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Abstract

The rapid progress of the field of ultracold atoms during the past two decades has set new mile-

stones in our control over matter. By cooling dilute atomic gases and molecules to nano-Kelvin

temperatures, novel quantum mechanical states of matter can be realized and studied on a table-top

experimental setup while bulk matter can be tailored to faithfully simulate abstract theoretical mod-

els. Two of such models which have witnessed significant experimental and theoretical attention are

(1) the two-component Fermi gas with resonant s-wave interactions, and (2) the single-component

Fermi gas with dipole-dipole interactions. This thesis is devoted to studying the non-equilibrium

collective dynamics of these systems using the general framework of quantum kinetic theory.

We present a concise review of the utilized mathematical methods in the first two chapters,

including the Schwinger-Keldysh formalism of non-equilibrium quantum fields, two-particle irre-

ducible (2PI) effective actions and the framework of quantum kinetic theory. We study the collective

dynamics of the dipolar Fermi gas in a quasi-two-dimensional optical trap in chapter 3 and provide

a detailed account of its dynamical crossover from the collisionless to the hydrodynamical regime.

Chapter 4 is devoted to studying the dynamics of the attractive Fermi gas in the normal phase. Start-

ing from the self-consistent T-matrix (pairing fluctuation) approximation, we systematically derive

a set of quantum kinetic equations and show that they provide a globally valid description of the

dynamics of the attractive Fermi gas, ranging from the weak-coupling Fermi liquid phase to the in-

termediate non-Fermi liquid pairing pseudogap regime and finally the strong-coupling Bose liquid

phase. The shortcomings of the self-consistent T-matrix approximation in two spatial dimensions
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Abstract

are discussed along with a proposal to overcome its unphysical behaviors. The developed kinetic

formalism is finally utilized to reproduce and interpret the findings of a recent experiment done on

the collective dynamics of trapped two-dimensional ultracold gases.
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Preface

6.5: For an answer which cannot be expressed, the question too cannot be expressed.

The “riddle” does not exist. If a question can be put at all, then it can also be answered.

– Ludwig Wittengstein, Tractatus Logico-Philosophicus

We understand matter by probing its properties using different scopes. Our first description of

a phenomenon is based on its appearance in the bulk. We form coarse-grained concepts to refer to

the recurring patterns, and deduce laws that govern the interplay between these concepts based on

repeated observations. The traditional classification of the states of matter into gas, liquid and solid,

the formation and clash of waves in the ocean and the propagation of mechanical waves and heat in

piece of metal are examples of such coarse-grained descriptions. Thermodynamics and Newtonian

mechanics are examples of the laws that govern such descriptions.

Our scopes improve over time, allowing us to observe the previously unobservable and giving

us access to a finer description of the same phenomena: liquids and gases become a large collection

of atoms and molecules gliding almost freely in space, and solids become a well-ordered collection

of ions sitting on a lattice. Further observations reveal the laws that govern the interaction between

the building blocks of matter. We immediately face the challenge of reconciling our coarse-grained

concepts and laws with the new-found microscopic descriptions. Condensed-matter physics, by and

large, is an endeavor to this end. This is done by introducing as premises hypotheses which permit

us to omit all references to the macroscopic concepts (heat, wave, sound, etc) and to substitute

only references to things which are a part of the subject-matter of the microscopic description. An

exemplary instance of such a development is the groundbreaking kinetic theory of gases introduced

by Ludwig Boltzmann in 1867: by construing heat as the mechanical motion of atoms, the laws of

thermodynamics become deducible from those of Newtonian mechanics.1

1At the time Boltzmann posed the kinetic theory of gases, atoms and molecules were still considered to be fictitious
concepts by the mainstream scientific and philosophical establishments. It takes the awe-inspiring insight of a brilliant
mind and great courage to come up with such an accurate description of nature.
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Building bridges between the microscopic and macroscopic realms is a truly worthwhile and in-

dispensable effort: it is only by doing so that we may hope to understand and explain deep questions

such as the universality of macroscopic laws, or the reason for their mere existence in the first place.

The reason why ordinary matter manifests itself in three fundamental phases and not more, why

matter has a tendency to reach thermal equilibrium, why good electrical conductors are shiny, and

why certain materials suddenly become superconducting at low temperatures are among the typical

questions addressed by the condensed-matter physics. It is ultimately through such understandings

that we may gain control over nature, rearrange matter to suit our technological requirements, or

even create new forms of matter artificially.

Condensed-matter physics proceeds by proposing approximate mathematical models to repre-

sent what is the case while neglecting what is irrelevant in the emergence of the bulk physics from

the microscopic realm. It is by systematically tossing what is deemed as irrelevant details that

a correspondence between the macroscopic concepts and laws, and the hypothesized microscopic

correlates can be constructed. The first round of approximations starts by modeling the microscopic

phenomenology in a tractable manner and often involves a certain degree of guesswork and neglect

of details. The second round of approximations is in the mathematical analysis of the obtained

microscopic model. The fabric of this process is made of experimental findings, analytical insights

and numerical analyses.

For a long time, condensed-matter physics was devoted to the study of materials already exist-

ing in nature, whose microscopic laws were by large beyond our control. The microscopic phe-

nomenology of some of the most promising materials, such as high-temperature superconducting

compounds, is often so complicated that their tractable mathematical modeling inevitably involves

a certain degree of oversimplification, such as neglecting lattice imperfections, neglecting the multi-

band structure of the energy levels, neglecting long-range interactions, etc. The resulting stripped-

down models, while may still exhibit profound emergent properties, only approximately describe
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the true phenomenology of any of the existing materials. The examples include lattice-spin systems,

the Hubbard model and exactly solvable low-dimensional systems. The lack of relevant experimen-

tal data indeed hurdles the theoretical progress of the field.

The rapid advancement of the experimental techniques of trapping and cooling dilute atomic

gases to nano-Kelvin temperatures in the late 90’s and early 2000’s presented a new perspec-

tive to the field and set a new milestone in our control over matter. The combination of atomic-

molecular-optical (AMO) techniques such as laser cooling, evaporate cooling, optical lattices and

Feshbach resonances allow synthesizing bulk matter in the quantum mechanical regime tailored to

faithfully simulate some of the long-standing models of the condensed-matter physics. Some of

the early developments include the realization of the Bose-Einstein condensate (BEC) of weakly-

interacting atoms [1, 2], the Bose-Hubbard model [3], the Fermi-Hubbard model [4] and the

strongly-interacting Fermi gas with resonant s-wave interactions [5]. Some of the more recent

themes include engineering artificial gauge fields using Raman transitions [6] and engineering long-

range interactions using Rydberg atoms [7] and polar molecules [8].

The experiments with ultracold atoms not only allow a clean realization of some of these central

models, but also it provides us with powerful experimental probes such as time-of-flight imaging [9],

in-situ imaging with single atom resolution [10], precision measurement of collective modes [11]

and radio-frequency spectroscopy of spectral functions [12, 13]. The field of ultracold atoms has

equipped us with an unprecedented degree of certitude both in our understanding of the fundamental

laws of nature, and in the mathematical approximations involved in explaining emergent behavior

from the microscopic models. One of the major themes in the condensed-matter physics is exploring

the behavior of matter away from equilibrium, ranging from classical phenomena such as turbulence

in fluid dynamics and pattern formation in complex networks to quantum phenomena such as charge

transport in semiconducting devices, decoherence, dissipation, pre-thermalization, thermalization

and more recent themes such as non-thermal steady states. The enormously larger mass of atoms
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compared to electrons allows us to monitor the non-equilibrium evolution of degenerate quantum

matter on a table-top experiment for the first time.

Two particularly important models which have been the subject of active experimental and

theoretical research in the field of ultracold atoms are the (1) two-component attractive Fermi

gas (AFG) with short-range interactions in two and three spatial dimensions and the associated

physics of BCS to BEC crossover, and (2) fermions with dipole-dipole interactions. The AFG

has previously served either as a toy model for explaining the emergence of superconductivity in

electronic systems or in certain regimes for the quark-gluon plasma and the neutron stars. The

advent of ultracold atoms has dramatically changed the status of this model by offering a genuine

material realization for it on a table-top experiment. Dipolar quantum gases, on the other hand, are

genuinely artificial matter with no analog in traditional condensed-matter systems. The anisotropic

and long-range nature of dipole-dipole interactions is predicted to give rise to a wide range of novel

phenomena and potential technological applications (e.g. see Ref. [14] and the references therein).

My central goal in this thesis is to describe the near-equilibrium dynamics of such artificial quan-

tum many-body systems in the kinetic regime, i.e. when a large separation of scales exists between

the microscopic time and length scales compared to the macroscopic scale of inhomogeneities. In

fact, it is by imposing (or acknowledging) such a separation of scales that the concepts relevant to

bulk matter (the flow velocity, energy and entropy densities, etc) can be construed as the collec-

tive behavior of a large aggregate of particles. Besides, the kinetic description is highly relevant

to the analysis of typical experiments with ultracold quantum gases loaded in optical traps2. The

central mathematical framework utilized in this thesis is the Schwinger-Keldysh formalism of non-

equilibrium quantum fields, in conjunction with the formalism of two-particle irreducible effective

2In a typical experiment as such, the time scale of microscopic processes in set by the inverse of the Fermi energy and
is of the order of tmicro ≥ 0.01 ms, whereas the time scale of the bulk collective motion of atoms and molecules is set by
the inverse trap frequency and is of the order of tmacro ≥ 1 ≥ 10 ms.
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Figure 1: (a) A schematic illustration of dipolar fermions in a quasi-two-dimensional geometry with
aligned dipole moments. The collective dynamics of this system is studied in chapter 3. (b) The
crossover of the attractive Fermi gas from weak-coupling to strong-coupling. The dynamics of this
system is studied in chapter 4 in two and three spatial dimensions.

actions (2PI-EA). The latter technique allows us to construct powerful non-perturbative approxi-

mations (the so-xcalled �-derivable approximations) that rigorously respect the symmetries of the

microscopic action and give rise to exact conservation laws. This salient feature of the 2PI-EA for-

malism makes it an ideal tool for constructing approximate theories of non-equilibrium dynamics.

I have tried to make this thesis accessible to a broad audience, in particular, to researchers who

wish to learn and utilize these techniques for the first time, by providing a concise, self-contained

and critical review of the major conceptual tools in the introductory chapters. I have also tried to

supplement the mathematical statements and derivations with intuitive ideas along the way. This

thesis is organized as follows:

Chapter 1 provides a concise introduction to the Schwinger-Keldysh formulation of non-

equilibrium quantum fields using the modern language of path integrals, followed by the formalism

of 2PI effective actions and the related �-derivable approximations. I have dedicated some space

to discuss a number of important but less-discussed issues such as the proper treatment of initial

correlations, superconducting states and the 2PI Ward-Takahashi identities.

Chapter 2 provides a concise account of the derivation of quantum kinetic equations within

the framework of 2PI-EA, along with extensive discussions on the validity domain of the kinetic

description, the associated form of the conservation laws, the route to the Boltzmann equation, and
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the linear response analysis within the kinetic description.

Chapter 3 is dedicated to studying the collective dynamics of trapped dipolar fermions in a

quasi-two-dimensional geometry and is the first application of the formalisms introduced in the

previous two chapters. The physical system is schematically illustrated in Fig. 1(a). Experimentally,

this configuration may be realized by loading fermionic polar molecules (or atoms with permanent

magnetic moments) onto a highly anisotropic optical trap as realized by combining a dipole trap

and a one-dimensional optical lattice. The dipoles are aligned perpendicular to the confining plane

by the application of an external field. In this setting, the dipole-dipole interaction gives rise to an

effective long-range repulsion between the particles and produces a normal Fermi liquid state at low

temperatures. This particular trapping configuration is also necessary in order to suppress inelastic

dipolar collisions and also to reduce the rate of chemical reactions in experiments with reactive

bi-alkali polar molecules [15, 16, 17]. The main question addressed in this chapter is the nature of

bulk collective dynamics of the trapped particles (collisionless, hydrodynamical, or the dissipative

crossover regime) at different temperatures, strengths of planar confinement and the strength of

dipole-dipole interactions.

Chapter 4 is the longest part of this thesis and is dedicated to the study of two-component

AFG with short-range interactions in two and three spatial dimensions– a long-standing model in

condensed-matter physics with a rich descriptive power and application to several physical systems.

Despite extensive theoretical work done on this model, a first-principle derivation of the quantum

kinetic equations describing its bulk physics had not been achieved yet. We use the formalisms

discussed in the first two chapters, in conconjuction with the widely used self-consistent T-matrix

approximation (also known as the pairing fluctuation approximation) and develop such quantum

kinetic equations in the normal (non-superfluid) state. The qualitative behavior of this model is

schematically illustrated in Fig. 1(b). For small binding energies, the system is described as a

weakly interacting Fermi liquid. Upon increasing the binding energy, pairing fluctuations prolifer-
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ate and the system can be described as a resonant mixture of unpaired fermionic and paired bosonic

molecules. The strong-coupling regime is described as a weakly interacting composite Bose liquid

of the paired fermions. The kinetic equations to be derived manifestly exhibit such a crossover

in the dynamics. We also find that the self-consistent T-matrix approximation leads to unphysical

predictions in the strong-coupling regime in two dimensions, and propose a �-derivable approxi-

mation to overcome this defect. We will ultimately use the kinetic formalism to study the collective

dynamics of ultracold atoms with s-wave resonant interactions in optical traps in order to reproduce

and interpret the findings of a recent experiment done at the University of Cambridge [18].

xiv



Citations to Previously Published Work

The materials presented in this thesis is based on the research I have done during the last year of
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In addition to the topics covered in this thesis, I have worked on other aspects of the physics
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dynamics and strong-coupling phase transitions. Many of these works were left out from this thesis
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of quantum kinetic equations to studying the dynamics of ultracold atoms and molecules. A brief

summary of the omitted works is provided below for the record.
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netic (Stoner) instability of repulsively interacting two-component fermions using ultracold
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side of the Feshbach resonance. In the paper,
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Demler, Competition between Pairing and Ferromagnetic Instabilities in Ultracold

Fermi Gases near Feshbach Resonances, Phys. Rev. Lett. 106, 050402 (2011),

we showed that the pairing instability (i.e. formation of deeply bound molecules) is in fact the

fastest instability channel in the dynamics following the quench, and that the pairing insta-

xv



Preface

bility poses a fundamental limit on the possible formation and observation of ferromagnetic

domains. The conclusions of this work was later confirmed experimentally in Ref. [20].
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gence of inter-band excitons and their experimental detection via modulation spectroscopy

in:

M. Babadi and E. Demler, Collective phenomena in a quasi-two-dimensional sys-

tem of fermionic polar molecules: Band renormalization and excitons, Phys. Rev.
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of a multi-band and multi-layer quasi-two-dimensional system of dipolar fermions to spin-

density-wave-like (SDW) and charge-density-wave-like (CDW) states:

M. Babadi and E. Demler, Density ordering instabilities of quasi-two-dimensional

fermionic polar molecules in single-layer and multilayer configurations: Exact

treatment of exchange interactions, Phys. Rev. B 84, 235124 (2011),

where we showed that formation of CDW-like states (Wigner crystal) is the first strong-

coupling instability of the normal state of quasi-two-dimensional dipolar fermions within

the mean-field description.

• We continued the investigation of strongly-interacting dipolar fermions and the issue of

Wigner crystallization by taking into account the effects of strong crystal correlations using a

variational method. In the paper,

M. Babadi, B. Skinner, M. M. Fogler and E. Demler, Universal behavior of re-

pulsive two-dimensional fermions in the vicinity of the quantum freezing point,
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Europhys. Lett. 103, 16002 (2013),

we showed that the strongly-correlated liquid phase of repulsively interacting spinless

fermions in two dimensions exhibits universal features near the freezing point, nearly inde-

pendent of the microscopic interaction law. This finding allowed us to come up with accurate

predictions for the thermodynamical quantities and Wigner crystal transition point of quasi-

two-dimensional dipolar fermions by utilizing the wave functions of two dimensional electron

gas as trial states.
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1
Non-equilibrium quantum field theory and the 2PI

effective action formalism

Non-equilibrium Green’s function technique, initiated by Schwinger [21] and Kadanoff and

Baym [22] is an indispensable method for investigating the quantum dynamics of many-particle

systems which are neither in their ground-state nor in a thermal equilibrium. This formalism has

been successfully used in various fields of physics including plasma, laser, chemical reactions, early

universe, heavy ion collisions and ultracold quantum gases. It provides a rigorous mathematical

1



Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

basis for exploring the quantum mechanical basis of thermalization and decoherence. Combined

with self-consistent �-derivable approximations, the Schwinger-Keldysh formalism allows explor-

ing previously uncharted territories such as far-from-equilibrium quantum dynamics with applica-

tions ranging from early universe physics to ultracold quantum gases.

The existing literature on the Schwinger-Keldysh formalism is vast and there exists several ex-

cellent review articles and textbooks on the subject [22, 23, 24, 25, 26, 27]. For the purpose of com-

pleteness, we provide a concise review of the mathematical foundations of the this formalism using

the modern language of path integrals, and the functional method of 2-particle irreducible (2PI)

effective actions in this chapter. The latter allows constructing powerful symmetry-preserving non-

perturbative approximations for both the equilibrium and non-equilibrium description of strongly-

interacting quantum many-body systems.

1.1 The Schwinger-Keldysh formalism and CTP Green’s functions

1.1.1 The zoo of Green’s functions

We consider a general non-relativistic field theory described by the following time-dependent

Hamiltonian:

Ĥ(t) =
ÿ

ab

Eab(t) �†
a�b +

ÿ

abcd

⁄ab;cd(t) �†
a�†

c�d�b. (1.1)

The indices a, b, etc refer to the physical degrees of freedom such as space, spin, hyperfine state,

etc. We restrict our analysis to fermionic fields in this thesis. The creation �†
a and annihilation �a

field operators obey the usual fermionic anti-commutation relations:

�a�†
b + �†

b�a = ”ab,

�a�b + �b�a = 0,

�†
a�†

b + �†
b�

†
a = 0. (1.2)
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Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

Here, ”ab stands for the Kronecker ” for the discrete indices bundled in a and b, and the Dirac ”

for continuous coordinates. The two-body interaction ⁄ab;cd can be taken as a real and fully anti-

symmetric function, i.e. ⁄ab;cd = ≠⁄cb;ad = ≠⁄ad;cb = ⁄ba;cd. The Hamiltonian for a system of

non-relativistic fermions moving in a continuous d-dimensional space and possibly with additional

set of discrete indices ‡ is obtained via the following substitution rules:

a æ (xa, ‡a), ”ab æ ”‡
a

‡
b

”(d)(xa ≠ xb),
ÿ

a

æ
ÿ

‡
a

⁄
ddxa,

Eab(t) æ
C

≠Ò2
x

a

2m
+ U‡

a

(ta, xa)
D

”‡
a

‡
b

”(xa ≠ xb),

⁄ab;cd æ ”(d)(xa ≠ xb) ”(d)(xc ≠ xd) v‡
a

‡
b

;‡
c

‡
d

(xa ≠ xc). (1.3)

The Planck constant ~ will be set to unity throughout this thesis, unless it appears explicitly. The

Einstein summation convention is assumed everywhere unless it is noted explicitly.

A central object in the field theoretic description of many-particle systems is the Green’s func-

tion, which encodes the correlation between the field operators at different times. All of the ther-

modynamical quantities can be inferred from the Green’s function for a system in equilibrium. In

addition, the knowledge of the the variation of Green’s functions with respect to the external (source)

fields provides the answers to all of the questions that can be asked about the quantum system.

We assume that the state of the many-body system at t = t0 is either specified explicitly via

the density operator fl̂0, or through a well-defined prescription for determining fl̂0 (i.e. thermal

equilibrium condition). A fermionic system in the normal state admits two independent Green’s

functions, G> and G<, the so-called greater and lesser functions:

G>(t1a1; t2a2) © ≠i
e
�a1,H(t1) �†

a2,H(t2)
f

,

G<(t1a1; t2a2) © i
e
�†

a2,H(t2) �a1,H(t1)
f

. (1.4)

The È. . .Í is a shorthand for Tr[fl̂0 . . .] and the H labels affixed to operators denote the Heisenberg

3



Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

picture. We are concerned only with systems in their normal state in this thesis. Superconducting

states and the associated anomalous Green’s functions will be discussed briefly later for complete-

ness. Besides the two fundamental Green’s functions defined above, it is also useful to define a

number of auxiliary Green’s functions in terms of G> and G<:

G+(t1a1; t2a2) © ◊(t1 ≠ t2)
#
G>(t1a1; t2a2) ≠ G<(t1a1; t2a2)

$
,

G≠(t1a1; t2a2) © ≠◊(t2 ≠ t1)
#
G>(t1a1; t2a2) ≠ G<(t1a1; t2a2)

$
,

Gc(t1a1; t2a2) © ◊(t1 ≠ t2)G>(t1a1; t2a2) + ◊(t2 ≠ t1)G<(t1a1; t2a2),

Ga(t1a1; t2a2) © ◊(t1 ≠ t2)G<(t1a1; t2a2) + ◊(t2 ≠ t1)G>(t1a1; t2a2),

GK(t1a1; t2a2) © G<(t1a1; t2a2) + G>(t1a1; t2a2). (1.5)

These auxiliary functions are referred to as the retarded (+), advanced (≠), chronological (c), anti-

chronological (a) and Keldysh (K) Green’s functions. The above definitions imply the following

exact relations among the various Green’s functions:

G>(t1a1; t2a2) ≠ G<(t1a1; t2a2) = G+(t1a1; t2a2) ≠ G≠(t1a1; t2a2), (1.6a)

Gc(t1a1; t2a2) + Ga(t1a1; t2a2) = GK(t1a1; t2a2), (1.6b)

G>(t1a1; t2a2)ú = ≠G>(t2a2; t1a1), (1.6c)

G<(t1a1; t2a2)ú = ≠G<(t2a2; t1a1), (1.6d)

Gc(t1a1; t2a2)ú = ≠Ga(t2a2; t1a1), (1.6e)
Ë
G+(t1a1; t2a2)

Èú
= G≠(t2a2; t1a1). (1.6f)

The equal-time commutation relation of the Heisenberg operators also trivially implies the following

identity:

i
#
G>(t, a; t, b) ≠ G<(t, a; t, b)

$
= ”ab. (1.7)
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Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

1.1.2 The ground state formalism

It is useful for first consider the convectional ground-state formalism of quantum fields based

on the adiabatic principle. In this case, fl̂0 = |�ÍÈ�| where |�Í is ground state wavefunction of

the interacting system. The Hamiltonian is assumed to be independent of time. We consider the

expectation value of an operator with one time argument ÈÔH(t)Í. The relation between Ô in the

Heisenberg and interaction pictures is provided by:

ÔH(t) = Û(t0, t) ÔI(t) Û(t, t0), (1.8)

where ÔI(t) is the operator in the interaction picture and Û is the evolution operator interaction

picture. For t > t0, U is given by:

Û(t, t0) = T c
5
exp

3
≠i

⁄ t

t0
dtÕ Ĥint,I(tÕ)

46
, (1.9)

where T c is the shorthand notation for the chronological time-ordered product of the exponential

and Ĥint,I(tÕ) is the interaction part of the Hamiltonian. Likewise, for t < t0 we have:

Û(t0, t) = T a
5
exp

3
≠i

⁄ t0

t
dtÕ Ĥint,I(tÕ)

46
, (1.10)

where T a is the shorthand notation for the anti-chronological time-ordered product.

Conventionally, the interacting ground state |�Í is obtained by multiplying the interaction vertex

⁄ab;cd by a factor exp(≠‘|t|), which switches the interaction on and off at t = ±Œ. The non-

interacting ground state |�Í is assigned to the system at t = ≠Œ and the interacting ground-state

is obtained on the basis of the Gell-Mann and Low theorem: |�Í = Û(0, ≠Œ)|�Í while taking the

adiabatic limit ‘ æ 0. We note that the usage of the Gell-Mann and Low procedure may not be

always justified, in particular, in application to systems with gapless spectra or with spontaneously

broken symmetries. In any event, it is important to note that a necessary condition for the validity
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Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

of the Gell-Mann and Low theorem is (1) the time-independence of the Hamiltonian, (2) |�Í being

the non-interacting ground state, and (3) the non-degeneracy of the ground states. The expectation

value of the operator Ô in the interacting ground state can be written as:

È�|ÔH(t)|�Í = È�|Û(≠Œ, 0) ÔH(t) Û(0, ≠Œ)|�Í

= È�|Û(≠Œ, 0) Û(0, t) ÔI(t) Û(t, 0) Û(0, ≠Œ)|�Í

= È�|Û(≠Œ, t) ÔI(t) Û(t, ≠Œ)|�Í

= È�|Û(≠Œ, Œ) Û(Œ, t) ÔI(t) Û(t, ≠Œ)|�Í. (1.11)

We have used the group property of Û , i.e. Û(t1, t2) Û(t2, t3) = Û(t1, t3) to get the final re-

sult. Provided that the ground state of the interacting system is non-degenerate, the wave function

U(Œ, ≠Œ)|�Í is proportional to |�Í up to a complex factor with unit modulus. This allows us

make further progress as follows:

È�|ÔH(t)|�Í = È�|Û(≠Œ, Œ)|�ÍÈ�|Û(Œ, t) ÔI(t) Û(t, ≠Œ)|�Í

= È�|Û(Œ, t) ÔI(t) Û(t, ≠Œ)|�Í
È�|Û(Œ, ≠Œ)|�Í

=

=
�

----T
c

5
exp

3
≠i

⁄ Œ

≠Œ
dtÕ Ĥint,I(tÕ)

4
ÔI(t)

6---- �
>

=
�

----T c

5
exp

3
≠i

⁄ Œ

≠Œ
dtÕ Ĥint,I(tÕ)

46---- �
> . (1.12)

To get the second line from the first line, we have used the identity È�|Û(Œ, ≠Œ)|�Í =

È�|Û(≠Œ, Œ)|�Íú =
Ë
È�|Û(≠Œ, Œ)|�Í

È≠1
. An identical analysis gives a similar result for

the chronological Green’s function in the ground state:

Gc(t1a1; t2a2) © ≠i
e
�

---T c
Ë
�a1,H(t1)�†

a2,H(t2)
È--- �

f

=
≠i

=
�

----T
c

5
exp

3
≠i

⁄ Œ

≠Œ
dtÕ Ĥint,I(tÕ)

4
�a1,I(t1)�†

a2,I(t2)
6---- �

>

=
�

----T c

5
exp

3
≠i

⁄ Œ

≠Œ
dtÕ Ĥint,I(tÕ)

46---- �
> . (1.13)

The Feynman-Dyson perturbation expansion is obtained by expanding the time-ordered products

in the powers of Ĥint,I and using the Wick’s theorem to express the time-ordered product of field

6



Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

operators in the interacting picture in terms of the non-interacting (bare) chronological Green’s

functions Gc
0. The disconnected diagrams are removed by the denominator at all orders in the

perturbation expansion. We note that the perturbation series only involves the chronological Green’s

function.

1.1.3 Non-equilibrium formalism and the Schwinger-Keldysh contour

One of the convenient features of the ground state formalism is the uni-directional sense of

the time integrations, each ranging from ≠Œ to Œ. As discussed in the previous section, this

is achieved using the Gell-Mann and Low theorem by making the substitution È�|Û(≠Œ, 0) =

ei„È�|Û(+Œ, 0) where ei„ is a pure phase (cf. Eq. 1.11). In other words, the arrow of time can be

switched in the anti-chronological propagations of the adjoint wave functions with the small cost of

introducing a pure phase. This leads to a perturbation expansion of Gc in terms of Gc
0 without the

need to resort to other flavors of Green’s functions.

The inapplicability of the Gell-Mann and Low theorem for general non-equilibrium states

implies that the arrow of time may no longer be switched in anti-chronological propagations:

the time evolutions inevitably involves separate forward and backward propagations and as a

consequence, different types of Green’s functions are needed perform the perturbation expansion.

The bookkeeping, however, is simplified by introducing contour Green’s functions which unify

several Green’s function in a concise notation. We will discuss this formalism in this section.

We start with the definition of the lesser and greater Green’s functions. Making the unitary

propagations of the Heisenberg operators explicit, we find:

G>(t1a1; t2a2) = ≠iTr
Ë
fl̂0 Û(t0, t1) �a1Û(t1, t2) �†

a2 Û(t2, t0)
È

, (1.14a)

G<(t1a1; t2a2) = iTr
Ë
fl̂0 Û(t0, t2) �†

a2 Û(t2, t1) �a1 Û(t1, t0)
È

, (1.14b)
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where the fields without time labels are in the Schrödinger picture at t = t0. We have again used

the group property of Û to combined the middle two propagation operators into a single operator.

Here, Û denotes the propagation operator in the Schrödinger picture:

(t > t0) : Û(t, t0) = T c
5
exp

3
≠i

⁄ t

t0
dtÕ Ĥ(tÕ)

46
,

(t < t0) : Û(t0, t) = T a
5
exp

3
≠i

⁄ t0

t
dtÕ Ĥ(tÕ)

46
. (1.15)

Let us assume t1 > t2 for the moment. The above Green’s function can be graphically represented

as:

iG>(t1a1; t2a2) = Tr fl̂0 = Tr fl̂0 ,

≠iG<(t1a1; t2a2) = Tr fl̂0 = Tr fl̂0 .

In the above diagrammatic notation, the lines corresponds to Û and cross signs indicate field

insertions. tM is an arbitrary time greater than max{t1, t2}. The equivalence of the two possible

diagrams for each Green’s function and the arbitrariness of tM are all due to the group property of

Û . For instance, increasing tM to tM + �t introduces two extra propagators Û(tM , tM + �t) and

Û(tM + �t, tM ) adjacent to each other so that their product reduces to the identity operator.

The above pictorial description suggests that both the lesser and greater Green’s functions can

be thought of as the special cases of a more general Green’s function defined on the roundtrip

contour going from t0 to tM (which can be taken as +Œ) and from tM back to t0. This technique

was introduced by Schwinger [21], and four years later by Keldysh [28]. The roundtrip contour

is referred to as the Schwinger-Keldysh contour. We refer to this contour as C symbolically and

decompose it as C = C+ fi C≠, where C+ is forward branch going from t0 to Œ, and C≠ is the

8
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backward branch returning back from Œ to t0:

C ©

The bookkeeping is simplified upon introducing the contour time · as the union of the physical time

and the branch index:

· = (t, ‡), ‡ =

Y
__]

__[

+ · œ C+,

≠ · œ C≠.
(1.16)

C is a directed contour and is ordered via the natural binary operators >C and <C . By definition,

·1 >C ·2 if and only if ·1 lies ahead of ·2 on C in the contour sense (the physical time t1 may still

be smaller than t2). A useful auxiliary function is the contour Heaviside function ◊C(·1, ·2) defined

as:

◊C(·1, ·2) ©

Y
__]

__[

1 ·1 >C ·2,

0 ·1 <C ·2

(1.17)

Differentiation and integration of the functions defined on C is defined in a natural way:

⁄

C
d· A(·) B(·) ©

⁄ Œ

t0
A(t, +) B(t, +) ≠

⁄ Œ

t0
A(t, ≠) B(t, ≠),

dA(·)
d·

© lim
‘æ0

A(· +C ‘) ≠ A(·)
‘

, (1.18)

where ·1 +C ”t implies adding ”t to ·1 in the contour sense (i.e. adding ”t if ·1 œ C+ and subtracting

”t if ·1 œ C≠). Finally, the contour Dirac ” function is defined either by differentiating ◊C(·1, ·2)

with respect to ·1 or through its measure-theoretic definition in integrals:

”C(·1, ·2) © d◊C(·1, ·2)
d·1

,
⁄

C
d· Õ ”C(·1, · Õ) A(· Õ) = A(·1). (1.19)

An arbitrary function A(·1, . . . , ·n) defined on C is the union of 2n independent functions of the

n physical times, corresponding to the different placements of the time arguments on C+ and C≠.

We refer to these 2n functions are the explicit-time components of A. We generally reserve the

9
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calligraphic roman letters to refer to the functions defined on C and refer to their explicit-time

components with non-calligraphic letters. Furthermore, we refer to the contour times using the

Greek letter · and refer to the physical time using the Roman letter t.

Following this brief introduction to the Schwinger-Keldysh contour, the main object of this

discourse, the contour Green’s function G(·1a1; ·2a2), also known as the closed-time-path (CTP)

Green’s function, is defined as:

G(·1a1; ·2a2) ©= ≠iTr
Ë
fl̂0 TC

Ó
�a1,H(·1) �†

a2,H(·2)
ÔÈ

. (1.20)

The contour-ordering operator TC orders the Heisenberg operators chronologically in the contour

sense, with a factor of (≠1)P where P is the number of permutation of the fermionic operators. The

lesser and greater Green’s functions can be obtained by investigating the explicit-time components

of G:

G(·1a1; · Õ
1aÕ

1) ©

S

WWU
Gc(t1a1; aÕ

1tÕ
1) G<(t1a1; tÕ

1aÕ
1)

G>(t1a1; tÕ
1aÕ

1) Ga(t1a1; tÕ
1aÕ

1)

T

XXV . (1.21)

In the above matrix notation, the matrix elements (1, 1), (1, 2), (2, 1) and (2, 2) correspond to the

contour branch indices (+, +), (+, ≠), (≠, +) and (≠, ≠) respectively. Note that the four explicit-

time components of the contour Green’s function are not independent from each other: the diagonal

elements can be expressed in terms of the off-diagonal elements using the exact relations given in

Eq. 1.5. We use the relations that exist between the explicit-time elements of G as a template to

define the Keldysh functions. It is easily shown that if A1 and A2 are two Keldysh functions, so is

their convolution [23]:

A3(·1a1; ·2a2) =
⁄

C
d· Õ A1(·1a1; · ÕaÕ) A2(· ÕaÕ; ·2a2), (1.22)

where summation over aÕ is implied.

10
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1.1.4 The path-integral on the Schwinger-Keldysh contour

The contour Green’s function allows a unification of various Green’s functions in a concise

form. As we shall shortly see, the perturbation expansion of the contour Green’s functions is for-

mally identical to the expressions obtained in ground state formalism, with real times replaced by

contour times and real time integrals with contour time integrals,
s Œ

≠Œ æ
s

C . To this end, it is

convenient to formulate Eq. (1.20) as a path-integral. Not only the path-integral formulation readily

gives the Feynman-Dyson perturbation expansion, but also is an indispensable tool for transcending

perturbation expansions and moving toward powerful non-perturbative functional approximations.

The construction of the path-integral representation of the contour Green’s function is identical

to that of the conventional Green’s functions [29], with the only difference that the time integrations

are done on the Schwinger-Keldysh contour instead of the real (or imaginary) lines. The path-

integral representation of fermionic fields is done by introducing Grassmann numbers and fermionic

coherent states. Here, we use the normalized coherent states that satisfy the completeness relation

in the form:
⁄

DÂDÂ̄ |ÂÍÈÂ| = I, (1.23)

where I is the identity operator in the Fock space, |ÂÍ is a normalized fermionic coherent state with

ÈÂ| being its adjoint, and
s

DÂDÂ̄ is the Berezin integral. As a first step, we use the trace formula

to express the trace appearing in Eq. (1.20) as a Berezin integral over a fermionic coherent state

|Â(t0+)Í constructed from the field operators at t = t0:

G(·1a1; ·2a2) = ≠i
⁄

DÂ(t0+)DÂ̄(t0+)
e
≠Â(t0+)

---fl̂0 TC
Ó

�a1,H(·1) �†
a2,H(·2)

Ô--- Â(t0+)
f

.

(1.24)

The minus sign in È≠Â(t0+)| is due to the anti-commutation of the Grassmann numbers. We further

11



Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

plug in a resolution of identity between fl̂0 and the field operator appearing above, so that:

G(·1a1; ·2a2) = ≠i
⁄

DÂ(t0+)DÂ̄(t0+)DÂ(t0≠)DÂ̄(t0≠) È≠Â(t0+) |fl̂0| Â(t0≠)Í

◊
e
Â(t0≠)

---TC
Ó

�a1,H(·1) �†
a2,H(·2)

Ô--- Â(t0+)
f

. (1.25)

The reason for labeling these two coherent states as |Â(t0+)Í and |Â(t0≠)Í will become clear

shortly. As the next step, we break the forward and backward propagation of the Heisenberg opera-

tors into pieces of �t apart, as graphically shown below:

We insert the resolution of identity in terms of the coherent states, I =
s

DÂ±(t±)|Â±
j ÍÈÂ±

j |, in

place of each of the vertical lines. Taking the limit �t æ 0, we obtain the real-time action, however,

with the path integration running along the contour C instead of the real line:

e
|Â(t0≠)

---TC
Ó

�a1,H(·1) �†
a2,H(·2)

Ô--- Â(t0+)
f

=
⁄ Â(t0≠)

Â(t0+)
DÕ[Â, Â̄] Âa1(·1) Â̄a2(·2) eiS[Â,Â̄],

(1.26)

where:

⁄ Â(t0≠)

Â(t0+)
DÕ[Â, Â̄] © lim

�tæ0

⁄
DÂ(t0+�t, +)D[Â̄(t0+�t, +)DÂ(t0+2�t, +)D[Â̄(t0+2�t, ≠)

◊ . . . ◊ DÂ(t0 + �t, ≠)DÂ̄(t0 + �t, ≠)DÂ(t0, ≠)DÂ̄(t0, ≠), (1.27)

and:

S[Â, Â̄] = S0[Â, Â̄] + Sint[Â, Â̄],

S0[Â, Â̄] =
⁄

C
d·1 d·2 Â̄a1(·1) G≠1

0 (·1a1; ·2a2) Âa2(·2),

Sint[Â, Â̄] = ≠
⁄

C
d· ⁄ab;cd(t) Â̄a(·) Â̄c(·) Âd(·)Âb(·). (1.28)

12



Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

The bare inverse Green’s function, G≠1
0 , is defined as:

G≠1
0 (·1a1; ·2a2) © [iˆ·1”a1a2 ≠ Ea1a2(t1)] ”C(·1, ·2). (1.29)

The contour time derivative of the coherent state is defined as the limit given in Eq. (1.18). Putting

together Eqs. (1.25) and (1.26), we finally find:

G(·1a1; ·2a2) = ≠i
⁄

DÂ(t0+)DÂ̄(t0+)DÂ(t0≠)DÂ̄(t0≠) È≠Â(t0+) |fl̂0| Â(t0≠)Í

◊
⁄ Â(t0≠)

Â(t0+)
DÕ[Â, Â̄] Âa1(·1) Â̄a2(·2) eiS[Â,Â̄]. (1.30)

The above expression has an interesting structure: the initial statistical fluctuations are represented

by the matrix elements of fl̂0 which weigh the paths based on their initial and final points Â(t0+)

and Â(t0≠). Quantum fluctuations are borne out of the multitude of paths. Further developments

require the knowledge of the structure of the initial density matrix.

1.1.5 Initial correlations: the general theory

We derived the general expression for the contour Green’s function in the previous section.

While it is a useful result for formal developments, practical calculations is only made possible

with further knowledge about the structure of the initial density matrix. It is useful to consider the

general case first, where fl̂0 is assumed to be via a general ansatz. Following Refs. [30, 31], we may

parametrize the density matrix, without the loss of generality, via using following ansatz:

È≠Â(t0+)|fl̂0|Â(t0≠)Í = exp(iF [Â, Â̄]),

F [Â, Â̄] =
Œÿ

n=0

1
n!

⁄

C
d·1 . . . d·n –n(·1a1c1; . . . ·nancn) „a1,c1(·1) . . . „a1,c

n

(·n).

(1.31)

The above compact notation is to be interpreted as follows:

(1) We have defined charge implicit Grassmann variables „a,c(·), where c = +, ≠. These Grass-

mann variables are related to the charge explicit variables, Âa(·) and Â̄a(·) as „a,+(·) ©

13



Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

Â̄a(·) and „a,≠(·) © Âa(·). This convenient notation allows us to treat Â and Â̄ on an equal

footing.

(2) The initial density matrix only depends on the coherent states at the endpoints of C, i.e.

|Â(t0+)Í and |Â(t0≠)Í. Therefore, the –n functions are only nonzero at the endpoints of

the path. In other words, they carry contour Dirac ” functions that makes them non-vanishing

only at · = (t0, ±).

(3) We refer to –n as the initial correlation vertices since they convey the initial correlations

present in the system: –0 sets the overall normalization of the density matrix according to the

physical requirement Tr[fl̂0] = 1, –1 is zero for fermionic systems since ÈÂÍ = ÈÂ†Í = 0,

and –2 corresponds to the initial two-particle correlations (i.e. the number density, supercon-

ducting order parameter, etc), and so on. In a fermionic theory, the initial correlation vertices

with an odd number of external legs vanish.

The above ansatz for the density matrix paves the way for the Feynman-Dyson diagrammatic ex-

pansion. To this end, we absorb –2 into the Gaussian part of the original action S0 and define the

correlated bare inverse Green’s function G≠1
0,–2 as:

G≠1
0,–2(·1a1c1; ·2a2c2) © G≠1

0 (·1–1; ·2–2) ”c1,+”c2,≠ + 1
2 –2(·1a1c1; ·2a2c2). (1.32)

We further absorb the higher order correlation vertices in Sint and define Sint,–[„] accordingly. The

final result reads as:

G(·1a1; ·2a2) = ≠i
⁄

f
D[Â, Â̄] Âa1(·1) Â̄a2(·2)

◊ exp
5
i
⁄

C
d·1 d·2 „a1,c1(·1) G≠1

0,–2(·1a1c1; ·2a2c2) „a2,c2(·2)
¸ ˚˙ ˝

S0,–2 [Â,Â̄]

6
exp(iSint,–[„]). (1.33)

We remind that the only constraint on the paths is Â(t0+) = ≠Â(t0≠), as required by the fermionic

trace formula. The f index affixed to the integral sign is a reminder for this constraint. We have also
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Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

absorbed the overall normalization constant ei–0 into the integral measure D[Â, Â̄]. The vertices

appearing in Sint,–[„] can be graphically represented as follows:

, , , , . . . (1.34)

there the dot vertex denotes the original interaction vertex ⁄ab;cd and the polygons are the initial

correlation vertices (which only act at · = t0, ±).

Without the term exp(iSint,–[„]) in the kernel of Eq. (1.33), the path-integral reduces to a Gaus-

sian integral and we find G = G0, where G0 is the operator inverse of G≠1
0,–2 . In this formulation, the

initial 2-particle correlations are explicitly contained in G≠1
0,–2 through –2. Taking higher order cor-

relations and interactions into account, we may proceed by expanding exp(iSint,–[„]) in the powers

of Sint,–. Since the path integral measure is a Gaussian, the Wick’s theorem is applicable and we

obtain a Feynman-Dyson’s expansion of G in terms of G0,–2 , ⁄ and –n (n Ø 4). We do not follow

this development further and refer the reader to Ref. [31] for more details. In the next section, we

consider the two special cases of (1) Gaussian initial correlations, and (2) thermal correlations.

1.1.6 Initial correlations: Gaussian and thermal correlations

Here, we consider two important and special cases where the calculations are considerably sim-

pler, i.e. Gaussian initial correlations and thermal correlations.

Gaussian initial correlations:

Provided that fl̂0 is expressible as the exponential of an arbitrary sum of one-body operators:

fl̂0 = exp
Ë
Aa1,a2�†

a1(t0)�a2(t0)
È

, (1.35)

the Wick’s theorem hold [23] and as a result, only –0 and –2 will be non-zero. The explicit relation

between the initial correlation vertices –n and the initial correlations of the field operators at t = t0
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can be easily worked out (e.g. cf. Ref. [23, 32]). In the absence of higher order correlation vertices,

the perturbation expansion only involves the interaction vertex ⁄ab;cd. To first-order in ⁄ab;cd, we

find:

G(·1a1; ·2a2) = ≠i
⁄

D[Â, Â̄]eiS0,–2 [Â,Â̄] Âa1(·1)Â̄a2(·2)

◊
5
1 ≠ i

⁄

C
d· Õ⁄ab;cd(tÕ)Â̄a(· Õ)Â̄c(· Õ)Âd(· Õ)Âb(· Õ) + . . .

6

= G0(·1a1; ·2a2)
=

1 ≠ i
⁄

C
d· Õ⁄ab;cd(tÕ)Â̄a(· Õ)Â̄c(· Õ)Âd(· Õ)Âb(· Õ) + . . .

>

S0,–2

+
⁄

C
d· Õ G0(·1a1; · Õa)

#
4i⁄ab;cd(tÕ)G0(· Õb; · Õc)

$
G0(· Õd; ·2a2) + O(⁄2)

=
C

1 +
D

+ + O(⁄2). (1.36)

We note that the appearance of the disconnected diagram in the series is only formal. A convenient

feature of the contour formalism is that at any order in perturbation theory, the disconnected

diagrams sum to zero. The reason is that the disconnected diagrams result from the perturbation

expansion of Èexp(iSint)ÍS0,–2
, i.e. the term in angled brackets appearing after the second

equality sign above. This expression, however, is simply the path integral representation of the

unitary propagation from t0 to Œ and back again to t0, which is the identity operator. Therefore,

Èexp(iSint)ÍS0,–2
© È 1 ÍS0,–2 +Sint = Tr[fl̂0] = 1.

As promised, the non-equilibrium perturbation expansion is formally equivalent to the ground

state formalism, however, with the time integrations done on C instead of the real line. We will

discuss how the explicit-time components of G may be inferred from such contour expressions in

Sec. 1.1.7.
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Thermal initial correlations:

Another important scenario, which is often the case, corresponds to the systems which are in

the thermal equilibrium at t = t0, after which the equilibrium is disturbed due to the presence of

time-dependent terms in the Hamiltonian. The density matrix at t = t0 is given by:

fl̂0 = e≠—Ĥ(t0)

Tr[e≠—Ĥ(t0)]
. (1.37)

Without the loss of generality, we may assume that the system has been in the thermal equilibrium

with Ĥ(t0) for all times prior to t0 as well. We extend the the Hamiltonian to the times preceeding

t0 as follows:

Ĥ(t < t0) = Ĥ(t0) © Ĥeq. (1.38)

The chemical potential µ is assumed to be absorbed to Ĥ . The thermal correlations encoded in

fl̂0 can be accounted for using the technique of imaginary-time propagation, reminiscent of the

Matsubara formalism [33]. This method obviates the need to calculate the correlation vertices –n

explicitly. As a first step, we express the matrix elements of fl̂0 as a path integral along a directed

vertical line C— © [0, ≠i—]:

È≠Â(t0+) |fl̂0| Â(t0≠)Í =

e
≠Â(t0+)

---e≠—Ĥ(t0)
--- Â(t0≠)

f

Tr[e≠—Ĥ(t0)]

=

⁄ ≠Â(t0+)

Â(t0≠)
D[Â, Â̄] eiS

—

[Â,Â̄]

⁄

f
D[Â, Â̄] eiS

—

[Â,Â̄]
, (1.39)

where S—[Â, Â̄] is the same as in Eq. (1.28), however, with C— in place of C. We have also expressed

the trace in the denominator of fl̂0 as a fermionic path integral along C— . The above expression

can be put into a more useful form by noting that the path integration in the denominator can be
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deformed as follows:

The successive deformations are allowed since the real time propagations along C+ and C≠ are

unitary and cancel each other (note that the path integrals are not interrupted by field operators in

the denominator of Eq. 1.39). The analysis we present here is the path-integral adaptation of the

Kadanoff and Baym’s original approach [22] based on the analytical continuation procedure. We

refer to the last contour CKB = C+ fi C≠ fi C— as the Kadanoff-Baym contour.

We proceed by plugging Eq. (1.39) in Eq. (1.30) and joining C— to C+fiC≠. Since ·1, ·2 > t0, we

may again deform the contour and send the starting time of the real-time branches to ≠Œ (note that

t0 still refers to the time at which the time-dependent terms are switched on). This also allows us to

calculate G for ·1, ·2 < t0, which are simply the thermal Green’s functions analytically continued

to real times. To summarize, the final path-integral expression for G starting from an equilibrium

state can be expressed as:

G(·1a1; ·2a2) =
≠i

⁄

f
D[Â, Â̄] Âa1(·1) Â̄a2(·2) eiSCKB [Â,Â̄]

⁄

f
D[Â, Â̄] eiSCKB [Â,Â̄]

. (1.40)

The above formula can be readily used to obtain the Feynman-Dyson perturbation expansion

by separating the quadratic part of the action and expanding the interaction part. The ensuing

expressions are identical to those shown in the previous section, however, the time integrations

are performed along CKB instead of C. Since the propagation is not unitary on CKB (due to the

imaginary branch), the vacuum diagrams do not vanish in this case. However, they are removed by

the denominator at all orders in the perturbation expansion.
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Let us take a moment and examine the properties of the explicit-time equilibrium Green’s func-

tion. These are found by placing ·1, ·2 on the real-time branches at physical times prior to t0. The

Hamiltonian is independent of time in this time regime and as a result, the Green’s functions are only

functions of the physical time difference t © t1 ≠ t2. Using Eq. (1.14a) and the cyclical property of

the trace, we find:

G>
eq.(t1a1; t2a2) = ≠iZ≠1Tr

Ë
�a1e≠itĤeq.�†

a2e≠(—≠it)Ĥeq.

È
,

G<
eq.(t1a1; t2a2) = iZ≠1Tr

Ë
�a1e≠(—+it)Ĥeq.�†

a2eitĤeq.

È
, (1.41)

where Z © Tr[exp(≠—Ĥeq.)] is the partition function. The above equations can be put in a more

useful form by invoking the resolution of identity in terms of the complete spectrum of Ĥeq., i.e. in

the Lehmann representation [33]:

G>
eq.(a1t1; a2t2) = ≠iZ≠1 ÿ

m,n

ÈEn|�a1 |EmÍÈEm|�†
a2 |EnÍ e≠—E

neit(E
n

≠E
m

),

G<
eq.(a1t1; a2t2) = iZ≠1 ÿ

m,n

ÈEn|�a1 |EmÍÈEm|�†
a2 |EnÍ e≠—E

meit(E
n

≠E
m

), (1.42)

where {En} correspond to the eigenvalues of Ĥeq. with eigenvectors {|EnÍ}. Taking a Fourier

transform of the above expressions in t, we find:

G>
eq.(a1, a2; Ê) = ≠iAeq.(a1, a2; Ê) [1 ≠ f0(Ê)] ,

G<
eq.(a1, a2; Ê) = iAeq.(a1, a2; Ê)f0(Ê), (1.43)

where f0(Ê) © 1/[exp(—Ê) + 1] is the Fermi-Dirac distribution function, and the equilibrium

spectral function Aeq.(a1, a2; Ê) is defined as:

Aeq.(a1, a2; Ê) © Z≠1 ÿ

m,n

(2fi)”(Ê + En ≠ Em)ÈEn|�a1 |EmÍÈEm|�†
a2 |EnÍ

Ë
e≠—E

m + e≠—E
n

È
.

(1.44)

Dividing the sides of Eq. (1.43) by each other, we find:

G>
eq.(a1, a2; Ê) = ≠e—Ê G<

eq.(a1, a2; Ê). (1.45)
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This relation between G>
eq. and G<

eq. is called the Kubo-Martin-Schwinger (KMS) condition, also

referred to as the fluctuation-dissipation relation.

In addition to the purely real-time Green’s function, we also face the mixed-time Green’s func-

tions as found by placing ·1 on either of the real-time branches and ·2 on C— . An analysis similar

what presented above yields the following expression for the mixed Green’s functions:

G(a1, t1; a2, T0 ≠ i“) = i
⁄ dÊ

2fi
Aeq.(a1, a2; Ê)f0(Ê) e≠iÊ(t1≠T0+i“),

G(a1, T0 ≠ i“; a2, t2) = ≠i
⁄ dÊ

2fi
Aeq.(a1, a2; Ê) [1 ≠ f0(Ê)] e≠iÊ(T0≠i“≠t1). (1.46)

In the above expressions, T0 is the starting time of the real-time contours, t1, t2 < t0 and 0 Æ

“ Æ — is the imaginary time. Provided that the spectral function is a continuous function of Ê, the

Lebesgue-Riemann lemma implies:

lim
T0æŒ

G(a1, T0 ≠ i“; a2, t2) = lim
T0æŒ

G(a1, t1; a2, T0 ≠ i“) = 0, (1.47)

owing to the presence of the rapidly oscillatory factors e±iÊT0 in the frequency integrals appearing

in Eq. (1.46). Therefore, the mixed Green’s functions can be set to zero once the limit T0 æ ≠Œ is

taken. This amounts to neglecting the imaginary branch of CKB in the contour time integrals. While

doing so, one must ensure:

G(·1a1; ·2a2)|t1,t2<t0 = Geq.(·1a1; ·2a2). (1.48)

This is conveniently implemented by imposing the KMS conditions as boundary conditions on the

calculations, e.g. when solving the Kadanoff-Baym equations (cf. Sec. 1.2.5).

We finally remark that the above argument based on the Riemann-Lebesgue lemma is bound

to the continuity of the spectral function (i.e. smearing of the energy levels) and may not hold

in general. For instance, finite systems have a finite number of states and their spectral function

consists of isolated ” peaks. Another counterexample is the non-interacting gas where the particles
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strictly obey the mass-shell condition and the spectral function again consists of ” peaks. Here,

we are concerned with interacting systems in the thermodynamical limit which have continuous

spectral functions based on physical grounds. Therefore, we also adopt this usual practice hereafter

and set the time contour C to the Schwinger-Keldysh roundtrip contour while sending T0 to ≠Œ.

1.1.7 The Langreth rules

So far, we have handled the contour Green’s functions and the expressions involving their con-

volution integral such as Eq. (1.36) on a formal level. In practice, however, we are interested in

the explicit-time components of the Green’s function. To this end, one requires a prescription to

find the explicit-time components of convolution of two Keldysh functions. In the case where the

time contour is the round-trip Schwinger-Keldysh contour, this prescription is given by the Langreth

rules. We consider the following contour time convolution integral:

A(·1, ·2) =
⁄

C
d· Õ B(·1, · Õ) C(· Õ, ·2), (1.49)

The lesser component of A can be found by placing ·1 and ·2 on C+ and C≠ branches, respectively.

In this case, Eq. (1.49) reads as:

A<(t1, t2) =
⁄ t1

≠Œ
dtÕ B>(t1, tÕ) C<(tÕ, t2) +

⁄ Œ

t1
dtÕ B<(t1, tÕ) C<(tÕ, t2)

+
⁄ t2

Œ
dtÕ B<(t1, tÕ) C<(tÕ, t2) +

⁄ ≠Œ

t2
dtÕ B<(t1, tÕ) C>(tÕ, t2)

=
⁄ t1

≠Œ
dtÕ #

B>(t1, tÕ) ≠ B<(t1, tÕ)
$
C<(tÕ, t2)

≠
⁄ t2

≠Œ
dtÕ B<(t1, tÕ)

#
C>(tÕ, t2) ≠ C<(tÕ, t2)

$

=
⁄ Œ

≠Œ
dtÕ Ë

B+(t1, tÕ) C<(tÕ, t2) + B<(t1, tÕ) C≠(tÕ, t2)
È

. (1.50)

The second equality is obtained by straightforward rearrangements and the last line follows from

the definition of the retarded and advanced components. Likewise, the greater component is easily
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found to be:

A>(t1, t2) =
⁄ Œ

≠Œ
dtÕ Ë

B+(t1, tÕ) C>(tÕ, t2) + B>(t1, tÕ) C≠(tÕ, t2)
È

. (1.51)

The retarded and advanced components are found by subtracting the sides of Eqs. (1.51) and (1.50)

from one another and multiplying by the ◊ function. We write the final results in a compact notation

for future reference:

A?(t1, t2) =
⁄ Œ

≠Œ
dtÕ Ë

B+(t1, tÕ) C?(tÕ, t2) + B?(t1, tÕ) C≠(tÕ, t2)
È

,

A±(t1, t2) =
⁄ Œ

≠Œ
dtÕ B±(t1, tÕ) C±(tÕ, t2). (1.52)

1.1.8 The Martin-Schwinger and BBGKY hierarchies

In the previous sections, we formulated the non-equilibrium Green’s function as a path integral.

Another useful approach toward calculating the Green’s functions is the so-called equation of mo-

tion method, where a differential equation is found for G. To this end, one starts from the time

evolution of the field operators �† and � in the Heisenberg picture, iˆ· �†
a(·) = [�†

a(·), H(t)],

and iˆ· �a(·) = [�a, H(·)]. Expanding the commutators and using commutation relations, we

find:

iˆ·1�a1(·1) = Ea1(t1)�a1(·1) + wa1,b1(t1)�†
b1

(t1)�b1
(t1)�a1(t1), (1.53a)

iˆ· �†
a2(·2) = ≠Ea2(t2)�†

a2(·2) ≠ wa2,b2(t2) �†
a2(·2)�†

b2
(·2)�c2(·2), (1.53b)

where we have specialized the generic Hamiltonian given in Eq. (1.1) by substituting Eab(t) =

Ea(t)”ab and ⁄ab;cd(t) = (1/2) wa,c(t) ”cd ”ab for the clarity of discussion. The evolution equation

for the contour Green’s function G(·1a1; ·2a2) in ·1 is found by multiplying the sides of Eq. (1.53a)

by �†
a2(·2) from the right and taking a trace with the initial density matrix. Likewise, the evolution

equation in ·2 is found by multiplying the sides of Eq. (1.53b) by �a1(·1) from the left and taking
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a the trace with the initial density matrix. The final result is:

[iˆ·1 ≠ Ea1(t1)] G(·1a1; ·2a2) = ”a1a2”C(·1, ·2) ≠ iwa1,b(t1) G2(·≠
1 a1, ·1b; ·+

1 b, ·2a2),

(1.54a)

[≠iˆ·2 ≠ Ea2(t2)] G(·1a1; ·2a2) = ”a1a2”C(·1, ·2) ≠ iwa2,b(t2) G2(·1a1, ·2b; ·+
2 b, ·≠

2 a2).

(1.54b)

The ” functions appear due to equal-time commutation relations between the field operators and the

time derivative of the contour-ordered operators. The G2 function is the 2-particle Green’s function

to be defined below. The + (≠) sign on the contour times appearing in G2 implies addition (sub-

traction) of an infinitesimal time in the contour sense. Due to the presence of two-body interactions,

this procedure does not yield a closed set of equations only in terms of G and the involvement of

higher-order Green’s functions (here, G2) is unavoidable. The n-particle contour Green’s function

Gn is generally defined as:

Gn(·1a1, . . . ·nan; · Õ
1aÕ

1, . . . · Õ
naÕ

n) ©

(≠i)n Tr
Ë
fl̂0 TC

Ó
�a1(·1) . . . �a

n

(·n); �†
aÕ

1
(· Õ

1) . . . �†
aÕ

n

(· Õ
n)

ÔÈ
. (1.55)

We note that G © G1. Evolution equations for G2, G3, . . . can be obtained by multiplying

Eqs. (1.53a) and (1.53b) with additional field operators and taking traces. The ensuing infinite

hierarchy of equations is called the Martin-Schwinger (MS) hierarchy [34]. At the n’th level, the

MS equation reads as:

[iˆ·1 ≠ Ea1(·1)] Gn(1 . . . n; 1Õ . . . nÕ) =
nÿ

jÕ=1
”(1, jÕ)(≠1)n≠jÕGn≠1(2 . . . n; 1Õ . . . jÕ ≠ 1, jÕ + 1 , . . . nÕ)

≠ iwa1,b(t1) Gn+1(1 . . . n, ·1b; ·+
1 b, 1Õ . . . nÕ). (1.56)

We have used a shorthand notation and bundled (·, a) pairs into integer variables, i.e. j © (·j , aj)

and jÕ © (· Õ
j , aÕ

j). The equation of motion for the time derivatives acting on the rest of the time
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variables can be worked out in a similar way. The MS hierarchy may also be derived directly

using functional methods by invoking the so-called Schwinger-Dyson equation [35, 36]. Another

related hierarchy equation is Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [37].

Originally proposed in the context of the kinetic equation of classical gases, the BBGKY hierarchy

relates the n-particle probability density function to the (n+1)-particle probability density function.

The BBGKY hierarchy equations can be deduced from the MS hierarchy by restricting the latter to

the equal-time Green’s functions.

1.2 The 2PI effective action (2PI-EA) formalism

We briefly reviewed the Schwinger-Keldysh theory of non-equilibrium quantum fields in the

previous section. Although the formalism shares many features with the conventional ground state

and equilibrium approaches, practical non-equilibrium calculations involve additional complica-

tions which are not present in the usual equilibrium calculations. One of such complications is the

appearance of secular terms in the Feynman-Dyson perturbation expansion of the non-equilibrium

Green’s functions. The secular terms grow with time and invalidate the perturbation expansion

even for weakly coupled systems. Secularity persists even in the (conventional) non-perturbative

technique such as the large-N expansion.

The second complication is the requirement of universality, i.e. the insensitivity of the late-time

behavior to the details of the initial conditions. The the long-time fate a physical system is uniquely

determined by the initial conserved charges (energy, particle number, momentum, etc). The

emergence of an arrow of time and loss of information inevitably requires non-linear dynamical

equations. Furthermore, the long-time persistence of conserved charges demands fulfillment of the

conservation laws associated to the symmetries of the microscopic action at all times. Therefore,

the above requirements impose stringent constraints on the many-body approximations to be
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implemented within the non-equilibrium formalism.

It is useful to illustrate the pitfalls of the perturbation expansion in a simple problem. Consider

a non-interacting two-component Fermi gas set in motion at t = t0 starting from a thermal equilib-

rium state with inverse temperature — and chemical potential µø = µ¿ = µ. A short-range two-body

interaction is immediately switched on at t = t0:

Ĥ(t) =
ÿ

‡=ø,¿

⁄
ddx �†

‡,x

A

≠ Ò2

2m
≠ µ

B

�‡,x + ◊(t ≠ t0) ⁄
⁄

ddx �†
ø,x�†

¿,x�¿,x�ø,x. (1.57)

The non-equilibrium Green’s functions can be easily worked out similar to Eq. (1.36) order by order

in ⁄. To first order in ⁄, we find:

G<
ø (t1, t2; k) = if0(›

k

)ei›k(t1≠t2) + ⁄N¿f0(›
k

)(t1 ≠ t2)ei›k(t1≠t2) + O(⁄2),

G<
¿ (t1, t2; k) = if0(›

k

)ei›k(t1≠t2) + ⁄Nøf0(›
k

)(t1 ≠ t2)ei›k(t1≠t2) + O(⁄2), (1.58)

where ›
k

= k2/(2m) ≠ µ and Nø = N¿ =
s

(ddk)/(2fi)d f0(›
k

). The first-order corrections grow

linearly in time and quickly invalidate the perturbation expansion. This is an example of secularity.

It is easy to see that the n’th order term in the Dyson series (with the same self-energy) grows like

≥ tn. Therefore, finite-order perturbation expansion is of little practical use here. On a related note,

the unbounded growth of the Green’s function implies the violation of conservation of energy. We

note that in this particular case, the secularity can be overcome by summing the same self-energy

diagram to all orders. This results in an effective shift of the oscillation frequency of the Green’s

functions. This simple problem shows the necessity of infinite-order diagrammatic resummation

in problems involving non-equilibrium evolutions. Although the secular terms could be removed

by a simple resummation in this case, it is generally a non-trivial problem when the diagrammatic

expansion involves different classes of diagrams.
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Fortunately, functional methods provide a class of approximations which are free of such nui-

sances. Both of the mentioned requirements, i.e. non-secularity and universality, can be fulfilled

using technique of n-particle irreducible (nPI) effective actions (nPI-EA). We shall motivate the

nPI-EA formalism by asking the following question:

It is possible to express the n-particle Green’s function Gn as exact functional of G, G2,

. . ., Gn≠1 (with possible dependence on the initial correlation vertices)? if the answer

is positive, how can such a functional be constructed?

The above question asks for a formalism similar to the density functional theory (DFT), where the

ground state energy is given as a universal functional of the number density. Provided that the

answer to the above question is positive, such a construction will be of utmost importance: the MS

hierarchy can be closed at the level of Gn≠1 (cf. Eq. 1.56), and the exact dynamics of the many-body

system can be determined by integrating the n ≠ 1 coupled MS equations forward in time.

The answer to the above questions is in fact positive, thanks for the nPI-EA formalism. Fur-

thermore, provided that the system is initially in a thermal equilibrium state, Gn will be a universal

functional, with no reference to the initial correlation vertices. The simplest and most useful method

in this family is the 2PI-EA which gives G2 as a functional of G and subsequently yields a single

self-consistent equation of motion for G. This functional technique, introduced by Cornwall, Jakiw

and Tomboulis [38], serves as a rigorous foundation for the �-derivable approximations proposed

earlier by Baym and Kadanoff [39, 40]. We restrict our discussion to the 2PI-EA which is suffi-

cient for the purpose of the forthcoming developments. Discussion regarding higher order effective

actions can be found in Refs. [41, 42].

The 2PI-EA technique is non-perturbative by construction. Although the exact effective action

can not be found analytically, its diagrammatic interpretation often allows controlled expansions

which share many important features with the exact theory such as long-time universality, non-
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secularity and rigorously conserved charges. We review this formalism in the next sections, with

emphasis on application to general superconducting states and the issue of conservation laws.

1.2.1 The generating functional of 2-connected 2n-point correlators

A cornerstone of the functional techniques is the concept of generating functionals. In general,

a generating functional is obtained by coupling the field operators to one or more external fields,

called the source fields. The source fields can be thought of as our probes inside the quantum system.

The correlators are probed by varying the source fields. For our current purposes, we are interested

in a source field that couples to the fermion operators bilinearly. More explicitly, we define:

Z[K] ©
⁄

f
D[Â, Â̄] exp

1
iS[Â, Â̄] + iS2[Â, Â̄, K]

2
, (1.59)

where K is a 2-particle source field on the time contour C that couples to the fermion operators as:

S2[Â, Â̄, K] ©

≠1
2

⁄

C
d·1 d·2

1
Âa1(·1) Â̄a1(·1)

2
Q

cca
K≠≠(·1a1, ·2, a2) K≠+(·1a1, ·2, a2)

K+≠(·1a1, ·2, a2) K++(·1a1, ·2, a2)

R

ddb

Q

cca
Âa2(·2)

Â̄a2(·2)

R

ddb .

(1.60)

The microscopic action S[Â, Â̄] is given in Eq. (1.28). We have restricted our analysis to the systems

either with initial thermal correlations or Gaussian correlations, so that the initial density matrix can

be accounted for using the imaginary propagation or by absorbing the initial two-body correlations

–2 in the path-integral measure (cf. 1.1.6). As mentioned earlier, arbitrary initial correlations can

be accounted using the Schwinger-Keldysh contour at the expense of introducing additional inter-

action vertices to Sint. In order to comply with the Fermi statistics, we require the source fields

to satisfy K++(·1a1, ·2a2) = ≠K++(·2a2, ·1a1), K≠≠(·1a1, ·2a2) = ≠K≠≠(·2a2, ·1a1), and

K+≠(·1a1, ·2a2) = ≠K≠+(·2a2, ·1a1). We have considered the most general bilinear coupling

so that Z[K] can also be used to calculate the anomalous Green’s functions in the superconducting
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states where the U(1) gauge symmetry is spontaneously broken. The forthcoming discussion is

much facilitated by introducing a uniform notation for the creation and annihilation fermion opera-

tors like before. To this end, we introduce a “charge” index, c = ± to the bundle of internal degrees

of freedom a and define:

„ã(·) ©

Y
__]

__[

Â̄a(·), c = +,

Âa(·), c = ≠,
(1.61)

where ã = (a, c). We remember that the free part of the action is:

S0[Â, Â̄] =
⁄

C
d· d· Õ Â̄a(·) G≠1

0 (·a, · Õb) Âb(· Õ)

= ≠
⁄

C
d· d· Õ Âa(·) Gú,≠1

0 (·a, · Õb) Â̄b(· Õ) ≠
1
Â̄+

a Â+
a ≠ Â̄≠

a Â≠
a

2
. (1.62)

where G≠1
0 (·a, · Õb) = [iˆ· ”ab ≠ Eab(·)] ”C(·, · Õ). We have transferred the time derivative to Â̄

to get the second line. The boundary terms are only effective at t = t0 and hence, only modify

the initial conditions. We absorb them to the integral measure, D[Â, Â̄]. Using a vector notation

„ã = (Âa, Â̄a), the free part of the action can be written as:

S0[„] = 1
2

⁄

C
d· d· Õ „T

ã (·)

Q

cca
0 ≠G≠1

0 (· Õb, ·a)

G≠1
0 (·a, · Õb) 0

R

ddb

¸ ˚˙ ˝
©G̃≠1

0 (· ã,· Õb̃)

„b̃(·
Õ). (1.63)

It is easy to check that G̃≠1
0 (· ã, · Õb̃) = ≠G̃≠1

0 (· Õb̃, · ã). We also define a general n-particle CTP

Green’s function in the presence of the 2-particle source field K as:

G̃n(·1ã1 . . . ·2nã2n; K) © 1
in

ÈTC [„ã1(·1) . . . „ã2n

(·2n)]ÍK , (1.64)

where the average È. . .ÍK implies the path integration with respect to the action S + S2. By con-

struction, permuting the arguments of G̃n only results in a (≠1)P factor, where P is the parity of the

permutation. The usual Green’s functions G and for superconducting states, F and F̄ , can be easily
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found from G̃ by assigning appropriate charges to the external points. For instance:

G̃(·1a1+, ·2a2+) = ≠i
e
TC

Ë
�†

a1(·1)�†
a2(·2)

Èf
= F̄(·1a1, ·2a2),

G̃(·1a1+, ·2a2≠) = ≠i
e
TC

Ë
�†

a1(·1)�a2(·2)
Èf

= Ḡ(·1a1, ·2a2),

G̃(·1a1≠, ·2a2+) = ≠i
e
TC

Ë
�a1(·1)�†

a2(·2)
Èf

= G(·1a1, ·2a2),

G̃(·1a1≠, ·2a2≠) = ≠i
e
TC

Ë
�a1(·1)�a2(·2)

Èf
= F(·1a1, ·2a2), (1.65)

Also, by definition Ḡ(·1a1, ·2a2) = ≠G(·2a2, ·1a1). The matrix elements of K may also be bun-

dled together by defining K(·1ã1, ·1ã2) © Kc1c2(·1a1, ·2a2). Finally, we often find it useful to

bundle a pair of fermion arguments into an effective “bosonic” argument and use a single symbol

to refer to it, e.g. “ © (·1ã1, ·2ã2). We also use a bar superscript to refer to the bosonic argument

with exchanged fermion points, e.g. “̄ © (·2ã2, ·1ã1).

Before we start the analysis, we note that considerable care must be taken in calculating the

functional derivatives with respect to K and G̃. Since these quantities are antisymmetric, not all of

their entries are independent variables. Another word of caution is in using the “chain-rule” for

quantities that implicitly depend on G̃ and K. One must make sure that only independent entries

are varied in the chain-rule in order to avoid double counting.

By definition, Z[K] is the generator of 2n-point Green’s functions. For instance, a direct calcu-

lation using Eq. (1.59) gives:

1
Z[K]

”Z[K]
”K(1, 2)

----
K=0

= ≠ i

2È„(1)„(2) ≠ „(2)„(1)Í = G̃(1, 2). (1.66)

Taking additional functional derivates with with respect to K produces higher order correlators.
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This can be summarized by formally expanding Z[K] about K = 0:

Z[K] = Z[0] +
⁄

C
d·1 d· Õ

1
”Z[K]

”K(·1ã1, · Õ
1ãÕ

1)

-----
K=0

K(·1ã1, ·1ãÕ
1) + . . .

= Z[0] +
⁄

C
d·1 d· Õ

1 G̃(·1ã1, · Õ
1ãÕ

1) K(·1ã1, · Õ
1ãÕ

1) + . . .

= Z[0] + + . . . (1.67)

K and G̃ appear as a hatched circle and a line in the above diagram. Unless K appears explicitly

in the argument of a Green’s function (as in Eq. 1.64), we assume that the limit K æ 0 is implied.

The n’th term in the expansion of the Z[K] is:

1
n!

⁄

C

nŸ

j=1

1
d·j d· Õ

j

2
G̃n(·1ã1, · Õ

1ãÕ
1, . . . , ·nãn, · Õ

nãÕ
n)

◊ K(·1ã1, · Õ
1ãÕ

1) . . . K(·nãn, · Õ
nãÕ

n) ≥ (1.68)

Consider a n > 1 term in the above series. The diagrams contributing to such a term are either fully

connected to the n external bosonic vertices, or have disconnected parts. For example, consider the

following decomposition:

G̃2(1, 2, 3, 4) = G̃(1, 2) G̃(3, 4) ≠ G̃(1, 3) G̃(2, 4) + G̃(1, 4) G̃(2, 3) + G̃(c)
2 (1, 2, 3, 4), (1.69)

where the last term denotes the sum of all fully connected contributions. Plugging this expression

into Eq. (1.68), we obtain the following contributions to Z[K]:

≠ 1
2

3⁄

C
d·1 d· Õ

1 G̃(1, 1Õ)K(1, 1Õ)
4 3⁄

C
d·2 d· Õ

2 G̃(2, 2Õ)K(2, 2Õ)
4

≠1
2

⁄

C
d·1d· Õ

1d·2d· Õ
2

1
≠G̃(1, 2)G̃(1Õ, 2Õ) + G̃(1, 2Õ)G̃(1Õ, 2) + G̃(c)

2 (1, 1Õ, 2, 2Õ)
2

K(1, 1Õ)K(2, 2Õ).

(1.70)

The first contribution is explicitly the product of two disconnected diagrams, whereas the other

three terms can not be disentangled. More generally, we define a 2-connected diagram in the
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expansion of Z[K] if it can not be decomposed into the product of two disconnected pieces. We use

the prefix 2- in order to avoid confusion with the usual definition of connectedness, which requires

connectedness at the level of 1-particle fields. The generator of the 2-connected 2n-point Green’s

functions can be found from Z[K] using the linked cluster theorem:

Theorem. (linked cluster theorem for the generator of 2-connected 2n-point Green’s functions)

If Z[K] is the generator of 2n-point Green’s function, then W [K] © ln Z[K] is the generator of

the 2-connected 2n-point Green’s functions.

(proof) The easiest proof is by using the replica technique [29]. The basic idea of the replica

method is to evaluate Z[K]n for integer n by replicating the system n times and expanding the

result as follows:

Z[K]n = en ln Z[K] = 1 + n ln Z[K] +
Œÿ

m=2

(n ln Z[K])m

m! . (1.71)

If we evaluate Z[K]n for integer n by perturbation theory, ln Z[K] is given by the coefficients of the

terms proportional to n. A more general statement of the method is to calculate Z[K]n for integer

n, continue the function to n = 0 (which is unique by Carlson theorem) and evaluate an appropriate

expression involving the continued function to calculate the observable of interest. In the present

case, we calculate:

lim
næ0

d
dn

Z[K]n = lim
næ0

d
dn

1
en ln Z[K]

2
= ln Z[K]. (1.72)

For integer n, we may write Z[K]n as a functional integral over n copies of fields, Ẫ(‡)
a , where

‡ runs from 1 to n. Now, each propagator carries an index ‡ and all propagators entering or

leaving a given vertex has the same index ‡, and all ‡’s are summed from 1 to n. It is evident

that each connected part of a diagram must carry a single single ‡, hence, a factor of n, whereas a

diagram with nc connected pieces will have nc free ‡ indices and therefore, is proportional to nn
c .
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Combining this fact with Eq. (1.71) gives the desired result.

We calculate the first few 2-connected Green’s functions to explicitly demonstrate the theorem:

G̃(2c)(“) © ”W [K]
”K(“) = G̃(“), (1.73a)

G̃(2c)
2 (“1, “2) © ”2W [K]

”K(“1) ”K(“2) = G̃2(“1, “2) ≠ G̃(“1) G̃(“2), (1.73b)

G̃(2c)
3 (“1, “2, “3) © ”3W [K]

”K(“1) ”K(“2) ”K(“3) = G̃3(“1, “2, “3) ≠ G̃(“1) G̃(2c)
2 (“2, “3)

≠ G̃(“2) G̃(2c)
2 (“1, “3) ≠ G̃(“3) G̃(2c)

2 (“1, “2) ≠ G̃(“1) G̃(“2) G̃(“3). (1.73c)

The above expressions at valid when K ”= 0 as well. We have used the “bosonic” index bundling

defined earlier. The expressions on the right hand side of the above equation must be interpreted as

follows: if “i = (·iãi, · Õ
i ã

Õ
i), then G̃(“1) © G̃(·1ã1, · Õ

1ãÕ
1), G̃2(“1, “2) © G̃2(·1ã1, · Õ

1ãÕ
1, ·2ã2, · Õ

2ãÕ
2),

etc. The bosonic indices can be freely permuted within in a Green’s function without any sign

changes. This is a consequence of time-ordering and the even parity of such permutations. Note

that the term which is subtracted from G̃2 to give G̃(2c)
2 is exactly the term that produces the 2-

disconnected graphs in Eq. (1.70).

1.2.2 The 2PI effective action and the Luttinger-Ward functional

The formalism we seek here has a strong resemblance to the least action principle in Lagrangian

classical mechanics. In the latter, the dynamical equations are obtained by requiring the stationarity

of the classical action, i.e. ”A[{qi}] = 0, where {qi} are the classical generalized coordinates. Here,

we would like to find a functional �[ ˜̃G] such that it becomes stationary at the exact G̃. In fact, using

the results of the previous section, such a functional is easily within reach. Since the variations

of W [K] with respect to K gives G̃, we can trade K with G̃ via a Legendre transformation, i.e.
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by defining1 �[G̃] © W [G̃] ≠ (1/2)Tr[KG̃]. The variation of �[G̃] with respect to G̃ yields K.

Since the physical Green’s function is the one evaluated for vanishing source fields, we readily find

”�[G̃(K = 0)] = 0. This is exactly our sought after functional, as first proposed by Cornwall,

Jakiw and Tomboulis [38].

More explicitly, we define the 2PI-EA �[G̃] as:

�[G̃] = W [K] ≠ 1
2

⁄
d–

”W [K]
”K(–) K(–)

= W [K] ≠ 1
2

⁄
d– G̃(–) K(–). (1.74)

We have used a shorthand notation for summation over the bosonic argument bundle:

⁄
d– A(–) B(–) ©

⁄

C
d·1 d· Õ

1 A(·1ã1, · Õ
1ãÕ

1) B(·1ã1, · Õ
1ãÕ

1). (1.75)

The source field K in Eq. (1.74) must be thought of as a functional of G̃ as implicitly defined by

inverting Eq. (1.73a). Varying �[G̃] with respect to G̃ gives:

”�[G̃]
”G̃(“)

= 1
2

⁄
d–

”W [K]
”K(–)

”K(–)
”G̃(“)

≠ 1
2 (K(“) ≠ K(“̄))≠ 1

2

⁄
d– G̃(–) ”K(–)

”G̃(“)
= ≠K(“), (1.76)

where we have used the antisymmetry of K and G̃. The factor of 1/2 in the appearing in the “chain

rules” used for the first term is to cancel the double-counting. The cancellation of the first and the

last term is due to Eq. (1.73a). By definition, the physical Green’s function G̃phys. is defined such

that K[G̃phys.] = 0. Eq. (1.76) immediately implies:

”�[G̃]
”G̃(“)

----
G̃ = G̃phys.

= 0. (1.77)

The above equation is the sought after stationarity condition.

1The factor 1/2 is to compensate for double counting in summations in the trace (i.e. the product defined in Eq. 1.96).
Note that K(“) = ≠K(“̄) and G̃(“) = ≠G̃(“̄).
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Let us calculate � to 1-loop order. Using the standard Gaussian integration formula of Grass-

mann numbers, we easily find:

W 1≠loop[K] = 1
2 Tr ln

Ë
≠i(G̃≠1

0 ≠ K)
È

, (1.78)

where the trace and logarithm function must be interpreted in a functional sense. Eq. (1.73a) gives

the relation between K and G̃ at the 1-loop order:

G̃1≠loop(“) = ”W 1≠loop[K]
”K(“) = ≠1

2
1
G̃≠1

0 ≠ K
2≠1

(“̄) + 1
2

1
G̃≠1

0 ≠ K
2≠1

(“)

=
1
G̃≠1

0 ≠ K
2≠1

(“). (1.79)

We have used the antisymmetry of K and G̃0 to get the second line. The above result can be written

in the more familiar from of a Dyson’s equation:

G̃≠1(“) = G̃≠1
0 (“) ≠ K(“), (1.80)

which is in fact the expected result in the 1-loop order. The inversion of K in terms of G̃ is immediate

and indeed requiring K[G̃phys.] = 0 gives G̃ = G̃0. The 1-loop 2PI effective action is readily found

from its definition, Eq. (1.74):

�1≠loop[G̃] = 1
2 Tr ln G̃≠1 + 1

2Tr
1
G̃≠1

0 G̃
2

+ const., (1.81)

where the constant is independent of G̃. Beyond the 1-loop order, effective action will get corrections

from interactions, which we may write as:

�[G̃] = 1
2 Tr ln G̃≠1 + 1

2Tr
1
G̃≠1

0 G̃
2

+ �[G̃]. (1.82)

The above equation defines �[G̃]. We will see shortly that �[G̃] coincides with the Luttinger-

Ward functional Y Õ[G] [43] for normal systems. The naming convention � become popular

in the condensed-matter field theory literature after the important contributions of Baym and

Kadanoff [39, 39] and the idea of “�-derivability” (to be discussed later). The Luttinger-Ward
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functional is referred to a �2[G̃] in the relativistic field theory literature, following Ref [38]. The

Luttinger-Ward functional has the simple diagrammatic interpretation of being the sum of all

connected 2PI vacuum diagrams with full Green’s functions in place of bare Green’s functions.

Ref. [38] presents a rigorous proof of this fact by introducing an additional 1-particle source field

J in order to remove the 1PI diagrams and replace the bare with full Green’s functions. We refrain

from this technical discussion. Instead, we investigate the interpretation of � using two simpler

methods while deriving useful formulas along the way.

1.2.3 The self-consistent Dyson’s equation

The stationarity condition of �[G̃] naturally yields the Dyson’s equation for G̃. This is easily

noticed by combining Eqs. (1.76) and (1.82):

”�[G̃]
”G̃(“)

= G̃≠1(“) ≠ G̃≠1
0 (“) + ”�[G̃]

”G̃(“)
= ≠K(“). (1.83)

Requiring the source field to vanish, we find:

G̃≠1(“) = G̃≠1
0 (“) ≠ �̃(“), �̃(“) © ”�[G̃]

”G̃(“)
. (1.84)

The above equation is the Dyson’s equation for the 1-particle Green’s function in the differential

form, with �̃ identified as the 1PI self-energy. The self-energy is obtained by taking a functional

derivative of the Luttinger-Ward functional with respect to a Green’s function, i.e. by breaking a

line in the vacuum diagrams. Since �̃ is 1PI, the diagrammatic expansion of �[G̃] may only contain

2PI diagrams. Therefore, we identify �[G̃] as the sum of 2PI connected vacuum diagrams with G̃ in

place of G̃0 as mentioned earlier. This result can be formally written as:

�[G̃] =
5
ln

⁄
D[Â, Â̄] exp

1
iSint[Â, Â̄]

26

2PI, G̃0æG̃
, (1.85)

where Sint is the interacting part of the action which is at least cubic in the field operators. The

diagrammatic expansion rules for � is similar to that of the thermodynamical potential. Another
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useful expression for � is the definition originally given by Luttinger and Ward [43] (generalized

and adapted to our notation):

�[G̃] =
ÿ

n,k

1
2n

⁄
d“ G̃(“) �̃(n)

k (“), (1.86)

where �̃(n)
k denote 1PI self-energy diagrams with n interaction lines and k runs over the topologi-

cally distinct diagrams. For a theory with point-like two-body interactions, we obtain:

�[G̃] = 1
2 + 1

4 + 1
6 + . . . . (1.87)

In application to normal systems, all lines are the usual G functions. Anomalous Green’s functions

must be included in application to superconducting states.

So far, we have treated the Green’s functions and the self-energy as matrices in the operator

charge space. While such a matrix notation is useful for derivations, it is more transparent to make

the charge structure explicit in practice. The charge matrix structure can be made explicit by writing

out the matrix elements of the Dyson’s equation. Let us find the integral form of the Dyson’s

equation by multiplying Eq. (1.84) by G̃ and G̃0 from left and right:

G̃(1, 1Õ) = G̃0(1, 1Õ) +
⁄

d2 d2Õ G̃0(1, 2) �̃(2, 2Õ) G̃(2Õ, 1Õ). (1.88)

The integrals imply summation over the internal degrees of freedom and the contour time. The

Green’s functions and self-energy are treated as matrices in the 2 ◊ 2 operator charge space and a

matrix product is implied everywhere. Writing the matrix products explicitly, we get:
Q

cca
F(1, 1Õ) G(1, 1Õ)

Ḡ(1, 1Õ) F̄(1, 1Õ)

R

ddb =

Q

cca
0 G0(1, 1Õ)

Ḡ0(1, 1Õ) 0

R

ddb

+
⁄

d2 d2Õ

Q

cca
0 G0(1, 2)

Ḡ0(1, 2) 0

R

ddb

Q

cca
�̃(2≠, 2Õ≠) �̃(2≠, 2Õ+)

�̃(2+, 2Õ≠) �̃(2+, 2Õ+)

R

ddb

Q

cca
F(2Õ, 1Õ) G(2Õ, 1Õ)

Ḡ(2Õ, 1Õ) F̄(2Õ, 1Õ)

R

ddb .

(1.89)

36



Chapter 1: Non-equilibrium quantum field theory and the 2PI effective action formalism

The relation between the usual normal and anomalous self-energies and the matrix elements of �̃

can be read out from the above equation:

�(1, 2) © �̃(1+, 2≠) = ”�[G̃]
”Ḡ(1, 2)

= ≠ ”�[G̃]
”G(2, 1) ,

�̄(1, 2) © �̃(1≠, 2+) = ”�[G̃]
”G(1, 2) = ≠ ”�[G̃]

”Ḡ(2, 1)
,

�F (1, 2) © �̃(1+, 2+) = ”�[G̃]
”F̄(1, 2)

= ≠ ”�[G̃]
”F̄(2, 1)

,

�F̄ (1, 2) © �̃(1≠, 2≠) = ”�[G̃]
”F(1, 2) = ≠ ”�[G̃]

”F(2, 1) . (1.90)

Note that due to the antisymmetry of �̃ in the superfield notation, �̄(1, 2) © ≠�(2, 1).

1.2.4 2PI vertices and the Bethe-Salpeter equation

In the last section, we inferred the diagrammatic interpretation of � using the Dyson’s equation.

The 2PI structure of � can be shown more directly by relating it to the generating functional of the

2-connected vacuum diagrams W [K]). To this end, we define the 2n-point 2PI vertex as:

�(n)(“1, . . . , “n) © ”n�[G̃]
”G̃(“1) . . . ”G̃(“n)

. (1.91)

This reason for this terminology will become clear shortly. Taking a second derivative with respect

to G̃ of Eq. (1.76) gives:
”2�[G̃]

”G̃(“1)”G̃(“2)
= ≠”K(“1)

”G̃(“2)
. (1.92)

Using Eq. (1.82), the left hand side of the above equation can be written as follows:

”2�[G̃]
”G̃(“1)”G̃(“2)

= �≠1(“1, “2) + �(2)(“1, “2), (1.93)

where the inverse 2-particle propagator is given by:

�≠1(·1ã1, · Õ
1ãÕ

1; ·2ã2, · Õ
2ãÕ

2) © G̃≠1(·1ã1, ·2ã2) G̃≠1(· Õ
1ãÕ

1, · Õ
2ãÕ

2)

≠ G̃≠1(·1ã1, · Õ
2ãÕ

2) G̃≠1(· Õ
1ãÕ

1, ·2ã2). (1.94)
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On the other, the right hand side of Eq. (1.92) can be related to the inverse of the 2-connected

2-particle propagator by first noticing that:

”G̃(“2)
”K(“1) = ”

”K(“1)

3
”W [K]
”K(“2)

4
= G̃(2c)

2 (“1, “2). (1.95)

Defining a “bosonic” matrix product between two antisymmetric 4-point functions as:

(AB)(“1, “2) © 1
2

⁄
d“3 A(“1, “3) B(“3, “2), (1.96)

and an antisymmetric bosonic 4-point identity operator I(“1, “2) in a natural way:

I(·1ã1, · Õ
1ãÕ

1; ·2ã2, · Õ
2ãÕ

2) © ”C(·1, ·2) ”C(· Õ
1, · Õ

2) ”ã1,ã2 ”ãÕ
1,ãÕ

2
≠ ”C(·1, · Õ

2) ”C(· Õ
1, ·2) ”ã1,ãÕ

2
”ãÕ

1,ã2 ,

(1.97)

the right hand side of Eq. (1.92) is simply the matrix inverse of G̃(2c)
2 (“1, “2) save for a minus sign.

Combining the above results, we find:

�≠1(“1, “2) + �(2)(“1, “2) = ≠G̃(2c),≠1
2 (“1, “2). (1.98)

The above equation implies that �(2) is sum of all diagrams connected to “1 and “2, with the 2-

particle reducible graphs removed. This justifies the terminology 2PI vertex for �(2). The same

methods can be utilized to show that all �(n) is the sum of all 2PI diagrams pinned to n bosonic

external points. Let us elaborate on Eq. (1.98) further by converting it into an integral equation for

G̃(2c)
2 :

G̃(2c)
2 = ≠

1
�≠1 + �(2)

2≠1
= ≠� ≠ � �(2) G̃(2c)

2 , (1.99)

We have dropped the shared (“1, “2) arguments for brevity. � is the inverse of �≠1, which has the

interpretation of the bare 2-particle propagator:

�(·1ã1, · Õ
1ãÕ

1; ·2ã2, · Õ
2ãÕ

2) © G̃(·1ã1, ·2ã2) G̃(· Õ
1ãÕ

1, · Õ
2ãÕ

2) ≠ G̃(·1ã1, · Õ
2ãÕ

2) G̃(· Õ
1ãÕ

1, ·2ã2). (1.100)

Eq. (1.99) a Bethe-Salpeter equation for G̃(2c)
2 with the following diagrammatic representation:

≠ = + ≠ (exchange leftmost vertices). (1.101)
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The dashed lines imply the product defined in Eq. (1.96).

The Bethe-Salpeter equation for G̃(2c)
2 provides yet another way to interpret the diagrammatic

expansion of the Luttinger-Ward functional. By definition, G̃(2c)
2 is the sum of connected diagrams

pinned to two external bosonic points. The 1PI diagrams can be removed by replacing G̃0 with G̃ in

the perturbation expansion of G̃(2c)
2 . The Bethe-Salpeter equation further removes the 2PI diagrams,

so that �(2) is the sum of all 2PI diagrams pinned to two bosonic vertices. Remembering that �(2)

is obtained from � by breaking two fermion lines and converting them into bosonic vertices, we

again find that � is the sum of all 2PI vacuum diagrams (see Eq. 1.85).

The various linear response functions can be calculated directly from G̃(2c)
2 . We consider the

retarded density-density response function for concreteness, defined as:

‰+
dd(t1a1, t2a2) © ”n(t1a1; U)

”U(t2a2) , (1.102)

where n(t1a1) © ≠iG<(t1a1, t+
1 a1) = ≠iG̃<(t1a1≠, t+

1 a1+) is the density, ”n is its linear change

due to the presence a scalar field U(t2a2) that produces a term ≠
s

C d· Â̄(·a) U(ta) Â(·a) in the

action. Since U is a physical field, it assumes the same values on both C+ and C≠ at a given time.

We may express the change in the density as:

”n(t1a1) = ≠i
⁄

C
d·2

”G̃(·1a1≠, ·+
1 a1+; K)

”K+≠(·+
2 a2, ·2a2)

U(t2a2). (1.103)

The functional derivative is expressible in terms of G̃(2c)
2 . Here, ·1 can be placed on either of the

contour branches and the result must be the same. Taking a derivative with respect to U results in

two contributions from both forward and the backward branch integrations. The result is:

‰+
dd(t1a1, t2a2) = ≠i

5
G(2c)

2 (·1a1, ·+
1 a1; ·+

2 a2, ·2a2)
---
·2œC+

≠ G(2c)
2 (·1a1, ·+

1 a1; ·+
2 a2, ·2a2)

---
·2œC≠

6
, (1.104)
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where G(c)
2 (1, 2; 3, 4) © G̃(2c)

2 (1≠, 2+; 3≠, 4+) in terms of the super Green’s functions. The above

result is applicable to linear response in both equilibrium and non-equilibrium states. One may write

an integral equation for ‰dd using the Bethe-Salpether equation of G(2c)
2 . Here, we give the result

for normal systems:

i‰dd(1, 2) =
⁄

d3 d4 G(1, 3) G(4, 1) �(3, 4; 2),

= , (1.105)

where � is the scalar vertex function2 and satisfies the following integral equation:

�(1, 2; 3) = ”C(1, 3) ”C(2, 3) ≠
⁄

d4 d5 ”2�[G]
”G(2, 1) ”G(4, 5) G(4, 7) G(8, 5) �(7, 8; 3).

= ≠ . (1.106)

1.2.5 The Kadanoff-Baym equations

The Kadanoff-Baym (KB) equations are the exact evolution equation for the 1-particle Green’s

function. As mentioned earlier in the introductory remarks, the KB equation is just the MS equation

for G̃ (Eq. 1.54) supplemented with G̃2 as a functional of G̃. In the current formulation, the KB

equations are obtained by operating the Dyson equation (Eq. 1.83) on G̃ from the left and integrating

over the intermediate contour times and field indices. The result in terms of the normal G and

anomalous F Green’s functions and their related self-energies reads as:

[iˆt1”ac ≠ Eac(t1)] G(·1c; ·2b) = ”C(·1, ·2) ”ab +
⁄

C
d· Õ #

�(·1a; · Õc) + K+≠(·1a; · Õc)
$

◊ G(· Õc; ·2b) +
⁄

C
d· Õ #

�F (·1a; · Õc) + K++(·1a; · Õc)
$
F̄(· Õc; ·2b),

(1.107a)

2The scalar vertex function is not to be confused with the 2PI-EA.
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[≠iˆt2”cb ≠ Ecb(t2)] G(·1a; ·2c) = ”C(·1, ·2) ”ab +
⁄

C
d· Õ G(·1a; · Õc)

#
�(· Õc; ·2b)

+ K+≠(· Õc; ·2b)
$

+
⁄

C
d· Õ F(·1a; · Õc)

#
�F̄ (· Õc; ·2b) + K≠≠(· Õc; ·2b)

$
,

(1.107b)

[iˆt1”ac ≠ Eac(t1)] F(·1c; ·2b) =
⁄

C
d· Õ #

�(·1a; · Õc) + K+≠(·1a; · Õc)
$
F(· Õc; ·2b)

+
⁄

C
d· Õ #

�F (·1a; · Õc) + K++(·1a; · Õc)
$
Ḡ(· Õc; ·2b),

(1.107c)

[≠iˆt2”cb ≠ Ecb(t2)] F̄(·1a; ·2c) =
⁄

C
d· Õ F̄(·1a; · Õc)

#
�(· Õc; ·2b) + K+≠(· Õc; ·2b)

$

+
⁄

C
d· Õ Ḡ(·1a; · Õc)

#
�F̄ (· Õc; ·2b) + K≠≠(· Õc; ·2b)

$
.

(1.107d)

We have kept the source fields K in place for future use. Turning off the source fields K, the above

equations constitute a complete set of evolution equations for the Green’s functions. The time

convolution integrals over the Schwinger-Keldysh time contour can be decomposed into physical

time integrations using the Langreth rules (cf. Sec. 1.1.7).

The above KB equations are written in the most general form. Here, we consider a system

of identical non-relativistic fermions with mass m in a continuum with d spatial dimensions. We

further restrict it to the normal state in which F , F̄ , �F and �F̄ are identically zero. The field

indices a, b, etc denote the space variable x in this case and Eab is given in Eq. (1.3). The KB

equations read as:

C

iˆt1 ≠ Ò2
1

2m
≠ U(t1, x1)

D

G(·1x1; ·2x2) = ”C(·1, ·2) ”d(x1 ≠ x2)

+
⁄

C
d· Õ

⁄
ddxÕ #

�(·1x1; · ÕxÕ) + K+≠(·1x1; · ÕxÕ)
$
G(· ÕxÕ; ·2x2), (1.108a)
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C

≠iˆt2 ≠ Ò2
2

2m
≠ U(t2, x2)

D

G(·1x1; ·2x2) = ”C(·1, ·2) ”d(x1 ≠ x2)

+
⁄

C
d· Õ

⁄
ddxÕ G(·1x1; · ÕxÕ)

#
�(· ÕxÕ; ·2x2) + K+≠(· ÕxÕ; ·2x2)

$
. (1.108b)

The equations for the explicit-time components (lesser, greater, retarded and advanced) can be

determined from Eq. (1.52):

C

iˆt1 ≠ Ò2
1

2m
≠ U(t1, x1)

D

G?(t1x1; t2x2) =

⁄ Œ

≠Œ
dtÕ

⁄
ddxÕ Ë

�+(t1x1; tÕxÕ) + K+
+≠(t1x1; tÕxÕ)

È
G<(tÕxÕ; t2x2)

⁄ Œ

≠Œ
dtÕ

⁄
ddxÕ Ë

�?(t1x1; tÕxÕ) + K?
+≠(t1x1; tÕxÕ)

È
G≠(tÕxÕ; t2x2), (1.109a)

C

≠iˆt2 ≠ Ò2
1

2m
≠ U(t1, x1)

D

G?(t1x1; t2x2) =

⁄ Œ

≠Œ
dtÕ

⁄
ddxÕ G+(t1x1; tÕ, xÕ)

Ë
�?(tÕxÕ; t2x2) + K?

+≠(tÕxÕ; t2x2)
È

⁄ Œ

≠Œ
dtÕ

⁄
ddxÕ G?(t1x1; tÕ, xÕ)

Ë
�≠(tÕxÕ; t2x2) + K≠

+≠(tÕxÕ; t2x2)
È

, (1.109b)

C

iˆt1 ≠ Ò2
1

2m
≠ U(t1, x1)

D

G±(t1x1; t2x2) = ”(t1 ≠ t2) ”d(x1 ≠ x2)

⁄ Œ

≠Œ
dtÕ

⁄
ddxÕ Ë

�±(t1x1; tÕxÕ) + K±
+≠(t1x1; tÕxÕ)

È
G±(tÕxÕ; t2x2), (1.109c)

C

≠iˆt2 ≠ Ò2
1

2m
≠ U(t1, x1)

D

G±(t1x1; t2x2) = ”(t1 ≠ t2) ”d(x1 ≠ x2)

⁄ Œ

≠Œ
dtÕ

⁄
ddxÕ G±(t1x1; tÕ, xÕ)

Ë
�±(tÕxÕ; t2x2) + K±

+≠(tÕxÕ; t2x2)
È

. (1.109d)

We would like to emphasize on an earlier remark that the terms involving the mixed imaginary/real

time Green’s functions have been neglected after taking the limit T0 æ ≠Œ. The initial thermal

correlations are put back in by requiring the KMS boundary condition, Eq. (1.48). The KB

equations constitute a convenient starting point for deriving quantum kinetic equation, a problem
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which we discuss in the next chapter.

An important aspect of the KB equations is their non-Markovian structure, which is evident from

the convolution integrals appearing on the right hand side of the above equations. The appearance of

non-Markovian terms are referred to as memory effects. We would like to compare the KB equations

to the Schrödinger’s equation of the many-body wave function, the MS hierarchy and the BBGKY

hierarchy, all three of of which have a Markovian structure, albeit in an extremely large state space3

The emergence of memory effects in a natural consequence of any (exact) reduction of the state

space. Let us explain this using a simple toy model. Consider a two state system with the state

vector � = (Â1, Â2) with a simple linear Markovian evolution:

iˆtÂ1(t) = a11(t)Â1(t) + a12(t)Â2(t),

iˆtÂ2(t) = a21(t)Â1(t) + a22(t)Â2(t). (1.110)

Solving Â2 in terms of Â1, we find the following evolution equation for Â1:

iˆt1Â1(t) = a11(t)Â1(t) + a12(t)
3

Â2(t0) e≠iA22(t) ≠ i
⁄ t

t0
dtÕ e≠i[A22(t)≠A22(tÕ)]a21(tÕ)Â1(tÕ)

4
,

(1.111)

where A22(t) =
s t

t0
dtÕ a22(tÕ). The last equation shows that by reducing the state space, i.e.

(Â1, Â2) æ Â1, the exact evolution equation for Â1 will depend on the full history of the reduced

state vector (here, Â1). In other words, it is only by knowing the full history of the reduced state vec-

tor that we can reproduce the effects of the lost degrees of freedom. This simple toy model provides

a useful analogy between the KB equation and the MS hierarchy: reducing the infinite dimensional

state vector of the MS hierarchy (G, G2, G3, . . .) to G, the emergence of memory effects is quite

natural. In other words, it is only by referring to the complete history of the 2-point correlations that

3The state state of the many-body Schrödinger’s equation is the Fock space F . The state space of the MS and BBGKY
hierarchy is the infinite dimensional bundle of all Green’s functions and partial traces of the density matrix, respectively.
The time evolution of these bundles only depends on the instantaneous Hamiltonian (cf. 1.1.8).
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the effects of higher-order correlations can be reconstructed. In fact, the Bethe-Salpeter equation

discussed in the previous section (Eq. 1.101) provides an explicit expression for G2 in terms of G

and �(2)[G] in the form of an integral equation. The reconstruction of higher order Green’s func-

tions G3, G4, etc is achieved by taking additional derivatives of the effective action and following

the same steps. Nothing is lost.

The history of the 2PI-EA formalism:

The 2PI-EA formalism is a modern development and terminology. The first and the most impor-

tant developments along this line is the seminal contribution of Baym and Kadanoff [39, 40], which

was an attempt to construct symmetry conserving linear response functions. In Ref. [39], Baym and

Kadanoff pointed out the sufficient conditions on approximate expressions for G2 such that the evo-

lution equations respect the conservation laws. In Ref. [40], Baym introduced a large class of many-

body approximation, the so-called “�-derivable” approximations, which satisfy the criteria Baym

and Kadanoff had proposed earlier. More explicitly, Baym shows that if �[G] is any functional

of G that is invariant under symmetry transformations of G, and that the self-energy is obtained

from �[G] by a functional differentiation, then the ensuing 1-particle evolution equations respect

the conserved charges. It was also shown that �[G] is simply the sum of 2-particle-irreducible (2PI)

vacuum diagrams one obtains from the perturbation expansion of the thermodynamic potential, with

full Green’s functions G in place of bare Green’s functions G0. Historically, Luttinger and Ward’s

Y Õ[G] functional [43], introduced in an attempt to organize and sum large class of Feynman dia-

grams, coincides with Baym’s �[G]. For this reason, � is often referred to as the Luttinger-Ward

functional. A closely related formulation was also proposed by De Dominicis and Martin [44].

Baym and Kadanoff’s original idea was developed further, mostly in the particle physics com-

munity, and using functional methods. Cornwall, Jakiw and Tomboulis [38] generalized the existing

technique of 1PI-EA for bosonic fields to composite operators, and introduced the 2PI-EA formal-
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ism. This idea was later generalized to higher order composite operators [41, 42], resulting in the

notion of nPI-EA.

1.3 General approximation schemes of the Luttinger-Ward functional

The Luttinger-Ward functional � is formally defined as the sum of the quantum corrections to

the effective action beyond the 1-loop order (cf. Eq. 1.82). In general, no universally applicable

method exists for approximating � in a controlled way with bounded error. An important and often

challenging step in using the 2PI-EA formalism is choosing the right approximation scheme for �.

Approximate Luttinger-Ward functionals can be constructed using the diagrammatic interpretation

of �, Eq. (1.85), by keeping only a certain class of vacuum diagrams. Such approximations are

referred to as �-derivable approximations following Baym [40].

The most salient feature of �-derivable approximations is that regardless of the choice of vacuum

diagrams, conservation laws associated to the symmetries of the action will be rigorously respected.

Arguably, respecting conservation laws is the most basic requirement from a microscopic theory. We

will discuss this in the next section. We remark that regardless of one’s choice for �, the resulting

Dyson’s equation is non-perturbative by construction and corresponds to an infinite-order expansion

in the interaction coupling. This is due to the fact that the �-derived self-energy �[G] = ”�[G]/”G

is a functional of the full Green’s function. It is exactly such self-consistencies that result in the

emergence of conservation laws, non-secularity and for powerful enough truncations (beyond the

2-loop level), long-time universality.

A simple and controlled expansion of � for weakly interacting systems is the loop expansion,

where the vacuum diagrams are characterized based on the number of interaction vertices. A vac-

uum diagram with n interaction vertex insertions has n momentum loop integrals and is proportional

to ⁄n, where ⁄ is the coupling constant. The 2-loop and 3-loop corrections give rise to the Hartree-
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Fock and Born self-energy diagrams (discussed in next section).

If the system in question has a large number of field operators N , such as the O(N)-symmetric

„4 field theory [38], the SU(N)-symmetric quantum gas with N hyperfine states [45], and the

Sp(N)-symmetric attractive Hubbard and t-J models [46, 47], the vacuum diagrams can be classi-

fied in terms of the small parameter 1/N . The resulting scheme is referred to as the 1/N -expansion,

also known as the large-N expansion. At the leading order in 1/N , one recovers the mean-field the-

ory which becomes exact in the limit N æ Œ. The inclusion of next to leading order corrections

in 1/N adds in the effects of quantum fluctuations order by order. The large-N expansion is of-

ten utilized heuristically by artificially enlarging the symmetry group of the physical system, i.e.

O(2) æ O(N), so that a systematic categorization of the vacuum diagrams is made feasible.

A third scheme is the low-density expansion for systems with repulsive interactions with a range

r0 much smaller than the inter-particle separation n≠1/d. The diagrams with the same number of

cycles contribute to the same order in n1/dr0. We discuss the loop expansion, and the large-N

expansion for the Sp(N)-symmetric Fermi gas in the next sections.

1.3.1 Loop expansion

We consider the microscopic action given in Eq. (1.121). For concreteness, we consider a single-

component system in the normal state with ⁄(1, 2) representing a instantaneous and possibly long-

range interaction, i.e. ⁄(1, 2) æ V (x1 ≠ x2) ”C(·1, ·2). The 2PI vacuum diagrams and their

accompanying symmetry factors can be evaluated directly from Eq. (1.85). Expanding �[G] to the

3-loop order (up to two interaction vertices), we find:

�[G] = 1
2 + 1

2¸ ˚˙ ˝
�HF[G]

+ 1
4 + 1

4
¸ ˚˙ ˝

�B[G]

+ O(V 3). (1.112)

The pre-factors accompanying each vacuum diagram can be determined by a direct investigation.

A simple heuristic method is to consider the resulting self-energy diagrams. Since the self-energy
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diagrams have no symmetry factors, the pre-factor of a given vacuum diagram is simply given by

n�/nG , where n� is the number of topologically distinct self-energy diagrams that results from the

vacuum diagram upon breaking a Green’s function line, and nG is the number of Green’s function

lines in the vacuum diagram.

The first two diagrams are known as the Hatree-Fock (HF) contributions and give the self-energy:

�HF(1, 1Õ) = ≠ ”�HF[G]
”G(1Õ, 1) = ”C(·1, · Õ

1)
5
”(x1 ≠ xÕ

1)
⁄

ddx2 V (x1 ≠ x2) (≠i)G<(t1, x2; t1, x2)

+ V (x1 ≠ xÕ
1) iG<(t1, x1; t1, xÕ

1)
6
. (1.113)

The HF approximation is a mean-field description. Going back to the MS hierarchy equations and

forgetting the heavy machinery of 2PI-EA for a moment, we notice that the HF approximation can

be obtained by neglecting 2-particle correlations. It is indeed straightforward to see that plugging

�HF into the KBE yields the same equation of motion as the one obtained from truncating the MS

hierarchy using the prescription G2(1, 2, 3, 4) æ G(1, 4)G(2, 3) ≠ G(1, 3)G(2, 4). The HF self-

energy is instantaneous and �?
HF = 0. Without �?, the KB equations are Markovian (memoryless)

and do not describe important phenomena such as collisional damping and thermalization. The last

two diagrams, known as the Born diagrams, describe the simplest processes that introduce memory

effects. The self-energy corresponding to the Born diagram is given by:

�?
B(1, 1Õ) = ≠ ”�B[G]

”G(1Õ, 1) =
⁄

ddx2 ddxÕ
2 V (x1 ≠ x2) V (xÕ

2 ≠ xÕ
1)

Ë
G?(t1, x1; tÕ

1, xÕ
1)

◊G?(t1, x2; tÕ
1, xÕ

2) G7(tÕ
1, xÕ

2; t1, x2)≠G?(t1, x1; tÕ
1, xÕ

2) G?(t1, x2; tÕ
1, xÕ

1) G7(tÕ
1, xÕ

2; t1, x2)
È
.

(1.114)

The self-energy at the 3-loop level is simply the sum of the above two self-energies:

�3≠loop[G] = �HF[G] + �B[G]. (1.115)

We will refer to the 3-loop self-energy as the Born approximation for brevity. Higher order vacuum

diagrams in the loop expansion of � can be treated in the similar fashion.
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1.3.2 1/N expansion

The 1/N -expansion is a useful scheme for a systematic classification of the vacuum diagrams. It

has been successfully utilized to study the far-from-equilibrium dynamics of quantum fields in the

context of early universe and inflation [48, 49, 50, 51] and ultracold Fermi gases [52]. Keeping the

leading-order (LO) and the next-to-leading-order (NLO) terms is sufficient for describing collisions

and memory effects in a systematic way, leading to pre-thermalization [32] and thermalization [51]

phenomena.

As an illustration of the large-N expansion for a model which will be studied in chapter 4, we

consider a fictitious system with 2N field operators, Â‡j and their conjugates. Here, the spin index

assumes two values, ‡ =ø, ¿, while the flavor index j ranges from 1 to N . We consider the action

studied in Refs. [46, 47]:

S0[Â, Â̄] =
⁄

d1Â̄‡j(1)
A

iˆt1 + µ + Ò2
1

2m

B

Â‡j(1),

Sint[Â, Â̄] = ≠ ⁄

4N

⁄
d1

1
I‡1j1;‡2j2 Â̄‡1j1(1) Â̄‡2,j2(1)

2 1
I‡Õ

1jÕ
1;‡Õ

2jÕ
2
Â‡Õ

2jÕ
2
(1) Â‡Õ

1jÕ
1
(1)

2
,

(1.116)

where I‡1j1;‡1j1 is the standard 2N ◊ 2N skew-symmetric matrix defining the Sp(N) Lie algebra:

I‡1j1;‡1j1 =

Q

cccccccccccccca

0 1

≠1 0

0 1

≠1 0
. . .

R

ddddddddddddddb

. (1.117)
j1, j2 = 1

j1, j2 = 2

The above action is the Sp(N)-symmetric extension of the two-component attractive Fermi gas

with contact interactions. Note that the numerical factors in the action is chosen such that both S0

and Sint scale like N . Let us consider in passing the vacuum diagrams at the 2-loop order in a
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(possibly) superconducting state:

�2≠loop =
¸ ˚˙ ˝

LO ≥ O(N)

+
¸ ˚˙ ˝
NLO ≥ O(1)

. (1.118)

The first diagram is the Bogoliubov diagram built from two anomalous propagators. Each anoma-

lous propagation has a N flavor degeneracy and the flavor indices of the F and F̄ lines are indepen-

dent. This diagram scales like O(N ◊ N ◊ 1/N) = O(N) and is the only LO diagram. The next

diagram is the usual mean-field Hartree. In this case, the flavor indices of the two normal Green’s

functions are not independently summed and the diagram is O(N ◊ 1/N) = O(1), i.e. it is a

NLO diagram. In the limit N æ Œ, the Luttinger-Ward functional is dominated by the Bogoliubov

diagram and the BCS theory becomes exact (independent of the number of spatial dimensions).

We only consider the normal state hereafter. In the absence of the anomalous propagators, the

leading diagrams are at least O(1) (NLO) and in the large-N limit, the system is described as

the free Fermi gas. A guiding principle for classifying the vacuum diagrams of the above theory

is that a sub-diagram with parallel fermion lines introduce a factor of N . Therefore, the leading

order diagrams must include the maximum number of particle-particle bubbles. The smallest NLO

diagram is the Hartree diagram shown above. It is straightforward to see that the rest of the NLO

diagrams are given as the sum of ring diagrams constructed from particle-particle bubbles:

�NLO[G] = + 1
2 + 1

3 + 1
4 + . . . (1.119)

A ring diagram with l links gets a factor of N l and a factor of 1/N l from the interaction vertices,

amounting to O(1) © NLO. The symmetry factors 1/l is due to the Zl rotation symmetry of the ver-

tices on the ring. We recognize the above expansion as the self-consistent T-matrix approximation.
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The self-energy functional is readily obtained by opening a fermion line:

�NLO[G] = . . . + + . . . (1.120)

The shown diagram is obtained from a vacuum diagram with 5 rings. We remind that all of the

Green’s functions appearing in the self-energy are the fully dressed Green’s functions. The self-

energy diagrams in terms of the bare Green’s function G0 includes all of the possible ring-type

decorations. We will use this �-derivable approximation in chapter 4 to study the non-equilibrium

dynamics of attractive two-component fermions in the normal state.

1.4 Symmetries, conservation laws and the 2PI Ward-Takahashi hier-

archy

In the classical field theory, the relation between symmetries and conserved quantities is

provided by the Noether’s theorem, the statement and proof of which in provided in Sec. A.1.

The Noether’s theorem can be generalized to quantum fields in light of the Ehrenfest’s theorem,

and one finds that the Noether currents are conversed at the level of expectation values. Since

the many-particle Hilbert space in which the quantum fields reside is a much larger space than

the classical space-time, the Noether’s theorem imposes a more stringent constraint on classical

fields than on quantum fields. It is therefore expectable that the dynamics of quantum fields would

be constrained by additional conservation laws not described by the Noether’s theorem. Indeed,

for each symmetry there exists an infinite hierarchy of identities that impose constraints on the

relation between various correlation functions of the quantum fields, known as the Ward-Takahashi

hierarchy (WTH). The conserved Noether’s currents lie at the bottom of this hierarchy.
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In this section, we briefly discuss the WTH associated to the U(1) gauge symmetry, and the

Galilean symmetry of non-relativistic quantum fields for the exact theory and the �-derivable ap-

proximations. For concretenees, we consider a N -component fermionic field described with the

action S[Â, Â̄] = S0[Â, Â̄] + Sint[Â, Â̄], where:

S0[Â, Â̄] =
⁄

d1 d2 Â̄–(1) G≠1
0,–—(1, 2) Â—(2),

Sint[Â, Â̄] = ≠ 1
2N

⁄
d1 d2 ⁄(1, 2) Â̄–(1) Â–(1) Â̄—(2) Â—(2). (1.121)

Here, the integer arguments refer to the space and time, i.e. j © (·j , xj), and
s

dj ©
s

C d·j
s
Rd

ddxj , and the Greek letter indices ranging from 1 to N denote the discrete field com-

ponent index. The bare Green’s function G≠1
0,–—(1, 2) is defined as:

G≠1
0,–—(1, 2) ©

C

iˆ·1 +
Ò2

x1

2m–
+ µ– ≠ U–(t1, x1)

D

”–— ”d(x1 ≠ x2) ”C(·1 ≠ ·2). (1.122)

The interaction potential is given by ⁄(1, 2) © ”C(·1, ·2) v(x1 ≠ x2). The following symmetries

can be identified in the above action:

B Global U(1) gauge invariance for each component: for each component –, the action is

invariant under the simultaneous transformation Â–(1) æ ei◊Â–(1), Â̄–(1) æ e≠i◊Â̄–(1).

The associated Noether’s current is the current density of –’s component. The conserved

charge is the total number of – particles.

B Galilean invariance: In the absence of the external field U–, the action is invariant under space

and time translations. The associated Noether’s current is the energy-momentum tensor. The

conserved charge is total energy and momentum.

Differential forms of the conservation laws can be obtained by considering local U(1) gauge and

Galilean transformations.
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1.4.1 Global U(1) symmetry

We first show that the exact quantum theory with a global U(1) symmetry implies the continuity

equation for the expectation value of the local currents, reminiscent of the Ehrenfest’s theorem. We

start with the generating functional Z[K] in the superfield notation. In this section, the integer labels

to refer to the bundle of time, internal degrees of freedom and the operator charge index. The path

integral measure is invariant under a translation „(1) æ „(1) + ”„(1). Therefore, we find:

0 =
⁄

D[Â, Â̄]
3⁄

d1 S[„]
”„(1) ”„(1)

4
eiS[„], (1.123)

where S = S0 + Sint + SK . Consider a ”„ corresponding to a local U(1) gauge transformation,

”„(1) = ≠i�(1)„(1), where �(·, a, c) © c �(·, a). �(·, a) is an arbitrary field on the time contour

and c = ± is the operator charge. Here, a refers to the bundle of component index and spatial

coordinate x. The interaction term in the action involves a balanced number of operators with

positive and negative charges and is invariant to linear order in �. Therefore, only S0+SK contribute

to the curly parentheses in the above equation and we get:

0 =
⁄

D[Â, Â̄] eiS[„]
⁄

d1 d2
3 Ë

G̃0(1, 2)≠1 ≠ K(1, 2)
È

[≠i„(2) „(1) �(1)]

+
Ë
G̃0(1, 2)≠1 ≠ K(1, 2)

È
[≠i�(2) „(2) „(1)]

4
. (1.124)

The above equation is readily written in terms of the super Green’s function:

⁄
d1 d2

3 Ë
G̃0(1, 2)≠1 ≠ K(1, 2)

È Ë
G̃(2, 1; K)�(1)

È

+
Ë
G̃0(1, 2)≠1 ≠ K(1, 2)

È Ë
�(2) G̃(2, 1; K)

È 4
= 0. (1.125)
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The above equation can be put in a more useful form by laying bare its structure in the operator

charge space. The inverse bare Green’s function can be explicitly written as:

G̃≠1
0 (·1a1c1, ·2a2c2) =
Q

cca
0 iˆt1 ≠ Ò2

1
2m ≠ µa1 + U(·1, a1)

iˆt1 + Ò2
1

2m + µa1 ≠ U(·1, a1) 0

R

ddb ”a1a2 ”C(·1, ·2), (1.126)

where the (1, 1), (1, 2), (2, 1) and (2, 2) matrix elements refer to ≠≠, ≠+, +≠ and ++ charges.

Likewise, the source field and full Green’s function can be written in a matrix form as:

G̃(·1a1c1, ·2a2c2; K) =

Q

cca
F(·1a1, ·2a2; K) G(·1a1, ·2a2; K)

Ḡ(·1a1, ·2a2; K) F̄(·1a1, ·2a2; K)

R

ddb ,

K(·1a1c1, ·2a2c2) =

Q

cca
K≠≠(·1a1, ·2a2) K≠+(·1a1, ·2a2)

K+≠(·1a1, ·2a2) K++(·1a1, ·2a2)

R

ddb . (1.127)

A straightforward calculation yields the following explicit form for Eq. (1.125):

⁄
d1 d2 �(·1a1)

;Ë
ˆt1n(·1a1; K) + Ò1 · j(·1a1; K)

È
”C(·1, ·2) ”a1a2

+
!
K+≠(·1a1, ·2a2) G(·2a2, ·1a1; K) ≠ K+≠(·2a2, ·1a1) G(·1a1, ·2a2; K)

"

≠ K≠≠(·1a1, ·2a2)F(·2a2, ·1a1; K) + K++(·1a1, ·2a2)F̄(·2a2, ·1a1; K)
<

= 0, (1.128)

where we have defined the number density n(·1a1; K) and current j(·1a1; K) as:

n(·1a1) © ≠iG(·1a1, ·2a2; K)
---
a2=a1,·2=·+

1
=

e
Â̄a(·1a1) Âa(·1a1)

f

K
,

j(·1a1) © Ò1 ≠ Ò2
2m

G(·1a1, ·2a2; K)
---
a2=a1,·2=·+

1

= i

2m

e
Ò1Â̄(·1a1) Â(·1a1) ≠ Â̄(·1a1) Ò1Â(·1a1)

f

K
. (1.129)

Since Eq. (1.130) is valid for all �, the term in the square bracket must vanish, bringing us to the

final result:

ˆt1n(·1a1; K) + Ò1 · j(·1a1; K) +
⁄

d2 Trc

C
”�[G̃]

”G̃(·1a1, ·2a2)
G̃[K](·2a2, ·1a1) ·̂z

D

= 0, (1.130)
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where Trc implies the trace in the 2 ◊ 2 charge space according to to the matrix notation of

Eq. (1.127), and ·̂z is the third Pauli matrix. In the last term, a1 is a free variable and is not summed

over. We have also used Eq. (1.76) to trade the source field K with the derivative of � with respect

to the Green’s function.

Turning off the source fields, the last term in Eq. (1.130) vanishes while the n and j become the

physical number density and particle current, respectively. In this limit, the above identity becomes

the statement of the conservation of the Noether’s current at the level of the expectation value.

This result, however, is just the simplest consequences of Eq. (1.130). The full content Eq. (1.130)

can be extracted by taking additional derivatives with respect to K before sending it to zero. The

K-derivatives of n(K) and j(K) can be expressed in terms of the scalar and vector vertex function.

The ensuing infinite hierarchy of relations between the vertex functions is known as the generalized

2PI Ward-Takahashi identities (2PI-WTIs) and constitute the complete statement of conservation

laws associated to the global U(1) gauge invariance. We refer to the hierarchy of generalized 2PI

Ward-Takahashi identities as the 2PI Ward-Takahashi hierarchy (2PI-WTH), with Eq. (1.130) as

the generator of the 2PI-WTH.

So far, we have shown that the global U(1) gauge invariance implies conservation laws in the

form of the 2PI-WTH. It remains to be investigated whether the same conclusion holds for �-

derivable approximations. The pioneering work was done by Baym and Kadanoff in Ref. [39, 40] in

which they have shown that the expectation value of the Noether’s currents are conserved quantities

for �-derivable approximations. The status of higher order 2PI-WTIs require further considerations.

It has been shown in Ref. [53] that indeed �-derivable approximations for bosonic field theories that

spontaneously break the U(1) gauge symmetry (i.e. È„Í ”= 0) violate the 2PI-WTH. This defect,

however, can be remedied by introducing the 2PI-resummed effective action [53, 54]. Fortunately,

one does not face these complications for fermionic field theories where the symmetry breaking
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does not occur at the level of single field operator expectation values. In fact, it has been shown in

Ref. [54] that the 2PI-WTH is satisfied in �-derivable approximations of quantum electrodynamics.

We establish the satisfaction of 2PI-WTH for the simpler theory of non-relativistic fermions by

showing that the generator of 2PI-WTH, Eq. (1.130) also follows from �-derivable approximations.

The only requirement is that approximate � must be constructed from legitimate 2PI vacuum di-

agrams. To this end, we note that the following linear 2nd rank transformation of G̃ leaves each

vacuum diagram invariant:

G̃(1, 2) æ G̃Õ(1, 2) = G̃(1, 2) ≠ i [c(1)�(1) + c(2)�(2)] G̃(1, 2), (1.131)

where c(i) = ±1 is the operator charge. This statement is a direct consequence of the conservation

of the total operator charge on each interaction vertex. Expanding the sides of �[G̃] = �[G̃Õ] for

first order in � and recalling the definition �̃ = ”�[G̃]/”G̃, we find:

⁄
d1 d2 c1 �(1) �̃(1, 2) G̃(1, 2) = 0, (1.132)

Since the above equation is valid for all �(1), we find:

ÿ

c1=±1

⁄
d2 c1 �̃(1, 2) G̃(1, 2) = 0. (1.133)

In the above equation, the space, time and the discrete indices in 1 are free, but c1 is summed over.

The validity of this identity is only bound to the symmetry properties of � and holds with or without

the source field K. The above equation yields the following identity in terms of the usual Green’s

functions:

⁄
d2

Ë
�(1, 2) G(2, 1) ≠ G(1, 2) �(2, 1) + �F (1, 2) F̄(2, 1) ≠ F(1, 2)�F̄ (2, 1)

È
= 0. (1.134)

Subtracting the sides of the KB equations for G and its adjoint (Eqs. 1.107a and Eqs. 1.107b) from
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one another, we find:
C

iˆt1 + iˆtÕ
1

+ Ò2
1 ≠ Ò2

1Õ

2m

D

G(·1a1; · Õ
1aÕ

1)

≠
⁄

d2
Ë
�(1, 2) G(2, 1Õ) ≠ G(1, 2) �(2, 1Õ) + �F (1, 2) F̄(2, 1Õ) ≠ F(1, 2)�F̄ (2, 1Õ)

È

≠
⁄

d2
Ë
K+≠(1, 2) G(2, 1Õ) ≠ G(1, 2) K+≠(2, 1Õ)

+ K++(1, 2) F̄(2, 1Õ) ≠ F(1, 2)K≠≠(2, 1Õ)
È

= 0. (1.135)

Setting a1 = a2 and taking the limit · Õ
1 √ ·1 (in the contour sense), the terms involving the

self-energy vanish in the virtue of Eq. (1.134) and we recover Eq. (1.130), the generator of the

2PI-WTH, as promised.

We conclude this section by deriving the Ward-Takahashi identity that relates the scalar and

vector vertex functions. This identity lies at the second level of the hierarchy and is derived by

taking the first derivative of Eq. (1.130) with respect to K+≠(2, 2Õ) before setting the source fields

to zero. The result is:

ˆt2�(1, 1Õ; 2) + Ò2 · �(1, 1Õ; 2) = i
#
”C(1, 2) ≠ ”C(1Õ, 2)

$
G(1, 1Õ), (1.136)

where we have defined:

�(1, 1Õ; 2) © ”G(2, 2Õ; K)
”K+≠(1, 1Õ)

----
K=0

·2√· Õ
2,a2=aÕ

2

= ≠
e
TC

Ë
Â(1) Â̄(1Õ) n̂(2)

Èf

connected
,

�(1, 1Õ; 2) © i(Ò2 ≠ Ò2Õ)
2m

”G(2, 2Õ; K)
”K+≠(1, 1Õ)

----
K=0

·2√· Õ
2,a2=aÕ

2

= ≠
e
TC

Ë
Â(1) Â̄(1Õ) ĵ(2)

Èf

connected
.

(1.137)

The number density and current operators n̂ and ĵ are defined as:

n̂(1) = Â̄(1) Â(1),

ĵ(1) = i

2m

1
Ò1Â̄(1) Â(1) ≠ Â̄(1) Ò1Â(1)

2
. (1.138)
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Eq. (1.136) can be expressed in a more familiar form by introducing the scalar and vector vertex

functions, � and �, as obtained by removing removing the Green’s functions legs attached to 1 and

1Õ external points of �(1, 1Õ; 2) and �(1, 1Õ; 2):

�(1, 1Õ; 2) = ≠
⁄

d3 d3Õ G≠1(1, 3) G≠1(1Õ, 3Õ) �(3, 3Õ; 2),

�(1, 1Õ; 2) = ≠
⁄

d3 d3Õ G≠1(1, 3) G≠1(1Õ, 3Õ) �(3, 3Õ; 2). (1.139)

The WTI Eq. (1.136) in terms of � and � read as:

ˆt2�(1, 1Õ; 2) + Ò2 · �(1, 1Õ; 2) = ≠i
#
”C(1Õ, 2) ≠ ”C(1, 2)

$
G≠1(1, 1Õ), (1.140)

The above equation is known as the generalized Ward identity in the literature of electron-phonon

systems [55] and relate the self-energy (which appears in G≠1) to the scalar and vector vertex func-

tions. With some simple rearrangements, Eq. (1.136) gives the longitudinal f-sum rule for the

retarded density-density response function at equilibrium ‰+
dd [39]:

⁄ Œ

≠Œ
dÊ Ê ‰+

dd(x1, x2; Ê) = ≠ifi Ò1 · Ò2
Ë
n0(x2)”d(x1 ≠ x2)

È
, (1.141)

where ‰+
dd(x1, x2; Ê) is the Fourier transform of ‰+

dd(t1x1; t2x2) in t1 ≠ t2.

1.4.2 The Galilean symmetry

In this section, we derive the conservation laws associated to the Galilean symmetry. In a

classical field theory, the associated Noether’s current is the energy-momentum tensor (cf. A.1).

Similar to the analysis of the global U(1) gauge symmetry presented in the previous section, we find

that the energy-momentum tensor also emerges as a conserved quantity for the quantum fields. We

only consider normal systems here and loosely follow Baym and Kadanoff’s original analysis [39]

and that of Ref. [26]. In addition to the conservation laws at the level of expectation values, we

also obtain the generating equations for the 2PI-WTH associated to the Galilean symmetry. The
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generalization to superconducting states is straightforward.

We consider the following transformation of the Green’s functions:

G(x1·1; x2·2) æ
5
1 + 1

4 ˆ·1◊(·1) + 1
4 ˆ·2◊(·2)

6
G (x1 + R(·1), ·1 + ◊(·1); x2 + R(·2), ·2 + ◊(·2)) . (1.142)

Here, ◊(·) and R(·) are arbitrary functions on the time contour. It is easy to see that the vacuum

diagrams of a theory with Galilean invariant interaction terms is invariant to linear order in ◊ and

R upon replacing all Green’s functions with the above transformed version. This is easily seen by

observing that (1) a change of variables from x to x + R leaves the interaction potentials invariant,

and (2) a change of variables from · to · + ◊ introduces Jacobians which are compensated to linear

order by the factors affixed to the Green’s functions. To linear order, the change introduced to the

Green’s function is:

”G(1, 2) =
51

4 (ˆ·1◊(1) + ˆ·2◊(2)) + R(1) · Ò1 + ◊(1) ˆ·1 + R(2) · Ò2 + ◊(2) ˆ·2

6
G(1, 2).

(1.143)

The invariance of �[G] with respect to the above transformation implies
s

d1 d2 ”�/”G(1, 2) ”G(1, 2) = 0. Setting ◊ = 0 and using the arbitrariness of R, we

find:
⁄

ddx1 Q(·1, x1) = 0, (1.144)

where:

Q(·1, x1) = i

2 (Ò1 ≠ Ò1Õ)
⁄

d2
#
�(1, 2)G(2, 1Õ) ≠ G(1, 2)�(2, 1Õ)

$
1Õ=1 . (1.145)

Likewise, the arbitrariness of ◊ implies:

dEint(·1)
d·1

+
⁄

ddx QE(·1, x1) = 0, (1.146)
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where:

Eint(·1) = ≠ÈSintÍ·1 = ≠ i

4

⁄
ddx1 d2 [G(1, 2)�(2, 1) + �(1, 2)G(2, 1)] ,

QE(·1, x1) = i ˆ·1

⁄
ddd2

#
G(1, 2)�(2, 1Õ) + �(1, 2)G(2, 1Õ)

$
1Õ=1 . (1.147)

The differential form of the momentum conservation law is found by operating the sides of the

KB equation and its adjoint (Eqs. 1.108a and 1.108b) by i(Ò1 ≠ Ò2)/(2m) and subtracting the

latter from the former. The final result is:

ˆt1j(1) + 1
m

Ò1 · �K(1) + n(1)
m

Ò1U(1) ≠ 1
m

Q(1)

= i

2m
(Ò1 ≠ Ò1Õ)

⁄
d2

#
K+≠(1, 2)G(2, 1Õ) ≠ G(1, 2)K+≠(2, 1Õ)

$
1Õ=1 , (1.148)

where:

[�K ]ij © i

4m
(Ò1,i ≠ Ò2,i) (Ò1,j ≠ Ò2,j) G(1, 2)

---
·2√·1,x2=x1

, (1.149)

is the kinetic part of the pressure tensor. In the absence of the source field K+≠, the above equation

is the space-like component of the divergence of the energy-momentum tensor. Here, Q is identified

as the gradient of the pressure. The integral form of the conservation of momentum is obtained by

integrating over x1 space and using Eq. (1.144):

ˆt1

⁄
ddx1 j(1) = ≠

⁄
ddx1

n(1)
m

Ò1U(1). (1.150)

In the presence of the source field K+≠, Eq. (1.148) serves as the generator of the 2PI-WTH

associated to the conservation of momentum.

The differential conservation law of energy is obtained by operating the sides of the KB equation

and its adjoint (Eqs. 1.108a and 1.108b) by iˆt2 and iˆt1 , respectively, and summing the sides of

two resulting equations:
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ˆt1EK(1) + Ò1 · jK(1) + U(1) ˆt1n(1) ≠ QE(1) =
⁄

d2
Ë
iˆtÕ

1
K+≠(1, 2)G(2, 1Õ) + iˆt1G(1, 2)K+≠(2, 1Õ)

È

· Õ
1√·1,x1=x

Õ
1

, (1.151)

where the kinetic energy density EK and current jK are defined as:

EK(1) = ≠ i

2m
Ò1 · Ò2 G(1, 2)

---
·2√·1,x1=x2

,

jK(1) = i

2m
(ˆt1Ò2 + ˆt2Ò1) G(1, 2)

---
·2√·1,x1=x2

. (1.152)

Turning off the source field K+≠ and integrating the sides of Eq. (1.151) over x1, we obtain:

d
dt1

⁄
dx1 [EK(1) + Eint(1)] = ≠

⁄
ddx1 j(1) · Ò1U(1). (1.153)

We have used Eq. (1.146) and the continuity equation for the particle current to get the last result.

Finally, we note that Eq. (1.151) serves as the generating equation for the 2PI-WTH associated to

the conservation of energy.
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2
Quantum kinetic theory

We reviewed the foundations of non-equilibrium quantum field theory in the previous section and

discussed the method of 2PI effective action which allows constructing conserving approximations

in a systematic way. The final product of the non-equilibrium theory is the Kadanoff-Baym equa-

tion which describes the evolution of the non-equilibrium Green’s function. The Kadanoff-Baym

equation is a non-linear integro-differential equation and its solution can be challenging even for

the simplest �-derivable approximations. It is therefore desirable to exploit the symmetries and

scale separations specific to the problem under investigation in order to simplify the evolution
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equations before attempting to solve them.

A large class of physical systems possess a well-defined separation of length and time scales

between the microscopic and macroscopic processes. Let us consider the electrons in a metallic

specimen or a semiconducting device subject to a time-varying gate voltage. The microscopic

processes in such a system is governed by time and length scales tmicro ≥ ~/‘F ≥ 10≠16 s and a

length scale lmicro ≥ 1/kF ≥ 10≠10 m, where ‘F ≥ 1 eV and kF =
Ô

2mEF /~ denote the Fermi

energy and wavelength, respectively. For a specimen with a linear dimension of lmacro ≥ 1 mm

and an alternating gate voltage in the gHz regime tmacro ≥ 10≠9 s, we find 7 orders of magnitude

difference between the micro and macro time scales. Therefore, the electrons at any given point

in the specimen can be thought as being part of a large homogeneous system which is subject to a

weakly inhomogeneous external field. A similar scale separation governs experiments with ultra

cold fermionic gases, where the Fermi energy is in the 10 ~ kHz range while the trap frequency that

sets the scale of inhomogeneities is in the 10 ≥ 100 ~Hz range.

The existence of such dramatic separation of scales allows us to simplify the dynamical equa-

tions to a great extent. Let us consider an arbitrary 2-point function A(t1x1, t2x2), such as the

non-equilibrium Green’s function or the self-energy. We define the microscopic and macroscopic

coordinates as:

t © t1 ≠ t2, x © x1 ≠ x2, x © (t, x) (microscopic),

T © (t1 + t2)/2, R © (x1 + x2)/2, X © (T, R) (macroscopic) (2.1)

Any such function can be parametrized using (t, x; T, R) with no loss of generality. We refer to

the reparametrized function using the same function name. For weakly inhomogeneous systems as
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described above, we expect:

|ˆ
R

A|/|ˆ
x

A| ≥ l≠1
macro/l≠1

micro π 1,

|ˆT A|/|ˆtA| ≥ t≠1
macro/t≠1

micro π 1. (2.2)

We take the above conditions as the definition of a weakly inhomogeneous system. We define

f(T, R) to be a weakly inhomogeneous function with respect to a certain physical system with

microscopic scales (tmicro, lmicro) if |ˆT f |/f π t≠1
micro and |ˆ

R

f |/f π l≠1
micro. In light of such

separation of scales, we can expand the Kadanoff-Baym equations to first order in the derivatives

with respect to X to an excellent approximation, while taking a Fourier transform in x to exploit the

existence of the well-resolved microscopic energy and momentum. This is achieved using Wigner

transformations and Groenewold-Moyal product formula. The resulting evolution equations, as

will shortly see, assume a very simple form reminiscent of the classical Boltzmann equation and

serve as an excellent starting point for studying the dynamics of weakly inhomogeneous systems.

Derived first by Kadanoff and Baym [22], the resulting quantum mechanical Boltzmann equation

is referred to as the Kadanoff-Baym kinetic equation.

In this chapter, we will briefly review the derivation of Kadanoff-Baym kinetic equation and dis-

cuss practical numerical methods for solving them for systems subject to a weakly inhomogeneous

external fields.

2.1 Preliminaries

The convenience of representing the correlation functions in the Fourier space is a well-known

fact when dealing with space-time translation invariant systems. The kinetic energy part of the

Hamiltonian is readily diagonalized in the Fourier space, and the convolution integrals appearing in

various places such as perturbation series, Dyson’s equations, Bethe-Salpeter equations, etc., turn
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into simple algebraic products, owing to the conservation of energy and momentum at the interaction

vertices.

As long as the high energy (short time) and large momentum (short wavelength) processes are

concerned, the large scale inhomogeneities are not resolved and a weakly inhomogeneous system

is locally identical to a homogeneous system. Therefore, we might as well expect to be able to

partially benefit from the convenience of Fourier transforms when dealing with such systems. The

representation tailored for this purpose is known as the Wigner representation. The Wigner repre-

sentation was introduced by Wigner in 1932 as part of a program to include quantum corrections

to classical statistical mechanics [56, 57]. The representation enables us to extend the concept of

“phase space” in classical statistical mechanics to quantum statistical mechanics. Another useful

concept is the statistical/spectral decomposition of the 2-point functions in the Wigner represen-

tation, which illuminates the structure of the non-equilibrium functions. We will explore these

preliminary conceptual tools in this the following subsections.

2.1.1 Wigner representation

The Wigner transform of a general 2-point function is defined as:

W[A](Ê, p; T, R) ©
⁄ Œ

≠Œ
dt eiÊt

⁄

Rd

ddx e≠ip·x A(T + t/2, R + x/2; T ≠ t/2, R ≠ x/2). (2.3)

The microscopic coordinates (t, x) are Fourier transformed while the macroscopic coordinates are

left intact. The conditions for the existence of the Wigner transforms is similar to those for Fourier

transforms. Similar to the case of Fourier transforms, we often encounter functions with ill-defined

Wigner transform due to undamped oscillations. In such cases, we formally define the Wigner

transform by (1) promoting Ê (and/or p) to a complex variable by adding to subtracting a small

imaginary number, and (2) taking the proper limit back to the real line. Two important cases are

the Wigner transform of retarded and advanced Green’s functions. Let A+ (A≠) be an arbitrary
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retarded (advanced) function. We define its Wigner transform as:

W[A±](Ê, p; T, R) © lim
‘æ0±

W[A±](Ê + i‘, p; T, R). (2.4)

The limit exists as long as A± is exponentially bounded. We often use the shorthand

W[A±](Ê±, p; T, R) to refer to such a limiting procedure. Whenenver the notation is not

ambiguous, we use the same function name for the Wigner transformed functions.

We remark that the Wigner transformed functions have a complicated transformation law under

gauge transformations. Let us consider the U(1) gauge field of electromagnetism. The action is

given by:

S[Â, Â̄] =
⁄

d1 Â̄(1)
3

iˆt1 ≠ 1
2m

[≠iÒ
x1 ≠ (e/c)A(1)]2 ≠ e „(1)

4
Â(1) + Sint[Â, Â̄], (2.5)

where A and „ are the vector and scalar gauge potentials. Under a gauge transformation A(1) æ

A(1) + Ò
x1 �(1), „(1) æ „(1) ≠ (1/c) ˆt1�(1), the Green’s function (and the self-energy) trans-

form as:

G(1, 1Õ) æ G�(1, 1Õ) © ei(e/c)[�(1)≠�(2)] G(1, 1Õ). (2.6)

It is easily seen that W[G�(1, 1Õ)] is not trivially related to W[G(1, 1Õ)] due to the mixing of the mi-

croscopic and macroscopic coordinates by the gauge transformation. A workaround was proposed

by Stratonovich in 1956 [58]. The idea is to use a manifestly gauge-invariant Wigner transform as

follows:

WI[A](Ê, p; T, R) ©
⁄ Œ

≠Œ
dt eiÊt

⁄

Rd

ddx e≠ip·x e≠iI(t,x;T,R) A(T + t/2, R + x/2; T ≠ t/2, R ≠ x/2). (2.7)

where:

I(t, x; T, R) © e

c

⁄ (T +t/2,R+x/2)

(T ≠t/2,R≠x/2)
Aµ(s) dsµ, (2.8)
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where the integration is along the straight line connecting the two space-time points, Aµ =

(≠c„, A) and dsµ = (dt, dr). Now, under a gauge transformation, eiI transforms like G and

WI[G] is manifestly gauge-invariant. In this thesis, we are dealing only with scalar potentials and

the global U(1) symmetries are not gauged. Therefore, we will use the original definition of the

Wigner’s function.

2.1.2 Properties of Wigner transformed Keldysh functions

The exact relations that exist between the matrix components of Keldysh functions transform

into analogous relations between the Wigner transformed functions. These relations take a partic-

ularly concise form if the Keldysh function in question is diagonal in its discrete indices, i.e. if

A‡1‡Õ
1
(·1, x1; · Õ

1, xÕ
1) = ”‡1‡Õ

1
A‡1(·1, x1; · Õ

1, xÕ
1). In this case, Eq. (1.6f) implies:

A+
‡ (Ê, p; T, R)ú = A≠

‡ (Ê, p; T, R). (2.9)

Combining the above identity with Eq. (1.6a), we find:

⁄[A+
‡ ](Ê, p; T, R) = 1

2i

#
A>

‡ (Ê, p; T, R) ≠ A<
‡ (Ê, p; T, R)

$
. (2.10)

Since A+
‡ is a retarded function, it is analytic in the upper half complex Ê-plane. Therefore, the real

part of A+
‡ can be found using the Kramers-Kroning transform:

Ÿ[A+
‡ ](Ê, p; T, R) = P.V.

⁄ Œ

≠Œ
dÊÕ

fi

⁄[A+
‡ ](ÊÕ, p; T, R)

ÊÕ ≠ Ê
. (2.11)

Here, P.V. denotes the principal value integration.

2.1.3 Groenewold-Moyal product and gradient expansion

The KB equations for the Green’s function involve convolution integrals of the self-energy and

the Green’s function. The �-derivable self-energy functionals may also involve convolution inte-

grals of the Green’s functions. A necessary tool for transforming the KB equations into a form
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suitable for studying weakly inhomogeneous systems is a prescription for dealing with such convo-

lution integrals.

In case of the convolution integrals of translationally invariant two-point functions, the prescrip-

tion is given by the Fourier convolution theorem. Generalized to the case of Wigner transforms, the

convolution theorem remains formally the same, however, the algebraic product will be replaced

with the more complicated Gorenewold-Moyal (GM) product [59, 60]:

W[A ı B] = W[A] ıGM [B] © exp
5

i

2
1
ˆA

Ê ˆB
T ≠ ˆA

p

· ˆB
R

2
≠ i

2
1
ˆB

Ê ˆA
T ≠ ˆB

p

· ˆA
R

26
W[A]W[B].

(2.12)

The ı operator denotes the convolution integral. The above definition must be interpreted order-

by-order by expanding the exponential function as a formal power series. The GM product is also

sometimes called the Weyl-Groenewold product.

The GM product is a non-commutative, associative binary operator. For translationally invariant

A and B, ˆT = ˆ
R

= 0, so that the operator in the square brackets vanishes and the GM product

becomes the algebraic product. In application to weakly inhomogeneous system, we are often

interested only in the leading order corrections in ˆX . Expanding to GM product to first order, we

find:

W[A ı B] = W[A]W[B] + i

2{W[A],W[B]} + O(ˆ2
X), (2.13)

where {A, B} is a generalized Poisson bracket defined as [22]:

{A, B} © ˆÊA ˆT B ≠ ˆT A ˆÊB ≠ ˆ
p

A ˆ
R

B + ˆ
R

A ˆ
p

B. (2.14)

Note that the generalized Poisson bracket coincides with the usual Poisson bracket of classical

Hamiltonian mechanics when applied to functions with no Ê-dependence. The Poisson bracket is

anti-symmetric, i.e. {A, B} = ≠{B, A}, and associative, i.e. {A, BC} = {A, B}C + B{A, C}.

These elementary properties show that:

{A, f(A)} = 0, (2.15)
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provided that f(·) is an analytic function. This identity can be proved order-by-order by expanding

f(A) as a power series.

2.1.4 Decomposition into spectral and statistical functions

A useful representation of Wigner transformed Keldysh functions is obtained by separating the

parts that encode the spectral and statistical properties. Given such a Keldysh function D, we define

the spectral function A and the statistical function „ through the following equation:

D> ≠ D< = ≠iA,

D> + D< = ≠iA(1 ± 2„), (2.16)

where + and ≠ signs corresponds to bosonic and fermionic parametrizations, respectively. While

the choice of sign of „ in defining the spectral/statistical parametrization is arbitrary, it is natural to

choose + (≠) for functions that satisfy the bosonic (fermionic) KMS condition at equilibrium. An

equivalent definition for the spectral function can be obtained using Eq. (2.10):

A = ≠2⁄[D+]. (2.17)

The nomenclature for A and „ stems from the forms they assume in the thermal equilibrium

(cf. Eq. 1.43). The spectral part of Green’s function encodes the information about the (local)

distribution of single particle states. The statistical function „, on the other hand, assumes the form

of Bose-Einstein or Fermi-Dirac distributions in equilibrium. Using Eq. (2.16), we find:

D< = ±A„,

D> = ≠iA(1 û „).
(2.18)

2.2 Kadanoff-Baym quantum kinetic equation

In this section, we apply the concepts introduced earlier to derive the Kadanoff-Baym quan-

tum kinetic equation. A significant part of the required theoretical steps was taken by Wigner in
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1932 [56]. However, it was only after the introduction of �-derivable approximations by Baym and

Kadanoff in 1961-1962 [39, 40, 22] that the conceptual framework of quantum kinetic equations

became most appealing. As mentioned earlier, �-derivable approximations provide an ingenious

“conserving” closure to the BBGKY hierarchy. We will see in this section that once the machinery

of Wigner transformation is applied to the �-derivable approximations, a Boltzmann-like transport

equation follows very naturally.

The idea is express the KB equations in the Wigner representation and to disentangle the con-

volution integrals via a first-order expansion of the GM product. We restrict our analysis to cases

where the external fields and the Green’s functions are diagonal in the space of discrete indices.

This class of systems, for instance, excludes spin≠1/2 particles in a magnetic field with a direction

that varies in space or time. The resulting quantum kinetic equation for these systems is somewhat

more complex and is beyond the scope of our current applications in this thesis.

Our starting point is the KB equation for the greater/lesser and the retarded/advanced compo-

nents of the non-equilibrium Green’s functions, Eqs. (1.109a)-(1.109b) and Eqs. (1.109c)-(1.109d),

respectively. The Wigner transforms of the right hand sides are trivial. The left hand sides, however,

involve differential operators and must be handled with some care. A straightforward calculation

shows that the following result holds:

W
Ë
G≠1

0,‡ ı G?
‡

È
= W

Ë
G≠1

0,‡

È
ıGM W

Ë
G?

‡

È
, (2.19)

with the following expression for W
Ë
G≠1

0,‡

È
:

W
Ë
G≠1

0,‡1

È
© Ê + µ‡ ≠ |p|2

2m‡
≠ U‡(T, R). (2.20)

Likewise, the Wigner transform of the left hand side of Eq. (1.109b) can be written as:

W
Ë
G?

‡ ı
Ω≠
G≠1

0,‡

È
= W

Ë
G?

‡

È
ıGM W

ËΩ≠
G≠1

0,‡

È
, (2.21)

with W
ËΩ≠
G≠1

0,‡

È
given by the same equation (Eq. 2.20). The Wigner transform of left hand sides

of the KB equation for the retarded and advanced components has an identical structure. The final
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result is:

W
Ë
G≠1

0,‡

È
ıGM W

Ë
G?

‡

È
= W

Ë
�+

‡

È
ıGM W

Ë
G?

‡

È
+ W

Ë
�?

‡

È
ıGM W

#
G≠

‡

$
,

W
Ë
G?

‡

È
ıGM W

Ë
G≠1

0,‡

È
= W

Ë
G+

‡

È
ıGM W

Ë
�?

‡

È
+ W

Ë
G?

‡

È
ıGM W

#
�≠

‡

$
, (2.22)

and for the retarded/advanced components:

W
Ë
G≠1

0,‡

È
ıGM W

#
G±

‡

$
= 1 + W

#
�±

‡

$
ıGM W

#
G±

‡

$
,

W
#
G±

‡

$
ıGM W

Ë
G≠1

0,‡

È
= 1 + W

#
G±

‡

$
ıGM W

#
�±

‡

$
. (2.23)

At this point, we drop the Wigner transform symbol for brevity. All of the Keldysh functions

appearing hereafter are assumed to be in the Wigner representation unless it is explicitly noted.

So far, we have not made any approximations and Eqs. (2.22) and (2.23) are identical to

Eqs. (1.109a)-(1.109b) and Eqs. (1.109c)-(1.109d) in context. Following procedure outlined in the

introduction, we now expand the GM products appearing in the above expressions of the KB equa-

tions to first order in derivatives with respect to the macroscopic coordinates. For the lesser/greater

parts we find:

G≠1
0,‡G?

‡ + i

2{G≠1
0,‡, G?

‡ } = �+
‡ G?

‡ + i

2{�+
‡ , G?

‡ } + �?
‡ G≠

‡ + i

2{�?
‡ , G≠

‡ } + O(ˆ2
X), (2.24a)

G?
‡ G≠1

0,‡ + i

2{G?
‡ , G≠1

0,‡} = G+
‡ �?

‡ + i

2{G+
‡ , �?

‡ } + G?
‡ �≠

‡ + i

2{G?
‡ , �≠

‡ } + O(ˆ2
X), (2.24b)

and for the retarded/advanced parts we get:

G≠1
0,‡G±

‡ + i

2{G≠1
0,‡, G±

‡ } = 1 + �±
‡ G±

‡ + i

2{�±
‡ , G±

‡ } + O(ˆ2
X), (2.25a)

G±
‡ G≠1

0,‡ + i

2{G±
‡ , G≠1

0,‡} = 1 + G±
‡ �±

‡ + i

2{G±
‡ , �±

‡ } + O(ˆ2
X). (2.25b)

It is useful to investigate these equations order by order in ˆX . In the static limit, as obtained by

neglecting the Poisson brackets, Eqs. (2.24) read as:

(G≠1
0,‡ ≠ �+

‡ )G?
‡ = �?

‡ G≠
‡ + O(ˆX), (2.26a)
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G?
‡ (G≠1

0,‡ ≠ �≠
‡ ) = G+

‡ �?
‡ + O(ˆX). (2.26b)

Likewise, collecting the local terms of Eqs. (2.25), we find:

(G≠1
0,‡ ≠ �±

‡ )G±
‡ = 1 + O(ˆX). (2.27)

The last three equations immediately give:

G±
‡ = 1

G≠1
0,‡ ≠ �±

‡
+ O(ˆX),

G?
‡ = G+

‡ �?
‡ G≠

‡ + O(ˆX) = |G+
‡ |2 �?

‡ + O(ˆX),
(2.28)

where we have used the property G≠ = (G+)ú in the last equality.

The first order (gradient) corrections can be found from the same set of equations, Eqs. (2.24)

and (2.25). This can be done in various ways. The usual method is to subtract Eq. (2.24b) from

Eq. (2.24b). Since the zeroth order terms are common between the two equations, we end up with a

purely first order equation:

i

2{G≠1
0,‡, G?

‡ } ≠ i

2{G?
‡ , G≠1

0,‡} = i

2{�+
‡ , G?

‡ } ≠ i

2{G+
‡ , �?

‡ } + i

2{�?
‡ , G≠

‡ } ≠ i

2{G?
‡ , �≠

‡ }

+ (�+
‡ ≠ �≠

‡ )G?
‡ ≠ (G+

‡ ≠ G≠
‡ )�?

‡ + O(ˆ2
X).

(2.29)

The above equation can be put in a more useful form using the exact relations between the explicit-

time components of the Keldysh functions (cf. Eqs. 1.6a and 1.6f):

{G≠1
0,‡ ≠ Ÿ[�+

‡ ], iG?
‡ } + {Ÿ[G+

‡ ], i�?
‡ } = �>

‡ G<
‡ ≠ G>

‡ �<
‡ + O(ˆ2

X). (2.30)

The above equation is the celebrated Kadanoff-Baym (KB) quantum kinetic equation.

We note that the KB kinetic equation for G> and G< have different physical contents and are

both important part of the full physical picture. The content of the the equations can be laid bare

with some elementary rearrangements. Subtracting the sides of two equations for G> and G< from

71



Chapter 2: Quantum kinetic theory

one another, or alternatively summing the sides of Eqs. (2.25a) and (2.25a), we obtain:

G±
‡ = 1

G≠1
0,‡ ≠ �±

‡
+ O(ˆ2

X) (2.31)

It is crucial to note that the exactness of the above equation to O(ˆX) is bound to using �± which

is also exact to O(ˆX). The above result can be put in a more useful form by switching to the

spectral/statistical representation. To this end, we introduce:

G<
‡ © iA‡f‡, �<

‡ © i�‡c‡,

G>
‡ © ≠iA‡(1 ≠ f‡), �>

‡ © ≠i�‡(1 ≠ c‡).
(2.32)

Note that the above definitions and the exact relations between the components of the Keldysh func-

tions imply �‡ = ≠2⁄[�+
‡ ] and A‡ = ≠2⁄[G+

‡ ]. The above definitions combined with Eq. (2.31)

yield:

A‡ = �‡

M2
‡ + �2

‡/4 + O(ˆ2
X), Ÿ[G+

‡ ] = M‡

M2
‡ + �2

‡/4 + O(ˆ2
X), (2.33)

where we have defined the mass-shell function M‡ as:

M‡ © G≠1
0,‡ ≠ Ÿ[�+

‡ ] = Ê + µ‡ ≠ |p|2
2m‡

≠ U‡(T, R) ≠ Ÿ[�+
‡ ]. (2.34)

Plugging the spectral/statistical representation into the KB kinetic equation for either of G> or G<

and using Eq. (2.31), we find the second result:

{M‡, A‡f‡} +
; M‡

M2
‡ + �2

‡/4 , �‡c‡

<
= ≠�‡A‡(f‡ ≠ c‡) + O(ˆ2

X). (2.35)

Eqs. (2.33) and (2.35) constitute an exact rewriting of the original KB kinetic equations for G> and

G<. The right hand side of the KB kinetic equation is referred to as the collision integral:

C‡ © G>
‡ �<

‡ ≠ �>
‡ G<

‡ = ≠�‡A‡(f‡ ≠ c‡). (2.36)

The collision integral accounts for the change in the phase space density due to retardation effects.

The two Poisson brackets appearing on left hand side of the quantum kinetic equation are referred to
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as the streaming terms. The first Poisson bracket is the generalized kinetic drift in the (Ê, p) phase

space, including corrections from the self-consistent field Ÿ[�+] (i.e. the drag flow). The second

Poisson bracket has no classical counterpart (cf. Sec. 2.2.2) and is associated to the finite damping

width of the particles �‡. It can be decomposed into terms representing the many-body back-flow

and the off-mass-shell response [61].

We note that the quantities appearing in the expression for the collision integral must be

expanded consistently within the first order gradient expansion. In principle, A‡(Ê, p; T, R),

�‡(Ê, p; T, R) and c‡(Ê, p; T, R) can be decomposed into the sum of a part with only local de-

pendence on the quantities at (T, R), and a non-local part (memory terms). It is useful to make a

distinction between local and memory terms in the collision integral:

C‡ = G>
‡ �<

‡ ≠ G<
‡ �>

‡

=
!
G>

‡

"loc. !
�<

‡

"loc. ≠
!
G<

‡

"loc. !
�>

‡

"loc. + ”Cmem.
‡ .

= ≠�loc.
‡ Aloc.

‡

1
f‡ ≠ cloc.

‡

2
+ ”Cmem.

‡ . (2.37)

The quantities with a loc. label are evaluated in the local approximation (by neglecting the gradient

corrections), and ”Cmem.
‡ denotes the correction to C‡ due to gradient terms. A systematic analysis

of the structure of the vacuum diagrams shows that the local part of the collision term has the
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following general structure [61]:

Cloc.
‡ (Ê, p; T, R) = 1

2
ÿ

m,mÕ

⁄ dÊ1
2fi

ddp1
(2fi)d

. . .
dÊm

2fi

ddpm

(2fi)d

dÊÕ
1

2fi

ddpÕ
1

(2fi)d
. . .

dÊÕ
mÕ

2fi

ddpÕ
mÕ

(2fi)d

◊ Rm,mÕ(Ê1, p1, . . . , Êm, pm; ÊÕ
1, pÕ

1, . . . , ÊÕ
mÕ , pÕ

mÕ ; T, R)

◊ A1 . . . Am AÕ
1 . . . AÕ

mÕ

◊
!
[1 ≠ f1] . . . [1 ≠ fm] f Õ

1 . . . f Õ
mÕ ≠ f1 . . . fm

#
1 ≠ f Õ

1
$
. . .

#
1 ≠ f Õ

mÕ
$"

◊

S

U
mÿ

j=1
”‡‡

j

(2fi)d+1”(Êj ≠ Ê)”d(pj ≠ p) ≠
mÕÿ

j=1
”‡‡

j

(2fi)d+1”(ÊÕ
j ≠ Ê)”d(pÕ

j ≠ p)

T

V

◊ (2fi)d+1”

Q

a
mÿ

j=1
Êj ≠

mÕÿ

j=1
ÊÕ

j

R

b ”d

Q

a
mÿ

j=1
pj ≠

mÕÿ

j=1
pÕ

j

R

b , (2.38)

where fj © f‡
j

(Êj , pj ; T, R), f Õ
j © f‡Õ

j

(ÊÕ
j , pÕ

j ; T, R) and Rm,mÕ is a transition rate independent

of the state of the system. The structure of the memory part, ”Cmem.
‡ , depends on the details of the

used approximate Luttinger-Ward functional.

The KB kinetic equations can be put in a slightly simpler form by noting that one may use local

approximation for all of the quantities appearing in the Poisson brackets within the validity domain

of the first-order gradient expansion. One such simplification, as suggested first by Botermans and

Malfliet [24], is to replace the statistical part of the self-energies c‡ appearing in the second Poisson

bracket by its zeroth-order approximation. The justification comes either from Eq. (2.28) or by

simply observing that the left hand side of Eq. (2.35) is O(ˆX), so that:

c‡ = f‡ + O(ˆX). (2.39)

Replacing c‡ with f‡ in the second Poisson bracket, we find:

{M‡, A‡f‡} +
; M‡

M2
‡ + �2

‡/4 , �‡f‡

<
= ≠�‡A‡(f‡ ≠ c‡) + O(ˆ2

X), (2.40)
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which can be written in the following form with some straightforward manipulations:

A2
‡ �‡

2

5
{M‡, f‡} ≠ M‡

�‡
{�‡, f‡}

6
= ≠�‡A‡(f‡ ≠ c‡) + O(ˆ2

X). (2.41)

We refer to the last equation as the kinetic equation in the Botermans-Malfliet (BM) form. We

drop O(ˆ2
X) in the kinetic equations hereafter. It has been shown in Ref. [62] that the KB quantum

kinetic equations respect the conservation laws, reminiscent of the original KB equations, provided

that all quantities are consistently expanded to first order in ˆX . In particular, the memory part of

the collision integral ”Cmem. shall not be neglected.

The physical content of KB kinetic equations and memory effects:

Since Eq. (2.33) does not have a differential structure, it may seem that A‡ can be readily solved

for f‡, effectively reducing the two kinetic equations for G> and G< to a single equation for f‡.

While possible in principle, this task is not always trivial. Provided that the Luttinger-Ward func-

tional contains vacuum diagrams with three interaction vertices or more, the self-energy functional

will have a non-local dependence on the Green’s functions [61]. This implies that upon gradient

expansion, � will depend on both G and ˆXG. As a result, the mass-shell function and the spectral

broadening appearing in Eq. (2.33) will also be non-local functionals of A‡ and f‡. Therefore, the

self-consistent solution of Eq. (2.33) for A‡ can be a non-trivial task despite its deceptive algebraic

structure. The non-locality of the self-energy implies the emergence of memory effects in A‡.

The memory effects can be physically inconsequential in certain systems, such as dilute Fermi

for Bose gases with short-range repulsive interactions. In this case, the particles only meet during

the short period of collisions and propagate as essentially free particles otherwise. The history of

past collisions does not play a consequential role in the dynamics. On the other hand, had the

interactions been strongly attractive, the particles could form long-lived bound pairs, propagate

with their partners for a long time, and undergo several collisions before possibly breaking up. In
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this case, the memory can persist for a long time and will have an important role in the dynamics.

Therefore, the non-Markovian structure of kinetic equations can be an important effect in systems

with bound states and neglecting the memory effects can lead to wrong results. Paying attention to

this subtlety is of utmost importance in a proper derivation of the kinetic equations for the attractive

Fermi gas, a problem which will be discussed in chapter 4. In fact, we find that the transport of

the attractive Fermi gas in the strong-coupling regime is essentially encoded in the spatio-temporal

fluctuations of the spectral function A‡ while the statistical function f‡ is virtually void of physical

content!

2.2.1 The Born approximation

So far, we have discussed the quantum kinetic formalism in full generality and without reference

to any particular �-derivable approximation. In this section, we give explicit expressions for the

retarded self-energy and the collision integral by expanding the Luttinger-Ward function to the 3-

loop order. The loop expansion is controlled for weakly interacting systems. We consider a single-

component system for simplicity. The 3-loop expansion of the self-energy of such a system was

discussed earlier in Sec. 1.3.1. This approximation is often referred to as the Born approximation.

Let us consider the HF self-energy (Eq. 2.42). Expressing �HF in the Wigner representation, we

find:

�+
HF(p; T, R) =

⁄
ddRÕ V (R ≠ RÕ) n(T, RÕ)

¸ ˚˙ ˝
Direct (Hartree)

+
⁄

ddp1 V(p ≠ p1)
⁄ dÊ1

2fi
iG<(Ê1, p1; T, R)

¸ ˚˙ ˝
Exchange (Fock)

,

(2.42)

where:

n(T, R) ©
⁄ dÊ

2fi

ddp
(2fi)d

(≠i)G<(Ê, p; T, R), (2.43)

is the local particle density. We notice that if the effective range of the interactions is comparable to

lmacro, the Hartree contribution will break locality in the macroscopic coordinate R. The HF con-
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tributions are instantaneous and �?
HF = 0. Note that �+

HF has no Ê-dependence. The greater/lesser

part of the Born self-energy is:

�?
B(Ê, p; T, R) =

⁄ dÊ1
2fi

ddp1
(2fi)d

dÊÕ

2fi

ddpÕ

(2fi)d

dÊÕ
1

2fi

ddpÕ
1

(2fi)d
(2fi)d+1 ”d(p + p1 ≠ pÕ ≠ pÕ

1)

◊ ”(Ê + Ê1 ≠ ÊÕ ≠ ÊÕ
1)

Ë
V(p ≠ pÕ)2 ≠ V(p ≠ pÕ) V(p ≠ pÕ

1)
È

◊ G7(Ê1, p1; T, R) G?(ÊÕ, pÕ; T, R) G?(ÊÕ
1, pÕ

1; T, R). (2.44)

Using the spectral/statistical representation of the Green’s functions, we find:

�?
B(Ê, p; T, R) =

⁄
D(3)

Ê,p W P?, (2.45)

where:

D(3)
Ê,p © dÊ1

2fi

ddp1
(2fi)d

dÊÕ

2fi

ddpÕ

(2fi)d

dÊÕ
1

2fi

ddpÕ
1

(2fi)d
(2fi)d+1 ”d(p + p1 ≠ pÕ ≠ pÕ

1) ”(Ê + Ê1 ≠ ÊÕ ≠ ÊÕ
1),

(2.46a)

W © 1
2

--V(p ≠ pÕ) ≠ V(p ≠ pÕ
1)

--2 = 1
2

------
≠

------

2

(2.46b)

P > © ≠i A(Ê1, p1) A(ÊÕ, pÕ) A(ÊÕ
1, pÕ

1) f(Ê1, p1)
#
1 ≠ f(ÊÕ, pÕ)

$ #
1 ≠ f(ÊÕ

1, pÕ
1)

$
, (2.46c)

P < © i A(Ê1, p1) A(ÊÕ, pÕ) A(ÊÕ
1, pÕ

1) [1 ≠ f(Ê1, p1)] f(ÊÕ, pÕ) f(ÊÕ
1, pÕ

1). (2.46d)

We have dropped the common argument (T, R) in the quantities appearing in the definition of P?

for brevity. The auxiliary quantities such as �, Ÿ[�+], and C are easily found according to their

definitions:

�(Ê, p; T, R) =
⁄

D(3)
Ê,p A(Ê1, p1) A(ÊÕ, pÕ) A(ÊÕ

1, pÕ
1) W

Ó
f(Ê1, p1)

#
1 ≠ f(ÊÕ, pÕ)

$

◊
#
1 ≠ f(ÊÕ

1, pÕ
1)

$
+ [1 ≠ f(Ê1, p1)] f(ÊÕ, pÕ) f(ÊÕ

1, pÕ
1)

Ô
, (2.47a)

Ÿ[�+](Ê, p; T, R) = �+
HF(p; T, R) ≠ 1

2KK[�](Ê, p; T, R), (2.47b)
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C(Ê, p; T, R) =
⁄

D(3)
Ê,p A(Ê, p) A(Ê1, p1) A(ÊÕ, pÕ) A(ÊÕ

1, pÕ
1) W

Ó
[1 ≠ f(Ê, p)]

◊ [1 ≠ f(Ê1, p1)] f(ÊÕ, pÕ) f(ÊÕ
1, pÕ

1) ≠ f(Ê, p) f(Ê1, p1)
#
1 ≠ f(ÊÕ, pÕ)

$ #
1 ≠ f(ÊÕ

1, pÕ
1)

$ Ô

=
⁄

D(3)
Ê,p

S

WWWWU
≠

T

XXXXV
. (2.47c)

2.2.2 The route to the Boltzmann equation

The passage from quantum kinetic equation to the Boltzmann equation has been discussed in

Ref. [22]. The conditions for the validity of this procedure have been discussed at length by [23].

Here, we provide a brief account of the Boltzmann limit and its applicability criteria. The Boltzmann

equation describes the evolution of single-particle probability distribution function of an ensemble

of classical particles, n(p; T, R)1. By definition, n(p; T, R) ddp ddR indicates the number of

particles having momentum p at position R at time T . In the absence of inter-particle interactions,

the trajectory of each classical particle is given by Hamilton equations and the evolution of f is

governed by the classical Liouville equation, which is the statement of conservation of phase space

volume. In its simplest form, the Boltzmann equation reads as:

ˆT n + p
m

· ˆ
R

n + F(T, R) · ˆ
p

n =
3

ˆn

ˆT

4

coll.
, (2.48)

where F(T, R) is the net external force experienced by a single particle. The right hand side is a

non-Liouvillian correction due to collisions and denotes the net rate of particles entering the phase

space point. Conservation of particle number, momentum and energy requires:
⁄

ddp ddR
3

ˆn

ˆT

4

coll.
=

⁄
ddp ddR p

3
ˆn

ˆT

4

coll.
=

⁄
ddp ddR |p|2

2m

3
ˆn

ˆT

4

coll.
= 0. (2.49)

In case of long-range interactions, one must also add the net force produced by the other particles

to F as well, so that F becomes a functional of n. Except for the trivial case of free particles, the

1The single-particle probability distribution function is often called f(p; T, R). Following Ref. [23], we use the
notation n(p; T, R) in order to avoid any confusion with the Wigner’s statistical function f(Ê, p; T, R) defines earlier.
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validity of the Boltzmann equation requires the possibility of having a well-defined single-particle

distribution function. Treating n like a random variable, this requires the many-body limit where


Var[n] π ÈnÍ. The condition of weakly inhomogeneous disturbances further guarantees this

condition at all times.

The passage from quantum kinetic equations to a Boltzmann-like description evidently requires

the notion of particles, a sufficient condition for which is the system being in the classical regime

where the thermal de-Broglie wavelength ⁄T © h/
Ô

2fimkBT is much smaller than the inter-

particle separation ¸ © n≠1/d and quantum effects are immaterial. For fermions, this implies

T ∫ TF , where TF = ‘F /kB is the Fermi temperature. Well-defined quasiparticles may exist

in the quantum regime as well. For repulsively interacting quantum degenerate fermions in d > 1,

the particles near the Fermi surface have a long lifetime proportional to (TF /T )2 due to Pauli

exclusion. This is the cornerstone of Landau Fermi liquid theory.

Provided that the lifetime of (quasi-)particles is large compared to the microscopic time scales,

we can take the limit �/‘F æ 0 and only retain the terms that are leading order in � in the kinetic

equation. In the Fermi liquid regime, taking this limit is only warranted for |p| ≥ pF , where pF is

the Fermi momentum, However, since the states corresponding to |p| < pF are Pauli blocked and

the excitation of |p| ∫ pF quasiparticles is thermally suppressed, we do not need to single-out the

Fermi momentum in this procedure. Following Ref. [23], we take the limit � æ 0 in the Poisson

brackets appearing on the streaming side of the kinetic equation as a first step. This is admissible

to leading order in � since the neglected corrections are O(�ˆX), whereas the collision integral is

O(ˆX). In the same approximation, we can neglect the second Poisson bracket altogether since it

is O(�ˆX). This brings us to:

{M‡, A‡f‡} = C‡ + O(ˆ2
X , �ˆX). (2.50)
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In the quasiparticle limit, the fermion spectral function assumes the form:

A(qp)
‡ © lim

�
‡

æ0
A‡ = lim

�
‡

æ0

�‡

M2
‡ + �2

‡/4 = 2fi ”(M‡), (2.51)

justifying the nomenclature mass-shell for M‡. Using the explicit expression for M‡, one finds:

A(qp)
‡ (Ê, p; T, R) = 2fi ”

1
Ê ≠ µ‡ ≠ |p|2/(2m‡) ≠ U‡(T, R) ≠ Ÿ[�+

‡ (Ê, p; T, R)]
2

= 2fiZ‡(p; T, R) ”
!
Ê ≠ E‡(p; T, R)

"
, (2.52)

where the quasiparticle energy dispersion E‡ and the quasiparticle residue Z‡ are defined as:

E‡(p; T, R) ≠ µ‡ ≠ |p|2/(2m‡) ≠ U‡(T, R) ≠ Ÿ[�+
‡ (Ê, p; T, R)]

---
Ê=E

‡

(p;T,R)
= 0,

Z‡(p; T, R) © (ˆÊM‡)≠1
---
Ê=E

‡

(p;T,R)
=

1
1 ≠ ˆÊ Ÿ[�+

‡ (Ê, p; T, R)]
2≠1 ---

Ê=E
‡

(p;T,R)
. (2.53)

Note that �/‘F can be much smaller than unity for the Landau quasiparticles, yet, Z can be con-

siderably smaller than unity since it depends on the off-shell processes. For the same reason, while

�?/‘F ≥ �/‘F can be small for the on-shell quasiparticles, Ÿ[�+]/‘F can be large and have a

significant Ê-dependence.

The equation for the quasiparticle energy dispersion is an implicit equation and must be solved

self-consistently. Since the quasiparticles are on-shell, the Ê-dependence of the kinetic equation is

redundant and can be removed by integrating both sides of Eq. (2.50) over Ê. Using the fact that

{M‡, 2fi ”(M‡) f‡} = 2fi ”(M‡) {M‡, f‡}, we find:

⁄ dÊ

2fi
{M‡, 2fi ”(M‡)f‡} =

⁄
dÊ ”(M‡) {M‡, f‡}

=
⁄

dÊ ”(M‡) (ˆÊM‡ ˆT f‡ ≠ ˆ
p

M‡ · ˆ
R

f‡ ≠ ˆT M‡ ˆÊf‡ + ˆ
R

M‡ · ˆ
p

f‡)

= Z≠1
‡

C

ˆT +
3 p

m‡
+ ˆ

p

Ÿ
Ë
�+

‡ (E‡, p; T, R)
È4

· ˆ
R

≠
1
ˆ

R

U‡(T, R) + ˆ
R

Ÿ
Ë
�+

‡ (E‡, p; T, R)
È2

· ˆ
p

D

n‡(p; T, R), (2.54)
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where the quasiparticle distribution function n‡(p; T, R) is defined as the on-shell fermionic sta-

tistical function:

n‡(p; T, R) © f‡(E‡, p; T, R). (2.55)

Combining Eqs. (2.50) and (2.54) gives the final result:

C

ˆT +
3 p

m‡
+ ˆ

p

Ÿ
Ë
�+

‡ (E‡, p; T, R)
È4

· ˆ
R

≠
1
ˆ

R

U‡(T, R) + ˆ
R

Ÿ
Ë
�+

‡ (E‡, p; T, R)
È2

· ˆ
p

D

n‡(p; T, R) =
3

ˆn‡

ˆT

4

coll.
, (2.56)

where:
3

ˆn‡

ˆT

4

coll.
© I‡[n] © Z‡(p; T, R)

⁄ dÊ

2fi
C‡[f ]. (2.57)

The collision integral can be calculated in the local approximation within the validity domain of the

quasiparticle approximation. If the Luttinger-Ward functional includes no more than two fermion

loops (as in the Born and T-matrix approximations), the general structure of the collision integral

can be read from Eq. (2.38):

I‡[n] = Z‡(p; T, R)
ÿ

‡1,‡Õ,‡Õ
1

⁄ ddp1
(2fi)d

ddpÕ

(2fi)d

ddpÕ
1

(2fi)d
(2fi)d+1 ”d(p + p1 ≠ pÕ ≠ pÕ

1)

◊ ”
1
E

p,‡ + E
p1,‡1 ≠ E

p

Õ,‡Õ ≠ E
p

Õ
1,‡Õ

1

2
W (p, ‡; p1, ‡1 æ pÕ, ‡Õ; pÕ

1, ‡Õ
1)

◊
Ó

[1 ≠ n‡(p)] [1 ≠ n‡1(p1)] n‡Õ(pÕ)n‡Õ
1
(pÕ

1)

≠ n‡(p) n‡1(p1)
#
1 ≠ n‡Õ(pÕ)

$ Ë
1 ≠ n‡Õ

1
(pÕ

1)
È Ô

, (2.58)

where W is the transition amplitude. In the Born approximation, W © |M|2/2 (cf. Eqs. 2.47c

and 2.46b). Eq. (2.56) may also written in the following concise form:

ˆT n‡ + {n‡, E‡} = I‡[n], (2.59)

which is reminiscent of the Liouville equation of classical Hamiltonian systems, save for two im-

portant differences: (1) E‡ is a functional of n‡ and is found from the self-consistent solution of
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Eq. (2.53), and (2) the presence of the collision integral Ic[n] describing the change in the phase-

space density due to collisions. If we neglect the self-energy corrections on the left hand side of

Eq. (2.46b), which is admissible either if the interactions are weak, or if T ∫ TF , the above equa-

tion reduces to the classical Boltzmann equation, Eq. (2.48).

The various limits of the quasiparticle kinetic equation have appeared in the literature by dif-

ferent authors. In the zero-temperature limit, the low-energy excitations are infinitely long-lived

quasiparticles on the Fermi surface |p| = pF and the collision integral vanishes identically. Ne-

glecting long-range interactions, the ensuing equation is known as the Landau kinetic equation and

constitutes an exact kinetic description of ultracold neutral fermionic matter such as 3He, as long as

Z > 02. Including long-range Coulomb interactions in case of charged fermions, the ensuing equa-

tion is often called the Landau-Silin kinetic equation. Finally, neglecting collisions and self-energy

corrections beyond Hartree-Fock level but taking into account long-range forces and external elec-

tromagnetic fields, the Vlasov equation is obtained. We refer to Eq. (2.56) in its most general form

as the collisional Boltzmann-Vlasov (CBV) equation.

2.3 Global and local equilibrium states

The first step toward investigating the nature of slow varying collective excitations of a system

about its equilibrium state is to first establish its properties in the equilibrium state. This can be

done most easily done by taking a step back and remembering that at the thermal equilibrium,

the Green’s function are constrained by the KMS boundary condition. The equilibrium Green’s

functions, G‡,eq(·1, x1; · Õ
1, xÕ

1), may only be functions of the difference of the two time arguments,

i.e. they do not depend on the macroscopic time T = (t1 + tÕ
1)/2. Fourier transforming the time

2The exact description, of course, requires the knowledge of the exact self-energy functional or equivalently, the
Landau quasiparticle interaction function f(p, pÕ) © (2fi)d ”E(p)/”n(pÕ) [63, 64, 65, 22].
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difference to the frequency domain, the KMS boundary condition implies (see Eq. 1.45):

G>
‡,eq(Ê; x1, xÕ

1) = ≠e—ÊG<
‡,eq(Ê; x1, xÕ

1). (2.60)

The above equation in the Wigner representation reads:

G>
‡,eq(Ê, p; R) = ≠e—ÊG<

‡,eq(Ê, p; R). (2.61)

The above equation sets the statistical part of G‡,eq to the Fermi-Dirac distribution function f0(Ê):

f‡,eq(Ê, p; R) = f0(Ê) © 1
e—Ê + 1 . (2.62)

Note that the chemical potential has been absorbed to the Hamiltonian. It is easy to show that the

self-energy at equilibrium, �eq, also obeys the KMS boundary condition. This can be most easily

inferred from the Dyson’s equation:

G‡(1, 1Õ) = G‡,0(1, 1Õ) +
⁄

d2 d2Õ G‡,0(1, 2) �‡(2, 2Õ) G‡(2Õ, 1Õ). (2.63)

Using the Langreth rules and remembering that G?
‡,0 = 0, we find:

G±
‡ (1, 1Õ) = G±

‡,0(1, 1Õ) +
⁄

d2 d2Õ G±
0,‡(1, 2) �±

‡ (2, 2Õ) G±
‡ (2Õ, 1Õ),

G?
‡ (1, 1Õ) =

⁄
d2 d2Õ G+

0,‡(1, 2)
Ë
�+

‡ (2, 2Õ) G?
‡ (2Õ, 1Õ) + �?

‡ (2, 2Õ) G≠
‡ (2Õ, 1Õ)

È
, (2.64)

which in combination give:

G?
‡ (1, 1Õ) =

⁄
d2 d2Õ G+

‡ (1, 2) �?
‡ (2, 2Õ) G≠(2Õ, 1Õ). (2.65)

Assuming thermal equilibrium and taking a Fourier transform in the time difference, the above

equation yields:

G?(Ê; x1, xÕ
1) =

⁄
dx2 dxÕ

2 G+
eq(Ê; x1, x2) �?

eq(Ê; x2, xÕ
2) G≠

eq(Ê; xÕ
2, xÕ

1). (2.66)

Comparing this result with Eq. (2.61), we immediately find:

�>
‡,eq(Ê; x1, xÕ

1) = ≠e—Ê�<
‡,eq(Ê; x1, xÕ

1), (2.67)
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and its counterpart in the Wigner representation:

�>
‡,eq(Ê, p; R) = ≠e—Ê�<

‡,eq(Ê, p; R). (2.68)

The above equation sets the statistical part of the self-energy, c‡ (cf. Eq. 2.32), to the Fermi-Dirac

distribution:

c‡,eq(Ê, p; R) = f0(Ê) = 1
e—Ê + 1 . (2.69)

We immediately see at in equilibrium, the collision integral (cf. Eq. (2.36)) vanishes. The absence

of collisions is the statement of detailed balance since C‡ = G>
‡ �<

‡ ≠ G<
‡ �>

‡ . We also easily see

that the streaming side of the kinetic equation vanishes at equilibrium. This can be most easily seen

in the BM form, Eq. (2.41), using the fact that {F, f0(Ê)} = 0 for arbitrary F . The above analysis

shows the KMS boundary condition is compatible with the equilibrium solution of the quantum

kinetic equations. We refer to the equilibrium state f‡ = c‡ = f0(Ê) as the global equilibrium

state. It is trivial to show that the plugging the Fermi-Dirac distribution in the general expression

for the local part of the collision integral (Eq. 2.38) yields a vanishing result. Therefore, Cloc. and

”Cmem. both vanish in the global equilibrium state. In fact, Cloc. vanishes for a broader class of

distributions functions, referred to as the local equilibrium states:

fleq.(Ê, p; T, R) = 1
exp (—(T, R) [Ê + ”µ(T, R) ≠ p · V(T, R)]) + 1 , (2.70)

where the local temperature —(T, R), local chemical potential correction ”µ(T, R) and local macro-

scopic velocity field V(T, R) are aribtrary weakly inhomogeneous functions. This can be seen by

plugging fleq. in the general expression for the local collision integral given in Eq. (2.38) and using

the properties of the Fermi-Dirac function. A more direct demonstration of this fact results from

neglecting gradient corrections in Eq. (2.65) to find the relation between the local Green’s function

and the local self-energy, which readily gives:

(G>
‡ )loc.

(G<
‡ )loc. = (�>

‡ )loc.

(�<
‡ )loc. = ≠ exp (—(T, R) [Ê + ”µ(T, R) ≠ p · V(T, R)]) . (2.71)
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The above equation implies Ccol.
‡ = (G>

‡ )loc. (�<
‡ )loc. ≠ (G<

‡ )loc. (�>
‡ )loc. = 0.

We finally note that within the validity limits of first-order gradient expansion, the equilibrium

spectral function A‡,eq, the spectral broadening �‡,eq and their dependent quantities can be calcu-

lated within the local density approximation (LDA) provided that the range of interaction r0 satisfies

r0 π lmacro:

A‡,eq(Ê, p; R) = Ahom
‡,eq(Ê, p)

---
µ

‡

æµ
‡

≠U
‡

(R)
, �‡,eq(Ê, p; R) = �hom

‡,eq(Ê, p)
---
µ

‡

æµ
‡

≠U
‡

(R)
,

(2.72)

where Ahom
‡,eq and �hom

‡,eq are the spectral function and spectral broadening of a homogeneous system

at equilibrium. This is due to the following facts: (1) the external potential only appears in M‡ and

in the combination µ‡ ≠ U‡(R), (2) the self-energies at R only depend on the Green’s functions in

a small neighborhood about of size r0 π lmacro about R.

2.4 The ideal hydrodynamical limit

The quantum kinetic equations assume a simple form in the limit where the local collision rate

·≠1
c (given by the typical magnitude of the collision integral), is much faster than the macroscopic

rate of changes t≠1
macro. Deviations from fleq. relax to local equilibrium distributions within a short

time scale ≥ ·c. To zeroth order in ·c/tmacro, the distribution function f‡ will be effectively con-

strained to the class of local equilibrium distributions at all times. As mentioned in the previous

section, the local equilibrium distribution functions are completely characterized by three quantities

—(T, R), ”µ(T, R) and V(T, R). The kinetic equation in this limit reduces to:
I

A2
‡ �‡

2

5
{M‡, f‡} ≠ M‡

�‡
{�‡, f‡}

6
≠ ”Cmem.

‡

J

f
‡

æfleq.

= 0. (2.73)

The dynamical equations for —(T, R), ”µ(T, R) and V(T, R) can be obtained by multiplying the

sides of Eq. (2.73) by 1, p and Ê and integrating over Ê and p. An equally valid approach is to
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start from the exact differential forms of the conservation laws for particle number, momentum and

energy (Eqs. 1.130, 1.148 and 1.151), make the substitution f‡ æ fleq. and carry out the gradient

expansion. The merit of the latter approach is that it directly leads to equations in terms of the ther-

modynamical quantities such as pressure and energy density. The calculations are straightforward

(cf. Ref. [22] for details). We quote the final result here for particles with equal mass m‡ = m

coupled to the same external field U‡(T, R) = U(T, R):

ˆT n = ≠Ò · (nV), (2.74a)

m ˆT [n V] = ≠n ÒU ≠ ÒP ≠ mÒ [n VV] , (2.74b)

ˆT

5
Etot. + 1

2 nmV 2
6

= ≠Ò ·
531

2 nmV 2 + P + Etot.

4
V

6
≠ nV · ÒU. (2.74c)

The above equations correspond to usual ideal hydrodynamic equations: the number density conti-

nuity equation, Euler’s equation and the energy transfer equation, in order. The quantities appearing

in the above hydrodynamic equations are calculated from the local equilibrium spectral function in

the co-moving frame V æ 0 as follows:

n(T, R) =
ÿ

‡

⁄ dÊ

2fi

ddp
(2fi)d

[A‡,leq.(Ê, p; T, R)fleq.(Ê, p; T, R)]
Væ0 , (2.75a)

P (T, R) = 2
d

ÿ

‡

⁄ dÊ

2fi

ddp
(2fi)d

p2

2m
[A‡,leq.(Ê, p; T, R)fleq.(Ê, p; T, R)]

Væ0 + Eint.(T, R),

(2.75b)

Eint.(T, R) =
ÿ

‡

⁄ dÊ

2fi

ddp
(2fi)d

1
2

A

Ê + µ‡ ≠ p2

2m

B

[A‡,leq.(Ê, p; T, R)fleq.(Ê, p; T, R)]
Væ0 ,

(2.75c)

Etot.(T, R) =
ÿ

‡

⁄ dÊ

2fi

ddp
(2fi)d

Ê [A‡,leq.(Ê, p; T, R)fleq.(Ê, p; T, R)]
Væ0 ≠ Eint.. (2.75d)

The expression for the interaction energy density Eint. and total energy density Etot. shown above

are easily obtained from Eq. (1.147) and the Dyson’s equation (cf. Ref. [66] for details). All of

the quantities appearing in Eqs. (2.74a)-(2.74c) are functions of —(T, R) and ”µ(T, R). In phys-

ical systems, the collision rate is finite and the above equations only approximately describe the
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dynamics. A systematic expansion of the kinetic equations about this ideal limit is known as the

Chapman-Enskog expansion [67] and yields the equations of viscous hydrodynamics [68].

An important consequence of the ideal hydrodynamical description is the emergence of the so-

called surface modes in the collective dynamics of systems in isotropic harmonic traps. The surface

modes have universal frequencies, unaffected by the equation of state. A general proof for the

existence of the surface modes is provided in Appendix. B.1. The universality of the frequency of

surface modes is often taken as evidence for hydrodynamical behavior in experiments with ultracold

atoms [11].

2.5 Linear response theory of weakly inhomogeneous systems

One of most useful aspects of the kinetic description of weakly inhomogeneous systems is the

facilitation of calculating the linear response to weakly inhomogeneous fields in a spatially inho-

mogeneous equilibrium state. In principle, the linear response may also be obtained directing using

the Kubo formula, which amounts to solving the Bethe-Salpeter (BS) equation, Eq. (1.99), for the

connected 4-point Green’s function G(2c)
2 . The micro- and macro- separation of scales, however, is

not evident in the resulting BS equation. While the gradient expansion may still be implemented

at the level of the BS equation, it is clearly much simpler to do it at level of the 2-point functions,

so that the resulting BS equations already acknowledges the scale separation; and this is exactly the

program of the quantum kinetic formalism.

Our goal in this section is to derive the equivalent of the BS equation starting from the kinetic

equation. We restrict our analysis to the case that the system is initially in the thermal equilibrium,

possibly in the presence of a static external potential U(R) (e.g. the optical potential in case of

cold atoms, the vacuum interface potential for metallic electrons, etc). We also assume U to be

a weakly inhomogeneous potential. The equilibrium state is perturbed by an additional weakly
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inhomogeneous external field ”U(T, R) at T = 0. We only consider responses to scalar fields here.

The response to vector potentials may also be calculated in the same fashion, however, this requires

a gauge invariant formulation of the kinetic equations as mentioned before and is beyond the scope

of this work.

2.5.1 The general case

According to the discussion of the previous section, f‡ = c‡ © f0(Ê) at equilibrium and

both the streaming and collision side of the kinetic equation vanish. Perturbing the external field

U‡(T, R) æ U‡(R) + ”U‡(T, R), the thermal equilibrium will be perturbed and the system un-

dergoes a slow dynamics. As a first step, we determine the first-order change in the statistical and

spectral functions, ”f‡ and ”A‡, using which the evolution of the local observables of the system

(such as density, current, energy and entropy) can be calculated. We denote the equilibrium quanti-

ties with a 0 index, and their non-equilibrium deviations with a ” prefix, e.g. A æ A0 +”A. Keeping

the first-order changes in the kinetic equation in the BM form, we obtain:

A2
‡,0 �‡,0

2

C

{≠”U‡ ≠ Ÿ[”�+
‡ ], f0} + {M‡,0, ”f‡} ≠ M‡,0

�‡,0

Ë
{”�‡,0, f0} + {�‡,0, ”f‡}

ÈD

=

≠ �‡,0A‡,0(”f‡ ≠ ”c‡) + O(”U2). (2.76)

It is convenient to parametrize ”f‡ as follows:

”f‡(Ê, p; T, R) © ˆÊf0(Ê) �‡(Ê, p; T, R), (2.77)

using which Eq. (2.76) can be written as:

A2
‡,0 �‡,0

2 ˆÊf0

C

{M‡,0, �‡} ≠ M‡,0
�‡,0

{�‡,0, �‡} + ˆT ”U‡ + ˆT

A

Ÿ[”�+
‡ ] + M‡,0

�‡,0
”�‡,0

B D

=

”C‡[�] + O(”U2), (2.78)
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where we have defined the ”C‡[�] as:

”C‡[�] © ≠�‡,0A‡,0 (ˆÊf0 �‡ ≠ ”c‡). (2.79)

Note that ”c‡, ”�+
‡ and ”�‡ can be expressed as linear functionals of � if the self-energy is given

as a functional of the Green’s function, as it is the case for �-derivable approximations. Consider a

spin-independent external perturbing field like:

”U(T, R) = ’(T ) u(R), (2.80)

where ’(T ) is an arbitrary time envelope. If the linear response to an impulse ’(T ) = ”(T ) enve-

lope function is known, the response to an arbitrary ’(T ) can be found by convolving the impulse

response with ’(T ):

�(Ê, p; T, R; ’) =
⁄ Œ

0
dT Õ ’(T Õ) �imp(Ê, p; T ≠ T Õ, R), (2.81)

where �imp(Ê, p; T, R) is the impulse response. The impulse response can calculated easily using

Laplace (one-sided Fourier) transforms, defined as:

�̃‡,imp(Ê, p; �, R) =
⁄ Œ

0+
ei�T �‡,imp(Ê, p; T, R). (2.82)

Note that we have set the lower bound of the integration to T = 0+, i.e. right after the impulse.

Expanding the Poisson brackets and taking a Laplace transform of Eq. (2.78), we find:

A2
‡,0 �‡,0

2 ˆÊf0

C

≠i� “Ê,‡�̃‡,imp+“
p,‡ ·ˆ

R

�̃‡,imp≠“
R,‡ ·ˆ

p

�̃‡,imp≠i�F‡[�̃imp]≠”C‡[�̃imp] =

A2
‡,0 �‡,0

2 ˆÊf0

C

“Ê,‡�‡,imp(0+) + F
#
�‡,imp(0+)

$
D

, (2.83)
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where we have defined the shorthand notation:

“Ê,‡(Ê, p; R) © 1 ≠ ˆÊŸ
#
�+

‡,0
$

≠ M‡,0
�‡,0

ˆÊ�‡,0,

“
p,‡(Ê, p; R) © p

m
+ ˆ

p

Ÿ
#
�+

‡,0
$

+ M‡,0
�‡,0

ˆ
p

�‡,0,

“
R,‡(Ê, p; R) © ˆ

R

U(R) + ˆ
R

Ÿ
#
�+

‡,0
$

+ M‡,0
�‡,0

ˆ
R

�‡,0,

F‡[�̃](Ê, p; �, R) © Ÿ
Ë
”�+

‡ [�̃]
È

+ M‡,0
�‡,0

”�‡,0[�̃]. (2.84)

Since the lower bound of the Laplace transform is set to time right after the impulse, the impulse

external field does not appear in Eq. (2.83). Instead, the equation relies on the knowledge of the

initial disturbance caused by the impulse, �imp(0+). We study this sub-problem in detail later in

Sec. 4.6, where we show that for particles with equal masses, the right hand side of Eq. (2.83)

assumes the simple form:

r.h.s. of Eq. (2.83) :
A2

‡,0 �‡,0

2 ˆÊf0 “
p,‡ · ˆ

R

u(R). (2.85)

The above result only relies on the underlying local Galilean invariance of the system. Eq. (2.83)

combined with Eq. (2.85) pose a integro-differential equation for �̃‡,imp(Ê, p; �, R). We will

discuss an effective method for solving such equations using a generalization of the method of

moments, originally proposed by Grad [69] to solve the classical Boltzmann equation. We delegate

the details of this discussion to Chapter 4, where we investigate the dynamics of attractive Fermi

gases in confined geometries. Once �̃‡,imp is calculated, the linear response functions can be found

easily. For example, the change in the number density can be expressed as:

”ñ‡,imp(�, R) © ≠i
⁄ Œ

0+
dT ei�T

⁄ dÊ

2fi

ddp
(2fi)d

”G<
‡,imp(Ê, p; T, R)

=
⁄ dÊ

2fi

ddp
(2fi)d

Ë
”A‡,imp(Ê, p; �, R) f0(Ê) + A‡,0(Ê, p; R) ˆÊf0(Ê) �̃‡,imp(Ê, p; �, R)

È
.

(2.86)
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In the linear regime, the variations in the density has two sources as it is evident in the second

line: the change in the spectral function and the change in the spectral function. In principle,

”A‡ can be expressed as a linear functional of �̃. The expectation value of various observables,

relevant to experiments with trapped ultracold gases, can be directly obtained from ”ñ‡,imp(�, R)

(cf. Sec. 4.6.4).

2.5.2 The quasiparticle approximation

We investigated the linearized dynamics of systems described by the general quantum kinetic

equation in the previous section. In this section, we consider the simpler situations where the quasi-

particle approximation is admissible. Since the particles obey the mass shell relation in the quasi-

particle limit, the analysis can be carried out just in terms of the quasiparticle distribution function

n‡(p; T, R), and the intricacies due to off-mass-shell processes will be absent. We parametrize the

linear change in the quasiparticle distribution ”n‡ as:

”n‡(p; T, R) = �‡,0(p; R) �‡(p; T, R), (2.87)

where:

�‡,0(p; R) © ≠ˆÊf0(Ê)
--
Ê=E

‡,0(p;R) = — [f0(Ê)[1 ≠ f0(Ê)]]Ê=E
‡,0(p;R) . (2.88)

Linearizing the CBV equation (Eq 2.59), we find:

�‡,0 ˆT �‡ + {�‡,0 �‡, E‡,0} + {n‡,0, ”E‡[�]} = ”I‡[�], (2.89)

where:

n‡,0(p; R) = f0(E‡,0), (2.90)

is the equilibrium quasiparticle distribution, and ”E‡[�] is the change in the quasiparticle energy

and is given by:

”E‡[�](p; T, R) = ”U‡(T, R) + Ÿ[”�+
‡ (Ê, p; T, R)]

---
Ê=E

‡

(p;T,R)
. (2.91)
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For weak interaction, the quasiparticle energy can be calculated at the HF level to leading order, so

that:

”E‡[�](p; T, R) = ”U‡(p; T, R) +
ÿ

‡Õ

⁄
ddRÕ ddpÕ V (R ≠ RÕ) �‡Õ,0(pÕ; R) �‡Õ(pÕ; T, RÕ)

≠
⁄

ddp1 V(p ≠ p1) �‡,0(p1; R) �‡(p1; T, R). (2.92)

Eq. (2.89) may also be simplified using the properties of the Poisson brackets:

�‡,0 [ˆT �‡ + {�‡ + ”E‡[�], E‡,0}] = ”I‡[�]. (2.93)

Finally, ”I‡[�] can be generally expressed as follows using Eq. (2.58):

”I‡[�] = ≠—
ÿ

‡1,‡Õ,‡Õ
1

⁄ ddp1
(2fi)d

ddpÕ

(2fi)d

ddpÕ
1

(2fi)d
(2fi)d+1 ”d(p + p1 ≠ pÕ ≠ pÕ

1)

◊ ”
1
E‡,0 + E‡1,0 ≠ E‡Õ,0 ≠ E‡Õ

1,0
2

W (p, ‡; p1, ‡1 æ pÕ, ‡Õ; pÕ
1, ‡Õ

1) S[�‡]

◊ n‡,0 n‡1,0 (1 ≠ n‡Õ,0)(1 ≠ n‡Õ
1,0), (2.94)

where we have defined the shorthands S[�] = �(p; T, R) + �(p1; T, R) ≠ �(pÕ; T, R) ≠

�(pÕ
1; T, R), E‡,0 = E‡,0(p; T, R), n‡,0 = n‡,0(p; T, R), E‡1,0 = E‡1,0(p1; T, R), n‡1,0 =

n‡1,0(p1; T, R), etc. Similar to the general case studied in the previous section, the quasiparti-

cle kinetic equation may also be put in a more useful form by taking a Laplace transform. This

time, however, we do not need to study the initial disturbance separately and we define the Laplace

transform as:

�̃‡(p; �, R) ©
⁄ Œ

0≠
dT ei�T �‡(p; T, R). (2.95)

Note that 0≠ denotes to the time right before the external perturbing field so that �‡(p; 0≠, R) = 0.

Taking a Laplace transform of the sides of Eq. (2.93), we find:

�‡,0
Ë
≠i��̃‡ + {�̃‡ + �‡[�̃], E‡,0}

È
≠ ”I‡[�̃] = ≠{n‡,0, ”Ũ‡(�, R)}, (2.96)
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where �‡[�̃] denotes the HF self-energy functional (the last two terms in Eq. 2.92). In the case of

an impulse external disturbance ”U‡(T, R) = ”(T ) u‡(R), we readily find ”Ũ‡(�, R) = u‡(R).

Eq. (2.96) along with Eqs.(2.94) and (2.92) pose an integro-differential equation for �̃‡,imp.. The

change in the number density can be readily expressed in terms of �̃‡:

”ñ‡,imp.(�, R) =
⁄

ddp ”ñ‡,imp.(p; T, R) =
⁄

ddp �‡,0(p; R) �̃‡,imp.(p; �, R), (2.97)

using which the impulse response functions can be calculated. We discuss the numerical solution of

the linearized CBV equation next chapter, where we study the dynamics of trapped dipolar fermions.
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3
Collective dynamics of quasi-two-dimensional

dipolar fermions

Dipolar quantum gases have been the subject of much interest and significant experimental and

theoretical investigations in the recent years. The long-range anisotropic dipole-dipole interaction

gives rise to novel phenomena in these systems (see Ref. [14] and the references therein). Dipolar

Bose-Einstein condensates (BECs) with magnetic dipole-dipole interactions have been exhaustively

studied both theoretically and experimentally [70]. The most recent experimental achievements
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along this line are the realization of BEC of rare earth atoms such as 164Dy [71] and 168Er [72] with

large magnetic dipole moments of 10 µB and 7 µB respectively. The many-body effects of dipolar

interactions are much easier to observe in dipolar BECs compared to dipolar Fermi gases. Pauli

exclusion sets a large energy scale set for fermions and stronger dipolar interactions are required for

the interaction effects to become appreciable.

Since electric dipole-dipole interactions are typically stronger than magnetic ones, much of

the recent experimental efforts have been focused on the realization of ultracold heternucleus bi-

alkali molecules which have large permanent electric dipole moments. An important experimental

achievement in this direction was the realization of a nearly quantum degenerate gas of fermionic

KRb molecules at JILA [15, 16, 17]. The experiments with other bi-alkali fermionic polar molecules

such as LiCs [73, 74] are also making significant progress.

More recently, the group at Stanford have realized a quantum degenerate gas of fermionic

161Dy through sympathetic cooling with the bosonic species 162Dy [75]. Having a large permanent

magnetic dipole moment of 10 µB and being free of the complication of ultracold chemistry,

these species have opened a new window of opportunity toward the experimental observation of

many-body physics of dipolar fermions.

An important experimental probe for the many-body physics of ultracold gases is the mea-

surement of collective oscillations of trapped gases in response to perturbations of the trap

potential. These oscillations constitute the low-lying collective excitations of these systems. The

measurement of the frequency and damping of these oscillations can be utilized to understand

the properties of the ground state and to extract important information such as the character of

self-energy corrections, the equilibrium equation of state, and the kinetic coefficients. Moreover,

the possibility of carrying out extremely precise measurements of these quantities allows us to put

our theoretical understanding of the system to the test. For instance, by measuring the frequency
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of the radial breathing mode for a two-component Fermi gas near the BEC-BCS crossover with

a 10≠3 accuracy level, the Innsbruck group could clearly verify the Quantum Monte-Carlo result

for the unitary gas and invalidate the predictions of the BCS theory [76]. Another remarkable

example is the recent measurement of the universal quantum viscosity of the unitary gas [77] that

confirmed the theoretical T 3/2 scaling and also provided evidence for a conjecture on the lower

bound for the viscosity/entropy ratio obtained using string theory methods [78]. At the moment,

the collective oscillations of trapped BECs [79] and two-component atomic gases with s-wave

interactions in three dimensions [80] are both understood fairly well. Recently, the experimental

and theoretical studies of the 2D Fermi gas interacting via s-wave Feshbach resonances have also

shown a remarkable progress [18, 81, 82, 83, 84].

In this chapter, we study the collective modes of quasi-two-dimensional (quasi-2D) dipolar

fermionic gases prepared in a single hyperfine state and loaded into an isotropic harmonic trap.

Experimentally, this configuration may be realized using a highly anisotropic optical potentials

such that Êz ∫ Êx = Êy, where Êi is the trap frequency along ith axis. Stronger transverse

confinements (larger Êz) can be achieved using an optical lattice to slice the trapped gas into thin

“pancakes” [15, 16, 17]. In that case, we confine our attention to a single pancake here. We assume

that the dipoles are aligned perpendicular to the confining plane (see Fig. 3.1). In this setting, the

effective dipole-dipole interactions have a repulsive long-range character and give rise to a normal

Fermi liquid state. This particular configuration is also necessary in order to suppress inelastic

dipolar collisions and also to reduce the rate of chemical reactions in experiments with reactive

bi-alkali polar molecules.

In highly quantum degenerate Fermi liquids (T π TF , where TF is the Fermi temperature),

the elastic collisions are suppressed due to Pauli exclusion and collisional effects may be ignored
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as a first approximation in the study of collective excitations. In this so-called collisionless (CL)

limit, the collective modes are undamped and no energy dissipation occurs. As the temperature

is increased, the collision rate rapidly grows and the collisional effects may no longer be ignored.

In this regime, the dynamics is dissipative and the collective modes are damped. However, if the

collision rate surpasses than the typical frequency of collective oscillations (whose scale is set by the

trap frequency), the gas will remain “locally” in a thermal equilibrium and a hydrodynamical (HD)

description emerges [22]. This ideal HD limit is again dissipationless and the quasi-equilibrium

dynamics is simply described by differential conservation laws of mass, momentum and energy

currents [85, 22]. A realistic system, however, typically lies in the dissipative crossover regime

between these two ideal limits1. An important aspect of understanding a many-body system is to

determine where it lies within the CL-HD spectrum, both qualitatively and quantitatively.

The theoretical investigation of collective modes of trapped dipolar fermions has started more

than a decade ago. Góral et al. have studied the stability condition [86] and hydrodynamic exci-

tations in traps with different degrees of of anisotropy [87] at zero temperature. Lima et al. have

studied the same problems in more detail [88, 89], while Sogo et al. have studied the the colli-

sionless limit [90]. More recently, Abad et al. have compared the predictions of collisionless and

hydrodynamic formulations at zero temperature for vertically aligned and tilted dipoles [91].

In light of the recent experimental progress with dipolar fermions and the possibility of carrying

out precise measurement of the collective modes, it is worthwhile to carry out a more detailed and

quantitatively reliable theoretical treatment of this problem. The issue of finite temperature has not

been addressed in any of the above works and once the thermal effects are taken into account, all

of the previously used formulations become unreliable. The applicability of ideal hydrodynamic

formulation at zero temperature is questionable since collisions are absent. Also, the collisionless

1There are exceptional cases where certain dynamical symmetries forbid collisions altogether, see Ref. [18] for
example.
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approximation is only relevant to extremely quantum degenerate conditions which is not within the

reach of the experiments yet. Most importantly, the crossover regime, which is most relevant to

current experiments, has not been studied so far.

Here, we make no prior assumption about where the system lies in the CL-HD spectrum. We

use the framework of quantum kinetic equations (in particular, the collisional Boltzmann-Vlasov

limit) which in principle allows us to study the dynamics in the whole spectrum in a unified way.

The CL and HD limits emergence naturally when the right physical conditions are met. We evaluate

the linear response of the gas to monopole and quadrupole perturbations of the trap potential and

study the oscillation frequency and damping of the generated excitations. We restrict our analy-

sis to situations where collisions lie well within the near-threshold scattering regime so that Born

approximation is applicable [92, 93]. This condition is satisfied well in the current experiments.

We carry out the calculations in two stages. First, we neglect the self-energy corrections to

quasiparticle dispersions (the Boltzmann limit) and utilize the widely used linearized scaling ansatz

approximation [94, 95, 96, 97] to obtain a simple semi-analytic picture. In the second stage, we

include the self-energy corrections to quasiparticle dispersions and also extend the scaling ansatz

by including higher order moments (up to the eighth order). We find that both of these refinements

result in significant quantitative corrections. Furthermore, inclusion of higher moments allows us

to study higher order modes in addition to the nodeless modes described by the scaling ansatz.

Before delving into the formalism and details, we find it useful to briefly summarize our main

results, some of which are novel features of dipolar fermions in 2D. Without self-energy correc-

tions, the scaling ansatz analysis predicts the well-known undamped monopole oscillations at a

fixed frequency of 2Ê0, independent of the interaction strength and temperature [98, 99]. Here,

Ê0 © Êx = Êy is the in-plane trap frequency. Taking self-energy corrections into account, we

find that the oscillation frequency of the nodeless monopole mode increase from 2Ê0 due to the
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repulsive interactions while it also assumes a small damping (see Fig. 3.5). While collisions have a

small influence on the dynamics of the scaling mode, we find that higher order monopole modes are

strongly influenced by collisions: they go through a dissipative crossover regime as the interaction

strength is increased and finally approach the HD regime (see Fig. 4.18). The quadrupole modes,

including the lowest lying nodeless mode, exhibit the same CL to HD transition. In particular, the

oscillation frequency of the nodeless quadrupole mode approaches
Ô

2Ê0 in the collision dominated

regime, which is the universal frequency of the quadrupole “surface” mode [100] (see Fig. 3.8). The

appearance of surface modes is an indication for the emergence of the HD limit.

We find simple analytic results in the Boltzmann limit using the linearized scaling ansatz ap-

proximation. In particular, we find that the frequency and damping of the quadrupole oscillations

are controlled by a single parameter, the quadrupole collision rate ‹c (Ref. to Sec. 3.4.2). Small and

large values of ‹c correspond to collisionless and hydrodynamic behavior respectively. For small

T/TF , we obtain ‹c ≥ T 2 which is due to Pauli blocking. For large T/TF , the behavior of ‹c

depends on the degree of quasi-two-dimensinality (quantified by ÷, see Eq. 3.21). In the strictly

2D limit, we show that ‹c reaches a plateau for T & TF . The existence of this plateau is a unique

feature of 2D dipolar fermions and results from the balance between rarefaction of the gas at higher

temperatures and the growth of the dipolar scattering cross section. The high temperature cut-off for

this plateau behavior is Tdip © ~2/(ma2
dkB), where ad © mD2/~2 is the “dipolar length”. Here,

m and D denote the mass and the dipole moment of a single particle. For T & Tdip, the scattering

energies become semi-classical and we find ‹c ≥ T ≠3/4.

We look into the effect of mean-field correction to quasiparticle dispersions and show that

it has a significant effect in the quantum degenerate regime. This is again in contrast to the

case of s-wave fermions where self-energy correction is found to have a small effect on the

frequency of collective modes [101]. Finally, going beyond the scaling ansatz by satisfying higher

order moments of the CBV equation, we show that the simple scaling ansatz overestimates the
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collision rates in agreement with the findings of Ref. [102]. We also show that refinements to

the predictions for the lowest lying monopole and quadrupole modes become negligible beyond

forth order moments. Finally, we discuss the observability of our predictions in the experiments

with 40K87Rb and 161Dy and show that although the HD regime is not currently achievable, a sig-

nificant collisional damping and the plateau in the collision rates are both expected to be observable.

This chapter is organized as follows. We review the atomic physics of polar molecules in ex-

ternal electric fields, and the effective low-energy Hamiltonian for a many-particle system of such

polarized molecules in the Sec. 3.1. The formalism of quantum kinetic equations was discussed at

length in the previous chapter. Here, we briefly discuss the validity condition of the quasiparticle

approximation in the context of experiments with dipolar quantum gases. The equilibrium state of

the trapped gas in discussed in Sec. 3.3. The linear response theory of the CBV equation is described

in Sec. 3.4 and the variational calculation of the response functions using the method of moments is

discussed. The linearized scaling ansatz analysis in given in Sec. 3.4.2, followed by the its extension

to higher order moments and inclusion of self-energy corrections in Sec. 3.4.3. Finally, we discuss

the experimental outlook of this work in Sec. 3.5 and conclude this chapter with further discussions

in Sec. 3.6. Most of the technical details and tedious calculations are left to the Appendices.

3.1 Polar molecules in optical traps

The purpose of this section, which forms the basis of discussion in the following sections, is to

review the physics of polar molecules in dc electric fields and the effective low-energy Hamiltonian

for a many-particle system of polarized molecules in optical traps. We are interested in the rotational

excitations of cold ‹2S+1�(v) spinless (S = 0) polar molecules in their electronic (‹ = 0) and

vibrational (v = 0) ground state, with zero projection (� = 0) of the total angular momentum on
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the internuclear axis. The spectroscopic notation for the electronic-vibrational ground state of these

molecules is X1�(0). The application of external fields will serve as a key element to engineer

effective interaction potentials between the molecules [8]. As a first step, we derive a low-energy

effective Hamiltonian for the center-of-mass motion of a single molecule in its electronic-vibrational

ground state. A single polar molecule can be described with the following Hamiltonian:

Hmol. = p2

2m
+ Hrot + Hdc, (3.1)

where p2/2m is the kinetic energy for the center-of-mass motion of a molecule of mass m, Hrot

accounts for the rotational degrees of freedom, and Hdc denote the interaction with a dc electric

field and the optical trapping of the molecule in the ground electronic-vibrational manifold. We

consider polar molecules with � in their electronic-vibrational ground state. The low-energy inter-

nal excitations correspond to the rotation of the internuclear axis of the molecules with total internal

angular momentum J. The corresponding Hamiltonian Hrot is the one of rigid spherical rotor:

Hrot = BJ2. (3.2)

Here, B is the rotational constant for the electronic-vibrational ground state, which is of the order

of B ≥ h ◊ 10 GHz. We denote the energy of the eigenstates of Hrot by |J, MÍ, where J J is

the quantum number associated with the total internal angular momentum and M is the quantum

number associated with its projection onto a space-fixed quantization axis. The excitation spectrum

is EJ = BJ(J + 1). Each J level is (2J + 1)-fold degenerate. A polar molecule has an electric

dipole moment D which couples its internal rotational levels. This dipole moment gives rise to the

dipole-dipole interaction between two molecules. For � molecules the dipole operator is along the

internuclear axis eab, i.e., D = Deab. Here, D is the “permanent” dipole moment of a molecule in

its electronic-vibrational ground state.

The spherical components of the dipole operator on a space-fixed spherical basis {e≠1, e0, e1},

with eq=0 © ez and e±1 = û(ex ±iey)/
Ô

2, are given by are given by Dq = eq ·D = DC(1)
q (◊, „),

101



Chapter 3: Collective dynamics of quasi-two-dimensional dipolar fermions

where C(k)
q (◊, „) are the unnormalized spherical harmonics and ◊(„) is the polar (azimuthal) angle

for the orientation of the molecule in the space-fixed frame, respectively. We note that for a spher-

ically symmetric system, e.g., in the absence of external fields, the eigenstates of the rotor have

no net dipole moment, ÈJ, M |D|J, MÍ = 0. On the other hand, the component Dq couples the

rotational states |J, MÍ and |J ± 1, M + qÍ:

ÈJ ±1, M +q|Dq|J, MÍ = D (J, M ; 1, q|J ±1, M +q) (J, 0; 1, 0|J ±1, 0)
Û

2J + 1
2(J ± 1) + 1 , (3.3)

where (J1, M1; K, M2|J, M) are Clebsch-Gordan coefficients. We are interested in the interaction

of the molecules with an external dc electric field along ez , i.e., Edc = Edce0. These dc field

couples to a molecule via the electric dipole interaction,

Hdc = ≠D · Edc = ≠D0Edc, (3.4)

which try to align the molecule along the field, while competing with its rotation, as [J2, Dq] ”= 0.

The effects of a dc electric field Edc on a single polar molecule are (a) to split the (2J + 1)-fold

degeneracy in the rotor spectrum, and (b) to align the molecule along the direction of the field,

which amounts to inducing a finite dipole moment in each rotational state. We choose the direction

of the dc field as the quantization axis, Edc © Edce0. Then, the internal Hamiltonian is that of a

rigid spherical pendulum,

Hmol. = Hrot + Hdc = BJ2 ≠ D0Edc, (3.5)

which conserves the projection of the angular momentum J on the quantization axis, i.e., M is

a good quantum number. The energy eigenvalues and the eigenstates of Eq. (3.5), are labeled as

EJ,M and |„J,M Í, respectively. We are interested in weak fields, Edc π B/D, where the effects

of the electric field are a quadratic dc Stark shift of the rotational energy levels and a finite induced

dipole moment along the axis of the field in each rotational state. For a typical rotational constant

B ≥ h ◊ 10GHz and a dipole moment D ≥ 9 Debye, this corresponds to considering dc fields
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(much) weaker than B/D ≥ 2 kV/cm. To lowest order in Ẽ © dEdc/B, the energy eigenvalues

and eigenstates are:

EJ,M /B = J(J + 1) + Ẽ2

2
1 ≠ 3M2/J(J + 1)
(2J ≠ 1)(2J + 3) ,

|„J,M Í = |J, MÍ ≠ Ẽ

2J

J2 ≠ M2

4J2 ≠ 1 |J ≠ 1, MÍ + Ẽ

2(J + 1)

Û
(J + 1)2 ≠ M2

4(J + 1)2 ≠ 1 |J + 1, MÍ. (3.6)

Thus, the ground-state energy is shifted downward by E0,0 = ≠BẼ2/6, while the energies of the

lowest excited states are split by:

~” © E1,0 ≠ E1,±1 = 3BẼ2/20. (3.7)

The induced dipole moments to lowest order in Ẽ are:

È„J,M |D|„J,M Í = DẼ
3M2/J(J + 1) ≠ 1
(2J ≠ 1)(2J + 3) e0. (3.8)

This equation shows that the ground state acquires a finite dipole moment De� © È„0,0|D0|„0,0Í =

DẼ/3 along the field axis. We simply refer to De� as D for brevity hereafter.

With this brief introduction about the physics of cold polar molecules in a dc polarizing field, we

move on to the many-particle ensembles of polar molecules. The low-energy effective Hamiltonian

is obtained by adding (1) center-of-mass kinetic energy of the molecules, (2) coupling to the trap

laser field, and (3) the dipole-dipole interaction between the molecules with partially aligned dipolar

moments:

H3D =
⁄

d3r Â†(r)
A

≠ Ò2

2m
+ U3D

trap(r)
B

Â(r) +
⁄

d3r d3rÕ V3D
dip(r ≠ rÕ) Â†(r) Â†(rÕ) Â(rÕ) Â(r).

(3.9)

The trap potential is modeled with a harmonic potential with different transverse and in-plane fre-

quencies:

U3D
trap(r) = 1

2mÊ2
zz2 + 1

2mÊ2
0(x2 + y2), (3.10)
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Figure 3.1: A schematic picture of quasi-2D dipolar fermions in an isotropic in-plane trap. A
strong dc field aligns the dipoles along the vertical axis (z). The quasi-2D limit is achieved when
az © [~/(mÊz)]1/2 is much smaller than both the inter-particle separation n≠1/2

2D and the thermal
de Broglie wavelength ⁄T © h/(2fimkBT )1/2 (equivalently, when Êz ∫ max{‘F , kBT}).

and:

V3D
dip(r) = D2

|r|5
1
|r|2 ≠ 3z2

2
, (3.11)

is the dipole-dipole interaction. We set ~ = 1 throughout unless it appears explicitly. A schematic

picture of the system is shown in Fig. 3.1. Here, Â(†)(r) is the fermion annihilation (creation)

operator in 3D space. In the limit Êz ∫ Ê0, ‘F , kBT (where ‘F and T denote the Fermi energy and

the temperature), the particles occupy only the lowest band of the transverse trap potential, allowing

us to reduce the above 3D Hamiltonian to an effective 2D model:

H2D =
⁄

d2r Â†
0(r)

A

≠ Ò2

2m
+ U2D

trap(r)
B

Â0(r)

+
⁄

d2r d2rÕ V2D
dip(r ≠ rÕ) Â†

0(r) Â†
0(rÕ) Â0(rÕ) Â0(r). (3.12)

Here, r = (x, y) denote the in-plane 2D coordinates and Â(†)
0 (r) denotes the fermion annihilation

(creation) in the lowest transverse band. We have neglected the constant zero point energy ~Êz/2.

U2D
trap(r) = mÊ2

0(x2 + y2)/2 is the in-plane part of the original trap potential and V2D
dip(r) is the
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effective dipole-dipole interaction in the lowest band given by:

V2D
dip(r) =

⁄
dz dzÕ |„0(z)|2 |„0(zÕ)|2 V3D

dip(r, z ≠ zÕ), (3.13)

where „0(z) = e≠z2/(2a2
z

)/(
Ô

fi az) 1
2 is the transverse wavefunction of particles in the lowest band

and az © (mÊz)≠1/2 is the transverse oscillator length. The above integral can be calculated

analytically and we find:

V2D
dip(r) = 1Ô

2fi

D2

2a3
z

er2/(4a2
z

)
5 A

2 + r2

a2
z

B

K0

A
r2

4a2
z

B

≠ r2

a2
z
K1

A
r2

4a2
z

B 6
, (3.14)

where {Kn(x)} denote the modified Bessel functions of the second kind. In the momentum space,

we get:

Ṽ2D
dip(q) = 2fiD2

az

5Ú
2
fi

≠ qazeq2a2
z

/2Erfc
3

qazÔ
2

4 6
. (3.15)

The effective interaction is purely repulsive regardless of the choice for az , however, its strength

decreases as az is increased. We denote V2D
dip © V , Ṽ2D

dip © Ṽ and U2D
dip © U in the remainder of this

paper for brevity. It is worthwhile to study the behavior of the effective 2D interaction in various

limits. For qaz π 1, we find:

Ṽ(q) ƒ 4
Ô

2fiD2

3az
≠ 2fiD2q + O(q2), (3.16)

whereas for qaz ∫ 1, we get:

Ṽ(q) ƒ ≠2D2Ô
2fi

3az

3
1 ≠ 3

q2a2
z

+ O(q≠4a≠4
z )

4
. (3.17)

Apart from the constant term in Eq. (3.16), which only contributes to interactions in the s-wave

channel and is immaterial here, we find a linear dependence on q. This linear behavior eventually

reaches a plateau once q ≥ 1/az . We shall see later that this linear dependence has interesting

consequences on the temperature dependence of low lying collective excitations. In real space, for

small r/az , we find a behavior similar to the 2D Coulomb gas:

V(r) ¥ D2
Ô

2fia3
z

Ó
≠2 ≠ “ ≠ ln[r2/(8a2

z)] + O(r2 ln r)
Ô

, (3.18)
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where “ is the Euler’s constant. For large r/az , the r≠3 dipole-dipole interaction is recovered:

V(r) ¥ D2/r3 + O(a2
z/r5). (3.19)

It is useful to define a “dipolar length”:

ad © mD2

~2 , (3.20)

which is a quantum length scale associated to dipolar interactions. We also define the following

useful dimensionless parameters:

⁄d © mD2

~2

3
mÊ0
~

4 1
2

(2N)
1
4 ©

3
ad

a0

4
(2N)

1
4 , ÷ © (2N)

1
4

3
Ê0
Êz

4 1
2

, (3.21)

where a0 © [~/(mÊ0)] 1
2 is the in-plane oscillator length and N is the number of trapped

particles. ⁄d is a measure of dipolar interaction strength and is of the order of the typical value of

interaction energy over the kinetic energy in the quantum degenerate regime. ÷ is a measure of

“quasi-two-dimensionality” and is of the order of the transverse oscillator length az divided by the

inter-particle separation. The strict 2D limit Êz æ Œ corresponds to ÷ = 0.

3.2 Linear response functions and collective modes of trapped dipoles

A typical experiment for measuring the collective excitations of trapped particles is the follow-

ing: the gas is prepared in a thermal equilibrium state at t < 0≠. For t > 0≠, the system is sub-

jected to a perturbation such as a kick or modulation of the trap potential and a certain observable

is monitored. If the frequency and amplitude of the perturbing potential is small compared to the

macroscopic scales, such an experiment can be theoretically investigated within the linear response

theory. Let us denote the perturbing potential and the observable as ”U(r, t) and O(r) respec-

tively, and their corresponding second quantized operators are ”Û ©
s

d2r Â†
0(r) ”U(r, t) Â0(r)
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and Ô ©
s

d2r Â†
0(r) O(r) Â0(r). The usual linear response theory then yields:

ÈÔÍt =
⁄ t

0≠
dtÕ

⁄
d2r d2rÕ ‰+

dd(r, rÕ; t ≠ tÕ) O(r) ”U(rÕ, tÕ), (3.22)

where ‰+
dd(r, rÕ; t ≠ tÕ) is the retarded density-density response function:

‰+
dd(r, rÕ; t ≠ tÕ) © ≠i◊(t ≠ tÕ)Tr{fl̂0[n̂(r, t), n̂(rÕ, t)]}, (3.23)

where n̂(r, t) = Â†
0(r, t)Â0(r, t) is the density operator and fl̂0 is the initial density matrix. At

this stage, one may choose a proper many-body approximation scheme and attempt to evaluate the

response function using the diagram technique. However, the lack of translational symmetry due

to the presence of the trap potential makes this approach complicated. In practice, one will have

to make assumptions about separation of microscopic and macroscopic time and length scales in

order to make the calculations tractable. It is, however, much more transparent to acknowledge

the existence of such a separation of scales from the outset and reduce the complicated evolution

equations of the non-equilibrium Green’s functions to quantum kinetic equations. One may then

evaluate the linear response functions directly using the quantum kinetic equations. This procedure

was described in detailed in the previous Chapter.

It is useful to define the response functions relevant to monopole and quadrupole oscillation

experiments. The monopole oscillations can be excited by choosing ”U(r, t) © ”Um(r, t) ©

A(t) mÊ2
0r2, where A(t) is the temporal shape of the perturbation (e.g. a ”-function, a finite pulse

or a periodic modulation). We choose A(t) © A0 Ê≠1
0 ”(t) for concreteness. The linear response to

any other pulse shape can be determined from the impulse response. Note that we have “defined”

the monopole oscillations as the response of the trapped gas to ≥ r2 perturbation. One may choose

any other isotropic trap perturbation (such as r4, etc). Such choices, however, excite higher order

modes to a greater degree which may not be desirable. Here, the observable is the variation in the

size of the cloud, r̂2 ≠ Èr̂2Í0. We define the “monopole response function” as:

‰x2+y2(t) = A≠1
0 mÊ0 ◊(t)

1
Èr̂2Ít ≠ Èr̂2Í0

2
. (3.24)
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Likewise, we define the quadrupole oscillations as the response of the trapped gas to ”U(r, t) ©

”Uq(r, t) © A(t) mÊ2
0(x2 ≠ y2) and define the “quadrupole response function” as:

‰x2≠y2(t) = A≠1
0 mÊ0 ◊(t) Èx̂2 ≠ ŷ2Ít. (3.25)

Note that Èx̂2 ≠ ŷ2Í0 = 0 due to the isotropy of the trap.

We calculate the response functions using the quantum kinetic formalism described in the previ-

ous Chapter. We confine our analysis to weakly interacting systems ⁄d . 1 so that the quasiparticle

approximation is admissible. In this limit, the quantum kinetic equations reduce to the collisional

Boltzmann-Vlasov (CBV) equation (cf. Eq. 2.56), which we quote here2:

C

ˆt+ˆ
p

A
|p|2
2m

+ �+[n](p; r, t)
B

·ˆ
r

≠ˆ
r

1
U(r, t) + �+[n](p; r, t)

2
·ˆ

p

D

n(p; T, R) = Ic[n],

(3.26)

where n(p; r, t) is the quasiparticle distribution function, U(r, t) is the external potential (includ-

ing the static trap potential and its time-dependent perturbation). The Luttinger-Ward functional in

the weakly interacting limit can be obtained from the loop expansion. The simplest approximation

that describes collisions is 3-loop expansion, i.e. the Born approximation discussed in Sec. 2.2.1.

Retardation effect can be neglected to leading order in ⁄d within the validity limit of the quasipar-

ticle approximation, so that the retarded self-energy is simply given by the 2-loop (Hartree-Fock)

diagram:

�+[n](p; r, t) =
⁄

d2rÕ d2pÕ

(2fi)2

Ë
V(r ≠ rÕ) ≠ ”2(r ≠ rÕ)Ṽ(p ≠ pÕ)

È
n(pÕ; rÕ, t), (3.27)

where V(r) and Ṽ(p) are the two-body interactions in the real and momentum space. The Hartree

term in the self-energy describes the non-local dipole-dipole interaction between between the spa-

tially separated segments of the gas in the trap. However, we will shortly show that non-local

2We depart from the notation introduced in the previous chapter and refer to the macroscopic coordinates as (t, r)
instead of (T, R) in order to avoid confusion with the temperature T . We also refer to the number density as fl (instead
of n) in order to avoid confusion with the quasiparticle distribution function.
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contributions are negligible in the case of dipole-dipole interactions. Also, note that since �+ has

no Ê-dependence, the quasiparticle residue is 1. The quasiparticle collision integral in the Born

approximation is given by Eq. 2.58, which we copy here:

Ic[n] =
⁄ d2p1

(2fi)2
d2pÕ

(2fi)2
d2pÕ

1
(2fi)2 (2fi)2”2(�P)(2fi)”(�E)

◊ 1
2 |M|2

Ë
(1 ≠ n)(1 ≠ n1)nÕnÕ

1 ≠ nn1(1 ≠ nÕ)(1 ≠ nÕ
1)

È
, (3.28)

where M = Ṽ(p ≠ pÕ) ≠ Ṽ(p ≠ pÕ
1) is the Born scattering amplitude, �P = p + p1 ≠ pÕ ≠ pÕ

1

and �E = E
p

+ E
p1 ≠ E

p

Õ ≠ E
p

Õ
1
. Note that E

p

= p2/(2m) + U(r, t) + �+[n](p; r, t). We have

also used the shorthand n © n(p; r, t), n1 © n(p1; r, t), etc. in the above equation.

3.2.1 Validity of the CBV equation and the Born approximation

Since we have described the interactions using the lowest order processes, the predictions are

quantitatively reliable only as long as the system is in the weakly interacting regime, i.e. ⁄d π 1

(see Eq. 3.21). For dipolar interactions, this condition is equivalent to diluteness Ô
flad π 1, where

fl is the 2D density and ad is the dipolar length defined earlier (Eq. 3.20). Since the Fermi liquid

state is expected to be stable for a wide range of interaction strengths (up to the crystallization

point), we do not expect the higher order many-body corrections to lead to qualitatively different

physics. Therefore, although our approximations are only controlled in the dilute limit, we allow

ourselves to extend our analysis to ⁄d ≥ O(1) as well. Apart from the many-body physics, the

validity of Born approximation in describing two-body scatterings and the negligence of multiple

scatterings must also be assessed. The Born approximation is valid when ~v ∫ Va, where v is the

typical velocity of the scattering pairs in the center of mass frame and a is range of interactions.

Identifying a with ad and v ≥ [m max(kBT, kBTF )] 1
2 , this condition implies:

max(kBT, kBTF ) π kBTdip © ~2

ma2
d

, (3.29)
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where we have defined a “dipolar temperature” Tdip. This is precisely the condition for near-

threshold scatterings. The dipolar scatterings in 2D is studied in detail in Ref. [92] and it is shown

that the Born approximation is quantitatively reliable provided that mvad/~ . 0.1. Inclusion of

multiple scatterings, however, results in significant quantitative corrections as one approaches the

semi-classical regime and the Born approximation consistently found to over-estimate the cross

section. In this paper, we confine our analysis to near-threshold scatterings. Therefore, the quanti-

tative validity of our results crucially relies on Eq. (3.29). Here, we assume that the following scale

separation:

TF π Tdip … a0
ad

∫ N
1
4 , (3.30)

so that we can allow ourselves to investigate both the quantum degenerate regime (T/TF π 1) and

the thermal regime (T/TF ∫ 1) up to T ≥ Tdip. We note that this condition is satisfied well in the

current experiments with both polar molecules and rare earth atoms (see Sec. 3.5).

3.3 The equilibrium state of dipolar fermions in isotropic traps

The first step in the linear response analysis using the kinetic equations is to determine the

equilibrium distribution about which the perturbation analysis is carried out. We assume that the

system has reached a thermal equilibrium state in the external potential U(r) = mÊ2
0r2/2 before

the perturbation is introduced. At equilibrium, the energy distribution function is the Fermi-Dirac

function f0(Ê) and yields the following quasiparticle distribution function:

n0(p; r) =
I

exp
C

—

A
p2

2m
+ �0(p; r) + 1

2 mÊ2
0r2 ≠ µ

BD

+ 1
J≠1

, (3.31)

where we have introduced the shorthand �0 © �+[n0]. The above equation has to be solved self-

consistenty along with the expression for the self-energy, Eq. (3.27). It is easily verified that the

above solution satisfies Ic[n0] = 0 and at the same time, it solves the left hand side of the CBV
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equation. The global chemical potential µ has to be found such that the equilibrium distribution

function yields the correct number of trapped particles:

⁄
d� n0(p; r) = N, (3.32)

where we have defined the phase-space volume differential as d� © d2r d2p/(2fi)2. In the case of

harmonic traps, it is useful to define the following scaled coordinates:

r̄ © r
r0

, r0 © [2N/(mÊ0)2]1/4,

p̄ © p
p0

, p0 © [2N(mÊ0)2]1/4. (3.33)

In the scaled coordinates, the equation for the particle number is
s

d�̄ n0(p̄; r̄) = 1/2, where

d�̄ © d2r̄ d2p̄/(2fi)2 = d�/(2N). The equilibrium distribution function also reads as:

n0(p̄; r̄) =
I

exp
C

—̄

A
p̄2 + r̄2

2 + �̄0(r̄; p̄) ≠ µ̄

BD

+ 1
J≠1

, (3.34)

where —̄ = TF /T and:

TF = (2N)
1
2
~Ê0
kB

, (3.35)

is the (in-trap) Fermi temperature, µ̄ = µ/(kBTF ) is the dimensionless chemical potential and:

�̄+[n](p̄; r̄, t) = Ê≠1
0

⁄
d�̄ÕËÔ

2N V[r0(r̄≠r̄Õ)]≠mÊ0”2(r̄≠r̄Õ)Ṽ[p0(p̄≠p̄Õ)]
È
n(p̄Õ; r̄Õ, t), (3.36)

is the dimensionless self-energy functional. Also, �̄0 © �̄+[n0]. The motivation for using scaled

coordinates becomes clear upon investigating the equilibrium state of the non-interacting problem.

In this case, the (dimensionless) equilibrium density fl̄(0)
0 (r̄) can be found analytically:

fl̄(0)
0 (r̄) ©

⁄ d2p̄
(2fi)2 n̄0(p̄; r̄) = log

Ë
1 + e—̄(µ̄≠r̄2/2)

È
/(2fi—̄), (3.37)

using which we obtain an equation for the chemical potential of the non-interacting trapped gas:

µ̄2 + fi2

3 T̄ 2 + 2 T̄ 2 Li2[≠ exp(≠µ̄/T̄ )] = 1, (3.38)

111



Chapter 3: Collective dynamics of quasi-two-dimensional dipolar fermions

where T̄ = T/TF . At low temperatures, the above equation admits the solution µ̄ = 1 ≠ fi2T̄ 2/6 +

O(—̄≠2e≠—̄). The zero-temperature Thomas-Fermi radius of the cloud is easily obtained from

Eq. (3.37), yielding R(0)
TF = [2

Ô
2N/(mÊ0)]1/2 ©

Ô
2 r0. Also, the Fermi momentum at the center

of the trap is given by p(0)
F = [2

Ô
2N(mÊ0)]1/2 ©

Ô
2 p0. We note that N does not appear explicitly

in the expressions written in terms of the scaled coordinates. Moreover, at low temperatures, the

equilibrium distribution function is only appreciably larger than zero in a region of size O(1) in the

scaled phase-space coordinates. Once the interactions are taken into account, analytical solutions

can no longer be obtained and the equilibrium distribution function has to found numerically. It is,

however, useful to investigate the effect of non-local Hartree self-energy term first: the forthcom-

ing calculations will be significantly simplified if the non-local effects can be neglected. Carrying

out the trivial momentum integration in the first term of Eq. (3.36), the Hartree self-energy can be

expressed as a linear functional of just the density:

�̄+
H [fl̄](r̄, t) = Ê≠1

0

⁄
d2r̄Õ Ô

2N V(r0r̄Õ) fl̄(r̄ ≠ r̄Õ, t). (3.39)

Observing that the density is only appreciable in a region of size O(1) in the scaled coordinates

and the appearance of r0 ≥ N1/4 in the argument of interaction potential, the above integral is

expected to only depend of the values of the density within a small region of size ≥ N≠1/4 about r̄.

Assuming that the density variation is smooth, we may expand fl̄ to quadratic order about r̄ to get:

�̄+
H [fl̄](r̄, t) ¥ Ê≠1

0

⁄
d2r̄Õ Ô

2N V(r0r̄Õ)
Ë
fl̄(r̄, t) ≠ r̄Õ · Òfl̄(r̄, t) + r̄Õ

–r̄Õ
—ˆ–ˆ— fl̄(r̄, t)/2

È
. (3.40)

The first contribution is the usual local density approximation (LDA):

�̄+
H,LDA[fl̄](r̄, t) ©

Ô
2NÊ≠1

0 fl̄(r̄, t)
⁄

d2r̄Õ V(r0r̄Õ)

= m Ṽ(0) fl̄(r̄, t). (3.41)

The gradient term vanishes due to the isotropy of V(r). The quadratic term is dominated by the

long-range behavior of V(r) assuming that the short-range part of V(r) is integrable (which is the
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Figure 3.2: Equilibrium quasiparticle distribution function of quasi-2D dipolar fermions for differ-
ent temperatures and interactions strengths (Êz = 2fi ◊ 23 kHz, Ê0 = 2fi ◊ 36 Hz, N = 2200
in all cases). (a) T/TF = 0.1, ⁄d = 0, (b) T/TF = 0.1, ⁄d = 1, (c) T/TF = 0.5, ⁄d = 0,
(d) T/TF = 0.5, ⁄d = 1. Red and blue regions (near to and far from the origin, respectively)
correspond to occupied and empty states.

case for dipolar interactions, see Eq. 3.18). Observing that the Hessian matrix of the density is also

O(1) in the scaled coordinates, we easily find that the quadratic term yields a correction that scales

like N1/2≠–/4 for a potential with power-law tail V(r) ≥ r≠–. For dipolar interactions, – = 3

and we find that the leading corrections to LDA scale like N≠1/4 and can be neglected for large

N . Note that if we were dealing with an electron gas (– = 1), such corrections would grow larger

with N and the non-local Hartree functional had to be kept untouched. A direct result of this simple

analysis is that the Landau damping, which is driven by non-local direct interactions, is expected to

be absent in a dipolar fermi gas in the thermodynamic limit. In the remainder of this paper, we treat
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the Hartree potential in the LDA approximation and use the following local self-energy functional:

�̄+
LDA[n](p̄; r̄, t) = m

⁄ d2p̄Õ

(2fi)2

Ë
Ṽ(0) ≠ Ṽ[p0(p̄ ≠ p̄Õ)]

È
n(p̄Õ; r̄Õ, t)

= ⁄d

⁄ d2p̄Õ

(2fi)2 u(|p̄ ≠ p̄Õ|, ÷) n(p̄Õ; r̄Õ, t), (3.42)

where we have used Eq. (3.15) in the second line and have defined:

u(x, ÷) = 2fix Erfcx
3

x÷Ô
2

4
, (3.43)

where Erfcx(x) © ex2Erfc(x). The dimensionless parameters ⁄d and ÷ were defined earlier

(Eq. 3.21) Note that the dependence on N enters the equations only through these two dimen-

sionless parameters.

We obtain the equilibrium distribution function using a simple iterative method. At the initial

step, we set �̄0 = 0 and define the function n0(µ̄) © n[�̄0, µ̄], i.e. the distribution function obtained

using the self-energy �̄0 = 0 and chemical potential µ̄. We find µ0 such that
s

d�̄ n0(µ0) = 1/2.

To proceed from i’th step to (i + 1)’th step, we set �̄i+1 = �̄+[ni], define ni+1(µ̄) © n[�̄i+1, µ̄]

and find µ̄i+1 such that
s

d�Õ ni+1(µ̄i+1) = 1/2. At the end of this step, we set ni+1 æ (1≠”)ni +

” ni+1, where 0 < ” < 1. The last step is to stabilize the iterative procedure and to damp possible

oscillations that prevent convergence. With an arbitrary choice ” = 0.75, we found the this iterative

procedure converges to a fixed point in less than ten steps within a relative error tolerance of 10≠8.

It is trivial to show that the fixed point is indeed the solution.

Fig. 3.2 shows the equilibrium quasiparticle distribution function as a function of p̄ and r̄ for

several values of T̄ and ⁄d. As one expects, the presence of interactions results in the expansion

of the gas in the trap (compare panels a and b) and thermal fluctuations smear the Fermi surface

(compare panels a and c). The equilibrium density is shown in Fig. 4.12a. The nearly Gaussian

distribution around the edge of the trap at finite temperatures, and the reduction of the density at

the center of the trap at low temperatures due to repulsive interactions can be clearly seen. We
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Figure 3.3: Equilibrium density of a quasi-2D dipolar Fermi gas as a function of the distance from
the center of the trap (Êz = 2fi◊23 kHz, Ê0 = 2fi◊36 Hz). (a) dashed and solid lines correspond to
the non-interacting (⁄d = 0) and interacting (⁄d = 1), blue (top) and red (bottom) lines correspond
to T/TF = 0.1 and 0.5 respectively. In all cases, N = 2200. (b) A comparison between the
equilibrium densities obtained from LDA (solid lines) and non-local (dashed lines) Hartree self-
energy functionals. From bottom to top, N = 500, 1000, 2200, and 5000. ⁄d = 1 and T/TF = 0.1
in all cases. The non-local corrections are clearly negligible and become smaller as N is increased.

also compare the LDA and full non-local Hartree self-energy functionals in Fig. 4.12b for various

number of particles in the trap. The relative correction to the LDA predictions is of the order of 10≠3

for realistic number of trapped particles and as argued earlier, becomes smaller for larger system

sizes.

Having found the equilibrium state, we can move on to the investigation of the low lying collec-

tive excitations. To this end, we discuss the linear response theory of the CBV equation in the next

section as a first step.

3.4 Analysis of the collective modes

The linear response can be conveniently evaluated using kinetic equations by introducing a

perturbation to the external potential, linearizing the resulting equation about deviations from the
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global equilibrium state, ”n(p̄; r̄, t) © n(p̄; r̄, t) ≠ n0(p̄; r̄) and solving the resulting linear integro-

differential equation. The benefit of this fomulation compared to the diagram technique is the

possibility of obtaining approximate solutions using well-known variational methods. Since we are

mostly concerned with low temperatures here, it is beneficial to introduce the following ansatz for

”n:

”n(p̄; r̄, t) © ◊(t) �0(p̄; r̄) �(p̄; r̄, t), (3.44)

where �0 © ˆn0/ˆµ̄ = —̄n0(1 ≠ n0). The above ansatz is not restrictive for T > 0 since �0 > 0

everywhere on the phase-space. The only exception is T = 0 where �0 restricts the deviations

to the local Fermi surface. This is in fact a favorable feature since the low lying collective modes

are formed from the particle-hole excitations about the Fermi surface at T = 0. Also, at finite T ,

�0 is sharply peaked about the local Fermi surface and allows the solution of the linearized CBV

equation to be representable with a smooth choice of � [85]. As we shall see, this feature allows us

to construct decent approximate solutions by choosing a linear combination of smooth functions as

a variational ansatz for �.

3.4.1 The linear response theory of the CBV equation

The linear response theory of the CBV equation was outlined in Sec. 2.5.2. We discuss this

problem in more detail in this section, in particular, the practical methods for solving the resulting

equations. As a first step, we plug the ansatz given in Eq. (3.44) into the CBV equation, expand to

first order in � and take a Fourier transform in time. The final result is the following linear integral

equation for �(p̄; r̄, Ê):

≠i Ê̄ �0� + D [�] ≠ I [�] = ≠(2N)≠ 1
2 {n0, ”U(r0r̄, Ê)}, (3.45)

where {�, �} © Ò
r̄

� · Ò
p̄

� ≠ Ò
p̄

� · Ò
r̄

� is the Poisson bracket with respect to the scaled phase-

space coordinates, and Ê̄ © Ê/Ê0. D [�] describes the collisionless self-consistent mean-field
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dynamics of quasiparticles:

D [�] = �0{�, H̄0} + {n0, �̄[�0�]} = �0{� + �̄[�0�], H̄0}, (3.46)

where H̄0 = (p̄2 + r̄2)/2 + �̄0. To get the second line, we have used the identity {n0, A} ©

≠�0{H̄0, A} which can be easily proved by direct calculation and is valid for arbitrary A. The first

term in the first line of Eq. (3.46) describes the evolution of quasiparticles in the equilibrium mean-

field whereas the second term describes their dynamics in the self-consistently generated residual

mean-field �̄[�0�]. I [�] describes the collisional dynamics and can be written as:

I [�] = ≠ —̄(2N) 1
2

2

⁄ d2p̄1
(2fi)2

d2p̄Õ

(2fi)2
d2p̄Õ

1
(2fi)2 (2fi)2”2(�P̄)

◊ (2fi)”(�Ē) |M̄|2 S{�} n0n0,1(1 ≠ nÕ
0)(1 ≠ nÕ

0,1), (3.47)

where �Ē © H̄0(p̄, r̄) + H̄0(p̄1, r̄) ≠ H̄0(p̄Õ, r̄) ≠ H̄0(p̄Õ
1, r̄), �P̄ © p̄ + p̄1 ≠ p̄Õ ≠ p̄Õ

1, M̄ =

m(Ṽ[p0(p̄≠p̄Õ)]≠Ṽ[p0(p̄≠p̄Õ
1)]), and S[�] © �(p̄; r̄, Ê)+�(p̄1; r̄, Ê)≠�(p̄Õ; r̄, Ê)≠�(p̄Õ

1; r̄, Ê).

Note that the dressed quasiparticle dispersions have been used in the collision integrals. Specializing

to the case of dipole-dipole interactions, we get:

|M̄|2 = ⁄2
d

#
u(|p̄ ≠ p̄Õ|, ÷) ≠ u(|p̄ ≠ p̄Õ

1|, ÷)
$2 . (3.48)

Formally, the solution of Eq. (3.45) can be written as:

� = ≠ (≠i Ê̄�0 + D ≠ I )≠1 {n0, ”U(r0r̄, Ê)}
(2N) 1

2
, (3.49)

and the linear response can be determined using Eq. (3.44):

ÈOÍt =
⁄

d�
⁄ dÊ

2fi
e≠iÊt�0(p̄; r̄) �(p̄; r̄, Ê+) O(p; r). (3.50)

The difficulty is in inverting the operator appearing in the parenthesis in Eq. (3.49). Decent ap-

proximate solutions, however, can be found using a variational technique known as the method of

moments. To this end, we restrict the solution space of Eq. (3.45) to a subspace spanned by a set of
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basis functions of the phase-space variables {„–(p̄; r̄)} (the “moments”) and expand � and ”U in

this basis:

�(p̄; r̄, Ê) =
ÿ

–

�–(Ê) „–(p̄; r̄),

(2N)≠ 1
2 ”U(r0r̄, Ê) =

ÿ

–

”U–(Ê) „–(p̄; r̄). (3.51)

Plugging this ansatz into Eq. (3.45) and evaluating the moments of the resulting equation with

respect to each of the basis functions, i.e. multiplying the sides of the CBV equation by each of

the basis functions and integrating over the phase-space variables, we find a closed set of linear

equations for the coefficients {�–}:

≠ iÊ̄ÈÈ„—„–ÍÍ�–(Ê) + ÈÈ„—{„–, H̄0}ÍÍ [”U–(Ê) + �–(Ê)]

+ ÈÈ„—{�̄[�0„–], H̄0}ÍÍ„–(Ê) ≠ I—–�–(Ê) = 0, (3.52)

where we have defined the “�0-average” as:

ÈÈA(p̄; r̄)ÍÍ ©
⁄

d�̄ �0(p̄; r̄)A(p̄; r̄). (3.53)

Summation over repeated indices is implied in Eq. (3.52). The matrix elements of the collision

integral, I–— ©
s

d�̄ �–I [�—] can be put in the following symmetric form using the symmetry

properties of the collision integral kernel:

I–— = ≠ —̄(2N) 1
2

8

⁄
d2r̄

⁄ d2p̄
(2fi)2

d2p̄1
(2fi)2

d2p̄Õ

(2fi)2
d2p̄Õ

1
(2fi)2 (2fi)”(�Ē) (2fi)2”2(�P̄) |M̄|2

◊ S[„–] S[„—] n0n0,1(1 ≠ nÕ
0)(1 ≠ nÕ

0,1). (3.54)

The first term on the second line of Eq. (3.52) can be put in a more useful form using the identity

„—{�̄[�0„–], H̄0} = {„—�̄[�0„–], H̄0}≠�̄[�0„–]{„—, H̄0}. Taking the �0-average of both sides

on this identity, the first term on the left hand side vanishes. To see this, note that ÈÈ{„, H̄0}ÍÍ =
s

d�̄ �0{„, H̄0} =
s

d�̄ {�0„, H̄0} for arbitrary „. The last equality holds since {�0, H̄0} =
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0. Since �0 æ 0 exponentially fast for large r̄ or p̄, the Stokes’ theorem implies that the last

integral vanishes as long as „ is exponentially bounded. Here, „ = „—�̄[�0„–] which is in fact

exponentially bounded. Finally, Eq. (3.52) can be put in the following matrix form:

(≠iÊ̄M + H0 ≠ � ≠ Ic)�(Ê) = ≠H0 ”U(Ê), (3.55)

where:

(M)–— = ÈÈ„–„—ÍÍ,

(H0)–— = ÈÈ„–{„—, H̄0}ÍÍ,

(�)–— = ÈÈ�̄[�0„—]{„–, H̄0}ÍÍ,

(Ic)–— = I–—, (3.56)

and �(Ê) and ”U(Ê) are the vectors with entries �–(Ê) and ”U–(Ê) respectively. If the observable

O(p̄; r̄) is also expressible in terms of the basis functions, O(p̄; r̄) =
q

– O–„–(p̄; r̄), then the

linear response can be conveniently written as:

ÈOÍÊ =
⁄

d�̄ O—„— �0�–(Ê+)„– = OT M �(Ê+). (3.57)

Eqs. (3.55)-(3.57) are similar to the analysis of Ref. [102]. Here, however, we have an additional

matrix � that accounts for the residual mean-field due to self-consistency. It is useful to define an

“evolution matrix” and express it in its diagonal basis:

E © M≠1(H0 ≠ � ≠ Ic) = i V�V≠1, (3.58)

where � is the diagonal matrix of eigenvalues and V is the matrix of eigenvectors. Note that in

general, E is a not a Hermitian matrix and may have complex eigenvalues. Moreover, it is a non-

normal matrix and therefore, its eigenvectors are not orthogonal 3. Using diagonal form of the

3The non-normality of the linearized Boltzmann-Vlasov equation is the key to Landau damping [see N. G. van Kam-
pen, Physica 21 (1955)]. However, as we argued earlier, dipole-dipole interactions are not long-ranged enough to give
rise to this phenomenon.
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evolution matrix, Eq. (3.55) can be expressed as:

�(Ê) = ≠iV 1
Ê ≠ � V≠1M≠1H0 ”U(Ê). (3.59)

The real and imaginary parts of � determine the oscillation frequency and damping of the eigen-

modes. Clearly, not all of the eigenmodes are expected to contribute to the linear response to a given

perturbation. This becomes particularly important when one is dealing with a large variational basis

set. In such cases, as we will see later, the evolution matrix will have poles which are very close

to each other on the complex frequency plane and it is not a priori clear which one(s) and in what

proportion contribute to the response of the system. Using the linear response formalism described

here, however, this question does not need to be dealt separately. Using Eqs. (3.57) and (3.59), we

get:

ÈOÍÊ =
ÿ

–

r–(Ê)
Ê ≠ �–

,

r–(Ê) = ≠i[VT MO]–[V≠1M≠1H0 ”U(Ê)]–, (3.60)

i.e. the residues r– can be expressed in terms of the known matrices. Note that in case of Dirac

delta perturbations, ”U(Ê) is independent of Ê and so are the residues.

Before we attempt to obtain accurate solutions obtained using large variational basis sets, we

find it useful to make simple analytical predictions using a small basis set as the first step. We use

the scaling ansatz approach to find such a basis set and neglect self-energy corrections to simplify

the calculations at first. We extend the basis set and include self-energy corrections later and discuss

the nature and importance of the corrections that follow.

3.4.2 The scaling ansatz approximation

The scaling ansatz provides a simple and intuitive picture of the collective excitations of confined

gases. This method has been applied to various systems in both isotropic and anisotropic traps,
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including Bose gases below and above the critical temperature, s-wave and dipolar fermions in the

collisionless and hydrodynamics regimes [94, 95, 96, 97, 86, 87, 88, 89, 90, 91]. Here, we apply

the method to the CBV equation which as we shall see, allows us to study both CL and HD limits

as well as transition from one regime to the other.

In this method, one assumes that the non-equilibrium quasiparticle distribution function can be

approximately described as a scaled copy of the equilibrium distribution:

nSA(p̄; r̄, t) © 1
r

i(bici)
n0

#
c≠1

i (p̄i ≠ ḃir̄i/bi); r̄i/bi
$
, (3.61)

where bi and ci (i = x, y) are time-dependent scale factors of positions and momenta. The pre-

factor is to ensure conservation of particle number. The equilibrium solution corresponds to the

choice bx = by = cx = cy = 1. Introducing the following reparametrization of the scaling

variables:

bx(t) = 1 + ⁄̄(t) + ⁄(t), by(t) = 1 + ⁄̄(t) ≠ ⁄(t),

cx(t) = 1 + ‹̄(t) + ‹(t), cy(t) = 1 + ‹̄(t) ≠ ‹(t), (3.62)

and expanding Eq. (3.61) to first order in ⁄, ⁄̄, ‹ and ‹̄, we get:

”nSA ¥ ≠2(⁄̄+ ‹̄)n0 +�0
# ˙̄⁄ r̄ · p̄+ ‹̄ p̄2 + ⁄̄ r̄2$

+�0
#
⁄̇ (x̄p̄x ≠ ȳp̄y)+‹ (p̄2

x ≠ p̄2
y)+⁄ (x̄2 ≠ ȳ2)

$
,

(3.63)

where ”nSA © nSA ≠ n0. We have neglected self-energy corrections to simplify the analysis and

explicitly used the non-interacting equilibrium solution. Also, �0 = ˆn0/ˆµ̄ = —̄n0(1 ≠ n0)

as before. Here, (⁄̄, ‹̄) and (⁄, ‹) control the isotropic (monopole) and anisotropic (quadrupole)

scalings. Comparing the last equation to Eq. (3.44), we can recognize the first and second set of

terms in the brackets as �mon and �quad, i.e. the variational basis set that the scaling ansatz provides

for monopole and quadrupole modes respectively.

The first term in Eq. (3.63), which is a consequence of the normalization prefactor of the scaling

ansatz requires further discussion. First of all, we note that this term may only be non-vanishing in
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the monopole case. Since quadrupole oscillations are purely anisotropic, none of the terms appear-

ing in �quad violate the conservation of mass in the linear regime and therefore no normalization is

necessary. The monopole oscillations as described by �mon, however, may violate the conservation

of mass and the ansatz must be fixed with a counter term. The scaling ansatz fixes this defect with

a uniform scaling of the distribution, leading to the first term in Eq. (3.63). Unless one restricts the

ansatz by setting c≠1
i = bi (so that ⁄̄ + ‹̄ = 0), the ansatz may lead to unphysical conclusions once

collisions are taken into account. It is generally understood that the non-equilibrium dynamics of

degenerate Fermi gases are governed by excitations near the Fermi surface while the fermions deep

inside the Fermi sea remain in place due to their large excitation energy gap. A global rescaling

of the quasiparticle distribution, i.e. a uniform rescaling of quasiparticle occupations irrespective

of their energy gap implies mobilization of all particles with the same likelihood, including those

which are deep inside the Fermi sea. This is clearly an unphysical picture and may lead to unrealis-

tically large collision rates.

To address this issue, we remove the global normalization factor and allow the chemical potential

to vary instead. This amounts to adding a term ≥ ”µ̄(t) ˆn0/ˆµ̄ = �0 ”µ(t) to the ansatz, i.e.

adding „ = 1 to the monopole basis set. The phase-space moment equation that os associated

to this trivial moment function is exactly the statement of conservation of mass. In summary, we

obtain:

�mon = ”µ(t) + c1(t) r̄ · p̄ + c2(t) r̄2 + c3(t) p̄2, (3.64)

and:

�quad = d1(t) (x̄p̄x ≠ ȳp̄y) + d2(t)(x̄2 ≠ ȳ2) + d3(t)(p̄2
x ≠ p̄2

y), (3.65)

where ”µ(t), ci(t) and di(t) are time-dependent functions to be determined. The determination

of these unknown functions is usually done by plugging the ansatz into the kinetic equation, mul-

tiplying the resulting equation by each of the basis functions and integrating over the phase-space

variables to obtain a close set of differential equations. This is equivalent to the formalism described
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in Sec. 3.4 and we prefer to do it in our matrix notation as a warm-up for the later sections where we

extend the basis set and include self-energy corrections. We remark that the role of various terms

appearing in Eqs. (3.64) and (3.65) can be understood intuitively. In particular, r̄ · p̄ and x̄p̄x ≠ ȳp̄y

in �mon and �quad correspond to isotropic and anisotropic scaling velocity fields, vmon Ã r̄ and

vquad Ã x̄ex ≠ ȳey.

Monopole oscillations from the scaling ansatz:

Neglecting self-energy corrections, we get � = 0, and H̄0 = (r̄2 + p̄2)/2 using which we can

easily calculate M and H0.

Mmon
SA =

Q

cccccccccca

ÈÈ1ÍÍ 0 ÈÈr̄2ÍÍ ÈÈp̄2ÍÍ

0 ÈÈ(r̄ · p̄)2ÍÍ 0 0

ÈÈr̄2ÍÍ 0 ÈÈr̄4ÍÍ ÈÈr̄2p̄2ÍÍ

ÈÈp̄2ÍÍ 0 ÈÈr̄2p̄2ÍÍ ÈÈp̄4ÍÍ

R

ddddddddddb

, (3.66)

and:

Hmon
0,SA =

Q

cccccccccca

0 0 0 0

0 0 2ÈÈ(r̄ · p̄)2ÍÍ ≠2ÈÈ(r̄ · p̄)2ÍÍ

0 ÈÈr̄2p̄2 ≠ r̄4ÍÍ 0 0

0 ÈÈp̄4 ≠ r̄2p̄2ÍÍ 0 0

R

ddddddddddb

, (3.67)

The collision matrix elements identically vanish due to conservation of energy and momentum (see

Eq. 3.54, and notice that S[1] = S[r̄2] = 0, S[p̄2] = 2�Ē and S[r̄ · p̄] = r̄ · �P̄). While it is

possible to find analytic expressions for the �0-averages appearing in M and H0, we find that they

all factor out from the evolution matrix using the relations ÈÈr̄2ÍÍ = ÈÈp̄2ÍÍ and ÈÈr̄4ÍÍ = ÈÈp̄4ÍÍ we have
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here. The evolution matrix evaluates to the following simple form:

Emon
SA =

Q

cccccccccca

0 0 0 0

0 0 2 ≠2

0 ≠1 0 0

0 1 0 0

R

ddddddddddb

, (3.68)

and is independent of temperature. In the above equation, the matrix elements appear in the same

order as the basis functions in Eq. (3.64). The monopole excitation operator is r2, which gives the

“excitation vector” ”U = (0, 0, 1, 0)T in the scaling ansatz basis (see the definition of ”U after

Eq. 3.56). Using Eq. (3.59), we finally find:

�mon(p̄; r̄, Ê) =
Ë
≠2iÊ̄(r̄ · p̄) + 2r̄2 ≠ 2p̄2

È
/(Ê̄2 ≠ 4). (3.69)

The frequency of oscillations is given by the poles of the denominator, Ê̄mon = ±2, which is a

well-known result [99]. We state it without proof that extending the monopole basis has no effect

on this result as long as self-energy corrections are neglected. In fact, it is a well-known fact that the

full nonlinear Boltzmann equation (including collisions) admits an exact monopole solution with

frequency 2Ê0 [99], corresponding to a nodeless scaling velocity field Ã r. The existence of this

undamped solution is deeply related to the fact that the trap potential is harmonic and the particles

are assumed to have quadratic dispersions. Using dressed quasiparticle dispersions or adding an

anharmoniticity to the trap potential both lead to the violation of this exact result.

We remark that besides the Ê̄ = ±2, the above evolution matrix admits two zero eigenvalues

that correspond to eigenvector � ≥ 1 and � ≥ r̄2 + p̄2. Both of these eigenvectors correspond

to unphysical excitations since they violate conservation of mass. However, it is easy to see that

both lie in the null space of Hmon
0,SA. Therefore, using of Eq. (3.59), we see that these unphysical

modes will never be excited regardless of one’s choice of excitation vector ”U. The number of such

unphysical modes increases as one extends the variational basis set.
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Quadrupole oscillations from the scaling ansatz:
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Figure 3.4: Frequency and damping of quadrupole oscillations of quasi-2D dipolar fermions in
isotropic harmonic traps from the scaling ansatz analysis. (a) and (b): the frequency and damping
of oscillations vs. ‹c respectively. (c) the damping rate of the overdamped component vs. ‹c. (d)
the evolution of the damped oscillatory pole on the complex plane upon increasing ‹c in the range
[0, 15]. (e) Q(T/TF , ÷) as a function of T/TF for different values of ÷ © (2N) 1

4 (Ê0/Êz) 1
2 . Q is

related to the quadrupole collision rate as ‹c = N(ad/a0)2 Q(T/TF , ÷). The low temperature and
high temperature asymptotes in the 2D limit are shown as blue and red (horizontal) dashed lines
respectively.

We find the following forms for M and H0 in the quadrupole basis:

Mquad
SA = 1

2

Q

cccccca

ÈÈr̄2p̄2ÍÍ 0 0

0 ÈÈr̄4ÍÍ 0

0 0 ÈÈp̄4ÍÍ

R

ddddddb
, (3.70)

and:

Hquad
0,SA = 1

2

Q

cccccca

0 2ÈÈr̄2p̄2ÍÍ ≠2ÈÈr̄2p̄2ÍÍ

≠ÈÈr̄4ÍÍ 0 0

≠ÈÈp̄4ÍÍ 0 0

R

ddddddb
. (3.71)

The order of basis functions is the same as it appears in Eq. (3.65). The only non-zero collision

matrix element is I33, the rest of which vanish again due to conservation laws (see Eq. 3.54, and

note that S[x̄2 ≠ ȳ2] = 0 and S[x̄p̄x ≠ ȳp̄y] = (x̄ex ≠ ȳey) · �P̄). The collision integral can be
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expressed as follows using the results of Appendices C.3 and C.4 (in particular, see Eq. C.33):

I quad
33 = ≠ 64fi(2N)

1
2 ⁄2

d T̄ 5
⁄ Œ

0
fl5 dfl

⁄ 2fi

0

d„

2fi

⁄ 2fi

0

d„Õ

2fi

⁄ fi

2

0
d› sin7 › cos ›

⁄ fi

2

0
d‹ sin5 ‹ cos ‹

◊ sin2(„ ≠ „Õ)
5
‰1 Erfcx

3
2÷‰1

Ò
T̄fl

4
≠ ‰2 Erfcx

3
2÷‰2

Ò
T̄fl

462

◊
C

1
cosh(fl ≠ µ̄/T̄ ) + cosh(fl sin2 › sin 2‹ cos „)

1
cosh(fl ≠ µ̄/T̄ ) + cosh(fl sin2 › sin 2‹ cos „Õ)

D

,

(3.72)

where ‰1 = sin › sin ‹ | sin[(„≠„Õ)/2]| and ‰2 = sin › sin ‹ | cos[(„≠„Õ)/2]|. The above integra-

tion can not be carried out analytically in general and requires a numerical treatment. The analytical

low T and high T asymptotic results are given in Appendix C.2. Note that the (dimensionless)

non-interacting chemical potential µ̄ is given implicitly by Eq. (3.38) and only depends on the di-

mensionless temperature T̄ . Therefore, except for the pre-factor, the above integral is a universal

function of T̄ and ÷. We define the dimensionless “quadrupole collision rate” ‹c as:

‹c © ≠2I quad
33

ÈÈp̄4ÍÍ © N
3

ad

a0

42
Q(T̄ , ÷). (3.73)

The last equation also serves as the definition of the universal function Q(T̄ , ÷). The quadrupole

excitation operator is x2 ≠ y2 which yields ”U = (0, 1, 0)T in this basis and finally, a simple

calculation similar to the monopole case yields:

�quad(p̄; r̄, Ê) =
#
2Ê̄(‹c ≠ iÊ̄)(x̄p̄x ≠ ȳp̄y) + 2i(‹c ≠ iÊ̄)(x̄2 ≠ ȳ2) + 2Ê̄(p̄2

x ≠ p̄2
y)

$
/Dquad(Ê̄, ‹c),

(3.74)

where Dquad(Ê̄, ‹c) is the quadrupole characteristic equation and is given by:

Dquad(Ê̄, ‹c) = Ê̄(Ê̄2 ≠ 4) + i‹c(Ê̄2 ≠ 2). (3.75)

The roots of Dquad(Ê̄, ‹c) determine the frequency and damping of quadrupole oscillations. We

note that Eq. (3.74), along with the characteristic equation given above, are “generic” results in the

sense that one obtains the same expression for quadrupole oscillations independent of the specific
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form of interactions. For instance, Refs. [98] and [103] obtain the same characteristic equation

for s-wave fermions and a classical gas respectively. The model-specific details are encoded in

the collision rate ‹c. Therefore, it is worthwhile to review the generic features of the quadrupole

oscillations from Eq. (3.74) in terms of ‹c as a first step. We return to the analysis of ‹c afterwards.

Two important limits can be recognized for quadrupole oscillations. The collisionless limit is

achieved for ‹c æ 0:

lim
‹

c

æ0
�quad(p̄; r̄, Ê) © �CL

quad(p̄; r̄, Ê) =
#
≠2iÊ̄(x̄p̄x ≠ ȳp̄y)+2(x̄2 ≠ ȳ2)≠2(p̄2

x ≠ p̄2
y)

$
/(Ê̄2 ≠4).

(3.76)

Notice the formal similarity to the monopole case. In this limit, we obtain undamped oscillations at

ÊCL
quad = 2Ê0 which correspond to the free motion of particles in the trap. In the limit of very fast

collisions, ‹c æ Œ, we find:

lim
‹

c

æŒ �quad(p̄; r̄, Ê) © �HD
quad(p̄; r̄, Ê) =

#
≠ 2iÊ̄(x̄p̄x ≠ ȳp̄y) + 2(x̄2 ≠ ȳ2)

$
/(Ê̄2 ≠ 2), (3.77)

which describes undamped oscillations at a frequency ÊHD
quad =

Ô
2Ê0. This is the well-known

quadrupole “surface” mode which is also obtained by solving ideal hydrodynamics equations for

harmonically trapped gases [100]. Although we have neglected self-energy corrections here, it

can be shown that the frequencies of these hydrodynamical modes are universal since they do

not change the density in the bulk, are confined to the surface, and are entirely driven by the

trap restoring force [100]. We will observe this universality in later sections, where we include

self-energy corrections and still obtain the same oscillation frequency in the HD limit.

Except for the two ideal limits discussed so far, quadrupole oscillations are otherwise damped

for any finite value of ‹c. For large nuc (near HD), this is due to the fact that the collisions are

not fast enough to maintain the local equilibrium and thus lead to dissipation. For small ‹c (near

CL), collisions result in a friction between the otherwise freely moving particles and again lead to
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dissipation. In general, the oscillation frequency and damping rate can be found by analyzing the

roots Dquad(Ê̄, ‹c). Fig. 3.4a-c show the real and imaginary parts of the poles as a function of ‹c.

In the limit ‹c π 1, the three poles are approximately located at:

±
A

2 ≠ 5‹2
c

64

B

≠ i‹c

4 + O(‹5
c ), ≠ i‹c

2 + iO(‹3
c ). (3.78)

The first two poles describe a damped oscillatory mode at a frequency slightly lower than 2Ê0 and a

damping rate of ≥ ‹cÊ0/2. The third pole corresponds to an over-damped component. In the other

limit ‹c ∫ 1, we get:

±
AÔ

2 + 3
2
Ô

2‹2
c

B

≠ i

‹c
+ O(‹≠3

c ), ≠i‹c + iO(‹≠1
c ). (3.79)

Again, the first two poles describe a damped oscillatory mode at a frequency slightly higher than
Ô

2Ê0 and a damping rate of ≥ ‹≠1
c Ê0, accompanied by a (highly) over-damped component with a

damping rate of Ê0‹c. Studying the residues of the over-damped poles, we find that the contribution

of the this component is Ã ‹2
c and Ã ‹≠2

c to leading order in the CL and HD limits respectively and

has its maximum contribution in the CL-HD crossover regime. We associate the presence of such

an over-damped component to the initial high energy excitations. Fig. 3.4d shows the evolution of

the first pole on the complex frequency plane upon increasing ‹c: it starts off on 2Ê0, moves to the

lower half plane and finally returns to the real axis at the hydrodynamic frequency
Ô

2Ê0.

We finally turn to the analysis of Q(T̄ , ÷), the universal function that controls the quadrupole col-

lision rate ‹c for dipole-dipole interactions (Eq. 3.73). ‹c can be identified with different quantities

in different regimes. In the collision dominated regime (i.e. ‹c ∫ 1) where a viscous hydrodynamic

description is admissible, the shear viscosity sum rule yields ‹c as Ê0ÈP/÷sÍtrap, where P , ÷s and

Ê0 are the local pressure, shear viscosity and the trap frequency respectively [81]. By È. . .Ítrap, we

imply averaging over the trap. In the classical regime (T ∫ TF ), one finds ‹c ≥ ·≠1
c where ·c is

the typical time between two single-particle collisions [98]. This can be established by replacing
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the Fermi-Dirac with Boltzmann-Maxwell distribution and evaluating the collision integral in the

saddle-point approximation.

We have calculated Q for several values of ÷ as a function of T̄ by evaluating the five dimensional

integral appearing in Eq. (3.72) numerically. The results are shown in Fig. 3.4e. The asymptotic

behavior of Q can be found analytically in the low and high temperature regimes and is given in

Appendix C.2 in the 2D limit (÷ = 0). They appear on the same figure as red and blue dashed

lines. We find that Q ≥ T̄ 2 for small T while it saturates to a constant value for large T̄ . The

low temperature T 2 scaling is related to Pauli blocking, however, it is different from the case of 2D

s-wave fermions (and 2D paramagnetic electron gas), where one finds ‹c ≥ T 2 log(T/TF )≠2 [81,

104]. This difference can be traced back to the fact that the system investigated here is spin polarized

and the s-wave scattering channel is blocked. The logarithmic enhancement of the shear viscosity

(i.e. attenuation of ‹c) originates from the logarithmic divergence of the s-wave scattering length

in the near-threshold regime in 2D. We remark that the near-threshold cross section of all other

scattering channels remains bounded [93], leading to a bounded Born cross section.

The high temperature plateau is a unique feature of near-threshold dipole-dipole scatterings in

the 2D limit and its existence can be understood in terms of the interplay between the temperature

dependence of the scattering cross section and rarefaction of the gas. Provided that TF π T π

Tdip, we can estimate the relaxation rate using the aforementioned identification ‹c ≥ ·≠1
c . The

Born 2D scattering cross section scales like ‡B ≥ q≠1|Ṽ(q)|2 ≥ qa2
d Erfcx2(qaz), where q is the

typical momentum of scattering particles and is ≥ (mkBT )1/2 in the high temperature regime. The

collision frequency is ·≠1
c ≥ ~ql≠1

mfp © ~qn‡, where lmfp = (n‡)≠1 is the mean free path. The

density at the center of the trap is n0 = mÊ2
0N/(2fiT ) and decreases as 1/T . Combining these

results, the collision rate amounts to:

‹c ≥ N
3

ad

a0

42
Erfcx2

5 3
kBT

~Êz

4 1
2

6
, (TF π T π Tdip) (3.80)
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In the 2D limit, Êz æ Œ and we find ‹c = const (note that Erfcx(0) = 1). In other words, the

growth of scattering cross section counteracts rarefaction of the gas to yield a constant collision rate.

For finite Êz , the scattering cross section starts to decrease once kBT & ~Êz and consequently, ‹c

decays like ≥ 1/T (note that Erfcx(x) ≥ 1/x for large x). We remark that the single band picture

adopted here is no longer valid in the quasi-2D regime for kBT & ~Êz and one must take into

account the higher bands as well. We have shown in a previous paper [105] that all inter-band

interaction matrix elements have the same long wavelength behavior and therefore, we expect this

scaling result to remain unaffected. The plateau reached in the 2D limit relies crucially on the

applicability of Born approximation. As mentioned earlier, the scatterings enter the semi-classical

regime for T & Tdip (see Eq. 3.29) and Born approximation breaks down. In this regime, the

total scattering cross section can be estimated using the Eikonal approximation [92] and one finds

‡SC ≥ (ad/q)1/2. Repeating the same analysis with the semi-classical cross section, we find:

‹c ≥ N
3

ad

a0

4 1
2

3 ~Ê0
kBT

4 3
4

, (T & Tdip). (3.81)

The qualitative behavior of ‹c for the full range of temperatures was shown earlier in Fig. 4.18b1.

So far, we have neglected self-energy corrections in the description of the collective modes. We

have also restricted our analysis to a variational calculation within a small basis set. In the next

section, we extend our analysis to address both of these shortcomings.

3.4.3 Extended basis analysis: the effect of higher order moments and self-energy

corrections

The general formalism described in Sec. 3.4 allows one to include self-energy corrections and to

obtain a more accurate calculation of the response functions by extending the variational basis set in

a controlled way. Using simple symmetry considerations, we introduce extensible polynomial-like
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variational basis sets relevant for describing monopole and quadrupole dynamics. Finite truncations

of these basis sets allows one to satisfy all phase-space moments of the CBV equation up to the

truncation order. Since we are dealing with large basis sets and self-energy corrections at finite

temperatures, resorting to numerical methods is inevitable at this stage and no simple analytic results

are expected to be found.

Our goal here is to evaluate the linear responses accurately within the approximations made

so far. In practice, the reliability of the approximate linear response functions obtained using the

method of moments depends on one’s choice of the basis functions. This choice can be motivated

by the symmetries of the perturbing potential and the equilibrium state. Here, the trap potential is

assumed to be isotropic and it is easy to see that [D , Lz] = [I , Lz] = 0, where Lz © L(r)
z + L(p)

z ,

and L(r)
z = i(xˆy ≠ yˆx) and L(p)

z = i(pxˆp
y

≠ pyˆp
x

) are the rotation operators in the coordinate

and momentum space respectively. Therefore, if ”U lies in a certain eigenspace of Lz , so will

the solution of the linearized equation � and one may choose the basis functions from the same

eigenspace. Another symmetry which is preserved by the CBV equation is the reflection symmetry.

Defining the x-reflection operator as Rx�(px, py; x, y) = �(≠px, py; ≠x, y), it is easy to show that

the linearized evolution operator commutes with Rx as well. We will utilize these observations to

define appropriate (and extensible) basis sets for monopole and quadrupole dynamics in the next

two sections.

Variational basis set for monopole oscillations:

The generator of monopole oscillations, ”Um ≥ r2, belong to the zero angular momentum

representation of Lz . An arbitrary function of such type can be expressed as f(p, r)[(x + iy)(px ≠

ipy)]n for n œ Z and arbitrary f(p, r). Any smooth function of this type can be written as a power

series expansion in r2, p2, r · p and › © ypx ≠ xpy. Observing that ›2 = r2p2 ≠ (r · p)2, the most
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general basis for such functions can be constructed from the following two classes:

„+
– © „(m

–

,n
–

,k
–

) = r2m
– p2n

–(r · p)k
– ,

„≠
– © „(m

–

,n
–

,k
–

) = › r2m
– p2n

–(r · p)k
– . (3.82)

Observing that Rx„±
– = ±„±

– and the fact that the equilibrium state and the perturbations are

reflection symmetric, we discard {„≠
– }. We define {„+

– } as the “extended monopole basis” and

drop the + superscript for brevity. To truncate the basis set, we keep all basis functions satisfying

m + n + k Æ M , where M is a positive integer which we call the order of the basis set. A first

order basis set contains four elements, {1, r · p, p2, r2} and is equivalent to the linearized scaling

ansatz discussed earlier. In general, a basis set of order M has (M + 1)(M + 2)(M + 3)/6

elements. Expressions useful for numerical evaluation of the matrix elements of M, H0, � and Ic in

the monopole basis are given in Appendix C.3.

Variational basis set for quadrupole oscillations:

By definition, a quadrupole (d-wave) function in two dimensions changes sign upon a simultane-

ous fi/2 rotation of both r and p. Such functions belong to the mz = ±2 representation of Lz which

can be expressed as f(p, r) eiM„
r eiN„

p , where M and N are two integers such that M ≠ N = ±2,

„r and „p are the angles r and p make with a fixed axis (we arbitrarily choose the x-axis) and

f(p, r) is an arbitrary scalar function of p and r. One can identify 12 classes of functions with such

symmetry. Apart from the arbitrary scalar function f(p, r), the accompanying multipliers can be:

›+
1 © x2 ≠ y2, ›+

2 © p2
x ≠ p2

y, ›+
3 © xpx ≠ ypy,

÷+
1 © xy(ypx ≠ xpy), ÷+

2 © pxpy(ypx ≠ xpy),

÷+
3 © (ypx + xpy)(ypx ≠ xpy),

and:

132



Chapter 3: Collective dynamics of quasi-two-dimensional dipolar fermions

›≠
1 © xy, ›≠

2 © pxpy, ›≠
3 © ypx + xpy,

÷≠
1 © (ypx ≠ xpy)(x2 ≠ y2), ÷≠

2 © (ypx ≠ xpy)(p2
x ≠ p2

y),

÷≠
3 © (ypx ≠ xpy)(xpx ≠ ypy).

The functions with + and ≠ superscript are even and odd eigenfunctions of the reflection operator

Rx, respectively. Like before, we drop the second class. Also, we find the following relations

between these pre-factors:

2÷+
1 = r2›+

3 ≠ (r · p) ›+
1 ,

2÷+
2 = (r · p) ›+

2 ≠ p2 ›+
3 ,

2÷+
3 = r2 ›+

2 ≠ p2 ›+
1 , (3.83)

using which we can drop the class of functions f(p, r) ÷+
i from the basis set. Since f(p, r) is

assumed to be a smooth scalar function of p and r, in can be expanded in the monopole basis. Thus,

in summary, we find that any smooth reflection symmetric quadrupolar function can be expanded

in terms of {›+
i „+

– } for i = 1, 2, 3 and – = (m, n, k), where m, n and k are non-negative integers

and „+
– are the previously introduced monopole basis functions. We denote this basis set as the

“extended quadrupole basis”. We also remark that this basis set can be reduced further in light of

the relation 2(r · p) ›+
2 = p2›+

1 + r2›+
3 , so that the basis functions of the type ›+

2 r2mp2n(r · p)k+1

can be written as a linear combination of ›+
1 r2mp2n+2(r · p)k and ›+

3 r2m+2p2n(r · p)k. Like

before, we drop the + superscript for brevity in the remainder of the paper. An order-M truncation

of the quadrupole basis set is the finite set that comprises all quadrupole basis functions satisfying

k + m + n Æ M ≠ 1. The first order basis set contains three elements, {x2 ≠ y2, p2
x ≠ p2

y, xpx ≠

ypy} and is equivalent to the linearized scaling ansatz discussed earlier. In general, a quadrupole

basis set of order M contains M(M + 1)(2M + 7)/6 elements. Again, expressions useful for

numerical calculation of the matrix elements of M, H0, � and Ic in the quadrupole basis are given

in Appendix C.4.
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Numerical implementation:

In this section, we present the numerical results obtained by calculating the linear responses

to monopole and quadrupole perturbations using the extended basis set approach. We varied ⁄d

and T/TF in the range (0, 2) at fixed N = 2200. We studied the 2D limit Êz = Œ as well as

a quasi-2D case corresponding to the current experiments with KRb (Ê0 = 2fi ◊ 36 Hz, Êz =

2fi ◊ 23 kHz [15, 16, 17]). This choice of parameters yields ÷ ƒ 0.322 in the quasi-2D case.

For each configuration, we performed the calculations within a forth order basis set comprising

35 and 50 basis functions for the monopole and quadrupole cases respectively, and satisfying all

phase-space moments of the CBV equation up to the eighth order. The matrix elements of M, H0

and � can be calculated with little computational effort using the expressions provided in Appen-

dices C.3 and C.4 and the previously obtained equilibrium solutions. The most computationally

demanding part is the evaluation of the collision matrix elements. Although a considerable number

of them vanish either due to symmetries or conservation laws, a forth order basis set still requires cal-

culation of 118 (monopole) and 307 (quadrupole) unique collision matrix elements, each of which

is a five-dimensional integral that has to be evaluated for each choice of ⁄d, ÷ and T/TF . Such a

task clearly requires considerably more computational effort compared to the simple scaling ansatz

analysis we presented earlier, where only a single collision matrix element had to be dealt with.

We calculated the collision matrix elements using the Monte-Carlo integration method with

5 ◊ 108 integration points yielding a relative statistical error of less than 10≠3. We incorporated the

dressed quasiparticle dispersions into the collision integral within a local effective mass approxima-

tion (see Appendix C.3) which we found to be an excellent approximation in all cases. However, in

order to assess the accuracy of this approximation and the consistency of the obtained results, we

(1) we performed exact calculation of the collision integrals for a few representative cases using an

extrapolation technique (see Appendix C.5), and (2) checked the satisfaction of conservation laws.

We will discuss both of these consistency checks later.
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For the monopole case, we calculated the dimensionless spectral function Ax2+y2(Ê) defined as:

Ax2+y2(Ê) © ≠(2N)≠ 1
2Im[‰x2+y2(Ê)], (3.84)

This quantity can be found using Eqs. (3.57) and (3.59) by choosing the excitation and observation

vectors as ”U– = O– = ”m–, where m is the index that corresponds to the basis function „ = r2.

For the quadrupole case, we calculated the spectral function Ax2≠y2(Ê) defined as:

Ax2≠y2(Ê) © ≠(2N)≠ 1
2Im[‰x2≠y2(Ê)]. (3.85)

Likewise, this quantity can be evaluated by choosing the excitation and observation vectors as

”U– = O– = ”q–, where q is the index that corresponds to the basis function „ = ›1 = x2 ≠ y2.

These spectral functions can be directly measured in the experiments in different ways (Ref. to

Sec. 3.5).

Although the evolution matrix has a large number of eigenmodes, some of which are isolated

in the complex plane and some may belong to branch lines, only a few of them get excited and

contribute to the response. Many of the modes lie inside the null space of H0, are unphysical and do

not get excited (see the discussion at the end of Sec. 3.4.2). In all cases, we found that the spectral

functions can be reproduced accurately by a fit function with two simple poles in the lower half

plane:

Afit(Ê) = Im
5 A

Ê ≠ � ≠ i� ≠ Aú

Ê + � ≠ i� + iB
Ê ≠ i�Õ

6
, (3.86)

corresponding to damped oscillations with a frequency and damping rate of � and � respectively,

and a possibly overdamped component with a decay rate of �Õ. The overdamped component is

only present in the quadrupole response. The above model extracts the most important features of

the numerically obtained spectral functions and also allows us to present the obtained results in a

concise way. Although we kept up to eight moments (and in some cases, up to twelve moments) of

the CBV equation, we found the inclusion of sixth order moments (and above) to result in relative
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Figure 3.5: The oscillation frequency and the damping (inset) of the monopole excitations extracted
from the numerically obtained spectral functions using a forth order basis set (including self-energy
corrections). The colored and grayscale (upper and lower) graphs correspond to an ideal 2D system
(÷ = 0) and a quasi-2D system (÷ ƒ 0.322) respectively. Blue and red line colors correspond to
low and high temperatures respectively. In all cases, N = 2200. The inset plot shows the damping
rate in the 2D case (÷ = 0).

refinements to the frequency of the first and second excited modes which are smaller than 10≠3 and

10≠2 respectively in all cases.

Monopole oscillations:

As mentioned earlier in Sec. 3.4.2, without self-energy corrections, the CBV equation for har-

monically trapped gases admits an exact solution corresponding to a scaling velocity field v ≥ r

which has a fixed oscillation frequency of 2Ê0 with no damping, independent of the interaction

strength and temperature. This is due to fact that the Boltzmann equation admits a rigorously closed

set of equations for the phase-space averages of r2, p2 and r · p, all of which are unaffected by

collisions due to conservation laws. Taking self-energy corrections into account, the quasiparticle

dispersions no longer remain quadratic and one finds that this simple chain of moment equations

can not be closed anymore. In particular, contributions from higher order moments, many of which
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Figure 3.6: (left) A typical picture of the poles of the evolution matrix (T/TF = 0.45, ⁄d = 2,
N = 2200 and ÷ = 0). (right) the mass currents associated to the indicated poles. Yellow (bright)
and green (dark) background colors indicate large and small current magnitudes, respectively. The
three indicated poles (a, b, and c) have the largest residues in the monopole response function and
are also the lowest lying modes that survive in the collision dominated regime.

are strongly influenced by the collisions, become important. Therefore, we expect the monopole

oscillations to be damped to a certain degree.

Fig. 3.5 shows the frequency and damping of the monopole oscillations extracted from the nu-

merically obtained spectral functions. The colored and grayscale (top and bottom) plots correspond

to the 2D limit (÷ = 0) and a quasi-2D sample (÷ ƒ 0.322). The repulsive dipole-dipole interac-

tions clearly result in a significant increase in the oscillation frequency. Also, as one expects, finite

transverse confinement leads to a weaker effective repulsive effective interaction and thus, a smaller

increase in the frequency of collective modes.

Fig. 3.6 shows a typical plot of the poles of the evolution matrix as well as the mass currents

associated to the three lowest lying modes that get excited by the monopole perturbation. The lowest
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Figure 3.7: The evolution of the two lowest lying monopole modes upon increasing T at fixed
⁄d = 1 and N = 2200. The temperature is uniformly increased from T/TF = 0.05 to 2 with
0.05 increments. Ê(n) and “(n) denote the real and imaginary parts of the complex eigenvalue. The
arrows indicates the direction of increasing T . (a) and (b) correspond to the n = 0 and n = 1
modes respectively for a 2D system (÷ = 0). (c) and (d) show the same quantities for a sample
quasi-2D system (÷ ¥ 0.322). While the 2D system reaches a plateau for T ∫ TF (indicated by
P), the quasi-2D system eventually becomes collisionless, i.e. “(i)

mon æ 0, Ê(n)
mon æ 2(n + 1) Ê0.

The dashed lines show this expected behavior qualitatively.

lying mode (indicated by “a” and having a nodeless mass current) makes the most contribution. In

fact, the relative spectral weight of all other modes are generally found to be less than ≥ 10≠3 in

all cases. We label the monopole modes according to the number of nodes in their mass current, i.e.

(a), (b) and (c) correspond to n = 0, 1 and 2 respectively.

The most intriguing finding is that the nodeless mode exhibits a negligible damping in all of the

studied cases despite the presence of remarkably large self-energy corrections (�mon < 10≠3Ê0,

see the inset plot of Fig. 3.5). This is, however, not the case for the higher order modes. Fig. 3.7

shows the evolution of n = 0 and n = 1 modes upon increasing T at fixed ⁄d for a 2D (a and b) and

a quasi-2D system (c and d). The behavior of the n = 0 mode is similar in 2D and quasi-2D: the
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Figure 3.8: Evolution of the quadrupole oscillations from collisionless (CL) to hydrodynamic (HD)
regime upon increasing the interaction strength (left to right). In all cases, T/TF = 0.45 and ÷ = 0
(Êz = Œ). The top row shows the quadrupole spectral function and the bottom row shows the
location of the poles of the evolution matrix on the complex plane. The pole shown as red is the
pole that makes the dominant contribution to the response. (a1) and (a2): ⁄d = 0.1, (b1) and (b2):
⁄d = 0.4, (c1) and (c2): ⁄d = 2. See Fig. 3.9 for a plot of the mass currents associated to the
encircled poles. Refer to Sec. 3.5 for a discussion on the experimental methods of measuring the
spectral functions.

rise in temperature reduces the self-energy effects and the frequency approaches its non-interacting

value of 2Ê0. The damping remains small ≥ 10≠4Ê0 and exhibits a peak around T ≥ TF . While

the mode eventually becomes collisionless in quasi-2D (for T ∫ ~Êz), on the contrary, it reaches

a plateau in 2D. The difference between 2D and quasi-2D systems is more striking for n = 1 and

higher order modes: upon increasing T , while the frequency of oscillations monotonically decreases

in 2D until it reaches the plateau, it has a non-monotonic behavior in quasi-2D. Initially, it decreases

due to enhanced collisions and reduced self-energy effects. Once T ≥ ~Êz , the collision rate starts

to decrease and the mode eventually becomes collisionless. A qualitative account of this behavior

was given in Sec. 3.4.2. Finally, we note that the character of the plateau in 2D is determined by ⁄d

and N , and the modes in the plateau may lie anywhere in the CL-HD spectrum.

In summary, we find that the monopole response is governed predominantly by the lowest lying

(nodeless) mode, with the higher order modes capturing a relative spectral weight of less than 10≠3.
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Figure 3.9: The mass current associated to the three modes marked in Fig. 3.8c2. Yellow (bright)
and green (dark) shades indicate large and small current magnitudes, respectively. (a) is the lowest
lying mode, known as the surface mode, characterized by the velocity field v ≥ xex ≠ yey. (b) and
(c) are the next two modes. The nodal structure of the mass current is clearly noticeable.

The collisional effects play a little role in defining the character of this dominant mode. In contrast,

the higher order modes are found to be significantly affected by collisions. They undergo a transition

from the collisionless to the hydrodynamic regime.

Quadrupole oscillations:

In the previous section, we found that the nodeless monopole mode is essentially immune to

collisions. This is not the case for the nodeless quadrupole mode. The scaling ansatz analysis

presented earlier already shows that this mode is in fact strongly affected by collisions. Similar to

the monopole case, we find that quadrupole perturbations of the trap potential primarily excite the

lowest lying quadrupole mode and the relative spectral weight of higher order modes are generally

less than 10≠3. In this case, however, we find a small but significant contribution from a few

overdamped modes, specially in the crossover regime. This is in agreement with the scaling ansatz

analysis.

A typical scenario for the quadrupole response is shown in Fig. 3.8. The top and bottom rows

show the quadrupole spectral function and the location of the poles on the complex frequency plane

respectively. For weak interactions (⁄d π 1, Fig. 3.8a1-2), the spectral function is sharply peak
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Figure 3.10: The evolution of the two lowest lying quadrupole modes upon increasing T for fixed
⁄d = 1 and N = 2200. See the caption of Fig. 3.7 for the description of various panels. The blue
line in (a) denotes

Ô
2Ê0, the frequency of quadrupole surface mode.

around 2Ê0 and the poles of the evolution matrix lie very close to the real axis about their colli-

sionless frequencies. Upon increasing the interactions, the poles spread to the lower half complex

frequency plane, indicating entrance to the dissipative CL-HD crossover regime. The spectral func-

tion is significantly broadened (see Fig. 3.8b1) in this regime. For stronger interactions, the local

equilibrium picture starts to emerge, indicated by a reduction in damping. Fig. 3.8c2 clearly shows

a sharply peaked spectral function near
Ô

2Ê0 in the strongly interacting regime. This is exactly the

universal frequency of the hydrodynamic quadrupole surface mode discussed earlier.

Fig. 3.9 shows the mass currents associated to the three lowest lying modes marked in Fig. 3.8c2.

The axially averaged mass currents have n = 0, 1 and 2 nodes respectively. Fig. 3.10 shows the

evolution of the first two upon increasing the temperature for a 2D and a quasi-2D case. Both modes

are strongly influenced by collisions and their qualitative behavior is similar to the n = 1 monopole

mode discussed in the previous section. While these modes eventually become collisionless in
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Figure 3.11: Frequency and damping (top and bottom graphs respectively) of quadrupole oscilla-
tions in a 2D system (÷ = 0) with N = 2200 particles. The solid colored lines are the numerical
results obtained using a forth order basis set, including self-energy corrections. The red and blue
line colors denote high and low temperatures respectively. The dashed black lines correspond to the
analytic scaling ansatz analysis presented earlier (Sec. 3.4.2).

quasi-2D for T ∫ ~Êz , they reach a plateau for T ∫ TF in 2D [marked with P in (a) and (b)].

Figs. 3.11 and 3.12 show the frequency and damping rate of the quadrupole oscillations obtained

from the fit to the quadrupole spectral function, in 2D and quasi-2D respectively. The result from the

previous scaling ansatz analysis without self-energy corrections is also shown as dashed black lines

for reference. Since the quadrupole spectral function is virtually exhausted by the nodeless mode,

these plots essentially show the interaction- and temperature-dependence of the nodeless mode.

The refinements arising from inclusion of both self-energy corrections and higher order moments

are significant. In the low temperature regime, self-energy corrections are dominant and yield a
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Figure 3.12: Frequency and damping of quadrupole oscillations for a quasi-2D system correspond-
ing to ÷ ƒ 0.322 (refer to the caption of Fig. 3.11 for details)

Ã ⁄d shift of the frequencies (see the rightmost plot on the top panel of Fig. 3.11). The collisional

corrections are only Ã ⁄4
d in the weakly interacting regime (see Eq. 3.78 and note that ‹c Ã ⁄2

d).

The corrections resulting from the inclusion of higher order moments can also be seen in the high

temperature curves appearing in the same figure. For T > TF , self-energy corrections become

negligible and the refinement is predominantly due to inclusion of higher order moments.

In summary, we find that all quadrupole modes are strongly influenced by collisions and exhibit

the transition from the CL to HD regime. There is a notably large mean-field shift in the oscillation

frequency at low temperatures. Similar to the monopole case, the quadrupole spectral function is es-

sentially exhausted by the lowest lying (nodeless) mode, with a small contribution from overdamped
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modes in the crossover regime. Upon increasing the temperature, the frequency and damping of all

modes reach a plateau for a strictly 2D system. A qualitative account of this behavior was given in

Sec. 3.4.2. In a quasi-2D system, however, the CL regime appears again for T & ~Êz .

3.5 Experimental outlook

The collective modes can be probed experimentally in various ways. As described earlier,

one common method is to perturb the trap potential with a short pulse and monitor the evolution

of the cloud using either in-situ or absorption imaging techniques (for example, see Ref. [76]).

The relevant observables are the radius and anisotropy of the cloud in case of monopole and

quadrupole perturbations respectively. The frequency and damping of the collective modes are

found by fitting the measured time evolution of the observable Oexp(t) to a function of the form

Ofit(t) = Ae≠“t sin(Êt + �0) + Be≠“ODt, where Ê is the frequency of oscillations, and “ and “OD

are damping rate of the oscillatory and overdamped components. If required, the spectral function

can be subsequently found by taking a Fourier transform of the measured impulse response sig-

nal Oexp(t). Another approach which may yield more accurate results is the direct measurement of

spectral functions via trap modulation spectroscopy. In this method, one introduces a low-amplitude

periodic modulation at a fixed frequency � to the trap potential for a duration · ∫ Ê≠1
0 , �≠1 and

measures the absorbed energy. For a finite trap modulation pulse such as ”U ≥ e≠|t|/· cos(�t) v(r),

a simple linear response analysis yields [106]:

�Eabs ≥ ≠· � Im[‰v(r)(� + i/·)], (3.87)

where �Eabs is the absorbed energy, v(r) is the shape of the trap perturbation (i.e. x2 + y2 and

x2 ≠ y2 for monopole and quadrupole modes respectively), and ‰v(r) is the retarded response func-

tion of v(r). Eq. (3.87) implies that the absorbed energy in a modulation experiment provides a

direct measurement of the spectral function. The absorbed energy can be measured in various ways.
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One method is to let the system rethermalize after the modulation pulse, followed by mapping it to a

non-interacting system by switching off the interactions adiabatically and finally measuring the tem-

perature rise of the non-interacting gas through a time of flight expansion experiment. The location

of the peak in the measured spectral function and its width yield the frequency and damping of the

collective mode. According to the results presented in the previous section, quadratic perturbations

in the trap potential predominantly excite the lowest lying mode. If required, the spectral weight of

higher order modes can be increased using quartic perturbations, e.g. (x2 + y2)2 and x4 ≠ y4 for

monopole and quadrupole symmetries.

At the time this paper is written, the dipolar interaction strengths in the experiments are not

strong enough to drive the system to the HD regime. In the experiments with fermionic 40K87Rb

at JILA [15, 16, 17], the transverse and in-plane trap frequencies are Êz = (2fi) ◊ 23 kHz and

Ê0 = (2fi) ◊ 36 Hz respectively. The central layer has 2200 molecules, the temperature is T = 500

nK and dipole moment is D = 0.158 Debye, using which we find T/TF ¥ 4.36, ÷ ¥ 0.322 and

⁄d ¥ 0.252. The dipolar temperature is Tdip ≥ 1.8 µK and TF /Tdip ¥ 6.4 ◊ 10≠2. Therefore,

the near-threshold scattering condition can be satisfied well for quantum degenerate temperatures.

However, the current temperature is above quantum degeneracy and we find T/Tdip ¥ 0.28.

The scattering energies lie in the crossover between the threshold and semiclassical energies

and we estimate the Born approximation to overestimate the cross section by a factor of 3 using

the results of Ref. [92]. Since the temperature is high, mean-field corrections are small and

the change in the monopole oscillation frequency is negligible. For quadrupole oscillations, we

obtain �quad ¥ 1.9990 Ê0 and �quad ¥ 0.007 Ê0 = 1.7 Hz. Including corrections to the Born

approximation, we estimate �quad ¥ 0.6 Hz which might be difficult to observe due to the presence

of a two-body loss rate of ≥ 4 Hz. We remark that the collision rates can be dramatically increased

by making the transverse confinement stronger. For example, in the strictly 2D limit Êz æ Œ, we

get �2D
quad ¥ 1.8 Ê0 and �2D

quad ¥ 0.3 Ê0 ¥ 71 Hz at the same temperature and phase-space density.
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At this time, the recent experiments with 161Dy [75] at Stanford seem to be more promising

candidate toward the observation of the predictions of this paper. With N = 6000 atoms at a

temperature T/TF = 0.21 and a large magnetic dipole moment of 10 µB , one is able to study

both quantum degenerate and thermal regimes. Once the atoms are loaded into an optical lattice,

we believe it will be possible to trap at least N = 2000 atoms at the Fermi temperature in the

central pancake, with Êz = (2fi) ◊ 20 kHz and Ê0 = (2fi) ◊ 100 Hz. For this configuration, we

find TF /Tdip ¥ 0.04, ⁄d ¥ 0.21 and ÷ ¥ 0.56. The near-threshold condition is satisfied well

and we reliably obtain �quad ¥ 1.992 Ê0 and �quad ¥ 0.0085 Ê0 ¥ 5.3 Hz. That damping is

expected to be easily observable due to the long time stability of the gas. The mean-field shifts

of the frequencies may also be observed at lower temperatures. With N = 1000 atoms in the

central pancake and at T/TF = 0.2 with the same trap frequencies, we obtain �quad ¥ 1.95 Ê0 and

�quad ¥ 0.0065 Ê0 ¥ 4.8 Hz, and �mon ≠ 2Ê0 = 0.015 Ê0 ¥ 9.3 Hz, all of which are expected

to be observable. Another intriguing possibility is the observation of the predicted plateau of the

collision rate, which is also a direct consequence of universal near-threshold dipolar scatterings.

This can be simply done by heating the gas and probing the collective modes at temperatures above

TF .

3.6 Discussions

Most of the relevant discussions were already given in the main text. Here, we give a brief

summary of the main results along with several complementary comments. We started our analysis

by investigating the equilibrium state of quasi-2D dipolar fermions in isotropic traps. In order to

study the collective modes of the system, we solved the collisional Boltzmann-Vlasov equation for

small perturbations of the trap potential with monopole and quadrupole symmetries. The self-energy
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corrections to quasiparticle dispersions and collisions were taken into account via the self-consistent

Hartree-Fock and Born approximations respectively. The validity of these approximations were

assessed at the end of Sec. 3.2.1. In particular, the usage of Born approximation restricts the validity

domain of our results to near-threshold scattering energies (see Eq. 3.29). We confined our attention

to the regime where TF π Tdip, so that the scatterings remain in the near-threshold regime even

in the thermal regime T ∫ TF . We showed that this condition is satisfied well in the current

experiments. We emphasize that once the conditions for the applicability of our approximations

are met, the formalism of collisional Boltzmann-Vlasov equation is universally applicable to both

collisionless and collision-dominated (hydrodynamical) regimes, as well as the crossover between

the two.

We carried out the analysis of collective modes in two stages: as a first approximation, we

studied the problem in the Boltzmann limit by only keeping the collisional effects and using bare

dispersions. We calculated the response functions using the simple picture of scaling ansatz. This

analysis implied the generic result that monopole oscillations occur at a fixed frequency of 2Ê0,

are undamped, and are independent of temperature and interaction strength. In case of quadrupole

oscillations, however, we found a transition from the CL limit to the HD limit. We calculated

the quadrupole collision rate, ‹c, for various temperatures and transverse trap frequencies. We

found that in the 2D limit (÷ = 0), ‹c is a monotonically increasing function of temperature and

reaches a plateau for large T/TF . This plateau persists up to T ƒ Tdip beyond which the scattering

energies enter the semiclassical regime and the cross section starts to decrease upon increasing the

temperature further. The existence of this plateau, which is a novel feature arising from universal

dipolar scatterings implies that (1) the character of trap excitations of a polarized 2D dipolar gas

becomes essentially temperature-independent in the regime TF . T . Tdip, and (2) collisional

effects persists in the thermal regime despite the fact that gas becomes very dilute. This behavior

differentiates 2D dipolar fermionic gases from s-wave fermions where rarefaction of the gas at high

147



Chapter 3: Collective dynamics of quasi-two-dimensional dipolar fermions

temperatures carries the system back to the collisionless regime for T & TF . Also, the temperature

window for collisional behavior is universal for s-wave fermions and is not amenable to tuning,

whereas for quasi-2D dipolar fermions, one can expand this window by (1) making the transverse

confinement stronger to approach the 2D limit, and (2) either increase Tdip by using weaker dipoles

or decrease TF by decreasing the density.

The existence of the plateau is guaranteed as long as the scale separation TF π Tdip is met.

Combining Eqs. (3.29) and (3.73), one can find the condition for the plateau to lie in the collision

dominated (hydrodynamic) regime as well:

N
1
4 π a0

ad
π N

1
2 . (HD plateau) (3.88)

The left and right hand sides of this inequality are equivalent to TF π Tdip and N(ad/a0)2 ∫ 1

respectively, where the latter condition implies ‹c ∫ 1. The above inequality may be used as a

simple experimental guideline to observe hydrodynamical behavior with dipolar fermions.

In the second stage of calculations, we extended the analysis by (1) including self-energy correc-

tions and (2) going beyond the scaling ansatz by satisfying higher moments of the CBV equation.

Chiacchiera et al. [102] and Pantel et al. [107] have carried out a similar extended moments anal-

ysis of the Boltzmann equation for s-wave fermions and have shown that corrections of this type

significantly improves the matching between the theory and the experiments.

We evaluated all of the matrix elements of the CBV equation numerically exactly with the ex-

ception of the collision integral matrix elements where we incorporated the dressed quasiparticle

dispersions via a local effective mass approximation (LEMA) for practical reasons. Nevertheless,

we found this scheme to be an excellent approximation. We will show later in this section that the

conservation laws are satisfied well. Moreover, we evaluated the exact collision matrix elements in

a few cases using an extrapolation technique (albeit at the costs of a significantly increased compu-

tation time; see Appendix. C.5) and found the corrections beyond LEMA to be negligible indeed.
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The extension of the scaling ansatz analysis allowed us to (1) study the effects of self-energy

corrections on the frequency and damping of various modes, and (2) investigate the higher order

(nodal) monopole and quadrupole modes which are beyond the scope of the scaling ansatz, and (3)

study the speculated damping of the nodeless monopole mode, which is a direct consequence of self-

energy corrections. We found that despite the fact that inclusion of higher order moments results

in the appearance of numerous new normal modes, the responses to the monopole and quadrupole

perturbations (≥ r2 and x2 ≠ y2 respectively) are predominantly governed by the lowest lying

(nodeless) mode. We remark that the frequency and damping of the mode, however, is significantly

modified by both self-energy corrections and inclusion of higher order moments.

We argued that the self-energy corrections are expected to result in the damping of the node-

less monopole mode, a feature which is absent in the simple Boltzmann equation. We found that

although this expectation is met, the damping remains very small (< 10≠3Ê0) even in the strongly

interacting regime. The frequency of oscillations, however, is significantly increased from its non-

interacting value of 2Ê0. This mean-field frequency shift was found to be most significant at low

temperatures where self-energy effects are large.

By investigating the velocity field of nodeless monopole mode, we found that it retains its scal-

ing character to an good approximation (i.e. v ≥ r), as well as its isothermal character. It is

known from the hydrodynamic theory of non-ideal fluids that for a true isotropic and isothermal

scaling flow, no dissipation results from shear viscosity or thermal conduction and the only source

of dissipation is the bulk viscosity (for instance, see Ref. [68], §49). In this situation, one finds

dS/dt =
s

d2r n≠1
0 T ≠1’(Ò · v)2 where S is the total entropy and ’ is the bulk viscosity. Note that

the dissipation rate is second order in v and is therefore small.

At this point, we can not rule out the possibility that a more accurate description of the strongly

correlated regime would change this finding. In particular, going beyond the quasiparticle ansatz

in the kinetic equation and taking the collisional broadening of the single particle spectrum into
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account may yield a larger damping of the nodeless monopole mode. We will investigate this

possibility in the future works.

The analysis of higher order monopole modes (n Ø 1) and all quadrupole modes yields the same

qualitative picture that the scaling ansatz analysis of the nodeless quadrupole mode provides, i.e.

existence of a plateau in 2D upon increasing the temperature and reappearance of the CL regime in

quasi-2D. We find, however, significant quantitative corrections. At low temperatures, self-energy

corrections result in a shift of the frequencies proportional to ⁄d. We also found that the scaling

ansatz overestimates the collision rates in general. This defect is mostly noticeable in the high

temperature regime where the gas is extended in the trap and higher order moments are required to

accurately account for the density variations.

We included up to eight moments in the extended analysis (and up to twelve moments in pilot

studies). We generally found that the most important corrections to the scaling ansatz stems from

the forth order moments, beyond which the corrections become increasingly smaller. In practice, a

second order basis set is sufficient to obtain the frequencies of the nodeless modes within a 0.1%

tolerance of the exact solution. The accurate description of higher order modes naturally require

inclusion of higher order moments.

Finally, we investigate the satisfaction of conservation laws as a consistency check for our nu-

merical calculations. The CBV equation conserves the particle number, momentum and energy,

both in the differential form and the integral form (see Appendix C.1). The quadrupole oscillations

trivially satisfy these conservation laws due to the axial symmetry of the equilibrium state. This is

not trivial for monopole oscillations as they have same symmetry as the equilibrium state. Fig. 3.13

shows the maximum relative deviations of the particle number and energy in monopole oscillations

as a function of moment satisfaction order for a sample case. We find that the particle number is

conserved within a relative error of ≥ 10≠6 even in a first order basis set (this is because one of

the moment equations is in fact a statement of mass conservation). On the other hand, we find that
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Figure 3.13: Maximum relative deviations of the particle number (left) and energy (right) for
monopole oscillations in a sample configuration (T/TF = 0.1, ⁄d = 0.5, ÷ = 0 and N = 2200).
M is the truncation order of the basis set.

conservation of energy improves substantially upon extending the basis set. For the forth order basis

set, the relative error in the conservation of energy is ≥ 10≠5.

Some of the possible extensions of this work are (1) going beyond the Born approximation and

including multiple scatterings in order to rigorously extend this study to semiclassical scattering

energies (T > Tdip), (2) going beyond the quasiparticle approximation and taking into account the

collisional broadening of the single-particle spectrum toward quantitatively reliable predictions in

the strongly interacting regime, and (3) inclusion of higher transverse bands to account for T & ~Êz

in quasi-2D systems.
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4
Non-equilibrium dynamics of attractive

two-component Fermi gases

4.1 Introduction

The two-component Fermi gas with short-range attractive interactions is one of the simplest yet

richest models in condensed-matter physics. It is directly applicable to a wide range of naturally

occurring physical systems ranging from atomic nuclei and superconductors to primordial matter
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(quark-gluon plasma), white dwarfs and neutron stars. The Hamiltonian for such a system in d

spatial dimensions may be written as:

H =
ÿ

‡=ø,¿

⁄
ddx �†

‡(x)
C

≠ Ò2

2m
≠ µ

D

�‡(x) + ⁄
⁄

ddx �†
ø(x) �†

¿(x) �¿(x) �ø(x), (4.1)

where ‡ =ø, ¿ is the component index and depending on the system, it corresponds to either the

spin (electrons, atomic nuclei), color (quark-gluon plasma) or the hyperfine state (ultracold atoms);

m and µ denote the mass and the chemical potential of particles, and ⁄ < 0 is the strength of

the contact attractive interaction. The contact interaction leads to a UV divergence which can be

regulated either by imposing a physical UV cutoff � or by trading ⁄ with renormalized quantities

such as binding energy ‘b or the s-wave scattering length as. We refer to the above model as the

attractive Fermi gas (AFG) for brevity.

This model was used by Bardeen, Cooper and Schrieffer (BCS) [108, 109] in 1957 toward con-

structing a microscopic theory of superconductivity. The weak phonon-mediated attraction between

the electrons near the Fermi surface was approximated with a contact interaction with a UV cutoff

� of the order of the Debye frequency ÊD [108]. The effective electron-phonon mediated attrac-

tion is typically very weak (several orders of magnitude smaller than the Fermi energy ‘F ) and the

electrons do not form bound pairs in a three dimensional vacuum. This scenario, however, is sig-

nificantly different in a many-body system. At temperatures below a critical temperature Tc, the

Fermi surface becomes sharp enough so that the phase space available to quasiparticles near the

Fermi surface is effectively reduced to two spatial dimensions due to the Pauli blocking of k < kF

momentum states (kF is the Fermi momentum). Therefore, even the presence of a weak attraction

leads to formation of bound pairs of the quasiparticles near the Fermi surface, known as the Cooper

pairs [108]. The Bose condensation of Cooper pairs is the basis of the celebrated BCS theory of

superconductivity.

The BCS theory was phenomenally successful in describing superconductors. Soon after the
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Figure 4.1: The schematic phase diagram of high-Tc superconductors showing hole-doping (p-type)
on the right side, and electron-doping (n-type) on the left side (reproduced from Ref. [112])

publication of the BCS paper, several theorists proposed that a similar phenomenon could occur

in fluids made up of fermions other than electrons, such as 3He atoms. These speculations were

confirmed in 1971, when experiments performed by Osheroff [110, 111] showed that 3He becomes

a superfluid below 2.5 mK. Although the interaction between 3He atoms is not purely attractive, it

was soon verified that the superfluidity of 3He arises from a BCS-like mechanism as well.

High-Tc compounds and strong-coupling superconductivity:

The discovery of high-temperature superconductivity (HTSC) in cuprates by Bednorz and

Mueller in 1986 [113] and the rapid raising of the transition temperature to well above the melting

point of nitrogen started a new era of great excitement for the condensed-matter physics community.

The fact that HTSC was discovered in an unexpected material, i.e. a transition metal oxide com-

pound (Ba-La-Cu-O), made it clear that a novel mechanism must be at work. The unusual properties

of high-Tc compounds revealed new problems in solid state physics in general, and challenged the

phenomenally successful BCS theory of superconductivity in particular.
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While hundreds of high-Tc cuprate compounds have been produced since their first discovery,

they all share a layered structure made up of one or more copper-oxygen planes. They all fit into

a universal phase diagram shown in Fig. 4.1. One starts with the so-called parent compound, such

as La2CuO4. There is a general agreement that the parent compound is a Mott insulator with long-

range antiferromagnetic (AF) order. The parent compound can be doped by substituting some of the

trivalent La by divalent Sr. The result is that x holes are added to the Cu-O plane in La2≠xSrxCuO4

(hole doping). In the compound Nd2≠xCexCuO4, the reverse scenario must be carried out, i.e.

x electrons are added to the Cu-O plane (electron doping). As we can see from Fig. 4.1, on the

hole doping side the AF order is rapidly suppressed and once the hole concentration exceeds 3 to 5

percents. Almost immediately after the suppression of AF, superconductivity appears, ranging from

x = 6% to 25%.

The density of the itinerant carries introduced by hole- or electron-doping is not as large as it the

carrier density in ordinary metals, so that the mean distance between them proves to be comparable

with the pair size ›pair. This scenario is significantly different from the conventional BCS theory

where ›pair greatly exceeds the mean distance between the carries. Experimentally, the dimension-

less value kF ›pair, which describes the ratio of the pair size and the distance between carriers is

about 5 ≥ 20 for HTSC while for low-temperature superconductors it is about 103 ≥ 104. This

observation rekindled the interest in the strong-coupling superconductivity, in particular, in the the-

oretical description of the crossover from condensation of weakly-bound Cooper pairs (BCS) to the

condensation of the deeply-bound singlet pairs (BEC).

The metallic state above Tc exhibits many unusual properties not encountered before in any other

metal. This region of the phase diagram has been called the pseudogap phase and corresponds to the

depletion of the single-particle spectral weight around the Fermi level. The earliest experiments to

reveal such gap-like behavior were the NMR measurements of the Knight shift [4], where a gap-like

behavior was found in the the spin susceptibility below a temperature T ú > Tc. This manifestation
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of the pseudogap phenomenon was thus called a spin-gap. Subsequently, the optical conductivity

[6], specific heat measurements and finally the direct measurement of the spectral function using

angle-resolved photo-emission spectroscopy (ARPES) showed in addition a gapping of the charge

degrees of freedom below T ú. The existence of the pseudogap, i.e. a wide region in the phase

diagram between T ú and Tc with gap-like features but without superconductivity, is one of the most

striking differences between the BCS scenario of superconductivity of the behavior of cuprates. The

Fermi surface in the pseudogap phase is nearly destroyed and the elementary excitations do not have

a particle-like nature. Both ARPES and tunneling experiments suggest that the pseudogap evolves

smoothly into the superconducting gap as the temperature is lowered from T ú to Tc.

A combination of factors, including unusual magnetic and electronic properties, lowered dimen-

sionality, proximity to the metal-insulator transition, relatively low carries densities, the d-wave

symmetry and the competition between spin density waves (SDW), charge density waves (CDW)

and pairing makes the construction of an appropriate theory for high-Tc both difficult and far from

being fully resolved. Different authors have pursued different paths with different degrees of faith-

fulness to the phenomenology of high-Tc compounds. The converging point of a large body of such

theoretical is the Hubbard model and its simplified relative, the t-J model, describing the hopping

of electrons on the Cu-O layer. A general discussion of the theoretical developments directly related

to the phenomenology of high-Tc cuprates is beyond the scope of this work and we refer the reader

to Ref. [114] for an excellent review.

One line of thought, in the tradition of Occam’s razor, is to proceed by isolation and simplifi-

cation of the high-Tc phenomenology by focusing on only a small subset of the involved physical

processes. This approach will inevitably diverge from the reality of high-Tc physics and will lead to

models which are only marginally relevant to high-Tc compounds. On the bright side, the simplicity

of such models allows us to explore and understand their physics on much deeper levels. Focusing

on the physics of strong-coupling superconductivity in its simplest and purest form is one of such
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endeavors.

The interaction between the itinerant carriers in high-Tc cuprates is believed to be mediated by

the exchange of softened magnons to a great extent, as suggested by Scalapino, Miyake, Emery and

their collaborators [115, 116, 117, 118, 119, 120]1 The proximity to the parent AF Mott insulator

suggests that the effective interaction has a strong d-wave character. The carrier density is generally

very low (about 0.2 holes per Cu-O4) and the lattice structure is unresolved by the itinerant carriers.

The above considerations suggest that the AFG Hamiltonian in two spatial dimensions (Eq. 4.1)

may be used as a caricature for the physics of mobile carriers on the Cu-O layers. Committing

to this model, one neglects the d-wave character of interactions, the tunneling of carriers between

the adjacent Cu-O layers and the lattice effects altogether, all of which are believed to be important

ingredients in the physics of cuprate superconductors. Nevertheless, the theoretical investigations of

the AFG model has served to illuminate important aspects of the pairing physics, in particular, the

need to depart from the mean-field BCS theory, strong-coupling effects such as Bose condensation

of the pre-formed di-electronic pairs, and the non-Fermi liquid aspects of the pairing pseudogap

phase.

The advent of ultracold atoms:

The rapid advancement of the experimental techniques of cooling and optical/magnetic trapping

of dilute atomic gases in the late 90’s and early 2000’s dramatically changed the status of the AFG

model. Instead of being a caricature for electronic superconductors or a model describing dense

and nearly inaccessible states of matter such as the quark-gluon plasma and neutron stars, the AFG

model achieved the status of arguably one of the most realistic models in the history of condensed-

matter physics for a system realizable on a table-top setup and amenable to extensive experimental

1The idea of magnon exchange dates back to the works of Berk and Schrieffer [121], and Anderson and
Brinkman [122] in the context of the effect of magnetic correlations in BCS-type superfluids, and the anisotropic pairing
in 3He.
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scrutiny. The creation of a strongly interacting atomic Fermi gas was first reported in 2002 by the

group at Duke University [5] and ENS Paris [123] using an ultracold gas of 6Li atoms.

Having simple hydrogen-like atomic structures, the internal state of alkali atoms can be easily

manipulated and controlled and are therefore the elements of choice for such experiments. A

typical gas of ultracold alkali atoms consists of about 105 ≥ 109 atoms in their ground state and

has a density of 1012 ≥ 1015 cm≠3. While this is many orders of magnitude less dense than air, the

gas can be cooled down to such low temperatures that it reaches the quantum degenerate regime

where the thermal de Broglie wavelength ⁄T © (2fi~2/mkBT )1/2 is of the same order of the

average interatomic distance n≠1/3. The quantum degeneracy requires T ¥ 1 ≥ 100 nK range for

the densities mentioned above and this is achieved using a combination of sympathetic, laser and

evaporative cooling methods [9]. The thermal energy of atoms in the nK range is several orders of

magnitude smaller than the hyperfine splitting (which is in the mK range), so that the spin structure

of the atoms will remain undisturbed during collisions. Therefore, the ultracold atoms behave

as composite particles with well-defined bosonic or fermionic statistics depending on their total

hyperfine number.

The interatomic potential is well approximated by a zero-range contact interaction in dilute alkali

gases. The range of the Van der Waals interatomic potential r0 ≥ 50a0 is negligible compared to the

de Broglie wavelength ⁄T and the mean interparticle distance n≠1/3 ≥ 104a0 (here, a0 ¥ 0.53 Å is

the Bohr radius). Furthermore, the binary collisions in the nK temperature regime is dominated by

the s-wave (l = 0) scattering channel since the atoms can not overcome the centrifugal barrier for

non-zero angular momentum scattering. The properties of the system is universal is this regime, i.e.

independent of the details of the interatomic potentials, and the interactions are parametrized using
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the s-wave scattering length as defined as:

as © ≠ lim
kæ0+

”0(k)/k, (4.2)

where ”0(k) is s-wave scattering phase shift. By regarding the two different hyperfine states

of fermionic atoms as ø and ¿ states, the atomic gas will be accurately described by the AFG

Hamiltonian. We will discuss the renormalization of the bare interactions appearing in Eq. (4.1) in

terms of as in the next section.

An important factor in achieving nK temperatures is isolating the gas from the material walls

using optical or magnetic trapping. Because of their complete isolation these ultracold gases are,

unlike solid-state systems, very clean in the sense that there are essentially no impurities unless

deliberately added. The physical basis of the magnetic trapping is the Zeeman coupling of the

electronic and nuclear spins to a spatially varying magnetic field. Magnetic trapping is usually used

only during the laser cooling phase in experiments with fermionic atoms, after which the atoms are

transferred to an optical trap [9].

The physical origin of the optical confinement of atoms is the dipole force Fdip =

–(ÊL)/2 Ò[|E(r)|2] due to a spatially varying ac Stark shift the atoms experience in an off-resonant

light field [124]. The direction of the force depends on the sign of the polarizability –(ÊL), where

ÊL is the laser frequency. In the vicinity of an atomic resonance from the ground state |gÍ to an

excited state |eÍ at frequency Ê0, the polarizibility has the form |Èe|d̂
E

|gÍ|2/[~(Ê0 ≠ ÊL)], with

d̂
E

being the dipolar operator along the direction of the electric field. Atoms are thus attracted to

the nodes or the anti-nodes of the laser intensity for blue- (ÊL > Ê0) or red-detuned (ÊL < Ê0)

laser light, respectively. A spatially varying laser intensity profile I(r), therefore, creates a trapping

potential for the neutral atoms. Provided that the detuning � = ÊL ≠ Ê0 is small compared to

the transition frequency Ê0 and large compared to � the decay rate of the excited state, the time-
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Figure 4.2: (a) The energy splitting of 6Li in a magnetic field. The lowest two hyperfine states
|F, mf Í = |1/2, ±1/2Í are used as | øÍ and | ¿Í states. The projection of the electronic spin in both
states is mainly along the mS = ≠1/2 state for large magnetic fields. (b) A schematic plot of the
Born-Oppenheimer potentials in the triplet (VT ) and singlet (VS) channels. The scattering pairs enter
primarily in the triplet (open) channel for large magnetic fields. The hyperfine splitting introduces a
small coupling to the singlet (closed) channel. The existence of a bound state in the closed channel
will modify the scattering properties of the particles in the open channel. (c) The magnetic moment
of scattering pairs in the triplet and singlet channel differs by an amount �µ. Changing the magnetic
field shifts the threshold energies of the triplet (‘T ) and singlet (‘S) channels and consequently, the
energy difference of the closed channel bound state �Eb(B) with respect to the triplet threshold
energy. The Feshbach resonance occurs at the field strength B0 where �Eb(B0) = 0.

averaged optical potential can be written as V (r) = (3fic2�)/(2Ê3
0�) I(r) [124]. The shape of the

laser intensity I(r) can be engineered by combining several laser beams. Expanding I(r) about its

minimum for a red-detuned laser field, one obtains an approximately harmonic optical potential:

V (r) = V0 + 1
2 m

1
Ê2

x x2 + Ê2
y y2 + Ê2

z z2
2

. (4.3)

The above equation defines the trap frequencies (Êx, Êy, Êz) along the three axes. In practice, the

accessible trap frequencies lie in the range 1 ≥ 100 Hz in experiments with 6Li and 40K atoms.

Unlike the electronic systems, ultracold atomic gases have a remarkable feature that the strength

of attraction between the fermions can be tuned arbitrarily using magnetic field induced Feshbach

resonances. The principal idea behind the Feshbach resonance is explained in Fig. 4.2. In brief,
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the hyperfine splitting couples the “incoming” (open) scattering channel, i.e. the spin configuration

that is adiabatically connected to the internal state of a well-separated scattering pair, to closed

scattering channels, i.e. the spin configurations that have higher asymptotic energies and inelastic

decay of the incoming particles into them is energetically forbidden. The presence of a bound state

in a closed scattering channel will modify the s-wave scattering length in the open channel (cf. the

caption of Fig. 4.2 for details). The dependence of the open channel as on the magnetic field B near

a Feshbach resonance can be generally written as:

as = abg

3
1 ≠ �B

B ≠ B0

4
, (4.4)

where abg is the so-called background s-wave scattering length and is the scattering length in the

open channel in the absence of the Feshbach resonance, and �B is the width of the resonance2. By

sweeping the magnetic field across a Feshbach resonance at B0, as can be in principle tuned to any

value between ≠Œ and Œ. Positive scattering lengths are obtained when the detuning of the energy

of the close channel bound state �Eb(B) is negative and result in the emergence of a real bound

state with energy ‘b = 1/(ma2
s) in the open channel.

In 2003, the JILA group demonstrated the formation of stable diatomic molecules of an ul-

tracold Fermi gas of 40K [125] in their ground state, followed by three groups working with

6Li [126, 127, 128]. Later that year, three groups reported the achievement of BEC of such ul-

tracold molecules [129, 130, 131]. The radio-frequency (rf) spectroscopy of fermionic pairing was

done along the BCS-BEC crossover [132] in 2005. After several pieces of experimental evidence

provided by different groups, the final proof of superfluidity in strongly interacting Fermi gases

was provided by the MIT group in 2005 [133], where vortices and vortex arrays was observed in a

2There generally exists several Feshbach resonances corresponding to the crossing of different closed channel bound
states. The Feshbach resonances are generally categorized into wide and narrow resonances depending on whether the
effective range of the induced resonance is small or comparable to the interparticle spacing, respectively. Clearly, the
universal physics depends on the zero-range limit of interactions and therefore, wide Feshbach resonances. An ultracold
gas of 6Li atoms composed of |F, m

f

Í = |1/2, ≠1/2Í and |1/2, 1/2Í hyperfine states has a wide Feshbach resonance at
B = 834.15 G and a narrow resonance at B = 543 G.
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strongly interacting Fermi gas in various interaction regimes.

The BCS-BEC crossover in d = 3

Figure 4.3: The global phase diagram of the attractive Fermi gas in d = 3 as a function of tem-
perature and inverse scattering length. TF = (3fi2n)2/3/(2mkB) is the Fermi temperature and
kF = (3fi2n)1/3 is the Fermi momentum. The figure is based on the non-self-consistent T-matrix
analysis of Ref. [134]. The QMC analysis can be found in Refs. [135, 136].

A prominent aspect of ultracold atoms is the unprecedentedly precise experimental probing tech-

niques that were developed along the way within the past decade, including the various time-of-

flight imaging techniques [9], in-situ imaging with single atom resolution [10], measurement of

transport properties via collective modes in traps [11], measurement of the equation of state, and the

momentum-resolved radio-frequency (rf) spectroscopy of the single-particle spectral function [137].

The combination of extensive experimental data along with extensive analytical and numerical anal-

yses has culminated in an exhaustive understanding of the physics of the AFG model in d = 3.

The global phase diagram of AFG in d = 3 is shown in Fig. 4.3. The qualitative understanding

of the phase diagram is provided by picture of a BCS-BEC crossover [138]. When the attraction
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between fermions is weak (BCS limit: as < 0, and |kF as| π 1), the system is a weakly interacting

Fermi gas. Its ground state is superfluid by the BCS mechanism, i.e. a condensate of weakly bound

Cooper pairs. On the other hand, when the attraction is strong (BEC limit: as > 0, kF as π 1),

the fermions form real bound states (molecules) and the system becomes a weakly interacting Bose

gas of such molecules. Its ground state again exhibits superfluidity, but by the condensation of

the tightly bound molecules. These two regimes are smoothly connected without phase transitions,

which implies that the ground state of the system is a superfluid at all couplings. Both BCS and BEC

limits can be understood quantitatively by using the standard perturbative expansion in terms of the

small parameter |kF as| π 1. In contrast, a strongly interacting regime exists in the middle of the

BCS-BEC crossover, where the scattering length is comparable to or exceeds the mean interparticle

distance, |kF as| ≥ 1. In particular, the limit of infinite scattering length, which is often called the

unitarity limit, has attracted intense attention by experimentalists and theorists. The ground state

properties of the unitary Fermi gas is solely determined by its density, and therefore, the system

becomes scale- and conformal-invariant in this limit [139] and is amenable to novel non-perturbative

field theoretical treatments [140].

Another interesting property of the AFG is the presence of a pairing pseudogap regime

below a crossover temperature T ú and above Tc, where the spectral function exhibits gap-like

features, resembling the pseudogap regime of the high-Tc compounds. The lack of phase co-

herence of the pre-formed pairs in this regime due to thermal fluctuations results in the absence

of a condensate. The existence of the pseudogap has been experimentally confirmed using

momentum-resolved rf spectroscopy [137]. The pseudogap in the spectral function evolves

continuously to the superconducting gap as the temperature is lowered to below the condensation

temperature Tc. The characteristic temperature of the pseudogap asymptotically merges to

Tc on the BCS side, whereas T ú grows unboundedly like the binding energy ‘b = 1/(ma2
s)

on the BEC side. Deep in the BEC side and in the temperature window Tc < T < T ú, the
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system is described as a weakly interacting composite Bose liquid made of fermionic pairs. On the

other hand, the system is described as a normal Fermi liquid for T > Tc ≥ T ú deep in the BCS side.

The measurement of transport properties within the BCS-BEC crossover has played an instru-

mental role in revealing the nature of the system in various regimes. Collective modes have been

studied very early in atomic BEC research, both in experiments [102, 103] and in theory [104].

Measurements on collective oscillations have proven powerful tools for the investigation of various

phenomena in atomic BECs [105, 106, 107, 108, 109]. Building on this rich experience, collective

modes attracted immediate attention to study strongly interacting Fermi gases [110, 33, 34] as soon

as these systems became experimentally available. In fact, the first experimental evidence for the

presence of strong resonant interactions in 6Li was provided by showing hydrodynamic behavior in

the time-of-flight expansion of the trapped gap [5].

To understand collective modes in a Fermi gas, it is useful to distinguish between two different

dynamical regimes:

• The collisionless (CL) regime: this regime is achieved in two distinct limits. (1) in a weakly

interacting degenerate Fermi gas (BCS side, T > Tc), the elastic collisions are effectively

suppressed due to the Pauli blocking of the final scattering states. The typical oscillation

frequency of elementary excitations of the trapped gas is set by the trap frequency Êtrap. Pro-

vided that Êtrap ∫ ·c (where ·c is the average time between two collisions), the system will

undergo several coherent oscillations before being appreciably affected by collisional damp-

ing. (2) deep in the BEC side (as > 0, kF as π 1) and for T > Tc, the system is described as

a weakly interacting Bose liquid. The scattering cross section is ‡ Ã a2
s and is negligible for

large binding energies ‘b = 1/(ma2
s). In both cases, the elementary particle-like excitations

(free fermions, or deeply bound composite bosons) perform independent oscillations in the

trapping potential and the ensemble shows decoupled oscillations along the different degrees
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of freedom with frequencies that are twice the respective trap frequencies, save for small cor-

rections due to weak residual interactions. In the ideal collisionless limit, no heat is generated

and the collective oscillations are dissipationless.

• The hydrodynamic (HD) regime: this regime is also achieved via two distinct mechanisms.

(1) A superfluid is formed for T < Tc. For sufficiently low temperatures (T π Tc), the non-

condensed fraction is small and the evolution of the condensate is described by the Gross-

Pitaevskii (GP) equation [141]. The latter bears the character of ideal hydrodynamics. (2) the

presence of fast collisions ·≠1
c ∫ Ê0 in the strongly interacting normal state (|kF as| . 1,

T > Tc) results in the local equilibration of each segment of the gas in the trap. The evo-

lution of the local thermodynamical quantities (temperature, particle and energy density) is

governed by viscous hydrodynamic equations as mentioned in Sec. 2.4. In the hypothetical

extreme limits, T = 0 in case of superfluidity and ·≠1
c = Œ in case of collision-induced

hydrodynamics, the viscosity identically vanishes and the oscillations are undamped and dis-

sipationless. An interesting consequence of harmonic traps is the emergence of the so-called

hydrodynamical surface modes which have universal frequencies independent of the equation

of state of the gas [100]. A general demonstration of this fact is given in Appendix. B.1.

The universal frequency of such modes is often used as the experimental indication for the

hydrodynamic regime.

Except for the above extreme limits, the collective oscillations are generally affected by collisions,

which lead to dissipation and damping. The dissipation is the largest within the transition windows

between the collisionless and hydrodynamic regimes.

The various collective oscillation modalities of an ultracold gas in an anisotropic optical trap

may be classified according to their symmetry. Much of the experiments on the AFG in d = 3 are

done in cigar-shaped optical traps V (r) = (m/2)[Ê2
z z2 + Ê2

‹(x2 + y2)] [11, 9]. The low-lying
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oscillation modalities in a long cigar-shaped trap are the axial mode (monopole oscillations

along the z-axis), the radial breathing mode (monopole oscillations in the xy-plane), the radial

quadrupole mode (quadrupole oscillations in the xy-plane), and the scissors mode (oscillation

about an axis in the xy-plane). The mode of one’s choice is easily excited by perturbing the trap

potential momentarily according to the symmetry of the mode. The ensuing oscillations of the

trapped gas can be measured with remarkable accuracy (with relative errors as low as 10≠3 [76])

by absorption imaging. The measurement of the frequency and damping of different collective

oscillation modes and subsequently fitting the data to the predictions of the viscous hydrodynamic

equations can be used to extract important kinetic coefficients such as bulk viscosity ’, shear

viscosity ÷ and thermal conduction Ÿ. The possibility of carrying out such precision measurements

makes such experiments ideal for testing the predictions of the many-body approximations.

Figure 4.4: (a) A schematic diagram of the dynamical regimes of the scissors mode of the trapped
attractive Fermi gas. The white regions denote collisionless (CL) dynamics whereas the grey re-
gion corresponds to the strongly interacting normal gas and is hydrodynamical (HD). The normal-
superfluid transition of the trapped gas is based on Ref. [142]. The grey region is based on the
measurement of the scissors mode given in Ref. [143] about the B = 834 G Feshbach resonance
of 6Li. (b) The schematic behavior of the frequency �sc. and (c) the damping �sc. of the scissors
mode upon sweeping the scattering length across the Feshbach resonance in the normal state along
the dashed line shown in (a). The red regions correspond to the CL-HD transitions within which the
dissipation is most appreciable.
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Fig. 4.4 shows a schematic plot of the dynamical regime of the scissors mode in a typical exper-

iment (ref. to the caption for more details). Upon sweeping the magnetic field across the Feshbach

resonance at a constant temperature above Tc, the gas passes through various regimes: from the col-

lisionless (CL) Fermi gas to the strongly interacting hydrodynamical (HD) pseudogap regime and

finally to the collisionless normal Bose gas. The oscillation frequency in the CL and HD regimes are

¥ 2Ê0 and ¥
Ô

2Ê‹ (e.g. cf. Refs. [144, 145]). During the sweep, the system experiences two CL-

HD crossovers and hence, two peaks in the damping rate �sc. as shown in panel (c). The oscillation

frequency is shown in panel (b). We note that the same behavior is expected for all other modes that

induce a shear flow and hence, measure the sheer viscosity ÷, such as the radial quadrupole mode.

The behavior of radial breathing mode, which is mainly affected by the bulk viscosity ’, is different

due to the scale invariance of the gas at unitarity and the associated vanishing of ÷ [139, 146].

Ultracold quantum gases in reduced dimensions

A salient feature of experiments with ultracold gases is the possibility of a clean realization of

low-dimensional quantum gases. The principal idea is to slice the trapped gas using an optical

lattice. An optical lattice is created either using a single mirror-reflected laser beam or two counter-

propagating laser beams to generate a standing wave. The spatially-varying intensity of the standing

light field results in an oscillating ac Stark shift potential and traps the atoms into a stack of thin

pancakes as shown in Fig. 4.5. The total optical potential is the sum of the standing laser potential

and the optical trap potential:

V (r) = 1
2mÊ2

zz2 + 1
2 Ê2

‹(x2 + y2), (4.5)

where it is assumed that the optical lattice is along the z-axis and the optical trap is isotropic. Large

transverse trap frequencies Êz of the order of 2fi ◊ 100 kHz can be generated using µm wavelength

lasers such that Êz ∫ max{‘F , µ, kBT}. In this limit, only the lowest transverse band of each
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Figure 4.5: Slicing a trapped gas into pancakes using two counter-propagating laser beams. The
separation between the pancakes is half the wavelength of the lasers. The laser used in the University
of Cambridge experiments with 40K has a wavelength of ⁄ = 1064 nm focused to a waist of
140 µm [13, 18]. This setup yields approximately 30 pancakes each with about 5 ◊ 103 atoms.
Êz = 2fi ◊ 78.2 kHz and Ê‹ = 2fi ◊ 127 Hz. The Fermi energy of the central pancakes is
≥ 2fi ◊ 10 kHz and is about an order of magnitude smaller than Êz .

pancake is occupied. In other words, the mechanical motion of particles is frozen perpendicular

to the pancakes and the sliced gas can be thought of as a collection of genuinely two-dimensional

systems. The pancakes can be isolated from one another by suppressing the inter-layer tunneling

by increasing the intensity of the optical lattice. The same principle has been used to create one-

dimensional gases by slicing the pancakes into tubes using a second optical lattice and has led to a

clean physical realization of theoretical 1D models such as the Tonks-Girardeau gas [147].

The 2D attractive Fermi gas has been recently realized using the above technique with 6Li atoms

in 2010 by the group in the Institute of Applied Physics, Russian Academy of Sciences (Nizhniy

Novgorod) [148] and with 40K atoms by the group in the University of Cambridge [13, 18]. In

d = 2, the interactions are parametrized with the binding energy ‘b between the | øÍ and | ¿Í states.

The relation between the the two-dimensional binding energy ‘b and the s-wave scattering length

is found by solving the two-body problem in a 2D harmonic potential [149, 150, 151, 152] and is

given by the solution of the following transcendental equation:

lz
as

=
⁄ Œ

0

dxÔ
4fix3

A

1 ≠ exp(≠‘bx/(~Êz)


(1 ≠ exp(≠2x))/(2x)

B

, (4.6)

where lz = [~/(mÊz)]1/2 is the oscillator length along the z-axis. It is customary to parametrize
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the interaction strength using the dimensionless quantity:

÷ © ln(kF a2) = 1
2 ln(2‘F /‘b), ‘F =

Ô
2fin, a2 = 1/

Ô
m‘b. (4.7)

Large positive and negative ÷ corresponds to the weak-coupling ‘b π ‘F and ‘b ∫ ‘F regimes,

respectively. The global phase diagram of the homogeneous and trapped AFG in d = 2 has been

theoretically investigated in Refs. [153, 154, 155] using the non-self-consistent T-matrix approxi-

mation and the findings are qualitatively similar to the phase diagram of the d = 3 AFG shown

discussed earlier (cf. Fig. 4.3). At zero-temperature, the QMC analysis has been carried out in

Ref. [156]. The major differences between d = 3 and d = 2 are the shift of the superfluid transition

to lower temperatures due to stronger thermal and quantum fluctuations in d = 2, and the change of

the universality class of superfluid transition to the Berezinskii-Kosterlitz-Thouless (BKT). We will

discuss these nuances in detail in the forthcoming sections.

The existence of the pairing pseudogap in near ÷ ¥ 0 has been experimentally demonstrated

by the group in the University of Cambridge [13] using momentum-resolved rf spectroscopy

technique. Experiments on the collective oscillation of the trapped has been carried by the same

group [18, 157]. In particular, the quadrupole oscillations is found to exhibit the behavior shown in

Fig. 4.4.

The theoretical literature on collective oscillations of trapped Fermi gases is vast, in particular, in

three dimensional. These contributions can be categorized into two main classes, the studies focus-

ing on the HD regime [158, 159, 160, 161, 162, 163, 164], and the studies based on the quasiparticle

Boltzmann equation. Refs. [165, 98, 166, 167, 168, 144, 145, 169, 170, 171, 102, 107, 172] have

addressed this problem in d = 3 and more recently, Refs. [83, 81, 84, 157] has repeated similar

analyses for the d = 2 case.

Both of these approaches, i.e. the quasiparticle Boltzmann equation and the ideal HD equations,
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have limited domain of applicability and neither provide a globally valid description of the

collective dynamics. The ideal HD limit is only relevant to low-temperature (T π Tc) superfluids,

and approximately to the strongly interacting normal state. Even in these limits, the rarefied gas

near the edge of the trap is in a normal weakly interacting state and can not be treated as being

hydrodynamical. On the other hand, the studies based on the quasiparticle Boltzmann equation

are only valid when well-defined fermionic quasiparticles exist and constitute the elementary

excitation of the system. While this approach qualitatively explains the CL-HD transition from the

weak-coupling side, it breaks down upon entrance to the strong-coupling regime where the Fermi

surface is destroyed and the bosonic degrees of freedom emerge.

Our main goal in this chapter to present a systematic derivation of the quantum kinetic equa-

tions of the AFG in d = 2 and d = 3 within the self-consistent T-matrix approximation (SCTMA).

The kinetic equations to be derived surpass the quasiparticle approximation and constitute an exact

kinetic expansion of the Kadanoff-Baym equations within the SCTMA. We will show that the ob-

tained equations provide a globally valid description of the transport of the AFG model: they reduce

to the collisionless Boltzmann-like equation of fermionic quasiparticles in the weak-coupling limit,

the hydrodynamical equations in the strongly interacting regime, and back again to the collisionless

Boltzmann-like equation describing the dynamics of free composite bosons (bound fermions) in the

strong-coupling limit.

This chapter is organized as follows. We start with a brief review of the physics of pairing

fluctuations from the perspective of Ginzburg-Landau and Nozières-Schmitt-Rink (NSR) theories

in Sec. 4.2. We discuss the generalization of the self-consistent T-matrix approximation to non-

equilibrium states and the regularization of the contact interaction in Sec. 4.3. The linear response

theory of the AFG within the T-matrix approximation is discussed from a diagrammatic perspective

in Sec. 4.4. We derive the quantum kinetic equations corresponding to the T-matrix approximation
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in Sec. 4.5 and discuss the numerical technique for solving the obtained equations in confined ge-

ometries. The numerical results and comparison to the existing literature is discussed in Sec. 4.6.6.

Conserving approximations beyond the SCTMA are discussed in Sec. 4.7. We finally summarize

the results and discuss the outlook of our analysis in Sec. 4.8.

4.2 The many-body theories of pairing flucations

The qualitative behavior of the AFG and the problem of the BCS-BEC crossover was briefly

discussed in the introductory remarks. In this section, we give a more detailed account of the

prominent theoretical approaches to this problem with emphasis on the new features of d = 2. The

covered topics include the BCS theory, the Ginzburg-Landau approach and the Nozières-Schmitt-

Rink (NSR) theory.

4.2.1 Preliminaries

The Hamiltonian given in Eq. (4.1) with a proper UV regularization constitutes the microscopic

model for a two-component attractive Fermi gases in the vicinity of a broad s-wave Feshbach reso-

nance. As it stands, the contact interaction in Eq. (4.1) leads to UV divergences in particle-particle

loops in spatial dimensions d Ø 2. The the divergences can be regulated by imposing a UV cutoff

�. The cutoff-dependent microscopic coupling constant ⁄ must be subsequently traded with the

renormalized quantities as in d = 3 or ‘b in d = 2 while taking the zero-range limit � æ Œ.3

In this section, we define the regulated AFG Hamiltonian. The discussion of renormalization is

postponed until Sec. 4.3 where the T-matrix approximation is discussed. In order to keep the dis-

cussion general, we allow the different spin states to have different masses and define the following

3This task can be streamlined using the zero-range Fermi-Huang pesudopotential [173, 174]. Here, we adopt the more
transparent method of momentum-space regularization.
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auxiliary quantities:

mred © (mø m¿)/(mø + m¿), mtot © mø + m¿,

÷ø © mø/(mø + m¿), ÷¿ © m¿/(mø + m¿). (4.8)

If a scattering pair has a total center-of-mass momentum of q and a relative momentum of 2k in

the center-of-mass frame, their momenta in the lab frame can be expressed as pø = ÷øq + k and

p¿ = ÷¿q ≠ k. Quite generally, an arbitrary two-body interaction term in the Hamiltonian can be

written as:

Hint =
⁄ ddq

(2fi)d

ddk
(2fi)d

ddkÕ

(2fi)d
W (q; k, kÕ) �†

ø(÷øq + k) �†
¿(÷¿q ≠ k) �¿(÷¿q ≠ kÕ) �ø(÷øq + kÕ),

(4.9)

where q is the center-of-mass momentum of the interacting pairs, and k and kÕ denote the relative

momentum of outgoing and incoming pairs. Galilean invariance requires W to be independent of

q. A short-range interaction can be modeled conveniently using the following separable choice for

W (q; k, kÕ) [138, 175, 176]:

W (q; k, kÕ) = ⁄� w̃�(k) w̃�(kÕ), (4.10)

where ⁄� is the coupling constant and w̃�(k) is a soft and isotropic regulator function with a real-

space range of ≥ 1/�. The Hamiltonian in the real space reads as:

H =
ÿ

‡=ø,¿

⁄
ddx �†

‡(x)
C

≠ Ò2

2m‡
≠ µ‡ ≠ U‡(t, x)

D

�‡(x) + ⁄�

⁄
ddR

⁄
ddx

⁄
ddxÕ w�(x)

◊ w�(xÕ) �†
ø (R + ÷¿x) �†

¿ (R ≠ ÷øx) �¿
!
R ≠ ÷øxÕ" �ø

!
R + ÷¿xÕ" , (4.11)

where:

w�(x) ©
⁄ ddk

(2fi)d
w̃�(k) eik·x. (4.12)

Setting w̃�(k) = 1 takes us back to the Hamiltonian in Eq. (4.1). We will show later that the above

model Hamiltonian is free of UV divergences provided that |w̃�(k)| falls faster than k1≠d/2 for

large k.
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The cut-off dependent microscopic interaction strength ⁄� has to be chosen such that the result-

ing low-energy effective theory of the model matches that a gas with zero-range interactions. In

d = 3, this amounts to requiring that the low-energy expansion of the on-shell T-matrix in vacuum

assumes the following s-wave form:

(d = 3) : T (E) = 2fi

mred

5 1
as

+ i


2mredE + O(E)
6≠1

, (4.13)

where E is the energy of the scattering pair in the center-of-mass frame. In d = 2, the low-energy T-

matrix is characterized by the the binding energy ‘b and is given by the following expression [150]:

(d = 2) : T (E) = 2fi

mred

Ë
ln(≠‘b/E+) + O(E)

È≠1
. (4.14)

This discussion will be continued in Sec. 4.3 where the self-consistent T-matrix approximation is

introduced.

4.2.2 The zero-temperature analysis: the BCS wave function

The BCS theory provides a simple and intuitive model of the attractive Fermi gas at zero tem-

perature. At T = 0, complications due to thermal fluctuations are absent and the mean-field theory

yields a physically appealing picture of the evolution of the system from the weak- to the strong-

coupling limit.

Let us first consider the strong-coupling limit first, i.e. when the binding energy ‘b is much larger

than ‘F Ã nd/2. In this limit, all of the fermions are paired into singlet bound states. The energy

dispersion of the bound-state is given by Ê
q

= ≠‘b + q2/(2mtot) and the corresponding creation

operator of this composite bosonic particle is:

b†
q

©
ÿ

k

„
k

c†
k+q/2,ø c†

≠k+q/2,¿, (4.15)

where „
k

is the internal wavefunction of the bound state, extending over a characteristic length

›pair ≥ ‘≠1/2
b . If two bound pairs have only a small overlap, i.e. n1/d›pair π 1, the bound pairs
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can be treated as a free gas of point-like bosons whose internal orbital structure is irrelevant. One

expects the system to undergo a Bose-Einstein condensation into a single quantum state with total

momentum q = 0 when the pair chemical potential, µpair © 2µ, reaches the bottom of the bound

state band, i.e. for µpair = ≠‘b. Neglecting the overlap between the pairs, the ground state is

simply:

|�SCÍ = exp
3Ò

N/2 b†
q=0

4
|0Í. (4.16)

Here, N is the total number of fermions and |0Í is the zero-particle vacuum state. The occupancy

of the fermion state at momentum k is n
k

= (N/2)|„
k

|2. As long as n1/d›pair π 1, |„
k

| π 1 and

consequently n
k

π 1, so that the fermion exchange corrections are immaterial.

This picture changes dramatically when n1/d›pair Ø 1. The bound pairs overlap and fermion ex-

change becomes an important ingredient of the picture. Since the Pauli exclusion principle imposes

n
k

< 1, n
k

saturates and the internal wave function extends further out in the momentum space in

order to accommodate the large number of particles. In this weak-coupling limit, the suitable wave

function is that of a free Fermi gas:

|�WCÍ =
Ÿ

k

c†
k,ø c†

≠k,¿|0Í. (4.17)

In d Æ 2, the attractive potential always admits a real two-body bound state in the singlet l = 0

(s-wave) channel. For d = 3, a real bound state is only present when the interactions are strong, as

indicated by a positive s-wave scattering length. The celebrated BCS theory [109] shows that even

in d = 3, the weak attraction in the weak-coupling limit gives rise to a superconducting instability

due to Pauli blocking of the k < kF states. The ground state is described well by the usual mean-

field BCS wave function:

|�BCSÍ =
Ÿ

k

(u
k

+ v
k

c†
k,ø c†

≠k,¿)|0Í. (4.18)

Here, n
k

= |v
k

|2 = 1 ≠ |u
k

|2 is slightly smeared near the Fermi level. Superconductivity may

be viewed as Bose condensation of weakly bound Cooper pairs. Indeed, the wave function of the
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BEC of composite bosons in the strong-coupling limit may be thought of as a BCS state with the

choice [138]:

v
k

=


N/2 „
k

(1 + (N/2) |„
k

|2)1/2 . (4.19)

The ground state goes smoothly from one limit to the other. In the strong-coupling limit, v
k

¥


N/2 „
k

π 1 reflects the internal structure of the pairs. In the weak-coupling limit, binding is a

cooperative phenomenon in the vicinity of the Fermi surface (the Cooper pair radius is much larger

than the inter-particle spacing), but the structure of the wave function is the same, characteristic

of Bose condensation. We note that this point is crucial in treating pairing correlations: it is only

because all pairs have the same momentum q = 0 that we can describe them in terms of the mean-

field order parameter Èc†
k,øc†

≠k,¿Í. Such a simplifying feature no longer holds at finite temperature.

Let us explore the implications of the BCS wavefunction for intermediate couplings. Let

›
k

© k2/(2m) ≠ µ be the dispersion of free fermions measured from the chemical potential. The

superconducting gap �
k

=
q

k

Õ W (k, kÕ) Èc†
k,øc†

≠k,¿Í obeys the BCS gap equation:

�
k

=
ÿ

k

Õ
W (k, kÕ) �

k

Õ

2›
k

Õ
(1 ≠ n

k

Õ), (4.20)

where n
k

is the fermion distribution in the ground state:

n
k

= 1
2

C

1 ≠ ›
k

(›2
k

+ �2
k

)1/2

D

. (4.21)

The chemical potential is fixed by requiring:

ÿ

k

n
k

= N. (4.22)

Introducing the function „̃
k

= �
k

/(›2
k

+ �2
k

)1/2, we can write the gap and number equations as:

A
k2

2mred
≠ 2µ

B

„
k

= (1 ≠ 2n
k

)
ÿ

k

Õ
W (k, kÕ) „̃

k

Õ , n
k

= 1
2

5
1 ≠

Ò
1 ≠ |„̃

k

|2 sign(›
k

)
6

.

(4.23)
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In the strong-coupling limit, the above equation reduces in the leading order to:

(k2/m ≠ 2µ) „̃
k

=
ÿ

k

Õ
W (k, kÕ) „̃

k

Õ , (4.24)

which is just the Schrödinger equation for a single bound pair. The 2µ plays the role of the eigen-

value; hence, to leading order, µ = ≠‘b/2. Also, to leading order, N = (1/2)
q

k

|„̃
k

|2, so that

„̃
k

= 2


N/2 „
k

as expected. In summary, we find that mean-field theory correctly describes

Bose condensation of strongly bound composite pairs and provides a simple interpolation scheme

between a non-interacting Fermi gas to a BEC of composite bosons at T = 0.

4.2.3 The Ginzburg-Landau approach

The simple BCS mean-field theory, while efficient and economical, does not satisfactorily

extend to finite temperatures in the strong coupling limit. In fact, as briefly mentioned above,

the only reason the BCS theory applies to the strong-coupling limit at T = 0 is that the bound

states occupy the same q = 0 state while finite momentum bosonic states are left unoccupied.

At finite temperatures, collective excitations, in particular motional degrees of freedom of the

bound pairs, becomes important. In fact, upon heating the system in the strong-coupling regime,

the superfluidity is destroyed due to the proliferation of thermal excitation of collective modes

(in contrast to the weak-coupling regime, where the normal state is recovered by pair breaking).

Collective excitations are beyond the grasp of a BCS-like mean-field theory and a successful

description of the system requires taking pairing correlations into account. There exists a vast

literature on the physics of pairing fluctuations and a complete review is beyond the scope of our

work. In this section, we give a brief account of the simplest theories to the extent that is required

for the forthcoming developments. We momentarily switch to the Matsubara formalism to make

contact with the existing literature, the vast majority of which only address systems in thermal

equilibrium. We will also consider a ”-interaction (i.e. w̃�(k) = 1) for simpler discussion and
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regularize the divergent loop integrals by imposing a UV momentum cutoff.

The simplest and most clear account of the physics of pairing fluctuations is obtained using

functional methods, which provide us with the Ginzburg-Landau (GL) functional for the system

using which phase transitions can be investigated, while a first flavor of the dynamics may also be

tasted. We loosely follow Refs. [153, 175] in this section. Consider the partition function of the

system in thermal equilibrium:

Z =
⁄

D[Â, Â̄] e≠—S[Â,Â̄],

S[Â, Â̄] =
ÿ

–=ø,¿

⁄ —

0

⁄
ddx Â̄–(x, ·)

A

ˆ· ≠ Ò2

2m
≠ µ

B

Â–(x, ·)

+ ⁄�

⁄ —

0

⁄
ddx Â̄ø(x, ·)Â̄¿(x, ·) Â¿(x, ·) Âø(x, ·). (4.25)

The interaction term can be decoupled by introducing a Hubbard-Stratonovich pairing field

�(x, ·) ≥ ⁄�Â¿(x, ·)Âø(x, ·). The fermions can be integrated out in the resulting quadratic

theory leading to the following fully bosonic partition function:

Z =
⁄

D[�, �ú] exp
C

1
⁄�

⁄ —

0
d·

⁄ ddq
(2fi)d

|�(q, ·)|2
D

L[�],

L[�] = Tr exp

S

U≠
⁄ —

0
d·

Q

a
ÿ

k,‡

›
k

c̄‡(k, ·) c‡(k, ·) +
ÿ

q

[�(q, ·)Bú(q, ·) + h.c.]

R

b

T

V , (4.26)

where c‡(k, ·) and �(q, ·) are Fourier transforms of Â‡(x, ·) and �(x, ·), respectively, and

B(q, ·) =
q

k

cø(≠k, ·)c¿(k + q, ·). Expanding the L[�] up to fourth-order in �, we find

Z = Z0
s

D exp (≠—SGL[�]), where Z0 = exp(≠—�0) is the partition function for free Fermions

and SGL is the GL functional:

SGL[�] = ≠
ÿ

i‹
n

⁄ ddq
(2fi)d

TMB,0(q, i‹n) |�(q, i‹n)|2 + b

2
ÿ

1,2,3
�(1) �ú(2)�(3)�ú(1 ≠ 2 + 3),

(4.27)
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where the integer indices stand for both momentum and Matsubara frequency, and b is given by:

b = 1
—

⁄ ddk
(2fi)d

[G0(k, iÊn) G0(k, ≠iÊn)]2 . (4.28)

Since we are interested in the low-energy behavior of the system, we have set the external momen-

tum and frequency of the effective four-boson interaction vertex b to zero. The ordering transitions

of the system in various regimes can be investigated by expanding TMB,0(q, i‹n) for small fre-

quency and momentum:

TMB,0(q, i‹n)≠1 = 1
⁄�

≠
⁄ ddk

(2fi)d

1 ≠ f(›
q/2+k

) ≠ f(›
q/2≠k

)
i‹n ≠ ›

q/2+k

≠ ›
q/2≠k

= c0 ≠ c1
q2

2m
+ c2i‹n + . . . (4.29)

For concreteness, with consider the d = 2 case which is of central interest for us. The un-

renormalized coupling ⁄� can be traded with ‘b, the binding energy of two particles in the singlet

state. The relation between ‘b, ⁄� and the UV cutoff � can be found by calculating the retarded

two-body T-matrix in the center-of-mass frame:

T2B(Ê)≠1 = 1
⁄�

≠
⁄ � ddk

(2fi)2
1

Ê ≠ |k|2/m + i0+ = 1
⁄�

+ N(0)
2 ln

3
1 ≠ 2�

Ê

4
, (4.30)

where N(0) = m/(2fi) is the 2D density of states (per spin). The inverse T-matrix vanishes at the

binding energy and we get:
1

⁄�
= ≠N(0)

2 ln
3

1 + 2�
‘b

4
. (4.31)

The coefficients (c0, c1, c2, d) can be calculated analytically in 2D by expanding the integral in

Eq. (4.29) for small ‹n and q while using the regularization equation Eq. (4.31). Such analytic

expressions are given in the Appendix D.1.
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The weak-coupling limit ‘b π ‘F :

Let us first consider the weak-coupling ‘b/‘F π 1, where µ ƒ ‘F = fin/m. Taking the

weak-coupling limit and assuming —µ ∫ 1, T-matrix assumes the following form:

T ≠1
MB,0(q, i‹n; ‘b/‘F π 1) = ≠N(0) ln

3
T

Tc

4
≠ N(0) 7’(3)‘F

8fi2T 2
q2

2m
+ N(0)

3 1
4‘F

+ i
fi

8T

4
i‹n.

(4.32)

We also find b = N(0)7’(3)—2/(8fi2). In the above expression, Tc © (e“/fi)
Ô

2‘F ‘b (“ is the

Euler’s constant), is the usual BCS critical temperature. The weak-coupling GL function can be

written directly using the above results:

SGL,WC[�] = 1
—

⁄ —

0

⁄
d2x

C

�ú(x, ·)
A

dWC ˆ· ≠ Ò2

4m
+ aWC

B

�(x, ·) + bWC
2 |�(x, ·)|4

D

,

(4.33)

where � ©


7’(3)n/(8fi2T 2
c ) � so that the kinetic term resembles that of a particle with mass

2m. The weak-coupling coefficients appearing above are given by:

aWC = 4fi2

7’(3)
T 2

c

‘F
ln T

Tc
, bWC = 4fi2

7’(3)
T 2

c

n‘F
, dWC = 4fi2

7’(3)
T 2

c

‘F

3 1
4‘F

+ ifi

8T

4
. (4.34)

Without that · derivative term, the above functional is the result given by Gor’kov [33]. aWC

changes sign at T = Tc and the GL energy is minimized by the symmetry broken phase È�Í =

|�0|ei„0 for T below Tc. Here, |�0| is the value the minimizes the static part of the GL functional

and „0 is arbitrary. Considering fluctuations around the mean-field solution, i.e. by taking the

ansatz � = (|�0| + ”fl) exp(i„0 + ”„), we find that the phase fluctuations are given by a Gaussian

term Ã |Ò”„|2 in the GL functional. In d = 2 and at finite T , such thermal phase fluctuations are

divergent in the infrared regime due to the celebrated Mermin-Wagner-Hohenberg theorem [177,

178, 179], and in fact, we find that the long-range order is destroyed. Nevertheless, by considering

topological vortex-antivortex fluctuations in the phase of the order parameter, one finds that the

exponential decay of correlations gives way to a slower algebraic decay at a temperature TBKT,
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known as the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature. For T > TBKT, the

superfluid density ns = |�|2 is renormalized to zero due to the proliferation of unbound vortex

and antivortex pairs, while for T < TBKT, the vortex-antivortex excitations will be bound and one

finds a finite ns(TBKT) = (2/fi)TBKT in the superfluid stiffness, known as the universal Nelson-

Kosterlitz jump [180]. In the weakly interacting regime Tc π ‘F , we find TBKT ƒ Tc(1≠4Tc/‘F ),

which asymptotically merges with the mean-field Tc [181].

The most important feature of the weak-coupling limit for our current purpose is the presence

of an imaginary part in dWC. Continuing the GL functional to real times, neglecting the forth-order

term and assuming T > Tc, we find a diffusion equation, ˆt� = DWCÒ2� for the order parameter,

where:

DWC = T

‘b

~
m

7’(3)
4e2“

. (4.35)

The above results indicates that in the normal state and in the weak-coupling regime, the dynamics

of the composite bosons is diffusive. In other words, bosonic fluctuations are short-lived and quickly

decay.

The strong-coupling limit ‘b ∫ ‘F :

Let us consider the strong-coupling (SC) limit, where ‘b/‘F ∫ 1. In this limit, the condition

c0 = 0 implies µ = ≠‘b/2 to leading order. In general, we assume µSC = ≠‘b/2 + µB/2, where

µB is a sub-leading correction to be determined. The many-body T-matrix assumes the form:

T ≠1
MB,0(q, i‹n; ‘b/‘F ∫ 1) = m

4fi‘b

A

i‹n + µB ≠ q2

4m

B

, (4.36)

to leading order in ‘F /‘b. Defining �B ©


m/(4fi‘b) �, the strong-coupling GL functional reads:

SGL,SC[�B] = 1
—

⁄ —

0

⁄
d2x

C

�ú
B(x, ·)

A

ˆ· ≠ Ò2

4m
+ µB

B

�B(x, ·) + g

2 |�B(x, ·)|4
D

, (4.37)

where g = b/c2
2 = 1/N(0) in the strong-coupling limit. Neglecting interaction term for the mo-

ment, the GL functional describes free bosons at the chemical potential µB . Therefore, we imme-
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diately identify µB ¥ µB,0, where µB,0 is chemical potential of free 2D Bose gas with a number

density n/2. We note that this strong-coupling behavior is in a striking contrast to the weak-coupling

behavior, where the bosonic fluctuations were found to have diffusive dynamics. The ideal Bose gas

undergoes a Bose-Einstein condensation (BEC) at TBEC = 4fin2/d [’(d/2)]≠2/d in d dimensions

and develops a long-range order. The BEC temperature is finite for d > 2 and the interaction effects

only lead to sub-leading corrections. The elementary excitations in the BEC regime are described

well by the Bogoliubov theory [182]: the dispersion is phonon-like for k . 2|µB|1/2 and free-

particle-like for k & 2|µB|1/2. Approaching d = 2 from above, TBEC ≥ 2fi(d ≠ 2)nd/2 and tends

to zero, which is consistent with the absence of long-range-order at finite T in d = 2 due to the

Mermin-Wagner-Hohenberg theorem [177, 178, 179]. The inclusion of interactions, however, leads

to a finite superfluid density in d = 2 below the BKT transition temperature, along with the forma-

tion of a quasi-condensate with quasi-long-range order. We note that È�BÍ is still strictly zero at

finite temperatures due to thermal phase fluctuations.

The problem of quasi-condensation of dilute Bose gas in d = 2 has been first studied at length

by Popov [183]. Fisher and Hohenberg [182] re-derived Popov’s diagrammatic results using a

renormalization group (RG) approach and have argued that this analysis is only valid in ultra-dilute

regime ln ln(1/“0) ∫ 1, where “0 © nBr2
0 with r0 being the range of the boson-boson interac-

tions. A quantitative estimate of TBKT with a less stringent diluteness condition has been obtained

more recently using QMC [184, 185, 186] and functional RG [187] techniques, culminating in the

following expression for the BKT transition temperature:

TBKT = 2finB

mB [ln(›/4fi) + ln ln(1/“0)] , (4.38)

where › = 380 ± 3 [184]. The above expression is valid in the dilute regime ln(1/“0) ∫ 1 and

reduces to the Popov result in the ultra-dilute regime. A simple and accurate account of the BKT

transition in the strong-coupling limit of the AFG can be obtained using the above expression by
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identifying mB = 2m, nB = n/2 and “0 = ‘F /‘b (the exact numerical factor in “0 is not important

due to the double logarithm). This problem has been studied earlier in Refs. [153, 188, 154, 189]

albeit in a crude manner by neglecting the renormalization of the superfluid density which leads to

a constant BKT transition temperature, independent of “0.

Keeping the quartic term into account, the GL functional describes non-relativistic bosons with

a contact interaction. The appearance of the contact interaction is in fact due to our careless treat-

ment of the boson-boson interaction term by approximately setting the external momenta to zero in

Eq. 4.28. The exact boson-boson interaction vertex is expected to be cut off at a UV momentum

scale determined by the size of the bound state wave function �B ≥ ›≠1
B ≥ (m‘b)1/2 (cf. Sec. 4.4).

Quantum fluctuations dramatically modify the effective interaction between the low-energy bosons.

This is most easily seen using a momentum-shell RG analysis. The RG flow equations are found us-

ing the standard momentum-shell integration procedure. In d spatial dimensions and for T = µ = 0,

the running of g is given by [182]:

dg

dl
= (2 ≠ d)g ≠ 4mB�d≠2

B 2≠dfi≠d/2 �(d/2) g2 + O(g3), (4.39)

where l is the RG scale factor related to the physical length scale as R = �≠1
B el. The first term is the

tree-level contribution whereas the second term is the one- particle-particle loop contribution [182].

In d = 2, the tree-level contribution vanishes and the the contact interaction is marginal. Integrating

the flow equation down to an energy scale E ≥ (�2
B/m)e≠2l, we find:

g(E) = g

1 + (mB/2fi) g ln[�2
B/(mBE)] . (4.40)

In the strong-coupling limit, �B æ Œ and consequently, g(E) æ 0 provided that E π ‘b. In other

words, the bosons are asymptotically free in the infra-red regime in d = 2. The above result can

be obtained using diagrammatic methods as well by summing the ladder diagrams in the particle-

particle channel. We will discuss this alternative approach in Sec. 4.4.
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Had it not been for strong quantum fluctuations in d = 2, g = 1/N(0) = 2fi/m even for tightly

bound bosonic molecules deep in the strong-coupling regime. The IR asymptotic freedom therefore

poses a useful merit test for many-body approximations of the AFG model in d = 2.

Intermediate couplings ‘b ≥ ‘F ≥ T :

So far, we only studied the GL functional in the weak-coupling and strong-coupling limits. An

important concept, widely discussed in the context of high-Tc superconductors, is the existence of

a pairing pseudogap regime in the intermediate coupling regime. The conventional picture, based

on mean-field ideas, is that in the weak-coupling regime, pairing and phase coherence happen at the

same temperature whereas in the strong-coupling regime, the pairing temperature T ú is set by the

binding energy ‘b ∫ ‘F while phase coherence (quasi-long-range order in d = 2) may occur at a

much lower temperature. In the latter case, the Fermi surface is destroyed well before superfluidity

occurs. In the intermediate-coupling regime, however, it is possible to retain aspects of both the

Fermi surface of weak-coupling and the preformed-pair ideas of strong coupling. In other words,

one expects to find an intermediate-coupling regime ‘b ≥ ‘F in which the superconducting gap is

not fully developed, in the sense there are long-lived pairs whose phase coherence is destroyed by

thermal and quantum fluctuations.

The spectral weight of fermions in the vicinity of the Fermi surface, while still finite, is

significantly reduced due to pairing fluctuations. The physics in the pairing pseudogap regime has

a strong flavor of both fermionic and bosonic degrees of freedom. Microscopically, the pairing

pseudogap is the regime in which the expectation value of the modulus of the order parameter,

È|�|Í, is finite yet its phase is fluctuating and delocalized. Since È|�|Í is not directly observable

quantity, there exists a certain extent of ambiguity in the exact criterion of pseudogap in the

literature. In practice, one must resort to observable manifestations of the pseudogap such as thte

reduced spectral weight and density of states of fermions.
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With this brief review of the GL approach and the general physical picture of the AFG in d = 2,

we turn to to the description of the system in a purely fermionic language using Green’s functions.

The latter approach provides us with important observable quantities, such the fermionic spectral

function, using which the physics of weak-coupling to pseudogap to strong-coupling can be studied.

In the next section, we review the simplest of such theories proposed by The Nozières and Schmitt-

Rink [138].

4.2.4 The Nozières-Schmitt-Rink (NSR) theory

The simplest theory that successfully describes the crossover from the weak-coupling fermionic

regime to the strong-coupling bosonic regime in the normal state was given by The Nozières and

Schmitt-Rink (NSR) [138]. While it was originally proposed for AFG in d = 3, it was later gen-

eralized to two dimensions [190, 153]. The NSR theory is reminiscent of the self-consistent para-

magnon exchange theories in metals. The basic idea is that the effect of pairing fluctuations in the

normal state can be captured by considering the interaction of quasiparticles with a particle-particle

fluctuations (often referred to as the Cooperon, or the many-body T-matrix). The fundamental NSR

equations are:

= + ,

G(q, iÊn) = G0(k, iÊn) + G0(k, iÊn)�NSR(k, iÊn) G0(k, iÊn), (4.41a)

where:

= ,

�NSR(k, iÊn) = 1
—

ÿ

i‹
n

⁄ ddq
(2fi)d

TMB,0(q, i‹n) G0(q ≠ k, i‹n ≠ iÊn) (4.41b)
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and:

=

TMB,0(q, i‹n) =

S

U⁄≠1
� + 1

—

ÿ

iÊ
n

⁄ � ddk
(2fi)d

G0(k, iÊn)G0(q ≠ k, i‹n ≠ iÊn)

T

V
≠1

. (4.41c)

In the above equations, G0(k, iÊn) = 1/(iÊn ≠ ›
k

) is the non-interacting Matsubara Green’s

function, where ›
k

= |k|2/(2m) ≠ µ, µ is the chemical potential, and ‹n = 2fin/— and

Ên = fi(2n + 1)/— denote the bosonic and fermionic Matsubara frequencies, respectively. We

have assumed that ø and ¿ states have the same mass and chemical potential. Therefore, the spin

indices have been dropped from the Green’s functions for brevity. In the diagrams, thin and thick

lines denote G0 and G, respectively, the double-line denotes the T-matrix, and the dotted line is the

bare interaction. The chemical potential is determined by fixing the number density of the gas n:

n = 1
—

ÿ

iÊ
n

⁄ ddk
(2fi)d

G(k, iÊn). (4.42)

The thermodynamic potential � = ≠—≠1 ln Z can be easily found from Eq. (4.41a) using the

coupling-constant integration technique [33] and one finds �NSR = �0 + �fluc. [138], where �0 is

the thermodynamic potential of a free Fermi gas at chemical potential µ and temperature —≠1, and:

�fluc. = V

—

ÿ

i‹
n

⁄ � ddq
(2fi)d

ln [1 ≠ ⁄� ‰0(q, i‹n)] . (4.43)

Here, V is the volume of the gas and ‰0 is the bare two-particle propagator (i.e. the last term

in Eq. 4.41c). The diagrammatic representation is given in Fig. 4.7. Comparing the �NSR with

the GL functional derived earlier, Eq. (4.27), we immediate identity the NSR theory as keeping

only the quadratic term in SGL. In other words, only Gaussian fluctuations are considered and the

interaction between the bosonic fluctuations is ignored.

The various limits of the T-matrix was studied in the previous section. In the weak-coupling

limit, we have shown earlier that N(0) TMB,0 ≥ 2/ ln(‘F /‘b) π 1 for typical energies and mo-
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menta (cf. Eq. 4.32). The weak fluctuations were also shown to have a diffusive character. Thus,

fluctuation effects can be neglected altogether in this limit and the free Fermi gas picture is recov-

ered, i.e. µ ƒ µF (T ), the chemical potential of a free 2D Fermi gas with number density n. In

the strong-coupling limit, however, the T-matrix assumes the polar form given in Eq. (4.36), valid

as long as |Ê|, |q|2/(2m) π ‘b, and describes the propagation of long-lived pairs. Let us in-

vestigate fermion Green’s function in this limit. As a first step, we calculate spectral broadening,

�(Ê, p) © ≠2⁄
#
�NSR(p, iÊn æ Ê + i0+)

$
. The calculation in elementary and we find:

�(Ê, p) =
⁄ dÊB

2fi

d2q
(2fi)2 A0(ÊB ≠ Ê, q ≠ p) B0(ÊB, q) [f0(ÊB ≠ Ê) + b0(ÊB)] , (4.44)

where f0(x) = (e—x + 1)≠1 and b0(x) = (e—x ≠ 1)≠1 denote the Fermi-Dirac and Bose-Einstein

distribution functions, and:

A0(Ê, k) = ≠2⁄
Ë
G0(k, iÊn æ Ê + i0+)

È
= 2fi”(Ê ≠ ›

k

),

B0(Ê, q) = ≠2⁄
Ë
TMB,0(q, iÊn æ Ê + i0+)

È
= 8fi2‘b

m
”(Ê + µB ≠ |q|2/(4m)), (4.45)

denote the bare fermionic and bosonic spectral functions. Like before, we have expressed the chem-

ical potential as µ = ≠‘b/2 + µB/2. Plugging the above expressions into Eq. (4.44), we find after

some simplifications:

�(Ê, p) = 8fi‘b ◊[�(Ê, p)]
⁄ 2fi

0

d„

2fi
b0

A

�(Ê, p) + p2

m
≠ µB + p


4m�(Ê, p)

m
cos „

B

,

�(Ê, p) = p2

2m
≠ Ê + Êth, Êth = ≠(‘b + µB)/2. (4.46)

The angular integration becomes trivial for p = 0 and give the following simple analytic result:

�(Ê, 0) = 8fi‘b ◊(Êth ≠ Ê) b0 [(Êth ≠ Ê ≠ µB)] . (4.47)

The real self-energy is obtained through a Kramers-Kronig transform:

Ÿ[�+(Ê, p)] = ≠
⁄ Œ

Ê≠(p)

dÊÕ

2fi

�(≠ÊÕ, p)
ÊÕ ≠ Ê

, Ê≠(p) © ≠Êth ≠ p2/(2m). (4.48)
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Figure 4.6: The spectral broadening �(Ê, p) from the NSR theory in the strong-coupling limit
‘b/‘F = 10. The red line indicates the threshold Êth(p) © p2/(2m) + Êth for the hole branch.
The white line shows ≠‘b/2 ≠ p2/2m, the low-temperature coherent limit of the hole branch. Note
that the coherence of the hole branch is increased as the temperature is decreased and starts to
resemble the lower Bogoliubov quasihole branch as in the BCS theory.

The spectral function is obtained using ANSR(Ê, p) © ≠2⁄
#
GNSR(p, iÊn æ Ê + i0+)

$
, which

takes the following form in the strong-coupling regime:

ANSR(Ê, p) = 2fi ”(Ê ≠ ›p) + �(Ê, p)
(Ê ≠ ›p)2 . (4.49)

The first term results from G0 in Eq. (4.41a) and is the contribution from unpaired fermions. The

second term is the contribution from bound fermions.

We immediately observe several important features by investigating the above expressions:

(1) The spectral function has two branches: the upper (particle) branch and a lower (hole) branch.

The physical interpretation of these two branches can be understood in analogy to the BCS

state. By definition, the fermion spectral function is the probability of creating and subse-

quently annihilating a particle in the state (Ê, p). The injected particle may either remain

free, or may form a bound state. In the former case, the particle obeys the mass-shell relation
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Ê = ›
p

and gives the upper branch. In the second case, the injected particle forms a bound

state with momentum p + q and subsequently, a particle with momentum q is annihilated.

Conservation of energy requires Ê = |p + q|2/(4m) ≠ ‘b ≠ 2µ ≠ (|q|2/(2m) ≠ µ). At

finite temperatures, conservation of energy can be satisfied for a range of different q. The

angular integration in Eq. (4.46) weighted by the Bose-Einstein distribution is a manifesta-

tion of such different possibilities. Therefore, the hole branch is broad and incoherent. This

behavior shows an important difference between the NSR and the mean-field BCS theories:

in the latter, only zero momentum bosonic states are allowed, so that q = ≠p the hole branch

is also coherent. Fig. 4.6 shows � for different temperatures. The increased coherence of the

lower branch at lower temperature is clearly noticeable.

(2) The presence of the Bose-Einstein distribution in � and in turn in A is a first indication of

the importance of a proper treatment of the fermion spectral function in the strong coupling

regime. The statistics of composite bosons is encoded in the spectral function of fermions.

Therefore, the dynamics of bosons will also be manifest in the dynamics of the fermion

spectral function. We note that this observation is not limited to the NSR approximation. Let

us consider an arbitrary derived quantity of the Green’s function:

ÈQÍ =
A⁄ ≠‘ú

≠Œ
+

⁄ ‘ú

≠‘ú
+

⁄ Œ

‘ú

B
dÊ

2fi

⁄ ddp
(2fi)d

Q(Ê, p) A(Ê, p) f(Ê, p), (4.50)

where Q(Ê, p) is an arbitrary function. We have broken the frequency integral into three seg-

ments by defining ‘ú such that T π ‘ú π ‘b. The presence of the pseudogap in the spectrum

implies that the middle integral is of the order of the spectral weight of the pseudogap and is

therefore vanishingly small in the strong coupling limit. The last integral, corresponding to

the number density of unpaired fermions, is also exponentially suppressed due to the Fermi-

Dirac distribution (see Eq. 4.52). Therefore, the derived quantities from the fermion Green’s

functions are predominantly given by the first integral corresponding to the hole branch, in
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which we may also set f0(Ê) æ 1 up to exponentially small corrections. This conclusion re-

mains valid in application to non-equilibrium problems as well, provided that that the energy

of the disturbances is much smaller than the gap ≥ ‘b.

(3) The NSR approximation violates the sum rule,
s

dÊ/(2fi) A(Ê, k) = 1. Moreover, the den-

sity of states may become negative in the intermediate-coupling regime [191]. These artefacts

are related to the truncation of the Dyson’s series at the lowest order. A simple variant of the

NSR theory, known as the G0G0 theory, is free of such unphysical issues.

(4) The spectral weight of the hole branch at any given momentum is small in the strong-coupling

regime:

flhole(p) ©
⁄

dÊ
�(Ê, p)

(Ê ≠ ›p)2 = O
3

T

‘b

4
. (4.51)

Yet,
s

ddp flhole(p) ≥ n and is finite. The smallness of the spectral weight of the hole branch

implies that the particle branch is extremely sharp, with a quasiparticle residue Z = 1 ≠

O(T/‘b).

Let us show that µB is indeed given by the chemical potential of free 2D bosons in the limit —‘b ∫ 1.

According to Eq. (4.41a), the density has contributions both from unpaired and unpaired fermions.

The former is given by:

nF = 2
⁄ dÊ

2fi

d2p
(2fi)2 A0(Ê, p) f0(Ê)

= 2N(0)
—

⁄ Œ

≠—µ

d›

e› + 1 = 2N(0)
—

ln
1
1 + e—µ

2
. (4.52)

In the limit —‘b ∫ 1, nF ≥ N(0)T e≠—‘
b

/2 and is exponentially small. The fluctuation contribution
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Figure 4.7: The thermodynamical potential � of NSR-like theories. � coincides with the Luttinger-
Ward functional �[G] in the fully self-consistent (GG) approximation.

can be calculated using Eqs. (4.44) and (4.49):

nfluc. = 2
⁄ dÊ

2fi

d2p
(2fi)2

�(Ê, p)
(Ê ≠ ›p)2 f0(Ê)

= 8fi‘b

m

⁄ d2p
(2fi)2

d2q
(2fi)2

b0(‘
q

/2 ≠ µB)
(‘

q

/2 ≠ ‘
q≠p

≠ ‘
p

≠ ‘b)2 = 2
⁄ d2q

(2fi)2 b0(‘
q

/2 ≠ µB)

= ≠2N(0)
—

ln
1
1 ≠ e—µ

B

2
. (4.53)

We find that nfluc. = 2nB(—, µB), as promised. We have neglected exponentially small corrections

from the Fermi-Dirac distribution in the second line. We identify µB as the chemical potential of a

free Bose gas with density n/2.

4.2.5 The class of T-matrix-like theories and their limitations

The NSR theory is the simplest pairing fluctuation-exchange approximation and can be im-

proved in several ways. Instead of truncating the Dyson’s equation at the lowest order, the 1PI

self-energy diagrams can be resummed to all orders by solving the Dyson’s equation exactly, i.e.

G =
Ë
G≠1

0 ≠ �NSR
È≠1

. The resulting approximation, known as the G0G0 T-matrix approximation,

while sharing many features with the original NSR theory, fixes the spectral function sum rule viola-

tion. The G0G0 approximation in d = 3 has been explored to a great extent is Refs. [192, 193, 191]

(and the references therein). It is known that this simple approximation compares favorably with the

experimental measurement of the spectral function [12, 194]. More recently, the G0G0 theory has
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also been applied to d = 2 toward studying the Fermi polaron problem [152] and the population-

balanced AFG [155].

The next refinement of the NSR theory is obtained by promoting one of the bare Green’s func-

tions appearing in the T-matrix to a full Green’s function, while solving the Dyson’s equation self-

consistently. The resulting approximation is known as the Kadanoff-Martin (KM) theory, also re-

ferred to as the GG0 approximation. While the KM theory strikes as a heuristic improvement of

NSR at the first glance, in fact it is the description one obtains by truncating the Martin-Schwinger

hierarchy at the 3-particle level [195]. The thermodynamic potential of the KM theory is shown

in Fig. 4.7. Provided that the two spin states have equal population and masses, the GG0 approx-

imation is conserving at the lowest level of expectation values [195]. The predictions of the GG0

theory in d = 3 has been discussed in Refs. [196], where it is found to give a better description at

low temperatures compared to G0G0 and the NSR approximations.

The ultimate refinement of the NSR theory is obtained by promoting all Green’s functions

appearing in �NSR to full Green’s function, and solving the Dyson’s equation self-consistently. The

resulting approximation is the self-consistent T-matrix approximation (SCTMA), also referred to

as the GG approximation. The thermodynamic potential of SCTMA is shown in Fig. 4.7. Being a

self-consistent (�-derivable) approximation, SCTMA is fully conserving and satisfies the complete

2PI-WTH (cf. Sec. 1.4). The complete phase diagram of the the attractive Fermi gas in d = 3

within this approximation, including the superfluid regime, has been studied by Haussmann et

al. [197, 198]. This scheme yields the best estimates to the thermodynamic quantities of the AFG

in d = 3 [198] compared to the benchmark Quantum Monte-Carlo results [136, 135] and the rest of

the NSR family. Nevertheless, the SCTMA is far from being exact and has known shortcomings:

comparing its spectral functions with those obtained by ARPES experiments with ultracold atoms

shows that SCTMA fails to exhibit the pseudogap behavior at unitarity [199], a feature present

in G0G0, GG0, QMC and experiments. At the moment, the SCTMA results are not available in
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d = 2. More extensive discussion regarding the comparison of these approximations can be found

in Ref. [200].

The studies based on the T-matrix-like schemes have so far been focused to systems in thermal

equilibrium. There exists strong experimental indications that the predictions of the T-matrix theory

in equilibrium is very satisfactory. In applications to the dynamics of ultracold gases and non-

equilibrium superconductivity, it is desirable to obtain an extension of the T-matrix theory to non-

equilibrium states. The only �-derivable scheme in the family of T-matrix-like approximations is

the SCTMA. In the next few sections, we utilize the results of chapter 2 and extend SCTMA to non-

equilibrium situations using the real-time Schwinger-Keldysh formalism. In particular, we derive a

set of quantum kinetic equations that describe the dynamics of unpaired and paired fermions on an

equal footing and rigorously respect the conservation laws. We will utilize the obtained formalism

later to analyze the quantum dynamics of the AFG in optical traps.

4.3 The non-equilibrium T-matrix theory

This section is devoted to a detailed and general discussion on the extension of SCTMA to non-

equilibrium states in the non-superfluid regime. The extension to non-equilibrium state is done

using the 2PI-EA formalism on the Schwinger-Keldysh contour as discussed in chapter 1. We also

continue discussion of the renormalization of contact interactions and provide expressions that are

manifestly divergence-free both in equilibrium and non-equilibrium settings.

As mentioned in Sec. 1.3.2, SCTMA can alternatively be obtained by truncating the Luttinger-

Ward functional of the Sp(N)-symmetric extension of the AFG model at the next-to-leading-order

(NLO) level in the large-N limit. The self-energy is readily obtained by opening a fermion line in
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�[G] shown in Fig. 4.7:

�‡(1, 1Õ) = ≠i
⁄

d2 d2Õ G‡̄(2Õ, 2+) T (1, 2; 1Õ, 2Õ) = , (4.54)

where the contour T-matrix T is given by the following self-consistent equation:

T (1, 2; 1Õ, 2Õ) = v�(1, 2; 1Õ, 2Õ) + i
⁄

d3 d4 d3Õ d4Õ v�(1, 2; 3, 4) Gø(3, 3Õ) G¿(4, 4Õ) T (3Õ, 4Õ; 1Õ, 2Õ).

(4.55)

We have used the notation ø̄ =¿ and ¿̄ =ø. In the above equations and in the forthcoming equations,

the integer indices is a shorthand notation for the bundle of contour times and the space coordinates,

i.e. 1 © (·1, x1), etc. We use the UV regulated expression for interaction vertex v� discussed earlier

(cf. Eq. 4.11):

v�(1, 2; 1Õ, 2Õ) © ”C(·1, · Õ
1) ”C(·2, · Õ

2) ”C(·1, ·2) ”d(÷øx1 + ÷¿x2 ≠ ÷øxÕ
1 ≠ ÷¿xÕ

2)

◊ ⁄� w�(x1 ≠ x2) w�(xÕ
1 ≠ xÕ

2).

As a direct consequence of the conservation of the momentum at the bare vertex, and the instanta-

neity of the bare interaction, we find that the following ansatz solves Eq. (4.55):

T (1, 2; 1Õ, 2Õ) = ”C(·1, ·2) ”C(· Õ
1, · Õ

2) w�(x1 ≠ x2) w�(xÕ
1 ≠ xÕ

2)

◊ T
#
·1, · Õ

1; (÷øx1 + ÷¿x2), (÷øxÕ
1 + ÷¿xÕ

2)
$
. (4.56)

Plugging the above ansatz into Eq. (4.55), we find the following integral equation for the reduced

T-matrix, T:

T(·1, · Õ
1; R1, RÕ

1) = ⁄� ”C(·1, · Õ
1) ”d(R1 ≠ RÕ

1)

+ i⁄�

⁄

C
d·2

⁄
ddR2 ‰(·1, ·2; R1, R2) T(·2, · Õ

1; R2, RÕ
1), (4.57)

where:
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‰(·1, ·2; R1, R2) =
⁄

ddy1

⁄
ddy2 w�(y1) w�(y2)

◊ Gø(·1, R1 + ÷¿y1; ·2, R2 + ÷¿y2) G¿(·1, R1 ≠ ÷øy1; ·2, R2 ≠ ÷øy2). (4.58)

Before we embark on renormalizing the reduced T-matrix, we derive formal expressions for the

explicit-time components of the self-energy for future use in terms of T. Pluging Eq. (4.56) into

Eq. (4.54) and using the ”C-functions to evaluate the contour time integrals, the greater/lesser com-

ponents can be easily expressed as:

�?
‡ (1, 1Õ) = ≠i

⁄
dx2

⁄
dxÕ

2 w�(x1 ≠ x2) w�(xÕ
1 ≠ xÕ

2) G7
‡̄ (tÕ

1, xÕ
2; t1, x2)

◊ T?#
t1, tÕ

1; (÷øx1 + ÷¿x2), (÷øxÕ
1 + ÷¿xÕ

2)
$
. (4.59)

The retarded/advanced is the the sum of the collisional contribution obtained from Eq. (4.59), and

the instantaneous Hartree term arising from the first term on the right hand side of Eq. (4.57), and :

�±
‡ (1, 1Õ) = ±◊(±t1 û tÕ

1)
!
�>

‡ (1, 1Õ) ≠ �<
‡ (1, 1Õ)

"

≠ i⁄� ”(t1 ≠ tÕ
1)

⁄
dx2

⁄
dxÕ

2 w�(x1 ≠ x2) w�(xÕ
1 ≠ xÕ

2)

◊ G<
‡̄ (t1, xÕ

2; t1, x2) ”d(÷øx1 + ÷¿x2 ≠ ÷øxÕ
1 ≠ ÷¿xÕ

2). (4.60)

In order to obtain expressions for the explicit-time components of T, we apply the Langreth rules to

Eq. (4.57):

T?(t1, tÕ
1; R1, RÕ

1) = i⁄�
1
‰+ ı T?

2
(t1, tÕ

1; R1, RÕ
1) + i⁄�

1
‰? ı T≠2

(t1, tÕ
1; R1, RÕ

1),

(4.61a)

T±(t1, tÕ
1; R1, RÕ

1) = ⁄� ”(t1 ≠ tÕ
1) ”d(R1 ≠ RÕ

1) + i⁄�
!
‰± ı T±"

(t1, tÕ
1; R1, RÕ

1). (4.61b)

Combining the last two equations, we obtain:

T?(t1, tÕ
1; R1, RÕ

1) = (T+ ı ‰? ı T≠)(t1, tÕ
1; R1, RÕ

1). (4.62)
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4.3.1 Renormalization of the T-matrix in vacuum

In order to make connection between the parameters of the microscopic model, {⁄�, w�(x)},

and experimentally observable quantities (as in d = 3, ‘b in d = 2), we calculate the T-matrix in

vacuum using the expressions given in the previous section. This is done by simply using vacuum

fermion propagators in the expressions derived in the previous section. We affix the superscript

0 to quantities evaluated in vacuum. Clearly, ‰±
0 (t1, tÕ

1; R1, RÕ
1) and T±

0 (t1, tÕ
1; R1, RÕ

1) are just

functions of t1 ≠ tÕ
1 and R1 ≠ R1. Therefore, Eq. (4.143) becomes a simple algebraic equation in

the Fourier space as follows:

T±
0 (Ê; q) = ⁄� + i⁄�‰±

0 (Ê; q)T±
0 (Ê; q). (4.63)

The retarded two-particle propagator in vacuum, ‰±
0 (Ê; q), can be calculated from Eq. (4.58) and

by noting that G<
0,‡(1, 1Õ) = iÈ0|�†

‡(1Õ)�‡(1)|0Í = 0, and:

G>
0,‡(1, 1Õ) = ≠i

⁄ dÊ

2fi

ddk
(2fi)d

A0,‡(Ê, k) eiÊ(t1≠tÕ
1) e≠ik·(x1≠x

Õ
1), (4.64)

where A0,‡(Ê, k) = 2fi ”(Ê ≠ |k|2/(2m‡)) is the non-interacting spectral function for the ‡ com-

ponent. A straightforward calculation yields:

‰±
0 (Ê; q) = ≠i

⁄ dÊ1
2fi

dÊ2
2fi

ddk
(2fi)d

|w̃�(k)|2
Ê± ≠ Ê1 ≠ Ê2

A0,ø(Ê1, ÷øq + k) A0,¿(Ê2, ÷¿q ≠ k)

= ≠i
⁄ ddk

(2fi)d

|w̃�(k)|2
Ê± ≠ |k|2/(2mred) ≠ |q|2/(2mtot)

. (4.65)

The above integral is convergent provided that |w̃�(k)| falls faster than k1≠d/2 for large k. Plugging

this result into Eq. (4.63), we get:

Ë
T±

0 (Ê; q)
È≠1

= 1
⁄�

≠
⁄ ddk

(2fi)d

|w̃�(k)|2
Ê± ≠ |k|2/(2mred) ≠ |q|2/(2mtot)

. (4.66)

Fixing the value of the on-shell T-matrix at an energy scale E0, we find the renormalization equation

in d dimensions:
1

⁄�
= [T0(E0)]≠1 +

⁄ ddk
(2fi)d

|w̃�(k)|2
E+

0 ≠ |k|2/(2mred)
. (4.67)
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Regularization in d = 3:

Eq. (4.67) provides the sought-after connection between the microscopic and renormalized pa-

rameters. In d = 3, we match the zero energy T-matrix, whose value can be determined from

Eq. (4.13) in terms of the s-wave scattering length. Eq. (4.67) then gives:

1
⁄�

= mred
2fias

≠
⁄ d3k

(2fi)3
|w̃�(k)|2

|k|2/(2mred) . (4.68)

Once ⁄ is determined from the above equation, the zero-range limit � æ Œ can be taken. Regard-

less of one’s choice of Ê�, this procedure yields:

T±
0 (Ê; q) = 2fi

mred

5 1
as

+ i
Ò

2mred [Ê± ≠ |q|2/(2mtot)]
6≠1

. (4.69)

Note that the branch cut is taken along the negative real axis. For concreteness, the renormalization

equation for the choice w̃�(k) = ◊(� ≠ |k|) is given by:

1
⁄�

= mred
2fias

≠ mred�
fi2 . (4.70)

Note that lim�æŒ ⁄� = 0. This result implies that only diagrams involving formally divergent

loop integrals yield non-zero contributions to the renormalized theory.

Regularization in d = 2:

In d = 2, the renormalization equation can be found by requiring T+
0 (E) to have a pole at

E = ≠‘b. Using Eq. (4.66), we immediately find:

1
⁄�

= ≠
⁄ d2k

(2fi)2
|w̃�(k)|2

‘b + |k|2/(2mred) . (4.71)

Using the above prescription for ⁄ and taking the zero-range limit � æ Œ of the T-matrix, we find

(independent of the choice of Ê�):

T±
0 (Ê; q) = 2fi/mred

ln [≠‘b/(Ê± ≠ |q|2/(2mtot)]
, (4.72)
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where the branch cut is again taken along the negative real axis. The renormalization equation for

the choice w̃�(k) = ◊(� ≠ |k|) is given by:

1
⁄�

= ≠mred
2fi

ln
3

1 + 2�
‘b

4
. (4.73)

Again, we find lim�æŒ ⁄� = 0.

4.3.2 Renormalization of the in-medium T-matrix

A procedure for taking the zero-range limit and renormalizing the in-medium T-matrix can be

easily devised as follows: since the in-medium and vacuum Green’s functions asymptotically match

in the high energy limit, lim�æŒ(‰±≠‰±
0 ) exists since the UV divergences ‰± and ‰±

0 cancel each

other. Inverting Eq. (4.57) for T, we obtain (T±)≠1 = ⁄≠1
� ≠i‰±, which in turn can be decomposed

like:
!
T±"≠1 =

3 1
⁄�

≠ i‰±
0

4
≠ i

1
‰± ≠ ‰±

0

2
. (4.74)

Taking the zero-range limit of the right hand side and using the renormalization condition of ⁄�

derived in the previous section, we find that each bundle of terms has a well-defined limit. In

particular, the first term parenthesis is simply the vacuum T-matrix. Thus, we formally obtain:

lim
�æŒ

!
T±"≠1 =

!
T±

0
"≠1 ≠ i lim

�æŒ

1
‰± ≠ ‰±

0

2
. (4.75)

Note that only renormalized quantities appear in the above equation. At this stage, we may also take

the zero-range limit of the expressions we derived for the self-energy, Eq. (4.59) and Eq. (4.60). The

w-functions become ”-functions in this limit and simplify the analysis further. The details of this

procedure may be carried out most transparently in the Wigner representation, which is the subject

of the next section.
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4.3.3 The T-matrix approximation in the Wigner representation

In this section, we obtain analogous expressions to those derived in Sec. 4.3 in the Wigner

representation. We also take the zero-range limit, which is ultimately the limit in which we wish

to carry out the rest of the analysis. As a first step, we take the zero-range limit of Eq. (4.59)

and Eq. (4.60). As mentioned above, the w-functions simply become ”-functions resulting in the

following simple expressions:

lim
�æŒ

�?
‡ (1, 1Õ) = ≠iG7

‡̄ (tÕ
1, xÕ

2; t1, x2)
5

lim
�æŒ

T? !
t1, tÕ

1; x1, xÕ
1
"6

,

lim
�æŒ

�±
‡ (1, 1Õ) = ±◊(±t1 û tÕ

1)
3

lim
�æŒ

�>
‡ (1, 1Õ) ≠ lim

�æŒ
�<

‡ (1, 1Õ)
4

+ lim
�æŒ

⁄� ”(t1 ≠ tÕ
1) ”(x1 ≠ xÕ

1)
#
≠iG<

‡̄ (t1, x1; t1, x1)
$
. (4.76)

The instantaneous Hartree term (the last line) vanishes since lim�æŒ ⁄� = 0 (cf. Sec. 4.3.1). The

zero-range limit is to be assumed everywhere hereafter and we drop the lim�æŒ for brevity.

The reduced T-matrix, T, is a two-time contour function. Furthermore, it can be easily shown

to satisfy the criteria for a Keldysh function. To see this, one first establishes that the bare two-

particle propagator, ‰ (cf. Eq. 4.58) satisfies the relations in Eq. (1.6) independent of one’s choice

of w�. These properties are then trivially inherited by T≠1 = ⁄≠1
� ≠ i‰ and in turn by T. We will

see shortly that T satisfies the bosonic KMS boundary conditions at equilibrium. This is expected

since T assumes the form of a free bosonic propagator in the strong-coupling and describes the

propagation of long-lived composite bosons. These observations suggest treating T like G. We

introduce the Wigner transform of T in the following natural way:

Tù(Ê, p; T, R) ©
⁄

ddx dt eiÊt e≠ip·x Tù
3

T + t

2 , T ≠ t

2; R + x
2 , R ≠ x

2

4
, (4.77)

where the ù superscript stands for either ? or ±. Plugging the above definition into Eq. (4.76) and
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Wigner transforming both sides, we obtain:

�?
‡ (1̃; T, R) = ≠i

⁄
d2̃ d3̃ ”(1̃ + 2̃ ≠ 3̃) G7

‡̄ (2̃; T, R) T?(3̃; T, R),

�±
‡ (1̃; T, R) = ≠i

⁄
d2̃ d3̃ i

Ê±
1 + Ê2 ≠ Ê3

(2fi)d ”d(p1 + p2 ≠ p3)

◊
#
G<

‡̄ (2̃; T, R) T>(3̃; T, R) ≠ G>
‡̄ (2̃; T, R) T<(3̃; T, R)

$
, (4.78)

where we have introduced the useful shorthand notations:

1̃ © (Ê1, p1), d1̃ © dÊ1
(2fi)

ddp1
(2fi)d

, ”(1̃) © (2fi)d+1 ”(Ê1) ”d(p1). (4.79)

The arithmetic is also naturally defined like 1̃ + 2̃ © (Ê1 + Ê2, p1 + p2), etc. At this stage, it is

also useful to switch to the spectral/statistical representation for G, � and T. The former two were

defined earlier (Eq. 2.32; also copied here):

G<
‡ © iA‡f‡, G>

‡ © ≠iA‡(1 ≠ f‡),

�<
‡ © i�‡c‡, �>

‡ © ≠i�‡(1 ≠ c‡),

T< © ≠iBb, T> © ≠iB(1 + b). (4.80)

We have introduced a bosonic parametrization for the T-matrix, a choice whose merits will shortly

become clear. The spectral parts {A‡, �‡, B} are related to the retarded functions through the exact

relations that exist between the greater/lesser and retarded/advanced components:

A‡ = ≠2⁄[G+
‡ ], �‡ = ≠2⁄[�+

‡ ], B‡ = ≠2⁄[T+
‡ ]. (4.81)

The expressions for the self-energies can be written conveniently in terms of the spectral/statistical

functions:

�<
‡ (1̃) = i

⁄
d2̃ d3̃ ”(1̃ + 2̃ ≠ 3̃) A‡̄(2̃) B(3̃)

#
1 ≠ f‡̄(2̃)

$
b(3̃), (4.82a)

�>
‡ (1̃) = ≠i

⁄
d2̃ d3̃ ”(1̃ + 2̃ ≠ 3̃) A‡̄(2̃) B(3̃) f‡̄(2̃)

#
1 + b(3̃)

$
, (4.82b)

�±
‡ (1̃) =

⁄
d2̃ d3̃ 1

Ê±
1 + Ê2 ≠ Ê3

(2fi)d ”d(p1 + p2 ≠ p3) A‡̄(2̃) B(3̃)
#
f‡̄(2̃) + b(3̃)

$
. (4.82c)
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4.3.4 Renormalized in-medium T-matrix in the Wigner representation

In this section, we provide explicit expressions for the renormalized in-medium T-matrix in

terms of the fermionic spectral functions. Such expressions, along with Eq. (4.82), constitute a

complete prescription for calculating the self-energy of fermions and brings us one step closer to

setting up the quantum kinetic equations.

The in-medium T-matrix in the zero-range limit can be conveniently renormalized using the

procedure outlined in Sec. 4.3.2. To reiterate, the procedure relies on the premise that the propa-

gation of high-energy particles is unaffected by the medium provided that E ∫ max{‘F , kBT}.

The diverging UV behavior can therefore be tamed by subtracting the vacuum T-matrix from the

in-medium T-matrix, and the remainder will be regular and the zero-range limit can be taken. This

procedure can be most conveniently implemented by observing that Eq. (4.57) can be solved in two

steps by introducing an auxiliary T-matrix, T̃0, as follows:

T̃0 © ⁄� I + i⁄� ‰̃0 ı T̃0, (4.83a)

T = T̃0 + iT̃0 ı (‰ ≠ ‰̃0) ı T, (4.83b)

where I(·1, · Õ
1; R1, RÕ

1) © ”C(·1, · Õ
1) ”d(R1 ≠ RÕ

1) is the identity operator. The above decomposi-

tion is valid as long as T̃0 exists, irrespective of one’s choice of ‰̃0. Choosing ‰̃0 to be the vacuum

two-particle propagator, T̃0 will coincide with the vacuum T-matrix found earlier. Here, we use a

slightly different choice for future convenience. Instead of using the vacuum Green’s function G0,‡,

we define G̃0,‡ as:

G̃<
0,‡ © 0, G̃>

0,‡ © ≠iÃ0,‡, (4.84)

where:

Ã0,‡(Ê, p; T, R) © (2fi) ”
Ë
Ê ≠ |p|2/(2m‡) + µ‡ ≠ U‡(T, R)

È
. (4.85)
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We note that G̃0,‡ can be thought of as the single-particle Green’s function evaluated in vacuum,

however, with energies shifted to the local value of the chemical potential of the interacting system.

As a first step, we formally solve Eq. (4.83a) for T̃≠1
0 and Eq. (4.83b) for T̃≠1:

T̃≠1
0 = ⁄≠1

� I ≠ i‰̃0, (4.86a)

T≠1 = T̃≠1
0 ≠ i(‰ ≠ ‰̃0). (4.86b)

Our goal is to calculate a renormalized equation for T≠1 in the Wigner representation, which may

then be inverted to give T. To this end, we need to write the above two equations in the Wigner rep-

resentation. We define the Wigner transform of ‰ and ‰̃0 according to Eq. (4.77). A straightforward

calculation using Eq. (4.58) yields:

‰?(Ê, p; T, R) =
⁄ ddk

(2fi)d

dÊø
2fi

dÊ¿
2fi

(2fi) ”(Ê ≠ Êø ≠ Ê¿)

◊ w̃�(k)
5
G?

ø

3
Êø, ÷øp + k; T, R ≠ i÷¿

2 (
Ω≠
ˆw

k

≠ ≠æ̂w
k

)
4

◊ G?
¿

3
Ê¿, ÷¿p ≠ k; T, R + i÷ø

2 (
Ω≠
ˆw

k

≠ ≠æ̂w
k

)
4 6

w̃�(≠k), (4.87)

where
Ω≠
ˆw

k

and
≠æ̂w

k

only act on the left and right w̃� functions. The non-locality which is introduced

in the form of the derivatives is due to the fact that the microscopic interaction has a finite range for

a finite value of �. In the zero-range limit, w̃�(k) is constant and the k-derivatives are ineffective.

‰̃±
0 can be calculated with the help of the above expression, Eqs. (2.10), (2.11) and definition of

G̃0,‡. The final result is:

‰̃±
0 (Ê, p; T, R) =

⁄ ddk
(2fi)d

◊ w̃�(k) ≠i

Ê± ≠ ›0
CM(p) ≠ |k|2/(2mred) ≠ Uø(T, R + ÷¿D

k

) ≠ U¿(T, R ≠ ÷øD
k

) w̃�(≠k),

(4.88)

where we have introduced the shorthand notations D
k

© ≠i(Ω≠
ˆw

k

≠ ≠æ̂w
k

)/2, and ›0
CM(p) ©

|p|2/(2mtot) ≠ µø ≠ µ¿. If w�(x) is a function of range ≥ 1/�, then w̃�(k)D
k

w̃�(≠k) ≥ 1/�
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and we can expand the spatial arguments of the potential terms, Uø and U¿, about R:

‰̃±
0 (Ê, p; T, R) =

⁄ ddk
(2fi)d

≠i |w̃�(k)|2
Ê± ≠ ›0

CM(p) ≠ |k|2/(2mred) ≠ Uø(T, R) ≠ U¿(T, R)

+
⁄ ddk

(2fi)d

≠i [÷¿ˆ
R

Uø(T, R) ≠ ÷øˆ
R

U¿(T, R)] · [w̃�(k)D
k

w̃�(≠k)]
#
Ê± ≠ ›0

CM(p) ≠ |k|2/(2mred) ≠ Uø(T, R) ≠ U¿(T, R)
$2 + O(D2

k

). (4.89)

Since w̃�(k) was assumed to fall faster than k1≠d/2, the integrand of the second term in the above

expansion falls faster than k≠4 and the UV part of the integral is therefore bounded by �≠3. The IR

contribution can also be made as small as possible with a choice of w̃�(k) which is nearly constant

for |k| . �. As a result, we can neglect the D
k

terms in the denominator while sending � to infinity.

Finally, using the renormalization condition, Eq. (4.67), and Eqs. (4.86a) and (4.88) and the above

considerations, we find:

lim
�æŒ

1
T̃≠1

0

2±
(Ê, p; T, R) = 1

T0(E0) + lim
�æŒ

C ⁄ ddk
(2fi)d

|w̃�(k)|2
E+

0 ≠ |k|2/(2mred)

≠ |w̃�(k)|2
Ê± + ›CM(p) ≠ |k|2/(2mred) ≠ Uø(T, R) ≠ U¿(T, R)

D

. (4.90)

The last integral is regular and we can set w̃�(k) = 1. The above expression, however, can be simply

expressed as the retarded/advanced vacuum T-matrix with energies shifted to the local chemical

potential:

lim
�æŒ

1
T̃≠1

0

2±
(Ê, p; T, R) =

1
T≠1

0

2± 1
Ê + µø + µ¿ ≠ Uø(T, R) ≠ U¿(T, R), p

2
. (4.91a)

The lesser/greater components of T̃≠1
0 can be evaluated either directly from the definition,

Eq. (4.86a). A shortcut trick is to notice that the lesser component is zero, since
Ë
T̃≠1

0

È<
= ≠i‰̃<

0 =

0, and using the relation between the Keldysh components (Eq. 2.10) and Eq. (4.91a). The final re-

sult is:

lim
�æŒ

Ë
T̃≠1

0

È<
= 0,

lim
�æŒ

Ë
T̃≠1

0

È>
= 2i⁄

Ë
T̃≠1

0

È+
= iSd mred

(2fi)d≠1 ◊(Eth) (2mredEth)d/2≠1 , (4.91b)
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where Sd is the surface area of a d-sphere, and:

Eth(Ê, p; T, R) © Ê + µø + µ¿ ≠ Uø(T, R) ≠ U¿(T, R) ≠ |p|2
2mtot

, (4.92)

is the threshold energy for having a physical two-particle state in vacuum, and shifted to the local

value of the chemical potential.

Equipped with a fully renormalized solution for T̃≠1
0 , we proceed to the second step which is

finding a renormalized equation for T≠1. We define:

Q © lim
�æŒ

i(‰ ≠ ‰̃0) = . (4.93)

The dashed lines denotes G̃0 Green’s functions. The limit exists since the UV divergence of ‰

and ‰̃0 cancel each other. In fact, ‰̃0 coincides with the usual counter-term in minimal-subtraction

regularization procedure. Using Eq. (4.87) and the spectral/statistical representation for G‡ and

G̃0,‡, we find:

Q<(1̃) = ≠i
⁄

d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃) Aø(2̃) A¿(3̃) fø(2̃) f¿(3̃), (4.94a)

Q>(1̃) = ≠i
⁄

d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃)
Ó

Aø(2̃) A¿(3̃)
#
1 ≠ fø(2̃)

$ #
1 ≠ f¿(3̃)

$
≠ Ã0,ø(2̃) Ã0,¿(3̃)

Ô
,

(4.94b)

⁄
Ë
Q+(1̃)

È
= ≠1

2

⁄
d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃)

Ó
Aø(2̃) A¿(3̃)

#
1 ≠ fø(2̃) ≠ f¿(3̃)

$
≠ Ã0,ø(2̃) Ã0,¿(3̃)

Ô
.

(4.94c)

Note that we have again dropped the common macroscopic coordinate (T, R) argument from all

functions and used the shorthand notation of Sec. 4.3.3. As usual, Ÿ[Q+] is found by Kramers-

Kronig transform of ⁄[Q+], and Q≠ = (Q+)ú.

The above expressions are manifestly free of UV divergences provided that f‡ is exponentially

bounded for large Ê and k. This condition is naturally satisfied in realistic situations. The only pos-

sibility for a UV divergence is therefore in Ÿ[Q+], i.e. in the Kramers-Kronig transform. However,
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the matching asymptotic behavior of A‡ and Ã0,‡ implies that the Kramers-Kronig integral kernel

falls like k≠4 for large k. Therefore, the integral is UV-proper provided if d < 4. We can finally

rewrite Eq. (4.86b) in terms of renormalized quantities:

T≠1 = T̃≠1
0 ≠ Q. (4.95)

The above equation has a similar structure to the Dyson equation for Green’s functions, with T̃0 and

Q playing the roles of the bare Green’s function and the proper self-energy, respectively. Like the

usual non-equilibrium Dyson equation, the above equation may also be transformed into a Kadaoff-

Baym equation and subsequently into a quantum kinetic equation. We will see the usefulness of

such an auxiliary kinetic equation in the forthcoming discussions.

As mentioned earlier (cf. Sec. 1.1.5), the thermal equilibrium Green’s function are constrained

by the KMS boundary condition. The KMS condition constrains the derived quantities at equi-

librium as well. In particular, the equilibrium T-matrix will be constrained by the bosonic KMS

condition:

T>(Ê; R1, RÕ
1) = e—ÊT<(Ê; R1, RÕ

1). (4.96)

The above equation can be established by first observing ‰>(Ê; R1, RÕ
1) = e—Ê‰<(Ê; R1, RÕ

1),

which is a direct consequence of Eq. (2.61) (cf. Eq. 4.58 for the definition of ‰). The KMS condition

on ‰, combined with Eq. (4.62), yields the desired result. The bosonic KMS condition on T sets the

statistical part of T to the Bose-Einstein distribution function b0(Ê):

beq(Ê, p; R) = b0(Ê) © 1
e—Ê ≠ 1 . (4.97)

4.3.5 The weak-coupling and strong-coupling limits

The weak-coupling and strong-coupling limits of the NSR theory in equilibrium was discussed

in Sec. 4.2.4 in d = 2. We repeat the same analysis for the SCTMA in this section in d = 2 and
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3. Due to the self-consistent nature of the SCTMA, no analytical results is expected to be found for

intermediate couplings T ≥ ‘F ≥ ‘b, and is not attempted.

By definition, the weak-coupling regime in d = 2 corresponds to ‘b/‘F π 1. Restriction to

the normal state further restricts the temperature to be greater than the binding energy, —‘b . 1.

In d = 3, the weak-coupling regime corresponds to as < 0, kF |as| π 1. In both cases, the

renormalized retarded T-matrix T+(Ê, p) is small in magnitude: T+(d = 3) ≥ 4fias/m, and

T+(d = 2) ≥ 1/m ln(‘b/‘F ). To the zeroth order in ‘b/‘F , the fermion spectral function assumes

its non-interacting form A(Ê, p) = 2fi”(Ê ≠ ›
p

) and we recover the free Fermi gas with µ = ‘F .

The analysis is more involved in the strong coupling limit since the effects of self-consistency

is not immediately clear. Again, we assume µ = ≠‘b/2 + µB , where µB is a correction to be

determined. We remind that the NSR approximation identifies µB as the chemical potential of a free

Bose gas with density nB = n/2 (cf. Eq. 4.53). Our strategy is to improve the NSR approximation

iteratively. We calculate the T-matrix with bare Green’s functions at first, followed by calculating

the resulting correction to the Green’s functions using the obtained T-matrix. We finally consider

the feedback on the T-matrix. In case the feedback effect is small and bounded, the NSR picture of

the free Bose gas will be justified a posteriori. Otherwise, the scenario of a free Bose gas picture

will be invalidated. In that case, no simple analytical results can be obtained using the iterative

scheme and a numerical analysis seems unavoidable.

The zeroth-order bosonic self-energy Q+
0 (as obtained using bare Green’s functions) can be

found from Eq. (4.94c) by replacing A with A0:

⁄[Q+
0 (Ê, p)] = 1

2

⁄ ddq
(2fi)d

(2fi) ”
1
Ê ≠ ›

p/2+q

≠ ›
p/2≠q

2 1
f0(›

p/2+q

) + f0(›
p/2≠q

)
2

,

Ÿ[Q+
0 (Ê, p)] = ≠P.V.

⁄ ddq
(2fi)d

1
Ê ≠ ›

p/2+q

≠ ›
p/2≠q

1
f0(›

p/2+q

) + f0(›
p/2≠q

)
2

. (4.98)

Both contributions are Ã e≠—‘
b

/2 as long as E © Ê + µB ≠ |p|2/(4m) π ‘b. Therefore, as a first

approximation, we may neglect self-energy corrections to the T-matrix and set T+ to the shifted
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vacuum T-matrix, T̃+
0 , as given by Eq. (4.91a). We find in d = 2, 3:

(d = 2) : T+(Ê, p) æ 4fi

m

1
ln [≠‘b/(Ê ≠ |p|2/(4m) + 2µ)]

= 4fi‘b

m

1
Ê + µB ≠ |p|2/(4m) + O(E/‘b),

(d = 3) : T+(Ê, p) æ 4fi

m

1
a≠1

s ≠ i


m(Ê + 2µ ≠ |p|2/(4m)

= 8fi
Ô

m‘b

m2
1

Ê + µB ≠ |p|2/(4m) + O(E/‘b). (4.99)

The residues of the bound-state pole in d dimensions, ⁄d, can be read from the above equations:

⁄2 © 4fi‘b/m, ⁄3 © 8fi
Ô

m‘b/m2. (4.100)

Note the different functional dependence of ⁄d on ‘b in d = 2 and 3. Note that by expanding the

T-matrix about the bound-state pole, we are effectively neglecting the scattering states. However,

there is a large energetic separation between the scattering states and the bound state of the order

of ‘b. Therefore, neglecting the scattering states is allowed to leading order in E/‘b. The bosonic

spectral function is given by:

B(Ê, p) = 2fi⁄d ”(Ê + µB ≠ |p|2/(4m)). (4.101)

We proceed and calculate the self-energy of fermions using Eq. (4.82):

�+(Ê, p) = ⁄d

⁄ ddq
(2fi)d

f0(›
q≠p

) + b0(›B
q

)
Ê + ›

q≠p

≠ ›B
q

+ i0+ , ›B
q

© |q|2/(4m) ≠ µB. (4.102)

The above expression coincides with the NSR self-energy mentioned earlier. The rest of the analy-

sis, however, differs from NSR since the 1PI self-energy diagrams are summed to all orders in the

GG approximation:

G+ = G+
0 + G+

0 �+G+
0 + G+

0 �+G+
0 �+G+

0 + . . . . (4.103)

The reason for expanding the Dyson’s series will become clear shortly. According to Eq. (4.102),

⁄[�+] vanishes unless Ê < Êth © ≠(‘b +µB)/2, which is the threshold energy for the hole branch.
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On the other hand, G+
0 = 1/(Ê ≠ ›

p

) is purely real in this regime. Therefore, we find:

A(Ê, p; Ê > Êth) = 2fi”(Ê ≠ ›
p

),

A(Ê, p; Ê < Êth) = �(Ê, p)
(Ê ≠ ›

p

)2 ≠ 2
(Ê ≠ ›

p

)3 ⁄
Ë
(�+)2

È
≠ 2

(Ê ≠ ›
p

)4 ⁄
Ë
(�+)3

È
+ . . . . (4.104)

µB is determined by fixing the number density. The particle branch Ê > Êth gives an exponentially

small density and the major contribution comes from the hole branch:

n = 2
⁄ dÊ

2fi

ddp
(2fi)d

A(Ê, p) f0(Ê)

= 2
⁄ Êth

≠Œ
dÊ

2fi

⁄ ddp
(2fi)d

C
�(Ê, p)

(Ê ≠ ›
p

)2 ≠ 2
(Ê ≠ ›

p

)3 ⁄
Ë
(�+)2

È
+ . . .

D

. (4.105)

Similar to the analysis presented for d = 2 earlier, the first term can be calculated analytically again

and gives 2nB(—, µ). For our current purpose, we do not need to calculate the rest of the integrals

explicitly and an order of magnitude estimate is sufficient. A straightforward analysis shows that

the contribution of j’th term in the series to the density, �nj , is of the other of:

�nj ≥ ⁄j
d b0(≠µB)j T j(d/2≠1)+1

⁄ Œ

0

pd≠1 dp
#
p2/(2m) + ‘b

$j+1 , (4.106)

up to a numerical factor. In d = 3, we find �nj+1/�nj ≥ b0(≠µB)


T/‘b. This can be traced

back to the fact that ⁄3 ≥ Ô
‘b. Therefore, we immediately see that the series can be truncated after

the first term, so that both SCTMA and NSR describe non-interacting bosons in the strong-coupling

limit. This result is valid both in quantum (—‘F ≥ 1) and thermal (—‘F π 1) regimes.

In d = 2, the situation is different since �nj+1/�nj ≥ b0(≠µB). In the quantum regime —‘F ≥

1, b0(≠µB) is not small and all terms in the series must be retained. This results a departure from the

free Bose gas relation between µB and n and brings us to the conclusion that the composite bosons

as described by the fermionic T-matrix theory in d = 2 do not exhibit the physically expected low-

energy asymptotic freedom, even in the ‘b = Œ limit. We will show later that this unphysical result

is due to the absence of multiple collisions between the composite bosons. The role of quantum
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fluctuations is much more pronounced in d = 2 compared to d = 3, and the IR asymptotic freedom

of composite bosons is bound to the inclusion of multiple scatterings in the bosonic particle-particle

channel.

In the high-temperature limit —‘F π 1, the composite bosons will be in the thermal regime and

e—µ
B ≥ —‘F π 1, which implies b0(≠µB) π 1. Furthermore, the composite bosons will be stable

provided that —‘b ∫ 1. In this limit, which we refer to as the thermal composite Bose gas limit, the

Dyson series may again be truncated at the lowest order as in the d = 3 case.

We delegate the detailed discussion of the feedback on the T-matrix self-energy to Sec. 4.5.3

in order to avoid repetition. We just quote the final result here: in d = 3, the feedback results in

a chemical potential shift ”µB ≥ asn/m, which vanishes in the limit ‘b æ Œ and justifies the

iterative procedure. In d = 2 and in the thermal composite Bose gas regime, we find ”µB ≥ n/m,

which does not depend on the binding energy. Nevertheless, ”µB/|µB| π 1 in this regime and the

iterative scheme coincides with the usual high-temperature (Virial) expansion, and is controlled. In

summary, we find:

(1) (d = 3): The strong-coupling limit of SCTMA matches the NSR theory up to corrections

of the order of O(1/—‘b). Furnishing the Green’s functions with more than one self-energy

insertion is sub-leading in this limit. The GG approximation describes free composite bosons

in the strong-coupling limit both in the thermal and quantum regimes.

(1) (d = 2): The SCTMA does not describe the expected low-energy asymptotic freedom of

composite bosons in the quantum regime and departs from the simpler NSR approximation.

A high-temperature expansion of the Dyson equation is feasible in the thermal composite

Bose gas regime. Furnishing the Green’s functions with more than one self-energy insertion

is again sub-leading in this limit. The SCTMA approximation reduces to the description of

free thermal composite bosons.
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4.3.6 Numerical results: the equilibrium spectral functions

Except for the very weak- and strong-coupling limits, the Green’s functions can not be calculated

analytically and may only reliably be found using numerical methods. We present such numerically

obtained equilibrium spectral functions in this section in d = 2. The obtained results will be used

later to study the dynamics of confined attractive Fermi gases in the weak- to moderate coupling

regimes.

The homogeneous equilibrium state:

The KMS boundary conditions were discussed earlier and were found to give f æ f0(Ê) and

b æ b0(Ê) for equilibrium quantities. This immediately implies that the lesser and greater functions

are related to the retarded functions via the fluctuation-dissipation relation. The fermionic and

bosonic spectral functions, A‡ and B, are to be found self-consistently such that they solve their

respective Dyson’s equations. We first consider the case of homogeneous systems. The spectral

broadening �‡ is found using Eqs. (4.81) and 4.82 by replacing the statistical functions with their

equilibrium values:

�‡(Ê1, p1) =
⁄

d2̃ d3̃ ”(1̃ + 2̃ ≠ 3̃) A‡̄(2̃) B(3̃) [f0(Ê2) + b0(Ê3)] . (4.107a)

The fermionic spectral function is given by the Dyson’s equation G+,≠1
‡ = G+,≠1

‡,0 ≠ �+
‡ with the

following explicit expression:

A‡(Ê1, p1) = �‡(Ê1, p1)
A

Ê + µ‡ ≠ |p|2
2m‡

+ 1
2KK[�‡](Ê1, p1)

B2

+ 1
4 �‡(Ê1, p1)2

. (4.107b)

Note that the real part of the retarded self-energy is obtained from a Kramers-Kronig transform of

≠�‡/2 as usual. The bosonic counterparts of the above equations are obtained from the results of
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Sec. 4.3.4. As first step, we calculate the bosonic (T-matrix) spectral broadening �b © ≠2⁄[Q+]:

�b(Ê1, p1) =
⁄

d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃)
Ó

Aø(2̃) A¿(3̃) [1 ≠ f0(Ê2) ≠ f0(Ê3)] ≠ Ã0,ø(2̃) Ã0,¿(3̃)
Ô

.

(4.107c)

In the above equation, Ã0,‡(Ê, p) = 2fi ”(Ê + µ‡ ≠ |p|2/(2m)) corresponds to the bare fermionic

spectral function. The bosonic spectral function B = ≠2i⁄[T+] is then found from the T-matrix

Dyson’s equation, Eq. (4.95):

B(Ê1, p1) = �b(Ê1, p1) ≠ 2⁄[Y (Ê1, p1)]
3

Ÿ[Y (Ê1, p1)] + 1
2KK[�b](Ê1, p1)

42
+ 1

4 (�b(Ê1, p1) ≠ 2⁄[Y (Ê1, p1)])2
,

(4.107d)

where 1/Y (Ê1, p1) = T+
0

!
Ê1 + µø + µ¿ ≠ |p1|2/(4m)

"
. The expressions for the renormalized

retarded T-matrix in vacuum, T+
0 , are given in Sec. 4.3.1. In d = 2, we find:

(d = 2) : Y (Ê1, p1) = mred
2fi

C

ifi + ln
A

Ê1 + µø + µ¿ ≠ |p1|2/(4m)
‘b

BD

. (4.107e)

If required, the chemical potentials µ‡ must finally be traded for the number densities n‡ using the

number equation:

n‡ =
⁄

d1̃ A‡(1̃) f0(Ê1). (4.107f)

The above expressions constitute the complete set of equations required for characterizing the

equilibrium state. The only practical strategy toward solving nonlinear equations as such is

by iterations. A simple implementation is done using two self-consistency loops as described

below. The main loops is the spectral self-consistency loop, where the spectral functions and the

number densities are calculated at fixed chemical potentials (µø, µ¿) to a desired degree of accuracy:

Require: physical parameters (—, µø, µ¿, ‘b), error tolerance ”

j ≈ 0

A(0)
‡ (Ê, p) ≈ 2fi ”(Ê + µ‡ ≠ |p|2/(2m‡))

calculate n(0)
‡ from Eq. (4.107f) using A(0)

‡
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while err > ” do

calculate �(j)
b from Eq. (4.107c) using A(j)

‡

calculate the Kramers-Kronig transform of �(j)
b

calculate B(j) from Eq. (4.107d)

calculate �(j+1)
‡ from Eq. (4.107a)

calculate the Kramers-Kronig transform of �(j+1)
‡

calculate A(j+1)
‡ from Eq. (4.107b)

calculate n(j+1)
‡ from Eq. (4.107f)

err ≈ |n(j+1)
ø ≠ n(j)

ø | + |n(j+1)
¿ ≠ n(j)

¿ |

j ≈ j + 1

end while

The second loop adjusts the chemical potentials so that that the desired number densities are

obtained. This is simply done by finding lower and upper bounds on the chemical potential and

proceeding by bisection. The most expensive part of the calculation is the spectral self-consistency

loop. Truncating this iteration loop at the level of A(1) yields the previously mentioned G0G0

approximation, with is an improvement of NSR approximation by including the sum of all 1PI

self-energy diagrams. According to the discussions of earlier sections, the G0G0 approximation

already captures the gist of the physics and interpolates between the weak fermionic to the

strong-coupling bosonic regimes.

At the moment, the numerical results available to us are done at the level of G0G0 approxi-

mation. The full self-consistent solution is left for future works. The G0G0 calculations has been

appeared earlier in Ref. [152]. We consider the spin-symmetric case µø = µ¿ = µ, mø = m¿ = m.

We refer to the total number density as n © nø + n¿. As usual, the Fermi energy is defined as
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the chemical potential of a non-interacting system with the same density, ‘F © fin/m. The Fermi

temperature is TF = ‘F (the Boltzmann constant is set to 1 throughout). The Fermi momentum

is given by kF =
Ô

2m‘F =
Ô

2fin. The strength of attractive interactions is parametrized using

dimensionless interaction parameter ÷ = ln(kF a2) (cf. Eq. 4.7). The interaction parameter varies in

the range (≠Œ, +Œ). Large positive and negative values correspond to weak and strong coupling,

respectively. The density of states per spin is defined as:

N(Ê) © 2fi
⁄ d2k

(2fi)2 A(Ê, k). (4.108)

Since we are only concerned with the normal state here, we have made no attempt toward

calculating the critical superfluidity temperature Tc numerically. As stressed before, the T-matrix

approximation does not give a proper account of BKT superfluidity in d = 2 and must be generally

avoided at very low temperatures. Nevertheless, it is legitimate theoretical question to ask for

the prediction of the T-matrix theory for Tc in d = 2. Tc is most easily found from the Thouless

criterion [201] stating that pairing susceptibility diverges at Ê = q = 0 at Tc, signaling the

emergence of a gapless Goldstone mode. The pairing susceptibility coincides with the many-body

T-matrix here. Tc has been found at the level of NSR approximation in Refs. [190, 202]. Once

the chemical potential renormalization is properly taken into account, one finds Tc = 0, regardless

of the interaction parameter ÷. It is an interesting fact that the finite BCS mean-field Tc is not

recovered by the NSR approximation even in the weak-coupling limit. This is due to the large

renormalization of µ due to the scattering states of the T-matrix [202].

We start discussing the results by first investigating a typical plot of the chemical potential vs.

ln(kF a2) as shown in Fig. 4.3.6. For comparison, we have also included the chemical potential

of a free Fermi gas at the same temperature µF (T ) (green dashed lines), as well as the that of

free composite bosons ≠‘b/2 + µB(T ), where µB(T ) is the chemical potential of free bosons with
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number density n/2 at temperature T . As expected, we find that the attractive Fermi gas smoothly

interpolates between these two regime.
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Figure 4.8: The chemical potential of the homogeneous attractive Fermi gas at fixed density as a
function of the interaction parameter ln(kF a2) at (a) T/TF = 0.5 and (b) T/TF = 1. The dashed
green and red lines show the weak-coupling (free fermions) and strong-coupling (free bosons) lim-
its, respectively. The chemical potential smoothly interpolates between the two limits.

The spectral functions are shown in Figs. 4.9 and 4.10 at two different temperatures T/TF =

0.5, 1 and several interaction parameters ln(kF a2) = 7, 1, 0.5, ≠ 0.5 along with the density of

states. In the weak-coupling example ln(kF a2) = 7, the spectral function has a strong resemblance

to the free Fermi gas. The density of states N(Ê) is zero for Ê < ≠µ and sharply reaches the flat

non-interacting value m/~2 for Ê > ≠µ. For larger binding energies, a dip smoothly develops in

the spectral function starting at Ê = 0, k ¥ kF , which eventually cuts the spectral weight into the

particle and hole branches. The temperature at which a dip appears in the spectral function referred

to as T úú, which is larger than T ú, the temperature at which the dip also appears in the density of

states (see Fig. 4.10(c2)). The missing spectral weight at the chemical potential level is taken as an

indication of the pairing pseudogap. For ln(kF a2) . 0, the system smoothly reaches to the strong-

coupling regime where the separation between the particle and hole branches increases and a large
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gap of size ≥ ‘b develops in the density of states at the chemical potential level. The incoherent

hole branch is narrower at lower temperatures as thermal population of higher energy bosonic states

are suppressing, hence, the spectral function resembles a BCS state (in which only the single q = 0

bosonic state is occupied).

0 0.5 1 1.5 0 0.5 1 1.5

0 0.5 1 1.5 0 0.5 1 1.5

Figure 4.9: The G0G0 spectral function A(Ê, k) and density of states N(Ê) at fixed density. The
left and right columns show the results for T/TF = 0.5 and T/TF = 1, respectively. The rows
correspond to ln(kF a2) = 7, 1, 0.5, ≠ 0.5 from top to bottom, respectively. The coloring of
the spectral function plots is done using a logarithmic mapping, ln(A/‘F ). Red and blue regions
indicate high and low spectral weights, respectively (the colorbar is shown on the right). The white
lines show the free particle dispersion Ê = |p|2/(2m) ≠ µ.

214



Chapter 4: Non-equilibrium dynamics of attractive two-component Fermi gases

0 0.5 1 1.5 0 0.5 1 1.5

0 0.5 1 1.5 0 0.5 1 1.5

Figure 4.10: (continued from Fig. 4.9; refer to the caption of Fig. 4.9) for details.

The gas in a harmonic confining potential:

The equilibrium state of the homogeneous system was discussed in the previous section. Here,

we present the result for a gas confined in an static harmonic potential:

U(R) = 1
2mÊ2

0(X2 + Y 2). (4.109)

Provided that Ê0 π ‘F , U(R) varies on a scale much larger than the inter-particle separation and

the equilibrium state of the inhomogeneous system can be obtained using the local density approx-
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Figure 4.11: The phase diagram of the attractive 2D Fermi gas in a harmonic trap as described by the
G0G0 approximation. The lack of interaction between the composite bosons results in the formation
of a BEC at finite temperatures. The dashed blue and red lines correspond to the prediction of the
BCS theory and condensation temperature of free 2D bosons (calculated in the text), respectively.

imation (LDA) by simply replacing the chemical potentials of the solution of the homogeneous

system with its local value µ(R) æ µ0 ≠ µ(R). The local spectral function and the local density

of states are given by:

A(Ê, p; R) = A(Ê, p)
---
µæµ(R)

, N(Ê, R) © N (Ê; µ æ µ0 ≠ U(R)) . (4.110)

The chemical potential at the center of the trap µ(0) = µ0 is determined by fixing the total number

of trapped particles:

Ntot. = 2
⁄ Œ

0
(2fiR) dR

⁄
dÊ N (Ê; µ æ µ0 ≠ U(R)) f0(Ê). (4.111)

The natural units of length and energy for the trapped gas is given by the radius and the chemical

potential of a non-interacting trapped Fermi gas at zero temperature, referred to as the Thomas-

Fermi radius RTF and the trap Fermi energy ‘F , respectively. These quantities are easily calculated

from the above formula and read as:

‘F =


Ntot.Ê0, RTF = (4Ntot.)1/4 (mÊ0)≠1/2. (4.112)
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A nuisance of the G0G0 approximation is that it spuriously leads to a BEC at a finite Tc in the

presence of the confining potential. This behavior can be traced back to the fact that the composite

bosons are described as free at the G0G0 level. It is known that free bosons in d = 2 condense at a

finite temperature [203, 204, 205]. The BEC, however, is unphysical since the density at the center

of the trap diverges. This is most easily shown in the extreme strong-coupling limit where G0G0

describes the system as a gas of free composite bosons of mass 2m. The LDA density in this limit

is given by:

n(R) = ≠2(2m)
2fi—

ln
Ë
1 ≠ e—(µ

B

≠2U(R))
È

, (4.113)

where µB = 2µ0 + ‘b is the bosonic chemical potential at the center of the trap. The total number

of particles is found by integration over R:

Ntot. = ‘2
F

Ê2
0

= 2
—2Ê2

0
Li2

1
e—µ

B

2
. (4.114)

The poly-logarithm function evaluates to the finite value fi2/6 in the limit µB æ 0 and implies a

finite BEC temperature:

lim
‘

b

æŒ T trap
c =

Ô
3

fi
. (4.115)

However, n(R) ≥ ≠ ln(R) for µB = 0 and diverges at R = 0. Once the repulsion between

the composite bosons is taken into account at the mean-field level, the finite-temperature BEC will

disappear and Tc will be pushed down to 0 [206]. This scenario is still incomplete as the physics

associated to the BKT transition is not described by the mean-field description. In fact, a more

careful analysis reveals that the BEC transition is replaced by the BKT transition at T trap
BKT. In the

dilute limit ln≠1(1/na2
B) π 1 (aB is the effective range of the boson-boson interaction), T trap

BKT ≥

T trap
c + O(ln≠1(1/na2

B)) [204]. It will be shown in the next section that the SCTMA gives rise to a

mean-field repulsion between the composite bosons. Therefore, while it does not describe the BKT

transition, it is free from the spurious BEC transition with diverging densities.

The numerically obtained phase diagram of the trapped Fermi gas in the G0G0 approximation is
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shown in Fig. 4.11 along with the weak-coupling and strong-coupling asymptotes. The same result

has also been reported in Ref. [155]. The BEC disappears for T trap
c,max/TF & 0.63. Fig. 4.12 shows

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.5

1

1.5

Figure 4.12: The density profile of the attractive Fermi gas in an isotropic trap obtained
within the G0G0 approximation. Here, nú © m‘F /fi = (mÊ0/fi)(Ntot.)1/2 and RTF =
(4Ntot.)1/4 (mÊ0)≠1/2. The blue and red dashed lines lines show the free Fermi gas and free Bose
gas limits. (a) T/TF = 0.5, The black lines denote ln(kF a2) = 5, 2, 0.75, 0.5, 0.4 from from the
bottom to the top. The density diverges at the center of the trap at ln(kF a2) ƒ 0.39 (cf. Fig. 4.11).
(b) T/TF = 1, The black lines denote ln(kF a2) = 5, 2, 1, 0.5, 0.25, 0, ≠0.25, ≠0.5, ≠1 from
from the bottom to the top.

the density profile of the trapped gas at T/TF = 0.5 and 1 for different interaction parameters. The

blue and red lines show the free Fermi gas and free Bose gas limits. The density profile smoothly

connects these two asymptotes as the binding energy is increased.

4.4 Linear response theory: crossover from free fermions to compos-

ite bosons

The response of a physical system to small external perturbations provides invaluable informa-

tions about the underlying microscopic mechanisms involved in the emergent bulk properties. In

fact, the first, and the most important test for the validity of a microscopic theory is comparing its
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linear response predictions (and related derived quantities) against the experimental observations.

In this section, we study the linear response of the attractive Fermi gas in the normal state to an

external field formally using diagrammatic methods. This analysis, as we shall see, sheds light on

the processes involved in transport in such systems. We only consider density-density response

functions here. The current-current response functions may be simply found by affixing current

bare vertices to the bubble diagrams.

As mentioned in Sec. 1.4, a an important feature of �-derivable approximations is that they pro-

vide a prescription for calculating n-point correlation functions in a symmetry preserving way. The

irreducible vertex corrections are given by the 2PI vertices. The general procedure was described

in Sec. 1.2.4. The �(2) vertex for T-matrix theory can be obtained either by opening two lines in

�, or equivalently opening one more line in �. Either way, we find the following two class of

contributions:

=

¸ ˚˙ ˝
Maki-Thompson (MT)

+ +

¸ ˚˙ ˝
Aslamazov-Larkin (AL)

.

(4.116)

These processes were discovered in 1968, in the papers of Aslamazov and Larkin [207], Maki [208]

and bit later Thompson [209] in the context of microscopic theory of pairing fluctuations in the

normal phase of superconductors. The integral equation for the particle-hole vertex is given in

Eq. (1.106). The contributing diagrams can be found by iterating the integral equation order by

order and gives an infinite number of diagrams with different number of insertions of irreducible
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MT and AL vertices. Some of the first few diagrams are:

(a) (b) (c)

(d) (e)

(4.117)

We have used a more compact diagrammatic notation of double lines instead of T-matrices. We note

that the two different AL processes shown in Eq. (4.116) have the same appearance in the double

line diagrammatic notation. (a) is obtained from the bare vertex, (b) is a single MT, (c) is a single

AL, (d) is a double AL and finally (e) is a double MT process. Higher order diagrams include

further AL and MT vertex corrections is arbitrary order. The fermion and boson lines appearing in

the diagram are fully dressed.

MT and AL diagrams describe different mechanisms of transport and consequently, their

degree of importance varies from one regime to the other. The physical process invoked is

in fact very clear in the diagrams: the MT process is reminiscent of the Andreev reflection in

superconducting states, where a particle scatters from a Cooper pair and is exchanged with a

hole. The only difference in the normal state is that the Cooper pair is replaced by a pairing

fluctuation. The AL process describes transport via bound pairs as it is evident from diagram

(c): the external field makes a bosonic particle-hole excitation by boosting a bound pair; the pair

propagates to the observation point and gives back the excess energy and momentum. Accordingly,

we expect the AL diagrams to make the most important contributions in the strong-coupling regime.

In the weak-coupling regime and to zeroth order in ‘b/‘F , the bosonic fluctuations can be ne-

glected and only (a) survives, which in turn yields the Lindhard function, i.e. the density-density
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response of a free Fermi gas. The sub-leading fluctuation corrections has been examined at length in

the context of fluctuation conductivity of superconducting materials (cf. Ref. [210] for an excellent

review).

We denote the outgoing energy and momentum of the the linear response diagrams as � and Q

respectively. We are interested to investigate low-energy excitations with energies not exceeding the

binding energy in the strong-coupling limit. Therefore, we assume E = max{|�|, Q2/(4m)} π ‘b.

This analysis has been partially carried out earlier in Ref. [211] for the lowest order diagrams in

d = 3. According to the discussion given in the previous section, we may use the NSR strong-

coupling Green’s functions in d = 3 to leading order in ‘F /‘b. In d = 2, we further require the

high-temperature condition —‘F π 1. Diagram (a) yields:

‰(a)
dd (�, Q) = 2

⁄ dÊ1
2fi

dÊ2
2fi

ddk
(2fi)d

A(Ê1, k + Q) A(Ê2, k) f0(Ê1) ≠ f0(Ê2)
� ≠ Ê1 + Ê2 + i0+ . (4.118)

Due to the gap in the spectrum, one line must be in the particle branch and the other in the hole

branch. The diagram is often referred to as the density of states (DOS) diagram in the context of

pairing fluctuations [210]:

‰(a)
dd (�, Q) ƒ 2

ÿ

‡

= ≠4
⁄ dÊ1

2fi

ddk
(2fi)d

�(Ê1, k + Q)
(� ≠ Ê1 + ›

k

)(Ê1 ≠ ›
k+Q

)2 ≥ ≠ n

‘b
.

(4.119)

The leading contribution from the MT diagram results from using all bare lines. The result is

most easily obtained in the Matsubara formalism. There are five poles contributing to the double

Matsubara sum (for from Green’s function and one from the boson propagator). The calculation is

lengthy but straightforward. The final result is:

‰(b)
dd (�, Q) =

⁄ ddk
(2fi)d

ddp
(2fi)d

≠2f0(›
k

)f0(›
p

) + 2b0(›B
k+p

)[1 ≠ f0(›
k

) ≠ f0(›
p

)]
(›

k

+ ›
p

≠ ›B
k+p

)3 ≠ (›
k

+ ›
p

≠ ›B
k+p

)�2 + O(E/‘b).

(4.120)

All Fermi-Dirac distributions can be set to zero and we find ‰(b)
dd (�, Q) ≥ ≠n/‘b. In fact, we

find that the MT and DOS contributions are exactly equal in the strong-coupling limit, and both
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are negligibly small. A similar analysis shows that all diagrams containing a MT insertion can be

neglected in the strong-coupling regime and this brings us to AL diagrams.

The AL diagrams, i.e. (c), (d) and the rest, can generally be expressed as two triangular CAP

diagrams at the beginning and the end. The interaction between bosonic particle-hole pairs is given

by a BOX diagram. Comparing these diagrams with the RPA response functions, we immediately

find that in the strong-coupling limit, the SCTMA reduces to the Hartree theory for composite

bosons, with an effective interaction given by BOX. This is a result already pointed out in Ref. [212]

and later in Ref. [213] in d = 3.

As a first step, we calculate the strong-coupling limit of the cap and box diagrams. To the leading

order, we may set the external momenta to zero and use bare Green’s functions. The low-energy

cap diagram per spin state evaluates to:

CAP(Q, q) = = ≠
⁄ ddk

(2fi)d

1
4›2

k

+ O(E/‘b) = ≠ 1
⁄d

. (4.121)

We remind that ⁄d is the pre-factor that the bosonic propagators carry and is defined in Eq. (4.99).

We evaluate the box diagram (per spin) with finite incoming momentum and in the static limit:

BOX(k, kÕ) = = 1
—

ÿ

iÊ
n

⁄ ddq
(2fi)d

G0(q) G0(k≠q) G0(kÕ≠q) G0(q≠k≠kÕ).

(4.122)

The analysis is done in Appendix. In particular, we find BOX(0, 0) = m/(4fi‘2
b) in d = 2 and

BOX(0, 0) = m3/(16fi(m‘b)3/2) in d = 3. For k ∫ Ô
m‘b, BOX decays like 1/k4 in d = 2 and

1/k3 in d = 3. The plots of BOX(k, k) is shown in Fig. 4.13 for both d = 2 and d = 3. Let us

consider the d = 3 case. An AL diagram with n AL insertions gives:

2n+1 CAP(0)2 BOX(0, 0)n≠1 ⁄2n
d

Ë
‰BB

dd (�, Q)
Èn

=

2n+1
58fi

Ô
m‘b

m2

62n≠2 C
m3

16fi(m‘b)3/2

Dn≠1 Ë
‰BB

dd (�, Q)
Èn

, (4.123)
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Figure 4.13: Plot of the static BOX diagram as function of external momentum k in d = 2 and
d = 3. The BOX diagram describes a potential with a range ≥ 1/›pair in the real space.

where ‰BB
dd (�, Q) is the bosonic particle-hole propagator:

‰BB
dd (�, Q) =

⁄ ddk
(2fi)d

b0(›B
k

) ≠ b0(›B
k+Q

)
� ≠ ›B

k+Q

+ ›B
k

+ i0+ . (4.124)

Eq. (4.123) imply that the n’th diagram is Ã 1/‘(n≠1)/2
b . Therefore, only the n = 1 diagram is

relevant in the strong-coupling limit and we immediately get:

(d = 3) : lim
‘

b

/‘
F

æŒ
‰dd(�, Q) = 4‰BB

dd (�, Q), (4.125)

as we expected. For large but finite ‘b, we find the effective interaction boson-boson interaction:

(d = 3) : UBB ƒ 2 BOX(0, 0) ⁄2
d = 2 4fi(2as)

2m
. (4.126)

The factor of 2 is for the spin sum the in BOX diagram and ⁄≠2
d is due to the extra two bosonic

propagators. Comparing the above result with bosons with mass 2m with short-range interaction

U = 4fiaB/(2m) in the Born approximation, we recover the known result aB = 2as [212, 213].

The interaction is repulsive and is a consequence of the Pauli exchange interaction between the

constituent fermions.
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The situation in d = 2 is different, as it could be anticipated from the discussion of the previous

section. Indeed Eq. (4.123) shows that all n’th order diagrams are of the same order. However,

we remember that the strong-coupling forms for the T-matrix and the Green’s function we have

used here is only warranted in the thermal regime —‘F π 1. For concreteness, let us consider the

static limit � = 0. Each ‰BB
dd carry a factor of z = e≠—|µ

B

| which is small in the thermal regime.

Therefore, the higher order AL diagrams must be neglected to be consistent, and we recover the free

Bose gas response in the thermal regime. The effective interaction between the composite bosons

can be calculated like before:

(d = 2) : UBB ƒ 2 BOX(0, 0) ⁄2
d = 8fi

m
. (4.127)

The above results can be obtained from a more direct calculation. A simple analysis of the composite

boson-boson interaction by retaining only the processes described by the BOX diagram yields the

following expression:

UBB(�, K = 0) = 2
⁄ ddk

(2fi)d
|„̃0(k)|4

Ë
≠� + 4

1
k2/(2m) + ‘b/2

2È
, (4.128)

where � and K denote the center-of-mass energy and momentum of the boson-boson complex and

„̃0(k) is the Fourier transformed normalized bound-state wave function (cf. Eq. A15 in Ref. [212]

for a concise derivation of the above result). The normalized orbital wave function of the s-wave

bound-state in d = 2 and d = 3 are given by:

(d = 2) : „0(r) = [
Ò

fia2
2]≠1 K0(r/a2), „̃0(k) =

Ò
4fia2

2

1
1 + a2

2k2
2≠1

,

(d = 3) : „0(r) = [
Ô

2fiasr]≠1 exp(≠r/as), „̃0(k) =
Ò

8fia3
s

1
1 + a2

sk2
2≠1

. (4.129)

In d = 2, we find „0(r) ≥ ≠ log(r/a2) for r π a2 and „0(r) ≥ e≠r/a2/
Ô

r for r ∫ a2. Plugging

the above wave functions into Eq. (4.128) yields the results we found here using the diagrammatic

method.
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We argued earlier that an accurate treatment of 2D bosons must lead to the IR asymptotic free-

dom. Nevertheless, even in the thermal regime, the SCTMA yields a constant effective interaction.

This is a good time to investigate the predictions of a more complicated theory than SCTMA, which

only addresses the effect of boson-boson interactions at the mean-field level.

The BOX diagram is the simplest irreducible boson-boson interaction diagram and according to

the explicit calculations given in Appendix D.2, it is localized in momentum space (see Fig. 4.13)

and has a a range of the order of ›pair in the real space. This is indeed the expected behavior since

BOX originates from the exchange repulsion between the constituent fermions and is expected to

have a range of the order the size of the bound pairs, ›pair ≥ 1/
Ô

m‘b. A controlled expansion of

the boson-boson interaction is feasible in the dilute limit n›2
pair π 1. To O(nB›2

pair), this is given

by the bosonic ladder diagrams in the particle-particle channel:

= + ,

= + . . . (4.130)

Interactions in the particle-hole channel and generally diagrams with more cycles introduce addi-

tional factors of density. In the above equation, U irr.
BB correspond to the sum of all 2-boson irreducible

diagrams. The full classification of such diagrams in given in Ref. [214]. As shown above, the sim-

plest of such diagrams is the twisted BOX diagram. In principle, U irr.
BB is given as a functional of

G and T. The exact calculation of TBB is beyond the scope of our current work. Nevertheless, we

expect the real-space range of U irr.
BB to be given by the size of the bound pair ≥ 1/›pair. Here, we

are only interested in the low-energy behavior of TBB and the very details of U irr.
BB are immaterial to

us. The most important features can be seen simply using the following pseudo-potential instead of
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the exact U irr.
BB :

U irr.
BB(k, kÕ) æ u0 ◊(k ≠ k0) ◊(kÕ ≠ k0), (4.131)

where u0 © c0m/(4fi‘2
b) with c0 being a O(1) numerical constant and k0 is a UV cutoff ≥ 1/›pair.

Substituting the above pseudo-potential in Eq. (4.130) yields an integral equation for TBB. The

calculation is analogous to what presented earlier for the fermion T-matrix (cf. Sec. 4.3.1). We

define the reduced bosonic T-matrix T+
BB(�, Q) via the ansatz:

T +
BB(k, kÕ; �, Q) = ◊(k ≠ k0) ◊(kÕ ≠ k0) T+

BB(�, Q), (4.132)

and subsequently find the following equation for T+
BB(�, Q):

T+
BB(�, Q) = u0 + iu0 ‰+

0,BB(�, Q) T+
BB(�, Q). (4.133)

Here, ‰+
0,BB(�, Q) is the bare 2-boson propagator given by:

i‰+
0,BB(�, Q) = ⁄2

2

⁄ d2k
(2fi)2

◊(k ≠ k0)
� ≠ ›B

Q/2+k

≠ ›B
Q/2≠k

+ i0+

=
34fi‘b

m

42 mB

4fi
ln

C

1 ≠ k2
0/mB

� + 2µB ≠ Q4/(4mB) + i0+

D

, (4.134)

where mB = 2m. Put together, the above equations give:

T +
BB(k, kÕ; �, Q) = m

4fi‘2
b

◊(k ≠ k0) ◊(kÕ ≠ k0)

ifi + ln
C

� + 2µB ≠ Q4/(4mB)
exp(c0) k2

0/m

D . (4.135)

The above result exhibit the sought-after IR asymptotic freedom of bosons in d = 2 and agrees

with the RG analysis presented earlier (cf. Eq. 4.40). For small center of mass energy of the two-

boson complex � + 2µB ≠ Q4/(4mB) compared to ‘b, the denominator diverges logarithmically

and TBB æ 0.

Returning back to the discussion of the AL diagrams, we expect that whenever a �-derivable

theory is powerful enough to describe boson-boson interactions at the level of ladder diagrams, the

BOX diagrams will be naturally replaced with TBB. The center of mass momentum of the scattering
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bosonic pairs is small as long as low-energy energy processes are concerned, and each additional

AL insertion is accompanied by a logarithmically small factor ≥ 1/ ln(mE/k2
0). Therefore, only

the simplest AL diagram survives for low energies even in the quantum regime. The same IR

freedom will be also present at the level of fermionic Green’s functions and bosonic propagators,

justifying the usage of strong-coupling NSR Green’s functions in the quantum regime. We will

discuss such a “powerful enough” �-derivable approximations in Sec. 4.7.

Setting aside the intricacies of 2D physics discussed in this section, a glimpse at the linear

response diagrams of the SCTMA shows that practical diagrammatic calculations of the linear re-

sponse can be a quite challenging task. The number of articles written on superconducting fluctua-

tions in the past four decades is of the order of ten thousands. A large number of these contributions

deal with calculating the lowest order MT, AL and DOS diagrams and their correction to transport

coefficients and thermodynamical quantities [210]. Application to systems with broken translational

symmetry only makes the analysis more formidable. In the next section, we develop a quantum ki-

netic formalism based on the SCTMA that allows us to do realistic calculations and even obtain

exact numerical results that are quite formidable using standard diagrammatic methods.

4.5 Quantum kinetic equations in the self-consistent T-matrix approx-

imation

We discussed the general theory of quantum kinetic equations in chapter 2 at length. We also

formulated the self-consistent T-matrix theory for general non-equilibrium states in the previous

section and discussed its content in the weak and strong coupling regimes. In this section, we

use the results of the previous sections and formulate a quantum kinetic description based on the

self-consistent T-matrix approximation.
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4.5.1 Phenomenological kinetic equations

Before we carry out the formal development starting from microscopic equations, it is worth-

while discussing the general phenomenology of many-particle systems with attractive interactions.

An important consequence of attractive interactions is the possibility of formation of meta-stable

two-body (generally few-body) complexes with long lifetimes ·comp. ≥ ·c‘b/(kBT ). Here, ·c is

the time between collisions and ‘b is the binding energy of the complex. In dilute systems with

large binding energy, ·comp. may become comparable or even exceed the macroscopic time scale

of transport tmacro. Denoting the local momentum distribution of the free particles and complexes

as nf (p; T, R) and nc(p; T, R), respectively, we may then write the following phenomenological

Boltzmann equations:

ˆT nf + p
m

· ˆ
R

nf ≠ ˆ
R

(Uext,f (T, R) + Ue�,f [nf , nc]) · ˆ
p

nf = Cff [nf , nf ] + Ccf [nf , nc],

(4.136a)

ˆT nc + p
mc

· ˆ
R

nc ≠ ˆ
R

(Uext,c(T, R) + Ue�,c[nf , nc]) · ˆ
p

nc = Ccc[nc, nc] + Cfc[nf , nc].

(4.136b)

In the above equations, m is the mass of a free particle, mc is the mass of the complex and Uext,f(c)

denote external potentials. The right hand side terms describe collisional physics: Cff denotes the

collisional rate of change of the phase space density due to free-free collisions, Ccf denotes the net

complex æ free dissociation rate:

Cff (p; T, R) =
⁄ ddp1

(2fi)d

ddpÕ

(2fi)d

ddpÕ
1

(2fi)d
(2fi)d+1”(p + p1 ≠ pÕ ≠ pÕ

1) ”(E
p

+ E
p1 ≠ E

p

Õ ≠ E
p

Õ
1
)

◊ Wff (p, p1 æ pÕ, pÕ
1)

#
nf (pÕ; T, R)nf (pÕ

1; T, R) ≠ nf (p; T, R)nf (p1; T, R)
$
,

Ccf (p; T, R) =
⁄ ddp1

(2fi)d

ddpc

(2fi)d
(2fi)d+1”(p + p1 ≠ pc) ”(E

p

+ E
p

Õ ≠ Ec
p

c

)

◊ Wfc(p, p1 æ pc) [nc(pc; T, R)nf (p1; T, R) ≠ nc(pc; T, R)nf (p; T, R)] .

(4.137)
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Similar expressions can be written for Ccc and Cfc. The total mass density at a given macroscopic

point is:

fl(T, R) =
⁄ ddp

(2fi)d
[m nf (p; T, R) + mc nc(p; T, R)] . (4.138)

In the weak-coupling limit (‘b π kBT ), the majority of particles are in free form, whereas this

scenario is reversed in the strong-coupling (‘b ∫ kBT ) limit.

The quantum effects have been left out in the above phenomenology and it was assumed that

complexes and free particles are distinguishable entities. In a general quantum mechanical setting,

this implies that the spatial extent of the wave function of the complex ⁄c ≥ ~/
Ô

m‘b is much

smaller than the relevant quantum wavelength ⁄q = min{h/
Ô

2fimkBT , kF }. Otherwise, the un-

certainty principle does not allow a well-defined distinction between free particles and complexes.

In particular, in the regime ⁄c ≥ ⁄q, the free particles and complexes melt into each other due to

quantum fluctuations, resembling the pairing pseudogap regime.

Even in such cases, we may still write similar kinetic equations in terms of the energy distribution

of particles, f , and the statistics of pairing fluctuations, b, both of which remain well-defined in a

fully quantum mechanical setting. In the weak-coupling limit, pairing fluctuations are small, we

recover Eq. (4.136a) (with quantum mechanical corrections if ⁄q ≥ n1/d). In the strong-coupling

limit, pairing fluctuations describe stable complexes b æ nc, nf æ 0, we recover Eq. (4.136a).

Furthermore, fl ƒ mflf and fl ƒ mcflc in the weak- and strong-coupling limits, respectively.

Memory effects play a central role in the dynamics of many-particle systems that allow formation

of long-lived bound states. This is in particular important in the strong-coupling limit, where 2-

particle correlations G2 develop off-diagonal long-time order due to stable complexes. A physically

faithful closure of the BBGKY hierarchy at the level of 2-point functions will inevitably have strong

retardation effects, i.e. will be non-Markovian. Therefore, a Markovian approximation at the level

of 2-point functions is guaranteed to fail in the strong-coupling limit.
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4.5.2 Microscopic derivation of the kinetic equations

In this section, we show that a consistent pursuit of the gradient expansion program for the

SCTMA indeed yields the sought-after phenomenological coupled kinetic equations described in

the previous section in a natural way.

Derivation of kinetic equations based on the T-matrix approximation has a long history indeed,

going back to Kadanoff and Baym’s seminal contribution in 1962 [22]. They discussed the T-

matrix approximation for particles with short-range repulsive interactions. In their analysis, as

well as subsequent developments [23, 24], gradient terms in the T-matrix were not acknowledged

and or were tacitly ignored. In any event, the neglect of memory effects in collisions is a reason-

able approximation for repulsive interactions as the lifetime of binary collisions is of the order of

·comp. ≥ r0/vrms, where r0 is the range of interactions and vrms is the r.m.s. velocity. On the other

hand, ·comp. ≥ ·c‘b/(kBT ) can become very large for attractive interactions and memory effects

become increasingly more important. Inclusion of retardation effects in kinetic equations for sys-

tems with bound states and strong retardation have been discussed in Refs. [215, 216, 217, 218] and

more recently in Refs. [219, 220, 221, 222, 223, 224, 225]. These developments are along the line

of reconstructing retardation effects from the time-diagonal Green’s functions, the so-called gener-

alized Kadanoff-Baym ansatz [218], or by calculating non-Markovian corrections to the Boltzmann

equation [224]. Earlier works are based on heuristic closure of the BBGKY hierarchies and approx-

imate inclusion of retardation effects. There is no guarantee that conservation laws will be satisfied

in approximate treatment of memory effects.

Recently, Ivanov, Knoll and Voskresensky have recently shown that a fully consistent gradient

expansion of the KB equations is guaranteed to respect the exact conservation laws [25, 61, 62].

This is the line of thought that we pursue in this section. Starting from the KB equations for the

fermionic Green’s functions, we write the exact quantum kinetic equations for f‡(Ê, p; T, R).

The resulting equation, however, is incomplete without the knowledge of b(Ê, p; T, R) and
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B(Ê, p; T, R), the statistical and spectral parts of the T-matrix. The memory effects of the bosonic

degrees of freedom reside in b(Ê, p; T, R), and consequently in the fermionic self-energies (cf.

Eq. 4.82). We depart from the earlier works at this stage: instead of attempting to reconstruct the

memory effects in b(Ê, p; T, R) approximately and obtaining a non-Markovian kinetic equation,

we carry out the gradient expansion program for the renormalized non-equilibrium Dyson’s

equation for the T-matrix, Eq. (4.95). The result is a quantum kinetic equation for b(Ê, p; T, R).

Together with the kinetic equation for f‡(Ê, p; T, R), these two equations constitute the equa-

tions provisioned from phenomenological arguments. Furthermore, the gradient corrections are

accounted form in a fully consistent manner, conservation laws are guaranteed to be respected [62].

In order to avoid fragmentation of the discussion, we copy some of the results obtained earlier

when necessary. Our starting point in the generalized kinetic equation for G‡ in the Boterman-

Malfliet (BM) form (cf. Eq. 2.41):

A2
‡ �‡

2

5
{M‡, f‡} ≠ M‡

�‡
{�‡, f‡}

6
= C‡ + O(ˆ2

X). (4.139a)

The various quantities appearing in the above equations (spectral broadening �‡, spectral function

A‡, mass-shell M‡, and the collision integral C‡) were given in the Sec. 4.3. We copy the results

here:

A‡(1̃) = ≠2⁄[G+
‡ (1̃)] = �‡(1̃)

M‡(1̃)2 + �‡(1̃)2/4
+ O(ˆX)2, (4.139b)

�‡(1̃) = ≠2⁄[�+
‡ (1̃)] =

⁄
d2̃ d3̃ ”(1̃ + 2̃ ≠ 3̃) A‡̄(2̃) B(3̃)

#
f‡̄(2̃) + b(3̃)

$
, (4.139c)

M‡(1̃) = Ê1 + µ‡ ≠ |p1|2
2m‡

≠ U‡(T, R) ≠ Ÿ[�+
‡ (1̃)]. (4.139d)

We remind that the shorthand d1̃ stands for (2fi)≠d≠1 dÊ1 dd p1. All of the functions carry a label

of (T, R) corresponding to the macroscopic time and space coordinates. We remember that B and
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b denote the spectral and statistical parts of the T-matrix:

T> = ≠iB(b + 1), T< = ≠iBb. (4.139e)

The real part of the fermionic self-energy Ÿ[�+
‡ ] is given by the Kramers-Kronig transform of

⁄[�+
‡ ] = ≠�‡/2:

Ÿ[�+
‡ (1̃)] = ≠1

2 KK[�‡(1̃)]. (4.139f)

The fermionic collision integral is:

C‡(1̃) = G>
‡ (1̃)�<

‡ (1̃) ≠ �>
‡ (1̃)G<

‡ (1̃)

=
⁄

d2̃ d3̃ ”(1̃ + 2̃ ≠ 3̃) A‡(1̃) A‡̄(2̃) B(3̃)

◊
Ó#

1 ≠ f‡(1̃)
$#

1 ≠ f‡̄(2̃)
$
b(3̃) ≠ f‡(1̃) f‡̄(2̃)

#
1 + b(3̃)

$Ô

=
⁄

d2̃ d3̃ ”(1̃ + 2̃ ≠ 3̃)

S

WWWU ≠

T

XXXV (4.139g)

The quantity C‡(Ê, p; T, R) has the simple intuitive interpretation of the net rate of change of f‡

due to annihilation and creation of bosonic fluctuations, resolved by the energy and momentum

(Ê, p) of a fermion with spin ‡. We will show later that neglecting memory effects in the T-

matrix and a local approximation gives the result obtained earlier by Kadanoff and Baym [22] and

Danielewicz [23].

The non-equilibrium Dyson’s equation for the T-matrix, Eq. (4.95), is precisely what we need to

proceed with our development:

T(1, 1Õ)≠1 = T̃≠1
0 (1, 1Õ) ≠ Q(1, 1Õ)

Q(1, 1Õ) = i‰(1, 1Õ) ≠ i‰̃0(1, 1Õ) = . (4.140)

Identifying the renormalized vacuum T-matrix T̃≠1
0 and Q as the free bosonic Green’s function and

bosonic self-energy, respectively, we can take all of the steps we took earlier to derive the kinetic
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equation for G to derive a kinetic equation for T. The only difference is that T̃≠1
0 has a somewhat

more complex structure and has a non-vanishing greater component (cf. Eq. 4.91b). As a first step,

we convert the Dyson’s equation to a KB equation for T. The explicit-time functions are found

using Langreth rules. The resulting KB equations and their adjoints in the Wigner representation

(analogous to Eq. 2.22) read as:

Ë
T̃≠1

0

È+
ıGM T? +

Ë
T̃≠1

0

È?
ıGM T≠ = Q+ ıGM T? + Q? ıGM T≠, (4.141a)

Ë
T̃≠1

0

È±
ıGM T ± = 1 + Q± ıGM T±, (4.141b)

T+ ıGM
Ë
T̃≠1

0

È?
+ T? ıGM

Ë
T̃≠1

0

È≠
= T+ ıGM Q? + T? ıGM Q≠, (4.141c)

T± ıGM
Ë
T̃≠1

0

È±
= 1 + T± ıGM Q±. (4.141d)

The operator ıGM is the Groenewold-Moyal product defined earlier (cf. Eq. 2.12). The first-order

gradient expansion of the equation for the ± component and its adjoint give:
3Ë

T̃≠1
0

È±
≠ Q±

4
T± + i

2

;Ë
T̃≠1

0

È±
≠ Q±, T±

<
= 1 + O(ˆ2

X), (4.142a)
3Ë

T̃≠1
0

È±
≠ Q±

4
T± + i

2

;
T±,

Ë
T̃≠1

0

È±
≠ Q±

<
= 1 + O(ˆ2

X). (4.142b)

Similar to the situation with G, the above equations have the following simple algebraic solution:

T± = 1
Ë
T̃≠1

0

È±
≠ Q±

+ O(ˆ2
X). (4.143)

Carrying out the first-order gradient expansion of Eqs. (4.141a) and (4.141c) and subtracting the

latter from the former, we find:

;
Ÿ

3Ë
T̃≠1

0

È+
≠ Q+

4
, iT?

<
+

;
Ÿ[T+], i

3
Q? ≠

Ë
T̃≠1

0

È?4<
=

T<
3

Q> ≠
Ë
T̃≠1

0

È>
4

≠ T>
3

Q< ≠
Ë
T̃≠1

0

È<
4

+ O(ˆ2
X), (4.144)

which is the KB quantum kinetic equation for the T-matrix. The above equation assumes the fol-

lowing simple form in the spectral/statistical representation:

{Mb, B b} +
I

Mb

M2
b + �2

b/4 , �bcb

J

= Cb + O(ˆ2
X), (4.145)

233



Chapter 4: Non-equilibrium dynamics of attractive two-component Fermi gases

where we have defined a bosonic spectral/statistical representation for the combination Q ≠
Ë
T̃≠1

0

È
:

Q< ≠
Ë
T̃≠1

0

È<
© ≠i�b cb, Q> ≠

Ë
T̃≠1

0

È>
© ≠i�b(cb + 1), (4.146)

the bosonic mass-shell function Mb as:

Mb © Ÿ
3Ë

T̃≠1
0

È+
≠ Q+

4
, (4.147)

and the bosonic collision integral Cb as:

Cb © ≠B�b(b ≠ cb). (4.148)

Using Eq. (4.143), the real and imaginary parts of T+ can be written as:

Ÿ[T+] = Mb

M2
b + �2

b/4 , ⁄[T+] = ≠�b/2
M2

b + �2
b/4 . (4.149)

Observing that b ≠ cb ≥ O(ˆX), we can replace cb with b inside the second Poisson bracket on the

left hand side of Eq. (4.145) to find the BM form after some elementary rearrangements:

B2 �b

2

5
{Mb, b} ≠ Mb

�b
{�b, b}

6
= Cb + O(ˆ2

X), (4.150a)

We summarize the explicit expressions for the quantities that appear inside the T-matrix kinetic

equation:

B(1̃) = ≠2⁄[T+(1̃)] = �b(1̃)
Mb(1̃)2 + �b(1̃)2/4

+ O(ˆ2
X), (4.150b)

�b(1̃) = ≠2⁄
3

Q+(1̃) ≠
Ë
T̃≠1

0 (1̃)
È+

4

=
⁄

d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃) Aø(2̃) A¿(3̃)
#
1 ≠ fø(2̃) ≠ f¿(3̃)

$
), (4.150c)

cb(1̃) = �b(1̃)≠1
⁄

d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃) Aø(2̃) A¿(3̃) fø(2̃) f¿(3̃), (4.150d)

Mb(1̃) = Ÿ
3Ë

T̃≠1
0

È+
≠ Q+

4

= Ÿ
51

T≠1
0

2+ 1
Ê1 + µø + µ¿ ≠ Uø ≠ U¿, p1

26
≠ KK

Ë
⁄

Ë
Q+(1̃)

ÈÈ
, (4.150e)
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⁄
Ë
Q+(1̃)

È
= ≠1

2

⁄
d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃)

Ó
Aø(2̃) A¿(3̃)

#
1 ≠ fø(2̃) ≠ f¿(3̃)

$
≠ Ã0,ø(2̃) Ã0,¿(3̃)

Ô
.

(4.150f)

Finally, the bosonic collision integral Cb(Ê, p; T, R) is:

Cb(1̃) = T<
3

Q> ≠
Ë
T̃≠1

0

È>
4

≠ T>
3

Q< ≠
Ë
T̃≠1

0

È<
4

=
⁄

d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃) B(1̃) Aø(2̃) A¿(3̃)
) #

1 + b(1̃)
$
fø(2̃) f¿(3̃)

≠ b(1̃)
#
1 ≠ fø(2̃)

$ #
1 ≠ f¿(3̃)

$ *

=
⁄

d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃)

S

WWWU ≠

T

XXXV , (4.150g)

The quantity Cb(Ê, p; T, R) has the simple intuitive interpretation of the net rate of change of

b(Ê, p; T, R) due to formation and dissociation of a bosonic fluctuations with energy and momen-

tum (Ê, p). It is easy to see that the fermionic and bosonic collision integrals satisfy the following

exact relation:
⁄

d1̃ pµ(1̃)
#
Cø(1̃) + C¿(1̃) + Cb(1̃)

$
= 0, (4.151)

where pµ(1̃) © (Ê1, p1). The above relation follows directly from Eqs. (4.139g) and (4.150g) and

imply that the energy and momentum is conserving in the formation and dissociation of a bosonic

fluctuation.

We have obtained a complete set of equations that determine the evolution of (f‡, b) in the

kinetic limit. Our treatment has two important features: (1) The Groenewold-Moyal products are

expanded consistently to first order in all evolution equations, so that the conservation laws are

guaranteed to be respected [62]; (2) the coupled equations have a simple Markovian structure in

the extended state space (f‡, b): the spectral functions, mass-shell functions, spectral broadenings

and collision integrals are all local in (T, R). The Markovian structure comes at the cost of an

235



Chapter 4: Non-equilibrium dynamics of attractive two-component Fermi gases

extended state space f‡ æ (f‡, b). This added expense is however to our benefit: we will show

later that b indeed describes the statistics of bound states in the strong-coupling limit. (3) The

quantum kinetic equations obtained here from the microscopic theory resemble those provisioned

from phenomenological arguments.

The methodology used here can be applied to other fluctuation-exchange �-derivable approxi-

mations. Whenever the self-energy is expressible in terms of one or more sub-diagrams, each admit

a Dyson’s equation (e.g. the Cooperon, magnon, change density wave, etc.). The state space may

be augmented by introducing additional bosonic statistical functions (b1, . . . , bN ), each satisfying

a Markovian kinetic equation. The coupled system of equations are guaranteed to conserve the

symmetries of the microscopic theory.

4.5.3 The weak-coupling and strong-coupling limits

The coupled kinetic equations describing fermionic and bosonic degrees of freedom are ex-

pected to assume simple forms in the weak-coupling and strong-coupling limits. In the weak-

coupling limit, the dynamics of the bosonic fluctuations is highly diffusive (cf. Sec. 4.2.3), so that

the bosonic excitations are short-lived (memoryless) in the first approximation. Therefore, the statis-

tics of bosonic excitations b is expected to be determined instantaneously by the non-equilibrium

configuration of the fermionic degree of freedom. In this limit, the weak collisions are predom-

inantly governed by the Maki-Thompson processes, i.e. Andreev reflection from the short-lived

bosonic excitations. During the passage to the strong-coupling limit, the bosonic degree of freedom

smoothly changes its character from local short-lived fluctuations to propagating long-lived bound

pairs of fermions. The population of free fermions is suppressed by an exponentially small factor

≥ e≠—‘
b

/2 and only appear as short-lived excitations during the collision of bosonic pairs. The

transport is described by the Aslamazov-Larkin process as mentioned earlier. We make these ideas

rigorous in the remainder of this section.
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The weak-coupling limit (‘b/‘F π 1, —‘b π 1):

We assume that both spin states have equal mass and chemical potential for simplicity, and that

Uø = U¿ = U . The diffusive character of bosonic fluctuations can be seen by investigating the

T-matrix kinetic equation, Eq. (4.150a). In this limit, self-consistency is immaterial due to weak

interactions and we may use the equilibrium form of the retarded many-body T-matrix. The latter is

most easily obtained by analytically continuing the Matsubara T-matrix given in Eq. (4.29) by the

substitution i‹n æ Ê ≠ 2U(T, R) + i0+:

T+(Ê, q; T, R) ¥ 1
(“1 + i“2) (Ê ≠ 2U(T, R)) ≠ c1|q|2/(2m) ≠ c0

, (4.152)

where c0 = ≠N(0) ln(—Tc), c1 = N(0)7—2’(3)‘F /(8fi2), “1 = N(0)/(4‘F ) and “2 =

N(0)—fi/8 according to Eq. (4.32). We remember that Tc ≥ Ô
‘b‘F so that c(0)/N(0) ≥

≠ ln(—‘b) ∫ 1. The above expression yields Mb ¥ c0 ≠ c1|q|2/(2m) + “1 (Ê ≠ 2U(T, R)) and

�b ¥ 2“2 (Ê ≠ 2U(T, R)). Plugging these expressions into Eq. (4.150a), we find:

“2[Ê ≠ 2U(T, R)]
c2

0

3
“1ˆT b + c1

m
q · ˆ

R

b ≠ 2“1ˆ
R

U · ˆ
p

b
4

+ “2
c0

(ˆT b ≠ 2ˆ
R

U · ˆ
p

b) = cb ≠ b.

(4.153)

The first term on the left hand side is sub-leading to the second term due to an extra factor of c0 in

the denominator and can be neglected. The resulting equation can be written as:

ˆT b ≠ 2ˆ
R

U · ˆ
p

b ¥ ≠b ≠ cb

·b
, (4.154)

where ·b © “2/c0, is a relaxation time. The above equation implies that deviations of the bosonic

statistical function b from cb relax to cb within a short time ·b ≥ —/ ln(—Tc). We remember that cb is

exactly the instantaneous distribution of bosonic fluctuations for a given configuration of fermions.

According to Eq. (4.150d), cb can be thought of as the rate at which two fermions meet (with a given

center of mass energy and momentum), multiplied by the lifetime of bosonic fluctuation �b. The

above result may also be obtained from a different perspective. Combining Eqs. (4.141a)-(4.141d),
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we find the following exact equation4 for T?:

≠iT? = T+ ıGM ‰? ıGM T≠. (4.155)

Expanding the GM product to linear order, we find:

≠iT? = |T+|2‰? + i

2
Ë
{T+, ‰?}T≠ + T+{‰?, T≠} + ‰?{T+, T≠}

È
+ O(ˆ2

X). (4.156)

Since N(0)T+ ≥ N(0)/c0 π 1 and the gradient terms in the kinetic limit introduce additional

smallness factors (by definition), the Poisson brackets in the square brackets may therefore be ne-

glected and we obtain:

T? = i|T+|2‰? + O(ˆX/ ln2 —‘b). (4.157)

Keeping only the product term directly gives cb = b. However, neglecting the gradient terms

involving the T-matrix is simply the statement of neglecting memory effects of bosonic degrees of

freedom. In summary, we find:

b = cb + O(1/ ln —‘b). (4.158)

To leading order in 1/ ln —‘b, the fermionic kinetic equation (Eq. 4.139a) is self-sufficient. Replac-

ing b with cb in Eq. (4.139c) yields �‡ just in terms of A‡ and f‡. In fact, �‡ and C‡ are already

O(1/ ln2 —‘b) due to the factor B ≥ 1/ ln2 —‘b. Therefore, the error introduced by replacing b with

cb is only O(1/ ln3 —‘b) and the approximation is quite accurate in the weak-coupling limit. The

weak-coupling fermionic collision integral (Eq. 4.139g) assumes the following form following the

4The most general equation of this type includes a term involving the initial conditions (e.g. see Eq. (3.13) in
Ref. [23]). Here, we have assumed that the system is in equilibrium at t = ≠Œ. The KMS boundary condition is
automatically satisfied by Eq. (4.155).
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replacement b æ cb:

C‡(1̃) =
⁄

d2̃ d3̃ d4̃ ”(1̃ + 2̃ ≠ 3̃ ≠ 4̃) A‡(1̃) A‡̄(2̃) Aø(3̃) A¿(4̃)
---T+(3̃ + 4̃)

---
2

◊
Ó#

1 ≠ f‡(1̃)
$#

1 ≠ f‡̄(2̃)
$
fø(3̃)f¿(4̃) ≠ f‡(1̃) f‡̄(2̃)

#
1 ≠ fø(3̃)

$#
1 ≠ f¿(4̃)

$Ô

=
⁄

d2̃ d3̃ d4̃ ”(1̃ + 2̃ ≠ 3̃ ≠ 4̃)

S

WWWWWWU
≠

T

XXXXXXV
+ O(1/ ln3 —‘b).

(4.159)

The above collision integral is the local (memoryless) part of the collision terms and formally re-

sembles the result obtained earlier for the Born approximation (Eq. 2.47c). The symmetry of the

collision integral kernel implies local conservation of particle number, energy and momentum:

ÿ

‡

⁄
d1 C‡(1̃) = 0,

ÿ

‡

⁄
d1 pµ(1̃) C‡(1̃) = 0, (4.160)

where pµ(1̃) © (Ê1, p1). Eq. (4.159) has been obtained earlier by Kadanoff and Baym [22] and

Danielewics [23] in the context of hard-core repulsive fermionic matter in the T-matrix approxima-

tion (Bruckner theory). These works, however, have not acknowledged the existence of independent

bosonic degrees of freedom to begin with, and have assumed Eq. (4.157) as an exact fact from the

outset. Nevertheless, their analyses are expected to remain valid up to moderately large interactions

in light of the fact that repulsively interacting fermions do not form bound states and the bosonic

excitations always have a diffusive character. The diffusion time of bosonic fluctuations can still be-

come large in the strong-coupling limit, leading to the breakdown of the memoryless approximation

(and the Fermi surface).

We conclude this discussion by mentioning that the Fermi surface is sharp in the weak-coupling

limit, so that we may also use the quasiparticle approximation. The spectral broadening of fermions,

�‡, is O(1/ ln2 —‘b) and can be set to zero in the extremely weak-coupling limit. In this limit, the

239



Chapter 4: Non-equilibrium dynamics of attractive two-component Fermi gases

fermion spectral function assumes the non-interacting ≥ ”(Ê ≠ ›
p

) form. The quasi-equilibrium

dynamics of the gas is essentially described by the changes in the statistics of free fermions.

The strong-coupling limit (‘b/‘F ∫ 1, —‘b ∫ 1):

According to the previous discussions, the equilibrium chemical potential in this limit can be

written as µ = ≠‘b/2 + µB/2, where µB the bosonic correction. The number of unpaired fermions

is suppressed by an exponentially small factor e≠—‘
b

/2 and the system is described as a gas of weakly

interacting composite bosons. A large gap of the order of ‘b about Ê = 0 separates the sharp particle

branch of the spectral function, Ê ¥ ›
p

, from the incoherent hole branch. The threshold energy for

the hole branch is Êth ƒ ≠‘b/2. As a first step, we show that the bosonic excitations have a sharp

particle-like nature. Using Eq. (4.150c), we obtain the estimate:

�b(Ê = 0, p = 0) =
⁄ dÊÕ

(2fi)
ddpÕ

(2fi)d
Aø(ÊÕ, pÕ) A¿(≠ÊÕ, ≠pÕ)

#
1 ≠ fø(ÊÕ, pÕ) ≠ f¿(≠ÊÕ, pÕ)

$

ƒ 2
⁄ dÊÕ

(2fi)
ddpÕ

(2fi)d
(2fi)Z

p

Õ ”(ÊÕ ≠ ›Õ
p

) �ø(≠ÊÕ, ≠pÕ)
(≠ÊÕ ≠ ›≠p

)2

= O(‘F /(—‘b)). (4.161)

The second line follows from the fact that the non-zero integral kernel requires one particle to be in

the hole branch while the other being in the particle branch. The quasiparticle residue of the particle

particle is Z
p

≥ 1 ≠ O(1/(—‘b)) as mentioned earlier and can be safely set to unity here. The

last line finally follows from the fact that the incoherent branch is exponentially suppressed at the

thermal energy scale (cf. Eq. 4.46). The above result immediately implies that the bosonic kinetic

equation assumes a Boltzmann structure.

As a next step, we calculate the bosonic mass-shell function Mb. According to Eq. (4.150e),

there are two types of contributions to the mass-shell function: a part coming from the bare T-
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matrix, Mb,0, and a self-energy part Mb,Q. The first contribution in d = 2 and 3 is:

(d = 2) : Mb,0(Ê, p; T, R) = m

4fi
ln

Ë
≠‘b/(Ê ≠ 2U(T, R) ≠ |p|2/(4m)

È

= m

4fi‘b

1
Ê + µB ≠ 2U(T, R) ≠ |p|2/(4m)

2
+ O(E/‘b),

(d = 3) : Mb,0(Ê, p; T, R) = m

4fi

5 1
as

≠ i
Ò

m(Ê ≠ 2U(T, R) ≠ |p|2/(4m)
6

= m2

8fi
Ô

m‘b

1
Ê + µB ≠ 2U(T, R) ≠ |p|2/(4m)

2
+ O(E/‘b).

(4.162)

We have expanded the inverse retarded T-matrix in small E © max{|Ê|, |U |, |p2/(2m)} in the

second line. Note that ‘b = 1/(ma2
s) in the d = 3. The T-matrix contribution, as expected,

assumes a polar structure which describe the center of mass motion of bound pairs. The self-energy

contribution to the mass-shell is:

Mb,Q(Ê, p1; T, R) © ≠KK
Ë
⁄

Ë
Q+

ÈÈ
(Ê, p1; T, R) = P.V.

⁄ dÊ1
2fi

1
Ê1 ≠ Ê

⁄
d2̃ d3̃ ”(1̃≠2̃≠3̃)

◊
Ó

Aø(2̃) A¿(3̃)
#
1 ≠ fø(2̃) ≠ f¿(3̃)

$
≠ Ã0,ø(2̃) Ã0,¿(3̃)

Ô
. (4.163)

The self-energy corrections can be evaluated at Ê = p = 0 to leading order in the energy of bosonic

excitations (this will be justified a posteriori). Combining Eqs. (4.161),(4.162), and (4.163), we

general find in d-dimensions:

B(Ê, p; T, R) = 2fi ⁄d ”
1
Ê + µB ≠ 2U(T, R) ≠ |p|2/(4m) ≠ �BB(T, R)

2
+ O(E/‘b, 1/—‘b)

(4.164)

where the residue of the bound-state pole ⁄d was defined in Eq. (4.100), and:

�BB(T, R) © ≠⁄d Mb,Q(0, 0; T, R). (4.165)

�BB can be interpreted as the effective boson-boson self-energy functional. Mb,Q must be found

self-consistently from Eqs. (4.163), (4.164), (4.139b), (4.139d) and(4.139c). The calculated of Mb,Q

241



Chapter 4: Non-equilibrium dynamics of attractive two-component Fermi gases

is facilitated using its diagrammatic interpretation:

Mb,Q(Ê, p1; T, R) = Ÿ
C D+

= Ÿ
C

+
D+

. (4.166)

The second equality is obtained by using Dyson’s expansion of the dressed Green’s function,

G = G0 + G0�G. The + signs indicate the retarded component. The external frequency and

momentum is Ê and p1, respectively.

• Mb,Q in d = 2:

In d = 2, each loop, fermionic propagator and bosonic propagator result in a factor of ‘b,

1/‘b and ‘b, respectively. The combination of the first diagram ≥ G0G0 (thin lines) and last

counter-term diagram ≥ G̃0G̃0 (dashed lines) give a small contribution ≥ O(e≠—‘
F ) and can be

neglected. However, we immediately see that all diagrams the remaining diagrams are of the order

≥ m/‘b, so that (4fi‘b/m)Mb,Q ≥ O(1). We recover the same pathological result we found from

the linear response analysis: in the T-matrix approximation, the composite bosons do not become

free even in the extreme strong coupling limit ‘b æ Œ.

Nevertheless, we may ask for the prediction of this theory. In general, Mb,Q can not be found

by perturbation in d = 2. The only tractable case is the classical regime (—|µB| ∫ 1, |µB| π ‘b),

where the bound states are still thermally stable, yet, |µB|/‘b ∫ 1. This allows us to write a Virial

series for Mb,Q in the powers of —‘F . In this limit, the power of fugacity z = e≠—|µ
B

| is given

by the number of bosonic lines. The leading-order contributions are the diagrams with a single
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bosonic line, i.e. the second and third diagrams in Eq. (4.166) with all Green’s functions replaced

by bare lines. The leading contribution results from the bosonic pole. A lengthy but straightforward

calculation gives:

Mb,Q(Ê, p; T, R) = ≠2 v(Ê, p) nB(T, R)+(diagrams with more than one bosonic line). (4.167)

In the above equation,

nB(T, R) © 1
⁄d

⁄ d�
2fi

ddQ
(2fi)d

B(�, Q; T, R) b(�, Q; T, R), (4.168)

and:

v(Ê, p) © ⁄d P.V.
⁄ dÊÕ

2fi

ddk
(2fi)d

1
(Ê + ÊÕ ≠ ›

p+p

Õ)2(≠ÊÕ ≠ ›≠p

Õ)(≠Ê ≠ ÊÕ ≠ ›≠p

Õ≠p

)

+ O
1
e≠—‘

b , (‘F /‘b)2
2

. (4.169)

The result is valid for arbitrary d. The contribution of the fermion statistical function f is confined

to either very large or very small energies, |Ê| > ‘b. Within the confines of the kinetic theory, f is

undisturbed in these high energy regimes and we have allowed ourselves to replace f(Ê, p; T, R)

with its zero temperature limit ◊(≠Ê) in light of —‘b ∫ 1. In d = 2, we find:

v(Ê, p) = 1
‘b

+ O(E/‘2
b), (4.170)

where E = max{Ê, |p|2/(2m)}. The last result justifies the restriction to Ê = p = 0 in Eq. (4.164).

In summary, we find:

�BB(T, R) ƒ 8fi

m
nB(T, R). (4.171)

The effective interaction is simply the Hartree mean-field energy of bosons with a ” potential, a

result obtained earlier from the linear response analysis. We again remark that this conclusion

is in fact an artifact of the T-matrix theory in d = 2, which treats the composite bosons at the

mean-field level. Once multiple scatterings between the bosons are taken into account, they become
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asymptotically free in the low-energy Ê/‘b π 1 limit.

• Mb,Q in d = 3:

In d = 3, the bosonic propagators give a factor of ⁄3 ≥ Ô
‘b instead of ‘b. This immedi-

ately permits a controlled expansion of Mb,Q in the powers of ‘F /‘b both in quantum and thermal

regimes. A simple power counting shows that the second, third and forth diagrams appearing in

the second and third lines of Eq. (4.166) are O(‘≠3/2
b ), O(‘≠3/2

b ) and O(‘≠4
b ), respectively. The

leading contribution is the same as Eq. (4.167) and we find:

v(Ê, p) = 1
2‘b

+ O(E/‘b), (4.172)

and consequently:

�BB(T, R) = 2 4fi(2as)
2m

nB(T, R) + O(a2
s). (4.173)

The above result is again interpreted as the Hartree self-energy for bosons with an effective s-wave

scattering length aB © 2as [226]. Considering multiple scatterings between the bosons (and inclu-

sion of more complicated irreducible boson-boson interaction vertices) yield a numerical correction

aexact
B ƒ 0.6 as [227, 228]. In any event, the effective boson-boson interaction vanishes in the limit

‘b æ Œ, yielding a gas of free composite bosons.

We return to the discussion of the bosonic kinetic equation in light of the above results. Since

�b ≥ 1/—‘b, we may use the identity:

lim
�

b

æ0

B2 �b

2 = (2fi) ⁄d ”(Mb), (4.174)

Eq. (4.150a) can be written as:

(2fi) ”(Mb) [{Mb, b} + �b(b ≠ cb)] = 0. (4.175)
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The collision term is smaller than the streaming term by a factor of 1/(—‘b) and can be neglected.

We obtain the sought-after bosonic Boltzmann equation upon integrating over the frequency:

ˆT nB(p; T, R) + p
mB

· ˆ
R

nB(p; T, R) ≠ ˆ
R

#
2U(T, R) + �BB(T, R)

$
· ˆ

p

nB(p; T, R) = 0,

(4.176)

where mB = 2m. Finally, let us show that the non-equilibrium density is indeed given by

2nB(T, R) in this limit. We have by definition:

n(T, R) =
ÿ

‡

⁄ dÊ

2fi

ddp
(2fi)d

A‡(Ê, p; T, R)f(Ê, p; T, R)

=
ÿ

‡

C D

=
ÿ

‡

C

+
D

. (4.177)

The outgoing frequency/momentum of the tadpole is to be set to zero. We have used Dyson’s

equation to get the third line. The bare tadpole gives the number of unpaired fermions, n1:

n1(T, R) =
ÿ

‡

⁄ dÊ

2fi

ddp
(2fi)d

2fi ”(Ê ≠ ›
p

) f(Ê, p; T, R) ƒ 2
—

⁄ Œ

≠—µ

d› Nd(›)
e› + 1 ≥ O(e≠—‘

b

/2).

(4.178)

Here, Nd(›) is the density of states per spin for a free Fermi gas. Note that we have replaced the

non-equilibrium fermion statistics with f0(Ê) in the integral since Ê ∫ ‘b. The analytic result for

this contribution is given in Eq. (4.52) for d = 2. The second tadpole accounts for the composite

bosons. According to the above discussions, this diagram can be expanded in the number of bosonic

lines in the strong-coupling limit. To leading order, the thick lines can be replaced with thin lines

and using the strong-coupling bosonic spectral function (Eq. 4.164), we find:

n2(T, R) = 2⁄d

⁄ ddp
(2fi)d

ddq
(2fi)d

f(›
q≠p

, q ≠ p; T, R) + b(›B,q, q; T, R)
(|p|2/m + ‘b ≠ �BB)2

= 2
⁄ ddq

(2fi)d
b(›B,q, q; T, R) + O

1
�BB/‘b, e≠—‘

b

2

ƒ 2 nB(T, R). (4.179)
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We have defined the shorthand ›B,q © |q|2/(4m) + µB ≠ �BB(T, R). The factor ⁄d is exactly

cancelled by the result of the p momentum integral. The last line becomes exact in the limit —‘b æ

Œ in d = 3. This result is expected to remain valid in d = 2 in general. However, as discussed

before, SCTMA suffers from the artifact that does not decouple the bosons in the quantum regime.

Therefore, the above result only holds in the thermal composite Bose gas regime and is valid as long

as —‘F , —‘b ∫ 1.

4.5.4 On the emergence of bosonic degrees of freedom

We discussed and the weak- and strong-coupling limits of the kinetic equations in the previ-

ous section. Of particular interest was the different interpretation of b in different regimes: in the

weak-coupling limit, b ƒ cb and describes the energy distribution of short-lived fluctuations during

the collision of fermions. In the strong-coupling limit, on the other hand, b describes the energy

distribution of stable bound pairs. In this limit, b is governed by a Boltzmann equation for nearly

free bosonic particles of mass 2m. Here, we give a perspective for interpreting the emergence of

such bosonic degrees of freedom. In fact, the steps we were naturally led to take for a consistent

derivation of the kinetic equations can be understood in a more transparent and general way by

combining ideas from Hubbard-Stratonovich transformations and the 2PI effective action (2PI-EA)

formalism.

Generally speaking, �-derivable approximations that include infinite resummation of a certain

class of vacuum diagrams may often be equivalently obtained by introducing one or more auxiliary

bosonic Hubbard-Stratonovich (HS) fields to mediate the exchange of fluctuations. The original

�-derivable approximation may then be obtained identically by keeping a certain class of vacuum

diagrams (often finite and much simpler; see below), composed of both fermionic and bosonic

Green’s functions. To this end, we simply follow the procedure of obtaining the 2PI-EA as before.

The new 2PI-EA, however, is defined in the extended Hilbert space this time and is a functional of
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both the fermionic and the bosonic Green’s functions.

We start the discussion by assuming that the interaction term in the microscopic fermionic action

has been decoupled in a convenient way upon introducing n HS bosonic fields (�1, . . . , �n). We

consider only the case of normal systems for the clarity of the discussion5. We define the generating

functional of the 2n-point Green’s functions by introducing a 2-point source field K coupling to

Â̄‡ Â‡, and n additional 2-point source fields (K Õ
1, . . . , K Õ

n) coupling to (�ú
1�1, . . . , �ú

n�n) as

follows:

Z[K, K Õ
1, . . . , K Õ

n] ©
⁄

D[Â, Â̄] D[�1, �ú
1] . . . D[�n, �ú

n]

◊ exp (iSHSd + iS2 + iS2,1 + . . . + iS2,n) , (4.180)

where SHSd[Â, Â̄; �i, �ú
i ] is the HS-decoupled microscopic action, and:

S2[Â, Â̄; K] © ≠
⁄

C
d·1 d· Õ

1 ddx1 ddxÕ
1 Â̄‡(·1, x1) K(·1, x1; · Õ

1, xÕ
1) Â‡(· Õ

1, xÕ
1),

S2,j [�j , �ú
j ; K Õ

j ] © ≠
⁄

C
d·1 d· Õ

1 ddx1 ddxÕ
1 �ú

j (·1, x1) K Õ
j(·1, x1; · Õ

1, xÕ
1) �j(· Õ

1, xÕ
1). (4.181)

The above action is in every way similar to a physical Fermi-Bose model, save for the fact that the

HS fields do not directly couple to external fields, and do not have intrinsic dynamics. We may

proceed and find the 2PI-EA of such a model by following the standard steps of trading the source

fields with Green’s functions, which we outline here. The generating functional of the 2-connected

vacuum diagrams is given by the linked-cluster theorem, W = ln Z. The vacuum diagrams are

constructed from the cubic (and possibly quartic) terms of the HS-decoupled action SHSd. The

Green’s functions are given by:

G(1, 1Õ; K) = ”W

”K(1Õ, 1) , Bj(1, 1Õ; K) = ”W

”K Õ
j(1Õ, 1) , (4.182)

5The generalization to superconducting states is immediate by adding a charge index to the fermion operators and
using the super Green’s function formalism discussed in Sec. 1.2.1
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where G is the usual fermionic Green’s function, and {B} correspond to the auxiliary bosonic

Green’s functions. The 2PI effective action �[G, B1, . . . , Bn] is obtained through a Legendre trans-

form of W as usual:

�[G, {B}] © W ≠
⁄

d1 d1Õ
S

U ”W

”K(1, 1Õ) G(1, 1Õ) +
ÿ

j

”W

”K Õ
j(1, 1Õ) Bj(1, 1Õ)

T

V

= Tr ln G≠1 + Tr
1
G̃≠1

0 G̃
2

+
ÿ

j

Ë
Tr ln B≠1

j + Tr
1
B≠1

j,0 Bj

2È
+ �̃[G, {B}]. (4.183)

We have separated the 1-loop contributions from the rest in the second line. �̃ is the Luttinger-Ward

functional and is formally the sum of all 2PI vacuum diagrams of SHSd. The stationarity condition

on �[G, {B}] for vanishing source fields (cf. Sec. 1.2.3) yields the non-equilibrium Dyson’s equation

for G and Bj :

G(1, 1Õ)≠1 = G≠1
0 (1, 1Õ) ≠ �G [G, {B}](1, 1Õ),

Bj(1, 1Õ)≠1 = B≠1
j,0 (1, 1Õ) ≠ �B

j

[G, {B}](1, 1Õ), (4.184)

where:

�G [G, {B}](1, 1Õ) © ≠ ”�̃
”G(1Õ, 1) , �B

j

[G, {B}](1, 1Õ) © ≠ ”�̃
”Bj(1Õ, 1) . (4.185)

Since the Bose-Fermi action is obtained from a HS decoupling, the bare bosonic inverse propagators

B≠1
j,0 are static. The self-energy �B

j

can however generate the dynamics for the HS fields. We also

notice the analogy between Eq. (4.189), and the coupled Dyson’s equation we obtained for G and T

earlier.

The above procedure offers a more transparent and economic way of obtaining the T-matrix ki-

netic equations derived in the previous section. As an example, we carry out the procedure outlined

above starting from the microscopic action of the attractive Fermi gas:

S[Â, Â̄] =
⁄

C
d·

⁄
ddx

Ë
Â̄‡

1
iˆ· + Ò2/(2m) + µ ≠ U

2
Â̄ ≠ ⁄� Â̄øÂ̄¿Â¿Âø

È
, (4.186)
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where ⁄� < 0 is a short-range attractive interaction. The HS decoupling in the Cooper channel

yields:

SHSd[Â, Â̄; �, �ú] =
⁄

C
d·

⁄
ddx

Ë
Â̄‡

1
iˆ· + Ò2/(2m) + µ ≠ U

2
Â̄‡(·, x)

+ ⁄≠1
� �ú� ≠ �úÂ¿Âø ≠ �Â̄¿Â̄ø

È
. (4.187)

We immediately read B≠1
0 (1, 1Õ) © ⁄≠1

� ”C(1, 1Õ) from SHSd. The 2PI vacuum diagrams of SHSd are

given by Eq. (1.85) using the cubic term in SHSd as Sint:

�̃[G, T] =
5
ln

⁄
D[Â, Â̄] D[�, �ú] exp

1
iS(cubic)

HFd [Â, Â̄; �, �ú]
26

2PI, G0æG,T0æT

= + + . . . (4.188)

In the above diagrams, the single and double lines correspond to G and B, respectively. The

fermionic T-matrix approximation is simply obtained by keeping the first vacuum diagram. The

resulting Dyson’s equations are:

G‡(1, 1Õ)≠1 = G≠1
‡,0(1, 1Õ) + iB(1, 1Õ)G‡̄(1Õ, 1),

B(1, 1Õ)≠1 = ⁄≠1
� ≠ iGø(1, 1Õ)G¿(1, 1Õ). (4.189)

We immediately see that B © T, and the above Bose-Fermi �-derivable approximation coincides

with the fermionic T-matrix approximation. The rest of the development parallels the previous

analysis: the T-matrix is regularized using vacuum Green’s functions:

B(1, 1Õ)≠1 = ⁄≠1
� ≠ iG̃0,ø(1, 1Õ)G̃0,¿(1, 1Õ)

¸ ˚˙ ˝
T̃≠1

0 (1,1Õ)

≠ i
Ë
Gø(1, 1Õ)G¿(1, 1Õ) ≠ G̃0,ø(1, 1Õ)G̃0,¿(1, 1Õ)

È

¸ ˚˙ ˝
Q(1,1Õ)

.

(4.190)

In the strong-coupling limit, we find T̃≠1
0 (1, 1Õ) æ ⁄≠1

d

#
iˆt1 + (2µ ≠ ‘b) ≠ Ò2/(4m) ≠

2U(1)
$
”C(1, 1Õ) while Q(1, 1Õ) acts as a small self-energy correction. The dynamical generation
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of the derivative terms in the Dyson’s equation for T following the regularization of the UV diver-

gence is a manifestation of the bound state, without which T would retain its diffusive character.

From this new perspective, what we achieved in the previous section using a purely fermionic

language is virtually identical to the introduction of a HS field, i.e. the T-matrix. The T-matrix

acts like a local memory storage for fermions, and permits a Markovian formulation of transport

equation, albeit in an extended state space (G, T).

4.6 Collective oscillations in confined geometries

In this section, we use the transport formalism developed in the previous section to investigate

the collective dynamics of attractive 2D Fermi gases in an external confining potential. We consider

the case where the system is in equilibrium for t < 0, and is perturbed by a short-time external

impulse. Our goal is to calculate the expectation value an arbitrary observable O(p, R) in the

times after the impulse. This scenario closely resembles the experimental situation for exciting trap

collective modes as discussed in the introduction. The initial disturbance is assumed to be weak, so

that a linear response analysis is admissible.

Strictly speaking, the evolution system during the short period of the external impulse is beyond

the limits of the kinetic theory since the duration of the impulse is assumed to be much shorter

than tmac ≥ 1/Ê0, where Ê0 is the trap frequency. We find it easiest to separate the dynamics into

two regimes: (1) the initial evolution in the presence of the external field, T œ [0, timp.], (2) the

slow evolution of the disturbed state as described by the kinetic equations, T œ [timp., Œ]. This

scenario is depicted in Fig. 4.14. We address the first phase of the evolution in the next section and

we find that the effect of the external field is interchangeable with a space-varying Galilean boost.

The ensuing kinetic evolution is discussed afterwards.
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Figure 4.14: A schematic plot of the evolution of an observable O vs. the macroscopic time T in
a typical impulse response experiment. The black curve depicts ÈOÍT . The red curve denotes the
time envelope of the impulse A(T ). The transient oscillations right after the impulse are due to the
excitement of high energy modes and are usually overdamped.

4.6.1 Short-time response to an external impulse

We consider the initial disturbance caused by an external field:

”U(T, R) = u(R) A(T ), (4.191)

on a system initially in a thermal equilibrium state. Here, A(T ) is the pulse envelope function

and u(R) is the spatial profile of the external perturbing field. We assume that A(T ) is only non-

vanishing during 0 < T < timp, and that timp π tmacro. Furthermore, u(R) is assumed to vary on

a large length scale of the order of lmacro.

The external field exerts a space-time varying force F(T, R) = Òu(R) A(T ) on the par-

ticles, resulting in a space-time varying Galilean boost. Had u(R) been just a field gradient

(i.e. a constant force) and the initial state been homogeneous, the equilibrium state would

remain undisturbed in the frame of reference of a moving observer with the time-dependent

velocity V(T ) = (F/m)
s T

0 A(t) dt. This scenario is expected to remain locally applicable,

provided that u(R) and U(R) vary on a scale much larger than the distance the particles can

travel during impulse, v”U timp.. Here, v”U is the typical velocity boost. We note that this

framework is only valid if all particles experience the same Galilean boost. In application to

systems comprising particles with different masses (or different coupling to the external field),
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there is no single moving frame in which the equilibrium state remains undisturbed. We assume

m‡ = m and u‡ = u hereafter (different spin spaces may still have different chemical potentials).

In the remainder of this section, we lay the above arguments on rigorous grounds. As we shall

see, establishing this innocuous scenario demands the usage of a considerable amount of formalism.

We start with the KB equations for the non-equilibrium Green’s functions. We drop the discrete

indices in this section for simpler notation (as long as the external fields are globally diagonal in the

space of discrete indices, the same set of discrete indices carries through every step of the derivation

and can be put back at will). Let ”U(t, x) be a general one-body external field acting on the system.

The KB equation for the lesser/greater Green’s function reads:

A

iˆt1 + µ ≠ U(x1) +
ˆ2

x1

2m
≠ ”U(1)

B

G?(1, 1Õ) = (� ı G)? (1, 1Õ). (4.192)

The boundary condition is such that for t1, tÕ
1 < 0, G?(1, 1Õ) is the analytically continued thermal

Green’s function, i.e. it only depends on t1 ≠ tÕ
1 and satisfies the KMS boundary conditions. As a

first step, we trade the potential ”U with a force using a local U(1) gauge transformation Â(1) æ

ei�(1)Â̄(1). The original Green’s function G and its gauge transformed counterpart Ḡ are related to

each other as:

G(1, 1Õ) = ei�(1) Ḡ(1, 1Õ) e≠i�(1Õ). (4.193)

The equation of motion for Ḡ? can be easily found from the equation of motion for G?:

3
iˆt1 + µ ≠ U(x1) ≠ 1

2m
[≠iˆ

x1 + ˆ
x1�(1)]2 + ”U(1) + ˆt1�(1)

4
Ḡ?(1, 1Õ) =

e≠i�(1) (� ıC G)? (1, 1Õ)ei�(1Õ) =
1
�̄ ıC Ḡ

2?
(1, 1Õ). (4.194)

The last equality only holds for the exact and �-derivable self-energies which satisfy:

�̄(1, 1Õ) © �[Ḡ](1, 1Õ) = ei�(1) �[G] e≠i�(1Õ). (4.195)

252



Chapter 4: Non-equilibrium dynamics of attractive two-component Fermi gases

The above transformation property is a direct result of the local U(1) gauge invariance of Sint

which is also inherited by �-derivable approximations. The scalar field ”U can be traded for a

vector potential with the gauge choice:

�(t1, x1) = ≠
⁄ t1

≠Œ
dtÕ ”U(tÕ, x1). (4.196)

We refer to this gauge as the Weyl gauge in analogy to the electromagnetism. We define:

�(t1, x1) © ≠ 1
m

⁄ t1

≠Œ
dtÕ ˆ

x1�(tÕ, x1) = 1
m

⁄ t1

≠Œ
dtÕ

⁄ tÕ

≠Œ
dtÕÕ ˆ

x1”U(tÕÕ, x1), (4.197)

using which Eq. (4.194) can be written as:
A

iˆt1 + µ ≠ U(x1) +
ˆ2

x1

2m
≠ iˆt1�(1) · ˆ

x1

B

Ḡ?(1, 1Õ) =
1
�̄ ıC Ḡ

2?
(1, 1Õ). (4.198)

to first order in ”U . The above equation has the simple interpretation of being the equations of

motion as seen by an observer that views the space-time point [t, x] at [t, x + �(t, x)]. The typical

value of � is ≥ v”UT , where T is the macroscopic time and v”U ≥ m≠1 s
dt ˆ

x

”U is the typical

velocity boost brought about by ”U . A natural small parameter in this problem is v”U T/lmacro,

where lmacro is the length scale of the spatial inhomogeneity of the external potential U (and ”U ).

We wish to find a solution for G in the presence of ”U using our knowledge of the equilibrium

solution. To this end, we propose the following ansatz:

Ḡ?(1, 1Õ) = G̃? !
t1, x1 + �(1); tÕ

1, xÕ
1 + �(1Õ)

"
, (4.199)

as a step toward the picture suggested in the introduction. Plugging this ansatz into the left hand

side of Eq. (4.198) and changing variables to X1 © x1 + �(t1, x1) and XÕ
1 © xÕ

1 + �(tÕ
1, xÕ

1) (i.e.

going to a moving frame), the left hand side becomes:
C

iˆt1 + µ ≠ [1 + O(v”U T/lmacro)]
A

≠U(X1) +
ˆ2

X1

2m

BD

G̃?(t1, X1; tÕ
1, XÕ

1). (4.200)

There are two (bounded) sources of error in the above equation, in approximating (1) U(x1) ¥

U(X1), and (2) ˆ2
x1 ¥ ˆ2

X1 . Both of these errors are due to the weak breaking of translation
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invariance due to the spatially inhomogeneous external fields and are bounded for short times as

indicated above. The right hand side also assumes the following simple form:

�̄(1, 1Õ) = �[Ḡ] = �[G̃]
!
t1, x1 + �(1); tÕ

1, xÕ
1 + �(1Õ)

"
[1 + O(v”U T/lmacro)] . (4.201)

Let us elaborate on the last result. To this end, we consider a typical self-energy diagram such as

the Born diagram. The self-energy expression for this diagram is:

�Born(1, 1Õ) ≥
⁄

d2 d2Õ G(1, 1Õ) G(1Õ, 1) G(2, 2Õ) G(2Õ, 2) v(1, 2) v(1Õ, 2Õ). (4.202)

We plug Ḡ in terms of G̃ using Eq. (4.199) and change variables to xi æ Xi = xi + �(ti, xi) for

both internal and external vertices. This results in formally the same expression for the self-energy6,

however, with G̃ in place of G. The Jacobian of this transformation is:

J = 1 +
ÿ

j œ internal
ˆi�i(tj , Xj) + O(�2) ≥ 1 + v”U T/lmacro. (4.203)

In terms of the new variables, an arbitrary interaction term can be written as:

v(xi ≠ xj) ”(ti ≠ tj) = v (Xi ≠ Xj ≠ �(ti, Xi) + �(ti, Xj)) ”(ti ≠ tj)

= v(Xi ≠ Xj) ”(ti ≠ tj)
3

1 + (Xi ≠ Xj)–
ˆ—v

v
ˆ–�—

4
. (4.204)

The last parenthesis again is of the order of 1 + O(v”U T/lmacro). Eq. (4.201) follows by combining

these observations. The correction terms are solely due to the non-uniform nature of the transfor-

mation between G and G̃ which breaks the Galilean invariance. Clearly, if ”U is a linear function

of x and U = const., the resulting transformation will be uniform and Eq. (4.201) will be exact.

Combining the Eqs. (4.198), (4.200) and (4.201), we finally reach:

A

iˆt1 + µ ≠ U(X1) +
ˆ2

X1

2m

B

G̃?(t1, X1; tÕ
1, XÕ

1) =

6If we had particles of different masses, the observer position � would be different for each type of G̃ and we could
no longer obtain the self-energy in terms of G̃ by a simple change of variables.
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1
�̃ ıC G̃

2?
(t1, X1; tÕ

1, XÕ
1) + O(v”U T/lmacro), (4.205)

which is identical for the equation of motion for G?, however, with G̃ in place of G. Since ”U = 0

and Xi = xi for t < 0, G̃ = G for t1, tÕ
1 < 0. Moreover, since they have the same evolution

equation up to corrections bounded in time, they match within a bounded error for t1, tÕ
1 > 0. More

explicitly, we find:

G(1, 1Õ; ”U) = ei�(1)G
!
t1, x1 + �(1); tÕ

1, xÕ
1 + �(1Õ); ”U = 0

"
e≠i�(1Õ) [1 + O(v”U T/lmacro)] .

(4.206)

The above result is very useful. Provided that Òu(x) = const., it describes the exact evolution of

a system which is initially in a homogeneous equilibrium. For inhomogeneous external fields and

initial states, its error is bounded linearly in time.

We use Eq. (4.206) to describe the initial disturbance caused by an external field like Eq. (4.191).

For simplicity, we choose A(t) = ”(t), although the final results are identically valid as long as the

pulse duration is much smaller than tmacro. For the ”-impulse, � and � are:

�(t, x) = ≠◊(t) u(x), �(t, x) = 1
m

ˆ
x

u(x) ◊(t) t. (4.207)

We define the local velocity boost field corresponding to the external impulse as V(x) ©

≠ˆ
x

u(x)/m. We would like to express the Wigner transform of G(1, 1Õ; ”U) in terms of the the

Wigner transform of the equilibrium Green’s functions. A direct application of Eq. (4.206) yields:

G?(Ê, p; T, R; ”U) =
⁄

dt ddx dÊ1
2fi

ddp1
(2fi)d

G? (Ê1, p1; T, R ≠ [V(x1) ◊(t1)t1 + V(x2) ◊(t2)t2] /2)

◊ eiÊt e≠ip·x e≠iÊ1t eip1·[x≠V(x1) ◊(t1)t1+V(x2) ◊(t2)t2] e≠i[◊(t1)u(x1)≠◊(t2)u(x2)]

=
⁄

dt ddx dÊ1
2fi

ddp1
(2fi)d

G? (Ê1, p1; T, R ≠ V(R) T )

◊ eiÊt e≠ip·x e≠iÊ1t eip1·[x≠V(R) t] eimV(R)·x + O(ˆ2
X)

= G? (Ê ≠ p · V(R), p ≠ mV(R); T, R) [1 + O(V T/lmacro)] . (4.208)
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To get the second equality, we have neglected the ◊-functions, which is allowed if T ∫ tmicro 7. The

above result is very natural: a short-time spatially varying external field results in a spatially weakly

inhomogeneous force that boosts each element of the system according to the local impact it exerts

on the system. The Galilean invariance then identifies the value of an observable at (Ê, p) after the

boost to its value at (Ê ≠ V · p, p ≠ mV) before the boost. A corollary of Eq. (4.208) is that the

spectral/statistical functions following the impulse is related to the equilibrium spectral/statistical

functions as:

A‡(Ê, p; T, R; ”U) = Aeq,‡
!
Ê ≠ p · V(R), p ≠ mV(R)

"
[1 + O(V T/lmacro)] ,

f‡(Ê, p; T, R; ”U) = f0
!
Ê ≠ p · V(R)

"
[1 + O(V T/lmacro)] , (4.209)

where V(x) © ≠ˆ
x

u(x)
s timp.

0 A(t) dt/m in general.

The short-time dynamics of the quantities derived from the Green’s function may also be deter-

mined using the same approach. Let us consider the case of the T-matrix. First, we observe that

the renormalized auxiliary quantity,
Ë
T̃≠1

0

È
(Ê, p; T, R) depends on the microscopic variables only

in the combination Ê ≠ |p|2/(4m). This can be seen from Eq. (4.91a) and the explicit formulas

for the renormalized vacuum T-matrix given at the end of Sec. 4.3.1 (note that we have assumed

mø = m¿ = m here). The combination, Ê ≠ |p|2/(4m), is invariant under the Galilean boost

Ê æ Ê ≠ p · V and p æ p ≠ 2mV up to O(V ). Therefore,

Ë
T̃≠1

0

È±
(Ê, p; T, R) =

Ë
T̃≠1

0

È±
(Ê ≠ p · V(R), p ≠ 2mV(R)) + O(V 2). (4.210)

Plugging in A‡ and f‡ from Eq. (4.209) into Eq. (4.94c), a simple investigation shows

⁄
#
Q+(Ê, p; T, R; ”U)

$
= ⁄

Ë
Q+

eq(Ê ≠ p · V(R), p ≠ 2mV(R); R)
È

[1 + O(V T/lmacro)]. The

7Assuming Ê ≥ 1/tmicro, the most important region of integration over the microscopic time t is |t| . tmicro.
Assuming that T ∫ tmicro, neglecting the ◊-functions only modifies the contribution of the integral for |t| ∫ tmicro,
which is expected to be unimportant.
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Kramers-Kroning transform gives the same result for the real part. The advanced component follows

by complex conjugation. The same result can be established for Q? as well. These observations

combined with Eq. (4.143) yields:

T±(Ê, p; T, R; ”U) = T±
eq (Ê ≠ p · V(R), p ≠ 2mV(R); R) [1 + O(V T/lmacro)] . (4.211)

Now, we notice that combining Eqs. (4.141a) and (4.141b), we find the following exact identity,

T? = T+ ıGM Q? ıGM T≠, which in combination with the above short-time expressions for T±

and Q? yields:

T?(Ê, p; T, R; ”U) = T?
eq (Ê ≠ p · V(R), p ≠ 2mV(R); R) [1 + O(V T/lmacro)] . (4.212)

Eqs. (4.211) and (4.212) finally yield the short-time dynamics of the spectral/statistical function of

T:

B(Ê, p; T, R; ”U) = Beq
!
Ê ≠ p · V(R), p ≠ 2mV(R)

"
[1 + O(V T/lmacro)] ,

b(Ê, p; T, R; ”U) = b0
!
Ê ≠ p · V(R)

"
[1 + O(V T/lmacro)] . (4.213)

This result is again very natural: following the short pulse, the equilibrium T-matrix is locally

Galilean boosted. The appearance of 2m instead of m is simply because the mass of the composite

bosons is 2m and experience twice the momentum boost of a single fermion.

4.6.2 The linear response theory of T-matrix kinetic equations

We study the kinetic phase of the evolution T > timp. in this section (cf. Fig. 4.14), where

Eqs. (4.209) and (4.213) serve as the initial seed for the linearized non-equilibrium kinetic evolution.

We restrict the analysis to the case of particles with equal mass (mø = m¿ © m) in a population-

balanced equilibrium initial state, Uø © U¿ = U and µø = µ¿ © µ for simplicity. The disturbing

external field is also assumed to be spin-symmetric, i.e. uø = u¿ © u. This symmetry is preserved

by the SU(2) symmetry of the action at all times. Therefore, we drop the spin indices throughout

257



Chapter 4: Non-equilibrium dynamics of attractive two-component Fermi gases

the analysis and use the letter f to label the fermionic quantities. We treat the general case and the

weak-coupling limit (cf. Sec. 4.5.3) separately.

General case:

The strategy for calculating the linear response within the kinetic theory was outlined in Sec. 2.5.

As a first step, we define a convenient parametrization ”f(Ê, p; T, R) © f(Ê, p; T, R)≠f0(Ê) and

”b(Ê, p; T, R) © b(Ê, p; T, R) ≠ b0(Ê) as:

”f(Ê, p; T, R) © ˆÊf0(Ê) �(Ê, p; T, R),

”b(Ê, p; T, R) © ˆÊb0(Ê) �(Ê, p; T, R). (4.214)

We assume T > timp., so that ”U(T, R) = 0. The linearized kinetic equations read:

A2
0 �f,0
2 ˆÊf0

C

{Mf,0, �} ≠ Mf,0
�f,0

{�f,0, �} + ˆT

A

Ÿ
#
”�+

f

$
+ Mf,0

�f,0
”�f

BD

= ”Cf [�, �],

(4.215a)

B2
0 �b,0
2 ˆÊb0

C

{Mb,0, �} ≠ Mb,0
�b,0

{�b,0, �} + ˆT

A

Ÿ
#
”Q+$

+ Mb,0
�b,0

”�b

BD

= ”Cb[�, �].

(4.215b)

The linearized collision integrals are given by:

”Cf [�, �](1̃) = —
⁄

d2̃ d3̃ ”(1̃ + 2̃ ≠ 3̃) A0(1̃) A0(2̃) B0(3̃)

◊
#
1 ≠ f0(1̃)

$#
1 ≠ f0(2̃)

$
b0(3̃)

#
�(1̃) + �(2̃) ≠ �(3̃)

$
,

(4.216a)

”Cb[�, �](1̃) = —
⁄

d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃) B0(1̃) A0(2̃) A0(3̃)

◊ b0(1̃)
#
1 ≠ f0(2̃)

$#
1 ≠ f0(3̃)

$ #
�(1̃) ≠ �(2̃) ≠ �(3̃)

$
.

(4.216b)
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The quantities labelled with a 0 index are the equilibrium values. For future reference, we provide

the expanded form of the Poisson brackets appearing in Eq. (4.215):

{Mf,0, �} =
1
1 ≠ ˆÊŸ

#
�+

f,0
$2

ˆT � +
3 p

m
+ ˆ

p

Ÿ
#
�+

f,0
$4

· ˆ
R

�

≠ ˆ
R

1
U(R) + Ÿ

#
�+

f,0
$2

· ˆ
p

�,

{�f,0, �} = ˆÊ�f,0 ˆT � ≠ ˆ
p

�f,0 · ˆ
R

� + ˆ
R

�f,0 · ˆ
p

�,

{Mb,0, �} =
1
Y (Ê ≠ ›b) ≠ ˆÊŸ

#
Q+

0
$2

ˆT � +
3

Y (Ê ≠ ›b)
p

2m
+ ˆ

p

Ÿ
#
Q+

0
$4

· ˆ
R

�

≠
1
2 Y (Ê ≠ ›b) ˆ

R

U(R) + ˆ
R

Ÿ
#
Q+

0
$2

· ˆ
p

�,

{�b,0, �} = ˆÊ�b,0 ˆT � ≠ ˆ
p

�b,0 · ˆ
R

� + ˆ
R

�b,0 · ˆ
p

�, (4.217)

where ›b © |p|2/(4m) ≠ 2µ + 2U(R) and Y (Ê) © ˆÊ Ÿ
Ë
1/T+

0 (Ê)
È
.

At equilibrium, the R-dependence of the equilibrium self-energies and spectral functions is fully

induced by the static external potential U(R). This can be seen by noticing that (1) these functions

have a local R-dependence on one another (cf. Eqs. 4.139 and 4.150), (2) f0 and b0 are independent

of R, and (3) the R-dependence in only present in Mø(¿) (Eq. 4.139d) and Mb (Eq. 4.150e) and

appears in the combination µø ≠ Uø(R), µ¿ ≠ U¿(R), or µø + µ¿ ≠ Uø(R) ≠ U¿(R). The assumed

SU(2) symmetry further implies that the R-dependence appears merely in the combination µ ≠

U(R), (4) µ only appears in the expressions in conjunction with U(R). Thus, an arbitrary R-

dependent equilibrium quantity, K0, has the following structure:

K0(Ê, p; R) © K0 (Ê, p; U = 0)
---
µæµ≠U(R)

. (4.218)

The above result is simply the statement of the local density approximation (LDA). In other

words, LDA is compatible with the first-order gradient expansion in this case8. As a corollary

8Quite generally, the LDA assumption is compatible with the first-order gradient expansion provided that the range of
interactions is smaller or comparable to the microscopic length-scale lmicro.
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of Eq. (4.218), we find:

ˆ
R

K0(Ê, p; R) = ≠ˆ
R

U(R) ˆµK0(Ê, p; U = 0)
---
µæµ≠U(R)

. (4.219)

The R-derivatives of the equilibrium quantities appearing in Eq. 4.217 can be calculated using the

above formula.

One of the major difficulties in solving the linearized kinetic equations is calculating the ex-

plicit functional dependence of the terms appearing in parentheses in Eqs. (4.215a-b). These terms

describe the deviation of the non-equilibrium retarded self-energies from their equilibrium value.

As usual, Ÿ
#
”�+

f

$
and Ÿ

#
”Q+$

are related to ”�b and ”�f by a Kramers-Kronig transform (cf.

Eqs. 4.139f and 4.150):

Ÿ
#
”�+

f

$
= ≠1

2KK
#
”�f

$
, Ÿ

#
”Q+$

= ≠1
2KK

#
”�b

$
. (4.220)

The two independent quantities, ”�f and ”�b, satisfy the following coupled Fredholm integral equa-

tions of the second kind:

”�f (1̃) =
⁄

d2̃ d3̃ ”(1̃ + 2̃ ≠ 3̃)
3

A0(2̃) B0(3̃)
#
ˆÊ2f0(Ê2) �(2̃) + ˆÊ3b0(Ê3) �(3̃)

$

+
#
”A(2̃) B0(3̃) + A0(2̃) ”B(3̃)

$
[f0(Ê2) + b0(Ê3)]

4
, (4.221a)

”�b(1̃) =
⁄

d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃)
3

A0(2̃) A0(3̃)
#
≠ˆÊ2f0(Ê2) �(2̃) ≠ ˆÊ3f0(Ê3) �(3̃)

$

+
#
”A(2̃) A0(3̃) + A0(2̃) ”A(3̃)

$
[1 ≠ f0(Ê2) ≠ f0(Ê3)]

4
, (4.221b)

”A =

1
M2

f,0 ≠ �2
f,0/4

2

1
M2

f,0 + �2
f,0/4

22 ”�f ≠ Mf,0 �f,01
M2

f,0 + �2
f,0/4

22 KK
#
”�f

$
, (4.221c)

”B =

1
M2

b,0 ≠ �2
b,0/4

2

1
M2

b,0 + �2
b,0/4

22 ”�b ≠ Mb,0 �b,01
M2

b,0 + �2
b,0/4

22 KK
#
”�b

$
. (4.221d)

The above equations are obtained directly from Eqs. (4.139) and (4.150). In principle, these equa-

tions have to be solved numerically, although perturbative treatments are possible in the weak- and
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strong-coupling limits. For the sake of the argument, let us define a general ansatz for the terms

appearing in curly parentheses in Eqs. (4.215a-b):

A

Ÿ
#
”�+

f

!
1̃)] + Mf,0(1̃)

�f,0(1̃)
”�f (1̃)

B

© Fff [�] + Ffb[�],
A

Ÿ
#
”�+

b

!
1̃)] + Mb,0(1̃)

�b,0(1̃)
”�b(1̃)

B

© Fbf [�] + Fbb[�], (4.222)

where {F} are linear functionals of their arguments due to the linearity and homogeneity of

Eqs. (4.221) in � and �. The time derivatives appearing in Eqs. (4.215) can be made algebraic

by taking a Laplace transform in T . We define9:

�̃(Ê, p; �, R) ©
⁄ Œ

0+
ei�T �(Ê, p; T, R). (4.223)

We define �̃ similarly. Here, 0+ © timp. + ‘ denotes the time just after the external impulse. Taking

a Laplace transform of both sides of Eqs. (4.215) and expanding the Poisson brackets, we obtain:

Gf

5
≠i�“f,Ê�̃ + “f,p

p
m

· ˆ
R

�̃ ≠ “f,µ ˆ
R

U(R) · ˆ
p

�̃ ≠ i�
1
Fff [�̃] + Ffb[�̃]

26
≠ ”Cf [�̃, �̃]

= Gf

Ë
“f,Ê�(0+) +

1
Fff

#
�(0+)

$
+ Ffb

#
�(0+)

$2È
,

(4.224a)

Gb

5
≠i�“b,Ê�̃ + “b,p

p
2m

· ˆ
R

�̃ ≠ 2 “b,µ ˆ
R

U(R) · ˆ
p

�̃ ≠ i�
1
Fbf [�̃] + Fbb[�̃]

26
≠ ”Cb[�̃, �̃]

= Gb

Ë
“b,Ê�(0+) +

1
Fbf

#
�(0+)

$
+ Fbb

#
�(0+)

$2È
,

(4.224b)

9It is customary in to denote the frequency variable in the Laplace domain with s. Here, we make the substitution
s æ ≠i� in order to obtain expressions that formally resemble Fourier transformed quantities.
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where the auxiliary quantities {Gf(b), “f(b),Ê, “f(b),p, “f(b),µ} are defined as:

Gf © A2
0 �f,0
2 ˆÊf0,

“f,Ê © 1 ≠ ˆÊŸ
#
�+

f,0
$

≠ Mf,0
�f,0

ˆÊ�f,0,

“f,p © 1 + m

|p|2 p ·
A

ˆ
p

Ÿ
#
�+

f,0
$

+ Mf,0
�f,0

ˆ
p

�f,0

B

,

“f,µ © 1 ≠ ˆµŸ
#
�+

f,0
$

≠ Mf,0
�f,0

ˆµ�f,0,

Gb © B2
0 �b,0
2 ˆÊb0,

“b,Ê © Y (Ê ≠ ›b) ≠ ˆÊŸ
#
Q+

0
$

≠ Mb,0
�b,0

ˆÊ�b,0,

“b,p © Y (Ê ≠ ›b) + 2m

|p|2 p ·
A

ˆ
p

Ÿ
#
Q+

0
$

+ Mb,0
�b,0

ˆ
p

�b,0

B

,

“b,µ © Y (Ê ≠ ›b) ≠ 1
2 ˆµŸ

#
Q+

0
$

≠ 1
2

Mb,0
�b,0

ˆµ�b,0. (4.225)

We have used Eq. (4.219) to express the spatial derivatives of the equilibrium quantities in terms of

chemical potential derivatives. The functions “f(b),Ê and “f(b),p are related to the scalar and vector

vertex functions, respectively [229], and describe the effective charge and mass of the particle-like

resonances. The appearance of the real and imaginary parts of the retarded self-energy describe in

the vertex functions is responsible for the drag-flow and the back-flow, respectively [61].

The initial value terms are easily determined using the expressions given at the end of Sec. 4.6.1.

Using Eqs. (4.209) and (4.213), we find:

�(0+) = �(0+) = ≠p · V(R), V(R) = ≠ 1
m

ˆ
R

u(R)
⁄ timp.

0
A(t) dt. (4.226)

The same results also allow an exact calculation of the initial value terms that involve F functionals

without needing to calculate them. Using the fact that the initial disturbance is a local Galilean
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boost, we easily obtain:

Fff
#
�(0+)

$
+ Ffb

#
�(0+)

$
æ B(m, V) Ÿ

#
�+

f,0
$

+ Mf,0
�f,0

B(m, V) �f ,

Fbf
#
�(0+)

$
+ Fbb

#
�(0+)

$
æ B(2m, V) Ÿ

#
Q+

0
$

+ Mb,0
�b,0

B(2m, V) �b, (4.227)

where we have defined the infinitesimal Galilean boost operator for particles of mass M (in the

Wigner representation) as B(M, V) © ≠p · V(R) ˆÊ ≠ MV(R) · ˆ
p

. Combining the above

equation with Eqs. (4.224a-b), the right hand sides (initial seeds) of the fermionic and bosonic

equations become:

r.h.s. of Eq. (4.224a) æ ≠Gf “f,pp · V(R), r.h.s. of Eq. (4.224b) æ ≠Gb“b,p p · V(R).

(4.228)

The disappearance of the scalar vertex function “f(b),Ê from the initial value terms, and the ex-

plicit appearance of the vector vector function “f(b),p appeals to intuition: if ”U(T, R) has no

R-dependence, it couples to the total number of particles which is a conserved quantity. Therefore,

it can be gauged out from the evolution equations and has no physical effect. This redundancy

can be removed in the Weyl gauge (cf. Eq. 4.198) in which the field gradient ˆ
R

U(T, R) cou-

ples to the (non-conserved) local current operator j. Therefore, the appearance of the vector vertex

function “f(b),Ê as the pre-factor to the initial value term is quite natural. Had it not been for the

self-consistent self-energy corrections (the {F} functionals), this result would not follow.

For a given �, the coupled integro-differential equations given in Eqs. (4.224a) and (4.224b)

must be solved for �̃ and �̃, using which the linear response functions can be readily obtained. The

Laplace-transformed change in the number density, ”ñ‡(�, R), in response to the external impulse
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”U(T, R) = ”(T ) u(R) is given by:

”ñ‡(�, R) = ≠i
⁄ Œ

0+
dT ei�T

⁄ dÊ

2fi

ddp
(2fi)d

”G<
‡ (Ê, p; T, R)

=
⁄ dÊ

2fi

ddp
(2fi)d

Ë
”A‡(Ê, p; �, R) f0(Ê) + A‡,0(Ê, p; R) ˆÊf0(Ê) �̃(Ê, p; �, R)

È
,

(4.229)

where ”A‡(Ê, p; �, R) is to be expressed in terms of �̃ and �̃ using Eq. (4.221). We will discussion

practical numerical methods for solving the linear response equations in coming sections.

The weak-coupling approximation:

The linear response analysis is simplified in the weak-coupling approximation and is obtained

by making the replacement b æ cb (cf. Sec. 4.5.3). The result is a single fermionic kinetic equa-

tion, Eq. (4.215a), with the collision integral describing a local 4-fermion scattering process (cf.

Eq. (4.159). Once linearized, the local collision integral operator reads as:

”Cf (1̃) = —
⁄

d2̃ d3̃ d4̃ ”(1̃ + 2̃ ≠ 3̃ ≠ 4̃) A0(1̃) A0(2̃) A0(3̃) A0(4̃)
---T+(3̃ + 4̃)

---
2

◊
#
1 ≠ f0(1̃)

$#
1 ≠ f0(2̃)

$
f(3̃)f(4̃)

#
�(1̃) + �(2̃) ≠ �(3̃) ≠ �(4̃)

$
. (4.230)

We denote the terms appearing in curly brackets in Eq. (4.215a) by F[�]. This functional is deter-

mined by Eq. (4.221) by making the replacement:

”b(1̃) © ˆÊ1b0(Ê1) �(1̃) æ ”cb(1̃) = ≠ ”�b(1̃)
�b,0(1̃)

b0(Ê1) + 1
�b,0(1̃)

⁄
d2̃ d3̃ ”(1̃ ≠ 2̃ ≠ 3̃)

◊
; #

”A(2̃) A0(3̃) + A(2̃) ”A0(3̃)
$
f0(Ê2) f0(Ê3)+A0(2̃) A0(3̃) ˆÊ2f0(Ê2) �(2̃) ˆÊ3f0(Ê3) �(3̃)

<
.

(4.231)

The term proportional to ”�b and the integral term describe the change in the lifetime of fluctuations

and the collision rate of fermions, respectively. The remaining of the analysis is similar to the above

general case.
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The BGK approximation for the quantum collision integrals:

Calculating the collision integral is often the most demanding part of the numerical implemen-

tation of the kinetic formalism. Within the quasiparticle approximation, the collision integral is

often replaced by an effective relaxation time term according to the Bhatnagar-Gross-Krook (BGK)

theory [230]. In the most general case, this procedure yields:

CBGK(p; T, R) æ ≠n(p; T, R) ≠ nleq.(p; T, R)
·rel.(p; T, R) , (4.232)

where ·rel.(p; T, R) is a relaxation time to be determined, and nleq.(p; T, R) is a local equilibrium

distribution function parametrized such that the particle number, energy and momentum is con-

served in collisions. An important property of the local collision integral operators (as in Eq. 4.159)

is that it satisfies the detailed balance condition for general local equilibrium states:

fleq.(Ê, p; T, R) = 1
exp (—(T, R) [Ê + ”µ(T, R) ≠ p · V(T, R)]) + 1 , (4.233)

regardless of the values of —(T, R), ”µ(T, R) and V(T, R). This important property is crucial

for the correct description of the hydrodynamic regime [231]. Here, in the spirit of the the BGK

collision operator, we would like to propose an approximate form for ”Cf such that it (1) respects the

local conservation laws, (2) vanishes for local equilibrium distributions, and (3) does not rely on the

existence of quasiparticles. Starting with Eq. (2.36) and linearizing about the thermal equilibrium

state, we find:

”Cf = ≠”[A�f (f ≠ c)] = ≠A0�f,0(”f ≠ ”c), (4.234)

where c is the statistical part of the self-energy (cf. Eq. 2.32) and is a known functional of f

and A (as given by the �-derived self-energy functional). We have used the fact f(Ê, p; T, R) =

c(Ê, p; T, R) = f0(Ê) at equilibrium to get the right hand side. The local collision integral,

Eq. (4.230), is obtained by neglecting the gradient terms in c. In the linear regime, ”c may be
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expanded in powers of Ê and p:

”c(Ê, p; T, R) = ˆÊf0(Ê)
Ë
”µ�(T, R) + Ê ‰�(T, R) ≠ p · V�(T, R) + �nHD

� (Ê, p; T, R)
È

,

(4.235)

where �nHD
� (Ê, p; T, R) corresponds to terms at least second order in Ê and p, and parametrize the

non-hydrodynamical fluctuations in the self-energy. Plugging the above ansatz in Eq. (4.234) and

using the previously defined parametrization for ”f (cf. Eq. 4.214), we find:

Cf [�] = ≠A0�f,0ˆÊf0(Ê)
Ë
�(Ê, p; T, R) ≠ ”µ�(T, R) ≠ Ê ‰�(T, R)

+ p · V�(T, R) ≠ �nHD
� (Ê, p; T, R)

È
. (4.236)

Comparing the above ansatz for ”C with the BGK ansatz, we notice that a similar result is obtained

by neglecting non-hydrodynamical corrections to the self-energy. We continue the development by

neglecting �nHD
� for the moment. The repercussions of this approximation will be be discussed af-

terwards. The as of yet unknown functions {”µ�(T, R), ‰�(T, R), V�(T, R)} can be determined

by imposing the local conservation laws (cf. Eq. 4.160). We define the shorthand notation:

I[X](T, R) ©
⁄

d1̃ �f,0(1̃; T, R) A0(1̃; T, R) ˆÊ1f0(Ê1) X(1̃; T, R). (4.237)

The conservation laws imply the following constraints:

I[�] = ”µ� I[1] + ‰� I[Ê] ≠ V� · I[p],

I[Ê�] = ”µ� I[Ê] + ‰� I[Ê2] ≠ V� · I[Êp],

I[pj�] = ”µ� I[pj ] + ‰� I[Êpj ] ≠ V�,iI[pipj ]. (4.238)

266



Chapter 4: Non-equilibrium dynamics of attractive two-component Fermi gases

The solution is simplified for isotropic equilibrium states for which I[pj ] = 0 and I[pipj ] =

(1/d) I[p2]. The final result is:

”CÊBGK
f [�] = ≠A0�f,0ˆÊf0(Ê)

Ë
�(Ê, p; T, R) ≠ D≠1(T, R)

1
I[�]I[Ê2] ≠ I[Ê]I[Ê�]

2

≠ D≠1(T, R) (I[1]I[Ê�] ≠ I[Ê]I[�]) ≠ d I[p2]≠1 p · I[p �]
È
,

D(T, R) = I[1]I[Ê2] ≠ I[Ê]2. (4.239)

We refer to the above approximation of the collision integral of the quantum kinetic equation as

the ÊBGK scheme. It is easily verified that ”CÊBGK
f vanishes if � corresponds to hydrodynamical

fluctuations, as required.

The ÊBGK scheme offers a much more tractable expression for the collision integral since it does

not involve nested energy-momentum integrals. Unfortunately, the key approximation that leads to

ÊBGK, i.e. neglecting non-hydrodynamical fluctuations in the self-energy has an ad hoc status. For

instance, the relaxation rate that appears in the ÊBGK approximation is �f,0, which describes the

quasiparticle relaxation rate in equilibrium (in the quasiparticle limit). The relaxation rate for non-

equilibrium processes generally differ from �f,0 by O(1) numerical factors. Nevertheless, �f is a

reasonable representative of all relaxation rates associated to low-lying Fermi surface deformations.

For concreteness, we compare the result from the ÊBGK scheme and the exact collision integral

operator for a quadrupolar deformation � ≥ p2
x≠p2

y. The exact collision matrix element È�|”Cf |�Í

is found using Eq. (4.230):

È�|”Cf |�Í = —
⁄

d1̃ d2̃ d3̃ d4̃ ”(1̃ + 2̃ ≠ 3̃ ≠ 4̃) A0(1̃) A0(2̃) A0(3̃) A0(4̃)
---T+(3̃ + 4̃)

---
2

◊
#
1 ≠ f0(1̃)

$#
1 ≠ f0(2̃)

$
f(3̃)f(4̃) �(1̃)

#
�(1̃) + �(2̃) ≠ �(3̃) ≠ �(4̃)

$
. (4.240)

In an isotropic equilibrium state, I[p2
x ≠ p2

y] = I[Ê(p2
x ≠ p2

y)] = I[p(p2
x ≠ py)2] = 0. Plugging the
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explicit expression for �f,0 in ”CÊBGK
f , we easily find:

È�|”CÊBGK
f |�Í = —

⁄
d1̃ d2̃ d3̃ d4̃ ”(1̃ + 2̃ ≠ 3̃ ≠ 4̃) A0(1̃) A0(2̃) A0(3̃) A0(4̃)

---T+(3̃ + 4̃)
---
2

◊
#
1 ≠ f0(1̃)

$#
1 ≠ f0(2̃)

$
f(3̃)f(4̃) �(1̃)2.

Comparing the above expressions, we find that È�|”CÊBGK
f |�Í can be obtained from È�|”Cf |�Í

by setting �(2̃) = �(3̃) = �(4̃) = 0 in the integrand of Eq. (4.230). The appearance of extra �

factors with momentum labels 2̃, 3̃ and 4̃ in Eq. (4.230) is a natural consequence of self-consistency

since the same non-equilibrium distribution function is ascribed to all particles. Neglecting non-

hydrodynamical corrections to the self-energy amounts to keeping three of the particles {2̃, 3̃, 4̃}

in a local equilibrium. Clearly, È�|”CÊBGK
f |� and È�|”Cf |�Í differ in value, however, they are

expected to be of the same order and behave similarly. It is best to avoid such approximate schemes

when adequate computation resources are available. Nevertheless, ÊBGK may serve as a reasonable

starting point for obtaining preliminary results.

4.6.3 Application of the method of moments to the linearized quantum transport

In this section, we discuss a numerical strategy for solving the linearized kinetic equations ob-

tained in the previous section. We introduce a generalization of the Grad’s method of moments [69]

widely used for solving the classical Bolzmann equation to quantum kinetic equations. The main

difference between classical and quantum transport is the absence of the notion of quasiparticles

(violation of the mass-shell condition) in the latter, so that the distribution functions depend on the

microscopic momentum p and energy Ê on an equal footing.

The linearized quantum transport equations in the Laplace domain (Eqs. 4.224a-b) formally

pose an inhomogeneous boundary value problem L[f ] = f0(x), where f © {�̃, �̃} and x ©

(Ê, p; �, R). The boundary condition imposed on f is the regularity of the solutions (discussed

below). L is the linear integro-differential operator appearing on the left hand sides of Eqs. (4.224a-
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b). A practical strategy for solving such boundary value problems is to solve its weak form. The

latter is obtained by expanding f in the basis functions of a separable Hilbert space, i.e. f(x) =
q

–œN f– „–(x), where {„–} is a complete basis. One further demands È„–|L|fÍ = È„–|f0Í, for

all –. This procedure yields:

ÿ

—

È„–|L|„—Íf— =
ÿ

—

È„–|„—Íf0,—, (4.241)

where f0,— are the coefficients of the expansion of f0(x). We have not assumed that {„} are or-

thonormal, although this may always be achieved using the Gram-Schmidt orthonormalization pro-

cedure. In practice, the basis states are truncated by keeping the first n basis functions in a certain

order. We denote this truncated basis set by Bn © span{„1, . . . , „n}. The weak solution restricted

to Bn is obtained by solving the linear system of equation given in Eq. (4.241) with summations

going from 1 to n. We denote this solution by f (n). Provided that f (w) © limnæŒ f (n) exists, f (w)

is the (unique) solution of the weak form of the integral equation. The solution of the weak form

further coincides with the solution of the strong form with certain smoothness conditions on L.

The Grad’s method of moments using in the kinetic theory of classical gases is a special case of

the above general procedure, where the basis functions are chosen as polynomials of the momentum

{pn} with the inner product measure dµ © n0(p) dp, where n0(p) is the Maxwell-Boltzmann distri-

bution so that ||pn||2 < Œ. The weak form of the Boltzmann equation in the momentum polynomial

basis yields a infinite hierarchy of conditions on the momentum moments of the non-equilibrium

distribution function. Truncating this hierarchy at the level of n moments gives an approximate

weak solution that satisfies the first n moment conditions, justifying the nomenclature. In practice,

this procedure converges rapidly and yields accurate results with just the first few moments. The

quantum transport equation may also be solved in a similar fashion. The new feature is that the

basis functions explicitly depend on the microscopic energy Ê. As a first step, we formally expand
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the solution {�, �} in a complete basis:

�̃(Ê, p; �, R) =
ÿ

–

�̃–(�) �–(Ê, p; R),

�̃(Ê, p; �, R) =
ÿ

–

�̃–(�) �–(Ê, p; R), (4.242)

where {�– : – œ N} and {�– : – œ N} correspond to two sets of complete basis functions (to

be explicitly defined later). Plugging these expansions into Eqs. (4.224a) and (4.224b), multiplying

the by each basis function and integrating over Ê, p and R, we obtain:

≠ i�
A e

�–

---“f,Ê

---�—

f

Gf
�̃— +

e
�–

---Fff [�—]
f

Gf
�̃— +

e
�–

---Ffb[�—]
f

Gf
�̃—

B

+
=

�–

---“f,p

---
p
m

· ˆ
R

�—

>

Gf

�̃— ≠
e
�–

---“f,µˆ
R

U(R) · ˆ
p

�—

f

Gf
�̃—

≠
⁄ dÊ

2fi

ddp
(2fi)d

ddR �– ”Cf [�—, �“ ] �̃— �̃“ = ≠
e
�–

---“f,p

---�—

f

Gf
�̃(0)

— , (4.243a)

and:

≠ i�
A e

�–

---“b,Ê

---�—

f

Gb
�̃— +

e
�–

---Fbf [�—]
f

Gb
�̃— +

e
�–

---Fbb[�—]
f

Gb
�̃—

B

+
=

�–

---“b,p

---
p

2m
· ˆ

R

�—

>

Gb

�̃— ≠
e
�–

---2“b,µˆ
R

U(R) · ˆ
p

�—

f

Gb
�̃—

≠
⁄ dÊ

2fi

ddp
(2fi)d

ddR �– ”Cb[�—, �“ ] �̃— �̃“ = ≠
e
�–

---“b,p

---�—

f

Gb
�̃(0)

— . (4.243b)

Summation over the repeated indices is implied in the above matrix equations. We have also defined

�̃(0)
– and �̃(0)

– such that:
ÿ

–

�̃(0)
– �– =

ÿ

–

�̃(0)
– �– = p · V(R). (4.244)

The linear products are also defined as:

ÈA|BÍG
f(b) ©

⁄ dÊ

2fi

ddp
(2fi)d

ddR Gf(b)(Ê, p; R) A(Ê, p; R) B(Ê, p; R). (4.245)

The matrix elements appearing in Eqs. (4.243a) and (4.243b) can be calculated using the equilibrium

solution and the expressions given in the previous section for any given set of basis functions. The
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resulting system of linear equations can be solved for {�̃–, �̃–} yielding an approximate solution

to the weak form of the linearized quantum kinetic equations. In practice, the angular integrations

appearing in the matrix elements can be done analytically similar to the expressions given in Ap-

pendix C.3 and C.4 for the quasiparticle kinetic equations of the dipolar Fermi gas. The integrations

over Ê, p and R, however, may only be done numerically except for trivial extreme weak-coupling

and strong-coupling limits where approximate analytical expressions are known for the equilibrium

quantities. In the next subsections, we provide simple basis functions appropriate to monopole and

quadrupole oscillations of particles initially in an isotropic confining potential in d = 2.

Basis functions for particles in isotropic confining potentials:

We denote the linear operator appearing on the left hand sides of Eqs. (4.224a) and (4.224b)

by Lf and Lb, respectively. An important feature of the linearized dynamical equations is that

the expansion coefficients, {�̃–, �̃–}, may be constrained by selection rules provided that the (1)

the evolution operators {Lf , Lb} are invariant under the transformations of a continuous group G,

(2) the basis functions {�–, �–} and the initial condition terms both belong to the representations

of G. For instance, provided that the static scalar potential U(R) is a scalar function of R, it

is straightforward to show that [Ŝ, Lf ] = [Ŝ, Lb] = 0, where Ŝ is a generator of SO(d) acting

simultaneously on R and p in F� ¢ F�. In d = 2, SO(2) has a single generator which represented

in F� ¢ F� as Ŝz = Ŝ�
z + Ŝ�

z , where:

iŜz © XˆY ≠ Y ˆX + pxˆp
y

≠ pyˆp
x

. (4.246)

The representations of Ŝz are functions with a well-defined angular momentum m. The basis func-

tions may also be chosen from representations of Sz without loss of generality. Provided that the

initial condition term can be written as a linear combination of finite number of functions with

well-defined angular momenta {m1, . . . , mN }, this property is also inherited by the solution of
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the boundary value problem10. Therefore, the basis functions for � and � can be restricted to

{m1, . . . , mN } representations of Sz from the outset, significantly reducing the redundancy in the

numerical calculations. Here, we consider the two important cases of monopole (m = 0) and

quadrupole (m = 2) external perturbations for a system initially in an isotropic confining poten-

tial in two spatial dimensions. The monopole mode is excited by perturbing the external potential

with an external impulse with an isotropic spatial profile. The velocity field following the impulse

V(R) = ≠ˆ
R

u(R)/m can be generally written as:

Vm(R) = Ṽm(R2) R, (4.247)

for some scalar function Ṽm(R2). This implies that the monopole drive term, p · Vm(R) = (p ·

R)Ṽm(R2), lies in the m = 0 representation of Ŝz , i.e. Ŝz[p · Vm(R)] = 0. This symmetry is

preserved by Lf(b), so that �̃– = 0 unless �– is also a m = 0 representation. Therefore, we may

choose �– from the the m = 0 subspace of F� (similarly for �). A simple complete basis for

smooth functions in the m = 0 representation is:

�– = �– = Êl
– R2m

– p2n
– (p · R)k

– , l–, k–, n–, k– = 0, 1, . . . (4.248)

In practice, we truncate the monopole basis at order M by keeping all basis functions such that

k + m + n Æ M , and l Æ L, resulting in a basis set of size (L + 1)(M + 1)(M + 2)(M + 3)/6.

The quadrupole mode is excited by an external perturbation with a profile u(R) ≥ X2 ≠ Y 2, so

that V(R) can be generally written as:

Vq(R) = Ṽq(R2) (Xx̂ ≠ Y ŷ). (4.249)

The quadrupole drive term p · Vq(R) is then proportional to Xpx ≠ Y py and belongs to the m = 2

representation of Ŝz . Again, the selection rule implies that we may choose �– and �– from m = 2

10We assume that the homogeneous problem (i.e. the problem with vanishing initial term) only has the trivial � =
� = 0 solution. In other words, the ground state is non-degenerate.
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representations. A complete basis for such functions is given by:

�– = �– = Êl
– ›i

–

R2m
– p2n

– (p · R)k
– , i– = 1, 2, 3, l–, k–, n–, k– = 0, 1, . . .

(4.250)

where:

›1 © X2 ≠ Y 2, ›2 © Xpx ≠ Y py, ›3 © p2
x ≠ p2

y. (4.251)

This set of basis functions may be further reduced in light of the relation 2(R ·p)›2 = p2›1 +R2›3.

Again, we truncate the basis functions at order M by requiring k +m+n Æ M ≠1, and l Æ L. The

size of the basis set (excluding the redundant ones mentioned above) is (L + 1)M(M + 1)(2M +

7)/6.

We note that the above basis functions are L2 with respect to the inner product given in

Eq. (4.245) due to the exponentially bounded measure of the inner product.

4.6.4 Trap response functions

We discussed the method of moments for solving the T-matrix kinetic equations for systems in

isotropic traps. Once �̃ and �̃ are calculated, the linear change in the number density ”ñ‡(�, R)

can be readily evaluated using Eq. (4.229). The impulse response of an observable O(R) in the

Laplace domain is given by:

‰O(�) ©
⁄ Œ

0+
dT ei�T ÈOÍT =

ÿ

‡

⁄
ddR O(R) ”ñ‡(�, R). (4.252)

Two useful quantities often measured in experiments with trapped gases is the spread of the gas in

the trap, O(R) = X2 +Y 2, and the anisotropy of the gas O(R) = X2 ≠Y 2. The former observable

is useful for monitoring the dynamics following an isotropic (monopole) trap perturbation, while

the latter is useful for anisotropic (quadrupole) perturbations. We define the trap monopole and

quadrupole response functions as:

monopole : ‰x2+y2(�) = 1
u0

ÿ

‡

⁄
ddR

1
X2 + Y 2

2
”ñ‡(�, R)

---
u(R)=u0(X2+Y 2)

, (4.253a)
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quadrupole : ‰x2≠y2(�) = 1
u0

ÿ

‡

⁄
ddR

1
X2 ≠ Y 2

2
”ñ‡(�, R)

---
u(R)=u0(X2≠Y 2)

. (4.253b)

Both of these response functions may be expressed in terms of the retarded density-density response

function:

‰x2±y2(�) =
⁄ Œ

0
dt ei�t

⁄
ddR ddRÕ dtÕ 1

X2 ± Y 2
2

‰+
dd(R, RÕ; t ≠ tÕ)

1
X Õ2 ± Y Õ22

”(tÕ)

=
⁄

ddR ddRÕ 1
X2 ± Y 2

2
‰+

dd(R, RÕ; �)
1
X Õ2 ± Y Õ22

. (4.254)

The imaginary part of the trap response function at a frequency � has the usual interpretation of the

energy absorption rate at that frequency [106].

4.6.5 The longitudinal f-sum rule for trap response functions

As mentioned in Sec. 1.4, conservation laws associated to gauge invariances impose sum rules

on equilibrium response functions. In particular, the U(1) gauge invariance and the associated

conservation of particle number imposes the well-known longitudinal f-sum rule on the retarded

density-density response function, which can be written in its most general form as:

⁄ Œ

≠Œ
dÊ Ê ‰+

dd(r1, r2; Ê) = ≠ ifi

m
Ò

r1 · Ò
r2

Ë
n0(r2) ”d(r1 ≠ r2)

È
, (4.255)

where n0(r) is the equilibrium density. The f-sum rule can be utilized to find sum rules associated

to the trap response functions. To this end, we multiply the sides of Eq. (4.254) by � and integrate:

⁄ Œ

≠Œ
d� � ‰x2±y2(�) = ≠ ifi

m

⁄
ddR n0(R)

---Ò(X2 ± Y 2)
---
2
, (4.256)

where the right hand side is written using Eq. (4.255). The above sum rule can be further simplified

to:

≠
⁄ Œ

0
d� � ⁄[‰x2±y2(�)] = 2fi

m

⁄
ddR n0(R) (X2 + Y 2). (4.257)

If the confining potential is a spin-independent harmonic potential, i.e. U‡(R) = mÊ2
0(X2+Y 2)/2,

the right hand side is simply 4fiÈU0Í/(mÊ2
0). The above sum rule simply states that the the sum of
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absorbed energy for all frequencies is proportional to the initial potential energy of the particles in

the trap. The sum rules are surprisingly the same for both monopole and quadrupole trap response

functions. We will utilize this sum rule later as a consistency check for the approximations and the

numerical calculations.

4.6.6 Numerical results

The quantum kinetic formalism is the ideal platform for studying the quantum dynamics of

weakly inhomogeneous systems. The separation of microscopic and macroscopic scales is incor-

porated into the formalism from the outset, leaving no room for further simplification of the evo-

lution equations without breaking the fundamental conservation laws. Solving the quantum kinetic

equations for realistic �-derivable approximations, however, can still be a challenging task. The

difficulty is two-fold for complicated approximations such as SCTMA: on the one hand, calculating

the equilibrium state requires the self-consistent solution of the coupled Dyson’s equation for the

Green’s function and the T-matrix. On the other hand, the quantum transport equations do not obey

the mass-shell condition and demand treating the microscopic energy and momentum on a equal

footing. The added dimension significantly increase the complexity of the numerical routines.

In this section, we give a preliminary account of the numerical solution of the T-matrix quantum

kinetic equations toward studying the collective modes of attractive Fermi gases in isotropic traps.

At the moment, a fully self-consistent calculation is not available to us. We have used a number

of the approximations discussed in the previous sections to obtain the first proof-of-the-concept

results. We leave the full self-consistent calculations to future works. Some of the utilized approxi-

mations inevitably break the conservation laws. The severity of these violations can be assessed by

checking the sum rules. We will show that the obtained approximate results, nevertheless, are in

excellent agreement with the experiments of Ref. [18].
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We restrict our analysis to the weak- to intermediate-coupling regime ‘b/‘F . 1 where the

fermionic formulation of the quantum transport equations can be utilized reliably (cf. Sec. 4.5.3).

We further introduce additional approximations in the spirit of the weak-coupling limit: (1) we

use the equilibrium spectral functions obtained within the G0G0 approximation, (2) since non-self-

consistent equilibrium spectral functions are utilized, the self-consistently generated self-energy

terms in the linearized kinetic equation must also be neglected. The collision integral may also be

treated within the ÊBGK scheme, which is obtained by neglecting the non-hydrodynamical correc-

tions to the self-energy. In fact, maintaining self-consistency in calculating self-energies is immate-

rial in the weak-coupling regime and the above assumptions are reasonable to leading order in the

strength of interactions. However, they clearly become questionable as the couplings grow larger.

To summarize, the kinetic equation we solve here reads as:

Gf

5
≠i�“f,Ê�̃ + “f,p

p
m

· ˆ
R

�̃ ≠ “f,µ ˆ
R

U(R) · ˆ
p

�̃
6

≠ ”CÊBGK
f [�̃] = ≠Gf “f,p, p · V(R).

(4.258)

Despite the approximations built into the above equation, it improves the Boltzmann equation in

several important ways. First of all, the above equation does not rely on the existence of quasi-

particles and can describe the non-Fermi-liquid aspects of the intermediate-coupling regime. The

above equation reduces to the Boltzmann equation in the limit ‘b/‘F æ 0. We focus on quadrupole

oscillations excited by a disturbance u(R) ≥ X2 ≠ Y 2 and solve the kinetic equation using the

generalized method of moments proposed in the previous section. The quadrupole basis functions

are truncated by keeping the first joint 6 moments of p and R, and up to 5 moments of Ê. We found

that the solutions rapidly converge within a 2% tolerance by including as few as 4 joint moments of

p and R and just the first two moments of Ê.

Fig. 4.15 shows the obtained quadrupole response functions at two different temperatures

T/TF = 0.5 and T/TF = 1. In both cases, we have set Ntot. = 3600. The satisfaction of the trap

f-sum rule is assessed in Fig. 4.16. The horizontal dashed line in Fig. 4.15 indicates the largest bind-
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Figure 4.15: The imaginary part of the quadrupole trap response function at (a) T/TF = 0.5 and
(b) T/TF = 1. Ntot. = 3600 in both cases. The vertical axis shows the value of the interaction
parameter ln(kF a2). The units of the response function is arbitrary and the same in all plots. The
red line shows the hydrodynamical limit of the oscillation frequency �HD =

Ô
2Ê0. The green line

traces the peak of the response functions. The dashed lines indicate the approximate point below
which the violation of the f-sum rule exceeds an arbitrary 10% tolerance.

ing energy above which the violation of the f-sum rule exceeds an arbitrary 10% tolerance. Despite

the drastic approximations built into Eq. (4.258), the f-sum rule is found to be satisfied well for most

of the numerical data points. The violation of the sum rule is most likely associated to neglecting
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self-consistent self-energy corrections as we argue below. We note that the spurious Bose conden-

sation as predicted by the G0G0 approximation is also associated to the lack of self-consistency.

The obtained results exhibit the expected behavior. For weak interactions, the response function is

0
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Figure 4.16: The degree of satisfaction of the trap longitudinal f-sum rule vs. the interaction param-
eter ln(kF a2) at T/TF = 0.5 and 1. mapprox

1 is the first moment of the quadrupole trap response
function directly calculated from the numerically obtained quadrupole response function (left hand
side of Eq. (4.257)) while mapprox

1 is the value provided by the f-sum rule. The f-sum rule is sat-
isfied within a 10% tolerance up to ln(kF a2) ƒ 1 at T/TF = 0.5 and up to ln(kF a2) ƒ ≠0.25 at
T/TF = 1. The gray area in the top plot, ln(kF a2) . 0.39, corresponds to the regime where G0G0
approximation (spuriously) indicates transition to a BEC state (cf. Fig. 4.11).

peaked in the frequency at � ƒ 2Ê0, the quadrupole oscillation frequency of a non-interacting gas

in a harmonic potential. The response functions broaden upon increasing the binding energy while

the peak frequency shifts to lower values, a behavior associated to the transition from collisionless

(CL) to the hydrodynamic (HD) regime. During the transition, the collision rate is not fast enough to

maintain the local equilibrium and leads to dissipation of the collective oscillations. Upon increas-

ing the binding energy further, the response functions become sharp again around ln(kF a2) ƒ 2

with a peak near �HD =
Ô

2Ê0. In this regime, the collision rate exceeds the frequency of collec-
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tive oscillations and maintain the local equilibrium condition and the dynamics is described well

by the ideal HD equations. The mode with
Ô

2Ê0 is the universal oscillation frequency of the HD

quadrupole surface mode (cf. Sec. B.1). Upon increasing the binding energy further, we observe a

setback from the HD regime, signaled by the broadening of the response function and the increase

in the peak frequency.
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Figure 4.17: The fermionic spectral function A(Ê, p) (a1, a2), the high probability regions for
particle (blue) and hole (red) states (b1, b2) and amplitude of the retarded many-body T-matrix
|T +|2 (c1, c2) for ln(kF a2) = 2 (top) and 1 (bottom). The shown quantities are calculated at the
center of a trap with Ntot. = 3600 particles and at a temperature T = 0.5 TF . The white lines in
(c1) and (c2) show the location of the bound state. The blue and red regions in (b1, b2) are obtained
from the conditions ‘≠1

F Af0 > 1 and ‘≠1
F A(1 ≠ f0) > 1, respectively.

As discussed in the introduction, the re-entrance to the collisionless regime in the strong-
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coupling regime can be explained on the basis of emergence of the propagating bound pairs and

the weak interaction between them. The approximations used to obtain Eq. (4.258), however, are

only justified in the weak-coupling regime. In particular, Eq. (4.258) does not account for the prop-

agation of bosonic fluctuations. However, according to Fig. 4.15, the setback from the HD regime

at T/TF = 0.5 occurs as soon as ln(kF a2) . 2. The validity of the weak-coupling approach can

be assessed by calculating the decay rate of bosonic fluctuations from Eq. (4.154), which implies

·≠1
b = c0/“2 = ≠(8T/fi)/ ln(Tc/T ), where Tc = (e“/fi)


2‘b‘F (R) and ‘F (R) =


2fin(R) is

the local Fermi energy. The decay rate is largest at the center of the trap and using the results shown

in Fig. 4.12, we find ‘F (0) ≥ 0.8‘F in the window 1 . ln(kF ad) . 2. This gives a maximum

decay rate ·≠1
b ranging from ≥ 1.5 ‘F to ≥ 0.4 ‘F . This rate is still much higher than the frequency

of the trap collective modes set by Ê0 = ‘F /
Ô

Ntot. ≥ 0.02 ‘F , indicating that the bosonic fluctua-

tions are highly diffusive. The diffusive dynamics of bosons is described well by the weak-coupling

fermionic kinetic equation used here. On the other hand, Fig. 4.16 shows that the f-sum rule is

satisfied within a 5% tolerance in the window 1 . ln(kF ad) . 2, which is another indication for

the soundness of the used approximations. Therefore, the setback from HD regime may in fact be

described without resorting to the picture of propagating bosons. In fact, our analysis suggests that

the setback may occur well before the bosonic fluctuations become long-lived and propagating.

To shed some light into this matter, we have plotted the spectral function, the retarded (many-

body) T-matrix and the regions with high probability of particle and hole excitations in Fig. 4.17 for

two different interaction parameters ln(kF a2) = 2 and 0.75, corresponding to the peak of the HD

regime and the setback regime, respectively. These quantities are calculated at the center of the trap

as a representative point.

Fig. 4.17(a1) shows that the Fermi surface is virtually intact in the regime that is most hydro-

dynamical, ln(kF a2) = 2, save for the thermal and collisional smearing. There is a large overlap

between particle and hole states near Ê ¥ 0 and for k ranging from 0 to ≥ 2kF (see Fig. 4.17b1).
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The large overlap between the particle and hole states results in a large energy-momentum phase

space density for scatterings at the energy-momentum pairs where |T+|2 is large. We note that both

the bound state and the scattering states contribute to |T+|2. The effective Pauli blocking of low-

momentum states, however, destroys the bound state with small center of mass momentum and the

bound state appears above a momentum threshold k & 2kF (see Fig. 4.17c1).

Upon increasing the binding energy, the scattering amplitude |T+|2 generally grows larger.

Furthermore, the increased binding energy reduces the energy-momentum threshold for the

existence of the bound state. This scenario, however, has a feedback on fermions and results in

a significant modification of the fermionic spectral function. The emergence of the low-energy

bound-state reduces the spectral weight of low-energy fermionic states, resulting in a separation

between the particle and hole branches (see Fig. 4.17a2 and b2). This is precisely the pairing

pseudogap discussed earlier. Despite the increased scattering amplitude, the weak overlap between

the available particle and hole states in the pseudogap regime will reduce the available phase

space density for scattering events (compare to the BCS state). The reduced phase space density

may overshadow the increase in the scattering amplitude, resulting in an overall decrease in the

collision rate. While the above argument shows the plausibility of the setback from the HD regime

due to the appearance of the pairing pseudogap, the final verdict of the competition between the

reduced scattering phase space and the stronger scattering amplitude generally depends sensitively

on the used approximations. In particular, the size of the pseudogap significantly varies from one

many-body approximation to the other [200]. Therefore, at the moment, we can not confidently

obviate the possibility of a change in this behavior upon promoting the current calculations to a

fully self-consistent calculation.

We conclude this section by finally comparing the predictions of the present calculations with

results of the recent experiments done by M. Köhl’s group at the University of Cambridge [18]. We
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Figure 4.18: The comparison of the oscillation frequency and damping of the quadrupole mode
between the theory and the experiment. The dots correspond to the experimental measurements
reported in Ref. [18, 157] using a 50/50 mixture of the two hyperfine states |F = 9/2, m = ≠9/2Í
and |F = 9/2, m = ≠7/2Í of 40K atoms. The interaction parameter is calculated from Eq. (4.6)
using the s-wave scattering length as and the transverse trap frequency Êz . The black lines corre-
sponds to the prediction of the quasiparticle Boltzmann equation within the T-matrix approximation
from Ref. [157]. The red line shows the present calculations based on the weak-coupling limit of
the quantum kinetic equations. The various dynamical regimes are indicated on the plots (A, B, C,
D, and E). A: collisionless transport of single fermions, B: highly dissipative dynamics as a matter
of crossover from collisionless single fermion transport to the hydrodynamical regime, C: (nearly
ideal) hydrodynamical regime, D: highly dissipative crossover from the hydrodynamical regime to
the collisionless transport of bound pairs, E: collisionless transport of bound pairs (cf. the text and
Fig. 4.4b for further explanations).

extract the peak frequency and damping of the quadrupole oscillations from the results shown in

Fig. 4.15(a) by fitting the calculated response functions to a two-mode Lorenzian:

‰X2≠Y 2(�) = A
� ≠ �quad ≠ i�quad

≠ Aú

� + �quad ≠ i�quad
+ iB

� ≠ i�Õ
quad

, (4.259)

corresponding to a damped oscillatory mode with frequency �quad + i�quad and an over-damped

component with a damping rate �Õ
quad. The above model function was found to give excellent fits

to the numerical results. We extract the experimental data points from Ref. [157]. The experimental

estimates for Ntot. and T/TF are ≥ 4000±400 and ≥ 0.47±0.04, respectively, closely matching the

parameters used here for low-temperature numerical data series (Ntot. = 3600 and T/TF = 0.5).

Fig. 4.18 shows the experimental data (dots) and results from the present theory (red squares

and lines) along with the prediction of the quasiparticle Boltzmann equation with the many-body
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T-matrix (black lines). We find that the present theory is an excellent agreement with the experi-

mental results, correctly reproducing the crossover from collisionless to the HD regime followed

by the setback from the HD regime. As argued earlier, the setback form the HD regime is a novel

feature of the system in the pseudogap regime, and may only be described using genuinely quantum

kinetic equations which can account for broad off-shell particle resonances. The Boltzmann limit is

achieved when long-lived quasiparticles exists.

We finally note that extrapolation of the results to the strong-coupling limit requires a fully

self-consistent treatment of the kinetic equations, including the memory effects associated to the

long-lived bosonic fluctuations. As shown in Sec. 4.5.3, the derived kinetic equations reduce to

the Boltzmann equation for long-lived composite bosons in the strong-coupling limit in principle,

implying that �quad æ 2Ê0 and �quad æ 0 in the limit ln(kF a2) æ ≠Œ. We already see

indications of this behavior in the experimental data shown in Fig. 4.18.

4.7 Beyond the self-consistent T-matrix approximation

The SCTMA provides a simple and intuitively appealing account of the physics of the two-

component attractive Fermi gas. In fact, the spectrum of physical phenomena described by the

SCTMA is remarkably rich for an approximation that only takes the simplest fluctuation exchange

diagram into account. This degree of simplicity, however, comes with inevitable shortcomings, the

most important of which is the poor description of the interaction between the composite bosons.

As discussed in Sec. 4.4, the strong-coupling limit of the SCTMA reduces to a mean-field theory

for composite bosons in the strong-coupling limit, with an effective interaction described by the

BOX diagram. In d = 3, this implies a short-range boson-boson interaction UBB = 4fi(2as)/(2m)

(in the momentum space), corresponding to an effective scattering length aB = 2as between the

bosons, a previously known result [212, 213]. This picture is physically reasonable since UBB æ 0
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in the limit ‘b = 1/(ma2
s) æ Œ. In d = 2, on the other hand, we found UBB = 8fi/m, independent

of the binding energy. There is no physical basis to this result and it is in fact an artifact of the

mean-field description of the boson-boson interaction.

The difference between d = 2 and d = 3 can be traced back to the larger residue at the

bound-state pole of the T-matrix in d = 2 compared to d = 3 (cf. Eq. 4.99; the weight of the bound

state is Ã ‘b and ‘1/2
b in d = 2 and d = 3, respectively; this is in turn associated to the fact that the

bound state wave function decays like e≠r/a2/
Ô

r for large r in d = 2 compared to e≠r/a
s/r in

d = 3).

In this section, we continue the line of thought initiated in Sec. 4.4 and propose a �-derivable

approximation that resolves this unphysical behavior of the SCTMA in d = 2 while it is powerful

enough to describe the BKT physics. Our approach is to add a class of missing diagrams to SCTMA

so that the resulting approximation reduces the exact composite boson-boson interaction in the few-

body limit where the vacuum includes only two composite bosons (four fermions). In d = 3, a

careful analysis of the composite boson-boson interaction in vacuum gives aexact
B = 0.6as [227,

228], a result which is only a numerical improvement over the SCTMA prediction of aB = 2as.

Therefore, the we do not expect the improvements we propose here to be consequential to the

physics of AFG in d = 3, which is already described well by the SCTMA.

The situation is different in d = 2, where the SCTMA has an pathological behavior and must

be fixed. Earlier in Sec. 4.2.3, we presented a simple 1-loop RG analysis showing that the repulsive

short-range interaction in d = 2 between the bosons is marginal and their IR asymptotic freedom

requires quantum corrections. We further showed in Sec. 4.4 that the 1-loop RG result can be

reproduced by simply including the scattering between the bosons in the particle-particle channel to

all orders. Therefore, a required ingredient of a correct �-derivable approximation is the inclusion

of such processes.
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The problem of composite boson-boson interaction in vacuum has been solved exactly by Brod-

sky et al. [214] using a diagrammatic interpretation of the Faddeev-Yakubovsky equations. Such a

diagrammatic analysis can be easily adapted to the many-body problem. Let us briefly review the

diagrammatic analysis of Brodsky et al.. As a first step, the fermion-boson scattering vertex, T3, is

constructed according to the equation:

= + . (4.260)

The first diagram is the twisted BOX diagram and constitutes the elementary fermion-boson interac-

tion vertex. In the analysis of Brodsky et al., the fermion and boson lines correspond to the vacuum

fermion propagator and the vacuum T-matrix, respectively. The elementary boson-boson interaction

vertex is calculated using T3 as follows:

=
ÿ

S

WU

T

XV , (4.261)

where the summation is over the diagrams within the class shown in the square brackets. The full

boson-boson vertex is finally found by summing the ladder diagrams built from UBB similar to the

analysis provided in Sec. 4.4.

The above diagrammatic formalism can be directly adapted to the many-body problem by simply

promoting the vacuum fermion propagators to fully dressed Green’s functions, and the vacuum T-

matrix to the many-body T-matrix. By doing so, it is guaranteed that the resulting approximation

becomes exact in the limit of two composite bosons in vacuum (in the same way that SCTMA is

exact for two fermions in vacuum). We propose the following Luttinger-Ward functional based on

the above considerations:

�̃4PSC[G, T] = + 1
2 + 1

4

+ 1
6 + . . . (4.262)
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We refer to the above approximation as the 4-particle self-consistent (4PSC) approximation. Here,

we have used the auxiliary field formalism of Sec. 4.5.4. The purely fermionic Luttinger-Ward

functional can be found by replacing the boson propagators (double lines) with the expanded T-

matrix diagrams. The first vacuum diagram coincides with the SCTMA. The higher order diagrams

describe the T-matrix for bosons constructed by taking UBB as the irreducible interaction vertex.

The symmetry factor affixed to a boson-boson vacuum diagram with n UBB insertions is 1/(2n) and

is due to the Zn rotation degeneracy of such a diagram. All of the above diagrams are 2PI, except

for the diagram with a single UBB insertion of the twisted BOX type, which must be removed from

�̃4PSC[G, T].

The 4PSC scheme is a powerful, yet complicated approximation. As discussed in Sec. 4.4, the

unphysical behavior of the SCTMA is lifted even if we replace UBB with the elementary boson-

boson interaction vertex, i.e. the twisted BOX diagram. The resulting approximation, however,

does not reduce to the exact Faddeev-Yakubovsky equation in the 4-particle limit.

Finally, we remark that Stoof et al. have shown that the T-matrix approximation for bosons

describes the BKT transition accurately in the dilute limit ln(1/na2
2) ∫ 1 [232]. By construction,

the 4PSC approximation reduces to the T-matrix approximation for the composite bosons in the

strong-coupling limit and therefore, it will also provide an accurate description of the BKT physics.

We leave the study of the 4PSC approximation to future works.

4.8 Summary and outlook

We started with a brief review of the physics of attractive Fermi gases using the paradigmatic

BCS, Landau-Ginzburg and NSR calculations in Sec. 4.2. In Sec. 4.3, we discussed the adapta-

tion of the self-consistent T-matrix approximation (SCTMA) in the normal state to non-equilibrium

states using the Schwinger-Keldysh real-time formalism. We paid particular attention to the renor-
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malization of the non-equilibrium T-matrix.

As a first step, we studied the weak- and strong-coupling limits of SCTMA at equilibrium

(‘b/‘F æ Œ and ‘b/‘F æ 0, respectively), in particular, from the vantage point of linear re-

sponse diagrams in Sec. 4.4. We pointed out a major difference between d = 2 and d = 3 cases in

the strong-coupling limit. In d = 3, SCTMA reduces to the description of a non-interacting Bose

gas as long as T > T 3D
BEC = 4fi(n/2)2/3[’(3/2)]≠2/3, as also previously shown in Refs. [212, 211].

The strong-coupling analysis was found to dramatically differ in d = 2 since the repulsion between

the composite bosons, as described by the SCTMA, becomes independent of ‘b and the bosons are

not described as free even in the limit ‘b æ Œ. We ascribed this unphysical behavior to the absence

of multiple scatterings between the composite bosons within SCTMA, and demonstrated how their

inclusion resolves the issue (cf. Sec. 4.4).

The novel contribution of this chapter is the derivation of the exact quantum kinetic equations

based on the SCTMA in Sec. 4.5. By emphasizing on the important role of memory effects, we de-

parted from the conventional methods of incorporating the memory effects (generalized Kadanoff-

Baym ansatz, non-Markovian correction terms). Instead, we promoted the Dyson equation for the

T-matrix to a separate quantum kinetic equation and introduced a bosonic distribution function

b(Ê, p; T, R) using the spectral/statistical decomposition of the T-matrix. Our formalism resulted

in two kinetic equations which describe the fermionic and bosonic degrees of freedom on an equal

footing, and rigorously respect the conservation laws. In the weak-coupling limit, we showed that

b describes local (memoryless) bosonic fluctuations and is determined by the instantaneous distri-

bution of fermions. In this limit, we recover the conventional Markovian single kinetic equation for

the fermion distribution function f(Ê, p; T, R). The character of b smoothly changes as the bind-

ing energy is increased. Eventually, all of the fermions pair up into long-lived singlet bound states

and b describes the energy distribution of such long-lived composite bosons. The kinetic equations

reduces to a quasiparticle-like Boltzmann equation for b and describe the dynamics of nearly-free
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composite bosons. For intermediate couplings ‘b ≥ ‘F ≥ T , the kinetic equations for f and b are

coupled to each other, describing the inter-relation between the paired and unpaired fermions whose

lifetimes are comparable to each other.

We described a general strategy for solving the linearized quantum kinetic equations in Sec. 4.6,

in particular, in the context of experiments with ultracold atoms in optical traps. The analysis

was carried out in two stages, i.e. the short-time preparation of the non-equilibrium state from an

initial thermal state, followed by the long-time kinetic evolution of the disturbed quantum gas. A

generalization of the method of moments was proposed in Sec. 4.6.3 as a practical numerical method

for solving the linearized quantum kinetic equations in confined geometries.

We presented a preliminary account of the numerical solution of the linearized quantum ki-

netic equation in Sec. 4.6.6 by introducing certain simplifying approximations. We analyzed the

quadrupole oscillations of the attractive Fermi gas in 2D harmonic traps and compared our findings

with the recent experiments done at the University of Cambridge [18]. We found that the results

of the present theory are in excellent agreement with the experiment, exhibiting the transition from

collisionless to hydrodynamical regime upon increasing the binding energy, followed by a setback

from the hydrodynamical regime upon increasing the binding energy further. We argued that the the

last feature may only be described using quantum kinetic equations and are beyond the reach of the

widely used quasiparticle-like Boltzmann equation.

We finally proposed a �-derivable approximation based on the Faddeev-Yakubovsky equation

that fixes the unphysical behavior of SCTMA in d = 2 and gives the exact result in the 4-particle

limit.

We would like to view the analysis presented in this chapter as the first step of a long journey.

The immediate next step is obtaining a fully self-consistent solution of the equilibrium state within

the SCTMA in d = 2. Although we argued that the SCTMA lacks the processes required for

a physically valid description of the system in the strong-coupling regime, it is still important to
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know its prediction in this regime as the simplest theory that is known to work surprisingly well

in d = 3. Once the self-consistent solution is obtained, we would like to revisit the preliminary

numerical analysis of the quantum kinetic equations provided here, extrapolate the results to the

strong-coupling limit and investigate the dynamics in the pseudogap regime further.

The present work can be extended in various directions. In particular, the introduced core ideas

may find applications in other areas of condensed-matter physics. The technique we used to handle

the bosonic memory effects is directly adaptable to other types of fluctuation-exchange �-derivable

approximations such as the FLEX and Parquet approximations. While the bosonic degrees of free-

dom in the current work is self-consistently generated by fermions (via pairing), similar kinetic

equations can be obtained for phenomenological microscopic models that include physical bosonic

fields coupled to the fermions, such as the electron-phonon system and the two-channel model of

the Feshbach resonance.

As a continuation of our work on the attractive Fermi gas, we would like to surpass the SCTMA

in d = 2 and take steps toward implementing the 4-particle self-consistent (4PSC) approximation

proposed in the previous section. Such an analysis allows us to investigate the complicated problem

of transport in the BKT phase. We would like to extend the non-equilibrium SCTMA formalism to

superconducting states and take steps toward a first-principle derivation of the two-fluid quantum

kinetic equations. Last but not the least, extension to disordered systems can be useful toward

achieving a better understanding of transport in dirty strongly-correlated superconducting systems.
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Appendix to Chapter 1

A.1 The Noether’s theorem

In this appendix, we provide the exact statement and the proof of the Noether’s theorem for

completeness.

Theorem: (Noether’s theorem) consider a Lagrangian density L(„a, ˆµ„a, xµ) and the classical

action given by
s

� dd+1x L(„a, ˆµ„a, xµ), where � is a given region in the spacetime. Consider
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the following transformation:

xµ æ ›µ = xµ + ‘aXµ
a (x),

„a(x) æ Âa(›) = „a(x) + ‘b�ab(x),

where Xµ
a (x) and �ab(x) are given fields. Provided that the classical action is invariant under

such a transformation to first order in ‘ in the sense �A(�) =
s

� dd+1x L(„a, ˆµ„a, xµ) ≠
s

�Õ dd+1› L(Âa, ˆµÂa, ›µ) = O(‘2), where �Õ is the image of �, then the following currents are

conserved, ˆµjµ
a (x) = 0:

jµ
a (x) © ˆL

ˆ(ˆµ„b)
�ba(x) ≠

C
ˆL

ˆ(ˆµ„b)
LX

a

„b(x) ≠ Xµ
a L

D

,

where LX
a

„b(›) © Xµ
a (›) ˆµ„b(›) is the Lie derivative of „b(x) along the vector field Xb(x).

(proof) The proof is elementary. As a first step, we consider the effect of the transformation

on the spacetime boundary:

⁄

�Õ
dd+1› L(Âa, ˆµÂa, ›µ) =

⁄

�
dd+1› L(Âa, ˆµÂa, ›µ)

+
⁄

ˆ�
d‡µ ‘aXµ

a (x) L(Âa, ˆµÂa, ›µ) + O(‘2), (A.1)

where d‡µ is the surface differential on ˆ�, i.e. the boundary of �. Changing the dummy integration

variable on the integrals from x to › and converting the surface integral to a volume integral using

the Stokes theorem, the change in the action upon the transformation can be written as:

�A(�) =
⁄

�
dd+1x

Ë
L(Â, ˆµÂ, xµ) ≠ L(„, ˆµ„, xµ) + ˆµ (‘aXµ

a (x) L(Âa, ˆµÂa, ›µ))
È
. (A.2)

We need to be careful with respect to the definition of the field transformation: in the statement of

the theorem, the transformed field Â(›) is defined at ›, however, it is given in terms of fields at x, the

pre-image of ›. It is easy to state the transformation law in terms of the functions of the transformed
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coordinates. To find order in ‘, we find:

Âa(›µ) = „a(xµ) + ‘b�ab(xµ)

= „a

1
›µ ≠ ‘bXµ

b (›)
2

+ ‘b�ab(›µ) + O(‘2)

= „a(›µ) + ‘b [�ab(›µ) ≠ LX
b

„a(›µ)] , (A.3)

The Lie derivative LX
b

was defined in the theorem statement. Changing the dummy index ›µ to

xµ in the above expression, the difference of the Lagrangian densities in the square brackets in

Eq. (A.2) can be written as:

L(Â, ˆµÂ, xµ) ≠ L(„, ˆµ„, xµ) = ˆL(„, ˆµ„, xµ)
ˆ„a(x) �„a(x) + ˆL(„, ˆµ„, xµ)

ˆ(ˆµ„a(x)) ˆµ(�„a(x))

= ˆµ

C
ˆL(„, ˆµ„, xµ)

ˆ(ˆµ„a(x)) �„a(x)
D

(A.4)

where �„a(x) corresponds to the last term in the third line of Eq. (A.3). We have used the Euler-

Lagrange equation,

ˆµ

C
ˆL

ˆ(ˆµ„)

D

≠ ˆL
ˆ„

= 0,

to get the second line. Plugging the above result into Eq. (A.2) and assumping that � is arbitrary,

we reach the sought after conserved current:

ˆµjµ
a (x) = 0, jµ

a (x) © ˆL
ˆ(ˆµ„b)

�ba(x) ≠
C

ˆL
ˆ(ˆµ„b)

LX
a

„b(x) ≠ Xµ
a L

D

. (A.5)

Remark: The energy-momentum tensor T µ
‹ (x) is defined by writing the square bracket in the con-

served Noether’s current as T µ
‹ X‹

a :

T µ
‹ (x) © ˆL

ˆ(ˆµ„b)
ˆ‹„b(x) ≠ ”µ

‹ L, (A.6)

where ”µ
‹ is the Kronecker’s delta.
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B.1 Hydrodynamical surface modes in isotropic harmonic traps: a

general proof

A useful experimental signature for the entrance of a quantum fluid to the hydrodynamical

regime is the emergence of the so-called surface modes in isotropic harmonic traps [100]. The

surface modes have universal oscillations frequencies set by the frequency of the harmonic trap.

The surface modes correspond to volume-conserving (divergence-less) flows and are driven by the
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trap restoring force. As a result, their frequency remains unaffected by the equation of state of the

fluid. The existence of the surface modes is shown in Ref. [100] for the non-interacting Bose gas.

Here, we give a general proof valid for all hydrodynamical fluids in d = 2, 3 with arbitrary

equations of state. Our starting point is the ideal hydrodynamical equations derived in Sec. 2.4:

ˆT n = ≠Ò · (nV), (B.1a)

M ˆT [n V] = ≠n ÒU ≠ ÒP ≠ MÒ [n VV] , (B.1b)

ˆT

5
E + 1

2 nMV 2
6

= ≠Ò ·
531

2 nMV 2 + P + E
4

V
6

≠ nV · ÒU. (B.1c)

In the above equations, n, V, U , P and E corresponds to the number density, macroscopic velocity,

the static trap potential, local pressure and local energy density, respectively. It is assumed that n,

E and P are given as functions of the inverse temperature — and chemical potential µ. It is useful

to solve µ for n and using n and — as the independent variables. Therefore, P © P (n, —), and

E © E(n, —). At equilibrium, V = 0, the temperature — = —0 is uniform and time derivatives of all

quantities vanish. The equilibrium density profile n0(R) is obtained by setting the right hand side

of Eq. (B.1b) to zero:

n0(R)ÒU(R) = ≠Òn0(R)
3

ˆP

ˆn

4

n=n0(R),—=—0

. (B.2)

We introduce shorthand notations for the partial derivatives:

P0,n(R) ©
3

ˆP

ˆn

4

n=n0(R),—=—0

, P0,—(R) ©
3

ˆP

ˆ—

4

n=n0(R),—=—0

,

E0,n(R) ©
3

ˆE
ˆn

4

n=n0(R),—=—0

, E0,—(R) ©
3

ˆE
ˆ—

4

n=n0(R),—=—0

. (B.3)

As usual, the analysis of the normal modes is done by first linearizing the hydrodynamical equations

about the equilibrium state. We define ”n © n(T, R) © n(T, R)≠n0(R), ”—(T, R) © —(T, R)≠

—0. To linear order in ”n, ”— and V, we find:

ˆT ”n = ≠Ò · (n0V), (B.4a)
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Mn0ˆT V = ≠”n ÒU ≠ Ò [P0,n”n + P0,—”—] , (B.4b)

E0,nˆT ”n + E0,—ˆT ”— = ≠(P0,n + E0,n)Òn0 · V ≠ (P0 + E0)Ò · V ≠ n0V · ÒU. (B.4c)

We omit ”n between the three equations and use Eq. (B.2) to simplify the result. A straightforward

calculation yields the following two coupled equations for V and ”—:

Mˆ2
T V = ≠Ò(V · ÒU) + Ò(P0,nÒ · V) ≠ 1

n0
Ò(P0,— ˆT ”—), (B.5a)

ˆT ”— = ≠ 1
E0,—

(P0 + E0 ≠ n0E0,n) Ò · V. (B.5b)

Assuming that U(R) = U(R2) is isotropic, the solutions V will have well-defined quantum num-

bers associated to the representation of SO(d) on the (d-1)-dimensional sphere. This yields a

general ansatz Vj(R) = Yj,{l},{m}(�)V (R) where V (R) is the radial part and Yj,{l},{m}(�) denote

the vector spherical harmonic of SO(d). We study the cases d = 2 and d = 3 here. In d = 3, we

assume the following ansatz for V(R):

(d = 3) : V(R) = V1(R) R̂Ylm(◊, „) + V2(R) R ÒYlm(◊, „) + V3(R) R ◊ ÒYlm(◊, „).

(B.6)

Note that we immediately find V3(R) = 0 since V is irrotational as implied by the hydrodynamical

equations. The required derivatives are given by:

Ò · V =
Ë
V Õ

1(R) + 2R≠1V1(R) ≠ R≠1l(l + 1)V2(R)
È

Ylm(◊, „),

Ò(ÒU · V) = d
dR

1
2U Õ(R2)RV1(R)

2
R̂ Ylm(◊, „) + 2U Õ(R2)V1(R) R ÒYlm(◊, „). (B.7)

Plugging the above expressions into Eqs. (B.5), we find two coupled ordinary differential equations

(ODEs) for V1(R) and V2(R). The solution of these equations gives the full normal mode spectrum.

Here, we are interested in the solutions for which Ò · V = 0. In this case, Eq. (B.5b) immediate

gives ˆT ”— = 0, i.e. such a mode is isothermal. Furthermore, all state-dependent quantities drop

out from Eq. (B.5b) and it reduces to:

(Ò · V = 0) : mˆ2
T V = ≠Ò(V · ÒU). (B.8)
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Using Eq. (B.7) and assuming an oscillatory solution with frequency Ê, we find:

MÊ2 V1(R) = d
dR

(2U Õ(R2) R V1(R)),

MÊ2 V2(R) = 2U Õ(R2) V1(R),

0 = V Õ
1(R) + 2R≠1V1(R) ≠ R≠1l(l + 1)V2(R). (B.9)

The first two equations result from Eq. (B.8) while the third equation is the constraint from Ò · V =

0. The three equations are compatible only if U Õ(R2) = const. Therefore, the divergenceless modes

may only exist in harmonic traps. We assume:

U(R2) = 1
2MÊ2

0R2. (B.10)

The solution V1(R) = R– has the general form of a power law. The above equations imply Ê2 =

Ê2
0 (– + 1) and (– + 1)(– + 2) ≠ l(l + 1) = 0, so that – = l ≠ 1, ≠l ≠ 2. The second solution is

irregular at original and we finally find:

Ê =
Ô

l Ê0. (B.11)

The velocity flow and number density for this isothermal and divergence-less mode is:

V(T, R) = Ṽ0 cos
1Ô

l Ê0T
2 C

Rl≠1 R̂ Ylm(◊, „) + Rl

l
ÒYlm(◊, „)

D

,

”n(T, R) = Ṽ0 sin
1Ô

l Ê0T
2 MÊ0Ô

l

n0(R)
P0,n(R)Rl Ylm(◊, „). (B.12)

Clearly, the solution is only valid for l Ø 1. Finally, we note that general analysis of Eq. (B.5) can

be cast into the solution of a second-order self-adjoint ODE using the ideas mentioned above. Since

the divergenceless solution is nodeless, the Sturm-Liouville theory of self-adjoint ODEs imply that

such a solution has the smallest eigenvalue.

The analysis is similar in d = 2, where the general ansatz for V(R) is:

(d = 2) : V(R) = V1(R) R̂ ulm(„) + V2(R) R Òulm(„), (B.13)
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where ul1(„) = sin(l„) and ul2(„) = cos(l„). The required derivatives are given as:

Ò · V =
Ë
V Õ

1(R) + R≠1V1(R) ≠ R≠1l2V2(R)
È

ulm(„),

Ò(ÒU · V) = d
dR

1
2U Õ(R2)RV1(R)

2
R̂ ulm(„) + 2U Õ(R2)V1(R) R Òulm(„). (B.14)

Again, we consider the case of a divergence-less flow. Assuming an oscillatory solution with fre-

quency Ê, Eq. (B.8) with the aid of the above derivative formulas read as:

MÊ2 V1(R) = d
dR

(2U Õ(R2) R V1(R)),

MÊ2 V2(R) = 2U Õ(R2) V1(R),

0 = V Õ
1(R) + R≠1V1(R) ≠ R≠1l2V2(R). (B.15)

Again, the above equations may only be simultaneously satisfied for a harmonic potential. Assum-

ing the ansatz V1(R) = R–, we find Ê2 = Ê2
0(–+1), (–+1)2 = l2, with the solutions – = ±l ≠1.

The negative solution is irregular at the origin and we finally find:

Ê =
Ô

l Ê0. (B.16)

The velocity flow and number density for this isothermal and divergence-less mode is:

V(T, R) = Ṽ0 cos
1Ô

l Ê0T
2 C

Rl≠1 R̂ ulm(„) + Rl

l
Òulm(„)

D

,

”n(T, R) = Ṽ0 sin
1Ô

l Ê0T
2 MÊ0Ô

l

n0(R)
P0,n(R)Rl ulm(„). (B.17)

The l = 1 surface mode is the dipole (Kohn) mode associated to the harmonic motion of the center

of mass of the fluid in the trap. The l = 2 mode is referred to as the quadrupole surface mode. The

density modulation of the l = 2 surface mode is ≥ (X2 ≠ Y 2) in d = 2
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C
Appendices to Chapter 3

C.1 Conservation laws of the linearized collisional Boltzmann-Vlasov

equation

The CBV equation admits local conservation laws for mass density, mass current and energy,

which can be simply established by multiplying the sides of CBV equation by 1, p and energy

density E respectively and integrating over p [85]. Here, E is the energy density. The collision

integrals vanish identically in all three cases due to the existence of the same conservation laws in
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the level of 2-body scatterings. We state these conservation laws in their integral form here and

utilize them later as a consistency check for our numerical calculations. The conservation of mass

(or equivalently, particle number) is:

d
dt

⁄
d� n(p; r, t) = 0. (C.1)

The linearized equation using the parametrization given by Eq. (3.44) yields:

d
dt

⁄
d� �0 �(p; r, t) = 0. (C.2)

In the same parametrization, the conservation of momentum reads as:

d
dt

⁄
d� p �0 �(p; r, t) = 0. (C.3)

The energy density is given by EHF = p2/(2m) + mÊ2
0r2/2 + �+[n]/2 in the Hartree-Fock ap-

proximation using which we get the following linearized form of conservation of energy:

d
dt

⁄
d� (”E n0 + E0�0 �(p; r, t)) = 0, (C.4)

where E0 © H0 is the equilibrium energy density and ”E = �+[”n]/2 = �+[�0�]/2.

Using the properties of Hartree-Fock self-energy functional, it is easy to show
s

d�”E n0 =

(1/2)
s

d��+[�0�] n0 © (1/2)
s

d��+[n0] �0�, using which the two terms in Eq. (C.4) can

be combined to yield:
d
dt

⁄
d� H0�0�(p; r, t) = 0. (C.5)

C.2 Asymptotic analysis of Q(T̄ , ÷ = 0)

In the 2D limit (÷ = 0), the asymptotic behavior of Q(T̄ , ÷) can be studied analytically. Setting

÷ = 0, the Erfcx functions appearing in the collision integral (see Eq. 3.72) evaluate to unity and

the expression in the brackets in the second line simply becomes [‰1 ≠ ‰2]2 = sin2 › sin2 ‹ [1 ≠

| sin(„ ≠ „Õ)|]. This will result in significant simplifications.
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C.2.1 Low temperature expansion

In the low temperature regime, µ̄/T̄ æ Œ, we may use the following identity:

lim
µ̄/T̄ æŒ

(µ̄/T̄ )≠3
⁄ Œ

0
fl5 dfl

5 1
cosh(fl ≠ µ̄/T̄ ) + cosh(b1fl)

1
cosh(fl ≠ µ̄/T̄ ) + cosh(b2fl)

6
=

4fi2

3 ”(b1) ”(b2). (C.6)

The above identity can be established by observing that for large —̄µ̄ the integrand is exponentially

small unless fl ≥ —̄µ̄ and b1, b2 ≥ (—̄µ̄)≠1. In the limit —̄µ̄ æ Œ, the right hand side becomes

proportional to ”(b1) ”(b2). The proportionality constant can be found by integrating the left hand

side over b1 and b2, which gives the 4fi2/3 pre-factor. Identifying b1 and b2 as sin2 › sin 2‹ cos „

and sin2 › sin 2‹ cos „Õ respectively, we can carry out the › and ‹ integrations using the ”-functions

and we finally get:

Q(T̄ æ 0, ÷ = 0) ¥ C
(µ̄/T̄ )3

ÈÈp̄4ÍÍ , (C.7)

where C is given by:

C = 32
9

⁄ 2fi

0
d„

⁄ 2fi

0
d„Õ [1 ≠ | sin(„ ≠ „Õ)|] sin(„ ≠ „Õ)2

cos2 „ + cos2 „Õ , (C.8)

and is equal to 19.176999 to six digits. ÈÈp̄4ÍÍ can be found analytically with little effort and we get:

ÈÈp̄4ÍÍ = ≠8T̄ 3 Li3(≠eµ̄/T̄ ). (C.9)

Using the asymptotic expansion of Li3(≠x) for large x and the low temperature expansion of µ̄

mentioned after Eq. (3.38), the following low temperature expansion follows:

≠Li3(≠eµ̄/T̄ ) = 1/(6T̄ 3) + fi2/(12T̄ ) + O(T̄ ). (C.10)

Combining the last four equations, we finally get:

Q(T̄ æ 0, ÷ = 0) ¥ 2
3 C T̄ 2 ¥ 12.784666 T̄ 2, (C.11)

to leading order. This asymptotic limit is shown in Fig. 3.4e as a blue dashed line and agrees well

with the numerical result.
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C.2.2 High temperature expansion

The analysis of the classical limit (—̄µ̄ æ 0) is simpler. First, we rewrite the hyperbolic functions

in the denominator as cosh(fl ≠ ln z) © efl/(2z) + (z/2)e≠fl. Here, z © exp(µ̄/T̄ ) is the fugacity

and goes to zero in the high temperature limit. Thus, cosh(fl ≠ ln z) ¥ efl/(2z) to leading order.

The denominator of Eq. (3.72) is dominated by the first cosh term. Neglecting the second cosh

terms, the integrations become elementary and we get:

Q(T̄ æ 0, ÷ = 0) ¥ 8(8 ≠ 3fi)z2T̄ 5

ÈÈp̄4ÍÍ . (C.12)

The fugacity in the classical limit can be found using Eq. (3.38) and we get z = 1/(2T̄ 2)+O(T̄ ≠4).

Using the asymptotic expansion ≠Li3(≠z) = z + O(z2), we finally find:

Q(T̄ æ Œ, ÷ = 0) ¥ 1
2(3fi ≠ 8) ¥ 0.712389. (C.13)

This asymptotic limit is shown in Fig. 3.4e as a red dashed line and is in agreement with the numer-

ical result.

C.3 Matrix elements of the evolution matrix in the monopole basis

The linear response analysis of the CBV equation using extended variational basis sets requires

calculation of a large number of matrix elements. This task, however, can be simplified since the

angular integrations appearing in expression for the matrix elements of M, � and H0 can be carried

out analytically using the symmetries of the basis functions and the equilibrium state. The problem

reduces to the evaluation of a two-dimensional integral over p̄ and r̄ for each matrix element which

can be done numerically accurately and efficiently. In this appendix, we provide readily computable

formulas for the matrix elements in the monopole basis. We define the shorthands R– © 2m– +k–,

P– © 2n– + k– for given basis function „–. R– and P– count the powers of r and p appearing in

„– respectively.
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Matrix elements of M

By definition, we have:

M–— =
⁄

d�̄ �0(p̄, r̄) „–„—

=
⁄

(2fi) r̄ dr̄
1

(2fi)2 p̄ dp̄ �0(p̄, r̄) r̄R
–

+R
— p̄P

–

+P
—

⁄ 2fi

0
d„ (cos „)k

–

+k
—

= E(k– + k—)(k– + k—)!

2k
–

+k
—

Ë1
k

–

+k
—

2

2
!
È2

C ⁄
r̄R

–

+R
—

+1p̄P
–

+P
—

+1 �0(p̄, r̄) dr̄ dp̄

D

, (C.14)

where E(n) = 1 for even n and E(n) = 0 for odd n. For future reference, we define:

h(n) = E(n) n!
2n [(n/2)!]2

, (C.15)

and:

Im
n [A(p̄, r̄)] =

⁄
A(p̄, r̄) r̄m+1 p̄n+1 dr̄ dp̄, (C.16)

using which we can write M–— = h(k– + k—) I
(R

–

+R
—

)
(P

–

+P
—

) [�0].

Matrix elements of H0

First, we evaluate the Poisson bracket {„—, H̄0}:

{„—, H̄0} = Ò
r̄

„— · Ò
p̄

H̄0 ≠ Ò
p̄

„— · Ò
r̄

H̄0

= “p (p̄ · Ò
r̄

)„— ≠ “r (r̄ · Ò
p̄

)„—

= “p
#
2m— „(m

—

≠1,n
—

,k
—

+1) + k— „(m
—

,n
—

+1,k
—

≠1)
$

≠ “r
#
2n— „(m

—

,n
—

≠1,k
—

+1) ≠ k— „(m
—

+1,n
—

,k
—

≠1)
$
, (C.17)

where:

“r © r̄≠2r̄ · Ò
r̄

H̄0 = 1 + r̄≠2r̄ · Ò
r̄

�̄0,

“p © p̄≠2p̄ · Ò
p̄

H̄0 = 1 + p̄≠2p̄ · Ò
p̄

�̄0. (C.18)
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Plugging Eq. (C.17) into the definition of (H0)–— , we get:

(H0)–— =
⁄

d�̄ �0 „–{„—, H0}

= [2m— h(k– + k— + 1) + k— h(k– + k— ≠ 1)] I
(R

–

+R
—

≠1)
(P

–

+P
—

+1) [“p�0]

≠ [2n— h(k– + k— + 1) + k— h(k– + k— ≠ 1)] I
(R

–

+R
—

+1)
(P

–

+P
—

≠1) [“r�0]. (C.19)

Matrix elements of �

By definition,

�̄[�0„—] = ⁄d

⁄ d2p̄Õ

(2fi)2 u(|p̄ ≠ p̄Õ|, ÷) �0(p̄Õ, r̄) „—(p̄Õ, r̄). (C.20)

It is easy to verify that a simultaneous rotation of r̄ and p̄ leaves �̄[�0„—] invariant, so that �̄[�0„—]

may only depend on r̄, p̄ and „, the angle between r̄ and p̄. Let cos „ = (p̄ · p̄Õ)/(p̄p̄Õ) and

cos „ = (r̄ · p̄)/(r̄p̄), so that r̄ · p̄Õ = r̄p̄Õ cos(„ + „). Expanding u(|p̄ ≠ p̄Õ|, ÷) in a cosine series,

u(|p̄ ≠ p̄Õ|, ÷) =
Œÿ

n=0
u(n)(p̄, p̄Õ; ÷) cos(n„), (C.21)

where:

u(n)(p̄, p̄Õ) = 1
fi(”n,0 + 1)

⁄ 2fi

0
d„ u

3Ò
p̄2 + p̄Õ2 ≠ 2p̄p̄Õ cos „, ÷

4
cos n„, (C.22)

and plugging into Eq. (C.20), we get:

�̄[�0„—](p̄, r̄, „) =

⁄d

⁄
p̄Õ dp̄Õ

2fi
�0(p̄Õ, r̄) p̄ÕP

— r̄R
—

A Œÿ

n=0
u(p̄, p̄Õ; ÷)

⁄ 2fi

0

d„

2fi
cos(n„) cos(„ + „)k

—

B

. (C.23)

The angular integration can be evaluated using contour integral techniques:

⁄ 2fi

0

d„

2fi
cos(n„) cos(„ + „)k =

S

U k!
2k

◊(k ≠ n) E(k + n)Ë1
k≠n

2

2
!
È Ë1

k+n
2

2
!
È

T

V cos(n„), (C.24)
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where ◊(n) = 1 if n Ø 0 and ◊(n) = 0 otherwise. We denote the numerical prefactor in the brackets

of the above equation by g(n, k). Plugging this into Eq. (C.23), we get:

�̄[�0„—](p̄, r̄, „) = ⁄d

k
—ÿ

n=0
Q(n)

— (p̄, r̄) cos(n„), (C.25)

where:

Q(n)
— (p̄, r̄) = ≠g(n, k—) r̄R

—

⁄ dp̄Õ

2fi
�0(p̄Õ, r̄) p̄Õ(P

—

+1)u(n)(p̄, p̄Õ; ÷). (C.26)

The last integral can be easily evaluated numerically. Also, note that we only need u(n) up to

n = k— in order to evaluate �̄[�0„—] exactly. This is due to the fact that g(n, k—) vanishes for

n > k— . Having evaluated �̄[�0„—], �–— can be evaluated readily by appealing to its definition:

�–— = ⁄d

k
—ÿ

n=0

1
[2m– g(n, k– + 1) + k– g(n, k– ≠ 1)] I(R

–

≠1)
(P

–

+1) [Q(n)
— �0“p]

≠ [2n– g(n, k– + 1) + k– g(n, k– ≠ 1)] I(R
–

+1)
(P

–

≠1) [Q(n)
— �0“r]

2
. (C.27)

Matrix elements of Ic

The evaluation of the matrix elements of the linearized collision integral operator is the most

computationally expensive part of the calculation. Once Hartree-Fock self-energy corrections are

taken into account, deviation of quasiparticle dispersion from the bare quadratic dispersion makes

the calculations even more challenging. The collision integrals are commonly evaluated with bare

quadratic dispersions. This is justified in the Boltzmann equation limit, where mean-field correc-

tions are neglected altogether. Here, since we have included mean-field effects on the dynamics,

we must also use the dressed quasiparticles dispersion in order to satisfy conservation of energy. In

order to do this in a numerically tractable way, we have found that the quasiparticle dispersions can

be approximated well using a local effective mass approximation (LEMA) within an error of less

than 2 percents. To this end, we approximate the dressed quasiparticle energies as:

H̄0(p̄, r̄) ¥ Á0(r̄) + p̄2

2mú(r) + r̄2

2 , (C.28)
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where:

Á0(r̄) = �̄0(r̄; 0),

mú(r̄) =
5
1 + ˆ2

p̄ �̄0(r̄; p̄)
---
p̄=0

6≠1
. (C.29)

As we will see shortly, this approximation allows us to put the collision integral into a simple form

suitable for numerical treatments. As a first step, we go to the center of mass frame of the colliding

particles and define:

p̄ = P̄
2 + q̄, p̄1 = P̄

2 ≠ q̄,

p̄Õ = P̄Õ

2 + q̄Õ, p̄Õ
1 = P̄Õ

2 ≠ q̄Õ, (C.30)

using which we get:

d2r̄ d2p̄
(2fi)2

d2p̄1
(2fi)2

d2p̄Õ

(2fi)2
d2p̄Õ

1
(2fi)2 (2fi)”(�Ē) (2fi)2”(�P̄) æ mú(r̄)

2 r̄ dr̄ d„
P̄ dP̄

2fi

q̄ dq̄

2fi

d„

2fi

d„Õ

2fi
,

(C.31)

where „, „Õ and „ are defined as cos „ = q̄·P̄/(q̄P̄ ), cos „Õ = q̄Õ ·P̄/(q̄ÕP̄ ), and cos „ = r̄·P̄/(r̄P̄ ).

Note that P̄ © P̄Õ and q̄ © q̄Õ in the rest of the integrand due to conservation of momentum and

energy. The scattering amplitude M̄ = ⁄d[u(|p̄ ≠ p̄Õ|, ÷) ≠ u(|p̄ ≠ p̄Õ
1|, ÷)] æ ⁄d[u(2q̄| sin[(„ ≠

„Õ)/2]|, ÷) ≠ u(2q̄| cos[(„ ≠ „Õ)/2]|, ÷)]. The product of the equilibrium distribution functions,

n0 n0,1(1 ≠ nÕ
0)(1 ≠ nÕ

0,1) can be conveniently written as:

n0 n0,1(1 ≠ nÕ
0)(1 ≠ nÕ

0,1) æ 1
4

1
cosh E + cosh “

1
cosh E + cosh “Õ , (C.32)

where E = —̄(P̄ 2/4 + q̄2)/[2mú(r̄)] + —̄r̄2/2 ≠ —̄µ̄, “ = —̄P̄ q̄ cos „/[2mú(r̄)], “Õ =

—̄P̄ q̄ cos „Õ/[2mú(r̄)]. The angle „ is only present in S[„–]S[„–]. Therefore, the integration over „ is

immediate and elementary, which we evaluate using Mathematica and define S–—(r̄, P̄ , q̄, „, „Õ) ©
s

d„ S[„–]S [„—]. The integral can be put in a more useful form using a spherical change of vari-

ables, P̄ = (8fl/—̄)1/2 sin › cos ‹, q̄ = (2fl/—̄)1/2 sin › sin ‹ and r̄ = (2fl/—)1/2 cos ›, where
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fl œ [0, Œ), ‹ œ [0, fi/2] and › œ [0, fi/2]. The final expression is:

I–— = ≠ (2N) 1
2 ⁄2

d

8(2fi)2 —̄N
–

+N
—

+3

⁄ Œ

0
fl2 dfl

⁄ 2fi

0

d„

2fi

⁄ 2fi

0

d„Õ

2fi

⁄ fi

2

0
d› sin3 › cos ›

⁄ fi

2

0
d‹ sin 2‹

◊ S–—(


2fl cos ›,


8fl sin › cos ‹,


2fl sin › sin ‹, „, „Õ) mú(r̄)

◊
5Ò

—̄ u
3

2
Ò

2fl/—̄ sin › sin ‹ | sin[(„ ≠ „Õ)/2]|, ÷
4

≠
Ò

—̄ u
3

2
Ò

2fl/—̄ sin › sin ‹ | cos[(„ ≠ „Õ)/2]|, ÷
4 62

◊
ÓË

cosh
1
fl sin2 ›/mú(r̄) + fl cos2 › + —̄Á0(r̄) ≠ —̄µ̄

2

+ cosh
1
fl sin2 › sin 2‹ cos „/mú(r̄)

2 È
◊ („ ¡ „Õ)

Ô≠1
,

(C.33)

where Na(b) = ma(b) + na(b) + ka(b) and r̄ ©
Ò

2fl/—̄ cos › in mú(r̄) and Á(r̄). We evaluate

the above 5-dimensional integral for all pairwise combination of basis functions using a numerical

Monte-Carlo integration with 5 ◊ 108 points which we found to yield a relative statistical error of

less than 10≠3 in all cases.

C.4 Matrix elements of the evolution matrix in the quadrupole basis

In this appendix, we provide readily computable expressions for various matrix elements in the

quadrupole basis by carrying out the angular integrations analytically. For a given quadrupole basis

function ›i„–, we define the shorthand (µi, ‹i) as the number of powers of r and p present in ›i

respectively, i.e. (µ1, ‹1) = (2, 0), (µ2, ‹2) = (1, 1), and (µ3, ‹3) = (0, 2).

Matrix elements of M

The angular integrations in M can be easily carried out using the parametrization cos „ = r̂ · x̂

and cos „ = r̄ · p̄/(r̄p̄). In this variables, we get ›i = r̄µ
i p̄‹

i cos(2„+‹j„). The angular integration
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are elementary and we find:

Mij
–— =

⁄
d�̄ �0 ›i ›j „–„— = 1

2 g(|‹i ≠ ‹j |, k– + k—) I
(R

–

+R
—

+µ
i

+µ
j

)
(P

–

+P
—

+‹
i

+‹
j

) [�0]. (C.34)

Matrix elements of H

As a first step, we evaluate the Poisson bracket {›j„—, H̄0} = ›j{„—, H̄0} + „—{›j , H̄0}. The

expression for {„—, H̄0} is known from the previous appendix (Eq. C.17). We can write {›j , H̄0} =

Xjk(p̄, r̄) ›k (sum over k is implied), where:

Xjk =

Q

cccccca

0 2“p 0

≠“r 0 “p

0 ≠2“r 0

R

ddddddb
. (C.35)

Therefore, we get:

(H0)ij
–— =

⁄
d�̄ �0 ›i „–{›j„—, H̄0}

=
⁄

d�̄ �0 „–{„—, H̄0} ›i›j

¸ ˚˙ ˝
(H0)ij

–—,1

+
⁄

d�̄ �0 „–„— Xjk ›i ›k

¸ ˚˙ ˝
(H0)ij

–—,2

. (C.36)

The angular integrations in (H0)ij
–—,1 can be most easily evaluated using the parametrization defined

earlier, cos „ = r̂ · x̂ and cos „ = r̄ · p̄/(r̄p̄). The final result is:

(H0)ij
–—,1 = 1

2
Ë
2m— g(|‹i≠‹j |, k–+k—+1)+k— g(|‹i≠‹j |, k–+k—≠1)

È
I

(R
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+µ
i

+µ
j

≠1)
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–

+P
—

+‹
i

+‹
j

+1) [�0 “p]

≠ 1
2

Ë
2n— g(|‹i ≠ ‹j |, k– + k— + 1) + k— g(|‹i ≠ ‹j |, k– + k— ≠ 1)

È
I

(R
–

+R
—

+µ
i

+µ
j

+1)
(P

–

+P
—

+‹
i

+‹
j

≠1) [�0 “r].

The angular integrations in (H0)ij
–—,2 are similar to those in (M)ij

–— and the result is:

(H0)ij
–—,2 = 1

2 g(|‹i ≠ ‹k|, k– + k—) I
(R

–

+R
—

+µ
i

+µ
k

)
(P

–

+P
—

+‹
i

+‹
k

) [�0 Xjk]. (C.37)
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Matrix elements of �

Similar to the monopole case, the first step is evaluating �̄[�0›j„—]:

�̄[�0›j„—] = ⁄d

⁄
p̄Õdp̄Õ

2fi

Œÿ

n=0
u(n)(p̄, p̄Õ; ÷) �0(p̄Õ, r̄) r̄R

—

+µ
j p̄ÕP

—

+‹
j

◊
⁄ d„Õ

2fi
cosk

— („ + „Õ) cos[2„ + ‹j(„ + „Õ)] cos(n„Õ), (C.38)

where we have expressed u(|p̄≠ p̄Õ|, ÷) as a cosine series like before. The „Õ integration can be con-

veniently carried out using the contour integral technique and gives g̃(‹j , n, k—) cos(2„) cos(n„) ≠

h̃(‹j , n, k—) sin(2„) sin(n„), where:

g̃(0, n, k) © g(n, k),

g̃(1, n, k) © g(n, k + 1),

g̃(2, n, k) © 2g(n, k + 2) ≠ g(n, k),

h̃(‹, n, k) © g̃(‹, n, k) ≠ g(‹ + n, k). (C.39)

Plugging this back into Eq. (C.38), we get:
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(C.40)

where:

Q(n)
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The last integral can be evaluated easily numerically. The final result can be expressed easily using

using last two expressions:
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where we have defined the shorthand notation G(‹1,n1,k1)
(‹2,n2,k2) = g̃(‹1, n1, k1) g̃(‹2, n2, k2) +

h̃(‹1, n1, k1) h̃(‹2, n2, k2).

Matrix elements of Ic

The matrix elements of the collision integral in the quadrupole basis is identical in form to those

of the monopole basis (Eq. C.33). The only differences are (1) S–— must be replaced with:

Sij
–—(r̄, P̄ , q̄, „, „Õ) ©

⁄ d◊

2fi
d„ S[›i„–] S[›j„—], (C.43)

where we introduced an extra angle cos ◊ = ex · P̄/P̄ , and (2) the pre-factor —̄N
–

+N
—

+3 æ

—̄N
–

+N
—

+5 in the denominator due to the extra powers of —̄≠1 introduced by ›i and ›j . The defini-

tion of N–(—) is the same as before.

C.5 Collision integrals with exact Hartree-Fock quasiparticle disper-

sions

In Sec. C.3, we simplified the expression for the collision integral matrix elements using the local

effective mass approximation (LEMA). Although we found this scheme to be a decent approxima-

tion in the weakly interacting regime (the approximate dispersions lie within a few percents of the

exact Hartree-Fock dispersions), one may argue that an exact treatment is necessary for stronger

interactions. In particular, this may have important consequences when one is looking at the effects

that crucially depend on self-energy corrections, such as the damping of the nodeless monopole

mode. In this section, we discuss this issue and present numerical justification for the reliability of

LEMA.

The major simplification resulting from LEMA is the possibility of an analytic treatment of the

”-function in the collision integral associated to the conservation of energy (see Eq. C.31). In that

case, LEMA simply yields q = qÕ, where q and qÕ are the magnitude of the momenta of the initial
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Figure C.1: The damping rate of the monopole oscillations in 2D and with N = 2200 particles.
(a) T/TF = 0.5, (b) T/TF = 1.0 and (c) T/TF = 1.5. The (light) solid colored lines are the
previously discussed result obtained using the local effective mass approximation. The dashed lines
denote approximate solutions obtained by relaxing the conservation of energy (from top to bottom,
‡ = 0.05, 0.02, 0.01 and 0.005). The solid black line is the extrapolation to ‡ = 0 (the exact result).

and final scattering pairs in the center of mass frame. Without a (local) quadratic dispersion, this

simple result does not hold anymore and in general, there is no easy way of treating the ”-function

analytically since the quasiparticle dispersions are evaluated numerically. Here, we introduce a

simple numerical approach to overcome this difficulty. Using a limiting process to to define the

delta functions,

”(�Ē) = lim
‡æ0

1Ô
2fi‡

e≠�Ē2/(2‡2), (C.44)

we replace the ”-function with Gaussians and calculate the collision integrals for various values of

‡. We find the ‡ æ 0 limit by extrapolation. This approach is considerably more computationally

demanding than LEMA, however, it yields an accurate calculation of the collision integral matrix

elements. The integrals are six dimensional in this case (the variables being r̄, P̄ , q̄, q̄Õ, „ and „Õ)

since q and qÕ may assume different values now.

We implemented the above method for both monopole and quadrupole oscillations within a 2nd
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order basis set. The extrapolation is carried out using a polynomial fit. Fig. C.1 shows the damping

of monopole oscillations obtained using several choices of ‡, the extrapolated result, and the LEMA

result for reference. The matching between the effective mass approximation and the exact result

is excellent up to ⁄d ≥ 1. The LEMA result, however, deviates from the exact result for ⁄d & 1.

Nonetheless, we find “exact
mon < 10≠3Ê0 and our conclusion about the smallness of the damping of

the nodeless monopole mode remains valid. Finally, we note that the beyond-LEMA refinement to

the prediction for the frequency of monopole oscillations is much smaller (a relative correction of

about 10≠6). This is due to the fact that the frequency shift essentially results from the self-energy

corrections on the dynamical side of the CBV equation which is already treated exactly.
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Appendices to Chapter 4

D.1 The expansion of the Ginzburg-Landau functional

We give explicit expressions for the coefficients of the low-energy expansion of the many-body

T-matrix, Eq. (4.29). We define the useful shorthand X © —µ and N(0) = m/(2fi), the 2D density
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of states per spin. A straightforward but lengthly calculation yields:

c0 = N(0)
2

C

2 ln
34e“

fi

4
◊(X) + ln —‘b

4 + ln(|X|/2) tanh(X/2) + sign(X)
⁄ Œ

|X|/2
dx

ln x

cosh2 x

D

,

c1 = N(0)
4

C
7’(3)
2fi2 —X◊(X) + |µ|

⁄

|µ|Œ
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tanh(—›/2)
›3

D

,

c2 = —N(0)
4X

tanh(X/2) ≠ i
—N(0)fi

8 ◊(X),

b = N(0)
4

C
7’(3)
2fi2 —2◊(X) + 1

µ2 tanh(|X|/2) + sign(X)
⁄ Œ

|µ|
d›

tanh(—›/2)
›3

D

. (D.1)

These expression have also been given in Ref. [153], however, the important imaginary part of

c2 leading to the diffusion equation in the weak-coupling regime was erroneously neglected in

Ref. [153]. We note that c0 and c1 also have sub-leading imaginary corrections (not shown here).

D.2 The BOX diagram in d = 2, 3

In this section, we investigate the analytic behavior of BOX(k, k) in the strong-coupling limit.

We consider the static limit where the incoming/outgoing energy is zero. Our starting point is

Eq. (4.122). The Matsubara summation can be done with the usual contour techniques. The result

is the contribution of four poles, yielding the intermediate result:

BOX(k, kÕ) =
⁄ ddq

(2fi)d

›
q

+ ›
k≠q

+ ›
k

Õ≠q

+ ›
q≠k≠k

Õ

(›
q

+ ›
k≠q

)(›
q

+ ›
k

Õ≠q

)(›
k≠q

+ ›
q≠k≠k

Õ)(›
k

Õ≠q

+ ›
q≠k≠k

Õ)
. (D.2)

Note that we have neglected the exponentially small contributions of Fermi-Dirac distributions to

the residues. The case k = kÕ can be treated analytically. First we consider the case d = 2. A

change of variables q æ q + k simplifies the integral kernel, yielding:

BOX(k, k) =
⁄ Œ

0

q dq

2fi

⁄ 2fi

0

dÂ

2fi

16m3
1
k2 + 2(›≠2

pair + q2)
2

51
k2 + 2(›≠2

pair + q2)
22

≠ 4k2q2 cos2 Â
62 , (D.3)
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where ›pair = 1/
Ô

m‘b. The Â integration and subsequently the the q integrations can be done

using standard contour methods. The final result is:

(d = 2) : BOX(k, k) =
a4m3

1
2
Ô

x2 + 2x +
Ô

2
!
x2 + 4

"
tanh≠1

1
xÔ

2
Ô

x2+2

22

2fix (x2 + 2)3/2 (x2 + 4)
, (D.4)

where x = ak. The limiting cases can be found easily:

(d = 2) : BOX(k, k) =

Y
__]

__[

m

4fi‘2
b

Ë
1 ≠ 5x2/6 + O(x4)

È
k π 1/›pair,
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#
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$
k ∫ 1/›pair.

(D.5)

The result in d = 3 is obtained using similar methods. The integrations are more tedious, yet the

final result is simple:

(d = 3) : BOX(k, k) =

Y
__]

__[

m3

16fi(m‘b)3/2

Ë
1 ≠ 5x2/8 + O(x4)

È
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Bohn, J. Ye, and D. S. Jin. Controlling the quantum stereodynamics of ultracold bimolecular
reactions. Nature Physics, 7(6):502–507, 2011.
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