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Abstract!

!

The! epigenetic!mechanisms! that! connect! hormone! signaling! to! chromatin! remain! largely!

unknown.! Here! we! show! that! LSD1/KDM1A! is! a! critical! glucocorticoid! receptor! (GR)!

coactivator! and! report! a! previously! unexplored! mechanism! where! LSD1! activates! gene!

transcription!through!H3K4me2!demethylation.!We!demonstrate!that!direct!interaction!of!

GR!with!LSD1!primarily!inhibit!its!activity!against!H3K4me1!in#vitro.!While!this!interaction!

enables! GR! to! recruit! LSD1! in# vivo! and! allows! loss! of! H3K4me2,! it! impedes! further!

demethylation.! Thus! resulting! in! conversion! of!H3K4me2! to!H3K4me1! at! enhancers! and!

promotes!H3K27!acetylation!and!gene!activation.!We!also! find! that!H3K4me2! is!an!early!

enhancer! mark! predicting! GR! and! LSD1! recruitment.! These! findings! differ! from! the!

reported! mechanism! for! ER! and! ARSmediated! gene! activation,! providing! a! novel!

mechanism!for!LSD1!coactivator!function!as!well!as!shed!light!on!the!role!of!H3K4me2!and!

enhancers! in! hormoneSmediated! gene! regulation.! In! addition! we! present! evidence!

supporting!never!before!characterized!H3K79me3!demethylase!activity!by!members!of!the!

JMJD2!family!of!proteins.!!
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Chapter 1 

Introducing Epigenetics and Histone Methylation 

_________________________________________________________________________________________________            

 

The Far Reaching Umbrella of Epigenetics  

Epigenetics is a newly emerged field with wide ranging impact on our understanding of 

biology. Epigenetics is generally accepted as the study of changes in gene expression or 

cellular phenotype that are not the result of changes in DNA sequence, some of which are 

heritable. The Greek root epi- implies mechanisms that occur on top of the genetic code, 

which also implies shared characteristics with classical genetics such as heritability. 

However, the origin of the word epigenetics has its true roots in an attempt to describe the 

connections between genetics and development in the late 1930’s by relating it to the word 

epigenesis 1. This lead to observations of a “new type of inheritance” occurring across 

mitotic cell divisions 2,3 and later across generations 4 being intermingled with studies of 

genetic “switches” responsible for turning genes on/off during development. These two 

lines of research have come together to form the modern epigenetic amalgamation, which 

encompasses processes as diverse as DNA methylation to nuclear architecture.    

 

While there is good evidence supporting the existence of new non-genetic mechanisms of 

heritability, the mechanism(s) that transfer epigenetic information are not understood 

except in a few cases, such as for DNA methylation. On the other hand, our understanding 

of the molecular and biochemical switches that flip genes on and off has expanded 

dramatically since 1990’s. We now understand that myriad mechanisms, both nuclear and 

non-nuclear, affect the way genes are expressed, and most of these mechanisms have been 
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included under the umbrella of epigenetics. This helps explain the ambiguous definition of 

epigenetics as well as the debate in some circles about over whether inheritance is a 

requirement for the definition. While it remains to be determined whether heritable versus 

non-heritable changes in gene expression will eventually subdivide the field, one thing is 

certain; the epigenetic umbrella has many spokes all of which have proven biologically and 

clinically important.   

 

Similar to discoveries of genetic mutations underlying disease, alteration of the epigenome 

has been similarly implicated in a wide variety of human diseases such as cancer, cognitive 

dysfunction, reproductive disorders, respiratory, autoimmune, and neurobehavioral 

diseases, as well as contributing to the aging process and evolution 5-12. Because epigenetics 

allows environmental signals to alter the function of the genome it is also thought to 

contribute heavily to diseases such as heart disease, obesity and diabetes, which we now 

understand to be complex mixtures of environmental/lifestyle exposures and genetic 

susceptibilities. 

 

Epigenetic mechanisms allow the environment outside both the cell and the organism to 

influence gene expression. Environmental stimuli are detected and processed by an 

organism. In the case of multicellular organisms this signal is then transmitted to pertinent 

tissues and cell-types which respond in part by transmitting that signal to the nucleus 

where regulatory factors alter the pattern of gene expression. This allows an organism to 

respond to its environment down to the individual cell. An excellent example of this 

process is the human body’s response to stress.   
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When a human encounters stress, the adrenal cortex releases hormones, one of which is 

cortisol. Cortisol is part of the glucocorticoid family of steroid hormones and circulates 

throughout the body to affect multiple organ systems. These effects include depressing the 

immune system and inflammation as well as mobilizing glucose. Cortisol carries out these 

effects in large part through binding to nuclear hormone receptors located in the cytoplasm 

of cells such as immune and liver cells. For example the glucocorticoid receptor (GR) is 

sequestered in the cytoplasm of many cell-types and upon binding to a ligand such as 

cortisol will translocate to the nucleus where it acts as a hormone-dependent transcription 

factor regulating specific gene targets 13. mRNA profiling of immune cells and hepatocytes 

responding to glucocorticoids reveals activation and suppression of genes involved in 

inflammatory signaling, glucose metabolism, and cell survival 14,15. These changes in gene 

expression of various cell and tissue types produce a coordinated response by the organism 

to the instigating stressor.   

 

These processes are also critical during development where patterns of cell and tissue 

differentiation are directed by diffusible signaling molecules. Studies characterizing the 

epigenome throughout development have demonstrated significant alteration of the 

epigenetic landscape as cells specialize and thus restrict gene expression to a specific 

subset of genes 16,17. At various stages newly established epigenetic landscapes are 

maintained for many cellular generations and in some cases throughout the lifetime of the 

organism generating the foundation for cell and tissue differentiation. 
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However, unlike the long-term changes in the epigenome during development, similar 

mechanisms are also used on shorter time-scales. Returning to the example of stress, 

epigenetic switches temporarily alter gene expression allowing for dynamic adaptation to 

the environment. Most often, removal of the hormone signal will reset the switches 

allowing cells to revert to baseline function.  However, our understanding of the long-

lasting effects of chronic exposure to altered physiological states and the contributions of 

stabile epigenetic changes are beginning to be explored 18,19. 

 

Chromatin 

Many epigenetic mechanisms center on the structure and function of the protein DNA 

complex known as chromatin. Even in its most unadorned state, the eukaryotic genome in 

nature is a complex structure of histone proteins wrapped in DNA, a single unit of which is 

called a nucleosome (Figure 1.1).  A nucleosome consists of an octamer of histone proteins 

(two of each H3, H4, H2A, H2B) wrapped in approximately 147 bp of DNA 20-23. Chromatin 

is a dynamic structure with two basic states known as euchromatin and heterochromatin. 

The two states are defined relative to each other with euchromatin being more loosely 

packaged allowing access to the DNA template, and heterochromatin being a more 

condensed structure with nucleosomes tightly packed together restricting access.   The 

most dramatic demonstration of these two states occurs during the cell cycle where the 

genome goes from a mixture of tightly and loosely packaged regions during interphase to 

the most extremely condensed state visible as individual chromosomes during mitosis.   

 



5 
 

At the level of the nucleosome there 

are several biochemical processes 

included under the umbrella of 

epigenetics.  Firstly, DNA itself can be 

chemically modified. In mammals the 

addition of a methyl group to the 5th 

position of cytosine was one of the 

first epigenetic marks to be 

discovered 24,25. Despite more than 

65 years studying DNA methylation 

and the enzymes responsible for 

adding this modification, it is only in 

the last five years that we are 

beginning to understand how this 

mark is dynamically regulated. The 

recent discovery of DNA 

hydroxymethylases and subsequent modifications has shed new light on an old assumption 

about the long-term stability of DNA methylation 26.  Increasing evidence suggests DNA 

methylation, while perhaps not as dynamic as other chromatin modifications, is in fact 

reversible and actively regulated with significant implications for physiology and disease 

(reviewed in 27).   

 

Figure 1.1  Basic 3D structure of a single nucleosome.   
DNA is represented by gray space-filling model and 
histone proteins are represented by blue ribbon 
models. Histone tails can be seen protruding from 
histone-DNA complex. 
(Image modified from James Hedberg original licensed under 

a Creative Commons Attribution-NonCommercial-ShareAlike 

3.0 Unported License.) 
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Up one level from DNA we find myriad post-translational modifications to histone proteins. 

The majority of these modifications occur on the N-terminal tail, which is an unstructured 

region of the histone protein protruding from the overall nucleosome structure (Figure 

1.1). Many covalent modifications to histone tails have been described (acetylation, 

methylation, phosphorylation, sumolation, and ubiquitination) and tails can be modified at 

multiple amino acid residues allowing for numerous and diverse combinations.  Histone 

tails decorated with various marks signal information to the cell about the chromatin and 

transcriptional state of that region of the genome. Studies have also established that 

altering these covalent histone modifications directly and/or indirectly influences 

chromatin through the recruitment of effector proteins to specific chromatin regions 28-30. 

Similar to a system of color-coded tabs in your favorite book, histone modifications form a 

type of code on top of the genetic code indicating which regions and genes should be freely 

accessible and expressed and which regions should be silenced (as well as all manner of 

intermediate states).   

 

While we have only begun to scratch the surface in understanding the histone code, some 

general trends have emerged. For example, histone acetylation is generally associated with 

euchromatin and gene activation. This in large part due to the additional negative charge 

added to the histone with this chemical modification (Figure 1.2 A). The increased negative 

charge helps repel the also negatively charged DNA opening chromatin up. However, other 

modifications such as methylation are less clear-cut. Methylation itself is neutral and 

therefore does not affect the biochemical properties of histone DNA interactions (Figure 

1.2 B). Instead the impact of histone methylation on chromatin depends entirely on the 
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type of proteins that recognize this mark. Proteins that recognize specific modifications are 

called “readers” of the histone code. In terms of gene expression, the function of a histone 

reader depends on whether it possesses an enzymatic activity and/or recruits other 

proteins that favor open or closed chromatin. Decoding histone methylation has proven to 

be a daunting task. Methylation occurs at many residues (Figure 1.3), including one lysine 

in the globular region of the histone (H3K79), and to varying degrees with the addition of  

Figure 1.2  Lysine modifications.   
(A) Histone lysine residues can be acetylated which changes the overall charge of the 
histone protein. (B) Histone lysine residues can also be methylated to three different 
degrees which does not change the charge of the protein.   
 
 



8 
 

 

one, two or three methyl groups to a single residue (mono, di, or trimethylation) (Figure 

1.2 B). Histone methylation has been implicated in euchromatin and heterochromatin 

formation as well as many stages of transcriptional regulation from initiation to mRNA 

processing all dependent on the residue and degree of methylation. Table 1.1 summarizes 

Figure 1.3  Histone tail modifications.   
Crystal structure of a nucleosome with histones H2A shown in yellow, H2B in red, H3 
in blue, and H4 in green. Tail residues are spelled out with known sites of methylation, 
acetylation and phosphorylation indicated.   
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the function of known methylation sites, but certainly represents an incomplete 

understanding of this modification. 

Table 1.1 Histone Methylation 

Histone Methylation Site Function 

H1 K26 Transcription silencing  
H3 K4 Transcription activation  

 R8 Transcription silencing  

 K9 Transcription silencing or activation, imprinting, DNA 
methylation  

 R17 Transcription activation  

 K27 Transcription silencing, X-inactivation  

 K36 Transcription activation (elongation)  

 K79 Transcription activation (elongation), DNA 
repair/checkpoint response  

H4 R3 Transcription activation  

 K20 Transcription silencing or activation, checkpoint 
response  

 K59 Transcription silencing  
  

Just as there are readers of the histone code there are also “writers” and “erasers” of the 

code. These are enzymes responsible for regulating when and where histone modifications 

are laid down. The balance between writer and eraser activities dynamically regulates the 

histone code throughout processes such as development and cellular responses to stimuli. 

The writers and erasers for histone methylation are two classes of enzymes known as 

histone methyltransferases (HMTs, writers of histone methylation) and histone 

demethylases (HDMs, erasers of histone methylation). While the mechanisms of histone 

acetylation and deacetylation have been well studied for many years, the first HMT wasn’t 
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discovered until fairly recently 31 and up until the discovery of the first HDM 

(LSD1/KDM1a) three years later, histone methylation was thought to be an irreversible 

modification 32.  

 

Following the discovery of LSD1, many more histone demethylases have been 

characterized solidifying histone methylation as a dynamic regulatory mechanism 

involving a balance between numerous writers and erasers. There are two major classes of 

histone demethylases. The first, so far only includes two proteins, LSD1 and LSD2, which 

carry out demethylation via a flavin dependent monamine oxidase reaction.  The second 

class mediates oxidative demethylation by radical attack catalyzed by a Jumonji C (JMJC) 

domain 33. While a large number of histone methyltransferases have been described, fewer 

of their counterpart demethylases have been identified. Until very recently no enzyme had 

been shown to demethylate arginine residues of histone tails 34, and some, such as 

methylation on histone H3 lysine 79 and H4 lysine 20 (H3K79 and H4K20), lack a 

characterized demethylases all together. This disparity leads many to believe there are 

novel histone demethylases left undiscovered along with no doubt many facets of the 

epigenetic code 35. Table 1.2 summarizes the known HDMs. Together DNA, histone, and 

nucleosome modification form an intricate and vastly unexplored network of interacting 

mechanisms that regulate chromatin structure and gene expression, both of which 

contribute significantly to the biology of major fields of research such as development and 

stem cells, as well as numerous human diseases and disorders 36.  
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Table 1.2 Histone demethylases  

HDM  Synonyms  Substrates  
LSD histone demethylases  
LSD1 AOF2, BHC110, KDM1A  H3K4me1/2, H3K9me1/2  

LSD2  AOF1, KDM1B  H3K4me1/2  
JMJC histone  demethylases  
JMJD5  KDM8  H3K36me2  
JMJD6 PSR, PTDSR  H3R2, H4R3  
FBXL10 JHDM1B, KDM2B  H3K36me1/2/3  
FBXL11 JHDM1A, KDM2A H3K36me1/2  
KIAA1718 JHDM1D  H3K9me1/2, H3K27me1/2  
PHF8 JHDM1F  H3K9me1/2, H4K20me1  
PHF2  JHDM1E  H3K9me2  
JMJD1A  JHDM2A, TSGA, KDM3A  H3K9me1/2  
JMJD3  KDM6B H3K27me2/3  
UTX  KDM6A H3K27me2/3 
JMJD2A JHDM3A, KDM4A  H3K9me2/3, H3K36me2/3, H1.4K26me2/3 
JMJD2B JHDM3B, KDM4B  H3K9me2/3, H3K36me2/3, H1.4K26me2/3 
JMJD2C JHDM3C, GASC1, KDM4C  H3K9me2/3, H3K36me2/3, H1.4K26me2/3 
JMJD2D JHDM3D, KDM4D  H3K9me2/3, H3K36me2/3, H1.4K26me2/3 
JARID1A RBP2, KDM5A H3K4me2/3  
JARID1B PLU1, KDM5B  H3K4me2/3  
JARID1C SMCX, KDM5C H3K4me2/3  
JARID1D SMCY, KDM5D H3K4me2/3  
NO66  H3K4me2/3, H3K36me2/3 
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One appealing aspect of epigenetic research is the malleability of the epigenome through 

manipulation of protein and enzyme regulators. The advent of human genetics and 

advances in virology and recombinant DNA technologies has made the possibility of 

correcting genetic mutations that underlie human disease a plausible and auspicious goal.  

Unfortunately, despite being first proposed over 40 years ago, gene therapy has been slow 

to break into the clinical setting as a safe and effective treatment. However, the paradigm 

shift in treatment strategy associated with gene therapy does not impede the development 

of epigenetic therapies given that enzymes are medical researchers’ favorite targets. Thus 

epigenetic therapies combine drugable targets with altering gene expression which have as 

significant an impact on physiology as direct mutation. In addition, the potential for long-

lasting transmissibility of epimutations makes the epigenetic code an incredibly promising 

area of biomedical research. 
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Abstract 

The epigenetic mechanisms that connect hormone signaling to chromatin remain largely 
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unknown. Here we show that LSD1/KDM1A is a critical glucocorticoid receptor (GR) 

coactivator and report a previously unexplored mechanism where LSD1 activates gene 

transcription through H3K4me2 demethylation. We demonstrate that direct interaction of 

GR with LSD1 primarily inhibit its activity against H3K4me1 in vitro. While this interaction 

enables GR to recruit LSD1 in vivo and allows loss of H3K4me2, it impedes further 

demethylation. Thus resulting in conversion of H3K4me2 to H3K4me1 at enhancers and 

promotes H3K27 acetylation and gene activation. We also find that H3K4me2 is an early 

enhancer mark predicting GR and LSD1 recruitment. These findings differ from the 

reported mechanism for ER and AR-mediated gene activation, providing a novel 

mechanism for LSD1 coactivator function as well as shed light on the role of H3K4me2 and 

enhancers in hormone-mediated gene regulation.  

 

Background 

Glucocorticoids (GCs) are essential hormones (aka stress hormones) released from the 

adrenal cortex that affect many physiological processes. Cortisol, the natural GC in humans, 

is known to influence glucose and lipid metabolism, bone homeostasis, stress response, 

development, the immune system, as well as behavior. At the cellular level, GCs impact 

many processes including proliferation, apoptosis, and differentiation. Clinically, GC 

imbalance has been implicated in a wide-range of diseases while GC restraint on the 

immune system makes them some of the most potent treatments for inflammatory and 

immune diseases 1,2.   
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Many of the complex biological effects of GCs depend on activation of the glucocorticoid 

receptor (GR), a hormone inducible transcription factor 3. The GR is a class I nuclear 

receptor (NR) and a modular protein containing three distinct functional regions, a N-

terminal activation domain (AD) containing a smaller defined activation function region 

(AF-1), a central DNA-binding domain, and a C-terminal ligand binding domain that can 

also contains a ligand-dependant AF region (AF-2) (Figure 2.1).  The mechanism of  

 

Figure 2.1 The Glucocorticoid receptor domain structure.  
The N-terminal activation domain (AD) acts as a ligand independent activation 
domain interacting with other protein cofactors. DBD is the DNA binding domain 
separated from the ligand binding domain (LBD) by a hinge region (HR). AF-1 and 
AF-2 regions are critical for transcriptional activation of GR-regulated target 
genes. (Modified image from the Nuclear Receptor Resource http://nrresource.org) 
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transcriptional regulation by the GR has long been studied. Upon ligand exposure, the GC-

bound GR complex translocates to the nucleus where it recognizes and binds directly to 

specific DNA sites called GR response elements (GREs). The GR can also bind DNA 

indirectly through a tethering mechanism involving protein-protein interactions with other 

transcription factors such as activating protein-1 (AP-1) and nuclear factor kappa B (NF-

κB) (reviewed in 4). After binding DNA, GR can either activate or repress transcription 

depending on the integration of multiple factors 5. The net effect of GCs on an individual 

gene target depends upon other transcription factors present on both the target promoter 

and/or distal regulatory sites such as enhancers 6,7. Thus, understanding the full 

mechanism of GC action requires identifying not only the set of genes bound and regulated 

by the GR, but also the other transcription regulatory factors that may interact with the GR, 

and the disperse genomic loci where these interactions occur. 

 

Covalent chromatin modifications to both histones and DNA have significant impacts on 

chromatin structure, function, and gene regulation, as well as emerging as important 

mechanisms in NR target gene regulation 8,9. NRs can affect chromatin by recruiting 

coactivator or corepressor proteins with chromatin or DNA modifying activities. For 

example, GR and many other NRs, recruit histone acetyltransferases (HATs) such as CBP, 

p300, p/CAF and SRC/p160, as well as ATP-dependent chromatin remodelers such as 

Swi/Snf proteins to initiate gene activation 10-13. The actions of these protein complexes, by 

addition of acetyl groups to histones and chromatin decondensation, allow basal 

transcription machinery and RNA PolII access to target genes 14-17. Conversely, 

corepressors such as histone deacetylases (HDAC) and NURD complexes recruited by NRs, 
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repress transcription by removal of acetylation and chromatin condensation 18. Together, 

the dynamics of histone acetylation and deacetylation offer a model for an epigenomic 

switch between on/off states of hormone target genes. However, the epigenome is 

extremely complex. Its regulation and associated gene activity is cell-type and gene specific, 

as well as requiring combinatorial histone codes and multi-layer mechanisms. Therefore, 

the current model of hormone-induced gene regulation is likely quite incomplete. For 

example, the most abundant and diverse histone modification in the epigenome is histone 

methylation. It has an incredibly complex impact on gene regulation, having been 

functionally linked to activation and repression depending on the genomic location, the 

methylated residue, or the degree of methylation (one, two, or three methyl groups). 

Similar to acetylation, histone methylation is regulated by a balance of apposing enzymes 

known as histone methyltransferases (HMTs) and histone demethylases (HDMs), which 

add or remove methyl groups, respectively.  
 

The recent discovery of HDMs demonstrated the reversibility of histone methylation but 

also initiated the now rapid-pace characterization of histone demethylation in epigenetic 

transcriptional control. LSD1/KDM1A, the first identified histone demethylase, plays an 

essential role in a broad spectrum of biological processes, including gene regulation, stem 

cell differentiation, embryonic development, and tumorigenesis 19-22. Not surprisingly, 

LSD1’s mechanism of action in gene regulation (repression versus activation) is complex. 

LSD1 was originally characterized as a corepressor with in vitro validated demethylase 

activity against H3K4me1/2, an activity that can be regulated by associated protein such as 

CoREST and MTA 23,24. Soon after the discovery of its H3K4me1/2 demethylase activity, 
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LSD1 was also described as a H3K9 demethylase in the context of the hormone receptors 

ER and AR, offering one of the first examples of substrate specificity switching (K4me to 

K9me) by a HDM 25-30. However, this mechanism remains somewhat controversial given 

the lack of clear biochemical or structural support for how LSD1 changes substrate 

specificity to directly demethylate H3K9 31-33.  

 

Transcriptional control by NRs through distal regulatory sites, such as enhancers, has been 

implicated as a key mechanism underlying hormone-mediated gene regulation 34-37. Recent 

work has begun to define distinctive histone modifications at enhancers that contribute to 

epigenetic control of enhancer activity. Heintzman et al. first defined an active enhancer 

chromatin signature as enriched in H3K4me1 and H3K27 acetylation (ac). While studies 

suggest H3K27ac is a key mark in the transition from inactive or poised enhancer states to 

fully active 38, growing evidence also supports a critical role for various H3K4 methyl 

states. H3K4me1 is the most generally accepted H3K4 feature of enhancers. However, 

H3K4me2 has been implicated as required for DNA binding of the ER and AR pioneer factor 

FoxA1 39. Lastly, a low level of H3K4me3 is also a hallmark of active enhancers 

distinguishing them from active transcription start sites (TSSs) 38,40. Thus, an enhancer-

specific H3K4 methylation profile for all three methyl-states has been described.  

 

Surprisingly, little is known about cellular, molecular, and biochemical mechanisms 

regulating changes in H3K4 methylation at enhancers. One study brought to light the 

importance of LSD1 in enhancer regulation in ESC differentiation where erasure of 

H3K4me1 by LSD1 at enhancers suppresses pluripotency transcriptional networks 19. 
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LSD1’s dual role in gene repression and activation as well as concerns about bona fide 

substrate switching by LSD1 leaves open the question of whether LSD1 is a direct H3K9 

demethylase, and if not, what other mechanism(s) could account for its coactivator 

function in hormone-induced gene activation. The emerging roles of H3K4 methylation and 

LSD1 at gene enhancers as well as the importance of these sites in NR-mediated gene 

regulation raise the intriguing possibility that LSD1 could play a role in fine-tuning the 

methyl-states of its well-established substrate, H3K4, during the process of enhancer 

activation.  

 

Potentially related to this dearth of knowledge surrounding regulation of H3K4 

methylation at enhancers is the poorly understood cell-type specificity seen with NR 

function. GR in particular is the well known for a diversity of physiological effects. The 

ability of GCs to regulate such wide-ranging processes is in part due to tissue and cell-type 

specific affects. Transcriptomic analysis of GR action has revealed minimal overlap in GC-

responsive expression profiles of different cell types 34,41,42.  One specific example that 

highlights this specificity well is the affect of GCs on cell survival. In lymphoid cell lineages 

such as T-cells and monocytes GCs induce apoptosis, contributing to immunosuppression 

and anti-inflammatory effects 43-45. However, in other cell types such as liver, osteoblasts, 

glioma, and lung carcinoma cells GCs have been found to inhibit apoptosis 46-51.  

 

Genome-wide binding studies have also revealed that GR selectively targets a subset of 

GREs present in the genome 34,37,52-54. While there are a multitude of sites in the genome 

with sufficient sequence similarity to the GRE consensus motif, only a small fraction have 
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been found to be functional in terms of GR recruitment. In addition, DNase I 

hypersensitivity mapping, which is indicative of open versus closed chromatin states, has 

shown that the majority (~88%) of GR bound sites are kept in a constitutively accessible 

state 55. As the functions of epigenetic mechanisms are elucidated, a clear relationship 

between histone modification and chromatin state is being established. Together this 

strongly implicates histone modifiers in regulating a cell-type specific chromatin signature 

that is laid down prior to and independent of hormone exposure and that likely serves two 

functions. One is to establish a more permissive chromatin state (ie get target sites “primed 

and ready”) for GR induction; and two, to assist in targeting the GR complex to specific sites 

in the genome. However, the epigenetic modification and the proteins that regulate those 

modifications that underlie selective genomic targeting by the GR remains unknown and is 

a key question in understanding the versatile action of GCs in human physiology. 

 

Here, using a GC-inducible model, we illustrate two new molecular mechanisms where 

LSD1 contributes to both GR-mediated target gene activation as well as suppression of non-

functional GR targets by differentially controlling the H3K4me1/2 states at gene enhancers.  

By microarray analysis we find that LSD1 is important for activation of most GC-responsive 

genes but also, that loss of LSD1 unmasks a large number of newly GC-responsive genes. As 

part of the GR complex LSD1 is recruited to many GR bound enhancer sites. 

Mechanistically, LSD1 H3K4 demethylase activity is crucial for changes in H3K4me1/2 and 

enhancer activation in response to GCs, challenging the dogma of LSD1 and NR-mediated 

gene activation via the elusive H3K9 demethylase activity. Contributing to this mechanism 

we find that GR modulates LSD1 HDM activity in vitro and in vivo by inhibiting removal of 
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H3K4me1 allowing this important enhancer mark to accumulate during activation. 

Additionally, we find that H3K4me2 is an important mark distinguishing functional GR 

binding sites prior to hormone exposure. Together these data support two roles for LSD1 in 

GR-mediated transcriptional regulation. One, in response to GCs GR-LSD1 interaction 

modulates LSD1 enzymatic activity to regulate the balance between H3K4me1 and me2 

methyl-states at enhancers. And two, independent of GR, LSD1 and H3K4me2 contribute 

selective activation of a specific set of genes. 

 

Results 

LSD1 and GR form a stable complex dependent on the GR activation domain. 

To begin understanding the role of HDMs in GR-mediated gene regulation we tandem 

affinity purified (TAP) the GR-associated complex. A stable cell line expressing FLAG- and 

HA-tagged GR was generated in HeLa suspension cells. Cells were treated with the 

synthetic GR agonist Dexamethasone (DEX) prior to purification by FLAG and then HA 

immunoprecipitation. Silver staining of the FLAG and subsequent doubly purified HA 

sample along with a mock purification are shown in Figure 2.2 A, demonstrating high and 

specific enrichment. MS/MS analysis of the GR complex identified many proteins and 

complexes involved in chromatin modification/organization, gene transcription and 

regulation (Figure 2.2 D). Several key chromatin modifiers were enriched, including 

components of the Swi/Snf complex, the MLL2 H3K4 HMT complex, several HDACs, JMJD1C 

(a H3K9/36 HDM), and LSD1 (Figure 2.2 C). To confirm the stable interaction between 

LSD1 and GR, a third IP using LSD1 antibody was carried out from the HA TAP sample. The 
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reciprocal purification of GR subcomplexes containing LSD1 demonstrates the stable 

formation of the GR/LSD1 complex (Figure 2.2 B lane 2, and 2.2 C lanes 6 and 7). 

 

GST pull-down assays using recombinant purified proteins were used to further 

characterize the LSD1-GR interaction. Several GR truncations were generated (Figure 2.3 

A) to determine which region of the GR is most important for binding LSD1. Full length 

GST-GR pulled down His-LSD1 (Figure 2.3 B, lane 3) indicating the two proteins interact 

directly. The Gm1-419 truncation, but not Gm420-777, was also able to pulldown LSD1, 

suggesting the N-terminal activation domain (AD) is necessary and sufficient to bind LSD1. 

Additional AD truncations showed little binding activity suggesting no single smaller region 

within the AD is sufficient for strong binding to LSD1 (Figure 2.3 C). 
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Figure 2.2 LSD1 and GR form a stable complex.  
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LSD1 is recruited to endogenous GR binding sites and DEX-induced genes.  

Given that LDS1 is part of the GR complex and directly interacts with GR, we next 

determined if LSD1 is recruited to endogenous GR binding sites in vivo. We preformed 

chromatin immunoprecipitation coupled with deep sequencing (ChIP-Seq) for GR and LSD1 

after DEX or an ethanol vehicle (EtOH) treatment in the lung adenocarcinoma cell line, 

A549, which is an established model line for studying GR and GC action 34,41. In total,  

Figure 2.2 (Continued)  
GR complex was tandem affinity purified (TAP) from stable cell lines expressing 
either HA-FLAG vector (Mock) or HA-FLAG-GR (GR). Silver staining of purified 
complexes shows numerous GR binding partners (A). A portion of the final HA 
purification was used for a third round of purification against LSD1 to isolate GR-
LSD1 complexes (B). IP bait is indicated at the top of the gel, and the vector 
expressed in the cells above each lane.  
Another portion of the HA purification was sent for MS/MS identification of co-
purified proteins. GR associated proteins identified by MS/MS were analyzed and 
grouped based on published literature (D). 
Western blots confirmed many proteins identified by MS/MS in the GR and GR-LSD1 
complexes (C). IP bait is indicated at the top of the blot, the vector expressed in the 
cells above each lane, and the antibody probe on the left. “GR*” was TAP against 
FLAG and then LSD1 to obtain GR-LSD1 complexes through only two purifications 
instead of three. 
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1417 GR peaks were identified after DEX, and as expected, very little GR binding detected 

after EtOH. GR peaks were analyzed by the motif-calling program MEME, which returned 

the GRE consensus sequence suggesting the majority of binding sites contain GREs. Only a 

small percent (3.6%) of GR peaks were found within 2Kb of a known TSS (Figure 2.4 A), 

consistent with previous NR profiling 34,35. 

Figure 2.3 LSD1 and GR directly interact via the GR activation domain (AD) (1-419aa) in 

vitro.  
Various GR truncations were generated (A) used for GST pulldown and demethylase 
assays. Silver stain of GST pulldown assays (B-C) showed HIS-LSD1 interacted with full 
length GR as well as the truncation (Gm1-419) containing the GR AD, but not Gm420-777 
which lacks the AD, or further truncations of the AD.  
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LSD1 ChIP-seq on the other hand showed binding throughout the genome in both the EtOH 

and DEX treated samples, suggesting a broad regulatory role in agreement with previous 

reports as well 30,56,57. Therefore, analysis of LSD1 binding focused on differential loci 

displaying DEX-dependent LSD1 binding (DDLB). These loci were defined as regions with ≥ 

1.5-fold higher LSD1 signal density in the DEX sample compared to EtOH. The genome wide 

distribution of DDLB sites was very similar to GR with only 3.4% occurring at promoters 

(Figure 2.4 B). To address the question of LSD1 recruitment to GR binding sites, loci 

showing GR recruitment were compared to DDLB sites finding that 668 GR peaks (47%) 

showed ≥ 1.5-fold enrichment in LSD1 (Figure 2.4 C). Examples of GR and LSD1 profiles 

showing increased LSD1 binding at both GR bound regions as well as the TSSs of four DEX 

activated genes are shown in Figure 2.5.  

Figure 2.4 DEX-dependent LSD1 recruitment overlaps many endogenous GR binding 
sites.  
ChIP-Seq against LSD1 and GR from A549 cells treated with ethanol (EtOH) or 100nM 
DEX (DEX) for 2 hours. Genomic distribution of DEX GR peaks (A) and the genomic 
distribution of DEX-dependant LSD1 binding (DDLB) (B) was very similar and primarily 
outside of promoters.  DDLB sites were defined as by LSD1 DEX/EtOH density ratio ≥ 1.5. 
Many GR peaks showed DEX-dependent increases in LSD1 binding demonstrated by the 
overlap between GR and DDLB peaks (C). 
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To validate the genome-wide analysis, we employed ChIP-qPCR to examine GR (Figure 2.6 

A) and LSD1 (Figure 2.6 B) at four DEX-activated genes with distal GR bound sites. DEX-

induced genes lacking GR at the promoter were selected with the goal of better 

understanding potential enhancer functions. Specifically, per1 has well-characterized GRE 

and GR peak 2Kb upstream of the TSS (labeled 2kGRE). birc3 has a GR peak 12kb upstream 

of TSS (labeled 12kGB) and very close to a site identified previously 34. While to our 

knowledge GR binding sites or enhancers for cdkn1c or dusp1 have not been characterized 

our analysis identified the closest peaks at 105Kb downstream of the cdkn1c TSS (labeled 

105kGB) within the body of a neighboring gene (KCNQ1, not regulated by DEX), and 1Kb 

upstream of the dusp1 TSS (labeled 1kGB). An intergenic region (interg) not bound by GR 

was used as a negative control. The results show significant DEX-dependent recruitment of 

LSD1 at GR peaks, validating the ChIP-Seq analysis. Moreover, for three of the four genes 

we also detect significant LSD1 enrichment at the TSS by qPCR. These results are consistent 

with the presence of LSD1 in the GR complex and strongly support a direct role for LSD1 in 

regulating GR targets gene activation.  
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Figure 2.5  Many GR binding sites as well as the promoters of DEX activated 
genes show DEX-dependent LSD1 recruitment.  
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Figure 2.6  ChIP-qPCR confirms DEX-dependent LSD1 recruitment to GR binding sites and 
promoters of DEX-activated genes.  
ChIP against GR (A) or LSD1 (B) from A549 cells showed significant DEX-induced GR and 
LSD1 recruitment at four sites identified from ChIP-seq. Significant LSD1 recruitment was 
also observed at the promoters of each DEX-activated gene.    
The average of 2-4 biological replicates are plotted ± standard error, p-values from two-
tailed t-test.  

Figure 2.5  (Continued)  
GR (red) and LSD1 (blue) ChIP-seq profiles from four DEX induced genes 
slc19a2 (A), zfp36 (B), birc3 (C), thbd (D), genes showed increased LSD1 binding 
after DEX at GR bound sites. In two examples GR binding is close to the TSS 
(slc19a2 and zfp36) while the other two genes show GR binding over 10Kb from 
the TSS (thbd and birc3). LSD1 recruitment is observed at both the distal GR 
binding sites and the TSS of birc3 (C) and thbd (D). 
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LSD1 is a key transcriptional coactivator of DEX-responsive genes and functionally 

linked to GC action. 
LSD1 has been shown to act as a coactivator for both ER and AR target genes. To begin 
addressing whether LSD1 is functionally associated with GR and playing a similar role, we 
compared global gene expression microarray analysis in A549 cells with or without LSD1 
depletion. A lentiviral scramble (SC) control or LSD1-sepcific (L-sh1) shRNA was used to 
knockdown (KD) LSD1 expression. LSD1 KD was greater than 90% at the protein level and 
did not affect GR expression (Figure 2.7). Figure 2.8 A diagrams the analysis where DEX-
regulated genes were identified by comparing control DEX and EtOH treated samples using 
a ≥ 2-fold cutoff. LSD1-dependent genes were identified by comparing the level of DEX 
regulation in L-sh1 to SC, using the formula (DEX/EtOH SC) / (DEX/EtOH L-sh1). Genes 
with >2-fold difference in activation or repression (i.e. 50% defect in the magnitude of 
activation or repression in L-sh1) were considered LSD1-dependent.  
 

 

 

Figure 2.7 LSD1 knockdown by lentiviral shRNA is efficient and does not 
significantly affect GR expression.  
Lentiviral knockdown (KD) in A549 with either scramble control (SC), GFP control 
(GFP), or two different shRNA constructs against LSD1 (L-sh1, L-sh2) showed 
significant reductions in LSD1 mRNA (A) and protein (B), but no significant change 
in GR. The average of three biological replicates is plotted ± standard error, p-
values from two-tailed t-test.  
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Figure 2.8 B shows heatmaps comparing mRNA levels after DEX or EtOH treatment in the 
SC control and L-sh1 samples.  225 genes were activated and 242 genes were repressed at 
least 2-fold by DEX in SC. 95 of the 225 activated genes (42%) showed at least a 50% defect 
in activation in the L-sh1 sample (Group B in Figure 2.8 B), and 123 of the 242 repressed 
genes (51%) showed at least a 50% defect in repression (Group D in Figure 2.8 B), 
suggesting that overall about 47% of DEX-regulated genes are LSD1-dependent. Genes in 
the heatmap are ranked from top to bottom by the ratio of DEX regulation in SC compared 
to L-sh1 for each group. Thus, the genes at the bottom of Group A or C show a mild defect in 
activation or repression but did not meet the 50% cut off for classification into the LSD1-
dependent Group B or D.  
 
Interestingly, 1,351 genes were also identified as DEX-regulated in the L-sh1 sample but 
not in the SC, 830 of which were up-regulated (Group E in Figure 2.8 B) and 521 were 
down-regulated (Group F in Figure 2.8 B). While some these genes appear to be only mildly 
DEX-regulated (i.e. activated or repressed less than 2-fold), and therefore were not 
included into Groups A-D, many of these genes do appear to be insensitive to DEX under 
control conditions. However, they become new DEX targets in the absence of LSD1; 
suggesting LSD1 is playing a role in repressing or masking these genes from DEX-
regulation.  
 
We hypothesized that these genes masked LSD1 are non-specific targets regulated by DEX 
in other cell types. To test this hypothesis we compared the genes in Groups E and F to 
DEX-induced expression profiles for four other cell types (3T3-L1 58, mouse liver cells 59, 
podocytes 60, and mouse C2C12 myotubes 61). We found that overall about 12% of the un-
masked genes were DEX-regulated in at least one of the four other cell types, with 9.6% 
from Group E and 16.0% from Group F represented. GCs regulate gene expression in many 
cell types, very few of which have been experimentally profiled, and this overlap of newly 
DEX-responsive genes in the absence of LSD1 with previously characterized DEX-
responsive genes might suggest a role for LSD1 in maintaining a cell-type specific GC 
response. 
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Many of the DEX-regulated, LSD1-dependent targets were confirmed with a second shRNA 
(L-sh2) by RT-qPCR (Figure 2.9 A and C). To further validate LSD1 as a critical coactivator 

Figure 2.8   LSD1 is a critical transcriptional coactivator of DEX-responsive genes. 
Microarray analysis following lentiviral KD in A549 with either scramble control shRNA 
(SC) or LSD1 shRNA (L-sh1) was used to first identify DEX-regulated gene targets by at 
least a 2-fold change in mRNA, and second, identify LSD1-dependent targets defined by 
defective up or down regulation by at least 50% compared to SC (A). The heatmap display 
(B) of DEX and LSD1-regulated genes are grouped based on these criteria. Group A are 2-
fold up-regulated in SC and up-regulated in L-sh1 to similar degree. Group B are also up-
regulated by DEX 2-fold in SC, but the magnitude of activation after LSD1 KD is reduced by 
at least 50%, therefore we consider these gene to be DEX-induced and LSD1-dependent. 
Group C are 2-fold down-regulated in SC and to a similar degree in L-sh1. Group D are also 
2-fold down-regulated in SC, but the magnitude of repression after LSD1 KD is reduced by 
at least 50%, therefore we consider these genes to be DEX-repressed and LSD1-dependent. 
Groups E and F do not meet the 2-fold cut off for DEX-regulation in SC, but are at least 2-
fold up or down regulated in L-sh1.  All of the genes in the heatmap are ranked based on 
the ratio of DEX regulation in SC compared to L-sh1.  
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for GR, we used the MDA-kb2 cell line containing a stably integrated, DEX-inducible 
MMTV:Luciferase construct. LSD1 KD severely impaired DEX induced luciferase expression 
(Figure 2.9B). 
 

 

 

LSD1 coactivator function is important for DEX-mediated affects on proliferation, 

apoptosis, and adipogenesis. 

Figure 2.9  LSD1 knock down significantly impairs activation of many GC-target genes.  
RT-qPCR confirmed many DEX-induced targets require LSD1 for full activation (A) in A549 
cells and using a second LSD1 specific shRNA (L-sh2) (C). Similarly, a well-known GC-
induced promoter, the MMTV driving a luciferase reporter gene, also required LSD1 for full 
DEX-activation (B). The average of 3-4 biological replicates is plotted ± standard error, p-
values from two-tailed t-test.  
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If LSD1 is an important transcriptional co-regulator for GR, this role should translate 

downstream of transcription to impact the biological effects of GCs. To begin to understand 

which biological processes might be affected by LSD1 we used the DAVID functional 

annotation tool to carry out gene ontology analysis of DEX- induced and LSD1-regulated 

gene groups. The top p-value scores in both groups were negative regulators of apoptosis, 

consistent with previous reports of apoptosis suppression by DEX in A549 but also 

importantly implicating LSD1 as a key regulator of that suppression (Figure 2.10). 

Proliferation, another known DEX-regulated processes, was also significantly enriched as a 

top DEX-LSD1-regulated group (Figure 2.10 B, black bars). Interestingly, inflammation, a 

well-known DEX-regulated processes did not show up in the DEX-LSD1-regulated list 

(Figure 2.10 A, black bars). Together this analysis suggests LSD1 is important for specific 

sets of GC-regulated biological processes such as proliferation and survival, but may not 

play a critical role in others, such as inflammation. 

 

To validate these top biological hits through functional studies we examined the role of 

LSD1 in GR-mediated affects on apoptosis and proliferation in A549. Indeed LSD1 is an 

important coregulator of DEX-mediated apoptosis and proliferation suppression as 

demonstrated by TUNEL and CCK8 cell viability assays (Figure 2.11). 
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Figure 2.10  LSD1 coactivator function for DEX-responsive genes is 
linked to GC biological action. 
GO analysis of DEX-induced genes from microarray. (A) Top 20 hits 
of DEX-induced genes ranked by p-value.  
(B) Top 20 hits of DEX-induced and LSD1-dependent ranked by p-
value. Black bars highlight categories of interest that are unique to 
either (A) or (B). 
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GCs also play important roles in development and cellular differentiation including 

adipogenesis. Stromal cells isolated from bone marrow (bMSC) and grown in tissue culture 

can be treated with a cocktail of signaling factors including DEX to promote differentiation 

into mature adipocytes. While an accurate chronology of all the steps involved in 

adipogenesis have yet to be elucidated growth arrest is known to be an early event 

followed by the expression of several key regulators including C/EBPβ, PPARγ, followed by 

C/EBPα leading to cellular remodeling and expression of many important adipocyte 

specific genes such as Leptin (reviewed in 62). The cell line A549 is derived from lung tissue 

and therefore lacks the ability to differentiate into adipocytes. However, two gene targets 

known to be involved in adipgenesis (CIDEC and C/EBPβ) were found to be regulated by 

GCs and LSD1 in our microarray, suggesting a possible role for LSD1 is GC-mediated 

adipogenesis.  

 

To test this possibility mouse bMSCs were isolated from mice containing a LSD1 CRE 

cassette. Infection with a CRE containing adenovirus deleted the LSD1 gene. bMSCs were 

infected with either a CRE or EGFP control and grown in differentiation media containing 

for 14 days before fixation and Oil Red staining. RNA was harvested at day 0 (D0) and day 

14 (D14) for RT-qPCR analysis. Oil Red staining at D14 showed many fewer cells with 

visible accumulation of lipid droplets in the CRE infected cells suggesting loss of LSD1 

blocks adipogenesis (Figure 2.12 A). RT-qPCR analysis showed disrupted expression of 

several key adipogenic factors (Figure 2.12 B). Although, C/EBPβ was up regulated 

similarly in both EGFP and CRE infected cells, PPARγ and several proteins expressed in 

mature adipose were significantly reduced in the CRE sample. 
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Figure 2.11  LSD1 coactivator function is important for GC anti-apoptotic and anti-
proliferative effects in A549. 
TUNEL staining was used to measure apoptosis in A549 treated with cisplatin (CIS). 
Cells treated with 0.5µM DEX with 50µM CIS were significantly resistant to apoptosis 
compared to co-treatment with EtOH, and KD of LSD1 abolished this resistance (A). 
CCK8 activity was used to measure proliferation in A549 treated with DEX for 5 days 
following KD with either a SC control, GR shRNA (GR-sh), LSD1 shRNA (L-sh1 or L-sh2), 
or LSD1 shRNA (L-sh2). The GR and LSD2 shRNAs were highly specific and did not affect 
LSD1 expression (B). DEX treatment significantly reduced proliferation (C and D, black 
line), and KD of GR or LSD1 rendered the cells resistant to proliferation inhibition while 
KD of LSD2 had no effect. TCP treatment to inhibit LSD1 activity also rendered cells 
resistant to DEX (D). The ratio of CCK8 activity in DEX vs. EtOH was calculated for each 
experiment. Average of 3-5 biological replicates is plotted for all, ± standard error, p-
values from two-tailed t-test.  P-values for GR-sh, or either L-sh compared to SC in (C)  
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LSD1 does not significantly impact DEX inhibition of IL8 expression or release from 

A549 cells. 

GCs are well-known to inhibit inflammation and a simple example of this can be observed 

using A549 cells. Treatment with TNFα induces A549 cells to secrete the pro-inflammatory 

factor IL8, and co-treatment with DEX inhibits TNFα-induced IL8 release 63,64. Because anti-

inflammatory affects are one of the most important clinical applications of GCs it was 

important to test LSD1’s role. We first examined IL8 mRNA levels by RT-qPCR and show 

that DEX treatment represses IL8 expression (Figure 2.13 A) and repression is unaffected 

by LSD1 KD (Figure 2.13 B). LSD1 and GR ChIP-seq data did not reveal any significant GR or 

LSD1 recruitment to the IL8 gene (data not shown), suggesting indirect repression in these 

cells.  

 

DUSP1 is suggested to be an anti-inflammatory regulator downstream of GCs via inhibition 

of MAPK signaling 65-69. DUSP1 mRNA increases after DEX treatment (Figure 2.9 C) and was 

affected by LSD1 KD. Taken together LSD1 does not appear to play a role in regulating IL8 

repression in response to DEX, but could potentially affect IL8 release indirectly through 

regulation of dusp1. Unable to predict the affect of LSD1 loss on IL8, secretion was 

measured directly by treating A549 cells with TNFα to induce secretion detected by ELISA 

on the media. Figure 2.13 B shows that treatment with DEX reduced the basal levels of IL8  

Figure 2.11 (Continued) 
and DMSO compared to TCP in (D) were ≥ 0.05 for all DEX concentrations. The average 
of 3-6 biological replicates are plotted ± standard error, p-values from two-tailed t-test.  
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Figure 2.12  LSD1 is important for bone marrow derived stromal 
cell (bMSC) adipogenesis. 
Stromal cells were isolated from CRE-LSD1 mice and infected with 
either a control (EGFP) or CRE containing virus to delete LSD1 
(LSD1 KO).  Oil red staining of control and KO bMSCs after 14 days 
of growth in adipogenic differentiation media showed reduced 
lipid accumulation in the LSD1 KO cells (A). RT-qPCR expression 
analysis also showed defective up regulation of several key 
adipogenic regulators (B). The average of three qPCR replicates 
from one biological sample is plotted ± standard error.  
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 released as well as the 

TNFα-induced levels. KD 

of LSD1 did not affect 

DEX-inhibition of either 

the basal or TNFα-

induced levels, 

suggesting LSD1 does not 

play a significant role in 

IL8 release in response to 

TNFα. 

 

Together these data 

suggest that LSD1 plays a significant role in DEX-mediated gene regulation that translates 

from the level of transcription out to the cellular effects of DEX that result from those 

changes in gene expression. 

 

LSD1 HDM activity is critical for coactivation of DEX-responsive genes. 

LSD1 functions primary as is a histone demethylase, making its role in GR target gene 

regulation likely to involve this activity. Tranylcypromine (TCP) is an amine oxidase 

inhibitor used to inhibit LSD1 as well as LSD2, but does not inhibit JMJC HDMs. To examine 

the role of LSD1’s demethylase activity, DEX-induced luciferase activity in MDA Kb.2 cells 

(Figure 2.14), and mRNA levels of endogenous GR targets were measure following TCP 

treatment (Figure 2.15 A). Both DEX-induced luciferase activity and A549 gene expression 

Figure 2.13 LSD1 coactivator function for DEX-responsive 
genes is linked to GC biological action. 
(A) RT-qPCR of IL8 mRNA. (B) IL8 ELISA detecting IL8 secretion 
by A549 cells into growth media. Cells were treated with 2 
ng/mL of TNFα for 24 hours after pretreatment for 6 hours with 
100nM DEX (0.1 DEX) and/or viral shRNA for 5 days (dark gray 
bars are scramble, light gray are L-sh1). 
The average of three biological replicates is plotted ± standard 
error, p-values from two-tailed t-test.  
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were inhibited by TCP in a dose-

dependent manner. To rule out a role for 

LSD2 as well as off-target effects of TCP, a 

rescue experiment was performed in 

A549. Cells were infect with lentivirus 

carrying a siRNA construct specific for 

wild-type LSD1 (Li), or vectors containing 

Li as well as the cDNA sequence for LSD1 

with a silent mutation making it resistant 

to Li. This allows for KD of endogenous 

LSD1 and simultaneous rescue with the 

co-expressed LSD1 cDNA. Three different 

LSD1 cDNA constructs were used, wild-

type LSD1 (WT), or two catalytically inactive mutants one with a mutation in the FAD 

domain (M1) and one with a mutation in the amine oxidase domain (M4). Expression levels 

of each construct as well as KD efficiency by Li are shown in Figure 2.15 B and C. Similar to 

L-sh1/2, Li prevented full DEX-induction (Figure 2.15 D), and co-expression of WT rescued 

this affect bringing expression similar to SC. M1 and M4 did not rescue leaving mRNA levels 

similar to Li demonstrating the necessity of LSD1 enzymatic activity for coactivator 

function. Together these experiments strongly support a critical role for LSD1 histone 

demethylase activity in gene activation by GCs. 

 

Figure 2.14 LSD1 enzymatic activity is critical 
for GC-induction of MMTV promoter.  
The KDM1 inhibitor TCP antagonized DEX 
induction of the MMTV:Luciferase construct 
stably integrated in the MDA Kb.2 cell line. 
Average of three biological replicates is plotted 
± standard error, p-values from two-tailed t-
test.  
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DEX-induction differentially alters H3K4me1/2/3 at GR-target promoters and 

putative enhancers promoting activation. 

To understand the epigenetic mechanism underlying LSD1 coactivator function for GR, we 

first determine by ChIP-qPCR the status of several histone modifications on GR binding 

sites and target gene promoters before and after DEX treatment. H3K4me3, an epigenetic 

mark of gene activation, increased significantly at the TSS of all four genes (per1, cdkn1c, 

birc3, dusp1) as expected for DEX-induction (Figure 2.16 A). While H3K4me2 is also 

generally considered an activating mark, we surprisingly observed decreased levels at the 

TSS of all four genes (Figure 2.16 B). In contrast to the dramatic changes in H3K4me2/3, 

H3K4me1, a recently defined enhancer mark, showed no significant change at the TSS 

(Figure 2.16 C). 

 

However, this DEX-induced H3K4 profile at the TSS differed from GR bound putative 

enhancer sites (herein referred to as GB enhancers). Three of the four GB enhancers 

showed relatively high H3K4me2 levels prior to DEX which, similar to the TSS, decreased 

upon induction (Figure 2.16 B). Distinct from the TSS, this decrease coincided with a 

significant increase in H3K4me1 (Figure 2.16 C) while H3K4me3 was depleted and 

remained so after DEX (Figure 2.16 A). The H3K4me1/3 profile at GBs is consistent with 

enhancer function, and further supported by observed DEX-induced increases in H3K27ac 

(Figure 2.16 D) another established mark of active enhancers.  
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Figure 2.15  LSD1 is a critical transcriptional coactivator of DEX-responsive 
genes depending on its demethylase activity. 
(A) RT-qPCR of several microarray indentified DEX-induced, LSD1-dependent 
genes after similar TCP treatment in A549. (B) RT-qPCR of LSD1 mRNA after 
lentiviral infection containing a LSD1 RNAi construct (Li), or Li with cDNA 
constructs on the same plasmid for wild type LSD1 (WT) or two catalytic mutants 
(M1 or M4). Average of 3-4 biological replicates is plotted ± standard error, p-
values from two-tailed t-test. 
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Given LSD1’s proposed role as a H3K9 demethylase in ER and AR target gene activation we 

also examined the levels H3K9me2 (Figure 2.16 E), and found most sites both GB 

enhancers and the TSS did not show significant changes in H3K9me2 after DEX. Two 

exceptions were the GB nearest birc3 and the TSS of dusp1 which both showed a DEX-

induced decrease in H3K9me2. Most other sites examined showed low levels of H3K9me2 

relative to the intergenic control suggesting that this mark is low prior to hormone 

treatment and therefore unlikely to be further reduced and may therefore not play a major 

role in regulating these gene targets. The observation of H3K9me2 loss at the birc3 GB 

enhancer may indicate that a subset of GB enhancers are more significantly silenced prior 

to hormone exposure 39. Taken together the data shows a shift in the H3K4 methylation 

profile away from me2 and toward me3 at the TSS and toward me1 at GBs enhancers, with 

only minor contributions from H3K9me2 loss. 

 

To validate observed changes in H3K4me2/1 as a general phenomenon, we examined 

genome-wide changes by ChIP-Seq. H3K4me1 density measured across all GR peaks and 

averaged showed a significant increase after DEX (Figure 2.17 A, p=1.21623e-16 calculated 

from 2-tailed t-test of densities summed across GR peaks), whereas H3K4me2 showed a 

significant decrease (Figure 2.17 B, p=1.92442e-5 calculated from 2-tailed t-test of 

densities summed across GR peaks). Similar to the qPCR results, global analysis show that 

H3K4me2 levels also decreased at the promoters of genes identified by microarray as DEX-

induced and LSD1-dependant, while H3K4me1 remained low (Figure 2.17 C). Taken 

together the data confirms a trend shifting the H3K4 methylation profile away from me2, 

and toward me3 at the TSS, and toward me1 at GB enhancers.  
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Figure 2.16 DEX-induction changes the H3K4 methylation profile at both enhancers 
and promoters. 
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Strikingly, this analysis also suggests that a high level of H3K4me2 at GR binding sites prior 

to DEX induction is a prominent epigenetic feature of LSD1-occupied GBs. To better 

understand the relationship between H3K4me1/2 prior to GR/LSD1 recruitment, a 

heatmap of LSD1 density on GR peaks after DEX was compared to heatmaps of H3K4me1 

Figure 2.17 Genome-wide analysis confirms trends in H3K4me2/1. 
The density of H3K4me1 and me 2 were averaged over all GR ChIP-Seq peaks showing 

a trend toward increased H3K4me1 (A) and decreased H3K4me2 (B). Loss of H3K4me2 

was also observed around the TSS of genes that are DEX-induced and LSD1-dependent 

as identified microarray.   

 

Figure 2.16 (Continued) 
100nM DEX treatment for two hours resulted in significant increases in H3K4me3 at 
the TSS of four DEX-induced genes (A). H3K4me2 levels were significantly reduced at 
GR bound putative enhancers (GB enhancers) and TSSs (B), and H3K4me1 was 
significantly increased at GB enhancers (C). H3K27ac was also increased at GB 
enhancers (D), while H3K9me2 showed mostly low and unchanging levels (E).  
Average of 2-6 biological replicates is plotted ± standard error, p-values from two-
tailed t-test.  
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and me2 after EtOH treatment, which is representative of the levels prior to DEX (Figure 

2.18 A). Loci were ranked by LSD1 density from high to low (top to bottom) revealing a 

markedly similar pattern in H3K4me2 of high to low density, and a similar but less distinct 

pattern for H3K4me1. To measure the correlation between LSD1 and H3K4me2, average 

densities were plotted generating a Pearson correlation coefficient of 0.4587 (Figure 2.18 

B). These analyses suggest LSD1 is preferentially targeted to GBs with preexisting high 

levels H3K4me2. Subsequent H3K4me1 and H3K27ac enrichment (Figure 2.16 C and D) 

suggests H3K4me2 at GBs may be an important early epigenetic signal distinguishing 

enhancers ready to be converted to more activate states.  

 

Figure 2.18  H3K4me2 is enriched at functional GR binding sites prior to GR and LSD1 
recruitment. 
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This led us to question whether H3K4me2 could be a distinguishing mark of functional 

enhancers prior to activation. Both enhancers and NR binding sites are known to be highly 

cell-type specific, making predictions of functionality based solely on DNA sequence 

difficult. To investigate the relationship between H3K4me1/2 and functional regulatory 

sites, as defined by GR binding, we compared our GR ChIP-Seq in A549 to another cell type. 

GR binding sites in LNCaP cells were obtained from a publicly available dataset 70 and 

compared to A549. LNCaP-specific sites were identified by excluding sites bound by GR in 

both cell lines. These LNCaP-specific sites represent potential GR binding sites given the 

demonstrated capacity to recruit GR in LNCaP cells, but which we consider non-functional 

in A549 due to the lack of GR binding in our ChIP-Seq. Once non-functional GR binding sites 

were identified we compared the levels of H3K4me1/2 at function versus non-functional 

sites in the A549 EtOH sample (Figure 2.18 C). Quantifying each mark prior to DEX-

induction revealed that H3K4me2 was much higher (2.4-fold) at functional GR binding sites 

compared to non-functional sites prior to DEX, while H3K4me1 was only 1.5-fold higher. 

Figure 2.18  (Continued) 

Heatmaps of GR and LSD1 binding after DEX, and H3K4me1 and me2 prior to DEX 
(EtOH) showed a correlation between LSD1 binding after DEX and H3K4me2 levels 
prior to DEX (A). Plotting the density on GR peaks of LSD1 after DEX and H3K4me2 
before DEX showed a Pearson correlation coefficient of 0.4587 (B). GR ChIP-Seq 
data from A549 was compared to published data in LNCaP cells. GR binding sites 
unique to LNCaP cells were considered LNCaP specific. The density of H3K4me2 and 
H3K4me1 was averaged on GR peaks from A549 (A549 function) and compared to 
LNCaP specific sites showing higher levels of H3K4me2 at functional versus non-
functional sites (C).  
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The greater enrichment of H3K4me2 over H3K4me1 prior to stimulation suggests 

H3K4me2 is a more prominent marker pre-determining GR binding and supporting a role 

as an early enhancer mark. These studies support a significant role for H3K4 methylation in 

GR-mediated target gene activation and raise a critical question as to how the H3K4 methyl 

code is regulated and the potential role of GR, LSD1, and their interactions in that 

regulation. 

 

GR inhibits LSD1 H3K4, in particular H3K4me1, demethylase activity in vitro. 

To investigate the enzymatic nature of LSD1 in GR-mediated gene activation, we examine 

the demethylase activity of the purified GR complex using assay conditions favoring FAD 

dependent histone demethylation 71. Surprisingly, unlike previously reported androgen 

receptor (AR) containing LSD1 complexes showing H3K9me2 demethylase activity 25,26,28, 

the GR complex containing LSD1 showed no detectible HDM activity against H3K4 or H3K9, 

suggesting inhibition by a factor(s) in the complex (Figure 2.19 A). Given the direct 

interaction between GR and LSD1 (Figure 2.3 B), we hypothesized that GR was a likely 

candidate and used an in vitro biochemical approach to test this possibility. 

 

Purified recombinant GR was added to demethylase assays to determine the affect on LSD1 

activity. Increasing amounts of GR inhibit LSD1 demethylation of H3K4me1/2 (Figure 2.19 

B). This affect was ligand independent (Figure 2.19 B, lane 4) consistent with the finding 

that LSD1 and GR interact independent of the ligand-binding domain (Figure 2.3 B). DEX in 

the presence of boiled GR or GST protein had no effect (Figure 2.19 B, lanes 5 and 6). Again 

unlike the effect of AR or ER on LSD1 activity, no appreciable H3K9me2 demethylation was 
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detected under any conditions, suggesting that LSD1 was not functioning as a coactivator 

through direct H3K9 demethylation in the GR complex. Similar inhibitory effects of GR on 

LSD1 H3K4 demethylase activity were obtained in nucleosome assays which contain 

CoREST, an LSD1 cofactor required for efficient demethylation of nucleosomes, a more 

physiologically relevant LSD1 substrate (Figure 2.19 C). GR truncations were again used to 

test which domain of GR is responsible for inhibiting LSD1 (Figure 2.3 A). Consistent with 

the GST pulldowns, the AD (1-419aa) was required and sufficient for effective inhibition 

(Figure 2.19 D).  

 

To assess the affect of GR on LSD1 substrate specificity, densitometry quantification of 

multiple experiments was used to calculate the fold inhibition on each mark. Inhibition of 

LSD1 activity against H3K4me2 nucleosomes was modest while inhibition of H3K4me1 loss 

was significantly stronger (Figure 2.19 E). A similar trend was observed with stronger 

inhibition of H3K4me1 over me2 demethylation on histone substrates and with GR 

truncations (Figure 2.19 F). Together these data provide an in vitro biochemical 

explanation for the decrease of H3K4me2 and concurrent accumulation of H3K4me1 at 

sites co-occupied by LSD1 and GR. 
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Figure 2.19  GR inhibits LSD1 H3K4, in particular H3K4me1, demethylase activity in vitro. 
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NR limiting of LSD1 H3K4 demethylase activity is likely a general phenomenon and 

novel epigenetic mechanism underlying NR-mediated gene regulation. 

Given that LSD1 plays a role in both ER and AR target gene activation, it is possible that 

regulation of LSD1 H3K4 demethylase activity is an aspect of LSD1 coactivator function for 

NRs generally. To determine whether or not LSD1 inhibition is unique to GR, several other 

nuclear receptors were tested in LSD1 HDM assays. Figure 2.20 B shows western blots of 

HDM assays for estrogen receptor (ER), androgen receptor (AR), a mineralocorticoid 

receptor N-terminal truncation (MR 1-110aa), thyroid receptor (TR), retinoic acid receptor 

(RAR), retinoic X receptor (RXR), and RAR-related orphan receptor β (RORβ). All proteins 

tested except RORβ showed some inhibition of LSD1 activity. Interestingly RORβ lacks a 

classic N-terminal activation domain (Figure 2.20 A), which may explain the lack of 

inhibition. These data support a conserved function for NR proteins and specifically the N-

terminal activation domain of NRs in inhibiting the H3K4 demethylase activity of LSD1. 

Figure 2.19  (Continued) 
Modification specific antibodies were used for Western Blotting to detect enzymatic 
activity in various assays. Testing the GR TAP complex showed no detectible HDM activity 
against H3K4 or H3K9, but deacetylation of histones was detected (A). Purified 
recombinant GR added to LSD1 demethylases of histones inhibited demethylation of 
H3K4me1/2 (B). GR truncations (Figure 2.3 A) containing the activation also inhibited 
LSD1 demethylase activity (C) and inhibition of LSD1 was not limited to histones but also 
occurred when nucleosomes and coREST were used (D). No demethylation of H3K9me2 
was detected. Densitometry of demethylase assay Western Blots showed that GR and the 
GR AD inhibit demethylation of H3K4me1 preferentially over H3K4me2 nucleosomes (E) 
and histones (F). The average of 3-6 biological replicates is plotted ± standard error, p-
values from two-tailed t-test.  
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From this we conclude that GR, and more specifically the AD, regulates LSD1 activity by 

preferentially inhibiting LSD1 H3K4me1 demethylation in vitro. This is consistent with our 

in vivo finding that regions bound by both LSD1 and GR show loss of H3K4me2 but 

accumulation of H3K4me1, while regions without GR (TSSs) show loss of H3K4me2 but no 

Figure 2.20  Many nuclear receptors inhibit LSD1 H3K4 demethylase activity 
in vitro. 
A diagram of the activation domains of NRs tests shows wide variety in 
structures (A). Multiple NRs inhibit LSD1 demethylase activity when added to 
in vitro histone demethylase assays (B). Inhibition correlates with the presence 
of an activation domain. 
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H3K4me1 accumulation. From this we hypothesize that H3K4me2 loss and H3K4me1 

accumulation in vivo are dependent on GR-regulated LSD1 activity. 

 

LSD1 is required for changes in H3K4me1/2 and enhancer activation. 

To test the above hypothesis, we first examine whether LSD1 activity is responsible for 

H3K4me2 loss and selective H3K4me1 increases using LSD1 KD of TCP and ChIP-qPCR 

profiling of H3K4me1/2/3 on the previously defined genes. Neither LSD1 KD nor inhibition 

of HDM activity prevented GR binding suggesting GR recruitment is independent of LSD1 

(Figure 2.21 A) and consistent with RT-qPCR data showing impaired by not fully 

suppressed activation (Figure 2.9 C). 

 

Also consistent is the finding that H3K4me3 trended toward higher levels and remained 

restricted primarily to the TSS after DEX treatment similar to controls (Figure 2.21 B), 

suggesting the addition of this mark is also LSD1-independent. However, changes in 

H3K4me2/1 and H3K27ac were dependent on LSD1 and its activity. After LSD1 KD no 

change was observed in H3K4me2 at the TSS or GB enhancers and interestingly, TCP 

treatment caused increased H3K4me2 levels at both GB enhancers and the TSS (Figure 2.22 

A),suggesting LSD1 activity is critical to keep this mark low after DEX-induction. H3K4me1 

levels failed to increase at GB enhancers in both KD and TCP cells, while the TSS remained 

low and unchanged (Figure 2.22 B). Similar to H3K4me1, H3K27ac also failed to increase at 

GB enhancers suggesting loss of LSD1 or inhibition of its activity disrupts enhancer 

activation (Figure 2.23). 
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Figure 2.21  GR chromatin binding and H3K4me3 is not disrupted by loss of 
LSD1 activity. 
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H3K9me2 levels were also examined and found to be disrupted after LSD1 KD or inhibition 

by TCP. The two sites that showed loss of H3K9me2 in response to DEX no longer 

decreased and several sites showed an increase in H3K9me2 levels (Figure 2.24) similar to 

what was observed for H3K4me2 (Figure 2.22 A).  This confirms previous findings that 

LSD1 is required for loss of H3K9me2 in response to hormone-induced gene activation. 

However, it also supports also supports a possible interdependence between H3K4me2 

and H3K9me2.  

 

Figure 2.21  (Continued) 
ChIP-qPCR against GR from A549 cells treated with either LSD1 shRNA (L-sh1) 
or TCP showed DEX-induced GR recruitment independent of LSD1 (A). ChIP-
qPCR against H3K4me3 showed trends toward increased levels after DEX 
treatment (B). Average of 2-3 biological replicates is plotted ± standard error, p-
values from two-tailed t-test. 
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Figure 2.22  LSD1 is a key factor responsible for direct changes in H3K4me1/2. 
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Figure 2.23 LSD1 is a key factor responsible for enhancer activation. 
ChIP-qPCR against H3K27ac from A549 cells treated with either LSD1 shRNA (L-sh1) or 
TCP no longer showed increased levels of the active enhancer mark, H3K27ac, after DEX 
treatment. Average of 2-4 biological replicates is plotted ± standard error, p-values from 
two-tailed t-test. 
 

Figure 2.22  (Continued) 
ChIP-qPCR against H3K4me2 (A) or H3K4me1 (B) from A549 cells treated with 
either LSD1 shRNA (L-sh1) or TCP no longer showed DEX-induced decreases in 
H3K4me2 or increases in H3K4me1. Average of 2-4 biological replicates is plotted ± 
standard error, p-values from two-tailed t-test. 
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Discussion 

Previous work has showed that LSD1 is an important coactivator for AR and ER gene 

targets 25-30. We show here that LSD1 is also an important coactivator for GR, suggesting it 

may be a general NR coactivator. Combining all of these mechanistic elements we envision 

Figure 2.24 LSD1 is a key factor responsible for enhancer activation. 
ChIP-qPCR against H3K9me2 from A549 cells treated with either LSD1 shRNA (L-
sh1) or TCP no longer showed decreased levels of H3K9me2 after DEX treatment, 
and a general trend toward increased levels were seen at several other sites. Average 
of 2-5 biological replicates is plotted ± standard error, p-values from two-tailed t-
test. 
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LSD1’s role in GR target gene regulation as follows. In the absence of hormone LSD1 is 

bound to a certain subset of non-specific GREs and possibly removing H3K4me2/1 to mask 

these sites from future GR activation. Upon hormone exposure and GR translocation to the 

nucleus LSD1 and GR interact. The methods employed here do not allow us to precisely 

delineate the timing and location of LSD1 and GR first interaction. We find modest levels of 

LSD1 at GR bound sites prior to GR binding as well as moderate increases in LSD1 levels 

upon GR binding. From this data it is impossible to know whether GR can interact with and 

regulate LSD1 already bound to chromatin or if GR forms a complex with LSD1 prior to 

chromatin binding and evicts previously bound LSD1 exchanging it for new LSD1 

containing complexes. Given the highly dynamic nature of GR DNA binding, it is likely that 

the true mechanism is somewhere in between these two discrete mechanisms. LSD1 

association with DNA may also be highly dynamic and frequent flux between bound and 

unbound states may provide opportunities for interaction with GR and quick re-association 

with chromatin.  

 

The role of LSD1 at functional GREs, albeit at low levels, prior to GR binding remains 

mysterious given our finding of high levels of H3K4me2/1 at these sites. Perhaps this is 

indicative of LSD1 recruitment to GREs generally, and the presence of other factors 

determines the functionality of the GRE by regulating LSD1 activity to ultimately mask or 

tag the GRE for activation. GR is not alone in its ability to regulate LSD1 activity. CoREST 

facilitates LSD1-mediated demethylation of nucleosomes while BHC80 has been found to 

inhibit LSD1 activity in vitro 24.  
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LSD1 has been identified in many complexes 20,57,72-78, suggesting that it may be a widely 

utilized epigenetic tool distributed throughout the genome for various purposes.  Perhaps, 

the key regulatory point for LSD1 is not localization, but instead through specific binding 

partners with varying abilities to regulate LSD1 activity.  For example, unencumbered LSD1 

bound to a nonfunctional GRE would remove H3K4me1/2 while LSD1 bound to a 

functional GRE in complex with a full inhibitor would allow H3K4me1/2 accumulation 

prior to GR activation. Swapping of the full inhibitor for GR would then allow removal of 

H3K4me2 by LSD1 and further accumulation of H3K4me1 through conversion from 

H3K4me2. Swapping sequence specific regulators such as GR while minimizing the changes 

required of chromatin the tool-kit may provide an advantage for highly dynamic systems 

such as hormone responses.  

 

Regardless of the exact timing/location, association of LSD1 and GR at a chromatin site 

results in partial inhibition of LSD1 activity converting the early poised enhancer H3K4me2 

mark to H3K4me1 and facilitating further enhancer activation likely through recruitment 

of other proteins, including an H3K27 acetyltransferase such as CBP/P300. Full enhancer 

activation then leads to chromatin looping bringing transcription factor complexes in 

proximity of the promoter and TSS recruiting basal transcription machinery and turning 

the gene on. Thus LSD1’s role in GR target gene regulation occurs at the early stages of 

target discrimination and enhancer activation. 
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Figure 2.25  Model of LSD1’s role in activation of H3K4me2 marked enhancers.  
Pioneer factor(s) may be responsible for recognizing and/or protecting specific enhancer 
sites prior to GC exposure and helping recruit GR after hormone exposure similar to findings 
with FOXA1 and ER. Once GR and LSD1 are co-localized the H3K4me2 enhancer signature is 
converted to H3K4me1 by partially inhibited LSD1 and the enhancer is activated with 
additional modifications such H3K27ac likely laid down by HATs such as p300 found in the 
GR TAP complex.  At promoters recruited LSD1 in the absences of GR removes H3K4me2 and 
me1. The recruitment of H3K4 HMTs such as MLL2 found in the GR TAP complex 
counterbalance LSD1 activity to generate a region around the TSS of high H3K4me3 
(protected from LSD1 activity) but lacking intermediate states of methylation (A). 
Microarray data implicates LSD1 silencing non-specific GR targets, and we propose a 
possible mechanism where LSD1 removes the H3K4me2 enhancer signature helping pre-
establish a specific H3K4me2 profile throughout the genome that will allow for cell-type 
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Importantly, our work introduces two new epigenetic mechanisms involving LSD1 to the 

model of GC target gene regulation (Figure 2.25). First is the role of LSD1 in establishing an 

active enhancer histone code for GC inducible genes as well as maintaining low 

H3K4me1/2 at the TSS after activation. We propose that GR recruitment and H3K4me3 

methylation are independent or prior to LSD1 function, whereas H3K4me1 accumulation is 

the result of converting H3K4me2 to me1 via precise control of LSD1 activity by GR. To 

uncover the molecular and biochemical mechanism underlying GR regulation of LSD1 we 

demonstrate a direct protein-protein interaction between GR and LSD1 and identify the 

activation domain of GR (1-419aa) as the critical region for interacting and regulating LSD1 

in vitro. Importantly, we show that direct interaction with GR preferentially inhibits LSD1 

H3K4me1 demethylase activity. To our knowledge, this study is the first to report a 

molecular mechanism by which LSD1 acting as a H3K4 HDM participates in gene activation. 

 

LSD1-dependent enrichment of H3K4me1 and H3K27ac at distal GBs strongly supports 

epigenetic regulation at enhancers by GR/LSD1 complexes. Hormone-inducible 

enhancers/genes are thought to be in a type of poised state prior to ligand activation 55,79. 

H3K4me2 has been shown to be critical for binding of the NR recruiting, pioneer factor, 

FoxA1 39, suggesting this mark may be important for early recognition of functional NR 

binding sites perhaps in an early poised state. Interestingly, loss of FoxA1 results in 

Figure 2.25 (Continued) 
establish a specific H3K4me2 profile throughout the genome that will allow for cell-type 
specific GR targeting (B). 
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reduced H3K4me1 at many enhancers 80, which supports the role of H3K4me1 in enhancer 

function but also supports a role for H3K4me2 and pioneer factors upstream of H3K4me1. 

The present study shows that H3K4me2 was more highly enriched than H3K4me1 at 

functional GBs prior to GC stimulation. The observed correlation between  

 

LSD1 binding and H3K4me2, as well as the LSD1-dependent drop in H3K4me2 after DEX 

suggests LSD1 is targeted to its substrate, which is acting as an early mark of inducible 

enhancers (Figure 2.25A). While studies in ES cells show that H3K4me1 is a mark of poised 

enhancers that transition to an active state with H3K27ac and p300 binding 38, our study 

does not distinguish an H3K4me1-only state from one with both H3K4me1 and H3K27ac. 

This may be due to the rapid nature of DEX induction, unlike the stepwise process of 

cellular differentiation. We propose the H3K4me2, more so than H3K4me1, represents an 

early poised state, and/or a poised state unique to rapidly inducible gene systems and that 

high levels of H3K4me2 precede changes in H3K4me1 and activation. We find that 

cooperative control of the swift transition from H3K4me2 to H3K4me1 by GR/LSD1 

complexes is a prerequisite to initiate enhancer activation.  

 

While we find that H3K27ac is dependent on LSD1 activity (Figure 2.23) it is unlikely that 

LSD1 is directly responsible, but instead that this mark is dependent on H3K4me1 

accumulation. This is consistent with the characterization of H3K27ac as a mark that 

follows H3K4me1 during ESC differentiation 38. However, given the associated loss of 

H3K4me2, the simplest explanation for H3K4me1 accumulation is as a direct result of 

LSD1-mediated removal of one methyl group. The findings that H3K4me1 only accumulates 
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on LSD1 bound sites also bound by GR, and that GR inhibits LSD1-mediated demethylation 

of H3K4me1 in vitro support a mechanism where GR partially inhibits LSD1 activity 

allowing conversion of H3K4me2 to H3K4me1. Another possible explanation for H3K4me1 

accumulation not addressed by this study is the recruitment of an H3K4 methyltransferase 

to GB enhancers. In Drosophila MLL3/4 was shown to specifically mono-methylate H3K4 at 

enhancers and MLL2 was identified in our GR complex (Figure 2.2 C). While it is possible 

that an MLL complex recruited by GR to enhancers is also involved in H3K4me1 

accumulation, the dependence of this mark on LSD1 would suggest at the very least 

cooperation between HMT and HDM activities. However, in such a mechanism we would 

predict that loss of LSD1 would disrupt the balance between HMT/HDM driving 

H3K4me2/3 levels up at GB enhancers, which was not observed after LSD1 KD (Figure 2.21 

B and 2.22 A). Taking these data together we propose a molecular model where LSD1 is 

recruited to sites with high H3K4me2, and at sites also bound by GR, LSD1 is partially 

inhibited converting some H3K4me2 to H3K4me1 and thus promoting H3K27 acetylation 

and enhancer activation.  

 

Induction of LSD1 binding at the TSS of DEX-regulated genes and the loss of H3K4me2 at 

these sites suggest a contribution to the mechanism of gene activation. Although H3K4me2 

is generally associated with activation and thus its loss should contribute to silencing, its 

role may be more nuanced. In yeast, H3K4me2 has been implicated as a type of memory 

mark of recent transcription at the promoters of inducible genes, which needs to be 

removed for full reactivation 81. This mechanism may relate to the methods employed in 

this study, where cells were grown in normal serum containing many hormones prior to 
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growth in stripped serum for 16-24 hours and then reintroduction of an activating signal 

by DEX. The high levels of H3K4me2 at the TSS may be a type of memory mark of previous 

expression in normal serum. A second explanation might involve conversion of H3K4me2 

to me3, likely due to recruitment of an HMT complex such as MLL2 to the TSS. Again LSD1 

may play a role in counterbalancing HMT activity at the TSS to generate a region that is 

primarily trimethylated. This is supported by the observation that H3K4me2 levels 

increase along with H3K4me3 after TCP treatment suggesting LSD1 helps maintain low 

levels of H3K4me2 while H3K4me3 accumulates. While HMT and HDM activities are 

typically thought of as functionally counteracting one another, i.e. K4 demethylation as 

repressive and K4 methylation as activating, these opposing reactions could also be 

combined to generate highly specific methyl states. For example, LSD1 can only remove 

H3K4me1/2 but not me3. Therefore, co-localization of LSD1 with a HMT could result in low 

levels of H3K4me1/2 but also high levels of H3K4me3 as this mark is protected from LSD1. 

Pairing HDMs and HMTs with different specificities and/or regulating the enzymatic 

activities through protein-protein interactions could fine-tune the overall reaction to favor 

a single methyl state.  

 

Interestingly, loss of H3K4me2 at E2 induced promoters regulated by LSD1 and ER has 

been previously observed 30. However, this and other studies focused on loss of 

H3K9me1/2 at hormone-inducible promoters and with good reason given that H3K9 

methylation is a well-established repressive mark. The finding that loss of H3K9me1/2 is 

LSD1-dependent has lead to the conclusion that LSD1 acts as an H3K9me1/2 demethylase 

directly. We also find LSD1-dependent loss of H3K9me2 at a small number of GR bound 
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sites and GC regulated genes. However, given that only a subset of sites showed changes in 

H3K9me2 while most showed changes in H3K4me2 we conclude H3K9me2 likely plays a 

minor or perhaps highly specialized role in regulating GR target genes. We also propose 

that the LSD1 dependence of H3K9me2 demethylation could be due to interdependence of 

histone marks, an aspect of the histone code that is very poorly understood in general, let 

alone in NR-mediated transcriptional regulation. Demonstrating direct enzymatic activity 

in vivo is a significant challenge in enzymatic characterizations, thus in vitro evidence is a 

mainstay. Contrary to findings with ER and AR, our in vitro characterization of LSD1 

enzymatic activity in the GR complex found no evidence of H3K9 demethylation suggesting 

this activity may be carried out by another HDM. In the case of AR it was proposed that 

JMJD2C, an H3K9m2/3 and H3K36me2/3 demethylase, and LSD1 cooperated to 

demethylate H3K9 27. In the GR TAP complex we find JMJD1C, and likely H3K9me1/2 

demethylase that has also interacts with AR 82,83. While we do not rule out a role for LSD1 

in H3K9 loss in vivo or a contribution by this demethylation event in GC-induced gene 

activation, we do suggest the mechanistic details are more complex than previously 

described. The finding that changes in H3K4 methylation, a well-established LSD1 

substrate, are part of the activation mechanism and dependent on LSD1 suggests this may 

be LSD1’s primary role. Also, the observation that both H3K9me2 and H3K4me2 levels 

track similar increases after TCP treatment (Figures 2.22 A and 2.24) warrants a closer 

look at potential relationships between H3K4 and H3K9 methylation.  

 

The second role for LSD1 in GR target gene regulation is in suppressing non-specific 

targets. Expression profiling of DEX responsive genes after LSD1 KD indicates a role for 
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LSD1 in suppressing non-specific targets (Groups E and F, Figure 2.8 B). This combined 

with our finding that H3K4me2 is enriched at functional GR binding sites and LSD1’s ability 

to remove H3K4 methylation implicate it in regulating a cell-type specific early poised 

enhancer code prior to hormone exposure. One plausible mechanism could be that in the 

absence of GR, LSD1 removes the H3K4me2 (as well as H3K4me1) signature from non-

specific enhancers (Figure 2.25 B), while functional sites are protected by some mechanism 

that preserves the H3K4me2 signal. Upon GC exposure and GR entering the nucleus it binds 

only those predetermined sites allowing for rapid as well as cell-type specific responses. 

 

This mechanism is reminiscent the original characterization of LSD1 function in the REST 

complex, where LSD1 is responsible for repressing neuronal genes in non-neuronal cell 

types 71,84. Similar to the REST complex, LSD1’s role in suppressing non-specific GR targets 

likely involves multiple other protein regulators responsible for the specificity of 

distinguishing which sites should and shouldn’t retain H3K4me2. It would be interesting 

for future studies to identify the HMT and other regulatory factors responsible for laying 

down the H3K4me2 signature and distinguishing functional from non-functional GR 

binding sites prior to stimulation. Understanding regulation at this crucial step could lead 

to important insights into the mechanisms of cell-type specific hormone action. 

 

Our understanding of the histone code often focuses on the offensive side of the equation as 

we translate the meanings of various histone marks. However, for every histone writer we 

now understand there is also likely a corollary histone eraser and the balance and targeting 
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of these two activities can almost certainly be tweaked in ways and degrees we don’t yet 

fully understand.  

 

While LSD1 KD impacts a majority of DEX-responsive genes, it is interesting to note that 

many were unaffected. Decreasing the stringency for defective activation or repression 

from 50% to 30% still only brings the number of affected genes to 73%, suggesting there 

may be mechanistically divergent subsets of GC regulated genes, some relying on LSD1 and 

others that do not. The wide range in H3K4me2 prior to GR binding (Figure 2.18 A) 

suggests this mark may also contribute more to the recognition mechanism of some sites 

than others. Dissecting GC-responsiveness into LSD1-dependent and -independent 

mechanisms could have important translational implications. The potent anti-

inflammatory actions of GCs are limited by significant side effects such as osteoporosis and 

metabolic disruptions. This has lead researchers to look for selective receptor modulators 

(SRMs) that can dissociate positive and negative effects 85. However, a molecule with the 

ability to satisfactorily separate the good from the bad has yet to be discovered. GO analysis 

of DEX-induced genes showed several known DEX-regulated pathways, such as pro-

survival and inflammation. While pro-survival was also a top LSD1-dependent pathway 

along with proliferation, inflammation dropped out suggesting it was not heavily 

influenced by LSD1 coactivator function. The GO analysis was supported by cellular assays 

for DEX and LSD1 affects on apoptosis, proliferation, and IL8 release. While LSD1 was 

important for DEX-regulation of apoptosis and proliferation, it was not important for DEX-

suppression of IL8 mRNA levels or TNFα induced IL8 secretion (Figure 2.13 A and B). 

While IL8 is not the only point of GC immune regulation and experiments in cell culture do 
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not always predict outcomes at the organism level, our data does support further 

investigation into the possibility of modulating GC physiological actions through 

coregulators such as LSD1.  

 

Similarly, the new mechanisms illustrated in this study could also have significant 

therapeutic implications in the treatment of cancer. The role of GCs in cell proliferation and 

survival is highly cell type specific. GCs block cell division in lymphoid, fibroblastic, and 

epithelial tissues 86-88, and induce apoptosis in lymphoid cell lineages such as T-cells and 

monocytes, contributing to immunosuppression and anti-inflammatory effects, but also 

their use in treating lymphoid derived cancers 43-45. However, GCs protect from apoptosis 

in several cell types 46-50, making their use as a co-treatment to reduce nausea and alleviate 

the acute toxic effects of chemotherapy questionable. For example, concurrent GC and 

chemotherapy treatment has been shown to inhibit chemotherapy-induced apoptosis in 

Bcap37 breast cancer 89, HL-60 human leukemia 90, human glioma and rhabdomyosarcoma 
91, human urothelial 92, and human cervical and lung cancer cell lines 93. 

 

Our findings suggest LSD1 inhibitors could be useful in blocking the pro-survival affects of 

GCs thus assuaging concerns about co-treatment. Additionally, LSD1 inhibitors could 

potentially sensitize epithelial derived tumors to chemotherapeutic induced apoptosis, 

adding value to the practice of using GCs in chemotherapy regimes. On the whole we think 

the nature of LSD1’s role in GR-mediated gene regulation and the importance of GC action 

both in hormonal regulation of human physiology as well as clinical applications make it a 

critical coregulator to understand and an appealing therapeutic target. 



74 
 

 

Experimental Procedures 

Cell culture 

HeLa-s and A549 cells were cultured in DMEM supplemented with 20% FBS. MDA Kb2 cells 

(ATCC: CRL-2713) were cultured in RPMI 1640 supplemented with 20% FBS. All DEX 

treatments were carried out after cells were grown in media supplemented with charcoal 

striped serum for 16-24 hours. 

 

Proteins, Recombinant protein expression, purification, and GST-pulldown 

Purified TR, ER, MR (1-110aa), ROR were purchased from Abnova (catalog ID: H00007067-

P01, H00002100-P01, H00004306-Q01, H00006096-P01) and AR was purchased from 

RayBiotech (RB-14-0003P). GST-RAR and RXR was a gift from Dr. Anders Näär. GR and GR 

truncation mutants were expressed and purified from the pGEX-4T-1 (27-458001) vector 

in E. coli. The homogeneity of the eluted protein was determined using SDS–PAGE followed 

by Coomassie blue staining. 

 

For GST pulldown, GR proteins were incubated with 6xHIS-LSD1 overnight at 4°C in buffer 

containing 200mM NaCl and 0.1% NP-40. 

 

Primers and Antibodies 

ChIP antibodies were, LSD1 (Abcam ab17721), GR-H300 (Santa Cruz sc-8992), H3K4me1 

(Abcam ab8895), H3K4me2 (Millipore 07-030), H3K4me3 (Millipore 07-473), H3K9me2 

(Abcam ab1220), H3K27ac (Millipore 17-683), and H3 (Abcam ab1791). The amplification 
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efficiency and specificity of each set of primers was obtained by standard curve analysis 

and PCR products were separated by 2% agarose gel electrophoresis visualized by 

ethidium bromide staining. 

 
ChIP-qPCR primer sets 
BIRC3_TSS GGTTATTACCGCTGGAGTTC 
  AAATGCGTCACCCAAATCC 
BIRC3_GRB GATGGCCAGTAATGGAACTG 
  ATGCATCTCATCAGGGCATC 
CDKN1C _TSS ACTAGTACTGGGAAGGTCC 
  TTCTTCTCGCTGTCCTCTC 
CDKN1C _GRB AGGTCAGCTCACAGGATTG 
  CCCTTGCGCAAAGAGAAAG 
DUSP1_TSS GTCAGACCACTTAACTGTGG 
  GCAAAGGCATGGAAGAGTAG 
DUSP1_GRB CCAGGTGCATTACAGGTATC 
  CTTAGGCATGTGACCTTTGG 
PER1_TSS CATCATGTTCTCTTGGCTGGTGG 
  AGGACGGCTGTCGTTTTGTTG 
PER1_GRE CATCAGATTGGAAGTGGCAG 
  CGACCAGGTAGGCATCTC 

 
RNA interference, TCP treatments, and RT–PCR 

Retroviral shRNA (Sigma) targeting human LSD1 (L-sh1:TRCN0000046071, L-

sh2:TRCN0000046072) and control scramble (SC) shRNA was used to infect MDA-Kb2 and 

A549 cells. The knockdown efficiency was determined by RT–PCR and western blot. For all 

shRNA KD experiments cells were grown in selection media for 5-7 days prior to 

harvesting. For all TCP experiments cells were also treated for 5-7 days. RNA was purified 

by Trizol (Life Science) and cDNA produced using SuperScriptIII RT kit (Invitrogen) 
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according to manufacturer’s instructions. Sequences of quantitative RT-PCR primers are 

available upon request. 

 

Complex purification and  

GR-associated protein complexes were purified from HeLa-S cells stably expressing FLAG-

HA-GR by sequential anti-FLAG and anti-HA Affinity Gel immunoprecipitation as previously 

described 94. Cells were treated with 50nM DEX for 6 hours. Associated proteins were 

sequenced by MS/MS at the Harvard Medical School Taplin Biological Mass Spectrometry 

Facility. Half of the single FLAG purification or the doubly purified GR complexes, were 

used for another purification by anti-LSD1 and the associated peptide.  

 

Microarray 

A549 cells were infected with retrovirus carrying LSD1 shRNA and selected for 5 days in 

puromycin prior to treatment with 100nM DEX for 12 hours followed by Trizol (Life 

Science) RNA extraction. mRNA levels were profiled by Affimetrix 2.0 Microarray chip. 

 

ChIP and ChIP-Sequencing 

Conventional ChIP was performed as previously described 94 using formaldehyde-

crosslinked chromatin with modification to some buffers detailed in supplemental 

procedures. Briefly, cells were treated with 100nM DEX or ethanol for 2 hours and then 

cross-linked with 1% formaldehyde for 10 min at room temperature. Cross-linking was 

stopped by the addition of glycine to 0.125 M. Cells were washed in cold PBS, suspended in 

buffer (50mM Tris-HCl pH 7.9, 500mM NaCl, 1mM EDTA, 1% Triton-X100, 0.1% Na-
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deoxylcholate) and sonicated to obtain DNA fragments with an average size of 500 base 

pairs. Sonicated chromatin was diluted in half and pre-cleared using IgG, protein A and G 

beads blocked with BSA/salmon sperm. Incubation with target antibody was carried out 

overnight at 4°C. Samples were washed twice with sonication buffer, low salt buffer (20mM 

Tris-HCl pH 8.0, 150mM NaCl, 2mM EDTA, 0.1% SDS, and 1% Triton X-100), high-salt 

buffer (same as low but with 500mM NaCl) and TE. Eluted, decrosslinked DNA was purified 

by phenol:chloroform extraction and enrichment of target regions was determined by 

qPCR (Bio-Rad IQ5) using SYBR Green reagent (Bio-Rad).ChIP-Seq procedure was similar 

except sonicated fragments were reduced to an average size of 300bp.  

 

ChIP-Seq was carried out following a similar protocol. Purified DNA was used to generate 

libraries and sequenced by the Illumina Genome Analyzer II (GA II) per manufacturer’s 

instructions up to 36 cycles. Image analysis and base calling were performed with the 

Illumina package OLB (v1.8). Sequence reads were mapped onto the reference human 

genome (NCBI Build UCSC hg19) using the Bowtie (v0.12.7) algorithm. Using the Model 

based Analysis of ChIP-Seq (MACS) package 95 regions of significant enrichment were 

determined against sample input. Refseq gene annotation was obtained from the UCSC 

website. GR peaks were identified using MACS (v1.4) at P<1e-5. Distributions were drawn 

using in-house software and normalized density. Quantification of LSD1 and H3K4 methyl 

mark densities for bar graph and ANOVA comparisons were carried out by a density 

counting program written in-house. Briefly the program generates a density value for a 

specific DNA region (e.g. the region spanning a GR peak) by calculating the tag enrichment 
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area taking into account signal height and width. Heatmaps were generated using a 100bp 

window through GR peaks centered ± 2000bp.  

 

CCK8 proliferation, TUNEL apoptosis, and IL-8 ELISA assays 

For the CCK8 assays (Dojindo) A549 cells were treated with shRNA against LSD1 (L-sh1 or 

L-sh2), GR (GR-sh), or LSD2 (L2-sh) and selected for 3 days prior to treatment with either 

EtOH or various concentrations of DEX for an additional 5 days. Proliferation was detected 

by CCK8 activity using the BLANK kit according to manufacturer’s instructions. 

 

For TUNEL assays (Roche) A549 cells were treated with shRNA against LSD1 (L-sh1) and 

selected for 5-7 days prior to fixation and staining according to manufacturer’s 

instructions. Cells were analyzed by flow cytometry. 

 

For IL8 ELISA assays (Biolegend) A549 cells were treated with shRNA against LSD1 (L-sh1) 

and selected for 3-4 days prior to plating into 96-well plates. After allowing cells to attach 

for 24 hours they were treated with DEX for 6 hours followed by a 24 hour treatment with 

2ng/ml TNFα. Cells were then washed with PBS and lysed in RIPA buffer for ELISA analysis 

according to manufacturer’s instructions.  

 

Histone demethylase assay 

Histone demethylase assays were carried out as described previously 96. Briefly, 6xHIS-

LSD1 was incubated with purified NRs, GR mutants, and/or CoREST for 1h at 4°C prior to 

overnight incubation at 32°C with bulk histones or purified nucleosomes in demethylase 
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buffer (50mm Tris, pH 8.0, 0.1 Units formaldehyde dehydrogenase (FDH) and 1mM NAD+). 

In a typical reaction, 4μg of calf thymus histones or 6 μg of purified nucleosomes were 

incubated with 0.5μg LSD1 and 0.5-2.5μg NR in a total reaction volume of 50μl. Reactions 

were analyzed by SDS–PAGE and western blotting using methyl-specific antibodies. 
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Abstract 

The field of histone demethylases has expanded rapidly following the discovery of the first 

histone lysine demehtylase, LSD1/KDM1A.  New histone modifications are still being 

discovered along with the enzymes that add and remove these modifications. While the 

methyltransferases responsible for adding histone methylation have been characterized for 

all known sites of histone methylation, one site still remains without a characterized 

demethylase. H3K79 is an interesting site for modification given its location within the 

globular domain of the histone protein, unlike most modifications occurring on the 

unstructured tail. While DOT1 is known to methylate H3K79, no demethylase for this 

residue has been discovered to date. We present evidence here supporting never before 

characterized H3K79me3 demethylase activity by members of the JMJD2 family of proteins. 
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Background 

HDMs are divided into two major families. One, the flavin-dependent LSD family consisting of 

KDM1A/LSD1 and KDM1B/LSD2, and two, the larger and more diverse Jumonji C (JmjC) 

family consisting of roughly 30 enzymes 1. JmjC HDMs are Fe(II)-dependent hydroxylases that 

utilize the cosubstrates 2-oxoglutarate (2-OG) and molecular oxygen to catalyze demethylation. 

Several subfamilies of JmjC HDMs have been identified and characterized with distinct substrate 

specificities (Table 1.2) 2-9. JmjC HDMs have been implicated in regulating diverse genomic 

processes, such as transcription, cell-cycle progression, heterochromatin maintenance, X 

chromosome inactivation, and development 3,5-7. These functional roles vary among subfamilies 

and are believed to be a consequence of differing histone substrate specificities. 

 

The JMJD2 subfamily is conserved from budding yeast to mammals 3,10-16. Humans have four 

JMJD2 homologs (JMJD2A, JMJD2B, JMJD2C, and JMJD2D), which display dual selectivity in 

removing H3K9me2/3, a mark associated with heterochromatin and gene silencing, and 

H3K36me2/3, a modification demarcating the coding regions of actively transcribed genes 5,16. 

JMJD2 HDMs have been implicated in transcriptional regulation, cell-cycle progression, nuclear 

hormone signaling, embryonic stem cell self-renewal, and development 5-7,17-22. In addition, 

overexpression of several JMJD2 homologs has been linked to cancer 23-25.  

 

While over 30 HDMs have been characterized in the less than 10 years since the discovery of the 

first LSD1, discovery of new HDMs is ongoing. The first histone arginine demethylase, JMJD6, 

was described as recently as 2007 26, opening the field of HDMs beyond lysine residues for the 
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first time. The first H4K20me1 demethylase, PHF8, was only described in 2010 27, leaving 

H4K20me2/3 without a known demethylase. Similarly one of only two methylation site known 

to occur on the histone globular domain, H3K79, has a characterized HMT, DOT1, but to date, 

no known cognate HDM.  

 

DOT1 and H3K79 methylation have been implicated in regulating heterochromatin formation 

at telomeres 28 and active transcription. Genome-wide analysis finds that H3K79 methylation is 

enriched in the body of transcribed genes and the amount of methylation is correlated with 

expression level 29. Similar studies in the yeast, fly, and human genomes strongly suggest that 

H3K79 methylation is a marker of active transcription 30-36. The location of H3K79 methylation 

within the gene body along with findings that DOT1 is part of several complexes associated with 

elongating RNA polymerase II implicates this mark in regulating transcriptional elongation 37-39.   

 

DOT1 and H3K79 methylation have also been shown to play an important role in DNA 

repair. The tandem tudor domain of the 53BP1 protein is able to bind methylated H3K79 and 

this function is required for its recruitment to DNA double-strand breaks 40,41. Because H3K79 

methylation levels do not change after DNA damage, it is thought that double-strand breaks 

change the chromatin structure to expose methylated H3K79, which is then recognized by 53BP1 

40. DOT1-mediated H3K79 methylation has also been implicated in other forms of DNA repair 

such as nucleotide excision repair (NER), recombination repair (RR), or post-replication repair 

(PRR) and loss of DOT1 results in UV hypersensitivity 42,43. Clearly the role of DOT1 and 

H3K79 methylation is complex and touches multiple important processes from heterochromatin 

formation at telomeres and transcription, to maintaining genome integrity. Each of these roles 
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potentially contributes to the biological functions in development and cardiac function attributed 

to DOT1 thus far 44,45. They also implicate regulation of H3K79 methylation in important human 

diseases such as cancer (reviewed in 46).   

 

Although the establishment of H3K79 methylation is well characterized and a highly regulated 

processes, active demethylation of this mark is not well understood. However, several lines of 

evidence show dynamaic regulation of this mark therefore suggesting that H3K79 methylation is 

reversible. In yeast and human cells H3K79me2 levels fluctuate throughout the cell cycle 47,48, 

and in both mice and flies H3K79me2 is lost during early embryonic development 49,50. Lastly, a 

study investigating the antagonistic effects of 2-hydroxyglutarate (2-HG) on the JmjC cofactor, 

2-OG, showed a global increase in H3K79me2 suggesting that a dioxygenase such as a JmjC 

enzyme may catalyze the removal of H3K79me2 marks in vivo 51. 

 

Here we show that overexpression of several JMJD2 family HDMs in cell culture results in a 

global decrease in H3K79me3 levels. Although more is required to fully establish JMJD2A, 

C, and D as bona fide direct H3K79me3 demethylases, these results support dynamic 

regulation of H3K79 methylation. 

 

Results 

JMJD2 family HDMs have been previously described as H3K36 and H3K9 demethylases. 

During the course of characterizing a putative HDM, JMJD2C was used as a positive control 

and found to have a previously uncharacterized activity against H3K79me3. Full-length, 

HA-tagged JMJD2C was overexpressed in the osteoblast cell line U2OS and 
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immunoflourescence staining against various histone marks were analyzed. A catalytically 

inactive mutant form of JMJD2C, M-JMJD2C, which disrupts two key amino acids in the iron 

binding domain (H189A and E191A) was used as a negative control.  A global decrease in 

H3K79me3 in cells overexpressing wild-type JMJD2C but not the catalytic mutant (M-

JMJD2C) was observed (Figure 3.1). Loss of H3K79me3 is specific to the trimethylated state 

as no decrease in H3K79me2 was observed (Figure 3.2).   Demethylation of H3K36me3, a 

known JMJD2 family substrate, was observed as a positive control (Figure 3.3 A), and as a 

negative control no demethylation of H3K4me3 was observed (Figure 3.3 B). Quantification 

of immunoflourescent intensity from histone marks showed that JMJD2C transfected cells 

Figure 3.1  JMJD2C overexpression results in loss of H3K79me3 and is dependent on 
catalytic HDM activity. 
HA-tagged, full-length JMJD2C or a catalytically inactive mutant, M-JMJD2C, was 
overexpressed in U2OS cells for 72 hours prior to immunoflourescent staining against 
H3K79me3. White dotted circles indicate transected nuclei. Global loss of H3K79me3 is 
observed in the wild-type JMJD2C transfected cells (top row), but not in the mutant 
transfected cells (bottom row). 
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have significantly lower levels of H3K79me3 and H3K36me3 with a p-value ≤ 0.001 while 

JMJD2C-M transfected cells are not significantly different (Figure 3.4). 

 

 

Given that the JMJD2 subfamily members share similar substrate specificities, two other 

members, JMJD2A and JMJD2D, were also tested.  Overexpression of a truncated JMJD2A (1-

310aa) containing the catalytic domain, and full-length JMJD2D also caused loss of 

H3K79me3 in U2OS cells as shown in Figure 3.5. This suggests H3K79me3 may be a 

substrate for the JMJD2 subfamily of HDMs. Initial experiments with the lung 

adenocarcenoma cell line, A549, suggests this result is not limited to U2OS cells (data not 

shown).   

Figure 3.2  JMJD2C overexpression does not result in loss of H3K79me2. 
HA-tagged, full-length JMJD2C or mutant, M-JMJD2C, was overexpressed in U2OS cells for 72 
hours prior to immunoflourescent staining against H3K79me2. White dotted circles indicate 
transected nuclei. No detectible change in H3K79me2 levels is observed in either the wild-
type or mutant transfected cells. 
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Figure 3.3  In addition to of loss of H3K79me3, H3K36me3 is also lost while H3K4me3 is not. 
HA-tagged, full-length JMJD2C or mutant, M-JMJD2C, was overexpressed in U2OS cells for 72 
hours prior to immunoflourescent staining against H3K36me3 (A), or H3K4me3 (B). White 
dotted circles indicate transected nuclei. Global loss of H3K36me3 is observed in the wild-
type JMJD2C transfected cells (top row of A), but not in the mutant transfected cells (bottom 
row of A). No detectible change in H3K4me3 levels is observed in either the wild-type or 
mutant transfected cells. 
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Figure 3.4   Quantification of overexpressed JMJD2C 
activity on H3K79me3 and H3K36me3. 
Immunoflourescence intensity of histone modifications 
were quantified in cells expressing either wild-type or 
mutant JMJD2C and compared to neighboring 
untransfected cells. JMJD2C transfected cells have 
significantly lower levels of H3K79me3 and H3K36me3 
with a p-value ≤ 0.001 while JMJD2C-M transfected cells 
are not significantly different. N = 10-20 cells from two 
separate experiments. 
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Discussion 

Since the first histone demethylase was discovered in 2004, a number of enzymes have 

been characterized as histone demethylases acting on specific histone residuals. However, 

no enzyme has of yet been identified with H3K79 demethylase activity. The evidence 

presented here suggests that the JMJD2 subfamily of JmjC HDMs may act as H3K79me3 

demethylases. The observation that mutating the catalytic domain of JMJD2C abolishes loss 

of H3K79me3 upon overexpression strongly suggests H3K79me3 levels are regulated by 

JMJD2C enzymatic activity. While we cannot yet rule out the possibility of indirect 

regulation via demethylation of other JMJD2 histone substrates, no relationship between 

Figure 3.5   Overexpression of other JMJD2 family members, JMJD2A and JMJD2D, also result 
in loss of H3K79me3. 
HA-tagged, truncated JMJD2A (1-310aa) or HA-tagged, full-length JMJD2D was overexpressed 
in U2OS cells for 72 hours prior to immunoflourescent staining against H3K79me3. White 
dotted circles indicate transected nuclei. Global loss of H3K79me3 is observed in cells 
transfected with either construct. 
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H3K36 or H3K9 methylation, two well-established JMJD2 substrates, has been described 

that could account for the observed H3K79me3 loss. Further in vitro and biochemical 

characterization with purified JMJD2 proteins will be necessary to convincingly established 

H3K79me3 as a bona fide substrate. 

 

One possible explanation for the lag in discovering a H3K79 demethylase may be due to unique 

features related this mark occurring on the globular region of the histone protein rather than the 

tail. Previous studies have shown no activity of JMJD2 HDMs on methylated H3K79 peptides. 

However, characterization of DOTL enzymatic activity shows preferential methylation of 

H3K79 in the context of nucleosomes rather than core histones or recombinant H3 peptide 47, 

suggesting recognition of other features of the nucleosome beyond K79 and adjacent residues. 

This may very well be true for the reverse reaction recognizing and removing H3K79 

methylation, making some of the standard techniques used to characterize novel HDMs 

insensitive to H3K79 demethylase activity.  

 

Interestingly, the substrate specificity of several JMJD2 family members, JMJD2A-D, was 

recently expanded to include the newly discovered H3K56me3 mark 52. Similar to H3K79, 

H3K56 is located on the globular core of the histone protein further supporting the 

possibility that JMJD2 proteins are capable of recognizing and acting on core residues.  

 

H3K79 methylation has been implicated in various cellular processes such as DNA damage 

repair, cell cycle regulation, transcription and regulation of telomeric heterochromatin 



97 
 

formation 40,53,54. It would be interesting to test whether JMJD2A/C/D have roles in these 

processes via their H3K79me3 HDM activity. 

 

Experimental Procedures 

U2OS cells were cultured in DMEM supplemented with 20%. For immunoflourescence, cells 

were fixed with 4% paraformaldehyde and permeabilized with 0.5% triton-X100. After 

blocking with BSA cells were incubated with the indicated antibody, except H3K79me3, for 

2 hours at room temperature. The H3K79me3 antibody (abcam ab2621) was significantly 

more difficult to stain and therefore incubated for 6-8 hours at room temperature.  

 

M-JMJD2C was generated by site directed mutagenesis of the iron binding site amino acids 

H189A and E191A. 
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