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Abstract

Objective: To test the hypothesis that wide area detector face transplant surgical planning CT angiograms with simulated
lower radiation dose and iterative reconstruction (AIDR3D) are comparable in image quality to those with standard tube
current and filtered back projection (FBP) reconstruction.

Materials and Methods: The sinograms from 320-detector row CT angiography of four clinical candidates for face
transplantation were processed utilizing standard FBP, FBP with simulated 75, 62, and 50% tube current, and AIDR3D with
corresponding dose reduction. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured at muscle, fat,
artery, and vein. Image quality for each reconstruction strategy was assessed by two independent readers using a 4-point
scale.

Results: Compared to FBP, the median SNR and CNR for AIDR3D images were higher at all sites for all 4 different tube
currents. The AIDR3D with simulated 50% tube current achieved comparable SNR and CNR to FBP with standard dose
(median muscle SNR: 5.77 vs. 6.23; fat SNR: 6.40 vs. 5.75; artery SNR: 43.8 vs. 45.0; vein SNR: 54.9 vs. 55.7; artery CNR: 38.1 vs.
38.6; vein CNR: 49.0 vs. 48.7; all p-values .0.19). The interobserver agreement in the image quality score was good
(weighted k= 0.7). The overall score and the scores for smaller arteries were significantly lower when FBP with 50% dose
reduction was used. The AIDR3D reconstruction images with 4 different simulated doses achieved a mean score ranging
from 3.68 to 3.82 that were comparable to the scores from images reconstructed using FBP with original dose (3.68–3.77).

Conclusions: Simulated radiation dose reduction applied to clinical CT angiography for face transplant planning suggests
that AIDR3D allows for a 50% reduction in radiation dose, as compared to FBP, while preserving image quality.
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Introduction

Facial allograft transplantation restores form and function in

patients with severe deformities [1] and is rapidly gaining

acceptance for complex craniofacial reconstruction. Vascular

anastomosis is critical to technical success, and thus pre-operative

vascular mapping [2] plays a large role for a safer procedure [3].

Both Computed Tomography (CT) and magnetic resonance

methods [4,5] have been studied for surgical planning [6]. Because

CT angiography (CTA) enables high image quality 3- or 4-

dimensional vascular assessments, it is preferred over catheteriza-

tion or other noninvasive methods to delineate the presence,

course, caliber, and contrast enhancement of the recipient’s

arteries and veins with relationships to other craniofacial land-

marks. To our knowledge, there is a single report of radiation

exposure for face transplant CTA [2]. However, given the rapid

growth of face transplant programs and multiple CT studies that

patients will undergo as screening and follow-up, consideration of

radiation doses for comprehensive CT examination is prudent.

Iterative reconstruction methods are algorithms that reduce

image noise by iteratively comparing the acquired noise to

a modeled projection [7,8], and have been applied to many CT

applications, including CTA [9–14]. Reduced image noise

achieved by iterative reconstruction enables lower tube currents,

resulting in reduced radiation dose [7,10,15–19]. In general, each

algorithm is specific to a CT vendor as the software is applied to

sinogram data. One of the most recent algorithms is an Adaptive

Iterative Dose Reduction (AIDR) algorithm in Three-Dimensions

(AIDR3D) [20] that works in both the raw and image domains.

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e63079



To date, imaging reports for face transplantation have focused

on wide area detector CT, and there are no known data evaluating

iterative reconstruction as a possible option for radiation dose

reduction. Because clinical trial mandates strict adherence to

protocol for these patients, retrospective evaluation is favored

before implementing a practice change. This can be achieved by

simulating the reduced tube current using a mathematical addition

of image noise to the CT sinogram data. The purpose of this study

was to test the hypothesis that wide area detector face transplant

surgical planning CTA images with simulated lower radiation dose

and iterative reconstruction are comparable in image quality to

images with standard tube current from our institution that are

reconstructed using filtered back projection.

Materials and Methods

Subjects
We retrospectively evaluated 4 patients who signed written

informed consent approved by our Institutional Human Research

Committee. These patients voluntarily enrolled in clinical trial

NCT01281267, and are documented in the US Army Medical

Research and Materiel Command’s Human Research Protection

Office. Brief clinical history of the 4 patients is as follows.

Case 1. 30-year-old man who was involved in a motor vehicle

accident, resulting in a high voltage electrical injury to his face.

After multiple conventional reconstructive surgeries, he underwent

full face transplantation.

Case 2. 25-year-old man who had catastrophic loss of facial

tissues after high voltage injury. After 20 procedures including

multiple flaps covered with skin grafts, other surgical options were

exhausted and the patient underwent full face transplantation.

Case 3. 35-year-old man who had a gunshot wound that

shattered his mandible and maxilla. He underwent multiple

reconstructions resulting in substantial facial deformity and was

considered for face transplantation.

Case 4. 28-year-old man who had a gunshot wound to his

mid face. After multiple conventional reconstructions, he was

considered for face transplantation.

Figure 1. Boxplots of signal-to-noise ratio (SNR) for each reconstruction. A- Muscle. B- Fat. C- Artery. D- Vein.
doi:10.1371/journal.pone.0063079.g001
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CT acquisition
All patients were imaged with a single-volume 32060.5 mm

detector row CT (Aquilion ONE, Toshiba Medical Systems

Corporation, Tochigi-ken, Japan). The gantry rotation time was

500 milliseconds; images were reconstructed at 0.5 mm incre-

ments. After a 20 mL test bolus to plan the contrast enhancement

timing, the dynamic study was performed using a 60 mL in-

travenous iodinated contrast medium (iopamidol 370 mg iodine

per milliliter, Isovue-370, Bracco Diagnostics, Princeton, New

Jersey) administered via a power injection (Empower CTA, Acist

Medical, New York) system at contrast flow rates of 4 to 6 mL/s,

followed by 40 mL normal saline. For the dynamic study, the tube

voltage of 80 kV and the mAs of 155 were used for all patients.

Intermittent dynamic volumes (0.50-second gantry rotation)

included 18–24 volumes, for phases from arterial uptake through

venous return. Scanner output data (the extended dose length

product) were used to estimate the radiation dose. For conversion

to estimated effective dose (millisievert), the field of view (FOV)

exposing the neck used k= 0.0059 mSv/mGy-cm and the FOV

exposing the head used k= 0.0023 mSv/mGy-cm [2].

Image data reconstruction
For all 4 patients, an experienced radiologist identified one

arterial phase and one venous phase with the ideal contrast

enhancement for surgical planning. Then, a database of 96

reconstructions (24 for each of the 4 patients) was created from the

raw data. Sinogram data was retrieved from the scanner systems

and archived using a raw data server (Toshiba Medical Systems

Corporation, Japan) equipped to add noise to the sinograms with

a noise addition tool. Both the raw data server and the noise

addition software were used under a research agreement with the

manufacturer. This noise simulation methodology allows for

accurate determination of the noise based on direct measurements

from the detector, data acquisition system performance, and the x-

ray generation. The noise tool injects a combination of Poisson

noise for photon statistics and Gaussian electronic noise into the

raw projections based on the desired reduction in tube current to

be simulated. The noise added data is then used to create the

projections after corrections and logarithmic conversion.

The 24 reconstructions were divided into 8 each for 3 sets of CT

sinograms: non-contrast, best arterial phase, and best venous

phase acquisitions. Four of the 8 reconstructions used the original

exposure settings and the recommended manufacturer filtered

back projection (FC41) kernel for soft tissue display of facial

anatomy. In 3 of these 4 filtered back projection reconstructions,

CT noise was added to the raw data to simulate image quality that

would have been obtained with the mAs of 75%, 62%, and 50% of

that used clinically (155 mAs). The remaining 4 of 8 reconstruc-

tions, after applying the same simulated mAs reductions, used

AIDR3D. AIDR3D works in both the raw and image domains

and is fully integrated into the 32060.5 mm detector row CT

acquisition workflow.

Objective image quality assessment
To compare attenuation and image noise among the recon-

structed data sets, region-of-interest (ROI) measurements of mean

and standard deviation Hounsfield Units (HU) were obtained in

the masseter muscle, anterior fat tissue to the masseter region, air

in the sphenoidal sinus, carotid artery for the best arterial phase,

and the internal jugular vein for the best venous phase; this ROI

measurement was repeated 5 times. Signal-to-noise ratio (SNR)

was calculated at muscle (non-contrast), fat (non-contrast), artery

(arterial phase), and vein (venous phase) by dividing the absolute

mean value within the ROI by the standard deviation in air. To

compare contrast-to-noise ratio (CNR) among the different

reconstructions, the difference in mean HU between the vessel

(i.e., carotid artery or internal jugular vein) and muscle were

divided by the standard deviation in air.

Subjective image quality assessment
To evaluate potential differences in diagnostic image quality of

vessels among the reconstructed data sets, the following vessels

considered important for face transplantation were assessed:

internal and external carotid artery, lingual artery, facial artery,

superior thyroid artery, superficial temporal artery, internal and

external jugular vein, and common facial vein. Before interpre-

tation by two cardiovascular imagers with 1 and 2 years of

experience, respectively, in the interpretation of face transplant

Figure 2. Boxplots of contrast-to-noise ratio (CNR) of each reconstruction. A- Artery. B- Vein.
doi:10.1371/journal.pone.0063079.g002
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surgical planning, who were blinded to the image reconstruction

technique, one radiologist reviewed all images and medical records

to determine the vascular anatomy of each patient. This included

surgical findings for those patients who underwent surgery. Vessels

that were absent, either from injury or prior reconstructions, were

excluded from analyses. For each patient, the image interpretation

was performed on one side that was randomly selected for each

patient. The two readers independently ranked overall image

quality at each vessel, using a 4-point scale based on vessel

sharpness, image noise, streak or other artifacts where 4 =

excellent, no artifact; 3 = good, mild artifact; 2 = acceptable,

moderate artifact present but images still interpretable; and 1=

unevaluable with severe artifacts rendering interpretation impos-

sible.

Statistical analysis
The SNR and CNR among different reconstructions were

summarized using boxplots. For the subjective image quality

scores, interobserver agreement was evaluated with a weighted

Cohen’s kappa test (weighting of 0.8 for the closest score) with the

following scale: less than 0.20, poor; 0.21–0.40, fair; 0.41–0.60,

moderate; 0.61–0.80, good; and 0.81–1.00, excellent agreement.

The Friedman test with a post-hoc multiple comparisons evaluated

the statistical difference in image quality score (the average of two

readers) and in the SNR and CNR among the different

reconstruction methods. Statistical analyses were performed using

STATA version 10.1 (Stata Corp., College Station, TX).

Results

All CTA studies were acquired without complication. The total

imaging time for each study was under 45 minutes. The estimated

radiation exposure was 7.08, 7.03, 6.54, and 9.47 mSv for patients

1–4, respectively.

Objective image quality assessment
In 478 of the total 480 (99.6%) individual measurements (i.e., 4

SNR (muscle, fat, artery, and vein) and 2 CNR (artery and vein)

measurements for 4 patients with 4 different mAs, all repeated 5

times), AIDR3D achieved a higher value than that from the FBP

image with corresponding mAs. Compared to FBP images

acquired with original dose, AIDR3D images with 75%, 62%,

and 50% mAs achieved a superior value in 94% (113/120), 62.5%

(75/120), and 70% (84/120) of the individual measurements.

Figure 3. Representative images with FBP and AIDR3D reconstructions. Image noise increases on images reconstructed using FBP with
original tube current (A, D) and simulated 50% dose reduction (B, E), especially around the metal in the mandible (A, B), while images reconstructed
using AIDR3D with simulated 50% dose reduction (C, F) achieve reduced artifacts and noise. The right lingual artery (D–F) is poorly delineated in the
image with FBP and simulated 50% dose reduction (E).
doi:10.1371/journal.pone.0063079.g003
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When considering the median SNR (Figure 1) and CNR

(Figure 2), AIDR3D achieved significantly higher values than FBP

at all 100%, 75%, 62%, and 50% mAs settings, with statistically

significant differences (all p-values #0.0015). Images with the

simulated 50% reduction in mAs and with AIDR3D reconstruc-

tion had similar SNR and CNR as those with 100% mAs and FBP

reconstruction (FBP with 100% mAs vs. AIDR3D with 50% mAs,

median muscle SNR: 6.23 vs. 5.77; fat SNR: 5.75 vs. 6.40; artery

SNR: 45.0 vs. 43.8; vein SNR: 55.7 vs. 54.9; artery CNR: 38.6 vs.

38.1; vein CNR: 48.7 vs. 49.0, all p-values .0.19).

Subjective image quality assessment
Three anatomically absent vessels were excluded from evalu-

ation: the facial artery for patient 2 and 3 and the external jugular

vein for patient 3. For the remaining 264 vessels (22 vessels for 8

different reconstructions), the interobserver agreement between

the two readers was good (weighted kappa value = 0.7), with 84%

(222/264) of vessels being identical between readers.

Considering the mean image quality score for the two readers

(Table 1), the images reconstructed with FBP and simulated 50%

reduction of mAs showed the lowest quality score among the

methods at all vessels, with a significantly (p,0.001) lower overall

Table 1. Mean image quality score (average of two readers) for each of the eight image reconstruction strategies at each vessel.

FBP AIDR3D

mAs mAs p-value

No. 100% 75% 62% 50% 100% 75% 62% 50%

Large
arteries

Internal carotid 4 4.00 3.75 4.00 3.63 3.88 3.88 4.00 4.00 -

External carotid 4 4.00 3.75 3.88 3.63 3.88 4.00 4.00 4.00 -

Overall 8 4.00 3.75 3.94 3.63 3.88 3.94 4.00 4.00 0.798

Small
arteries

Facial 2 4.00 3.75 3.75 3.75 4.00 4.00 4.00 4.00 -

Lingual 4 3.88 3.63 3.75 3.50 3.75 3.75 3.88 3.75 -

Superior thyroid 4 3.50 3.25 3.38 3.13 3.50 3.50 3.63 3.50 -

Superficial temporal 4 3.50 3.50 3.25 3.25 3.75 3.63 3.50 3.63 -

Overall 14 3.68 3.50 3.50 3.36* 3.71 3.68 3.71 3.68 ,0.001

Artery overall 22 3.77 3.61 3.64 3.45* 3.80 3.77 3.82 3.80 ,0.001

Veins Internal jugular 4 4.00 3.88 3.88 3.88 3.88 3.88 4.00 4.00 -

External jugular 3 3.67 3.67 3.67 3.50 3.67 3.67 3.67 3.67 -

Common facial 4 3.63 3.38 3.50 3.38 3.50 3.50 3.63 3.63 -

Vein overall 11 3.77 3.64 3.68 3.59* 3.73 3.68 3.77 3.77 ,0.001

*Significantly lower compared to at least one other reconstruction. ‘‘-’’ indicates no statistical comparison due to a small number in each subgroup.
doi:10.1371/journal.pone.0063079.t001

Figure 4. Representative images with FBP and AIDR3D reconstructions. The branch of the left facial artery (arrow) is clearly depicted on the
image reconstructed using AIDR3D with simulated 50% dose reduction (C), while it is obscured on the image reconstructed using FBP with original
dose (A) and is hard to detect on the image using FBP with simulated 50% dose reduction (B) due to streak artifacts.
doi:10.1371/journal.pone.0063079.g004
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score for smaller arteries (lingual, superior thyroid, and superficial

temporal arteries), all arteries, and all veins (3.36 vs. 3.50–3.71 for

smaller arteries, 3.45 vs. 3.61–3.80 for all arteries, and 3.59 vs.

3.64–3.77 for all veins, respectively). Images reconstructed with

AIDR3D at all four mAs had comparable image quality as the

images with original mAs and FBP reconstruction, even for the

smaller arteries (AIDR3D with 4 different mAs vs. FBP with

original mAs = 3.68–3.71 vs. 3.68 for smaller arteries). Images

from AIDR3D with reduced mAs achieved higher mean scores for

the superior thyroid and superficial temporal artery when

compared to FBP images reconstructed with the original mAs

(Table 1).

Figure 3 and 4 show the representative images for different

reconstruction methods from the same patient.

Discussion

Face transplant candidates are in general relatively young, are

of good health, and will require multiple CT scans over their

lifetime. In addition, less aggressive immunosuppression has

decreased the long-term risks [21]. Combined with excellent

outcomes [1], the long life-expectancy of this growing population

challenges the imaging protocols to optimize radiation dose while

still achieving excellent image quality for surgical planning. Since

January 2012, in the United States alone, several new face

transplant programs have been developed, and there is a growing

need to standardize low radiation dose imaging.

The CTA literature for surgical planning of face transplant to

date uses multiphase wide area detector technology [2] to

determine those vessels best suited for surgical anastomoses [6].

However, the multiple acquisitions over time have greater

exposure than a fewer number of static acquisitions. There are

two at risk organs from the increase of radiation dose, the thyroid

gland and the orbits. The cumulative dose to the thyroid should be

monitored to avoid increasing risk of thyroid cancer [22,23]. It is

also important to limit the radiation to the globes for patients with

at least partial vision to avoid cataract formation [24].

AIDR3D was introduced to reduce patient radiation exposure

while maintaining image quality, and it has been used in the chest

and abdomen [25,26], the coronary arteries [27–29], and for the

liver perfusion imaging [30]. The adaptive photon reduction is

applied directly to the photon count values. In our experience this

reduces streak artifacts, an important part of surgical planning

because face transplant candidates have substantial metal from

their injury, prior interventions, or typically both [6,31]. The

algorithm has been designed to work in both the three dimensional

(3D) raw data and reconstruction domains. Within the raw data

domain, adaptive photon noise reduction is achieved by using

a statistical noise model and a scanner model. The statistical

modeling characterizes both electronic and quantum noise

patterns in projection space. The scanner model analyzes the

physical properties of the CT system at the time of acquisition,

using a 3D smoothing filter that accounts for photons of adjacent

rows as well as detector channels and views. In the image space, an

iterative technique optimizes a balance between noise suppression

and preservation of fine details. A weighted blending with FBP is

used; this maintains granularity. Figures 3 and 4 illustrate the

reduction in streak artifacts near important vessels needed for face

transplantation surgical planning.

Human subject guidelines for face transplantation at our

institution do not allow for multiple surgical planning CT

acquisitions in the same patient. Thus, to evaluate the new

iterative reconstruction technology, a validated [32] CT noise

addition software tool developed by the manufacturer was used to

directly compare quality among images that depict the same

anatomy through simulation of a lower tube current [33]. Noise

addition tools have been effectively used to evaluate the effects of

dose reduction, primarily outside the head and neck [34–36].

Simulated radiation dose reduction for face transplant planning

CTA revealed suboptimal image quality for FBP reconstruction

images when the tube current was reduced by 50%, especially for

smaller vessels such as the lingual, superior thyroid, or superficial

temporal arteries. Delineation of these vessels is essential because

they could be the target of anastomosis [37]. Images reconstructed

with AIDR3D demonstrated maintained image quality for these

smaller vessels when the simulated tube current was reduced by

50%. Based on the current data, we have recently changed face

transplant surgical planning CT protocol at our institution to

include AIDR3D. Future studies are planned to confirm excellent

image quality for our patients with an estimated effective radiation

doses of less than 5 mSv.

Our study limitations include a small patient cohort. However,

future imaging will include AIDR3D on a prospective basis, and

we will then be able to expand the patient cohort, and correlate

the image findings with those at surgery.

Conclusions

Using simulated radiation dose reduction for face transplant

planning CTA, AIDR3D maintained image quality with a 50%

reduction in radiation dose.
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