) for all O(2si−j) points p ∈ S(j). This requires constant time per point,

and hence O(2si−j) time across all points. At the end of round j, V sends P the value rj,

and P computes V (j) from V (j−1) in O(2si+1−j) time. In total across all rounds of the sum-

check protocol, P spends O(
∑si

j=1 2si−j + 2si+1−j) = O(2si + 2si+1) time to evaluate Ṽi+1 at

the relevant points. When combined with our O(2si)-time algorithm for computing all the

relevant β(z, p) values, we see P takes O(2si + 2si+1) = O(Si + Si+1) time to run the entire

sum-check protocol for iteration i of our circuit-checking protocol.
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8.4.5 A General Theorem

In this section we formalize a large class of circuits to which our refinements yield asymp-

totic savings relative to prior implementations of the GKR protocol. Our protocol makes use

of the following functions that capture the wiring structure of an arithmetic circuit C.

Definition 8.4.7. Let C be a layered arithmetic circuit of depth d(n) and size S(n) over

finite field F. For every i ∈ {1, . . . , d− 1}, let in
(i)
1 : {0, 1}si → {0, 1}si+1 and in

(i)
2 : {0, 1}si →

{0, 1}si+1 denote the functions that take as input the binary label p of a gate at layer i of

C, and output the binary label of the first and second in-neighbor of gate p respectively.

Similarly, let type(i) : {0, 1}si → {0, 1} denote the function that takes as input the binary

label p of a gate at layer i of C, and outputs 0 if p is an addition gate, and 1 if p is a

multiplication gate.

Intuitively, the following definition captures functions whose outputs are simple bit-wise

transformations of their inputs.

Definition 8.4.8. Let f be a function mapping {0, 1}v to {0, 1}v′ . Number the v input bits

from 1 to v, and the v′ output bits from 1 to v′. Assume that one machine word contains

Ω(v+ v′) bits. We say that f is regular if f can be evaluated on any input in constant time,

and there is a subset of input bits S ⊆ [v] with |S| = O(1) such that:

1. Each input bit in [v] \ S affects O(1) of the output bits of f . Moreover, given input

j ∈ [v]\S, the set Sj of output bits affected by xj can be enumerated in constant time.

2. Each output bit of f depends on at most one input bit.

Our protocol applied to C proceeds in d(n) iterations, where iteration i consists an

application of the sum-check protocol to an appropriate polynomial derived from type(i),

in
(i)
1 , and in

(i)
2 , followed by a phase for “reducing to verification of a single point”. For any
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layer i of C such that in
(i)
1 , in

(i)
2 and type(i) are all regular, we can show that P can execute

the sum-check protocol at iteration i in O(Si + Si+1) time. To ensure that P can execute

the “reducing to verification of a single point” phase in O(Si+1) time, we need to place one

additional condition on in
(i)
1 and in

(i)
2 .

Definition 8.4.9. We say that in
(i)
1 and in

(i)
2 are similar if there is a set of output bits

T ⊆ [si+1] with |T | = O(1) such that for all inputs x, the jth output bit of in
(i)
1 equals the

jth output bit of in
(i)
2 for all j ∈ [si+1] \ T .

We are finally in a position to state the class of circuits to which our refinements apply.

Theorem 8.4.10. Let C be an arithmetic circuit, and suppose that for all layers i of C, in
(i)
1 ,

in
(i)
2 , and type(i) are regular. Suppose moreover that in

(i)
1 is similar to in

(i)
2 for all but O(1)

layers i of C. Then there is a valid interactive proof protocol (P ,V) for the function com-

puted by C, with the following costs. The total communication cost is |O|+O(d(n) logS(n))

field elements, where |O| is the number of outputs of C. The time cost to V is O(n log n +

d(n) logS(n)), and V can make a single streaming pass over the input, storing O(log(S(n)))

field elements. The time cost to P is O(S(n)).

The asymptotic costs of the protocol whose existence is guaranteed by Theorem 8.4.10

are identical to those of the implementation of the GKR protocol from Chapter 7, except

that in Theorem 8.4.10 P runs in time O(S(n)) rather than O(S(n) logS(n)) as achieved in

Chapter 7. We defer the proof to Appendix A.1.

Applications

Theorem 8.4.10 applies to circuits computing functions from a wide range of applications,

with the following implications.
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MatMult. Consider the following circuit C of size O(n3) for multiplying two n×n matrices

A and B. Let the input gate labelled (0, i, j) correspond to Aij, and the input labelled (1, i, j)

correspond to Bij. The layer of C adjacent to the input consists of n3 gates, where the gate

labeled (i, j, k) ∈ ({0, 1}logn)3 computes Aik · Bkj. All subsequent layers constitute a binary

tree of addition gates summing up the results and thereby computing
∑

k AikBkj for all

(i, j) ∈ [n]× [n].

For layers i ∈ {1, . . . , log n} of this circuit, in
(i)
1 , in

(i)
2 , and type(i) are all regular, and

moreover in
(i)
1 is similar to in

(i)
2 (see Section 8.4.3 for a careful treatment of this wiring

pattern). The remaining layer of the circuit, layer i = log n+ 1, is regular, though in
(logn+1)
1

and in
(logn+1)
2 are not similar. We obtain the following immediate corollary.

Corollary 8.4.11. There is a valid interactive proof protocol for n × n MatMult with

the following costs. The total communication cost is n2 +O(d(n) log n) field elements, where

the n2 term is required to specify the answer. The time cost to V is O(n2 log n), and V can

make a single streaming pass over the input in time O(n2 log n) and storing O(log n) field

elements. The time cost to P is O(n3).

We note that the costs of Corollary 8.4.11 are subsumed by our special-purpose matrix

multiplication protocol presented later in Theorem 8.7.2. We included Corollary 8.4.11 to

demonstrate the applicability of Theorem 8.4.10.

Distinct. Recall the circuit C over field size q = 2k− 1 described in Section 8.4.3 that takes

a vector a ∈ Fn as input and outputs the number of non-zero entries of a. This circuit has

k + 1 relevant layers and consists entirely of multiplication gates. For any layer i ∈ [k − 1],

an even-numbered gate p at layer i has both in-wires connected to gate p at layer i + 1,

while an odd-numbered gate p at layer i has one in-wire connected to gate p at layer i + 1

and another connected to gate p − 1 (which has binary representation (p−si , 0), where p−si
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denotes the binary representation of p with the coordinate psi removed). For these layers,

in
(i)
1 , in

(i)
2 , and type(i) are all regular, and in

(i)
1 is similar to in

(i)
2 .

At layer k, an even-numbered gate p is has both in-wires connected to gate p/2 at layer

k+ 1, while an odd-numbered gate p at layer k has its unique in-wire connected to gate (p−

1)/2 at layer k+1. In the former case, both in-neighbors of gate p have binary representation

p−si . In the latter case the unique in-neighbor of gate p has binary representation p−si . It is

therefore easily seen that in
(k)
1 , in

(k)
2 , and type(k) are all regular, and in

(k)
1 is similar to in

(k)
2 .

Finally, at layer k + 1, both in-wires for gate p are connected to gate p at layer k + 2. It is

easily seen that in
(k+1)
1 , in

(k+1)
2 , and type(k+1) are all regular, and in

(k+1)
1 is similar to in

(k+1)
2 .

With all layers of C satisfying the requirements of Theorem 8.4.10, we obtain the following

corollary.

Corollary 8.4.12. Let q > max{m,n} be a Mersenne Prime. There is a valid interactive

proof protocol over the field Fq for Distinct with the following costs. The total communica-

tion cost is O(log n log q) field elements. The time cost to V is O(m log n), and V can make

a single streaming pass over the input, storing O(log n) field elements. The time cost to P is

O(n log q).

To or knowledge, Corollary 8.4.12 yields the fastest known prover of any streaming inter-

active proof protocol for Distinct that also has total communication and space usage for V

that is sublinear in both m and n. The fastest result previously was the O (n · log(n) · log(p))-

time prover obtained by the implementation of Chapter 7. We remark however that for a data

stream with F0 distinct items, the prover in the protocol of Chapter 7 actually can be made

to run in time O (n+ F0 · log(n) · log(p)), where the O(n) term is due to the time required

to simply observe the entire input stream. Therefore, for streams where F0 = o(n/ log n),

the implementation of Chapter 7 achieves an asymptotically faster prover than implied by

Corollary 8.4.12.
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Remark 10. In Section 7.3.3, we described how to extend the GKR protocol to handle cir-

cuits with gates that compute more general operations than just addition and multiplication.

At a high level, we showed in Section 7.3.3 that gates computing any “low-degree” operation

can be handled, and they demonstrate analytically and experimentally that these more gen-

eral gates can achieve cost savings for the Distinct problem. These same optimizations are

also applicable in conjunction with our refinements. We omit further details for brevity, and

did not implement these optimizations in conjunction with the refinements of this chapter.

Other Problems. In order to demonstrate its generality, we describe two other non-trivial

applications of Theorem 8.4.10.

• Pattern Matching. In the Pattern Matching problem, the input consists of a stream

of text T = (t0, . . . , tn−1) ∈ [n]n and pattern P = (p0, . . . , pm−1) ∈ [n]m. The pattern

P is said to occur at location i in T if, for every position k in P , pk = ti+k. The

pattern-matching problem is to determine the number of locations at which P occurs

in T . For example, one might want to determine the number of times a given phrase

appears in a corpus of emails stored in the cloud.

Consider the following circuit C for computing Pattern Matching over the finite field

Fq for prime q. The circuit first computes the quantity Ii =
∑m

j=0(ti+j − pj)2 for each

i ∈ {0, . . . , n − 1}, and then exploits Fermat’s Little Theorem (FLT) by computing

M =
∑n−m

i=1 Iq−1
i . The number of occurrences of the pattern equals n−m−M .

Computing Ii for each i can be done in logm+ 2 layers: the layer closest to the input

computes ti+k − pk for each pair (i, k) ∈ {0, . . . , n− 1} × {0, . . . , q− 1}, the next layer

squares each of the results, and the circuit then sums the results via a depth logm-

binary tree of addition gates. The total size of the circuit C is O(nm+ n log q), where

the nm term is due to the computation of the Ii values, and the n log q term is due to
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the FLT computation. The total depth of the circuit is O(logm+ log q) = O(log q).

We have already demonstrated that Theorem 8.4.10 applies to the squaring layer,

the binary tree sub-circuit, and the FLT computation. The only remaining layer of

the circuit is the one that computes ti+k − pk for each pair (i, k) ∈ {0, . . . , n − 1} ×

{0, . . . ,m−1}. Unfortunately, Theorem 8.4.10 does not apply to this layer of the circuit.

This is because the first in-neighbor of a gate with label (i1, . . . , ilogn, k1, . . . , klogm) ∈

{0, 1}logn+logm has label equal to the binary representation of the integer i+ k, and a

single bit ij can affect many bits in the binary representation of i + k (likewise, each

bit in the binary representation of i + k may be affected by many bits in the binary

representation of i and k).

However, in Appendix A.2, we describe how to extend the ideas underlying Theo-

rem 8.4.10 to handle this wiring pattern. The extensions in Appendix A.2 may be

more broadly useful, as the wiring pattern analyzed there is an instance of a common

paradigm, in that it interprets binary gate labels as a pair of integers and performs a

simple arithmetic operation (namely addition) on those integers.

We also remark that, instead of going through the analysis of Appendix A.2, a more

straightforward approach is to simply apply the implementation of Chapter 7 to this

layer; the runtime for P in the corresponding sum-check protocol is O(nm log n). This

does not affect the asymptotic costs of the protocol if m is constant, since in this case

nm log n = O(n log q), and the total runtime of P over all other layers of the circuit is

Θ(n log q).

This analysis highlights the following point: our refinements can be applied to a circuit

on a layer-by-layer basis, so they can still yield speedups even if some but not all layers

of a circuit are sufficiently “regular” for our refinements to apply.
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A similar analysis applies to a closely related circuit that solves a more general problem

known as Pattern Matching with Wildcards. We omit these details for brevity.

• Fast Fourier Transform. Consider the following circuit over C for computing the stan-

dard radix-two decimation-in-time FFT. At a high level, this circuit works as fol-

lows. It proceeds in log n stages, where for k = (k1, . . . , kn) ∈ {0, 1}n, the kth out-

put of stage i is recursively defined as Vi(k1, . . . , kn) = Vi−1(k1, ki−1, 0, ki, . . . , kn) +

e−2πki/nVi−1(k1, . . . , ki−1, 1, ki+1, . . . , kn). Theorem 8.4.10 is easily seen to apply to the

natural circuit executing this recurrence, and our refinements would therefore shave a

logarithmic factor off the runtime of P applied to this circuit, relative to the implemen-

tation of Chapter 7 (since this circuit is defined over the infinite field C, the protocol

is only defined in a model where complex numbers can be communicated and operated

on at unit cost).

8.5 Experimental Results

We implemented the protocols implied by Theorem 8.4.10 as applied to circuits comput-

ing MatMult and Distinct. These experiments serve as case studies to demonstrate the

feasibility of Theorem 8.4.10 in practice, and to quantify the improvements over prior imple-

mentations. While Section 8.7 describes a specialized protocol for MatMult that is signif-

icantly more efficient than the protocol implied by Theorem 8.4.10, MatMult serves as an

important case study for the costs of the more general protocol described in Theorem 8.4.10,

and allows for direct comparison with prior implementation work that also evaluated general-

purpose protocols via their performance on the MatMult problem [39, 82, 91, 92, 99, 104].

Our comparison point is the implementation of Chapter 7.
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8.5.1 Summary of Results

The main takeaways of our experiments are as follows. When Theorem 8.4.10 is appli-

cable, the prover in the resulting protocol is 200x-250x faster than the previous state of

the art implementation of the GKR protocol. The communication costs and the number of

rounds required by our protocols are also 2x-3x smaller than the previous state of the art.

The verifier in our implementation takes essentially the same amount of time as in prior

implementations of the GKR protocol; this time is much smaller than the time to perform

the computation locally without a prover.

Most of the observed 200x speedup can be attributed directly to our improvements in

protocol design over prior work: the circuit for 512x512 matrix multiplication is of size 228,

and hence our logS factor improvement the runtime of P likely accounts for at least a 28x

speedup. The 3x reduction in the number of rounds accounts for another 3x speedup. The

remaining speedup factor of roughly 2x may be due to a more streamlined implementation

relative to prior work, rather than improved protocol design per se.

We have both a serial implementation and a parallel implementation that leverages graph-

ics processing units (GPUs). The prover in our parallel implementation runs roughly 30x

faster than the prover in our serial implementation. The ability to leverage GPUs to obtain

robust speedups in our setting is not unexpected, as in Section 7.5.3 we used GPUs to obtain

substantial speedups using GPUs for the GKR protocol implementation from Chapter 7.

All of our code used in this chapter is available online at [96]. All of our serial code

was written in C++ and all experiments were compiled with g++ using the −O3 compiler

optimization flag and run on a workstation with a 64-bit Intel Xeon architecture and 48 GBs

of RAM. We implemented all of our GPU code in CUDA and Thrust [65] with all compiler

optimizations turned on, and ran our GPU implementation on an NVIDIA Tesla C2070 GPU

with 6 GBs of device memory.
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8.5.2 Details

Choice of Finite Field. All of our circuits work over the finite field of size q = 261 − 1, as

with the case for our implementation in Chapter 7. We use this field because it supports

fast arithmetic, as reducing an integer modulo q can be done with a bit-shift, addition, and

a bit-wise AND. (The same observation applies to any field whose size equals a Mersenne

Prime, including 289 − 1, 2107 − 1, and 2127 − 1). Moreover, the field is large enough that

the probability a verifier is fooled by a dishonest prover is smaller than 1/245 for all of the

problems we consider (this probability is proportional to d(n) logS(n)
q

).

As in Chapter 7, the main potential issue with our choice of field size is that “overflow”

can occur for problems like matrix multiplication if the entries of the input matrices can be

very large. All of our protocols can be instantiated over fields with more than q = 261 − 1

elements, with an implementation using these fields experiencing a slowdown proportional

to the increased cost of arithmetic over these fields.

Serial Implementation

MatMult. The costs of our serial MatMult implementation are displayed in Table 8.1.

The prover in our matrix multiplication implementation is about 250x faster than the imple-

mentation of Chapter 7. For example, when multiplying two 512 x 512 matrices, our prover

takes about 38 seconds, while our comparison implementation takes over 2.5 hours. A C++

program that simply evaluates the circuit without an integrity guarantee takes 6.07 seconds,

so our prover experiences less than a 7x slowdown in order to evaluate the circuit with an

integrity guarantee relative to simply evaluating the circuit without such a guarantee.

When multiplying two 512 x 512 matrices A and B, the protocol requires 236 rounds, and

the total communication cost of our protocol is 5.48 KBs (plus the amount of communication
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required to specify the answer AB). The implementation of Chapter 7 required 767 rounds

and close to 18 KBs of communication (plus the amount of communication required to specify

AB). Notice that specifying a 512x512 matrix using 8 bytes per entry requires 2 MBs, which

is more than 500 times larger than the 5.48 KBs of extra communication required to verify

the answer.

A serial C++ program performing 512 x 512 matrix multiplication over the integers

with floating point arithmetic (without going through the circuit representation of the com-

putation) required 1.53 seconds, so our prover runs approximately 25 times slower than a

standard unverifiable matrix multiplication algorithm. A serial C++ program performing

the same multiplication over the finite field of size 261−1 required 4.74 seconds, so our serial

prover runs about 8 times slower than an unverifiable matrix multiplication algorithm over

the corresponding finite field.

Our verifier takes essentially the same amount of time as in prior work, as in both imple-

mentations the bulk of the work of the verifier is spent evaluating the low-degree extension

of the input at a point. This is more than an order of magnitude faster than the 1.03 seconds

required by a serial C++ program performing the multiplication in an unverified manner

over the integers, so the verifier is indeed saving time by using a prover (relative to doing

the computation locally without a prover). We stress that the savings for the verifier would

be larger at larger input sizes, as the time cost to the verifier in our implementation and

the prior implementation of Chapter 7 is quasilinear in the input size, which is polynomially

faster than all known matrix multiplication algorithms. Moreover, when streaming consid-

erations are not an issue, we could apply the refinement of Vu et al. from Lemma 8.3.1 to

reduce V ’s runtime from O(n2 log n) to O(n2) and thereby further speed up the verifier.

DISTINCT. The costs of our serial Distinct implementation with n = 220 (i.e., for com-

puting the number of non-zero entries of a vector of length n = 220) are displayed in Table

224



Table 8.1: Experimental results for n× n MatMult using the protocol of Theorem 8.4.10.

Implementation Problem P Time V Time Rounds Total Circuit

Size Communication Eval Time

Ch. 7 256 x 256 1054 s 0.02 s 623 14.6 KBs 0.73 s

Thm. 8.4.10 256 x 256 4.37 s 0.02 s 190 4.4 KBs 0.73 s

Ch. 7 512 x 512 9759 s 0.10 s 767 17.97 KBs 6.07 s

Theorem 8.4.10 512 x 512 37.85 s 0.10 s 236 5.48 KBs 6.07 s

The Total Communication column does not count the communication required to specify

the answer, only the “extra” communication required to run the verification protocol.

8.2. The comparison of our implementation with prior work is similar to the case of matrix

multiplication. Our prover is roughly 200 times faster than the comparison implementation.

For example, when computing the number of non-zero entries of a vector of length 220, our

prover takes about 17 seconds, while our comparison implementation takes about 57 minutes.

A C++ program that simply evaluates the circuit without an integrity guarantee takes 1.88

seconds, so our prover experiences roughly a 10x slowdown to provide the integrity guarantee

relative to simply evaluating the circuit. Our implementation required 1361 rounds and 40.76

KBs of total communication, compared to 3916 rounds and 91.3 KBs for the implementa-

tion of Chapter 7. This is essentially a 3x reduction in the number of rounds, and a 2.25x

reduction in the total amount of communication.

A C++ program that (unverifiably) computes the number of non-zero entries in a vector

x with 220 entries takes less than .01 seconds, and our prover implementation runs more than

1, 700 times longer than this. The reason that the slowdown for the prover relative to an

unverifiable algorithm is larger for Distinct than for MatMult is that Distinct is a “less

arithmetic” problem, in the sense that the size of the arithmetic circuit we use for computing

Distinct is more than 100x larger than the runtime of an unverifiable serial algorithm for
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Table 8.2: Experimental results for Distinct (n = 220) using the protocol of Theorem 8.4.10.

Implementation P Time V Time Rounds Total Circuit

Communication Eval Time

Ch. 7 3400.23 s 0.20 s 3916 91.3 KBs 1.88 s

Thm. 8.4.10 17.28 s 0.20 s 1361 40.76 KBs 1.88 s

the problem. We stress however that, as pointed out in [99], when solving the Distinct

problem in practice, an unverifiable algorithm would first aggregate a data stream into its

frequency-vector representation before determining the number of non-zero frequencies. In

reporting a time bound of .01 seconds for unverifiably solving Distinct, we are not taking

the aggregation time cost into account. For sufficiently long data streams, the slow-down for

our prover relative to an unverifiable algorithm would be much smaller than 1, 700x if we

did take aggregation time into account.

Parallel Implementation

Our serial implementation demonstrates that P experiences a 10x slowdown to provide

the integrity guarantee relative to simply evaluating the circuit without such a guarantee.

The purpose of this section is to demonstrate that parallelization can further mitigate this

slowdown. To this end, we implemented a parallel version of our prover in the context of the

matrix multiplication protocol of Section 8.4. Our parallel implementation uses a graphics

processing unit (GPU).

The high-level idea behind our parallel implementation is the following. Each time we

apply the sum-check protocol to a polynomial g
(i)
z , it suffices for P to evaluate g

(i)
z at a large

number of points r of the form p = (r1, . . . , rj−1, t, bj+1, . . . , bsi+1
) with t ∈ {0, . . . , degj(g

(i)
z )}

and (bj+1, . . . , bsi+1
) ∈ {0, 1}si+1−j. We can perform each of these evaluations independently.
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Thus, we devote a single thread on the GPU to each value of (bj+1, . . . , bsi+1
) ∈ {0, 1}si+1−j

and have that thread evaluate g
(i)
z (r) at each of the degj(g

(i)
z ) + 1 points of the form

(r1, . . . , rj−1, t, bj+1, . . . , bsi+1
) with the help of the C(j−1) and V (j−1) arrays described in

Section 8.4. The one remaining issue is that after each round j of each invocation of the

sum-check protocol, we need to update the arrays, i.e., we need to compute C(j) and V (j).

To accomplish this, we devote a single thread to each entry of C(j) and V (j).

All steps of our parallel implementation achieve excellent memory coalescing, which likely

plays a significant role in the large speedups we were able to achieve. For example, if two

threads are updating adjacent entries of the array V (j), the only memory accesses that the

threads need to perform are to adjacent entries of the array V (j−1).

The results are shown in Table 8.3: we obtained about a 30x speedup for the prover

relative to our serial implementation. As in our GPU experiments of Chapter 7, the reported

prover runtime does count the time required to copy data between the host (CPU) and

the device (GPU), but does not count the time required to evaluate the circuit, which our

implementation does in serial for simplicity. While our implementation evaluates the circuit

serially, this step can in principle be done in parallel one layer at a time, as these circuits

have only logarithmic depth. Notice that when the circuit evaluation runtime is excluded,

our parallel prover implementation runs faster in the case of 512x512 matrix multiplication

than the time required to evaluate the circuit sequentially.

It is possible that we would observe slightly larger speedups at larger input sizes, but our

parallel implementation exhausts the memory of the GPU at inputs larger than 512x512. This

memory bottleneck was also experienced by our GPU implementation of the GKR protocol

described in Chapter 7 and helps motivate the importance of the improved space usage of

the special purpose MatMult protocol we give later in Theorem 8.7.2. For comparison,

the GPU implementation of [99] required 39.6 seconds for 256 x 256 matrix multiplication,
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Table 8.3: Experimental results for n×nMatMult with our parallel prover implementation.

Implementation Problem Size P Time Serial Circuit Eval Time

Theorem 8.4.10, Serial Implementation 256 x 256 4.37 s 0.73 s

Theorem 8.4.10, Parallel Implementation 256 x 256 0.23 s 0.73 s

Theorem 8.4.10, Serial Implementation 512 x 512 37.85 s 6.07 s

Theorem 8.4.10, Parallel Implementation 512 x 512 1.29 s 6.07 s

which is about 175x slower than our parallel implementation.

We also mention that Thaler, Roberts, Mitzenmacher, and Pfister [99] demonstrate that

equally large speedups via parallelization are achievable for the (already fast) computation

of the verifier. These results directly apply to our protocols as well, as the verifier’s runtime

in both implementations is dominated by the time required to evaluate the MLE of the input

at a random point [39,99].

8.6 Verifying General Data Parallel Computations

In this section, our goal is to extend the applicability of the GKR protocol. While the GKR

protocol applies in principle to any function computed by a small-depth circuit, this is not the

case when fine-grained efficiency considerations are taken into account. The implementation

of Chapter 7 required the programmer to express a program as an arithmetic circuit, and

moreover this circuit needed to have a regular wiring pattern, in the sense that the verifier

could efficiently evaluate the polynomials ˜addi and ˜multi at a point. If this was not the case,

the verifier would need to do an expensive (though data-independent) preprocessing phase

to perform these evaluations. Moreover, even for circuits with regular wiring patterns, this

implementation caused the prover to suffer an O(log(S(n))) factor blowup in runtime relative

to evaluating the circuit without a guarantee of correctness. The results of Sections 8.4 and
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8.7 asymptotically eliminate the blowup in runtime for the prover, but they also only apply

when the circuit has a very regular wiring pattern.

The implementation of Vu et al. [104] allows the programmer to express a program in

a high-level language, but compiles these programs into potentially irregular circuits that

require the verifier to incur the expensive preprocessing phase mentioned above, in order for

the verifier to evaluate the polynomials ˜addi and ˜multi at a point. They therefore propose

to apply their system in a “batching” model, where multiple instances of the same sub-

computation are applied independently to different pieces of data. More specifically, their

system applies the GKR protocol independently to each application of the computation, and

relies on the ability of the verifier to use a single ˜addi and ˜multi evaluation for all instances

of the sub-computation, thereby amortizing the cost of this evaluation across the instances.

To clarify, this use of a single ˜addi and ˜multi evaluation for all instances as in [104] is sound

only if all of the instances are checked simultaneously. If the instances are instead verified

one after the other, then P knows V ’s randomness in all but the first instance, and can use

that knowledge to mislead V .

The batching model of Vu et al. is identical to the data parallel setting we consider here.

However, a downside to the solution of Vu et al. is that the verifier’s work, as well as the

total communication cost of the protocol, grows linearly with the “batch size” – the number

of applications of the sub-computation that are being outsourced. We wish to develop a

protocol whose costs to both the prover and verifier grow much more slowly with the batch

size.

8.6.1 Motivation

As discussed above, existing interactive proof protocols for circuit evaluation either apply

only to circuits with highly regular wiring patterns or incur large overheads for the prover and
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Figure 8.2: Schematic of a data parallel computation.

verifier. Here, we show how to mitigate the bottlenecks of existing protocols by leveraging

some general structure underlying many real-world computations. Specifically, the structure

we focus on exploiting is data-parallelism.

By data parallel computation, we mean any setting in which the same sub-computation

is applied independently to many pieces of data, before possibly aggregating the results.

Crucially, we do not want to make significant assumptions on the sub-computation that is

being applied (in particular, we want to handle sub-computations computed by circuits with

highly irregular wiring patterns), but we are willing to assume that the sub-computation

is applied independently to many pieces of data. See Figure 8.2 for a schematic of a data

parallel computation.

We have already seen a very simple example of a data parallel computation: the Distinct

problem. The circuit C from Section 8.4 used to solve this problem takes as input a vector a

and computes aq−1
i mod q for all i (this is the data parallel phase of the computation), before

summing the results (this is the aggregation phase). Notice that if the data stream consists

of a sequence of words, then the Distinct problem becomes the word-count problem, a

classic data parallel application.

By design, the protocol of this section also applies to more complicated data parallel
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computations. For example, it applies to arbitrary counting queries on a database. In a

counting query, one applies some function independently to each row of the database and

sums the results. For example, one may ask “How many people in the database satisfy

Property P?” Our protocol allows one to verifiably outsource such a counting query with

overhead that depends minimally on the size of the database, but that necessarily depends

on the complexity of the property P .

8.6.2 Overview of the Protocol

Let C be a circuit of size S(n) with an arbitrary wiring pattern, and let C∗ be a “super-

circuit” that applies C independently to B different inputs before aggregating the results in

some fashion. For example, in the case of a counting query, the aggregation phase simply

sums the results of the data parallel phase. We assume that the aggregation step is sufficiently

simple that the aggregation itself can be verified using existing techniques, and we focus on

verifying the data parallel part of the computation.

If we naively apply the GKR protocol to the super-circuit C∗, V might have to perform

an expensive pre-processing phase to evaluate the wiring predicate of C∗ at the necessary

locations – this would require time Ω(B·S). Moreover, when applying the basic GKR protocol

to C∗, P would require time Θ (B · S · log(B · S)). A different approach was taken by Vu et

al [104], who applied the GKR protocol B independent times, once for each copy of C. This

causes both the communication cost and V ’s online check time to grow linearly with B, the

number of sub-computations.

In contrast, our protocol achieves the best of both prior approaches. We observe that

although each sub-computation C can have a very complicated wiring pattern, the circuit

is maximally regular between sub-computations, as the sub-computations do not interact at

all. Therefore, each time the basic GKR protocol would apply the sum-check protocol to a
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polynomial derived from the wiring predicate of C∗, we can instead use a simpler polynomial

derived only from the wiring predicate of C. By itself, this is enough to ensure that V ’s pre-

processing phase requires time only O(S), rather than O(B ·S) as in a naive application of the

basic GKR protocol. That is, the cost of V ’s pre-processing phase is essentially proportional

to the cost of applying the GKR protocol only to C, not to the super-circuit C∗.

Furthermore, by combining this observation with the methods of Section 8.4, we can

bring the runtime of P down to O(B · S · logS). That is, the blowup in runtime suffered

by the prover, relative to performing the computation without a guarantee of correctness, is

just a factor of logS – the same as it would be if the prover had run the basic GKR protocol

on a single instance of the sub-computation.

8.6.3 Technical Details

Notation

Let C be an arithmetic circuit over F of depth d and size S with an arbitrary wiring

pattern, and let C∗ be the circuit of depth d and size B · S obtained by laying B copies of

C side-by-side, where B = 2b is a power of 2. We assume that the in-neighbors of all of the

Si gates at layer i can be enumerated in O(Si) time. We will use the same notation as in

Section 8.4, using ∗’s to denote quantities referring to C∗. For example, layer i of C has size

Si = 2si and gate values specified by the function Vi, while layer i of C∗ has size S∗i = 2s
∗
i

and gate values specified by the function V ∗i . We denote the length of the input to C∗ by

n∗ = Bn.

Main Theorem

Our main theorem gives a protocol for compute Ṽ ∗1 (z), for any point z ∈ Fs∗1 . The idea

is that the verifier would first apply simpler techniques (such as the protocol of Theorem

232



8.4.10) to the aggregation phase of the computation to obtain a claim about Ṽ ∗1 (z), and

then use our main theorem to verify this claim. Hence, in principle V need not look at the

entire output of the data parallel phase, only the output of the aggregation phase, which we

anticipate to be much smaller.

Theorem 8.6.1. For any point z ∈ Fs∗1 , there is a valid interactive proof protocol for com-

puting Ṽ ∗1 (z) with the following costs. V spends O(S) time in a pre-processing phase, and

O(n∗log n∗+d·log(B·S)) time in an online verification phase, where the n∗ log n∗ term is due

to the time required to evaluate the multilinear extension of the input to C∗ at a point. P

runs in total time O(S ·B · logS). The total communication is O(d · log(B ·S)) field elements.

Proof. Consider layer i of C∗. Let p = (p1, p2) ∈ {0, 1}si × {0, 1}b be the label of a gate

at layer i of C∗, where p2 specifies which “copy” of C the gate is in, while p1 designates

the label of the gate within the copy. Similarly, let ω = (ω1, ω2) ∈ {0, 1}si+1 × {0, 1}b and

γ = (γ1, γ2) ∈ {0, 1}si+1 × {0, 1}b be the labels of two gates at layer i+ 1.

It is straightforward to check that for all (p1, p2) ∈ {0, 1}si × {0, 1}b,

V ∗i (p1, p2) =
∑

ω1∈{0,1}si+1

∑
γ1∈{0,1}si+1

g(i)
z (p1, p2, ω1, γ1),

where

g(i)
z (p1, p2, ω1, γ1) = βs∗i (z, (p1, p2))·(

˜addi(p1, ω1, γ1)
(
Ṽ ∗i+1(ω1, p2)+Ṽ ∗i+1(γ1, p2)

)
+ ˜multi(p1, ω1, γ1)Ṽ ∗i+1(ω1, p2)·Ṽ ∗i+1(γ1, p2)

)

Essentially, this equation says that an addition (respectively, multiplication) gate p =

(p1, p2) ∈ {0, 1}si+b is connected to gates ω = (ω1, ω2) ∈ {0, 1}si+1+b and γ = (γ1, γ2) ∈

{0, 1}si+1+b if and only if p, ω, and γ are all in the same copy of C, and p is connected to ω

and γ within the copy.
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Lemma 8.4.1 then implies that for any z ∈ Fs∗i ,

Ṽ ∗i (z) =
∑

(p1,p2,ω1,γ1)∈{0,1}si×{0,1}b×{0,1}si+1×{0,1}si+1

g(i)
z (p1, p2, ω1, γ1).

Thus, in iteration i of our protocol, we apply the sum-check protocol to the polynomial

g
(i)
z . The communication costs of this protocol are immediate.

Costs for V. In order to run her part of the sum-check protocol of iteration i, V only needs

to perform the required checks on each of P ’s messages. V ’s check requires O(1) time in

each round of the sum-check protocol except the last. In the last round of the sum-check

protocol, V must evaluate the polynomial g
(i)
z at a single point. This requires evaluating βs∗i ,

˜addi, ˜multi, and Ṽ ∗i+1 at a constant number of points. The Ṽ ∗i+1 evaluations are provided by

P in all iterations i of the protocol except the last, while the βs∗i evaluation can be done in

O(log(B · S)) time.

The ˜addi and ˜multi computations can be done in pre-processing in time O(Si) by enu-

merating the in-neighbors of each of the Si gates at layer i. Adding up the pre-processing

time across all iterations i of our protocol, V ’s pre-processing time is O(
∑

i Si) = O(S) as

claimed.

In the final iteration of the protocol, P no longer provides the Ṽ ∗i+1 evaluation for V ;

instead, V must evaluate the multilinear extension of the input at a point on her own. This

can be done in a streaming manner using O(log n∗ log |F|) bits of space in time O(n∗ log n∗).

The time cost for V in the online phase follows.

Costs for P. It remains to show that P can perform the required computations in iteration

i of the protocol in time O((Si + Si+1) · B · log(S)). To this end, notice g
(i)
z is a polynomial

in v := si + 2si+1 + b variables. We order the sum in this sum-check protocol so that the

si + 2si+1 variables in p1, ω1, and γ1 are bound first in arbitrary order, followed by the

variables of p2. P can compute the prescribed messages in the first si + 2si+1 = O(logS)
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rounds exactly as in the implementation of Chapter 7. They show that each gate at layers

i and i + 1 of C∗ contributes to exactly one term in the sum defining P ’s message in any

given round of the sum-check protocol, and moreover the contribution of a given gate can

be determined in O(1) time. Hence the total time devoted required by P to handle these

rounds is O(B · (Si + Si+1) · logS). It remains to show how P can compute the prescribed

messages in the final b rounds of the sum-check protocol while investing O((Si + Si+1) · B)

across all rounds of the protocol.

Recall that in order to compute P ’s message in round j of the sum-check protocol applied

to g
(i)
z , it suffices for P to evaluate g

(i)
z at 2v−j points of the form (r1, . . . , rj−1, t, bj+1, . . . , bv),

with t ∈ {0, . . . , degj(g
(i)
z )} and (bj+1, . . . , bv) ∈ {0, 1}v−j. Each of these evaluations of g

(i)
z

can be computed in O(1) time given the evaluations of βs∗i , ˜addi, ˜multi, and Ṽ ∗i+1 at the

relevant points.

Notice that once the variables in p1, ω1, and γ1 are bound to specific values, say r
(p)
1 , r

(ω)
1 ,

and r
(γ)
1 , ˜addi(p1, ω1, γ1) and ˜multi(p1, ω1, γ1) are themselves bound to specific values, namely

˜addi(r
(p)
1 , r

(ω)
1 , r

(γ)
1 ) and ˜multi(r

(p)
1 , r

(ω)
1 , r

(γ)
1 ). So P only needs to evaluate these polynomials

once, and both of these evaluations can be computed by P in O(Si) time. Thus, the ˜addi,

˜multi evaluations in the last b rounds require just O(Si) time in total.

P can evaluate the function βs∗i at the relevant points exactly as in the proof of Theorem

8.4.10 using the C(j) arrays to ensure that this computation is done quickly. The array C(0)

has size 2s
∗
i = O(Si · B), and C(j−1) gets updated to C(j) whenever a variable in p1 or

p2 becomes bound. This ensures that across all rounds of the sum-check protocol, the βs∗i

evaluations require O(Si ·B) time in total.

Likewise, the Ṽ ∗i+1 evaluations can be handled exactly as in Theorem 8.4.10, using the

the V (j) arrays to ensure that this computation is done quickly. The array V (0) has size

2s
∗
i+1 = O(Si+1 · B), and V (j−1) gets updated to V (j) whenever a variable in ω1 becomes
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bound (and similarly for the variables in γ1). This ensures that across all rounds of the

sum-check protocol, the Ṽ ∗i+1 evaluations take O((Si + Si+1) ·B) in total.

Reducing to Verification of a Single Point. After executing the sum-check protocol

at layer i as described above, V is left with a claim about Ṽi+1(ω1, p2) and Ṽi+1(γ1, p2), for

ω1, γ1 ∈ Fsi , and p2 ∈ Fb. This requires P to send Ṽi+1(`(t)) for a canonical line `(t) that

passes through (ω1, p2) and (γ1, p2). It is easily seen that Ṽi+1(`(t)) is a univariate polynomial

of degree at most si. Here, we are exploiting the fact that the final b coordinates of (ω1, p2)

and (γ1, p2) are equal.

Hence P can specify Ṽi+1(`(t)) by sending Ṽi+1(`(tj)) for O(si) many points tj ∈ F. Using

the method of Lemma 8.3.1, P can evaluate Ṽi+1 at each point `(tj) in O(Si+1) time, and

hence can perform all Ṽi+1(`(tj)) evaluations in O(Si+1 · si) = O(Si+1 · logS) time in total.

This ensures that across all iterations of our protocol, P devotes at most O(S · B · logS)

time to the “reducing to verification of a single point” phase of the protocol. This completes

the proof.

In practice we would expect the results of the data parallel phase of computation repre-

sented by the super-circuit C∗ to be aggregated in some fashion. We assume this aggregation

step is amenable to verification via other techniques. In the case of counting queries, the

aggregation step simply sums the outputs of the data parallel step, which can be handled

via Theorem 8.4.10, or slightly more efficiently via Proposition 8.7.1 described below in

Section 8.7. More generally, if this aggregation step is computed by a circuit C ′ of size

O(S · B · logS/ logB) such that V can efficiently evaluate the multilinear extension of the

wiring predicate of C ′, then we can simply apply the basic GKR protocol to C ′ with asymp-

totic costs smaller than those of the protocol described in Theorem 8.6.1. This application

of the GKR protocol to C ′ ends with a claim about the value of Ṽ ∗1 (z) for some z ∈ Fs∗1 . The
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verifier can then invoke the protocol of Theorem 8.6.1 to verify this claim.

We stress that the protocol of Theorem 8.6.1 can be applied if there are multiple data

parallel stages interleaved with aggregation stages.

8.7 Extensions

In this section we describe two final optimizations that are much more specialized than

Theorems 8.4.10 and 8.6.1, but have a significant effect in practice when they apply. In

particular, Section 8.7.2 culminates in a protocol for matrix multiplication that is of interest

in its own right. It is hundreds of times faster than the protocol implied by Theorem 8.4.10

and studied experimentally in Section 8.5.

8.7.1 Binary Tree of Addition Gates

Cormode et al. [57] describe an optimization that applies to any circuit C with a single

output that culminates in a binary tree of addition gates; at a high level, they directly apply

a single sum-check protocol to the entire binary tree, thereby treating the entire tree as

a single addition gate with very large fan-in. In contrast, the optimization described here

applies to circuits with multiple outputs and allows the binary tree of addition gates to occur

anywhere in the circuit, not just at the layers immediately preceding the output.

At first blush, our optimization might seem quite specialized since it only applies to

circuits with a specific wiring pattern. However, this is one of the most commonly occurring

wiring patterns, as evidenced by its appearance within the circuits computing MatMult,

Distinct, Pattern Matching, and counting queries. Notice that our optimization also applies

to verifying multiple independent instances of any problem with a single output whose circuit

ends with a binary tree of sum-gates, such as verifying the number of distinct items in
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multiple distinct data streams, or posing multiple separate counting queries to a database.

This is because, similar to Theorem 8.6.1, one can lay the circuits for each of the individual

problem instances side-by-side and treat the result as a single “super-circuit” culminating in

a binary tree of addition gates with multiple outputs.

The starting point for our optimization is the observation that in order to verify that P

has correctly evaluated a circuit with many output gates, P may simply send V the (claimed)

values of all output gates, thereby specifying a function V ′1 : {0, 1}s1 → F claimed to equal

V1. V can pick a random point z ∈ Fs1 and evaluate Ṽ ′1(z) on her own in O(S1) time. The

Schwartz-Zippel Lemma (Lemma 2.2.1) implies that it is safe for V to believe that V1 is

as claimed as long as Ṽ1(z) = Ṽ ′1(z). Our protocol as described in Section 8.4 would then

proceed in iterations, with one iteration per layer of the circuit and one application of the

sum-check protocol per iteration. This would ultimately reduce P ’s claim about the value of

Ṽ1(z) to a claim about Ṽd(z
′) for some z′ ∈ Fsd , where d is the input layer of the circuit.

Instead, our final refinement uses a single sum-check protocol to directly reduce P ’s claim

about Ṽ1(z) to a claim about Ṽd(z
′) for some random points z′ ∈ Fsd .

Proposition 8.7.1. Let C be a depth-d circuit consisting of a binary tree of addition gates,

2k inputs, and 2k−d outputs. For any points z ∈ Fk−d, Ṽ1(z) =
∑

p∈{0,1}k gz(p), where

gz(p) = Ṽd(z, pk−d+1, . . . , pk).

Proof. At layer i of C, the gate with label p ∈ {0, 1}si is the sum of the gates with labels (p, 0)

and (p, 1) at layer i+ 1. It is then straightforward to observe that the for any p ∈ {0, 1}k−d,

the pth output gate has value

V1(p1, . . . , pk−d) =
∑

(pk−d+1,...,pd)∈{0,1}d
Ṽd(p1, . . . , pk−d, pk−d+1, . . . , pk). (8.4)

Notice that the right hand side of Equation (8.4) is a multilinear polynomial in the variables

(p1, . . . , pk−d) that agrees with V1(p1, . . . , pk−d) at all Boolean inputs. Hence, the right hand
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Table 8.4: Experimental results for n× n MatMult, with and without the refinement of Section 8.7.1.

Implementation Problem P Time V Time Rounds Total Circuit

Size Communication Eval Time

Thm. 8.4.10 256 x 256 4.37 s 0.02 s 190 4.4 KBs 0.73 s

Prop. 8.7.1 256 x 256 2.52 s 0.02 s 35 0.76 KBs 0.73 s

Thm. 8.4.10 512 x 512 37.85 s 0.10 s 236 5.48 KBs 6.07 s

Prop. 8.7.1 512 x 512 22.98 s 0.10 s 39 0.86 KBs 6.07 s

As in Table 8.1, the Total Communication column does not count the n2 field elements required to specify

the answer.

side is the (unique) multilinear extension Ṽ1 of the function V1 : {0, 1}k−d → {0, 1}. The

theorem follows.

In applying the sum-check protocol to the polynomial gz in Proposition 8.7.1, it is straight-

forward to use the methods of Section 8.4.4 to implement the honest prover in time O(2k).

We omit the details for brevity.

Experimental Results. Let C be the circuit for naive matrix multiplication described in

Section 8.4.5. To demonstrate the efficiency gains implied by Proposition 8.7.1, we modified

our MatMult implementation of Section 8.5.2 to use the protocol of Proposition 8.7.1 to

verify the sub-circuit of C consisting of a binary tree of addition gates. The results are

shown in Table 8.4. Our optimizations in this section shave P ’s runtime by a factor of 1.5x-

2x, the total number of rounds by a factor of more than 5, and the total communication (not

counting the cost of specifying the output of the circuit) by a factor of more than 5.

8.7.2 Optimal Space and Time Costs for MatMult

We describe a final optimization here on top of Proposition 8.7.1. While this optimiza-

tion is specific to the MatMult problem, its effects are substantial and the underlying

observation may be more broadly applicable.
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Suppose we are given an unverifiable algorithm for n × n matrix multiplication that

requires time T (n) and space s(n). Our refinements reduce the prover’s runtime from O(n3)

in the case of Sections 8.4 and 8.7.1 to T (n) + O(n2), and lowers P ’s space requirement

to s(n) + o(n2). That is, in the protocol the prover sends the correct output and performs

just O(n2) more work to provide a guarantee of correctness on top. It is irrelevant what

algorithm the prover uses to arrive at the correct output – in particular, algorithms much

more sophisticated than naive matrix multiplication are permitted. This runtime and space

usage for P are optimal even up to the leading constant assuming matrix multiplication

cannot be computed in O(n2) time.

The final protocol is extremely natural, as it consists of a single invocation of the sum-

check protocol. We believe this protocol is of interest in its own right. The proof and technical

details are in Section 8.7.2.

Theorem 8.7.2. There is a valid interactive proof protocol for n× n matrix multiplication

over the field Fq with the following costs. The communication cost is n2 + O(log n) field

elements. The runtime of the prover is T (n) + O(n2) and the space usage is s(n) + o(n2),

where T (n) and s(n) are the time and space requirements of any (unverifiable) algorithm for

n× n matrix multiplication. The verifier can make a single streaming pass over the input as

well as over the claimed output in time O(n2 log n), storing O(log n) field elements.

Using the observation of Vu et al. described in Lemma 8.3.1, the runtime of the verifier can

be brought down to O(n2) at the cost of increasing V ’s space usage to O(n2). Furthermore,

by Remark 4, the runtime of the verifier can be brought down to O(n2) while maintaining

the streaming property if the input matrices are presented in row-major order.

The prover’s runtime in Theorem 8.7.2 is within an additive low-order term of any unver-

ifiable algorithm for matrix multiplication; this is essential in many practical scenarios where

even a 2x slowdown is too steep a price to pay for verifiability. Notice also that the space
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usage bounds in Theorem 8.7.2 are in stark contrast to protocols based on circuit-checking:

the prover in a general circuit-checking protocol may have to store the entire circuit, and

this can result in space requirements that are much larger than those of an unverifiable al-

gorithm for the problem. For example, naive matrix multiplication requires time O(n3), but

only O(n2) space, while the provers in our MatMult protocols of Sections 8.4 and 8.7.1

require both space and time O(n3). As implementations of interactive proofs become faster,

the prover is likely to run out of space long before she runs out of time.

Comparison to Prior Work

It is worth comparing Theorem 8.7.2 to a well-known protocol due to Freivalds [53]. Let

D∗ denote the claimed output matrix. In Freivalds’ algorithm, the verifier stores a random

vector x ∈ Fn, and computes D∗x and ABx, accepting if and only if ABx = D∗x. Freivalds

showed that this is a valid protocol. In both Freivalds’ protocol and that of Theorem 8.7.2,

the prover runs in time T (n) +O(n2) (in the case of Freivalds’ algorithm, the O(n2) term is

0), and the verifier runs in linear or quasilinear time.

We now highlight several properties of our protocol that are not achieved by prior work.

Utility as a Primitive. A major advantage of Theorem 8.7.2 relative to prior work is its

utility as a primitive that can be used to verify more complicated computations. This is

important as many algorithms repeatedly invoke matrix multiplication as a subroutine. For

concreteness, consider the problem of computing A2k via repeated squaring. By iterating the

protocol of Theorem 8.7.2 k times, we obtain a valid interactive proof protocol for computing

A2k with communication cost n2 +O(k log(n)). The n2 term is due simply to specifying the

output A2k , and can often be avoided in applications – see for example the diameter protocol

described two paragraphs hence. The ith iteration of the protocol for computing A2k reduces a

claim about an evaluation of the multilinear extension of A2k−i+1
to an analogous claim about

241



A2k−i
. Crucially, the prover in this protocol never needs to send the verifier the intermediate

matrices A2k
′

for k′ < k. In contrast, applying Freivalds’ algorithm to this problem would

require O(kn2) communication, as P must specify each of the intermediate matrices A2i .

The ability to avoid having P explicitly send intermediate matrices is especially important

in settings where an algorithm repeatedly invokes matrix multiplication, but the desired

output of the algorithm is smaller than the size of the matrix. In these cases, it is not

necessary for P to send any matrices; P can instead send just the desired output, and V can

use Theorem 8.7.2 to check the validity of the output with only a polylogarithmic amount

of additional communication. This is analogous to how the verifier in the GKR protocol

can check the values of the output gates of a circuit without ever seeing the values of the

“interior” gates of the circuit.

As a concrete example illustrating the power of our matrix multiplication protocol, con-

sider the fundamental problem of computing the diameter of an unweighted (possibly di-

rected) graph G on n vertices. Let A denote the adjacency matrix of G, and let I denote the

n × n identity matrix. Then it is easily verified that the diameter of G is the least positive

number d such that (A + I)dij 6= 0 for all (i, j). We therefore obtain the following natural

protocol for diameter. P sends the claimed output d to V , as well as an (i, j) such that

(A+ I)d−1
ij = 0. To confirm that d is the diameter of G, it suffices for V to check two things:

first, that all entries of (A+ I)d are non-zero, and second that (A+ I)d−1
ij is indeed non-zero.

The first task is accomplished by combining our matrix multiplication protocol of The-

orem 8.7.2 with our Distinct protocol from Theorem 8.4.10. Indeed, let dj denote the jth

bit in the binary representation of d. Then (A+ I)d =
∏dlog de

j (A+ I)dj2j , so computing the

number of non-zero entries of (A + I)d can be computed via a sequence of O(log d) matrix

multiplications, followed by a Distinct computation. The second task, of verifying that

(A + I)d−1
ij = 0, is similarly accomplished using O(log d) invocations of the matrix multi-
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plication protocol of Theorem 8.7.2 – since V is only interested in one entry of (A + I)d−1,

P need not send the matrix (A + I)d−1 in full, and the total communication here is just

polylog (n).

V ’s runtime in this diameter protocol is O(m log n), where m is the number of edges in G.

P ’s runtime in the above diameter protocol matches the best known unverifiable diameter

algorithm up to a low-order additive term [89,107], and the communication is just polylog (n).

We know of no other protocol achieving this.

As discussed above, the fact that P ’s slowdown is a low-order additive term is critical

in the many settings in which even a 2x slowdown to achieve verifiability is unacceptable.

Moreover, for a graph with n = 1 million nodes, the total communication cost of the above

protocol is on the order of KBs – in contrast, if P had to send the matrices (I + A)d or

(I +A)d−1 explicitly (as required in prior work e.g. Cormode et al. [40]), the communication

cost would be at least n2 = 1012 words, which translates to terabytes of data.

Small-Space Streaming Verifiers. In Freivalds’ algorithm, V has the store the random

vector x, which requires Ω(n) space. There are methods to reduce V ’s space usage by gener-

ating x with limited randomness: Kimbrel and Sinha [68] show how to reduce V ’s space to

O(log n), but their solution does not work if V must make a streaming pass over arbitrarily

ordered input. In Theorem 3.10.2, we extended the method of Kimbrel and Sinha to work

with a streaming verifier, but this requires P to play back the input matrices A,B in a

special order, increasing proof length to 3n2. Our protocol works with a streaming verifier

using O(log n log |F|) bits of space, and our proof length is n2 +O(log n), where the n2 term

is due to specifying AB and can be avoided in applications such as the diameter example

considered above.
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Protocol Details

The idea behind the optimization is as follows. All of our earlier circuit-checking protocols

only make use of the multilinear extension Ṽi of the function Vi mapping gate labels at layer

i of the circuit to their values. In some cases, there is something to be gained by using a

higher-degree extension of Vi, and this is precisely what we exploit here. By using a higher-

degree extension of the gate values in the circuit, we are able to apply the sum-check protocol

to a polynomial that differs from the one used in Section 8.4. In particular, the polynomial

we use here avoids referencing the βsi polynomial used in Section 8.4. Details follow.

When multiplying matrices A and B such that AB = D, let A(i, j), B(i, j) and D(i, j)

denote functions from {0, 1}logn × {0, 1}logn → Fq that map input (i, j) to Aij, Bij, and Dij

respectively. Let Ã, B̃, and D̃ denote their multilinear extensions.

Lemma 8.7.3. For all (p1, p2) ∈ Flogn × Flogn,

D̃(p1, p2) =
∑

p3∈{0,1}logn

Ã(p1, p3) · B̃(p3, p2)

Proof. For all (p1, p2) ∈ {0, 1}logn × {0, 1}logn, the right hand side is easily seen to equal

D(p1, p2), using the fact that Dij =
∑

k AikBkj and the fact that Ã and B̃ agree with

the functions A(i, j) and B(i, j) at all Boolean inputs. Moreover, the right hand side is a

multilinear polynomial in the variables of (p1, p2). Putting these facts together implies that

the right hand side is the unique multilinear extension of the function D(i, j).

Lemma 8.7.3 implies the following valid interactive proof protocol for matrix multiplica-

tion: P sends a matrix D∗ claimed to equal the product D = AB. V evaluates D̃∗(r1, r2)

at a random point (r1, r2) ∈ Flogn × Flogn. By the Schwartz-Zippel lemma, it is safe for V

to believe D∗ is as claimed, as long as D̃∗(r1, r2) = D̃(r1, r2) (formally, if D∗ 6= D, then

D̃∗(r1, r2) 6= D̃(r1, r2) with probability 1 − 2 log n/q). In order to check that D̃∗(r1, r2) =

D̃(r1, r2), we invoke a sum-check protocol on the polynomial gr1,r2(p3) = Ã(r1, p3) · B̃(p3, r2).
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V ’s final check in this protocol requires her to compute gr1,r2(r3) for a random point

r3 ∈ Flogn. V can do this by evaluating both of Ã(r1, r3) and B̃(r3, r2) with a single streaming

pass over the input, and then multiplying the results.

The prover can be made to run in time T (n) +O(n2) across all rounds of the sum-check

protocol using the V (j) arrays described in Section 8.4 to quickly evaluate Ã and B̃ at all of

the necessary points. The V (j) arrays are initialized in round 0 to equal the input matrices

themselves, and there is no need for P to maintain an “uncorrupted” copy of the original

input (though in practice this may be desirable). Thus, the V (j) arrays can be computed

using the storage P initially devoted to the inputs, and P needs to store just O(1) additional

field elements over the course of the protocol (P does not even need to store the messages

sent by V , as P need not refer to the jth message once the array V (j) is computed). The

claimed s(n) + o(n2) space usage bound for P follows.

Remark 11. Let C be the circuit for naive matrix multiplication described in Section 8.4.

Notice that the 3 log n-variate polynomial h(p1, p2, p3) = Ã(p1, p3) · B̃(p3, p2) extends the

function Vi mapping gate labels at layer i = log n of C to their values. However, h is not the

multilinear extension of Ṽi, as h has degree two in the variables of p3.

Informally, Theorem 8.7.2 cannot be said to perform “circuit checking” on C, since it is

not necessary for P to evaluate all of the gates in C; indeed, the prover in Theorem 8.7.2

can run in sub-cubic time using fast matrix multiplication algorithms. However, the use of

a low-degree extension of the gate values at layer log n of C allows one to view the protocol

of Theorem 8.7.2 as a direct extension of the circuit-checking methodology.

Remark 12. Consider the problem of computing a matrix power M2k via repeated squaring.

We may apply the protocol of Theorem 8.7.2 in k iterations, with the ith iteration applied to

inputs A = B = M2k−i
. The ith iteration of this protocol reduces a claim about an evaluation

of the multilinear extension of M2k−i+1
to an analogous claim about the multilinear extension
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of M2k−i
at two points of the form (r1, r3), (r3, r2) ∈ Flogn×logn. We can further reduce the

claims about (r1, r3), (r3, r2) to a claim about a single point exactly as in the “Reducing to

Verification of a Single Point” step of the GKR protocol. We then move onto iteration i+ 1.

Notice in particular that the verifier only needs to observe the output matrix M2k and the

input matrix M to run this protocol; in particular, P does not need to explicitly send the

intermediate matrices M2k−i
to V .

We implemented the protocol just described (our implementation is sequential). The

results are shown in Table 8.5, where the column labelled “Additional Time for P” denotes

the time required to compute P ’s prescribed messages after P has already computed the

correct answer. We report the naive matrix multiplication time both when the computation

is done using standard multiplication of 64-bit integers, as well as when the computation

is done using finite field arithmetic over the field with q = 261 − 1 elements. The reported

verifier runtime is for the O(n2 log n) time reported in Theorem 8.7.2. The verifier’s runtime

could be improved using Lemma 8.3.1 at the cost of increasing V ’s space usage to O(n),

but we did not implement this optimization. Moreover, if the input matrices are presented

in row-major order, then the observation of Vu et al. described in Remark 4 improves V ’s

runtime with no increase in space usage.

The main takeaways from Table 8.5 are that the verifier does indeed save substantial

time relative to performing matrix multiplication locally, and that the runtime of the prover

is hugely dominated by the time required simply to compute the answer.

8.8 Discussion

We believe our results substantially advance the goal of achieving a truly practical general

purpose implementation of interactive proofs. The O(logS(n)) factor overhead in the runtime
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Table 8.5: Experimental results for the n× n MatMult protocol of Theorem 8.7.2.

Implementation Problem Naive Matrix Additional Time for P V Time Rounds

Size Multiplication Time

Thm. 8.7.2 210 × 210 2.17 s over Z 0.03 s 0.67 s 11

9.11 s over Fq
Thm. 8.7.2 211 × 211 18.23 s over Z 0.13 s 2.89 s 12

73.65 s over Fq

of the prover within prior implementations of the GKR protocol is too steep a price to pay in

practice, and our refinements (formalized in Theorem 8.4.10) remove this logarithmic factor

overhead for circuits with regular wiring patterns. Our experiments demonstrate that this

protocols yields a prover that is less than 10x slower than a C++ program that simply eval-

uates the circuit, and that our protocols are highly amenable to parallelization. Exploiting

similar ideas, we have also extended the reach of prior interactive proof protocols by describ-

ing an efficient protocol (formalized in Theorem 8.6.1) for general data parallel computation,

and given a protocol for matrix multiplication in which the prover’s overhead (relative to any

unverifiable algorithm) is just a low-order additive term. The latter is a powerful primitive

for verifying the many algorithms that repeatedly invoke matrix multiplication. A major

message of our results is that the more structure that exists in a computation, the more

efficiently it can be verified, and that this structure exists in many real-world computations.

We believe two directions in particular are worthy of future work. The first direction

is to build a full-fledged system implementing our protocol for data parallel computation.

Our vision is to combine our protocol with a high-level programming language allowing the

programmer to easily specify data parallel computations, analogous to frameworks such as

MapReduce. Any such program could be automatically compiled in the manner of Vu et

al. [104] into a circuit, and our protocol could be run automatically on that circuit. The
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second direction is to further enable such a compiler to automatically take advantage of our

other refinements, which are targeted at computations that are not necessarily data parallel.

These refinements apply to a circuit on a layer-by-layer basis, so they may yield substantial

speedups in practice even if they apply only to a subset of the layers of a circuit.
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Chapter 9

Conclusion

In this thesis, we introduced two new models, dubbed annotated data streams and stream-

ing interactive proofs, for verifiably outsourcing computations on data streams. Both models

require the verifier to process the input within the confines of the data streaming paradigm,

a restriction that fits the cloud computing setting well, as the verifier’s streaming pass over

the input can occur while uploading data to the cloud. By utilizing and extending algebraic

techniques developed in the interactive proofs literature, we developed highly efficient proto-

cols in both models and demonstrated their practicality in many cases via implementations.

We believe the general-purpose protocols developed in Chapters 7 and 8 have the largest

potential for practical impact.

9.1 Related Work

In contrast to the work on interactive proofs described in this thesis, all parallel lines

of work have focused on the development of argument systems, which are interactive proofs

that are only secure against polynomial time adversaries. That is, in an argument system

the soundness property is only required to hold against polynomial time provers; it may
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be possible for inefficient provers to convince the verifier to accept an incorrect answer.

Typically, argument systems utilize cryptographic machinery, and an inefficient prover may

be able to “break” the machinery and thereby trick the verifier.

Theoretical Work. A substantial body of theoretical work in this area has focused on the

development of protocols targeted at specific problems (e.g. [15, 19, 51]). Other theoretical

works have focused on the development of general-purpose argument systems. Several pa-

pers in this direction (e.g. [16, 33, 34, 55]) have used fully homomorphic encryption, which

unfortunately remains impractical despite substantial recent progress. Work in this category

by Chung et al. [33] focuses on streaming settings, and is therefore particularly relevant to

our work in this thesis.

Works Refining Theory Toward Implementation. In parallel with the work reported on

in this thesis, several other research groups from multiple communities have also been work-

ing toward the development of practical general-purpose protocols for verifying outsourced

computations. Interestingly, each of these approaches achieves a different tradeoff between

efficiency and applicability/functionality. The approaches are therefore likely to prove highly

complementary: users of protocols for verifiable computation will choose the most efficient

approach that has the “features” they require, and that applies to the class of computations

they are outsourcing. We give a brief summary and comparison of the existing approaches,

before briefly describing where we think this area of research should head next.

All existing work in this category is based on probabilistically-checkable proofs (PCPs).

In a PCP, the prover generates a static proof (which may be long), but the verifier only needs

to inspect a small number of randomly chosen bits of the proof in order to determine with

high probability whether or not the proof is valid. PCPs can be combined with cryptographic

machinery to yield efficient argument systems.

The first line of work that sought to develop a practical implementations of general-
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purpose argument systems is due to Setty et al. [90–92]. They begin with a base argument

system due to Ishai et al. [66] and substantially refine the theory to achieve an implementation

that approaches practicality. The most recent system developed in this line of work is called

Zaatar [92, 104]. A related line of work is due to Parno et al. [82], who describe a general-

purpose implementation, called Pinocchio, of an argument system proposed by Genarro et

al. [56]. The works of Setty et al. and Genarro et al. avoid the use of short PCPs, as these

are often a bottleneck in the development of efficient argument systems. In contrast, a line

of work by Ben-Sasson et al. [13, 14] focuses on the development of short PCPs that might

be suitable for use in practice – such PCPs can be combined with standard cryptographic

tools to yield interactive arguments.

9.2 Comparison With Other Approaches

We now provide a detailed comparison between the approach taken in this thesis and

the parallel projects on argument systems that have attempted to refine theory toward

implementation. The interactive proof protocols developed in this thesis are the most efficient

when they are applicable: in [104], Vu et al. empirically compare the protocol developed

in Chapter 7 (with some additional refinements) to Zaatar and find our approach to be

significantly more efficient for quasi-straight-line computations (e.g., programs with relatively

simple control flow), while Zaatar is appropriate for programs with more complicated control

flow. The main reasons for the superior efficiency of our approach in those cases is that it

avoids the use of cryptography (which can be expensive), and it avoids pre-processing for

regular circuits. Furthermore, for certain extremely important computations such as matrix

multiplication, our approach is unique in its ability to avoid representing the computation as

a circuit, thereby reducing the overhead for the prover to additive low-order terms. The main
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disadvantages of our approach are that it applies only to small-depth computations, since

the cost to the verifier grows linearly with circuit depth, and that we cannot support “non-

deterministic reductions”, which can be useful for turning high-level programs into small

circuits [13, 91]. Essentially, support for non-deterministic reductions means that, unlike

interactive proofs, the argument systems developed by Parno et al., Setty et al., and Ben-

Sasson et al. can be run on non-deterministic circuits – i.e., circuits that “take advice” –

without the prover having to explicitly send the advice inputs to the verifier. Very recent

implementation work by Braun et al. also exploits the ability of these argument systems to

support circuits that take advice [20].

The approach taken in Zaatar [92, 104] is the second most efficient, followed closely by

Pinocchio [82] (the underlying machinery of these two systems is closely related). Vu et

al. [104] estimate that Pinocchio is more expensive than Zaatar by small constant factors

in terms of both the prover’s runtime and the verifier’s per-instance costs, but Pinocchio

achieves several features not shared by Zaatar or the general-purpose protocols in this thesis,

including non-interactivity, public verifiability, unbounded query reuse, and support for zero-

knowledge. While more general than interactive proofs in terms of their support for non-

deterministic reductions and applicability to deep circuits, these systems inherently require

an expensive pre-processing phase for the verifier.

In contrast, the approach of Ben-Sasson et al. [13, 14] never requires expensive pre-

processing for the verifier, at least asymptotically. However, the overhead for the prover

may be substantially higher than with other approaches – at the time of writing, definite

conclusions cannot be drawn, as experimental results from this approach are not yet avail-

able.

We conclude that each of the approaches to verifiable computation being pursued thus far

achieves a different tradeoff between efficiency, expressiveness, and support for features such
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as public verifiability and zero knowledge properties. This diversity can only be a good thing,

as users will be able to choose the approach that best suits their needs. Moreover, different

approaches have come out of different communities (including the systems, security, and

theory communities) – there has been substantial interplay of ideas across multiple groups,

and it is essential that this continue in the future if the area is to continue to progress.

9.3 Future Directions

A major message of this thesis has been that the more structure that exists in a com-

putation, the more efficiently it can be verified, and that this structure exists in real-world

computations. Fully general-purpose protocol implementations for verifiable computation

already exist and will continue to grow more efficient, but we strongly believe that such

structure must be leveraged to achieve fully practical protocols. For this reason, further ex-

ploration of the kind of structure that can be exploited for efficiency gains in protocols for

verifiable computation is an important direction for future research.

Along these lines, we view the matrix multiplication protocol of Theorem 8.7.2 as par-

ticularly encouraging, as for many problems, the main bottleneck of the protocols developed

in this thesis is in representing the outsourced computation as an arithmetic circuit (i.e.,

already the overhead due to evaluating the circuit verifiably is much smaller than the over-

head in generating the circuit in the first place). The matrix multiplication protocol of of

Theorem 8.7.2 is the most striking example we have of a protocol for an extremely important

algorithmic primitive that completely avoids representing the computation as a circuit, and

consequently reduces the overhead for the prover to low-order additive terms. It would be

very interesting to develop a larger set of primitives that can be verified with overhead that

are just additive low-order terms – this would allow any computation that can be expressed
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as a combination of these primitives to be verified with similarly tiny overhead.

The ultimate goal should be to develop protocols and build systems that can verifiably

execute general computations, but that automatically leverage structure within computa-

tions for efficiency gains. The end result may be a programming framework analogous to

MapReduce: a restricted framework that still allows for the expression of a powerful class of

computations, and automatically “extracts” the structure necessary to verify the computa-

tion efficiently. Determining the right balance between the level of generality to support and

the amount of structure to force upon computations for efficiency gains is perhaps the most

critical long-term direction for the area.
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Appendix A

Deferred Proofs from Chapter 8

A.1 Proof of Theorem 8.4.10

Proof. Consider layer i of the circuit C. Since in
(i)
1 and in

(i)
2 are regular, there is a subset of

input bits Si ⊆ [v] with |Si| = ci for some constant ci such that each input bit in [v]\S affects

O(1) of the output bits of in
(i)
1 and in

(i)
2 . Number the input variables so that the numbers

{1, . . . , ci} correspond to variables in Si.

Let ρ ∈ {0, 1}ci be an assignment to the variables in S, and let Iρ : {0, 1}si → {0, 1}

denote the indicator function for ρ. For example, if ci = 3 and ρ = (1, 0, 1), then Iρ(x) = 1 if

x1 = 1, x2 = 0, and x3 = 1, and Iρ(x) = 0 otherwise. Let Ĩρ denote the multilinear extension

of Iρ. In the previous example, Ĩρ = x1(1 − x2)x3. Finally, let in
(i)
1,ρ and in

(i)
2,ρ denote the

functions in
(i)
1 and in

(i)
2 with the variables in Si fixed to the assignment ρ, and for k ∈ {1, 2},

let bρ,k,j denote the jth output bit of in
(i)
k,ρ.

By regularity, for each assignment ρ ∈ {0, 1}ci to the variables in Si, the jth output

bit bρ,k,j of inkρ depends on only one variable xq(ρ,k,j) ∈ [si] \ Si for some function q(ρ, k, j).

Let b̃ρ,k,j(xq(ρ,k,j)) : F → F denote the multilinear extension of the function bρ,k,j(xq(ρ,k,j)) :

{0, 1} → {0, 1}. If bρ,k,j is not identically 0 or identically 1, then either b̃ρ,k,j(xq(ρ,k,j)) = xq(ρ,k,j)
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or b̃ρ,k,j = 1− xq(ρ,k,j).

For any ρ ∈ {0, 1}si , define ĩn
(i)

1,ρ to be the concatenation of the b̃ρ,1,j functions for all

j ∈ [si+1]. Under this definition, ĩn
(i)

1,ρ is a collection of si+1 linear polynomials, where each

of the polynomials depends on a single variable, and we may view ĩn
(i)

1,ρ as a single function

mapping Fsi to Fsi+1 . We define ĩn
(i)

2,ρ and ˜type
(i)
ρ analogously to ĩn1.

Now let

W (i)(p) =
∑
ρ∈L(i)

Ĩρ(p) ·
(

˜type
(i)
ρ (p) · Ṽi+1

(
ĩn

(i)

1,ρ (p)
)
· Ṽi+1

(
ĩn

(i)

2,ρ (p)
)

+

(
1− ˜typeρ

(i)
(p)
)(

Ṽi+1

(
ĩn

(i)

1,ρ (p)
)

+ Ṽi+1

(
ĩn

(i)

2,ρ (p)
)))

.

It is easily checked that for all p ∈ {0, 1}si , Vi (p) = W (i)(p). Lemma 8.4.1 then implies

that Ṽi(z) =
∑

p∈{0,1}si g
(i)
z (p), where g

(i)
z (p) = βsi(z, p) ·W (i)(p). Our protocol follows pre-

cisely the description of Section 8.4.1, with P and V applying the sum-check protocol to the

polynomial g
(i)
z at iteration i.

Communication Costs and Costs to V. Notice that our polynomial g
(i)
z (p) = β(z, p) ·

W (i)(p) has degree O(1) in each variable. Indeed, β(z, p) has degree 1 in each variable.

Moreover, W (i)(p) is a sum of polynomials that each have degree O(1) in each variable, and

hence W (i)(p) itself has degree O(1) in each variable.

This latter fact can be seen by observing that for each assignment ρ ∈ {0, 1}ci to the

variables in Si, it holds that Ĩρ(p), ˜type
(i)
ρ (p), Ṽi+1

(
ĩn

(i)

1,ρ (p)
)

and Ṽi+1

(
ĩn

(i)

2,ρ (p)
)

all have

constant degree in each variable. That Ṽi+1

(
ĩn

(i)

1,ρ (p)
)

and Ṽi+1

(
ĩn

(i)

2,ρ (p)
)

have constant

degree in each variable follows from the facts that Ṽi+1 is a multilinear polynomial, and that

each input variable j ∈ [si] \ Si affects at most a constant number of outputs for ĩn1,ρ and

ĩn2,ρ by Property 1 of Definition 8.4.8.

Since g
(i)
z (p) has degree O(1) in each variable, the claimed communication cost and the

costs to the verifier follow immediately by summing the corresponding costs of the sum-check
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protocols over all iterations i ∈ {1, . . . , d(n)} (see Section 2.3).

Time Cost for P. It remains to demonstrate how P can compute her prescribed messages

when applying the sum-check protocol to the polynomial g
(i)
z in time O(Si + Si+1). It will

follow that P ’s runtime over all d(n) invocations of the sum-check protocol is O(
∑d(n)

i=1 Si) =

O(S(n)).

As in our analysis of Section 8.4.4, it suffices to show how P can quickly evaluate g
(i)
z at

all points in S(j), where S(j) consists of all points of the form p = (r1, . . . , rj−1, t, pj+1, . . . , psi)

with t ∈ {0, 1, . . . ,degj(g
(i)
z )} and (pj+1, . . . , psi) ∈ {0, 1}si−j. As g

(i)
z (p) = βsi(z, p) ·W (i)(p), it

suffices for P to evaluate βsi(z, ·) and W (·) at all such points p. The βsi(z, ·) computations

can be done in O(Si) total time across all iterations of the sum-check protocol, exactly as in

Section 8.4.4.

To see how P can efficiently evaluate all of the W (i)(p) values efficiently, notice that for

any fixed point p ∈ Fsi , W (i)(p) can be computed efficiently given ˜type
(i)
ρ (p), Ṽi+1(ĩn1,ρ(p)),

and Ṽi+1(ĩn2,ρ(p)) for all ρ ∈ {0, 1}ci . As |Si| = ci = O(1), modulo a constant-factor blowup

in runtime it suffices to explain how to perform these evaluations for a fixed restriction

ρ ∈ {0, 1}ci to the variables in Si.

It is easy to see that ˜type
(i)
ρ (p) can be evaluated in constant time, since this function

depends on only 1 input variable xq(ρ,3,1). All that remains is to show how P can evaluate

Ṽi+1(ĩn1,ρ(p)) quickly; the case for Ṽi+1(ĩn2,ρ(p)) is similar.

To this end, we follow the approach of Section 8.4.4.

Pre-processing. P will begin by computing an array V (0), which is simply defined to be

the vector of gate values at layer i + 1 i.e., identifying a number 0 < j < Si+1 with its

binary representation in {0, 1}si+1 , P sets V (0)[(j1, . . . , jsi+1
)] = Vi+1(j1, . . . , jsi+1

) for each

(j1, . . . , jsi+1
) ∈ {0, 1}si+1 . The right hand side of this equation is simply the value of the jth

gate at layer i + 1 of C. So P can fill in the array V (0) when she evaluates the circuit C,
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before receiving any messages from V .

Overview of Online Processing. Assume without loss of generality that the output bits of

ĩn1,ρ(p) are labelled in increasing order of the input bits they are affected by. So for example

if p1 affects 2 output bits of ĩn1,ρ and p2 affects 3 output bits, then the bits affected by p1

are labelled 1 and 2 respectively, while the bits affected by p2 are labelled 3, 4, and 5.

In round j of of the sum-check protocol, P needs to evaluate the polynomial Ṽi+1 at

the O(2si+1−j) points in the sets ĩn1,ρ(S
(j)) and ĩn2,ρ(S

(j)). P will do this using the help of

intermediate arrays as follows.

Efficiently Constructing V (j) Arrays. Let aj−1 denote the total number of output bits affected

by the first j−1 input variables. Inductively, assume P has computed in the previous round an

array V (j−1) of length 2si+1−aj−1 , such that for each p = (paj−1+1, . . . , psi+1
) ∈ {0, 1}si+1−aj−1 ,

the pth entry of V (j−1) equals

V (j−1)[(paj−1+1, . . . , psi+1)] =

∑
(c1,...,caj−1 )∈{0,1}aj−1

Vi+1(c1, . . . , caj−1 , paj−1+1, . . . , psi+1) ·
j−1∏
k=1

χck(b̃ρ,1,k(rq(ρ,1,k))),

where recall that q(ρ, 1, k) is the input bit that output bit k of in1,ρ depends on. As the base

case, we explained how P can fill in V (0) in the process of evaluating the circuit C.

Let x1, . . . , xsi denote the input variables to in1, and let b1, . . . , bsi+1
denote the outputs

of in1. Intuitively, at the end of round j of the sum-check protocol, P must “bind” input

variable xj to value rj ∈ F. This has the effect of binding the output variables affected by xj,

since each such output variable depends only on xj. For illustration, suppose the variable x1

affects output variable b1; specifically, suppose that b1 = 1− x1. Then binding x1 to value r1

has the effect of binding b1 to value 1− r1. V (j) is obtained from V (j−1) by taking this into

account. We formalize this as follows.

Assume that variable xj affects only one output variable bρ,1,aj−1+1, and thus aj = aj−1+1;
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if this is not the case, we can compute V (j) by applying the following update once for each

output variable affected by xj. Observe that P can compute V (j) given V (j−1) in O(2si+1−aj−1)

time using the following recurrence:

V (j)[(paj+1, . . . , psi+1)] =

V (j−1)[(0, paj+1, . . . , psi+1)] · χ0(b̃ρ,1,aj (rj)) + V (j−1)[(1, paj+1, . . . , psi+1)] · χ1(b̃ρ,1,aj (rj)).

Thus, at the end of round j of the sum-check protocol, when V sends P the value rj, P can

compute V (j) from V (j−1) in O(2si+1−aj−1) time.

Using the V (j) Arrays. We now show how to use the array V (j−1) to evaluate Ṽi+1(ĩn1,ρ(p))

in O(1) time for any point p of the form p=(r1, . . . , rj−1, t, pj+1, . . . , psi) with (pj+1, . . . , psi) ∈

{0, 1}si−j. In order to ease notation in the following derivation, we make the simplifying

assumption that b̃ρ,1,k(xq(ρ,1,k)) = xq(ρ,1,k) for all output bits k ∈ [si+1]. The derivation when

this assumption does not hold is similar.

We exploit the following sequence of equalities:

Ṽi+1(ĩn1,ρ(p)) =
∑

c∈{0,1}si+1

Vi+1(c)χc(ĩn1,ρ(p))

=
∑

(c1,...,caj−1
)∈{0,1}aj−1

∑
(caj−1+1,...,csi+1

)∈{0,1}si+1−aj−1

Vi+1(c)χc(ĩn1,ρ(p))

=
∑

(c1,...,caj−1
)∈{0,1}aj−1

∑
(caj−1+1,...,csi+1

)∈{0,1}si+1−aj−1

Vi+1(c)

(
aj−1∏
k=1

χck(b̃ρ,1,k(rq(ρ,1,k)))

)
·

 aj∏
k=aj−1+1

χck(b̃ρ,1,k(t))

 si+1∏
k=aj+1

χck(pq(ρ,1,k))


=

∑
(c1,...,caj

)∈{0,1}aj

Vi+1(cj+1, . . . , caj , pq(ρ,1,aj+1), . . . , pq(ρ,1,sj+1))

(
aj−1∏
k=1

χck(rk)

)
·

 aj∏
k=aj−1+1

χck(t)


=

∑
(paj−1+1,...,paj

)∈{0,1}aj−aj−1

V (j−1)[(pq(ρ,1,aj−1+1), . . . , pq(ρ,1,sj+1))] ·
aj∏

k=aj−1+1

χpk(t).

Here, the first equality holds by Equation (8.3). The third holds by definition of the functions

χc and ĩn1, as well as the assumption that b̃ρ,1,k(xq(ρ,1,k)) = xq(ρ,1,k) for all k ∈ [si+1]. The
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fourth holds because for Boolean values ck, pq(ρ,1,k) ∈ {0, 1}, χck(pq(ρ,1,k)) = 1 if ck = pq(ρ,1,k),

and χck(pq(ρ,1,k)) = 0 otherwise. The final equality holds by definition of the array V (j−1).

The final expression above can be computed with O(2aj−aj−1) time given the array V (j−1).

Since aj − aj−1 is constant by Property 1 of Definition 8.4.8, O(2aj−aj−1) = O(1).

Putting Things Together. In round j of the sum-check protocol, P uses the array V (j−1) to

evaluate Ṽi+1(ĩn1(p)) for all O(2si−j) points p ∈ S(j), which requires constant time per point

and hence O(2si−j) time over all points in S(j). At the end of round j, V sends P the value

rj, and P computes V (j) from V (j−1) in O(2si+1−aj−1) time. By ordering input variables in

such a way that aj > aj−1 for all j, we ensure that in total across all rounds of the sum-

check protocol, P spends O(
∑si

j=1 2si−j + 2si+1−j) = O(2si + 2si+1) time to evaluate Ṽi+1 at

the relevant points. When combined with our O(2si)-time algorithm for computing all the

relevant β(z, p) values, we see that P takes O(2si + 2si+1) = O(Si + Si+1) time to run the

entire sum-check protocol for iteration i of our circuit-checking protocol.

Reducing to Verification of a Single Point. After executing the sum-check protocol

at layer i as described above, V is left with a claim about Ṽi+1(ω1) and Ṽi+1(ω2) from two

points ω1, ω2 ∈ Fsi+1 . If i is a layer for which in
(i)
1 and in

(i)
2 are similar (see Definition 8.4.9), we

run the reducing to verification of a single point phase exactly as in the basic GKR protocol.

This requires P to send Ṽi+1(`(t)) for a canonical line `(t) that passes through the points

ω1 and ω2. Because in
(i)
1 and in

(i)
2 are similar, it is easily seen that Ṽi+1(`(t)) is a univariate

polynomial of constant degree. Hence P can specify Ṽi+1(`(t)) by sending Ṽi+1(`(tj)) for O(1)

many points tj ∈ F. Using the method of Lemma 8.3.1, P can evaluate Ṽi+1 at each point

`(tj) in O(Si+1) time, and hence can perform all Ṽi+1(`(tj)) evaluations in O(Si+1) time in

total.

Let c = O(1) be the number of layers i for which in
(i)
1 and in

(i)
2 are not similar. At each

such layer i, we skip the “reducing to verification at a single point” phase of the protocol.
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Each time we do this, it doubles the number of points ω ∈ Fsi+1 that must be considered

at the next iteration. However, we only skip the “reducing to verification at a single point”

phase c times, and thus at all layers i of the circuit, V needs to check Ṽi(ωj) for at most

2c = O(1) points. This affects P ’s and V ’s runtime by at most a 2c = O(1) factor, and the

O(S) time bound for P , and the O(n log n+ d(n) logS(n)) time bound for V follow.

A.2 Analysis for Pattern Matching

Let C be the circuit for pattern matching described in Section 8.4.5. Our goal in this

appendix is to handle the layer of the circuit adjacent to the input layer. Call this layer `.

Layer ` computes ti+k − pk for each pair (i, k) ∈ {0, . . . , n− 1} × {0, . . . , q − 1}. We want to

show how to use a sum-check protocol to reduce a claim about the value of Ṽ`(z) for some

z ∈ Fs` to a claim about Ṽ`+1(r) for some r ∈ Fs`+1 , while ensuring that P runs in time

O(S`) = O(nm).

The idea underlying our analysis here is the following. The reason Theorem 8.4.10 does

not apply to layer ` is that the first in-neighbor of a gate with label

p = (i1, . . . , ilogn, k1, . . . , klogm) ∈ {0, 1}logn+logm

has label equal to the binary representation of the integer i+k, and a single bit ik can affect

many bits in the binary representation of i+k (likewise, each bit in the binary representation

of i + k may be affected by many bits in the binary representation of i and k). In order to

ensure that each bit of p affects only a single bit of y = in
(`)
1 (p), we introduce log n dummy

variables (c1, . . . , clogn) and force the jth dummy variable cj to have value equal to the jth

carry bit when adding numbers i and k in binary. Now each bit of p affects only one output

bit, and each output bit yj is only affected by at most three “input bits”: ij, kj, and cj if

j ≤ logm, and just ij and cj if j > logm.

270



To this end, let φ : {0, 1}4 → {0, 1} be the function that evaluates to 1 on input

(i1, k1, c0, c1) if and only if c1 = 0 and i1 + k1 + c0 < 2 or c1 = 1 and i + k + c0 ≥ 2.

That is, φ outputs 1 if and only if c1 is equal to the carry bit when adding i1, k1, and c0. Let

φ̃ be the multilinear extension of φ. Notice φ̃ can be evaluated at any point r ∈ F4 in O(1)

time.

Now let (i, k, c) denote a vector in Flogn × Flogm × Flogn, and define

Φ(i, k, c) :=

logn∏
j=1

φ̃(ij, kj, cj−1, cj),

where it is understood that c−1 = 0 and kj = 0 for j > logm.

For any Boolean vector (i, k, c) ∈ {0, 1}logn × {0, 1}logm × {0, 1}logn, it is easily verified

that Φ(i, k, c) = 1 if and only if for all j, cj equals the jth carry bit when adding numbers i

and k in binary.

Finally, let γ : {0, 1}3 → {0, 1} be the function that evaluates to 1 on input (i1, k1, c1) if

and only if i1 + k1 + c1 = 1 mod 2. Let γ̃ be the multilinear extension of γ. Notice γ̃ can be

evaluated at any point r ∈ F3 in O(1) time.

Now consider the following log n+ logm-variate polynomial over the field F:

W (`)(i, k) =
∑

(c1,...,clogn)∈{0,1}logn

Φ(i, k, c)·

(
T̃ (γ̃(i1 + k1 + c0), . . . , γ̃(ilogn + klogn + clogn−1))− P̃ (k1, . . . , klogm)

)
,

where again it is understood that c−1 = 0 and kj = 0 for j > logm. Here, T̃ is the

multilinear extension of the input T , viewed as a function from {0, 1}logn to [n], and P̃ is

the multilinear extension of the input pattern P , viewed as a function from {0, 1}logm to [n].

It can be seen that for all Boolean vectors (i, k) = {0, 1}logn × {0, 1}logm,

W (`)(i, k) = V`(i, k). This is because for any (i, k) ∈ {0, 1}logn × {0, 1}logm, Φ(i, k, c) will be

zero for all c except the c consisting of the correct carry bits for i and k, and for this input
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c, T̃ (γ̃(i1 + k1 + c0), . . . , γ̃(ilogn + klogn + clogn−1)) will equal T (i+ k) when interpreting i, k

as integers in the natural way.

Lemma 8.4.1 then implies that for all z ∈ Flogn+logm,

Ṽ`(z) =
∑

(i,k)∈{0,1}logn×{0,1}logm

βlogn+logm(z, (i, k)) ·W (`)(i, k)

=
∑

(i,k,c)∈{0,1}logn×{0,1}logm×{0,1}logn

βlogn+logm(z, (i, k))·

Φ(i, k, c) ·
(
T̃ (γ̃(i1 + k1 + c0), . . . , γ̃(ilogn + klogn + clogn−1))− P̃ (j1, . . . , jlogm)

)
.

Therefore, in order to reduce a claim about Ṽ`(z) to a claim about T̃ (r1) and P̃ (r2) for

random vectors r1 ∈ Flogn and r2 ∈ Flogm, it suffices to apply the sum-check protocol to the

2 log n+ logm-variate polynomial

gz(i, k, c) = βlogn+logm(z, (i, k)) · Φ(i, k, c)·(
T̃ (γ̃(i1 + k1 + c0), . . . , γ̃(ilogn + klogn + clogn−1))− P̃ (j1, . . . , jlogm)

)
.

It remains to show how to extend the techniques underlying Theorem 8.4.10 to allow P to

compute all of the required messages in this sum-check protocol in O(nm) time. For brevity,

we restrict ourselves to a sketch of the techniques.

The first obvious complication is that the sum defining P ’s message in a given round of

the sum-check protocol has as many as 22 logn+logm = Ω(mn2) > nm terms. Fortunately, the

Φ polynomial ensures that almost all of these terms are zero: when considering any Boolean

setting of the variables ij, kj, and cj−1, the only setting of cj that P must consider is the

one corresponding to the carry bit of ij + kj + cj−1 i.e., the unique setting of cj such that

φ(ij, kj, cj−1, cj) = 1. This ensures that at round 3j, 3j + 1, and 3j + 2 of the sum-check

protocol applied to gz, P must only evaluate gz at O(2logn+logm−j) terms, which is falling

geometrically quickly with j.
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We now turn to explaining how P can evaluate gz at all necessary points in round 3j,

3j + 1 and 3j + 2 in total time O(2logn+logm−j). To accomplish this, it is sufficient for P to

evaluate βlogn+logm at the necessary points, as well as Φ, T̃ , and P̃ at the necessary points.

The βlogn+logm evaluations are handled exactly as in Theorem 8.4.10 i.e., by using C(j) arrays

(but these arrays only get updated every time a variable ij or kj gets bound within the sum-

check protocol; no update is necessary when a variable cj gets bound). The P̃ evaluations are

also handled exactly as in Theorem 8.4.10, using V (j) arrays that only need to be updated

when a variable kj gets bound.

The T̃ evaluations require some additional explanation on top of the analysis of Theorem

8.4.10. We want P to be able to use V (j) arrays as in Theorem 8.4.10 to evaluate T̃ at the

necessary points in constant time per point, but we need to make sure that P can compute

array V (j) from V (j−1) in time that falls geometrically quickly with j. In order to do this, it

is essential to choose a specific ordering for the sum in the sum-check protocol.

Specifically, we write the sum as:∑
i1

∑
k1

∑
c1

∑
i2

∑
k2

∑
c2

· · ·
∑
ilogn

∑
clogn

gz(i, k, c).

This ensures that e.g. (i1, k1, c1) are the first three variables in the sum-check protocol to

become bound to random values in F. The reason we must do this is so that every 3 rounds,

another value γ̃(ij+kj+cj−1) feeding into T̃ becomes bound to a specific value (and moreover

the outputs of γ̃(ij′ +kj′ + cj′−1) are unaffected by the bound variables for all j′ > j). This is

precisely the property we exploited in the protocol of Theorem 8.4.10 to ensure that the V (j)

arrays there halved in size every round, and that V (j) could be computed from V (j−1) in time

proportional to its size. So we can use V (j) arrays to efficiently perform the T̃ evaluations,

updating the arrays every time another value γ̃(ij +kj + cj−1) feeding into T̃ becomes bound

to a specific value.

Finally, the Φ evaluations can be handled as follows. Consider for simplicity round 3j of
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the protocol. Recall that P only needs to evaluate Φ at points for which φj′(ij′ , kj′ , cj′−1, cj′) =

1 for all j′ > j. Thus, for all j′ > j, φj′ does not affect the product defining Φ. So in order

to evaluate Φ at the relevant points, it suffices for P to evaluate the φj′s for j′ ≤ j. Now

at round 3j of the protocol, all triples (ij′ , kj′ , cj′) for j′ < j are already bound, say to the

values (r
(i)
j′ , r

(k)
j′ , r

(c)
j′ ), and hence all the φj′ functions for j′ < j are themselves already bound

to specific values. So in order to quickly determine the contribution of the φj′s for j′ < j to

the product defining Φ, it suffices for P to maintain the quantity
∏

j′<j φj′(r
(i)
j′ , r

(k)
j′ , r

(c)
j′ ) over

the course of the protocol, which takes just O(log n) time in total. Finally, the contribution

of φj to the product defining Φ can be computed in constant time per point. This completes

the proof that Φ can be evaluated by P at all of the necessary points in O(1) time per point

over all rounds of the sum-check protocol, and completes the proof of the theorem.
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