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Genetic and genomic analysis of small RNA pathways in nematodes 

 
ABSTRACT 

 
Small noncoding RNAs, including microRNAs (miRNAs), piwi-interacting RNAs 

(piRNAs), and endogenous small-interfering RNAs (endo-siRNAs), regulate 

developmental and defense pathways in animals. While many small RNA silencing 

protein cofactors have been identified, much more is to be learned from a dynamic and 

quantitative perspective to reveal the underlying mechanisms and designing principles of 

each pathway. In this dissertation, I present studies that examine the temporal dynamics 

of small RNA pathways – one from an evolutionary time scale among the nematode 

species, and one from finely staged Caenorabditis elegans during the first larval stage. I 

also describe works identifying new cofactors functions in the miRNA pathway, 

potentially through regulating the spatial dynamics of the miRNA silencing complex. 

To better understand the various small RNA pathways from an evolutionary 

perspective, I deep sequenced small RNA from several nematode species and 

examined the conservation and evolution of each class of small RNAs. This reveals an 

extraordinary sequence fluidity of piRNAs and endo-siRNAs. However, many features 

such as their genomic distribution and expression patterns are highly conserved. I found 

that nematodes produce two distinct sex-specific classes of piRNAs, suggesting different 

roles for piRNAs in male and female germlines.  

To reveal the kinetics of miRNA-mediated silencing during the animal cell fate 

transition, we performed a quantitative analysis of lin-4 miRNA-mediated silencing of its 

target gene, lin-14. Our results point to two phases of regulation: a fast lin-14 mRNA 
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destabilization phase, and long-term translational inhibition that is important in 

maintaining the silencing of lin-14 by the lin-4 miRNA.  

Lastly, I performed a candidate-based RNAi screen for genes involved in miRNA 

activity. This study leads to the finding that the mevalonate pathway regulates miRNA 

activity. Dolichol phosphate, synthesized from the mevalonate pathway, functions as a 

lipid carrier of the oligosaccharide moiety destined for protein N-linked glycosylation. 

Inhibition of the dolichol pathway of protein N-glycosylation also causes derepression of 

miRNA target mRNAs, suggesting proteins that mediate miRNA repression could be 

regulated by N-glycosylation.  

Together, these studies highlight the importance of studying both the temporal 

and spatial dynamics of small RNA pathways in creating new insights. 
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An introduction to the small RNA pathways 
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History of discovery 
 
How worm geneticists discovered the new world of small RNAs 

The new world of small RNA silencing was first landed by worm geneticists during the 

study of developmental timing in the early 1990s. The nematode Caenorhabditis elegans 

was first introduced into the scientific community by Sydney Brenner in 1960s and has 

the remarkable feature of having an invariable cell lineage between individuals (Sulston 

and Horvitz, 1977; Sulston et al., 1983). Worm geneticists took this unique opportunity to 

be able to trace individual cells and isolated large number of mutant strains with 

abnormal cell lineage, to study how the signaling and cell-cell interaction guide cell fate 

determination.  

In particular, a hierarchy of interesting mutants stood out that bear defects in the 

timing of cell fate specification. These so-called ʻheterochronicʼ mutant animals have 

defects in the synchrony of developmental timing between tissues, leading to either 

precocious or delayed switching of cell division to differentiation in the hypodermal and 

vulval cells (Ambros, 1989; Ambros and Horvitz, 1984; Chalfie et al., 1981). Two groups 

of mutants, represented by the lin-4 retarded mutant (Chalfie et al., 1981) and the lin-14 

precocious mutant (Ambros and Horvitz, 1987), suggest that the two opposing 

hierarchies of genes coordinate to regulate the cell fate transition. Further genetic 

analysis showed that lin-4 acts upstream of lin-14 through down-regulation of lin-14 

activity mediated on the lin-14 3ʼ untranslated region (3ʼUTR) (Ruvkun et al., 1989; 

Ruvkun et al., 1991; Wightman et al., 1991). However, the biggest surprise came when 

the Ambros lab found that lin-4 does not encode a protein; instead, it gives rise to some 

small RNAs (Lee et al., 1993). Through a legendary collaboration between the Ambros 

and Ruvkun lab, it was found by sequence comparison that the 3ʼUTR of lin-14 contains 
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several conserved regions with partial sequence complementarity to lin-4 (Wightman et 

al., 1993), immediately led to a beautiful model that the lin-4 small RNAs bind to the lin-

14 3ʼUTR and in this way down-regulate the translation of lin-14. Although illuminating, 

this model was out of most peopleʼs imagination and kept being considered to be 

something unique to worms, rather than a general principle of gene regulation. 

Fortunately, more supportive evidence about the small RNA new world emerged 

in the following years. In one study, it was showed that 25 nucleotide (nt)- antisense 

RNAs were detected in plants undergoing posttranscriptional gene silencing (PTGS) 

(Hamilton and Baulcombe, 1999). Meanwhile, when worm researchers designed 

antisense RNAs to shut down specific mRNAs (Fire et al., 1991), a surprise came when 

they discovered that double-stranded RNAs (dsRNAs) to be much more potent than the 

antisense RNAs (Fire et al., 1998). A model that dsRNAs might function in a catalytic 

mechanism to target homologous mRNAs for degradation was then proposed 

(Montgomery et al., 1998). This phenomenon, termed ʻRNA interference (RNAi)ʼ, is 

intimately related to the small RNA mediated PTGS in plants. Lastly, a second C. 

elegans small RNA, let-7, was identified (Reinhart et al., 2000). Like lin-4, let-7 also 

regulates the developmental timing. More interestingly, let-7 is highly conserved both at 

the sequence and temporal expression level implying an important conserved role in 

regulating temporal transition in animal development (Pasquinelli et al., 2000). Together, 

these series of works invoked the realization of small interfering RNAs as general 

mechanisms in regulating gene expression and opened up an entirely new field. 
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The myriad facets of small RNAs 

Small non-coding RNAs, including microRNAs (miRNAs), piwi-interacting RNAs 

(piRNAs) and endogenous small interfering RNAs (endo-siRNAs), regulate 

developmental and defense pathways in animals. Each class of small RNAs has unique 

roles and genetic requirements but invariably bind to Argonaute proteins to form effector 

complexes that target nucleic acids containing partial or complete complementarity to the 

small RNA guide.  

 

miRNAs are important nodes in the gene regulatory network 

miRNAs are ~22 nt and repress gene expression through mRNA decay and translational 

repression (Bartel, 2004; Djuranovic et al., 2011). In animals, miRNAs cause repression 

by base pairing to the 3′ UTR of their target mRNAs, which contain perfect or near-

perfect sequence complementarity to nucleotides 2-7 (the ʻseed regionʼ) of miRNAs and 

mismatches and bulges in other parts of the miRNA-mRNA duplex (Lewis et al., 2003).  

In general, miRNA is first transcribed as a primary miRNA (pri-miRNA) which is 

several hundreds nucleotides long and folds into a hairpin structure. Pri-miRNAs are 

then processed by the Drosha/DGCR8 nuclear microprocessor complex. In this complex, 

DGCR8 (also known as Pasha) orients Drosha to cut pri-miRNAs ~11 nt from the hairpin 

base, generating a shortened hairpin (named precursor miRNA, or pre-miRNA) that has 

a ~22 nt stem with 2 nt overhang at its 3ʼ end (Han et al., 2006; Yeom et al., 2006).	  Pre-

miRNAs are exported from the nucleus through Exportin-5, which recognizes the 2 nt 3ʼ 

overhang of pre-miRNAs (Bohnsack et al., 2004; Yi et al., 2003).	  In the cytoplasm, the 

RNase III enzyme Dicer cuts away the loop of pre-miRNAs and yields a ~22 nt 

miRNA:miRNA* duplex (Hutvagner et al., 2001; Ketting et al., 2001).	  One strand is 

predominantly incorporated into the Argonaute protein to form the core miRNA-induced 
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silencing complex (miRISC) (Bartel, 2004); the other stand, usually quickly degraded and 

was called the miR star strand.  

The biogenesis, mechanisms of miRNAs-mediated silencing, as well as miRNAs 

themselves are highly conserved during evolution. For example, the let-7 miRNA is ultra-

conserved both at the sequence and temporal expression level across the animal 

phylogeny (Pasquinelli et al., 2000). Although new miRNAs were continuously evolving, 

once integrated into gene regulatory network, they become highly conserved in 

sequence and are rarely lost (Meunier et al., 2013; Wheeler et al., 2009). This further 

supports a conserved important role of miRNA in the gene regulatory network. 

 But whatʼs special about miRNAs, in compared to many other regulatory 

mechanisms in the gene regulatory network? In other words, why the evolution chose 

miRNAs for particular nodes in the gene network? 

We think that one big virtue for a ~22 nt non-coding RNA, is that it can be 

produced much faster than a protein. This advantage becomes in particular crucial when 

the organisms need to make fast responses, for example, when dealing with cellular 

damages or making cell fate transitions. Indeed, among the few miRNAs in C. elegans 

with known functions, lin-4, let-7 and lsy-6 miRNAs all function in cell fate specification 

and are produced just before the fate transition (Cochella and Hobert, 2012; Feinbaum 

and Ambros, 1999; Reinhart et al., 2000). Second, miRNAs have the potential virtue of 

being reversible. It has been shown that miRNAs can target mRNAs enter into 

processing bodies (P-bodies) (Liu et al., 2005), which are distinct foci in the cytoplasm of 

eukaryotic cells containing enzymes for RNA decapping and degradation.	  On the other 

hand, not all mRNAs are degraded there: some mRNAs can be stored in P-bodies, and 

may even shuttle back to polysomes (Brengues et al., 2005). It was found that at least 

one miR-122 target, the cationic amino acid transporter 1 (CAT-1) mRNA, can re-locate 
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from P-bodies to polysomes in response to stress (Bhattacharyya et al., 2006). Although 

still lacking more convincing evidence at this stage, these studies opened up an 

appealing possibility that the action of miRNAs could be reversible under certain 

conditions. Lastly, miRNAs regulation is ideal to confer robustness and precision of gene 

expression. By looking at overrepresented motifs in the gene regulatory network, it was 

observed that miRNAs often function in the incoherent feedforward loop (FFL). The FFL 

consists of a master transcription factor regulating a miRNA and together with it, a group 

of target genes. Through math modeling and computational simulation, it was shown that 

this circuit is in particular robust to fluctuations in the upstream regulators, thus 

conferring stability and precision to the downstream gene expression program. 

Specifically, the optimal robustness requires a modest repression of target gene 

expression (Ebert and Sharp, 2012; Osella et al., 2011), which is exactly the feature of 

miRNA-mediated silencing. 

 In summary, miRNAs have the virtue of fast production, potential reversibility and 

conferring precision to the gene expression program. These unique features together 

make miRNAs integral component in the gene regulatory network and highly conserved 

during evolution. 

 

piRNAs and genome defense 

    Piwi-interacting RNAs (piRNAs) are usually 26-31 nt in size, which associate with 

the PIWI clade Argonautes and are most highly expressed in the germline (Seto et al., 

2007). piRNAs generally function in silencing of transposable elements (TEs) and other 

selfish DNA sequences and in this way protect the germline integrity (Siomi et al., 2011). 

However, growing evidence also suggest piRNAs have versatile functions even outside 
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of the germline, for example, in regulating synaptic plasticity (Rajasethupathy et al., 

2012).  

In contrast to miRNAs, the biogenesis pathway, sequences, and modes of action 

for piRNAs are much more diverse across animals. The production of piRNAs is still not 

fully understood, but it has been suggested that it involves a primary biogenesis and 

secondary amplification phase. In the primary phase, a long piRNA precursor transcript 

is made and then processed into the piRNA (Aravin et al., 2008; Brennecke et al., 2007) 

usually with a 5ʼ uracil and a size that fits into the PIWI Argonaute (Kawaoka et al., 

2011). Primary piRNA can bind and induce cleavage of target transcript at a position that 

is 10 nt from 5ʼ end of the primary piRNA. This triggers the target transcript being routed 

into the piRNA pathway and generates a secondary piRNA with its 5ʼ end produced by 

the cleavage event and its 3ʼ end processed by some unknown nuclease(s). This 

secondary piRNA, in turn, targets the complementary transcripts and further routes it into 

the piRNA pathway. As a consequence, massive piRNAs are produced along with 

silencing of target transcripts. This amplification phase is therefore named ʻPing-Pongʼ 

cycle (Brennecke et al., 2007). 

In contrast to several other animals, C. elegans piRNAs are 21 nt long (also 

called 21U-RNAs) (Batista et al., 2008; Das et al., 2008; Ruby et al., 2006). C. elegans 

piRNAs are first transcribed as individual precursors and processed by some unknown 

nucleases to give rise to mature piRNAs, similar to the primary phase in other species. 

However, nematodes lack the ʻPing-Pongʼ amplification phase. Instead, C. elegans 

piRNAs bind through imperfect complementarity to target transcripts and trigger 

secondary endo-siRNA production to further silence the target genes (Bagijn et al., 2012; 

Lee et al., 2012; Shirayama et al., 2012).  
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Because many features of piRNA pathways are not conserved in nematodes, 

Drosophila and mouse, it is interesting to learn whether piRNA sequences, biogenesis 

and mechanisms of action could be conserved within much shorter evolutionary 

distances, for example, among closely related nematode species. This is the focus of our 

study discussed in Chapter II.  

 

The dramatic expansion of endo-siRNA pathways in nematodes 

Endogenous small interfering RNAs (endo-siRNAs) are produced from double-stranded 

RNAs (dsRNAs) and mediate gene silencing post-transcriptionally and/or via chromatin 

modification. They share many features and protein cofactors with the exogenous RNAi 

pathway. Historically, endo-siRNAs are largely thought to be restricted to C. elegans. 

Indeed, in C. elegans, endo-siRNA is the predominant small RNA species judged by 

either abundance or sequence diversity. This is likely due to the presence of several 

RNA-dependent RNA polymerases (RdRPs) in C. elegans. RdRP catalyzes the 

replication of RNA from an RNA template and in this way produces dsRNAs, which are 

then made into endo-siRNAs. However, it is becoming recognized that many more 

species, such as Drosophila (Czech et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 

2008; Okamura et al., 2008) and mouse (Tam et al., 2008; Watanabe et al., 2008), also 

possess the endo-siRNA pathways even in the absence of clear RdRP homologs. In 

these species, endo-siRNAs are produced from dsRNAs resulting from convergent 

transcription, or transcripts that form stem-loop structures. 

Besides RdRPs, the C. elegans genome also encodes an expanding family of 

worm-specific Argonaute proteins (WAGO) (Figure 1.1). Out of the 25 Argonautes in C. 

elegans, 16 belong to the WAGO clade (Yigit et al., 2006) and associate with various 

classes of endo-siRNAs.  
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Figure 1.1 Phylogenetic tree of Argonaute proteins. Argonautes from different species are 

indicated in different colors, and the number of Argonautes in each genome is shown in the 

parenthesis. From a C. elegans centric point of view, the Argonaute family can be divided into 

three clades: the AGO, PIWI and WAGO clade. 

 

The majority of C. elegans endo-siRNAs are either 22 or 26 nt long and start with 

5ʼ guanine, and are thus referred to as 22G siRNAs (22G-RNAs) or 26G siRNAs (26G-

RNAs), respectively. 22G siRNAs are produced by either of the two RdRPs, RRF-1 and 

EGO-1, and bind to the WAGO clade Argonautes (WAGO-1-12) to silence certain 

protein-coding genes, transposons, pseudogenes and cryptic loci (Gu et al., 2009). A 

subset of 22G siRNAs produced by EGO-1 associate with the Argonaute CSR-1 (CSR-1 

class siRNAs) to guide chromosome segregation (Claycomb et al., 2009; van 

Wolfswinkel et al., 2009). It was proposed that CSR-1 class siRNAs may also provide a 
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memory of self to protect endogenous genes from being routed into the piRNA and 

WAGO class siRNA pathways (Lee et al., 2012; Shirayama et al., 2012).  

26G siRNAs fall into two classes: a spermatogenesis-enriched class which 

associate with the AGO clade Argonautes, ALG-3 and ALG-4 (Conine et al., 2010; Han 

et al., 2009); and an oocyte and embryo-enriched class which associate with the 

divergent PIWI-clade Argonaute, ERGO-1 (Fischer et al., 2011; Han et al., 2009; Vasale 

et al., 2010). Both classes of 26G siRNAs are produced by the RdRP RRF-3 and are 

thought to trigger secondary 22G siRNA production. However, the majority of 22G 

siRNAs are produced independent of a 26G siRNA trigger. How these siRNAs are 

produced remains unknown. 

 

 

Dissertation overview 

After ~20 years of research, many small RNA silencing protein cofactors were identified 

and many details of each small RNA pathway have been worked out. On the other hand, 

much more is to be learned from a dynamic and quantitative perspective to reveal the 

underlying mechanisms and designing principles of the pathway. In this dissertation, I 

present studies that examine the temporal dynamics of small RNA pathways – one from 

an evolutionary time scale among nematode species (Chapter II and III), which reveals 

an extraordinary sequence fluidity of piRNAs and endo-siRNAs during evolution. Another 

study of finely staged C. elegans during the first larval stage suggests a two-phase 

model of lin-4 mediated silencing of lin-14 (Chapter V). I also describe works identifying 

new cofactors functions in the miRNA pathway, potentially through regulating the spatial 

dynamics of the miRNA silencing complex (Chapter IV).  
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Evolution of the piRNA pathway in nematodes 
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Summary 

Nematodes contain each of the broad classes of eukaryotic small RNAs, including 

miRNAs, endo-siRNAs and piRNAs. To better understand the evolution of these 

regulatory RNAs, I deep sequenced small RNA from C. elegans and three other closely 

related nematode species. Using a comparative genomics approach, I examined the 

conservation and evolution of each class of the small RNAs. There is no conservation of 

individual piRNA sequences. However, many features such as their genomic distribution, 

expression patterns, and tendency for piRNAs to trigger secondary siRNA production are 

highly conserved. We show that nematodes produce two distinct sex-specific classes of 

piRNAs, suggesting different roles for piRNAs in male and female germlines. 

 

Motivating Questions 

The Piwi-interacting RNA (piRNA) pathway maintains silencing of cryptic DNA 

sequences and in this way protects the animal germline from invading viruses and 

transposable elements (TEs). The establishment of immunity to new invasive TEs 

occurs by the incorporating of their sequences into the piRNA pool that get inherited 

primarily maternally, and further propagated in the following generations. In particular, 

works in plants and Drosophila have suggested that in the interspecies hybrid progeny, 

TEs from the maternal genome can be properly silenced by the maternal-inherited 

piRNAs targeting the TEs. However, some paternally inherited TEs that are absent from 

the maternal genome and piRNA pool becomes derepressed, consistent with the role of 

maternally inherited piRNAs in silencing TEs. Importantly, the derepression of paternal 

TEs could contribute to hybrid sterility or inviability (Blumenstiel and Hartl, 2005; Ha et 

al., 2009; Ish-Horowicz, 1982; Josefsson et al., 2006; Kelleher et al., 2012; Rozhkov et 

al., 2010).  
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 On the other hand, small RNAs not only target TEs. We hypothesized that in the 

interspecies hybrid progeny, many other paternal transcripts may also be recognized as 

foreign and become targeted by maternal-inherited small RNAs. These paternal 

transcripts then could be routed into the small RNA pathways. If this hypothesis is 

correct, we were expecting to detect new small RNAs in the interspecies hybrid progeny, 

which are absent in either of its parents.  

 

Deep sequencing small RNA in interspecies hybrid nematodes 

In the Caenorhabditis genus, C. elegans, C. briggsae, C. remanei and C. brenneri are 

four species that are most commonly studied. Each of the four species is 

morphologically similar; however, their genomic sequences are highly divergent, with 

common ancestry ~110 million generations ago (Cutter et al., 2009) (Figure 2.1). The 

reproductive isolation between these four species primarily occur either before 

fertilization or during embryogenesis (Baird and Yen, 2000) (Table 2.1).  

         

Figure 2.1 Phylogenetic relationship of the elegans group of Caenorhabditis, adapted from 

(Kiontke et al., 2011).  C. briggsae, C. remanei, C. brenneri, and C. elegans (highlighted in red), 

having had their genomes sequenced and partially annotated, were chosen for this study. !"#$%$&'()
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Table 2.1 Reproductive isolation in several Caenorhabditis species 

Mating  C. elegans ♂ C. briggsae ♂ C. remanei ♂ C. brenneri ♂ 

C. elegans ♀  No fertilization No fertilization No fertilization 

C. briggsae ♀ No fertilization  Embryonic 
arrest 

No fertilization 

C. remanei ♀ Embryonic 
arrest 

Embryonic 
arrest 

 No fertilization 

C. brenneri ♀ Embryonic 
arrest 

Embryonic 
arrest 

Embryonic 
arrest 

 

 

We chose to deep sequence small RNAs from C. brenneri females crossed to C. 

elegans males. Because hand-picking worms for mating cannot be easily performed in 

large scale, I was not able to harvest embryos by the regular bleaching method. Instead, 

I collected ~100 gravid C. brenneri females each bearing several C. brenneri - C. 

elegans interspecies hybrid embryos. Then I extracted small RNAs from them and made 

a deep sequencing library, which will be referred to as ʻhybrid libraryʼ for short. In 

parallel, C. brenneri females were crossed to C. brenneri males as a control (Figure 

2.2A). This small RNA library will thus be referred to as ʻcontrol libraryʼ. 

I obtained over 20 million small RNA reads from each library, 60-70% of which 

can be perfectly mapped to the C. brenneri (maternal) genome. Every small RNA that is 

derived from the C. brenneri (maternal) genome has almost the same relative 

abundance comparing the hybrid and control library. This suggests that mating to a 

different species does not change the small RNA profiles of C. brenneri females. I then 

aligned the rest of small RNA reads to the C. elegans (paternal) genome: ~2% of total 

small RNA from the hybrid library, compared to 0.3% from the control library are uniquely 

mapped to C. elegans genome (Figure 2.2B). The 70,976 small RNA reads in the control 
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library which can be uniquely mapped to the C. elegans genome could be due to 

contamination during library preparation or sequencing errors.  

 In contrast to a typical C. elegans embryos small RNA profile where most small 

RNAs are 21-23 nt starting with a 5ʼ G or 5ʼ U, the C. elegans unique small RNA reads 

from the interspecies hybrid library have a broad size distribution between 18-23 nt and 

a higher occurrence of 5ʼ A. Surprisingly, 85% of these small RNAs are derived from 

ribosomal RNAs (rRNAs). This suggests that paternal ribosomes may become cleaved 

and degraded after fertilization. Indeed, a small RNA profiling study in carefully staged C. 

elegans early embryos have revealed a significant proportion of rRNA-derived small 

RNAs in 1 or 2-cell stage embryos, but not in later embryonic stages (Stoeckius et al., 

2009). This turned out to be consistent with the fact that C. brenneri - C. elegans hybrid 

embryos are usually arrested at the 2 or 4-cell stage.  

 

 

Figure 2.2 Deep sequencing small RNAs in interspecies hybrid nematodes revealed 

paternal rRNA fragments in arrested hybrid embryos. (A) Diagram of C. brenneri females 

crossed to C. elegans males and bear interspecies hybrid embryos (shown in blue, left). C. 

brenneri females crossed to C. brenneri males (right) is the control experiment. (B) Overall 

statistics of small RNA libraries. About 2% of total small RNAs from the hybrid library are uniquely 

mapped to the C. elegans genome. (C) Shown is the size and 5ʼ first nucleotide distribution of 

small RNAs that are uniquely mapped to the C. elegans genome in the hybrid library. Pie chart 
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(Figure 2.2 continued) shows that most small RNAs derived from the C. elegans genome are 

rRNA fragments.  

 

 Although I found a plausible explanation for our deep sequencing results, nothing 

particular interesting stood out. Since the hybrid embryos become immediately arrested, 

it hardly has any chance of making new small RNAs. As a result, this study did not 

provide any conclusive results in regard to our initial hypothesis. However, since I had all 

the small RNAs made from each of the four nematode species - as my control groups, I 

decided to study the small RNA pathways from an evolutionary perspective using a 

comparative genomics approach. The study was therefore transformed into this new 

direction, as presented below. 

 

Deep sequencing small RNAs from four nematode species  

For each species, I constructed 18- to 28-nt small RNA libraries from synchronized 

populations of young gravid adult hermaphrodites for the androdioecious 

(male/hermaphrodite) species C. elegans and C. briggsae and from mixed populations of 

adult males and females for the gonochoristic (male/female) species C. remanei and C. 

brenneri. I also sequenced small RNAs from synchronized early embryos and young 

adult males. 

 

Annotation of piRNAs /21U-RNAs 

C. elegans piRNAs (21U-RNAs) are 21 nt long and contain a 5ʼ U. Previous studies have 

shown that a GTTTC core motif was strongly overrepresented and present in a limited 

region upstream of piRNAs in the C. elegans genome as well as several other nematode 

genomes (de Wit et al., 2009; Ruby et al., 2006). Therefore, only sequences that contain 
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a ʻGTTTCʼ motif (allowing one mismatch at maximum) starting between -47 to -41 nt 

upstream of 21-nt small RNAs with a 5ʼ U were retained. Then, all these sequences were 

aligned based on position of the GTTTC core motif. To further detect nucleotide 

composition bias in these sequences, a position weight matrix (PWM) was calculated. I 

found that in each species, a large and small motif with a ~26-nt spacer which all highly 

resemble the C. elegans annotated piRNA upstream motifs were indeed strongly 

overrepresented. I then filtered the entire dataset of 21-nt small RNA starting with 5ʼ U, 

looking for sequences that have the motifs and define them as piRNAs/21U-RNAs. To 

this end, a score matrix for large motif, one for small motif and one for the distance 

between the two motifs were derived based on the PWM.  

For each nucleotide N at each position i, fN was the foreground (observed) 

frequency of N, bN was the background frequency of N, and P was the total number of 

counts. bN was estimated to be: bA=0.34, bT=0.34, bG=0.16, bC=0.16  

€ 

scorei = log2
fN ⋅ P + bN ⋅ P
bN ⋅ P + bN ⋅ P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

€ 

scoremotif = scorei
i=1

N

∑  

Similarly,  

€ 

scorespacer = log2
fN ⋅ P + bN ⋅ P
bN ⋅ P + bN ⋅ P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1

7

∑  
 

fN was the foreground frequency of certain length, bN=1/7 assuming even 

probabilities of spacer length ranging from 17-23 nt.  

Total score = scorelarge_motif + scoresmall_motif + scorespacer  
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Small RNAs having a total score ≥ 15.5 are defined as piRNAs/21U-RNAs. The 

nucleotide composition and length of spacer sequence between the large and small 

motifs upstream of piRNAs are highly conserved and are shown in Figure 2.3.  

 

Figure 2.3 The upstream large and small motifs and distance between them are highly 

conserved in all four nematode species. (A) The large and small motifs upstream of piRNA 

loci, plotted as a sequence logo (Crooks et al., 2004), are nearly identical in all four species. (B) 

The spacer between large and small motifs is predominately 19-21 nt in all four species.  

 

piRNA loci as reservoir to initiate genome-wide surveillance 

The numbers of both predicted and detected piRNAs in our deep-sequencing library 
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were similar between C. elegans, with 17.6K predicted and 9.9K detected, and C. 

briggsae, with 14.8K predicted and 7.5K detected. On the other hand, C. remanei and C. 

brenneri possess far more piRNAs than C. elegans and C. briggsae. In C. remanei, 

33.8K piRNAs were predicted and 23.7K were detected, and in C. brenneri, 54.8K 

piRNAs were predicted and 29.8K were detected (Table 2.2).  

 

Table 2.2 piRNA pool sizes correlate with levels of nucleotide polymorphism 

  C. elegans  C. briggsae C. remanei C. brenneri 
Predicted piRNAs 17.6K 14.8K 33.8K 54.8K 
Detected piRNAs 9.9K 7.5K 23.7K 29.8K 

Genome Size (Mb) 100 ~100 ~135 ~135 
Neutral nucleotide site 

diversity  Low  Low   0.05  0.14 
 

 

 
Figure 2.4 piRNA saturation analysis. The percentage of the total number of piRNAs identified 

in each library using a random subset of 10-100% of all sequencing reads. C. elegans miRNAs 

are shown for comparison.    

 

A saturation analysis indicates that we are approaching saturation at similar 

speeds for piRNAs in each species. At the current sequencing depth, we have captured 

the majority of piRNAs produced at these particular developmental stages (Figure 2.4). 
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The genomes of C. remanei and C. brenneri are ~35% larger than those of C. elegans 

and C. briggsae; however, this alone does not account for the 2-3 times more piRNAs 

identified in C. remanei and C. brenneri.  

Interestingly, C. elegans and C. briggsae are both androdioecious 

(male/hermaphrodite) species that reproduce primarily by selfing, and possess little 

natural heterozygosity. On the other hand, C. remanei and C. brenneri are both 

gonochoristic (male/female) species that mate at every generation and possess much 

higher natural heterozygosity (Barriere et al., 2009). C. remanei has an estimated neutral 

nucleotide site diversity of 0.05; which is much higher than human, mouse and A. 

thaliana, and slightly higher than D. melanogaster. Strikingly, polymorphism averages a 

0.14 at synonymous sites in C. brenneri, which is the highest among all organisms 

tested (Cutter et al., 2013).  

The interpretations are two folds. Because we are sequencing piRNAs in a 

population of animals, the sequence diversity can be attributed to either allelic 

polymorphism or the number of piRNA loci in the genome. To distinguish these two 

possibilities, I surveyed the nucleotide diversity of piRNA locus. If two piRNAs differ by 

only one or two nucleotides, they are more likely to be allelic. Indeed, ~40% piRNA in C. 

remanei differ by 1-2 nucleotides. On the other hand, 17%, 0% and 0% of piRNA differ 

by 1-2 nucleotide in C. brenneri, C. elegans and C. briggsae respectively, strongly 

suggests that the piRNA diversity predominantly reflects the number of piRNA loci in the 

genome in these other species. Currently, it is thought that piRNAs function to initiate 

genome-wide surveillance in the germline. In the light of this model, I therefore 

hypothesize that gonochoristic (male/female) species that mate at every generation are 

selected to keep a larger repertoire of piRNAs in order to defend against the greater 

diversity of paternal genome encountered during mating.  
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piRNAs share common features in their mechanism of action  

To identify potential piRNA targets, we aligned piRNA sequences with all annotated 

protein-coding genes from each species. piRNA-target recognition is thought to be 

permissive to around three mismatches (Bagijn et al., 2012; Lee et al., 2012); thus we 

did the analysis allowing for 0, 1, 2, or 3 mismatches. When up to 3 mismatches are 

allowed, ~30% of C. elegans and ~20% of C. briggsae genes are potential targets 

(Figure 2.5A). Although C. remanei and C. brenneri contain a substantially larger 

repertoire of piRNAs, the proportions of genes with potential piRNA targets are similar to 

that of C. elegans (Figure 2.5A). 

C. elegans piRNAs can trigger the production of RdRP-dependent secondary 

siRNAs centered on and antisense to piRNA target sites (Bagijn et al., 2012; Lee et al., 

2012). To determine if piRNAs trigger siRNA formation in the other three nematodes, we 

assessed both sense and antisense siRNA abundance at candidate piRNA target sites. 

When all observed piRNAs were included in the analysis, there was only a slight 

enrichment of siRNAs at predicted piRNA target sites (data not shown). However, when 

only the top 20% most abundant piRNAs were considered, we observed a substantial 

enrichment of siRNAs antisense, but not sense, to the predicted piRNA target sites in 

each species (Figure 2.5B). Of these siRNAs, 70-80% are 22G siRNAs. These results 

suggest that, although individual piRNAs are not conserved, the mechanism in which 

they are formed and their propensity to trigger secondary siRNA formation are 

conserved (Bagijn et al., 2012; Lee et al., 2012). 

C. elegans piRNAs are primarily derived from two broad clusters on chromosome 

IV (Ruby et al., 2006) (Figure 2.5C). We asked whether piRNA loci are also clustered in 

other species. We restricted our analysis to C. briggsae because C. remanei and C. 
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brenneri DNA sequences have not yet been assembled into chromosomes. There is 

extensive conservation of chromosome organization and synteny between C. elegans 

and C. briggsae (Hillier et al., 2007; Stein et al., 2003). In C. briggsae, the syntenic 

regions of the two major C. elegans piRNA clusters on chromosome IV also produced 

high levels of piRNAs (de Wit et al., 2009; Ruby et al., 2006) (Figure 2.5C). The two 

regions that give rise to the C. elegans piRNA clusters on chromosome IV are 

rearranged in C. briggsae such that they are separated from one another by only ~1 Mb. 

Interestingly, the ~1 Mb region separating the two clusters also contains a high 

abundance of piRNA loci. Together the region forms a continuous 6.9 Mb piRNA cluster. 

We also identified a second piRNA cluster on chromosome IV (13.1-15.1 Mb) and 

another on chromosome I (9.9-11.3 Mb) specific to C. briggsae (Figure 2.5C). The 

regions that give rise to these two C. briggsae-specific piRNA clusters lack continuous 

synteny with C. elegans, as determined by pairwise alignments. Two C. briggsae piRNA 

clusters previously identified on chromosomes I (7.8-9.5 Mb) and III (0-0.3 Mb) were 

represented by only average numbers of reads in our libraries and may have been 

artifacts of low sequencing depth (de Wit et al., 2009). That piRNAs in both C. elegans 

and C. briggsae tend to cluster and that conservation of these clusters appears to 

depend on long regions of continuous synteny suggests that the clusters are important 

for the birth of new piRNAs. 
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Figure 2.5 Functional and genomic features of piRNAs are conserved. (A) The percentage 

of protein-coding genes in each genome that could be targeted by piRNAs if 0, 1, 2 or 3 

mismatches are allowed. (B) Density of small RNAs within a 100 nt window centered on the 

predicted target sites of the top 20% most abundant piRNAs. Small RNAs that are antisense to 

the predicted targets are shown in blue, and those that are sense to the targets are in red. (C) 

Distribution of observed (red) and predicted (blue) piRNA loci per 100 kb window in C. elegans 

(top) and C. briggsae (bottom). There are two piRNA clusters on C. briggsae chromosome IV: the 

0-6.9 Mb region largely in synteny with the two C. elegans piRNA clusters (highlighted in lines 

with arrows); and the 13.1-15.1 Mb cluster. In addition, C. briggsae has a third piRNA cluster on 

chromosome I at position 9.9-11.3 Mb. 

 

Two distinct classes of piRNAs in each species 

In each of the four Caenorhabditis species we analyzed, we observed a highly significant 

positive correlation between piRNA populations in early embryos and adult 
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hermaphrodites or adult females+males (Figure 2.6A). In contrast, piRNA levels between 

adult males and adult hermaphrodites or adult females+males are only modestly 

correlated and show a biphasic pattern of distribution indicative of two distinct classes 

(Figure 2.6B). In C. elegans, we identified 9,307 distinct piRNAs in hermaphrodites and 

6,065 distinct piRNAs in males. Of these, 5,044 were enriched >3 fold in hermaphrodites 

and 3,336 were enriched >3 fold in males. Only 1,493 piRNAs had similar expression 

levels in hermaphrodites and males (Figure 2.6C left). Each of the other species also 

had distinct sets of piRNAs that were enriched in either males or 

hermaphrodites/females+males (Figure 2.6C), suggesting that the production of distinct 

classes of male and female piRNAs is conserved in nematodes.  

 

Figure 2.6 Two distinct classes of piRNAs in each species. (A) Scatter plots display the 

levels of piRNAs in adult hermaphrodites or adult females+males (x-axis) and early embryos (y-

axis). (B) Scatter plots display the levels of piRNAs in adult hermaphrodites or adult  
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(Figure 2.6 continued) females+males (x-axis) and adult males (y-axis). (C) Venn diagrams show 

the number of piRNAs that are >three-fold enriched in hermaphrodites/females+males (left) or 

males (right). piRNAs shown in the overlapping section have similar expression levels in 

hermaphrodites/females and males. 

 

Distinct trajectories of sex-specific piRNA evolutions in nematodes 

In C. briggsae, C. remanei and C. brenneri, the female/hermaphrodite- or male-enriched 

piRNAs are localized in distinct clusters in the genome. The result of C. briggsae was 

shown (Figure 2.7A, right) because C. remanei and C. brenneri DNA sequences have 

not yet been assembled into chromosomes. In contrast, the genomic distributions of C. 

elegans hermaphrodite- and male-enriched piRNAs are similar, and these clusters are 

syntenic to the C. briggsae hermaphrodite-enriched piRNA cluster (Figure 2.7A, left). 

This suggests that C. elegans is likely to have lost the male-enriched piRNA clusters 

present in their common ancestor (Figure 2.7B).  

To further identify features that could distinguish the two classes of piRNAs I 

analyzed the upstream motifs of each class. The upstream motifs and length of spacer 

between the large and small motifs are similar between the two classes of piRNAs, 

although, we did observe several positions in the large motif and surrounding sequence 

that show a stronger bias for a particular nucleotide in one class relative to the other 

(Figure 2.7C and D). The C. elegans male-enriched piRNAs have a near perfect 

conservation of the core ʻGTTTCʼ motif, whereas the hermaphrodite-enriched piRNAs 

have a much more degenerate nucleotide preferences at the first G and last C position 

of the ʻGTTTCʼ motif (Figure 2.7C). An independent work from John Kim lab showed that 

these differences in the large motif are sufficient to confer sex-specific expression of 

piRNAs (Billi et al., 2013). Interestingly, this difference does not distinguish the male 
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versus female/hermaphrodite-enriched piRNAs in the other three species, in which the 

biggest differences being the ʻTʼ and ʻAʼ immediate upstream and downstream of the 

core motif (Figure 2.7D). Importantly, both the male and female/hermaphrodite-enriched 

piRNAs in other three species have a near perfect conservation of the core ʻGTTTCʼ 

motif, as the C. elegans male class of piRNAs.  

Taken together these two pieces of data, I hypothesize that back in time, the 

common ancestor of these nematodes possessed distinct male and female piRNA 

clusters. As C. elegans evolved to a hermaphroditic species, it lost the male-enriched 

piRNA cluster. On the other hand, its ancient female-enriched piRNA clusters evolved to 

a mixed male- and hermaphrodite-enriched piRNAs through nucleotide degeneration. 

 

Figure 2.7 Distinct evolutionary trajectories of female/hermaphrodite- or male-enriched 

piRNAs. (A) Distribution of hermaphrodite or male-enriched piRNA loci per 100 kb in C. elegans 

and C. briggsae. (B) Distribution of piRNA loci per 100 kb window in C. elegans (top) and  
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(Figure 2.7 continued) C. briggsae (bottom). The two male-specific piRNA clusters in C. briggsae 

and are not present in C. elegans. (C, D) Sequence logos (Crooks et al., 2004) display nucleotide 

conservation in the large motifs upstream of hermaphrodite/female- or male-enriched piRNAs loci 

in C. elegans (C) and the other three species (D). Positions that have a substantially different 

weight matrix between hermaphrodites/females and males are colored. 

 

Evolution of piRNA sequences 

Although we identified nearly 70,000 piRNAs in our deep sequencing data sets in total, 

not a single piRNA sequence was present in more than one species. We also assessed 

piRNA sequence conservation when one, two, or three mismatches were allowed. Even 

with this less stringent criterion, only 0%, 0.01%, and 0.1% of C. elegans piRNAs have 

potential homologs in C. briggsae allowing for one, two, and three mismatches, 

respectively. It is possible that the sheer number of piRNAs (likely >15,000 in each 

species) and tolerance for multiple mismatches relax the sequence conservation of 

individual piRNA.  

On the other hand, since many piRNAs can target TEs, I asked whether piRNAs 

were even under the positive selection, due to a potential arms race between piRNAs 

and TEs. To address this possibility, I surveyed the conservation of piRNA sequences 

among the C. elegans wild isolates between which there was a much shorter 

evolutionary distance. Specifically, I surveyed over 182,000 single-nucleotide 

polymorphisms (SNPs), 45596 small indels, 1116 medium size indels and 166 long 

indels between the common lab strain C. elegans Bristol N2 and the Hawaiian mapping 

strain CB4856 (Swan et al., 2002; Wicks et al., 2001) (R Waterston, personal 

communication). In the C. elegans N2 strain, there are 15,366 piRNAs. If the occurrence 

of SNPs within piRNA sequences were similar to what is expected by chance, this would 



	  

	   34	  

support neutral selection.  On the other hand, if the occurrence of SNPs were 

significantly higher/lower than expected number, it would support a positive/negative 

selection model. 

€ 

piRNA_ SNPsexp ected _ by _ chance =182,000 × 15,366 × 21
100,000,000

= 587.3 

In reality, there are 720 SNPs in piRNA sequences, which is not significantly higher than 

587, the expected number. In addition, the position of SNPs within a piRNA is not biased 

toward any position. Further, the types of nucleotide substitution are mostly A-G and C-

T; and the frequency of each type of substitution in piRNA sequences is not significantly 

different from other regions of the genome. Finally, the piRNAs bearing SNPs have a 

medium expression level among all piRNAs. Together, this does not support the model 

of positive selection of piRNAs during the C. elegans evolution. Rather, piRNA 

sequences seem to have drifted neutrally in C. elegans. 

 

Future works 

Stepping back to where we have come from: we are still intrigued in the potential 

involvement of small RNAs in speciation. As new Caenorhabditis species are 

continuously being discovered, it opens up the door for us to re-visit this question. Two 

Caenorhabditis species pairs capable of producing fertile hybrid progeny were recently 

described (Dey et al., 2012; Woodruff et al., 2010) and have made the Caenorhabditis a 

model system to study speciation. Furthermore, as many more species with much 

shorter evolutionary distances are sequenced, a survey of piRNA evolution now can be 

done with much higher resolution - again, at an evolutionary time scale. Specifically, a 

comparison between the genochoristic C. sp. 9 and androdioecious C. briggsae would 

be very informative to investigate the evolution of piRNAs and hermaphroditism. In 
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collaboration with Asher Cutter lab (University of Toronto), we will deep sequence small 

RNA from C. sp. 9, C. briggsae, and the F1 interspecies hybrid animals (Figure 2.8).  

 

 

Figure 2.8 Experimental design of deep sequencing small RNAs from C. briggsae and C. 

sp. 9 interspecies hybrid progeny. (A, B) The parental strains and F1 interspecies hybrid 

female animals will be collected and subject to small RNA deep sequencing. (B) In the reciprocal 

cross, C. briggsae unc-119(nm67) strain will be used, to distinguish C. briggsae self-progeny to 

the interspecies hybrid progeny (non-Unc).  

 

 Specifically, I propose to ask the following questions: (1) How piRNAs were lost 

and new piRNAs were born by the alignment of two genomes. (2) Whether piRNA 

pathways plays a role in speciation. (3) Whether there are any maternal effect or 

imprinting on piRNA expression. 

 

 

Methods 

Nematode strains 

Nematode strains used in this study: C. elegans N2, C. briggsae AF16, C. remanei 

PB4641, and C. brenneri PB2801. Worms were cultured with bacterial strain OP50 on 

modified nematode growth medium (Andersen et al., 2012) containing 1% agar and 

0.7% agarose to prevent burrowing of C. brenneri. All strains were grown at 20°C. 
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High-throughput sequencing and data analysis 

For the construction of adult hermaphrodite/male+female, male or embryo smallRNA 

libraries, animals were grown at 20°C for 72–74 h post-L1 synchronization and 

harvested as day one gravid adult hermaphrodites for C. elegans and C. briggsae and 

mixed populations of adult males and females for C. remanei and C. brenneri. For male 

isolation, 150-200 day one adult males were handpicked from the plate. Embryos were 

harvested by bleach treatment of ~15,000 gravid adults. Total RNA was isolated by 

dounce homogenization of worms in TRI Reagent, followed by chloroform extraction and 

isopropanol precipitation. Small RNA high-throughput sequencing libraries were 

prepared as described (Montgomery et al., 2012). Briefly, 18- to 28-nt small RNAs were 

size-selected and treated with 20 U Tobacco Acid Phosphatase (Epicenter) at 37°C for 2 

h to digest 5ʼ tri- and diphosphates to monophosphates. Small RNAs were then ligated 

to the 3ʼ adapter using T4 RNA ligase 2 truncated (NEB) for 16 h at 16°C. 5ʼ ligations 

were done with T4 RNA ligase 1 (NEB) for 16 h at 16°C. Adapterligated RNAs were then 

reverse-transcribed and PCR-amplified using Illuminaʼs TruSeq RNA Indexing PCR 

primers. Small RNA amplicons were size-selected by gel purification and subjected to 

Illumina HiSeq sequencing. Small RNA sequences were parsed using a custom Python 

program to remove adapter sequences and then mapped to the corresponding 

nematode reference genome (WormBase release WS230) allowing for 0 mismatches 

using Bowtie software (Langmead et al., 2009). For sequences mapping to multiple 

genomic loci, the total number of reads was divided by the number of genomic loci. 

Small RNA reads were then normalized to the total number of millions of mapped reads 

(i.e., reads per million) 
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piRNA/21U-RNAs annotation 

piRNAs/21U-RNAs were predicted as described (Ruby et al., 2006), using a scoring 

matrix based on the consensus motif, spacer sequence length, and 5ʼ U features of 

piRNAs. piRNA saturation analysis was performed by taking a random subset of 

sequencing reads with increasing size and calculating the percentage of piRNAs 

identified from this sublibrary. 

 

Data access 

All high-throughput sequencing data have been submitted to the NCBI Gene Expression 

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE41461. 
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Evolution of the miRNA pathway in nematodes 
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Summary 

Using the miRDeep2 miRNA prediction program, we identified 37 new miRNAs in C. 

briggsae, 48 new miRNAs in C. remanei, and 215 new miRNAs in C. brenneri from our 

small RNA deep sequencing library (for the library construction, see Chapter II). Majority 

of miRNA families are present in all the four species, suggesting a conserved role of 

miRNAs. Through an alignment of miRNA orthologs, I found that besides the nucleotide 

2-7 (the ʻseed regionʼ), the second most conserved region is nucleotide 13-15. This 

supports that miRNA nucleotide 13-15 has a supplementary role in binding to the mRNA 

targets. New miRNAs can be evolved from existing ones, through nucleotide 

substitution, arm switch or hairpin shifting. New miRNAs can also be born de novo, and 

more than half of new miRNAs are in the introns. New miRNAs are generally expressed 

at a lower level, and have a higher tendency to locate on the X chromosome.  

This chapter contains the following sections: 

- Prediction of miRNAs by miRDeep2 

- Sequence conservation of miRNA orthologs 

- Birth of new miRNAs 

- miRNA gene duplication and divergence 

 

Prediction of miRNAs by miRDeep2 

miRNAs in C. elegans are well-characterized (Gerstein et al., 2010; Grad et al., 2003; 

Kato et al., 2009; Lau et al., 2001; Lee and Ambros, 2001; Lim et al., 2003; Ruby et al., 

2006). However, miRNAs in C. briggsae and C. remanei have been only partially 

characterized (de Wit et al., 2009), and miRNAs in C. brenneri have not been examined. 

To study the evolution of miRNAs, I first set out to obtain a more comprehensive list of 

miRNAs in each species.  
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 There are several miRNA prediction software, including miRDeep2 (Friedlander 

et al., 2008; Friedlander et al., 2012), miRanalyzer (Hackenberg et al., 2009), 

miRExpress (Wang et al., 2009), miRTRAP (Hendrix et al., 2010), DSAP (Huang et al., 

2010), mirTools (Zhu et al., 2010), MIReNA (Mathelier and Carbone, 2010), miRNAkey 

(Ronen et al., 2010) and etc. Among these software, miRDeep2 and MIReNA can 

predict miRNAs from small RNA deep-sequencing data sets. To test the software 

performance, I first asked miRDeep2 and MIReNA to predict miRNAs from the C. 

elegans small RNA deep sequencing library. miRDeep2 has a sensitivity of 73% and low 

false positive predictions. MIReNA has a sensitivity less than 50% and therefore was not 

used for de novo miRNA prediction. To conclusively call a miRNA, we required a 

candidate miRNA predicted by miRDeep2 to also be predicted by MIReNA and/or 

contain a seed sequence (positions 2–7) conserved among the Caenorhabditis species. 

By this standard, I identified 37 new miRNAs in C. briggsae, 48 new miRNAs in C. 

remanei, and 215 new miRNAs in C. brenneri but did not identify any new miRNAs in C. 

elegans. All newly identified miRNA from this study has been deposited into miRBase, 

the central repository for miRNA sequence information. 

 

Conservation of miRNA families 

To date, there are 101 miRNA families annotated in C. elegans, 84 in C. briggsae, 86 in 

C. remanei and 86 in C. brenneri, which constitute 171 distinct miRNA families (Figure 

3.1A and B). Fifty-two miRNA families are conserved in all four species, sixty-two 

families are present in three or more species and most miRNA families within each 

species have homologs in at least two other species (Figure 3.1C).  Few (<6%) miRNA 

families are conserved between only two or three nematode species (Figure 3.1C). 
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However, in each species at least 20% of miRNA families are unique, suggesting that 

miRNAs are born at relatively high rates (Figure 3.1C).  

 

Figure 3.1 Conservation of miRNAs in nematodes. (A) Table of conserved miRNAs classified 

by family. Seed sequences are positions 2-7, relative to the 5ʼ end of the miRNA. The number in 

each row represents the number of miRNAs in each family in each species.  
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(Figure 3.1 continued) Grey shading indicates presence of at least one member of a family. (B) 

As in A, but non-conserved miRNAs. (C) Venn diagram shows the number of miRNA families and 

their overlap in each of the four nematode species. (D) The percentage of families having the 

indicated number of members is shown for conserved and non-conserved miRNAs in each 

species. (E) Table of mirtrons classified by the gene hosting the mirtron.  

 

Among conserved miRNA families, ~40-50% have multiple members within a 

species, whereas <13% of non-conserved families contain multiple members, 

suggesting that ancient miRNA families expand to confer robustness in gene regulatory 

networks (Figure 3.1D). A striking example of this is the miR-35 family which has 

expanded to contain at least eight members in each species and as many as 32 

members in C. brenneri (Figure 3.1A).  The miR-35 family is one of the few miRNA 

families essential for development (Alvarez-Saavedra and Horvitz 2010). Each of the 

other families essential for development, including miR-51, miR-58 and let-7, also 

contain multiple (≥5) members in each species (Figure 3.1A). 

Most miRNAs are processed from primary transcripts in sequential steps 

involving the ribonucleases Drosha and Dicer. However, some miRNAs are instead 

derived from short intronic hairpins called mirtrons, during splicing, thereby bypassing 

Drosha cleavage (Okamura et al., 2007; Ruby et al., 2007). We found that out of the 15 

C. elegans annotated mirtrons (Chung et al., 2011), only miR-62, embedded in the third 

intron of ugt-50, is conserved in the other three nematodes (Figure 3.1E). miR-62 has 

100% sequence conservation in all four nematodes, and the conservation of the intron 

sequence itself is much higher than that of other ugt-50 introns (Figure 3.2). Although 

the role of miR-62 is unknown, the strong selective pressure to maintain it hints at an 

important function. In addition to miR-62, we identified one non-conserved mirtron in C. 
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briggsae, one in C. remanei and two present in C. briggsae, C. remanei and C. brenneri, 

but not in C. elegans (Figure 3.1E).  

 

Figure 3.2 The miR-62 mirtron is highly conserved. (A) The miR-62 mature sequences (in 

purple) are identical in all four nematode species. Nucleotides at other positions of miR-62 mirtron 

that are different between species are shown in grey. (B) The level of conservation of miR-62 

mirtron is substantially higher than other introns in ugt-50.  

 

Sequence conservation of miRNA orthologs 

In animals, miRNAs cause repression by base pairing to the 3′ untranslated region of 

their target mRNAs, which contain perfect or near-perfect sequence complementarity to 

nucleotides 2-7 (the ʻseed regionʼ) of miRNAs and mismatches and bulges in other parts 

of the miRNA-mRNA duplex. However, there is no consensus on where and how many 

mismatches/bulges can be tolerated between a functional miRNA-target mRNA 

interaction. As a result, although many miRNA prediction algorithms have been 

developed, they share few predicted targets in common. Prediction of miRNAs with high 

confidence is still a significantly challenging problem in the field.  

 miRNAs present in all the four nematode species suggest that they were present 
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in the common ancestor and are likely to have important functional roles. In particular, 

the region in the mature miRNA important for target recognition would be most 

conserved. Therefore, this allowed me to study which region of the mature miRNA might 

be important for binding with target mRNAs, by looking at the level of nucleotide 

conservation at each position of orthologous miRNAs.  

 By the alignment of 56 miRNAs that have a 1-1 ortholog in each of the four 

species, I found that 30 mature miRNAs have 100% sequence conservation, 14 miRNAs 

have sequence divergence in only 1-2 positions and 12 miRNAs bear divergence in 

more than 2 positions. Then, I counted for each position of the mature miRNA, how 

many times there is divergence among orthologous miRNAs (Figure 3.3). I found that 

besides the ʻseed regionʼ, nucleotides 13-15 are second most conserved region.  

 

 
Figure 3.3 Nucleotides 13-15 in the mature miRNA are second most conserved, beside 

nucleotide 2-8, the extended seed region. Shown are the levels of divergence between 

orthologous miRNAs, in the four nematode species. 

 

Importantly, this result echoes many previous studies (Brennecke et al., 2005; 

Friedman et al., 2009; Lai and Posakony, 1998; Wightman et al., 1993) and a recent one 
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from the Zamore lab (Wee et al., 2012). Together, these results further consolidate that 

nucleotide 13-16 play a supplementary role for miRNA binding to target transcripts. The 

incorporation of this principle might improve the miRNA target prediction algorithm. 

 

Birth of new miRNAs 

Among the over 200 miRNAs present in C. elegans, 47 are specific in C. elegans 

suggesting these miRNAs were born after the divergence of C. elegans with other 

nematode species. It was estimated that the four nematode species diverged from their 

last common ancestor approximately ~110 million generations ago (Cutter et al., 2009). 

Therefore, as C. elegans evolved, ~0.43 new miRNAs were gained every million 

generation. However, since miRNAs were constantly dying as well, the miRNA birth rate 

would be higher than 0.43 per million generation. 

 A comparison between conserved/old versus new C. elegans miRNAs indicates 

that new miRNAs are generally weakly expressed (Figure 3.4). This is consistent with 

the hypothesis that new miRNAs play a less significant role in the gene regulatory 

network, partially due to their low expression levels.  

             

Figure 3.4 New miRNAs are generally weakly expressed. Shown are expression levels of 

conserved/old (red) and new (blue) C. elegans miRNAs at the three developmental stages, in a 

log scale.  
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 52% of new miRNAs (n=39), whereas only 18% of conserved/old miRNAs (n=32) 

in C. elegans are in the intron of protein-coding genes (p < 0.01, Chi-square test). This 

suggests that new miRNAs are more likely to be evolved from introns in nematodes. 

Intriguingly, I found that new miRNAs are also more likely to be located on the X 

chromosome (Figure 3.5). It is possible that the X-inactivation in the germline prevents 

the expression of these miRNAs during the germline development and in this way 

reduces any potential deleterious effects of these new miRNAs on embryos.  However, it 

was showed that miRNAs can escape the X-inactivation in mammals (Meunier et al., 

2013). The reason for the enrichment of new miRNAs on the X chromosome is unclear. 

 

  

Figure 3.5 The genomic locations of conserved/old and new miRNAs in C. elegans. 

 

In Arabidopsis, the 22-nt miRNAs primarily arise from foldback precursors 

containing asymmetric bulges (Cuperus et al., 2010). However, it is less clear how new 

miRNAs were evolved in animals. To track the evolutionary trajectory of newly evolved 

miRNAs in C. elegans, I aligned the newly evolved C. elegans miRNAs with genomes of 

other nematode species. Since most new miRNAs in the intragenic regions cannot be 
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aligned to other genomes, I focused the following analysis on several C. elegans new 

miRNAs located in the introns. For example, by an alignment of C. elegans mir-4826 

mirtron with the corresponding C. briggsae intron, I found that this intron in C. briggsae 

does not have a miRNA-like secondary structure (Figure 3.6B, right).  In C. elegans, this 

intron has undergone multiple deletions, substitutions and small insertions (Figure 3.6A) 

and eventually evolves a perfect hairpin secondary structure (Figure 3.6B, left). Several 

other C. elegans new miRNAs were also evolved like mir-4826 and are not shown here 

one by one. Together, it suggests that in nematodes, miRNAs can evolve de novo 

through multiple rounds of mutations.  

 

Figure 3.6 Born of the C. elegans mir-4826 mirtron. (A) Sequence alignment of the C. elegans 

mir-4826 mirtron against the C. briggsae corresponding intron. (B) Secondary structure prediction 

of the C. elegans mir-4826 mirtron and the C. briggsae corresponding intron, using the mfold 

algorithm (Zuker, 2003). 
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miRNA gene duplication and divergence 

Besides de novo birth of new miRNAs, miRNA genes also evolve from existing ones. In 

particular, miRNA gene duplications lessen the selective pressure on one miRNA 

paralog and this provides a reservoir for the evolution of new miRNA. Taking the most 

duplicated mir-35 family of miRNAs as an example, they underwent three basic types of 

changes. The most common divergence among miRNA paralogs is nucleotide 

substitution (Figure 3.7A), suggesting point mutations during evolution. All of nucleotide 

substitutions in the mir-35 family occur outside of the seed sequence, mainly at the 3ʼ 

end of the mature miRNA, indicating they might still possess overall similar target 

specificity. Indeed, the C. elegans mir-35 family members are redundantly required for 

embryonic development (Alvarez-Saavedra and Horvitz, 2010; Massirer et al., 2012). 

The second type of evolution is through arm switching. Originally, the mature mir-41 is 

located at the 3ʼ arm of the hairpin: as for all the C. elegans mir-41 paralogs and its 

orthologs in the other three species. The C. elegans mir-41 hairpin bears several 

mutations in the stem region and this causes the 5ʼ arm of the hairpin to become the 

predominant miRNA (Figure 3.7B). Since this miRNA has different seed sequence, a 

new miRNA with entirely different set of target genes was evolved. Lastly, miRNA genes 

can evolve through hairpin shifting. The mature mir-37 was originally located at the 3ʼ 

arm of the hairpin, as shown on the top of Figure 3.7C. In C. elegans, the locus evolved 

a second hairpin immediately downstream of the ancient hairpin, and the mature mir-37 

is made from its 5ʼ arm (Figure 3.7C). This can give rise to a different new miRNA, if arm 

switch occurs after the hairpin shifting event.    
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Figure 3.7 Evolution of the mir-35 miRNA gene family. (A) Nucleotide divergence in the C. 

elegans mir-35 family. Positions highlighted in purple were mutated before some of the mir-35 

family gene duplications. Positions highlighted in red bear divergence in only one miRNA and 

therefore the mutation was likely to happen after all gene duplications. (B) Arm switching. In C. 

remanei, the miRNA on the 3ʼ arm of mir-41 hairpin is much more abundant whereas in C. 

elegans, the miRNAs on the 5ʼ arm is more abundant. (C) Hairpin shifting, the diagram is adapted 

from (de Wit et al., 2009). For (B) and (C), the mature miRNA is shown in red and miRNA star 

strand in purple. 

 

Together, our analyses revealed that majority of miRNAs are highly conserved 

across the nematode species. Meanwhile, many new miRNAs were born in each species 

either de novo or through evolution of existing ones via nucleotide substitution, arm 

switching or hairpin shifting. 

!"#$%&'()*+**,,,),,+++*)+,*+,)
!"#$%-'()*+**,,,),++++))*,*+),
!"#$%.'()*+**,,,),++*+*)),*+,)
!"#$%/'()*+**,,,+,+++++*),,+,)
!"#$%0'()*+**,,,),)+++)*+,*)),
!"#$12'()*+**,,,),)+*+)*+,*)++
!"#$13'()*+**,,,),+++++)*+**)+

!"!"""!"!##"!!"#""!"#!$#$!!#!#!$$!#!"!$!#$##"""!"$$#$#!!"#$"!%

!#$##"""!"$$#$#!!"#$"!""!##!#"!""!!!#!#!"!"$"##$""!##!"!!##""!!!!!!##"!""!"$!$%

A

B

C

!"#$%&'$()

!'"$%&'$()

!"#$%&'$*+



	  

	   53	  

Reference 

Alvarez-Saavedra, E., and Horvitz, H.R. (2010). Many families of C. elegans microRNAs 
are not essential for development or viability. Curr Biol 20, 367-373. 

Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-
target recognition. PLoS Biol 3, e85. 

Cuperus, J.T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R.T., Takeda, A., 
Sullivan, C.M., Gilbert, S.D., Montgomery, T.A., and Carrington, J.C. (2010). Unique 
functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from 
target transcripts in Arabidopsis. Nat Struct Mol Biol 17, 997-1003. 

Cutter, A.D., Dey, A., and Murray, R.L. (2009). Evolution of the Caenorhabditis elegans 
genome. Mol Biol Evol 26, 1199-1234. 

de Wit, E., Linsen, S.E., Cuppen, E., and Berezikov, E. (2009). Repertoire and evolution 
of miRNA genes in four divergent nematode species. Genome Res 19, 2064-2074. 

Friedlander, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and 
Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using 
miRDeep. Nat Biotechnol 26, 407-415. 

Friedlander, M.R., Mackowiak, S.D., Li, N., Chen, W., and Rajewsky, N. (2012). 
miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven 
animal clades. Nucleic Acids Res 40, 37-52. 

Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian 
mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105. 

Gerstein, M.B., Lu, Z.J., Van Nostrand, E.L., Cheng, C., Arshinoff, B.I., Liu, T., Yip, K.Y., 
Robilotto, R., Rechtsteiner, A., Ikegami, K., et al. (2010). Integrative Analysis of the 
Caenorhabditis elegans Genome by the modENCODE Project. Science. 

Grad, Y., Aach, J., Hayes, G.D., Reinhart, B.J., Church, G.M., Ruvkun, G., and Kim, J. 
(2003). Computational and experimental identification of C. elegans microRNAs. Mol 
Cell 11, 1253-1263. 

Hackenberg, M., Sturm, M., Langenberger, D., Falcon-Perez, J.M., and Aransay, A.M. 
(2009). miRanalyzer: a microRNA detection and analysis tool for next-generation 
sequencing experiments. Nucleic Acids Res 37, W68-76. 

Hendrix, D., Levine, M., and Shi, W. (2010). miRTRAP, a computational method for the 
systematic identification of miRNAs from high throughput sequencing data. Genome Biol 
11, R39. 



	  

	   54	  

Huang, P.J., Liu, Y.C., Lee, C.C., Lin, W.C., Gan, R.R., Lyu, P.C., and Tang, P. (2010). 
DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 38, W385-391. 

Kato, M., de Lencastre, A., Pincus, Z., and Slack, F.J. (2009). Dynamic expression of 
small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during 
Caenorhabditis elegans development. Genome Biol 10, R54. 

Lai, E.C., and Posakony, J.W. (1998). Regulation of Drosophila neurogenesis by 
RNA:RNA duplexes? Cell 93, 1103-1104. 

Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny 
RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862. 

Lee, R.C., and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis 
elegans. Science 294, 862-864. 

Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., Burge, 
C.B., and Bartel, D.P. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev 
17, 991-1008. 

Massirer, K.B., Perez, S.G., Mondol, V., and Pasquinelli, A.E. (2012). The miR-35-41 
Family of MicroRNAs Regulates RNAi Sensitivity in Caenorhabditis elegans. PLoS 
Genet 8, e1002536. 

Mathelier, A., and Carbone, A. (2010). MIReNA: finding microRNAs with high accuracy 
and no learning at genome scale and from deep sequencing data. Bioinformatics 26, 
2226-2234. 

Meunier, J., Lemoine, F., Soumillon, M., Liechti, A., Weier, M., Guschanski, K., Hu, H., 
Khaitovich, P., and Kaessmann, H. (2013). Birth and expression evolution of mammalian 
microRNA genes. Genome Res 23, 34-45. 

Ronen, R., Gan, I., Modai, S., Sukacheov, A., Dror, G., Halperin, E., and Shomron, N. 
(2010). miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics 
26, 2615-2616. 

Ruby, J.G., Jan, C., Player, C., Axtell, M.J., Lee, W., Nusbaum, C., Ge, H., and Bartel, 
D.P. (2006). Large-scale sequencing reveals 21U-RNAs and additional microRNAs and 
endogenous siRNAs in C. elegans. Cell 127, 1193-1207. 

Wang, W.C., Lin, F.M., Chang, W.C., Lin, K.Y., Huang, H.D., and Lin, N.S. (2009). 
miRExpress: analyzing high-throughput sequencing data for profiling microRNA 
expression. BMC Bioinformatics 10, 328. 



	  

	   55	  

Wee, L.M., Flores-Jasso, C.F., Salomon, W.E., and Zamore, P.D. (2012). Argonaute 
divides its RNA guide into domains with distinct functions and RNA-binding properties. 
Cell 151, 1055-1067. 

Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the 
heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. 
Cell 75, 855-862. 

Zhu, E., Zhao, F., Xu, G., Hou, H., Zhou, L., Li, X., Sun, Z., and Wu, J. (2010). mirTools: 
microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids 
Res 38, W392-397. 

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. 
Nucleic Acids Res 31, 3406-3415. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

	   56	  

 

 

 

 

 

 

CHAPTER FOUR 

 

 

 

 

The mevalonate pathway regulates miRNA activity in 
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Summary 

The mevalonate pathway is highly conserved and mediates the production of 

isoprenoids, which feed into biosynthetic pathways for sterols, dolichol, ubiquinone, 

heme, isopentenyl adenine, and prenylated proteins. We found that in Caenorhabditis 

elegans, the non-sterol biosynthetic outputs of the mevalonate pathway are required for 

the activity of miRNAs in silencing their target mRNAs. Inactivation of genes that mediate 

multiple steps of the mevalonate pathway causes derepression of several miRNA target 

genes, with no disruption of the miRNA levels, suggesting a role in miRNA-induced 

silencing complex (miRISC) activity. Dolichol phosphate, synthesized from the 

mevalonate pathway, functions as a lipid carrier of the oligosaccharide moiety destined 

for protein N-linked glycosylation. Inhibition of the dolichol pathway of protein N-

glycosylation also causes derepression of miRNA target mRNAs. The proteins that 

mediate miRNA repression are therefore likely to be regulated by N-glycosylation. 

Conversely, drugs such as statins, which inhibit the mevalonate pathway, may 

compromise miRNA repression as well as the more commonly considered cholesterol 

biosynthesis. 

 

 

Motivating Questions 

This project was initially motivated by a hypothesis that some small RNAs are covalently 

linked to proteins, forming RNA bar codes that could mediate interaction with 

complementary coded proteins and nucleic acids, proposed by Gary Ruvkun. There are 

a few pieces of evidence that bacterial small RNAs can be coupled to modified 

nucleotides such as Coenzyme A (CoA) (Kowtoniuk et al., 2009) and Nicotinamide 

adenine dinucleotide (NAD) (Chen et al., 2009). These modifications would allow small 
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RNAs to covalently interact with proteins, for example via disulfide bond or thioester 

bond. Although the potential functions of these small RNA-protein complexes were 

completely speculative, we hypothesized that the chemical modifications of small RNAs 

could be important for their functions. To test this hypothesis, we assembled a cherry-

picked RNAi library, targeting genes function in various biosynthetic pathways (for 

example, CoA metabolisms), genes predicted to interact with RNAs, as well as proteins 

enriched in cysteine that potentially can be covalently linked to modified RNAs. The 

genes targeted by this cherry-picked RNAi library are listed in Table 4.1.  

I specifically asked whether the presumed RNA modifications are important for 

miRNA activity. If our hypotheses were true, the RNAi library should be enriched for 

genes important for miRNA function, compared to a random assembled RNAi library. In 

C. elegans, the let-7 miRNA regulates developmental timing events during the fourth 

larval stage (L4)-to-adult transition. Loss of let-7 activity either by mutation of the let-7 

gene or inactivation of dcr-1/Dicer or alg-1/Argonaute, the core components in miRNA 

maturation and function, cause retarded heterochronic phenotypes in which larval 

developmental patterns are reiterated and adult-specific specializations do not occur 

(Grishok et al., 2001; Reinhart et al., 2000). To identify genes that act in the miRNA 

pathway, I screened the sulfome RNAi library for gene inactivations that enhance a weak 

let-7(mg279) reduction-of-function mutation. However, there was only one strong hit from 

this screen, hmgs-1, which encodes the C. elegans ortholog of HMG-CoA synthase. 

Although our cherry-picked RNAi library was not enriched for genes important for miRNA 

function, I decided to continue studying the hmgs-1 gene anyway. 
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Table 4.1 Cherry-picked RNAi library 
 

Gene 
Gene Public 
Name Gene Description  

B0024.9 trx-2   

B0228.5 trx-1 trx-1 encodes a thioredoxin, a small redox protein that functions as a protein-disulfide reductase 

B0416.5a     

C01B7.1 C01B7.1   

C02A12.1 gst-33   

C02F5.1 knl-1 

KNL-1 is an essential kinetochore component that is required for proper spindle elongation and chromosome 
separation, and in the kinetochore assembly pathway, plays a key role in linking the initiation of kinetochore 
formation with the construction of a functional microtubule-binding interface; in the assembly pathway, KNL-1 
functions downstream of the DNA-proximal kinetochore components CeCENP-A/HCP-3 and CeCENP-B/HCP-
4 and upstream of the outer kinetochore components HIM-10/Nuf2p, NDC-80/HEC1, CeBUB-1, HCP-1, and 
CeCLASP2/CLS-2 

C03D6.3 cel-1 

cel-1 encodes a mRNA capping enzyme, with a N-terminal region with RNA triphosphatase activity and a C-
terminal region containing motifs found in yeast and vaccinia virus capping enzyme guanylytransferases; cel-1 
is required for embryonic viability, body morphology, and vulval development. 

C06E7.3 C06E7.3   

C07A12.4 pdi-2   

C12C8.2 C12C8.2   

C14B1.1 pdi-1   

C14B1.4 tag-125 
tag-125/C14B1.4 encodes an ortholog of the histone methyltransferase subunit WDR5 (OMIM:609012) that 
antagonizes SynMuv transcriptional repressors. 

C14B1.5 C14B1.5 

C14B1.5 encodes an ortholog of S. cerevisiae YIL103 and human DPH2L1/OVCA1 (OMIM:603527, deleted or 
downregulated in ovarian tumors); C14B1.5 is paralogous to S. cerevisiae DPH2/YKL191W, a protein 
component of diphtamide synthesis. 

C14B9.2 C14B9.2   

C14B9.7 rpl-21 
rpl-21 encodes a large ribosomal subunit L21 protein; by homology, RPL-21 is predicted to function in protein 
biosynthesis; in C. elegans, RPL-21 activity is required for embryonic and germline development. 

C16A3.3 C16A3.3   

C16C10.12 C16C10.12   

C23H3.3 C23H3.3   

C23H3.5 C23H3.5   

C24F3.5 abt-1 

abt-1 encodes a predicted ATP-binding cassette (ABC) transporter that is a member of the ABCA subfamily of 
transport proteins; ABT-1 is predicted to function as a transmembrane protein that couples energy to transport 
of various molecules across membranes, but as loss of abt-1 activity via RNAi results in no obvious defects, 
the precise role of abt-1 in C. elegans development and/or behavior is not yet known. 

C24F3.5 abt-1 

abt-1 encodes a predicted ATP-binding cassette (ABC) transporter that is a member of the ABCA subfamily of 
transport proteins; ABT-1 is predicted to function as a transmembrane protein that couples energy to transport 
of various molecules across membranes, but as loss of abt-1 activity via RNAi results in no obvious defects, 
the precise role of abt-1 in C. elegans development and/or behavior is not yet known. 

C25A1.6 C25A1.6   

C29E4.2 kle-2   

C29E4.7 C29E4.7   

C30H7.2 C30H7.2   

C34B2.2 kbp-5   

C34B7.4 C34B7.4   

C44B12.3 C44B12.3   

C44B7.10 C44B7.10   

C49F5.1 sams-1   

C52E12.3 sqv-7 
SQV-7 promotes glycosaminoglycan biosynthesis by translocating UDP-glucuronic acid, UDP-N-
acetylgalactosamine, and UDP-galactose into the lumen of the Golgi apparatus 

C53D5.5 C53D5.5 
The C53D5.5 gene encodes an ortholog of the human gene GAMMA-GLUTAMYLTRANSFERASE 1 (GGT1), 
which when mutated leads to glutathionuria (OMIM:231950). 
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Table 4.1 (continued) 
 

Gene 
Gene Public 
Name Gene Description  

C53D5.6 imb-3 

imb-3 encodes an importin-beta-like protein orthologous to Drosophila, vertebrate, and yeast 
importin/karyopherin-beta3; IMB-3 is predicted to function as a nuclear transport factor that, with the RAN-1 
GTPase, regulates nuclear import of ribosomal proteins 

C54D2.4 sul-3 
sul-3 is orthologous to the human gene ARYLSULFATASE B (ARSB; OMIM:253200), which when mutated 
leads to mucopolysaccharidosis type VI. 

C54G10.2 rfc-1   

C55B7.6 sulp-1 
 sulfate permease family of anion transporters; by homology, SULP-1 is predicted to function as an anion 
transporter that regulates cellular pH and volume via transmembrane movement of electrolytes and fluids 

D1053.1 gst-42 

gst-42 is orthologous to the human gene GLUTATHIONE TRANSFERASE ZETA-1 (also known as 
MALEYLACETOACETATE ISOMERASE; GSTZ1; OMIM:603758), which when mutated is thought to lead to a 
variety of type I tyrosinemia. 

D2005.5 drh-3   

D2023.2 pyc-1 pyruvate carboxylase ortholog 

D2096.4 sqv-1 
sqv-1 encodes a UDP-glucuronic acid decarboxylase, biochemically active in vitro, that is required for 
cytokinesis of one-cell embryos and for vulval morphogenesis 

DH11.3 pgp-11 

pgp-11 encodes an ATP-binding protein that is a member of the P-glycoprotein subclass of the ATP-binding 
cassette (ABC) transporter superfamily; pgp-11 is predicted to function as a transmembrane protein that 
couples energy to transport of various molecules across membranes 

E02H1.1 E02H1.1   

E02H1.4 pme-2   

EEED8.5 mog-5 
The mog-5 gene encodes a DEAH helicase orthologous to the Drosophila CG8241, the human HRH1, and the 
S. cerevisiae PRP22 proteins. 

F01G4.3 F01G4.3   

F08B4.6 hst-1   

F08B4.7 F08B4.7   

F08C6.2 F08C6.2 
F08C6.2 encodes a lipid-activated CTP:phosphocholine cytidylyltransferase (CCT), with CCT activity in vitro; 
recombinant F08C6.2 enzyme is most activated by a 1:1 mixture of phosphatidylcholine:oleate vesicles 

F11G11.2 gst-7 glutathione S-transferase. 

F11G11.3 gst-6 glutathione S-transferase. 

F12F6.3 rib-1 
The rib-1 gene encodes an ortholog of human EXT1, which when mutated leads to hereditary multiple 
exostoses, type I (OMIM:133700). 

F13A7.10 gst-44   

F14D12.5 sulp-2 sulp-2 encodes one of eight C. elegans members of the sulfate permease family of anion transporters 

F17A9.1 F17A9.1 

F17A9.1 encodes a divergent ONECUT class CUT homeobox protein with a single N-terminal cut domain; 
F17A9.1 has an atypical tyrosine residue at position 48 of its homeodomain rather than a phenylalanine or 
tryptophan residue; the cut domain may be a compact DNA-binding domain composed of alpha helices; 
phylogenetically, F17A9.1 is (somewhat distantly) affiliated with C17H12.9, Drosophila ONECUT, and 
mammalian HNF6 proteins; F17A9.1 has no obvious function in mass RNAi assays. 

F21H7.1 gst-22   

F22B8.6 F22B8.6   

F25B4.6   HMG-CoA synthase 

F26E4.10 drsh-1 

Drosha; by homology, DRSH-1 is predicted to function as an endoribonuclease that, in the nucleus, initiates 
cleavage of primary miRNA transcripts (pri-mRNAs) into pre-miRNAs that are then exported to the cytoplasm 
for further processing 

F26E4.12 F26E4.12   

F26E4.8 tba-1   

F26H11.1 kbp-3   

F26H9.4 F26H9.4   

F26H9.6 rab-5 

rab-5 encodes a rab related protein of the Ras GTPase superfamily that affects both the localization of P-
granules and of PAR-2, and also affects embryonic and larval viability and the cytoplasmic appearance of cells 
in the early embryo. 

F26H9.8 F26H9.8   
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Table 4.1 (continued) 
 

Gene 
Gene Public 
Name Gene Description  

F28D1.10 gex-3 

The gex-3 gene encodes a homolog of NAP1/NCKAP1, a mammalian protein ligand of the small GTPase 
Rac1, and of Drosophila HEM2/NAP1/KETTE; gex-3 is required for tissue morphogenesis and cell migrations; 
in gex-3 mutants, cells differentiate properly but fail to become organized. 

F29F11.1 sqv-4 

sqv-4 encodes a UDP-glucose 6-dehydrogenase, biochemically active in vitro, that is required for cytokinesis 
of one-cell embryos and for vulval morphogenesis; SQV-4 is orthologous to Drosophila SUGARLESS, human 
UGDH (OMIM:603370), and zebrafish JEKYLL 

F35E8.8 gst-38   

F35G12.8 smc-4 
The smc-4 gene encodes a homolog of the SMC4 subunit of mitotic condensin; SMC-4 acts with MIX-1 to 
enable chromosome segregation. 

F35G2.4 phy-2   

F37B1.1 gst-24   

F37B1.2 gst-12   

F37B1.3 gst-14   

F37B1.4 gst-15   

F37B1.5 gst-16   

F37B1.7 gst-18   

F37B1.8 gst-19   

F37B12.1 F37B12.1   

F37B12.2 gcs-1 

gcs-1 encodes the C. elegans ortholog of gamma-glutamine cysteine synthetase heavy chain (GCS(h)); GCS-
1 is predicted to function, in a conserved oxidative stress response pathway, as a phase II detoxification 
enzyme that catalyzes the rate-limiting first step in glutathione biosynthesis 

F37D6.1 mus-101   

F37F2.3 gst-25   

F41D9.5 sulp-3 

sulp-3 encodes one of eight C. elegans members of the sulfate permease family of anion transporters; by 
homology, SULP-3 is predicted to function as an anion transporter that regulates cellular pH and volume via 
transmembrane movement of electrolytes and fluids; a sulp-3::GFP transcriptional fusion is expressed 
exclusively in the pharyngeal muscles. 

F42E11.1 pgp-4 
pgp-4 encodes an ATP-binding protein that is a member of the P-glycoprotein subclass of the ATP-binding 
cassette (ABC) transporter superfamily 

F42G8.6 moc-3 
Molybdopterin synthase sulfurylase, orgholog to human Adenylyltransferase and sulfurtransferase MOCS3, to 
generate MPT 

F43D2.1 F43D2.1   

F43E2.4 haf-2 

haf-2 encodes a predicted transmembrane protein of the ATP-binding cassette (ABC) transporter superfamily; 
by homology, HAF-2 is proposed to function in ATP-dependent transport of molecules across plasma and 
intracellular membranes; however, as loss of HAF-2 function via RNA-mediated interference (RNAi) does not 
result in any abnormalities 

F46E10.9 dpy-11 

dpy-11 encodes a membrane- associated thioredoxin- like (TRX) protein that affects body shape and ray 
morphology; the TRX domain displays catalytic activity in vitro, and dpy-11 is expressed in cytoplasm of 
hypodermis. 

F49E10.5 ctbp-1 tag-45 encodes a D-isomer specific 2-hydroxyacid dehydrogenase. 

F49E10.5 ctbp-1 tag-45 encodes a D-isomer specific 2-hydroxyacid dehydrogenase. 

F49E2.1 F49E2.1 
Description: F49E2.1 is orthologous to the human gene MOLYBDENUM COFACTOR SYNTHESIS-STEP 1 
PROTEIN A-B SPLICE TYPE III 

F49H6.5 F49H6.5 
The F49H6.5 gene encodes a homolog of the human gene MOCS1A, which when mutated leads to 
molybdenum cofactor deficiency 

F54C8.1 F54C8.1   

F54C8.2 cpar-1   

F54C8.3 emb-30 

emb-30 encodes an anaphase-promoting complex/cyclosome (APC/C) component orthologous to mammalian 
APC-4 and Schizosaccharomyces pombe Lid1; EMB-30 is required for the metaphase-to-anaphase transition 
during meiosis and mitosis, for establishing anterior-posterior polarity in the early embryo, and for proper 
localization of germline granules and the maternally provided PAR-2 and PAR-3 proteins. 

F54C8.4 F54C8.4   

F54D5.1 pcs-1   

F54G8.3 ina-1   



	  

	   63	  

Table 4.1 (continued) 
 

Gene 
Gene Public 
Name Gene Description  

F56B3.10 gst-40   

F58A4.3 hcp-3 

The hcp-3 gene encodes a centromere protein (CENP)-A homolog required for kinetochore function; 
inactivation of hcp-3 in one-cell embryos by RNAi causes a complete loss of kinetochores, with total failure of 
chromosomes to segregate properly during mitosis, to recruit components to the kinetochore other than HCP-
3, or to assemble a stable mitotic spindle; in addition, HCP-4 fails to localize properly to the kinetochore in hcp-
3(RNAi) embryos. 

F59C6.4 F59C6.4   

H06O01.1 pdi-3 

pdi-3 encodes a protein disulfide isomerase (Updike and Strome) required for normal cuticle collagen 
deposition and, subliminally, for maintenance of normal body shape; PDI-3 has both PDI and calcium-
dependent transglutaminase activity in vitro, crosslinking proteins through a gamma-glutamyl epsilon-lysine 
dual residue 

K01G5.6 rib-2 
The rib-2 gene encodes an ortholog of human EXT2, which when mutated leads to hereditary multiple 
exostoses, type II (OMIM:133701). 

K02F2.2 K02F2.2   

K02F2.3 tag-203   

K03D10.3 K03D10.3 
The K03D10.3 gene encodes a MYST acetyltransferase orthologous to the Drosophila MALES-ABSENT-ON-
THE-FIRST (MOF) and CG1894 proteins, the human MOF protein, and the S. cerevisiae SAS2 protein. 

K08F4.11 gst-3 gst-3 encodes a predicted glutathione S-transferase. 

K08F4.6 gst-2   

K08F4.7 gst-4 
gst-4 encodes a predicted glutathione S-transferase; mRNA is expressed in adults and accumulation 
increases in response to paraquat. 

K10B3.6 K10B3.6   

K10B3.7 gpd-3 
gpd-3 encodes a predicted glyceraldehyde 3-phosphate dehydrogenase that affects embryonic viability; GPD-
3 interacts with LIN-2 in two-hybrid assays. 

K10B3.8 gpd-2 gpd-2 encodes one of four C. elegans glyceraldehyde-3-phosphate dehydrogenases (GAPDHs 

K10B3.9 mai-1 
mai-1 is homologous to mitochondrial intrinsic ATPase inhibitor protein (IF(1)), which blocks reverse action 
(ATP hydrolysis) by F(0)F(1)-ATPase when its (normally required) proton gradient is lost 

K12G11.1 sulp-4 members of the sulfate permease family of anion transporters 

K12G11.2 sulp-5 

sulp-5 encodes one of eight C. elegans members of the sulfate permease family of anion transporters; by 
homology, SULP-5 is predicted to function as an anion transporter that regulates cellular pH and volume via 
transmembrane movement of electrolytes and fluids 

M03F8.2 pst-1   

M03F8.3 M03F8.3   

M04F3.1 M04F3.1   

R03A10.3 R03A10.3 Molybdenum cofactor sulfurase, in Moco activation, ortholog to Arabidopsis thaliana Aba3 

R03D7.6 gst-5   

R03G5.2 sek-1 
SEK-1 has MAPKK activity and belongs to the MAPKK family; SEK-1 can activate both JNK-1 and PMK-1 in 
the yeast Hog pathway. 

R05H10.5 R05H10.5   

R06A4.7 mes-2 
mes-2 encodes a SET domain-containing protein that is orthologous to the Drosophila Polycomb group protein 
Enhancer of zeste [E(Z)] 

R07B1.4 gst-36   

R07B5.8 R07B5.8 

The R07B5.8 gene encodes a MYST acetyltransferase homologous to the S. cerevisiae SAS3 protein; it is 
also more distantly homologous to the human MOZ and MORF proteins, which share a similar domain 
organization C-terminal to the MYST domain. 

R107.6 cls-2 

cls-2 encodes one of three predicted orthologs of mammalian CLASPs and of Drosophila ORBIT/MAST, 
microtubule-binding proteins required for fibroblast polarization and mitosis; cls-2 is required in mass RNAi 
assays for embryonic development and normal mitotic spindles; it has been claimed that, in an RNAi screen of 
potential microtubule tip-binding proteins, only cls-2(RNAi) yielded embryonic lethality and meiotic defects. 

R107.7 gst-1 gst-1 encodes a putative glutathione S-transferase with highest similarity to the pi class. 

R10E11.4 sqv-3 sqv-3 encodes a beta(1,4)-galactosyltransferase 

R11G1.3 gst-11   
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Table 4.1 (continued) 
 

Gene 
Gene Public 
Name Gene Description  

R11G1.3 gst-11   

R12B2.4 him-10 

related to the Nuf2 kinetochore proteins. in C. elegans, him-10 activity is essential for the proper structure and 
function of mitotic and meiotic kinetochores and thus, for proper attachment and segregation of chromosomes 
during mitosis and meiosis 

R12E2.1 R12E2.1   

R12E2.2 R12E2.2   

R13D7.7 gst-41   

R13F6.1 kbp-1   

R186.3 R186.3   

R186.4 lin-46 
one of two C. elegans paralogs of bacterial MoeA proteins and mammalian gephyrins (E domain, only). Last 
step in molybdenum cofactor synthesis, incorportation of Mo 

R186.7 R186.7   

R53.1 R53.1   

T03F1.8 T03F1.8   

T03F1.9 hcp-4 The hcp-4 gene encodes a centromere protein (CENP)-C homolog, holocentric protein (HCP)-4. 

T04H1.4 rad-50   

T05G5.4 T05G5.4   

T05G5.5 T05G5.5   

T06H11.4 moc-1 
an ortholog of human GEPHYRIN  which when mutated leads to molybdenum cofactor (MoCo) deficiency; 
MOC-1 is also paralogous to LIN-46 

T07A9.6 daf-18 daf-18 encodes a lipid phosphatase homologous to the human PTEN tumor suppresor 

T10B5.5 T10B5.5   

T10B5.6 knl-3 
knl-3 encodes a novel protein; KNL-3 activity is essential for formation of a functional kinetochore and thus, for 
proper chromosome segregation and spindle pole separation 

T13A10.11 tag-32   

T14G10.1 pps-1 
pps-1 is orthologous to human PAPSS1 (OMIM:603262) and human PAPSS2 (OMIM:603005, mutated in 
spondyloepimetaphyseal dysplasia). 

T20G5.11 rde-4   

T20G5.2 cts-1 cts-1 encodes a citrate synthase, predicted to be mitochondrial, that is required for embryonic development. 

T21G5.5 star-2   

T23G11.3 gld-1 
gld-1 encodes a protein containing a K homology RNA binding domain that is required for meiotic cell cycle 
progression during oogenesis in parallel with gld-2, and also affects spermatogenesis 

T23G7.5 pir-1   

T24D1.1 sqv-5 chondroitin synthase that both initiates and elongates chondroitin chains 

T26C5.1 gst-13   

T27A3.6 T27A3.6 
T27A3.6 is orthologous to the human gene MOLYBDENUM COFACTOR BIOSYSTHESIS PROTEIN E, 
function in MPT synthesis 

T28A11.11 gst-23   

VC5.4 mys-1 
The VC5.4 gene encodes a MYST acetyltransferase orthologous to the Drosophila EG0007.7, human TIP60 
and S. cerevisiae ESA1 proteins 

W01A11.6 moc-2 Molybdopterin biosynthesis protein, still, ortholog of human gephyrins 

W01B11.2 sulp-6 

sulp-6 encodes one of eight C. elegans members of the sulfate permease family of anion transporters; by 
homology, SULP-6 is predicted to function as an anion transporter that regulates cellular pH and volume via 
transmembrane movement of electrolytes and fluids 

W01B6.9 ndc-80 
ndc-80 (cogc-7) encodes an ortholog of mammalian COG-7 (OMIM:606978, mutated in congenital disorder of 
glycosylation), a subunit of lobe B of the conserved oligomeric Golgi complex (COGC) 

W04G3.6 sulp-7 sulp-7 encodes one of eight C. elegans members of the sulfate permease family of anion transporters 

W06B3.1 W06B3.1   
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Table 4.1 (continued) 
 

Gene 
Gene Public 
Name Gene Description  

W08D2.7 W08D2.7   

W09D6.6 hmt-1 haf-5 encodes a predicted transmembrane half-molecule ATP-binding cassette (ABC) transporter 

Y110A2AL.13 Y110A2AL.13   

Y110A2AL.14 sqv-2 

sqv-2 encodes a glycosaminoglycan galactosyltransferase II, biochemically active in vitro, that is required for 
cytokinesis of one-cell embryos and for vulval morphogenesis; the common requirement for SQV-2 in both 
cytokinesis and morphogenesis may be to promote filling an extracellular space with hygroscopic 
proteoglycans (either in the eggshell, or underneath the L4 cuticle), which in turn may cause the space to fill 
with fluid. 

Y110A7A.18 ppw-2   

Y110A7A.19 Y110A7A.19   

Y113G7A.11 ssu-1 sulfotransferase  

Y32G9A.1 gst-37   

Y43F4B.6 klp-19 
klp-19 encodes a plus-end-directed microtubule motor protein that is most closely related to motors of the 
kinesin-4 family 

Y45G12C.13 Y45G12C.13   

Y47D3B.1 Y47D3B.1   

Y47D3B.10 dpy-18 

An alpha subunit of prolyl-4-hydroxylase which is a procollagen modifying enzyme required for exoskeleton 
formation, morphogenesis and maintenance of body shape; it is expressed throughout the hypodermis and 
certain head and posterior neurons. 

Y47G6A.24 mis-12 
mis-12 encodes the C. elegans homolog of human and Schizosaccharomyces pombe Mis12 protein; mis-12 
activity is required for proper attachment of chromosomes to the mitotic spindle 

Y48E1B.10 gst-20   

Y48G1A.5 imb-5 

imb-5 encodes an importin-beta-like protein orthologous to mammalian CAS proteins (cellular apoptosis 
susceptibility) and Saccharomyces cerevisiae CSE1 (chromosome segregation 1); IMB-5 is predicted to 
function in nuclear transport of proteins required for mitotic progression or apoptosis as well as in re-export 
of importin-alpha, a nuclear import protein; in C. elegans, IMB-5 is essential for embryogenesis and required 
for normal pronuclear envelope dynamics, and may also play a role in vulval morphogenesis. 

Y48G1BL.2 atm-1 

atm-1 encodes an ortholog of human ATM (OMIM:208900) that is required for the checkpoint response to 
DNA damage; human ATM encodes a phosphatidylinositol-3 kinase homolog that is biochemically activated 
by cellular irradiation, and mutation of ATM leads to ataxia-telengiectasia. 

Y50D4C.4 sqv-6 
sqv-6 encodes a xylosyltransferase, active in cell culture, that is required for cytokinesis of one-cell embryos 
and for vulval morphogenesis 

Y53F4B.29 gst-26   

Y53F4B.30 gst-27   

Y53F4B.31 gst-28   

Y53F4B.32 gst-29   

Y53F4B.33 gst-39   

Y53F4B.35 gst-31   

Y53F4B.37 gst-32  

Y54E10A.2 cogc-1  COG-1/ldlBp 

Y54E10A.3 Y54E10A.3   

Y54E10BR.4 Y54E10BR.4   

Y55F3AM.15 csn-4 csn-4 encodes a protein with similarity to human COP9 proteasome subunit 4. 

Y55F3AR.3 Y55F3AR.3   

Y65B4A.1 Y65B4A.1   

Y67D8C.5 Y67D8C.5   

Y71F9AL.1 Y71F9AL.1   

Y75B7B.2 Y75B7B.2   

Y80D3A.2 emb-4 Uncloned locus that is required maternally for embryogenesis. 
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Table 4.1 (continued) 
 

Gene 
Gene Public 
Name Gene Description  

Y80D3A.2 emb-4 Uncloned locus that is required maternally for embryogenesis. 

ZK1005.1 pme-5 

pme-5 encodes a poly (ADP-ribose) polymerase (PARP) that is a member of a conserved family of enzymes 
that catalyze: 1) the synthesis of poly (ADP-ribose), and 2) the covalent attachment of this polymer to glutamic 
acid residues of acceptor proteins such as histones and topoisomerases in order to regulate cellular processes 
such as maintenance of chromtin structure, programmed cell death, and DNA replication and repair 

ZK1127.10 ZK1127.10 
ZK1127.10 is orthologous to the human gene UNKNOWN (PROTEIN FOR MGC:9471) (CTH; OMIM:219500), 
which when mutated leads to disease. 

ZK1127.4 ZK1127.4   

ZK1127.5 ZK1127.5   

ZK1127.7 ZK1127.7   

ZK1307.5 sqv-8 

SQV-8 is homologous to three distinct glucuronyl transferases (GlcAT-I, GlcAT-P and GlcAT-D) that play a role 
in the synthesis of different glycoconjugates; the common requirement for SQV-8 in both cytokinesis and 
morphogenesis may be to promote filling an extracellular space with hygroscopic proteoglycans (either in the 
eggshell, or underneath the L4 cuticle), which in turn may cause the space to fill with fluid. 

ZK1320.9 ZK1320.9   

ZK287.2 sulp-8 

sulp-8 encodes one of eight C. elegans members of the sulfate permease family of anion transporters; by 
homology, SULP-8 is predicted to function as an anion transporter that regulates cellular pH and volume via 
transmembrane movement of electrolytes and fluids; a SULP-8::GFP fusion is expressed in the basolateral 
membrane of the excretory cell, intestine, and rectal gland cells. 

ZK546.11 gst-30   

ZK637.10 trxr-2   

ZK697.6 gst-21   

 

 

Introduction of the mevalonate pathway  

The mevalonate pathway is present in all higher eukaryotes and many bacteria and 

mediates the production of isoprenoids. The isoprenoids feed into a wide range of 

biosynthetic pathways: sterols, primarily cholesterol; dolichol, which serves as the lipid 

carrier of the oligosaccharide moiety destined for protein N-linked glycosylation; 

ubiquinone and heme A which function in the electron transport chain; prenylated 

proteins; and isopentenyl adenine, which is present in position 37 of tRNAs that read 

codons starting with U (Goldstein and Brown, 1990) (Figure 4.1). Cholesterol, the bulk 

product of the mevalonate pathway in humans and many other organisms, is important 

for membrane structure and steroid hormone synthesis. C. elegans possesses a 

functional mevalonate pathway but lacks all enzymes for the synthesis of sterols, 

suggesting that mevalonate in C. elegans is an important precursor for other biosynthetic 
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pathways (Morck et al., 2009). Although it does not synthesize cholesterol itself, C. 

elegans requires exogenously supplied cholesterol for growth and development (Gerisch 

et al., 2001; Yochem et al., 1999).  

 

Figure 4.1 Diagram of the C. elegans mevalonate pathway. 

 

hmgs-1/HMG-CoA synthase functions in the let-7 miRNA pathway 

Inactivation of hmgs-1 by RNAi causes let-7-like phenotypes in three independent 

assays: first, the burst-through-vulva phenotype characteristic of let-7 strong loss-of-

function mutations (Figure 4.2A); second, the failure to express a reporter gene for an 

adult-specific collagen, col-19::gfp (Figure 4.2B); and third, the failure to produce alae, 

an adult-specific cuticle structure, at the nominal adult stage (Table 4.2).  
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Figure 4.2 Inactivation of hmgs-1 causes let-7-like phenotypes. (A) Shown are the 

percentage of animals that burst after the L4-to-adult molt upon treatment with control, alg-1/2 or 

hmgs-1 RNAi in the indicated genetic background. Inactivation of alg-1/2 or hmgs-1 causes 

bursting with high penetrance in the wild-type animals, but lower penetrance in the lin-42(n1089) 

or lin-28(n719) loss-of-function mutants. (B) Inactivation of hmgs-1 causes animals to not express 

col-19::gfp in hyp7 cells at adult stage. The penetrance of this phenotype is elevated in the let-

7(mg279) mutant and decreased in the lin-42(n1089), lin-28(n719) or lin-41(ma104) loss-of-

function mutants. Inactivation of alg-1/2 also causes animals to not express col-19::gfp in hyp7 

cells; this phenotype is suppressed in lin-42(n1089). 

 

 

Two lines of evidence further support that hmgs-1 functions in the let-7-regulated 

heterochronic pathway. First, although hmgs-1 inactivation causes relatively weak or 

incompletely penetrant retarded phenotypes on its own, these phenotypes are strongly 

enhanced in sensitized genetic backgrounds with compromised let-7 activity (Table 4.2 
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and Figure 4.3). For example, upon hmgs-1 inactivation, 9% of wild-type animals, but 

100% of alg-1(gk214) and 67% of ain-1(ku322) mutants fail to produce adult-specific 

lateral alae (Table 4.2). These mutations in genes that encode the ALG-1/Argonaute 

protein or the AIN-1/ALG-1 INteracting protein compromise miRNA function, and 

inactivation of hmgs-1 is strongly synergistic with these mutations. Second, the retarded 

phenotypes caused by hmgs-1 inactivation are suppressed by the loss-of-function of 

validated let-7 target genes. For example, the retarded phenotypes of hmgs-1 

inactivation are completely suppressed by lin-42(n1089), are partially suppressed by lin-

28(n719), and are weakly suppressed by lin-41(ma104), a hypomorphic mutation that 

causes only weak precocious phenotypes (Figure 4.2). These data suggest that hmgs-1 

functions in the let-7 pathway via the regulation of the activity of validated let-7 target 

genes lin-28, lin-41 and lin-42.  

 

Table 4.2 The effect of hmgs-1 inactivation in hypodermal cell fate speciation 
   % of animals having the adult alaea 
 Strain RNAi No alae  Gapped Complete (n) 
1 Wild Type control 0 0 100 30 
2 Wild Type hmgs-1 9 3 88 32 
3 alg-1(gk214)  control 45 55 0 20 
4 alg-1(gk214)  hmgs-1 100 0 0 20 
5 alg-2(ok304) control 0 0 100 15 
6 alg-2(ok304) hmgs-1 21 29 50 24 
7 ain-1(ku322)  control 10 38 52 21 
8 ain-1(ku322)  hmgs-1 67 28 5 21 
aThe percentage of animals having no/gapped/complete alae structures were assessed after 
the L4-adult molt, only one side of each animal was assayed. 
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Figure 4.3 The percentage of Mlt and burst animals upon a mild knock-down of hmgs-1 or 

alg-1/2 by diluted RNAi is enhanced by the let-7(mg279) mutation. Shown are the percentage 

of healthy, molting defective (Mlt) and burst animals after the L4-to-adult molt in wild type and let-

7(mg279) mutants. Mlt animals retain eggs following a defective molt and are eventually 

consumed by their progeny. Animals were fed starting at the larval stage one (L1) with E. coli 

expressing the hmgs-1 or alg-1/2 dsRNA diluted with control E. coli expressing a benign dsRNA 

and scored after the L4-adult molt. The percentage of burst and Mlt animals is enhanced in the 

let-7(mg279) mutant compared to wild type when fed with diluted hmgs-1 or alg-1/2 RNAi. 

 

hmgs-1 is required for let-7 family and lin-4 miRNA silencing of target genes 

To ask more directly whether hmgs-1 functions in the miRNA pathway, we assayed 

whether miRNA target mRNAs become derepressed upon inactivation of this gene. We 

focused on the genetically verified targets of the let-7 family and lin-4 miRNAs. The 

hunchback factor hbl-1 (Hunchback Like) is silenced synergistically by the let-7 family of 

miRNAs (mir-48, mir-241 and mir-84) during the L2 to L3 stage transition (Abbott et al., 

2005). Knocking down hmgs-1 by RNAi prevents down-regulation of hbl-1::gfp at the L3 

stage. This resembles the phenotype caused by mutations in the let-7 family of miRNAs 

(Figure 4.4A). We assayed whether the silencing of lin-14 by the lin-4 miRNA during the 

late first larval stage (L1) is dependent on hmgs-1. LIN-14 protein levels become 
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derepressed at the late L1 stage by approximately two fold comparing hmgs-1 RNAi-

treated to stage-matched control animals, and the derepression is still apparent at the L2 

stage (Figure 4.4B). To ask if the desilencing of lin-14 upon inactivation of hmgs-1 is due 

to reduced lin-4 miRNA repression of lin-14 via its 3ʼ untranslated region (3ʼUTR), we 

analyzed the down-regulation of lin-14 in the lin-14(n355) gain-of-function mutant, which 

lacks all the sites in the lin-14 3ʼUTR that are complementary to lin-4 and let-7 and its 

paralogs (Hayes and Ruvkun, 2005; Wightman et al., 1991). lin-14 is not further 

desilenced when hmgs-1 is inactivated in the lin-14(n355) mutant background (Figure 

4.4C, top). lin-14 is also not further desilenced in the lin-4(e912) null mutant upon 

inactivation of hmgs-1 (Figure 4.4C, bottom). This indicates that the derepression of lin-

14 after hmgs-1 inactivation is dependent on the lin-14 3ʼUTR and lin-4 miRNA. 

Together, these results show that hmgs-1 is required for silencing of lin-14 by the lin-4 

miRNA. 	  
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Figure 4.4 Inactivation of hmgs-1 causes desilencing of miRNA target genes. (A) 

Inactivation of hmgs-1 causes defects in the down-regulation of hbl-1::gfp at the L3 stage. This 

resembles the phenotype caused by mutations in the let-7 family of miRNAs: mir-48, mir-241 and 

mir-84. The desilencing of hbl-1::gfp upon hmgs-1 RNAi is rescued by supplementing with 2 mM 

mevalonate. Images were captured using the same exposure settings and processed identically. 

Arrowheads point to the desilenced hbl-1::gfp in the nuclei of hyp7 cells. Insets are Nomarski 

images. (B-C) Immunoblots. Actin probed as a control for even loading. (B) Inactivation of hmgs-1 

causes defects in the down-regulation of lin-14, the target of the lin-4 miRNA, at the late L1 stage 

(lane 5) and early L2 stage (lane 6). Mevalonate supplementation rescues this phenotype (lanes 

8 and 9). (C) Inactivation of hmgs-1 does not further desilence lin-14 in the lin-14(n355n679) 

mutant lacking the lin-14 3ʼUTR or the lin-4(e912) null mutant (comparing lanes 5 and 6 to lanes 2 

and 3). (D) The lsy-6 miRNA is expressed in the ASEL but not ASER neuron in wild type. It is 

required for ASEL specification, judged by the expression of lim-6pro::gfp in ASEL,  
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(Figure 4.4 continued) which is promoted by down-regulation of cog-1 by lsy-6. In a sensitized 

genetic background with a weak allele of lsy-6, ot150, inactivation of alg-1/2 or hmgs-1 

significantly enhanced the ASEL specification defect. Supplementing 2 mM mevalonate rescued 

the phenotype of hmgs-1 inactivation. Brackets indicate statistically significant difference judged 

by two-tailed chi-square test.  

 

hmgs-1 acts in miRNA pathways in other cell types as well 

hmgs-1 also modulates the activity of miRNAs whose functions are unrelated to 

developmental timing. lsy-6 is a miRNA that regulates the specification of the taste 

neurons, ASE left (ASEL) and ASE right (ASER), which even though they are bilaterally 

symmetric express distinct patterns of receptor genes based on the asymmetric activity 

of the lsy-6 miRNA (Chang et al., 2003; Johnston and Hobert, 2003). Specifically 

expressed in less than ten neurons including ASEL but not ASER, lsy-6 down-regulates 

the cog-1 transcription factor only in ASEL, thus distinguishing the gene expression 

profile of ASEL from ASER (Chang et al., 2003; Johnston and Hobert, 2003). The ASEL 

neuron of lsy-6(ot71) null mutants fails to down-regulate cog-1 and adopts the ASER 

pattern of gene expression as a result. On the other hand, animals bearing a 

hypomorphic allele of lsy-6, ot150, display the ASEL specification defect with incomplete 

penetrance. Inactivation of genes that are key for miRNA activity, e.g. nhl-2, significantly 

enhances the ASEL fate specification defect in the lsy-6(ot150), but not in the wild-type 

background (Hammell et al., 2009). We asked whether knocking down hmgs-1 causes 

an ASEL specification defect by scoring lim-6pro::gfp, an ASEL-specific reporter. To 

enhance the efficiency of RNAi in neurons, we crossed the lim-6pro::gfp reporter into the 

RNAi-hypersensitive nre-1(hd20) lin-15b(hd126) mutant background (Schmitz et al., 

2007). RNAi was initiated at the L3 stage of lsy-6(ot150); nre-1(hd20) lin-15b(hd126) 
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parental (P0) animals, and lim-6pro::gfp was scored in the progeny. 28% of hmgs-1 RNAi-

treated animals (n=401), compared to 12% of control RNAi-treated animals (n=435) 

showed the ASEL specification defect (Figure 4.4D). However, the progeny of nre-

1(hd20) lin-15b(hd126) animals with the wild-type lsy-6 gene did not show any ASEL 

specification defect upon inactivation of hmgs-1. Similar results were obtained by 

knocking down alg-1/2 by RNAi. This result supports a requirement for hmgs-1 for the 

efficient down-regulation of cog-1 by the lsy-6 miRNA. 	  

Taken together, these observations suggest that hmgs-1 modulates the function 

of many and perhaps all miRNAs in multiple tissues, and at multiple stages during 

development. 

 

hmgs-1 acts downstream of miRNA biogenesis and loading of ALG-1/Argonaute 

We asked whether hmgs-1 is required for miRNA biogenesis/accumulation or activity. To 

distinguish between these possibilities, we first assayed the mature miRNA levels by 

real-time PCR. The levels of let-7, lin-4 and mir-55 all remained unchanged upon 

knocking down hmgs-1 (Figure 4.5A) despite the fact that the targets of let-7 and lin-4 

became derepressed. We also assayed the let-7 level in the let-7(mg279) mutant, which 

has a reduced level of mature let-7 miRNA resulting from defects in the splicing and 

processing of the let-7 transcript (Bracht et al., 2004). Inactivation of hmgs-1 did not 

reduce the level of mature let-7 even in this sensitized genetic background (data not 

shown). In contrast, knocking down alg-1/2 caused a significant reduction of miRNA 

levels, consistent with its role in miRNA biogenesis and stability.  

To assay whether hmgs-1 regulates the competence of ALG-1/Argonaute in 

loading miRNAs, we purified miRISC from synchronized L4-stage alg-1(gk214) mutants 

rescued with an HA-ALG-1 single-copy construct. The HA-ALG-1-bound let-7, lin-4 and 
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mir-55 levels remained unchanged upon inactivation of hmgs-1 (Figure 4.5B and C), 

indicating ALG-1 loading is unaltered. We also found that the guide/passenger-strand 

ratio of these miRNAs remained unchanged when hmgs-1 was inactivated (Figure 4.5D). 

Together, these results position hmgs-1 downstream of miRISC loading and duplex 

unwinding. It suggests that one or multiple downstream steps, for example the 

competence of miRISC in finding and silencing its target mRNAs, are dependent on 

hmgs-1. 

 

Figure 4.5 hmgs-1 acts downstream of miRNA biogenesis/accumulation and loading of 

ALG-1. (A) Shown are the mature miRNA levels in total worm lysate, determined by real-time 

PCR. The miRNA levels are reduced upon alg-1/2 inactivation, but remain unchanged upon 

hmgs-1 inactivation. (B-D) HA-ALG-1 was immunoprecipitated from animals treated with control 

or hmgs-1 RNAi and the level of HA-ALG-1-bound miRNAs was determined. (B) Equal amount of 

HA-ALG-1 was purified from the control and hmgs-1 RNAi-treated animals. Shown is the Western 

blot of HA-ALG-1 in total lysate (top) and from HA-ALG-1 immunoprecipitation (IP) (bottom). (C) 

Relative levels of let-7, lin-4 and mir-55 bound by HA-ALG-1: they remain unchanged upon  
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(Figure 4.5 continued) hmgs-1 inactivation. In (A) and (C), for each miRNA, the result is shown 

relative to its level in animals treated with control RNAi. (D) The guide/passenger-strand ratio of 

let-7, mir-58 and mir-55 was unaltered after inactivation of hmgs-1. The results were normalized 

to the mean guide/passenger-strand ratio in control RNAi-treated animals. The mean and 

standard deviation was calculated from three biological replicates.	  Error bars represent SEM. 

 

We also surveyed whether hmgs-1 regulates the protein level and/or cellular 

localization of the core miRNA cofactors. We monitored ALG-1/Argonaute and AIN-

1/ALG-1 INteracting protein. Neither the overall expression level nor the subcellular 

localization of GFP::ALG-1 or AIN-1::GFP was altered upon knocking down hmgs-1 

(Figure 4.6). 

  

Figure 4.6 hmgs-1 does not regulate the overall expression pattern or subcellular 

localization of ALG-1/Argonaute and AIN-1/ALG-1INteracting proteins. (A) Global GFP::ALG-

1 expression in control, alg-1/2 RNAi or hmgs-1 RNAi-treated L4 animals. Brackets indicate the 

vulval and somatic gonadal expression of GFP::ALG-1 in control and hmgs-1 RNAi but not alg-1/2 

RNAi-treated animals. (B) Shown are several cells in the tail region. GFP::ALG-1 is largely diffuse 
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(Figure 4.6 continued) in the cytoplasm. This pattern is not affected upon RNAi depletion of hmgs-

1. (C) AIN-1::GFP is ubiquitously expressed in L4 animals, with highest expression in the head 

neurons. This pattern is not affected upon RNAi depletion of hmgs-1. (D) Shown are several cells 

in the tail region. AIN-1::GFP exhibits punctate cellular localization, and this pattern is not affected 

upon RNAi depletion of hmgs-1. 

 

The non-cholesterol output of the mevalonate pathway modulates miRNA activity 

Humans and some other organisms have two forms of HMG-CoA synthase: the cytosolic 

form, which acts in the mevalonate pathway, and the mitochondrial form, which functions 

in the production of ketone bodies during starvation. C. elegans bears just the hmgs-1 

ortholog of HMG-CoA synthase, which is predicted to be cytosolic. Therefore, we 

hypothesized that the isoprenoid output of the mevalonate pathway has a role in miRNA 

activity. Three strands of evidence support this hypothesis: 

First, we reasoned that if the retarded phenotypes caused by hmgs-1 inactivation 

are due to reduced biosynthetic outputs of the mevalonate pathway, then supplementing 

mevalonate, the downstream product of HMG-CoA synthase, should rescue these 

phenotypes. Indeed, mevalonate supplementation completely rescued all retarded 

phenotypes caused by inactivation of hmgs-1 (Figure 4.7A, Table 4.3), but did not 

rescue the retarded phenotypes induced, for example, by inactivation of the Argonaute 

gene, alg-1/2 (Table 4.3). Mevalonate supplementation also rescued the desilencing of 

hbl-1::gfp and lin-14 in hmgs-1 RNAi-treated animals (Figure 4.4A and B). Furthermore, 

the ASEL specification defect upon knocking down hmgs-1 was also rescued by 

mevalonate (Figure 4.4D). In contrast, supplementation to even 50 µg/ml cholesterol (the 

standard Nematode Growth Medium contains 5 µg/ml cholesterol) did not rescue any of 

the retarded phenotypes caused by knocking down hmgs-1 (Table 4.3). This indicates 
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that instead of cholesterol, other biosynthetic products of the mevalonate pathway 

modulate miRNA activity. 

 

Figure 4.7 The mevalonate pathway modulates miRNA activity. (A) Inactivation of the 

mevalonate pathway by either application of fluvastatin, inactivation of hmgs-1 by RNAi or 

mutation of hmgr-1, with a low level of mevalonate (1.5 mM) supplied in the medium, causes let-

7(mg279) mutants to fail to express col-19::gfp in hyp7 cells. This phenotype can be rescued by 

supplementing mevalonate. (B) Inactivation of the mevalonate pathway by application of 

fluvastatin or mutation of hmgr-1, with a low amount of mevalonate (1.5 mM) supplied in the 

medium, causes defects in the down-regulation of hbl-1::gfp at the L3 stage. However, hmgr-

1(tm4368) animals growing on high mevalonate (20 mM) show wild-type down-regulation of hbl-

1::gfp. Images were captured using the same exposure settings and processed identically. 

Arrowheads point to the desilenced hbl-1::gfp in the nuclei of hyp7 cells. Insets are Nomarski 

images. 
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Table 4.3 Mevalonate supplementation rescues gene inactivation of hmgs-1 
  No supplement 55 µg/ml cholesterol 2 mM mevalonate 

control RNAi 
healthy gravid 
adult healthy gravid adult healthy gravid adult 

alg-1/2 RNAi burst burst burst 

hmgs-1 RNAi burst burst 
healthy gravid adult 
(complete rescue) 

 

 

Second, HMG-CoA reductase (encoded by hmgr-1) also acts in the miRNA 

pathway. HMG-CoA reductase is the rate-limiting enzyme that acts immediately 

downstream of HMG-CoA synthase in the production of mevalonate. The C. elegans 

hmgr-1(tm4368) mutant strain bears a 620-bp deletion that spans the first three exons, 

causing a likely null mutation in this gene.  The homozygous hmgr-1(tm4368) mutants 

that segregate from a heterozygote arrest at the L1 stage. However, if mevalonate is 

added to the growth media to 20 mM final concentration, the homozygous hmgr-

1(tm4368) mutants are viable and fertile. We found that hmgr-1(tm4368); let-7(mg279) 

mutants grown with low (1.5 mM) mevalonate failed to express col-19::gfp, a defect that 

was not observed when mevalonate was increased to 20 mM (Figure 4.7A). In addition, 

hmgr-1(tm4368) mutants grown with 1.5 mM mevalonate failed to properly down-

regulate hbl-1::gfp at the L3 stage, a  phenotype that was also rescued by a higher 

concentration of mevalonate (Figure 4.7B).  

Third, we found that statins, cholesterol-lowering drugs that inhibit HMG-CoA 

reductase activity, can compromise let-7 activity. When fluvastatin was added to the 

growth medium, it caused let-7(mg279) animals to fail to express col-19::gfp at the adult 

stage (Figure 4.7A). Fluvastatin also prevented the proper down-regulation of hbl-1::gfp 

at the L3 stage (Figure 4.7B), similar to RNAi depletion of hmgs-1 or the hmgr-1(tm4368) 

mutation.  
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Together, the above results strongly indicate that in C. elegans, the non-sterol 

outputs of the mevalonate pathway modulate miRNA activity.  

 

miRNAs in C. elegans are unlikely to bear abundant isopentenyl modification 

Isoprenoids, the end products of the mevalonate pathway, feed into a wide range of 

downstream pathways in addition to the better known synthesis of sterols (Goldstein and 

Brown, 1990). This includes protein prenylation; tRNA isopentenylation; and 

biosynthesis of ubiquinone, heme A and dolichol. Inspired by our initial motivating ideas 

and supported by the fact that tRNA A37 bears an isopentenyl modification, I 

hypothesized that miRNAs could be modified by isopentenyl moiety synthesized from the 

mevalonate pathway.  

The isopentenyl modification of tRNA at A37 has been suggested to stabilize the 

adjacent A36 base pairing with the codon starting with U; therefore reduce the fatal first 

position misreading by inhibiting the wobble capacity (Persson et al., 1994; Robins et al., 

1967). We therefore hypothesized that the mevalonate pathway modulates miRNA 

activity via a similar isopentenyl modification of miRNAs, which might stabilize the base 

pairing between the miRNA and its target mRNA, or facilitate its sorting to appropriate 

cellular compartments. We tested this hypothesis by purifying C. elegans 18-28nt small 

RNA, then digesting the RNA with nuclease P1 to single nucleotide for mass 

spectrometry analysis. Although we can clearly detect the N6-(∆2-isopentenyl)adenosine 

from nuclease P1 treated tRNAs as a positive control (Figure 4.8A and C), we did not 

detect this species from nuclease P1 treated C. elegans small RNA (Figure 4.8B). 

Because miRNAs represent ~30% of 18-28 nt small RNAs, we concluded that the 

majority of C. elegans miRNAs are not isopentenyl modified.  
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Figure 4.8 No isopentenyl-modified miRNAs were detected in C. elegans.  (A) The extracted 

ion chromatogram (EIC) of yeast tRNA sample at [M-H]-m/z=414.11841, the expected mass of 

N6-(∆2-isopentenyl)adenosine. This species is only detected in the nuclease P1 treated, but not 

heat inactivated nuclease P1 treated tRNA sample. (B) The EIC of C. elegans 18-28nt small RNA 

sample at [M-H]-m/z=414.11841. This species cannot be detected. (C) The [M-H]- m/z=414.11865 

species is clearly and only detected in the nuclease P1 treated tRNA sample. It elutes at 13.190 

min. (D) The chemical structure, formula, exact mass and observed mass of N6-(∆2-

isopentenyl)adenosine. 

 

 

The dolichol pathway for protein N-linked glycosylation is required for miRNA 

activity 

To further delineate which downstream biosynthetic output of the mevalonate pathway 

modulates miRNA activity, we inactivated genes corresponding to each step in the 

production and usage of isoprenoids and surveyed the phenotypes. We screened for 

which of these gene inactivations caused let-7(mg279) animals to fail to express col-

19::gfp (Table 4.4). 
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Table 4.4 Phenotypes of gene inactivations in the let-7(mg279); [col-19::gfp] background 

Mevalonate pathway 

Gene Targeteda Locus Description 
Phenotypes in 
P0 animalsb 

Phenotypes in 
F1 animalsc 

T02G5.8 kat-1 Acetyl-CoA acetyltransferase     
T02G5.7  Acetyl-CoA acetyltransferase   
T02G5.4   Acetyl-CoA acetyltransferase     
F53A2.7  Acetyl-CoA acetyltransferase   
B0303.3   Acetyl-CoA acetyltransferase     

F25B4.6 hmgs-1 HMG-CoA synthase 

Burst and 
sterile. Fail to 
express col-
19::gfp  

nd 

F08F8.2 hmgr-1 HMG-CoA reductase   
Weak col-
19::gfp  

Y42G9A.4 mvk-1 mevalonate kinase   
Y48B6A.13   Mevalonate pyrophosphate decarboxylase     

R06C1.2 fdps-1 Polyprenyl synthetase   
Weak col-
19::gfp   

Protein prenylation 
R02D3.5 fnta-1 farnesyltransferase, alpha subunit   Burst 
F23B12.6 fntb-1 beta subunit of farnesyltransferase   
Y48E1B.3   geranylgeranyltransferase Type I, beta subunit     
M57.2  geranylgeranyltransferase type II, alpha subunit  Arrested at L3 
B0280.1 ggtb-1 geranylgeranyltransferase type II, beta subunit     

Coenzyme Q biosynthesis 
C24A11.9 coq-1 trans-prenyltranferases   Arrested at L2 
F57B9.4 coq-2    
Y57G11C.11 coq-3       
K07B1.2 coq-6    
ZC395.2 clk-1       

Dolichol synthesis and N-glycosylation 

Y60A3A.14   ALG7 homolog 

  Pale-looking, 
weak col-
19::gfp    

R10D12.12  UDP-N-acetylglucosamine transferase subunit ALG13 homolog   
M02B7.4   UDP-N-acetylglucosamine transferase subunit ALG14 homolog     
T26A5.4  ALG1 homolog   
F09E5.2   ALG2 homolog     
B0361.8  ALG11 homolog   

K09E4.2   
Dolichyl-P-Man:Man(5)GlcNAc(Cvetkovic et al.)-PP-dolichyl 
mannosyltransferase 

  
  

C14A4.3  Mannosyltransferase ALG9 homolog   
ZC513.5   Mannosyltransferase ALG12 homolog     
C08B11.8  Glucosyltransferase ALG6 homolog   
C08H9.3   Glucosyltransferase ALG8 homoolog     
T24D1.4 tag-179 Alpha-1,2 glucosyltransferase ALG10 homolog   

T22D1.4   Oligosaccharyltransferase, alpha subunit (ribophorin I) 
Fail to express 
col-19::gfp nd 

M01A10.3 ostd-1 
Oligosaccharyltransferase subunit. Ortholog of yeast SWP1, human 
Ribophorin II 

Fail to express 
col-19::gfp nd 

T09A5.11 ostb-1 
Oligosaccharyltransferase subunit. Ortholog of yeast WBP1, human 
OST48 

Fail to express 
col-19::gfp nd 

F57B10.10 dad-1 
Oligosaccharyltransferase subunit. Ortholog of yeast OST2, human 
DAD-1 

Fail to express 
col-19::gfp  nd 

T12A2.2   Oligosaccharyltransferase, STT3 subunit 
Fail to express 
col-19::gfp nd 

Heme A and Heme O biosynthesis 
Y46G5A.2   protoheme IX farnesyltransferase     
T06D8.5   Cytochrome oxidase assembly factor COX15     

tRNA isopentenylation 
ZC395.6 gro-1 tRNA -isopentenylpyrophosphate transferase         
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Table 4.4 (continued) 
 
(nd) Not Determined  
aThe gene targeted by the RNAi clone was confirmed by sequencing. 
bRNAi was initiated started at the L1 stage, and the phenotypes were scored after the L4-adult molt. 
cRNAi was initiated started at the L1 stage of parental (P0) animals, and the phenotypes were scored in progeny. However, the phenotypes 
were not determined if the RNAi causes lethality/sterility in P0 animals. 

If animals appeared WT after RNAi, cell is left empty. 

 

The gene inactivations that caused a let-7-like phenotype, the failure to up-

regulate col-19::gfp expression at the adult stage, all correspond to proteins that act in 

the dolichol pathway for protein N-linked glycosylation (Table 4.4. For a diagram of the 

dolichol pathway, see Figure 4.9).  

 

Figure 4.9 Dolichol phosphate is synthesized from the mevalonate pathway and has a role 

in protein N-linked glycosylation. Dolichol phosphate synthesized from the mevalonate 

pathway serves as the lipid carrier of the oligosaccharide moiety destined for protein N-linked 

glycosylation. The transfer of oligosaccharide to an asparagine residue on a nascent polypeptide 

is catalyzed by oligosaccharyltransferase (OST) complex on the ER membrane. Tunicamycin 

blocks the reaction of UDP-GlcNAc and dolichol-phosphate in the first step of the dolichol 

pathway. 
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The C. elegans oligosaccharyltransferase (OST) complex, which carries out 

protein N-glycosylation, has five subunits: the catalytic subunit T12A2.2/STT3, and four 

accessory subunits: T22D1.4/ribophorin I,	  OSTB-1, OSTD-1 and DAD-1. Depleting any 

of these subunits by RNAi caused a defect in col-19::gfp expression in the let-7(mg279) 

mutant, but not the wild-type background (Figure 4.10A), suggesting a strong genetic 

interaction with let-7. To further validate this result, we performed the same assay using 

tunicamycin. Tunicamycin is an antibiotic that blocks the reaction of UDP-GlcNAc and 

dolichol phosphate in the first step of the dolichol pathway and thus inhibits the synthesis 

of N-linked glycoproteins. When tunicamycin was added to the worm growth medium, it 

caused let-7(mg279) adult animals to fail to express col-19::gfp, in a dose-dependent 

manner (Figure 4.10B). More directly, we found that inactivation of T12A2.2/STT3 

disrupted down-regulation of the hbl-1::gfp reporter at the L3 stage (Figure 4.10C). 

Furthermore, knocking down T12A2.2/STT3 also exacerbated the ASEL neuron 

specification defect in the lsy-6(ot150) mutant (Figure 4.10D), similar to the inactivation 

of the mevalonate pathway.  
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Figure 4.10 The dolichol pathway for protein N-glycosylation is required for miRNA 

activity. (A) Inhibiting the oligosaccharyltransferase (OST) activity by RNAi depletion of any of its 

five subunits causes defects in the nominal adult-stage up-regulation of col-19::gfp in hyp7 cells, 

in a let-7(mg279) but not wild-type background. (B) Tunicamycin causes defects in the nominal 

adult-stage up-regulation of col-19::gfp in the let-7(mg279) mutant in a dose-dependent manner. 

(C) Inhibiting the OST activity by RNAi depletion of its catalytic subunit, T12A2.2/STT3, causes 

defects in the down-regulation of hbl-1::gfp at the L3 stage. Images were captured using the 

same exposure settings and processed identically. Arrowheads point to the desilenced hbl-1::gfp 

in the nuclei of hyp7 cells. Insets are Nomarski images. (D) RNAi depletion of T12A2.2/STT3 

enhances the ASEL specification defect in the lsy-6(ot150) mutant but not wild-type genetic 

background. Brackets indicate a statistically significant difference judged by two-tailed chi-square 

test.  

 

Because N-glycosylation facilitates protein folding in the endoplasmic reticulum 

(ER), blockage of N-glycosylation by RNAi, mutation or drug causes protein misfolding, 

which induces ER stress and the unfolded protein response (Shiu et al.). We asked if the 
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desilencing of miRNA target genes is an element of the unfolded protein response. We 

found that several gene inactivations that strongly induce ER UPR did not prevent proper 

down-regulation of hbl-1::gfp at the L3 stage (Figure 4.11A). However, several gene 

inactivations that induce ER UPR did enhance the failure to express col-19::gfp in the 

let-7(mg279) mutant, and a mutation in the unfolded protein response factor xbp-1 

(Calfon et al., 2002)  suppressed this defect (Figure 4.11B). The xbp-1(zc12) mutation 

also suppressed the failure to express col-19::gfp induced by inactivation of 

T12A2.2/STT3, but not the failure to express col-19::gfp induced by inactivation of alg-

1/2 or hmgs-1 (Figure 4.11B). This suggests that the mevalonate pathway is required for 

miRNA activity for more than one reason: first, a relatively direct role of N-glycosylation 

in miRISC function possibly via regulating the sorting of miRISC to appropriate cellular 

membrane compartment; and second, a relaying signaling cascade downstream of ER 

UPR in opposing miRNA activity (Figure 4.11C).  
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Figure 4.11 Induction of ER stress mildly compromises let-7 activity. (A) Inactivation of 

genes required for ER homeostasis causes up-regulation of hsp-4/BiP::gfp, the hallmark of ER 

stress. These gene inactivations do not cause a defect in the down-regulation of hbl-1::gfp at the 

L3 stage. However, a subset of gene inactivations cause let-7(mg279) mutant animals to fail to 

express col-19::gfp in hyp7 cells at the adult stage. In some but not all cases, this defect of col-

19::gfp expression can be suppressed by the xbp-1(zc12) mutation. (nd) Not Determined. aThe 

expression of hbl-1::gfp in the hyp was scored at the late L3 stage, and the precentage of animals 

having derepressed hbl-1::gfp is indicated. bThe expression of col-19::gfp was scored at  
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(Figure 4.11 continued) the adult stage, and the precentage of animals failing to express col-

19::gfp in hyp7 cells is indicated. (B) Shown are the percentage of animals failing to express col-

19::gfp in hyp7 cells at the adult stage. The xbp-1(zc12) mutation suppresses the failure of col-

19::gfp expression in T12A2.2/STT3 RNAi-treated let-7(mg279) mutants. However xbp-1(zc12) 

does not suppress the failure of col-19::gfp expression caused by the inactivation of alg-1/2 or 

hmgs-1. (C) The dolichol phosphate/protein N-glycosylation output of the mevalonate pathway is 

required in the miRNA repression of target mRNAs in C. elegans. 

 

 

Discussion and future directions 

We showed that inactivation of the mevalonate pathway does not decrease the 

biogenesis nor the loading of miRNAs into ALG-1/Argonaute. The most likely hypothesis 

is that mevalonate pathway might be important for the membrane-association of ALG-

1/Argonaute. This hypothesis gained support from earlier studies of the Argonaute 

protein, which was named as GERp95 (Golgi ER protein 95kDa) (Cikaluk et al., 1999; 

Tahbaz et al., 2001) and was found to be a peripheral membrane protein located on the 

Golgi and/or ER in several mammalian cell lines. In remains mysterious how Argonaute 

associates with the membrane and how it is specifically targeted to certain membrane 

compartments. We therefore hypothesized that some membrane proteins recruit 

Argonaute, and such membrane proteins may depend on N-glycosylation for its proper 

localization and function. To this end, we purified C. elegans ALG-1/Argonuate by 

immunoprecipitation and asked if there is any co-immunoprecipitated glycosylated 

protein(s). However, we were unable to obtain conclusive results, due to the low 

sensitivity of the detection method (data not shown). On the other hand, it is possible 

that other biosynthetic products of the mevalonate pathway mediate the membrane 
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association of Argonaute. As a matter of fact, the Voinnet group showed that cholesterol 

and some other isoprenoids are required for the membrane association of Argonaute 1 

in Arabidopsis (Brodersen et al., 2012). Unlike many other organisms, C. elegans lack 

the cholesterol biosynthesis downstream of mavalonate pathway, and thus excludes the 

possibility of cholesterol being involved here. 

 What might be the biological function of the membrane-association of 

Argonaute? Recent studies revealed that the RNA-Induced Silencing Complex (RISC) 

co-localizes with the Multi-Vesicular Bodies (MVB) (Gibbings et al., 2009). Indeed, the 

Endosomal Sorting Complex Required for Transport (ESCRT) complex responsible for 

the MVB assembly was found to be required for the miRNA-mediated silencing 

(Gibbings et al., 2009; Lee et al., 2009). Therefore, it is an attractive hypothesis that the 

membrane association of RISC may facilitate their recycling, or the trafficking of small 

RNAs between cells through exosomes (Dunoyer et al., 2010; Feinberg and Hunter, 

2003; Gibbings and Voinnet, 2010; Molnar et al., 2010). Indeed, secretory miRNAs have 

been detected in human peripheral blood, the signature of which emerges as a novel 

biomarker for the diagnosis of myocardial infarction (Meder et al., 2010). There are 

several experiments to further investigate this hypothesis. (1) To assay the fine 

subcellular localization of C. elegans ALG-1/Argonaute using super resolution 

microscopy, with and without the statin treatment. (Cvetkovic et al.) To obtain the 

dynamics of lin-4 mediated silencing of lin-14 and calculate whether one molecule of lin-

4 miRNA can silence several lin-14 mRNA targets by multiple turnover. If this is the 

case, we can then ask whether the multiple turnovers of the lin-4 miRNA are regulated 

by the mevalonate pathway. 
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METHODS 

Feeding RNAi 

In addition to the RNAi clones used in Table 4.1 and Table 4.4, the following gene was 

knocked down by feeding RNAi using the Ahringer RNAi library (1): F48F7.1 (alg-

1/Argonaute), which probably also targets alg-2 due to the high sequence similarity, and 

therefore is referred to as alg-1/2 RNAi. HT115 bacteria carrying the empty vector 

L4440, which expresses dsRNA homologous to no worm gene, were used as a control. 

Bacterial clones were cultured at 37 °C for 15 h before seeding the RNAi plates. After 

induction of dsRNA for 24 h at room temperature, worms were placed on RNAi plates. 

 

LIN-14 Western Blots 

Because hmgs-1 is an essential gene for fertility, we applied a mild gene knockdown by 

feeding the parental (P0) animals with Escherichia coli expressing hmgs-1 dsRNA 

diluted with control E. coli expressing dsRNA homologous to no worm gene, starting at 

the fourth (L4) larval stage. Embryos were isolated from the P0 animals to synchronize 

their progeny by hatching in the absence of food. A fraction of synchronized L1s were 

flash-frozen in liquid nitrogen and others were fed on plates seeded with undiluted RNAi 

bacteria at 20 °C and collected after 20 and 23 h. At 24 h, worms were visually inspected 

to ensure they were all at the early L2 stage by counting the number of germ cells, the 

divided intestinal nuclei, and disappearance of L1 alae. Worm lysate preparation and 

LIN-14 Western blotting were performed as previously described (Cvetkovic et al.). Blots 

were reprobed with actin antibody (Abcam; ab3280) as loading control. 

 

Quantification of microRNA by real-time PCR 

The following procedure was adapted from (Shi and Chiang, 2005). RNA was isolated, 
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DNase treated, and polyadenylated by poly(A) polymerase. An adapter primer containing 

a unique 5′ sequence and 12 Ts and ending in VN-3′ was used to make cDNA. This 

anchors the adapter to the beginning of the poly(A) tail by virtue of the VN-3′ nucleotides 

(V = A, C, or G; n = A, T, C, or G). The cDNA is then amplified with a forward primer 

based on the entire tested miRNA sequence and a reverse primer complementary to the 

adapter. The PCR amplification was monitored by SYBR Green incorporation, and a 

corresponding threshold cycle (CT) was obtained. The quantity of miRNA, relative to two 

internal reference genes, U6 and 18s rRNA, was calculated using the formula 2−ΔCT, 

where ΔCT = (CT miRNA – CT reference). For each miRNA, the result was shown 

relative to its level in wild-type animals treated with control RNAi. The mean and SD 

were calculated from three biological replicates. 

 

ALG-1 immunoprecipitation 

ALG-1 was purified from synchronized L4-stage alg-1(gk214) mutants rescued with an 

HA-ALG-1 single copy construct. About 0.5 mL of worms was flash-frozen in liquid 

nitrogen, followed by grinding with a mortar and pestle. An equal volume of cell lysis 

buffer [50 mM Tris·HCl (pH 7.4), 100 mM KCl, 2.5 mM MgCl2, 0.1% Nonidet P-40, 0.5 

mM PMSF, 1 Complete proteinase inhibitor tablet (Roche)/15 mL, 40 U/mL RNaseOUT 

(Invitrogen)] was added, and the lysate was homogenized on a head-to-tail rotor for 15 

min. Debris was spun down in a tabletop centrifuge at 12,000 x g for 5 min at 4 °C. The 

cell lysate was precleared by adding 20 μL protein A agarose bead slurry (Roche) and 

rotating for 10 min. The cleared lysate was incubated with 3 μL HA antibody (clone 

12CA5; Roche) for 20 min and then 100 μL protein A agarose bead slurry for 20 min at 4 

°C. The beads were then washed eight times for 40 min in total. Ten percent of the 

immunoprecipitation (IP) sample was used for Western blot analysis. Ninety percent of 
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the IP sample was treated with proteinase K (1.0 μg/μL; Ambion) at 65 °C for 15 min. 

RNA was extracted with phenol-chloroform and subjected to miRNA real-time PCR 

analysis. 
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Dual regulation of the lin-14 target mRNA by the lin-4 miRNA 
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Summary 

In animals, miRNAs typically bind with partial complementarity to sequences in the 3ʼ 

untranslated (UTR) regions of target mRNAs, to induce a decrease in the production of 

the encoded protein. The relative contributions of translational inhibition of intact mRNAs 

and degradation of mRNAs caused by binding of the miRNA vary; for many genetically 

validated miRNA targets, translational repression has been implicated whereas some 

other analyses of other miRNA targets have revealed only modest translational 

repression and more significant mRNA destabilization. In C. elegans, the lin-4 miRNA 

accumulates during early larval development, binds to target elements in the lin-14 

mRNA and causes a sharp decrease in the abundance of LIN-14 protein. Here, we 

monitor the dynamics of lin-14 mRNA and protein as well as lin-4 miRNA levels in finely 

staged animals during early larval development. We find complex regulation of lin-14, 

with an initial modest decline in lin-14 mRNA abundance followed by fluctuation but little 

further decline of lin-14 mRNA levels yet continuing and more dramatic decline in LIN-14 

protein abundance. We show that the translational inhibition of lin-14 is dependent on 

binding of the lin-4 miRNA to multiple lin-4 complementary sites in the lin-14 3ʼUTR. Our 

results point to the importance of translational inhibition in silencing of lin-14 by lin-4 

miRNA. 

 

Characterization of the lin-14(n355gf) mutant 

The lin-14(n355) gain-of-function mutation was initially described as a possible 

translocation that separates the lin-14 promoter and coding region from most of its 

3ʼUTR, relieving it from repression by the lin-4 miRNA (Wightman et al., 1991). To 

characterize the structure of the 3ʼUTR in the n355 mutant we performed 3ʼ RACE. We 

found that n355 is an inversion that causes a break at nucleotide 254 of the lin-14 3ʼUTR 
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and a fusion to an intergenic sequence of the X chromosome corresponding to cosmid 

ZC373, downstream of the gene col-176 (the sequences flanking the fusion were lin-14 

to ZC373: attatccccaTCATTTCGAG). A series of adenosine residues that did not 

correspond to the genomic sequence, presumably indicating the polyadenosine tail, 

began at position 82 of the sequence derived from ZC373, suggesting that the lin-

14(n355) 3ʼUTR is ~335 nt, far shorter than the normally 1.6 kb wild type lin-14 3ʼUTR 

(data not shown). The n355 inversion removes all of the characterized complementary 

sites for lin-4 (Wightman et al., 1993) from the lin-14 3ʼUTR (Figure 5.1). The n355 

mutant causes retarded heterochronic phenotypes and continued expression of the LIN-

14 protein at larval stages later than the first larval stage (L1), similar to a lin-4 null 

mutant, further indicating that the n355 mutation prevents the lin-14 3ʼUTR from 

responding to lin-4 (Ambros and Horvitz, 1987; Lee et al., 1993).  

Figure 5.1 Diagram of the lin-14 3ʼUTR. Shown are the positions of the seven lin-4 binding 

sites, which are all absent in the n355 mutant allele. In the n355 mutant, the 3' end of the lin-14 

gene is fused to intergenic sequence corresponding to cosmid ZC373. n536 allele bears a 607 bp 

deletion in the lin-14 3ʼUTR, which deletes five of the seven lin-4 binding sites. 

 

Temporal analyses revealed two phases of regulation of lin-14 by lin-4 miRNA 
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To resolve the dynamics of lin-4 mediated down-regulation of lin-14, we performed 

temporal analyses of lin-14 mRNA and protein as well as lin-4 miRNA levels in finely 

staged wild-type and lin-14(n355n679) mutant animals collected at 3-h intervals from the 

early first larval (L1) to early second larval (L2) stage at 20°C. The n355 allele decouples 

lin-14 from lin-4 repression resulting in gain-of-function retarded phenotypes, and slower 

development rate, but the lin-14(n679) V299D missense mutation confers a temperature-

sensitive suppression of the lin-14(n355) retarded phenotype, due to a reduction-in-

function mutation in the encoded LIN-14 protein; thus while the LIN-14 protein production 

continues after the normal mid-larval stage one downregulation by the lin-4 miRNA, that 

temporally misexpressed LIN-14 protein is non-functional for specification of L1 cell fates 

(Reinhart and Ruvkun, 2001). At 20°C, the lin-14(n355n679) mutant animals grow and 

develop at similar rates as wild-type animals, allowing us to compare side-by-side the 

lin-4 and lin-14 dynamics in wild-type and lin-14(n355n679) mutant animals in which lin-

14 is relieved from repression by lin-4. More importantly, the misexpression of LIN-14 

protein is decoupled from the mis-specification of L1 stage cell fates, so that molecular 

phenotypes can be interpreted without the complication of indirect developmental fate 

phenotypes. 

To quantitatively assay the full-length polyadenylated lin-14 mRNA, we used 

oligo(dT)20 primer to reverse-transcribe mRNA isolated from synchronized animals and 

performed quantitative PCR (qPCR) analysis. Relative lin-14 levels were obtained by 

normalization to rpl-32, a large ribosomal subunit that is abundant and stably expressed 

throughout development. The results are shown relative to the lin-14 level when 

releasing from L1 diapause, or 0 hours of larval development. In wild-type animals, lin-14 

mRNA decreased to 49% and then to 38% of the 0 hour sample at 9 hours and 12 hours 

of larval development, respectively (Figure 5.2A). From 12 hours to 24 hours of larval 
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development, lin-14 mRNA levels fluctuate with little evidence of further decline 

comparing 24 hour to 12 hour time point (p=0.23, one-tailed t-test) (Figure 5.2A). On the 

other hand, lin-14 mRNA levels in the lin-14(n355n679) mutants fluctuate modestly , and 

show little evidence of the monotonic reduction throughout the L1 stage of wild type 

(Figure 5.2C). 

Figure 5.2 Temporal analyses of lin-14 mRNA, protein and lin-4 miRNA levels in wild-type 

and lin-14(n355n679) mutant animals. (A, C) Quantification of lin-14 mRNA, LIN-14 protein and 

lin-4 miRNA from early L1 (0 hours post-feeding) to early L2 (24 hours post-feeding) in wild-type 

(A) and lin-14(n355n679) mutant animals (C). All results were shown relative to the level at the 0 

h time point. Error bars represent SEM for two independent experiments. (B, D) Representative 

immunoblots showing the abundance of LIN-14 protein in wild-type (B) and lin-14(n355n679) 

mutant animals (D) over 24 h of development. Actin serves as a control for the normalization of 

LIN-14.  
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We monitored LIN-14 protein levels in the same samples that were analyzed for 

lin-14 mRNA abundance. LIN-14 protein levels were analyzed by Odyssey CLx Infrared 

Fluorescent Western Blot and quantified by normalization to actin. The results are shown 

relative to the LIN-14 protein level when releasing from L1 diapause, or 0 hours of larval 

development. In wild-type animals, LIN-14 protein levels are stable during the first 9 

hours of larval development (Figure 5.2A and B). Subsequently, it declined to 62% and 

further to 18% at 12 hours and 15 hours (Figure 5.2A and B), which follows the decline 

of lin-14 mRNA levels from 6-12 hours (Figure 5.2A). Since LIN-14 protein levels decline 

by ~5 fold and lin-14 mRNA levels decline by ~2.5 fold, it suggests that both mRNA 

decay and inhibition of protein translation contribute to silencing of lin-14 at early stages. 

From 15 hours to 24 hours of larval development, LIN-14 protein levels decrease from 

18% to 8% of the 0 hour levels (Figure 5.2A and B). In contrast, LIN-14 protein levels in 

the lin-14(n355n679) mutants do not show any significant down-regulation throughout 

the first larval stage (Figure 5.2C and D), suggesting the ~10-fold down-regulation of 

LIN-14 protein in wild-type animals is indeed mediated by lin-4 miRNA binding to lin-14 

3ʼUTR.  

To track the mature lin-4 miRNA levels, we performed Taqman miRNA assays in 

the same samples as above. In wild-type animals, lin-4 miRNA was present at very low 

level in embryos, which only can be detected by deep-sequencing (Stoeckius et al., 

2009) but not by Northern Blot, until 9-12 hours of larval development at 20°C (Feinbaum 

and Ambros, 1999; Holtz and Pasquinelli, 2009). Consistent with previous studies, our 

analyses showed that lin-4 miRNA levels begin to rise substantially at 9 hours, and its 

level becomes ~5000 fold higher at 24 hours compared to 0 hours. Curiously, the initial 

decline of lin-14 mRNA levels during 6-12 hours happens prior to the significant 

accumulation of lin-4 miRNA. When lin-4 miRNA becomes abundant at later stages, lin-
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14 mRNA levels fluctuate yet show little evidence of significant down-regulation; 

however, LIN-14 protein levels continue to decrease. Together, our analyses point to two 

phases of regulation: a fast lin-14 mRNA destabilization as soon as lin-4 miRNA 

emerges, and long-term translational inhibition that initiates and is in particularly 

important for maintaining the silencing of lin-14 mRNA by the lin-4 miRNA.  

Strikingly, we found that lin-4 miRNA levels in the lin-14(n355n679) mutants were 

~50-200-fold lower compared to stage-matched wild-type animals (Figure 5.2A and C). 

We note that the mutant LIN-14 V299D protein encoded by the lin-14(n355n679) locus 

fails to specify larval stage one cell fates and instead specifies larval stage two cell fates 

at the nominal L1 stage. Thus the failure to up-regulate the lin-4 miRNA in this lin-14 

mutant suggests that LIN-14 gene activity may normally act upstream of lin-4 miRNA 

expression which then feeds back on production of LIN-14 protein. The defect in LIN-14 

protein activity in a lin-14(n355n679) mutant may break this autoregulatory loop. 

Alternatively, in C. elegans, miRNAs are protected from degradation by their target 

mRNAs (Chatterjee et al., 2011; Chatterjee and Grosshans, 2009). Therefore, it is 

possible that lin-4 miRNA loses this protection in lin-14(n355n679) mutants due to the 

absence of lin-4 binding sites in the lin-14 3ʼUTR. This would suggest that in contrast to 

models of hundreds of mRNA targets of miRNAs, in the case of lin-4, there may just be 

the lin-14 mRNA target that is key for accumulation of the lin-4 miRNA.   

 

The lin-14 mRNA levels of wild-type and mutant bearing a lin-14 3ʼUTR deletion 

are equal both at early and late stages of animal development 

Another approach to assay whether lin-4 repression acts via mRNA destabilization or 

translational inhibition is to compare the levels of wild-type lin-14 mRNA to mutant lin-14 

mRNA missing lin-4 complementary sites in a heterozygous animal. To this end, we 
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assayed lin-14 mRNA levels in the lin-14(n536n540)/szT1 heterozygous strain with one 

wild-type and one n536n540 allele of lin-14. lin-14(n536) bears a 607 bp deletion that 

removes five of the seven lin-4 complementary elements in the lin-14 3ʼUTR (Figure 5.1) 

and is a gain-of-function mutation causing retarded heterochronic development due to 

derepression of lin-14 (Wightman et al., 1991; Wightman et al., 1993). The n540 allele, 

an amber mutation at position 280 (Lys to amber), was isolated as a recessive 

suppressor of the lin-14(n536gf) mutant (Ambros and Horvitz, 1987; Ruvkun et al., 

1989). We reasoned that if lin-4 miRNA silences lin-14 via enhancing mRNA decay, then 

lin-14(n536n540) mRNA should be stabilized relative to the wild-type lin-14 mRNA due 

to reduction of lin-4-mediated regulation. However, Northern blot of RNA isolated from 

lin-14(n536n540)/szT1 heterozygotes showed that the 3.5 kb wild-type lin-14 and 2.9 kb 

lin-14(n536n540) mRNA levels are nearly equal at both embryonic stage before lin-4 

miRNA is expressed and at mid-L4 stage, after lin-4 repression has occurred (Figure 

5.3). This experiment indicates that there is little down-regulation of lin-14 mRNA 

between the pre-lin-4 expression stage and the L4 stage from either the wild type allele 

or the lin-14 allele missing many lin-4-complementary regions. However, the two residual 

lin-4 complementary sites in the lin-14(n536) 3ʼUTR are insufficient to mediate the 

silencing effect by lin-4 through translational repression because the n536 mutation 

derepresses the L2 and later stage expression of the LIN-14 protein. Our result is also 

largely consistent with a recent study (Stadler et al., 2012) and further stresses the 

importance of translational inhibition in lin-4 miRNA-mediated silencing of lin-14. 
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Figure 5.3 The levels of lin-14 mRNA derived from the wild-type and a lin-14 mutant allele 

bearing a 3ʼUTR deletion are equal at the embryonic and L4 stages. Shown is a Northern 

blot of lin-14. The levels of wild-type lin-14 (3.5 kb) and lin-14(n536n540) mRNA (2.9 kb) in the 

lin-14(n536n540)/szT1 heterozygotes are almost equal at both the embryonic and L4 stages. 

Histone mRNA is blotted as a control for even loading. Vitellogenin mRNA encoding yolk 

polypeptides that is most abundant during oogenesis is shown to indicate animal stages.  

 

 

Discussion 

The results we present here consolidate the earlier studies where lin-14 was found to be 

silenced by lin-4 without being significantly destabilized at the mRNA level (Olsen and 

Ambros, 1999; Wightman et al., 1993), as well as a recent ribosome profiling study 

showing translational control of lin-14 by lin-4 (Stadler et al., 2012). Although cases have 

been reported where regulation by miRNAs can cause destabilization of target mRNAs 

in C. elegans (Bagga et al., 2005), the relative contributions of mRNA degradation and 

translational repression in miRNA-mediated repression are variable (Ding and 

Grosshans, 2009). For example, lin-41 mRNA levels regulated by let-7 miRNA showed 
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the strongest reduction, whereas lin-14 mRNA showed modest reduction (Bagga et al., 

2005). However, the lin-41 mRNA degradation noted by Bagga et al was not observed 

by Stadler et al, who instead suggested translational control of lin-41 by the let-7 miRNA 

(Stadler et al., 2012). 

Several recent studies have suggested a two-phase model for miRNA-mediated 

silencing that begins with translational repression, followed by mRNA deadenylation and 

decay which consolidates the silencing (Bazzini et al., 2012; Djuranovic et al., 2011, 

2012; Fabian et al., 2009; Selbach et al., 2008; Zdanowicz et al., 2009). Interestingly, we 

observed a distinct dynamics for lin-4 silencing of lin-14. First, lin-14 mRNA level 

declines to ~40% as soon as lin-4 miRNA is first expressed during 6-9 hours of L1 

development, prior to the decrease of LIN-14 protein level. Although translational 

inhibition may also contribute to this initial silencing of lin-14, currently this hypothesis is 

not supported by solid evidence. On the other hand, between 12-24 hours of larval 

development, lin-14 mRNA levels fluctuate with no obvious further decline whereas LIN-

14 protein levels continue to decrease. Furthermore, by early L2 stage LIN-14 protein 

level has declined by ~10 fold and lin-14 mRNA levels decline by ~3 fold, suggesting that 

long-term translational inhibition maintains silencing of lin-14 mRNA by the lin-4 miRNA.  

It remains unclear why the modes of action of miRNA-mediated silencing are 

different depending on the biological and experimental context. In particular, it is 

intriguing why and how the predominant mechanism of silencing could change even for 

the same miRNA and its target mRNA in the same organism. Since the levels of lin-4 

miRNA increase more than 500 fold from early L1 stage when lin-14 mRNA just begins 

to decay to early L2 stage when lin-14 has been stably silenced, we speculate that the 

number of lin-4 molecules binding to lin-14 mRNA 3ʼUTR might determine the mode of 

silencing. Specifically, the seven lin-4 complementary sites in lin-14 3ʼUTR could allow a 
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sensitive response to lin-4, if a single or few lin-4 miRNA molecules bind to lin-14 3ʼUTR 

causes mRNA decay, whereas more miRNAs binding causes translational control.  Such 

an architecture would trigger a fast decline in LIN-14 protein synthesis even when the 

level of lin-4 is low, to achieve a sharp transition in development. To maintain silencing, 

translation of lin-14 mRNA is inhibited probably through binding of multiple lin-4 

molecules to lin-14 mRNA 3ʼUTR as lin-4 massively accumulates. Supporting this 

hypothesis, we found that the lin-14(n536n540) mRNA missing five out of the seven lin-4 

complementary elements in its 3ʼUTR is destabilized to a similar level as the wild-type 

lin-14 mRNA. However, lin-14(n536) is not properly silenced and causes retarded 

heterochronic phenotype (Wightman et al., 1991; Wightman et al., 1993). This suggests 

that the two remaining lin-4 complementary sites are sufficient to cause the normal lin-4- 

triggered decay of lin-14 mRNA, but insufficient to induce lin-4 triggered translational 

repression.  

Finally, our fine-stage analysis showed that lin-14 mRNA drops initially during the 

first larval intermolt stage, but returns to a higher level during the L1-L2 molt. It is an 

emerging trend that mRNA levels could oscillate in animals entering and exiting the molt. 

Therefore, an important lesson is that looking at a single time point could be misleading, 

which may contribute to the differences in results and conclusions obtained from 

different labs. 

 

 

Methods 

Characterization of the lin-14(n355) inversion 

RNA samples derived from wild type and n355 were analyzed by 3ʼ RACE (Roche). The 

most prominent band that was detected in n355 and not wild type corresponded to the 
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length of the lin-14 3ʼUTR in the n355 mutant that was deduced by Wightman et al. 

(1991). Sequencing of this band showed that at position 254 of the 3ʼUTR the lin-14 

sequence was fused to an intergenic region of the X chromosome corresponding to 

cosmid ZC373. PCR using primers homologous to lin-14 and ZC373 and DNA from the 

n355 mutant as template yielded bands that confirmed the chromosomal structure in the 

n355 mutant that was predicted by 3ʼ RACE (data not shown).	  

 

Quantitative Western blot 

Odyssey CLx Infrared Fluorescent Western Blot was performed following the vendorʼs 

protocol. Briefly, NuPAGE® LDS sample buffer (2x) equal to the total volume of the 

worms was added and samples were boiled for 5 minutes. The lysates were pelleted in a 

microfuge and the supernatant loaded to a 4-12% Bis-Tris gel (Invitrogen) for 

electrophoresis. The proteins were transferred to nitrocellulose membrane (Bio-Rad). 

The membrane was blocked in blocking buffer (5% nonfat milk in PBS+0.1% Tween® 

20) for 1.5 h at room temperature. Subsequently, the membrane was incubated in rabbit 

anti-LIN-14 (1:1000) and mouse anti-actin (1:5000, Abcam) primary antibodies at 4°C 

overnight. After washing four times with PBS+0.1% Tween® 20, the membrane was 

incubated in RDye 800CW Goat anti-Rabbit IgG (1:10000) and IRDye 680RD Goat anti-

Mouse IgG (1:5000) at room temperature for 1 hour. The membrane was washed four 

times with PBS+0.1% Tween® 20, briefly rinsed with PBS and imaged with the Odyssey 

CLx infrared imaging system. LIN-14 and actin blots were scanned using the 800 nm 

and 700 nm channels, respectively. The abundance of LIN-14 was quantified by 

normalization to actin. 

 

Quantitative RT-PCR analysis of lin-14 mRNA 
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Total RNA was purified using TRIzol Reagent (Molecular Research Center), DNase 

treated (TURBO™ DNase, Ambion), and reverse-transcribed using oligo(dT)20 primer 

(Invitrogen). The PCR amplification was monitored by SYBR green incorporation, and a 

corresponding threshold cycle (CT) was obtained.  The quantity of lin-14 mRNA, relative 

to rpl-32, was calculated using the formula 2-∆CT, where ∆CT= (CT lin-14 – CT rpl-32). The lin-

14 level was then normalized to its level at 0 h after release from L1 diapause. Primers 

used: lin-14 forward primer spanning the last exon-exon junction 

(caaaaactgagagcgaaacg) and lin-14 reverse primer in the last exon 

(tggaccttgaagaggaggag).  

 

Taqman miRNA Assays 

Taqman miRNA Assays (Applied Biosystems) were performed following the vendorʼs 

protocol. Briefly, 100 ng total RNA was reverse transcribed using a miRNA-specific RT 

primer. The real-time PCR amplification was performed and a corresponding threshold 

cycle (CT) was obtained. The quantity of lin-4 miRNA, relative to U6 as an internal 

reference gene, was calculated using the formula 2-∆CT, where ∆CT= (CT lin-4 – CT U6). The 

lin-4 level was then normalized to its level at 0 h after release from L1 diapause. 

 

Northern Blot 

We collected synchronized embryos and L4 staged animals of lin-14(n536n540)/szT1 

heterozygotes. szT1 is a (I;X) translocation balancer chromosome that balances the slow 

growing and very small brood size of the lin-14(n536n540) homozygotes. While the lin-

14(n536n540)/szT1 mutants segregate homozygous larval lethal szT1 homozygotes and 

homozygous lin-14(n536n540) animals, they constitute a minor component of the 

population because of the much larger brood and faster growth of the lin-
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14(n536n540)/szT1 heterozygotes. Total RNA was purified using guanidium 

isothiocyanate disruption and purification through a CsCl cushion via ultracentrifugation, 

polyA selected, and separated on a 1.2% formaldehyde agarose gel. RNA was 

transferred to Nylon membrane, UV crossed linked, then hybridized to radiolabeled DNA 

probes that were generated from the 3.8 kb EcoRI fragment bearing the last 7 exons of 

lin-14 and its 3ʼUTR. A DNA probe for the histone gene was used for normalization of 

mRNA content per lane, and a probe for the vitellogenin gene was used to indicate 

animal stages. X-Omat films exposed to the Northern blot were scanned on an optical 

scanner. 
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Shi, Z., and Ruvkun, G. (2012). The mevalonate pathway regulates microRNA activity in 

Caenorhabditis elegans. Proc Natl Acad Sci U S A 109, 4568-4573. 

 

Chapter V 

Shi, Z., Hayes, G., and Ruvkun, G. Dual regulation of the lin-14 target mRNA by the lin-4 
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Additional small RNA-related publications not presented in this dissertation: 

Wu, X., Shi, Z., Cui, M., Han, M., and Ruvkun, G. (2012). Repression of germline RNAi 

pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet 

8, e1002542.  

 

Abstract: The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin 

cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis 

elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were 

identified in genetic screens for cell lineage defects caused by growth factor 
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misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause 

somatic misexpression of the germline RNA processing P granules and enhanced RNAi. 

We show here that multiple small RNA components, including a set of germline-specific 

Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, 

revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in 

the subcellular architecture of their misexpressed P granules, their profile of 

misexpressed small RNA and P granule genes, as well as their enhancement of RNAi 

and the related silencing of transgenes. These differences define three classes of 

synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM 

core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin 

complex, suggesting that intersecting chromatin pathways regulate the repression of 

small RNA and P granule genes in the soma and the potency of RNAi. Consistent with 

this, the DRM complex and the synMuv B heterochromatin complex were genetically 

additive and displayed distinct antagonistic interactions with the MES-4 histone 

methyltransferase and the MRG-1 chromodomain protein, two germline chromatin 

regulators required for the synMuv phenotype and the somatic misexpression of P 

granule components. Thus intersecting synMuv B chromatin pathways conspire with 

synMuv B suppressor chromatin factors to regulate the expression of small RNA 

pathway genes, which enables heightened RNAi response. Regulation of small RNA 

pathway genes by human retinoblastoma may also underlie its role as a tumor 

suppressor gene. 

 

Contribution: I performed some of the enhanced RNAi assays in double mutants of 

synMuvB genes. I also contributed to the identification of some RNAi factors as 
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synMuvB target genes by querying microarray datasets, and helped the validation of a 

set of these genes via RT-qPCR. 

 


