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Abstract

High mobility group box 1 (HMGB1) protein is a danger-signaling molecule, known to activate an inflammatory response via
TLR4 and RAGE. HMGB1 can be either actively secreted or passively released from damaged alveolar epithelial cells. Previous
studies have shown that IL-1b, a critical mediator acute lung injury in humans that is activated by HMGB1, enhances alveolar
epithelial repair, although the mechanisms are not fully understood. Herein, we tested the hypothesis that HMGB1 released
by wounded alveolar epithelial cells would increase primary rat and human alveolar type II cell monolayer wound repair via
an IL-1b-dependent activation of TGF-b1. HMGB1 induced in primary cultures of rat alveolar epithelial cells results in the
release of IL-1b that caused the activation of TGF-b1 via a p38 MAPK-, RhoA- and avb6 integrin-dependent mechanism.
Furthermore, active TGF-b1 accelerated the wound closure of primary rat epithelial cell monolayers via a PI3 kinase a-
dependent mechanism. In conclusion, this study demonstrates that HMGB1 released by wounded epithelial cell monolayers,
accelerates wound closure in the distal lung epithelium via the IL-1b-mediated avb6-dependent activation of TGF-b1, and
thus could play an important role in the resolution of acute lung injury by promoting repair of the injured alveolar
epithelium.
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Introduction

Re-epithelialization of the distal lung during the recovery from

acute respiratory distress syndrome (ARDS) is necessary to clear

the edema fluid from the distal airspace of the lung and to restore a

physiologic alveolar epithelial function [1]. In the distal lung,

alveolar epithelial type II (ATII) cells have been shown to be a

resident progenitor of alveolar epithelial regeneration [2,3]. ATII

cells re-establish alveolar epithelial barrier integrity by well-known

mechanisms such as cell spreading and cell migration to cover the

denuded area [2,3]. To complete the restoration to normal

morphological and functional properties of the alveolar epitheli-

um, progenitor cells finally differentiate to alveolar type I and type

II cells [4].

The initial loss of the epithelial barrier integrity is associated

with the activation of a severe inflammatory response, resulting in

increased numbers of neutrophils and increased concentrations of

proinflammatory mediators including TNF-a, IL-1b, and TGF-

b1, in the bronchoalveolar-lavage fluid (BALF) from patients with

ALI [5–7]. Among these mediators, IL-1b was shown not only to

increase lung vascular permeability, but also to enhance alveolar

epithelial wound closure [2,3]. In addition, we have shown in

ATII cells that IL-1b activates TGF-b1, which in turn can increase

alveolar epithelial wound closure [8,9]. However, the prolonged

presence of TGF-b1 in the alveolar space leads to pulmonary

fibrosis [10]. The role of TGF-b1 in IL-1b-induced alveolar

epithelial wound closure remains unknown.

High-mobility group box-1 (HMGB1) is a non-histone chro-

matin-associated protein that is actively secreted or passively

released from necrotic or injured cells [11]. It is an important

mediator of lung inflammation in experimental models of ALI

from various origins (sepsis, trauma, ventilator-induced lung

injury) [11–13]. Previous work has also reported that HMGB1

signals via Toll-like receptors (TLR-2, TLR-4, and the receptor for

advanced glycation end-products RAGE to induce the nuclear

translocation of NF-kB resulting in an enhanced production of

proinflammatory cytokines, including TNF-a and IL-1b [14–16].

In contrast, HMGB1 inhibition attenuates lung inflammation in

these preclinical models of ALI [11–13]. Finally, HMGB1 levels

are increased in plasma and BALF of patients with ALI and

correlate with outcome [11].

Extracellular functions of HMGB1 are not limited to inflam-

mation. HMGB1 induces neuronal differentiation [17], and is a
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mitogen for vessel-associated stem cells [18] and for endothelial

precursor cells [19]. Furthermore, HMGB1 promotes scratch

wound closure of keratinocytes [20] and the topical application of

HMGB1 corrects impaired would healing in diabetic skin [21].

However, the potential role of HMGB1 in stimulating alveolar

epithelial wound closure has not been addressed. We hypothesized

that HMGB1 is an early mediator of the alveolar epithelial wound

closure. We found that HMGB1, released by primary rat ATII cell

monolayers after scratch wound, enhanced the wound closure

across primary cultures of rat and human alveolar epithelial cell

monolayers via an IL-1b-dependent mechanism. Furthermore, we

found that HMGB1 caused the release of IL-1b that resulted in a

p38 MAP kinase-, RhoA- and avb6 integrin-dependent activation

of TGF-b1 that enhanced epithelial alveolar wound closure by a

PI3 kinase a-dependent mechanism.

Materials and Methods

Reagents
All cell culture media were prepared by the UCSF Cell Culture

Facility using deionized water and analytical grade reagents. The

PI3K inhibitors, PIK-90, PW12, TGX220 and SW14 were

provided by Kevan M. Shokat (UCSF, San Francisco, CA) [22].

IC50 for each PI3K inhibitors are reported in Table 1. SB203580,

an inhibitor of p38 MAP kinase was obtained from Calbiochem

(San Diego, CA). Human recombinant TGF-b1 was obtained

from R&D Systems (Minneapolis, MN). Antibodies and phos-

phoantibodies for Akt, p38 and MAP kinase dependent kinase

were purchased from Calbiochem (San Diego, CA). Rabbit

polyclonal anti– phospho and anti–total Smad2 was obtained

from Cell Signaling Technology (Danvers, MA). Rat RAGE

blocking antibody was obtained from R&D Systems (Minneapolis,

MN). HMGB1 antibody and TLR4 blocking antibody were

purchased from Abcam (Cambridge, MA). Goat anti-mouse and

goat anti-rabbit IRDyeH-conjugated secondary antibodies were

purchased from LI-COR Biosciences (Lincoln, NE). Human

recombinant HMGB1 purified in reducing conditions and

provided in solution with DTT, IL-1b and IL-1b receptor

antagonist (IL-1RA) were obtained from R&D Systems (Minne-

apolis, MN). Blocking studies were performed with anti-avb6

blocking (3G9) and type specific control antibodies (Ab), a

generous gift from Gerald Horan (Biogen Idec, Cambridge, MA)

[23]. TGF-b type II receptor (sTGFbRII) was a generous gift from

Gerald Horan (Biogen Idec, Cambridge, MA), RhoA kinase

(ROCK) inhibitor (Y-27632) was purchased from Calbiochem

(San Diego, CA). 125I-labeled human serum albumin was

purchased from Jeanatope (ISO-TEX Diagnostics, Friendswood,

TX). Protein concentration of cell lysates was determined using the

Bio-Rad protein assay kit (Bio-Rad, Hercules, CA). All other

reagents were obtained from Sigma (St-Louis, MI).

Cell Culture
Primary cultures of rat and human alveolar epithelial cells were

used for the in vitro studies. Rat alveolar epithelial type II (ATII)

cells were isolated following approval from the University of

California, San Francisco Institutional Animal Care and Use

Committee (IACUC). Rat alveolar epithelial type II (ATII) cells

were isolated as previously described [24,25] with slight modifi-

cations. Briefly, cells were isolated by elastase digestion followed by

negative selection using four monoclonal antibodies (mAbs) against

cell surface molecules expressed on rat macrophages (CD4/

CD32/CD45/RMA) purchased from BD Biosciences-Pharmin-

gen (San Diego, CA). These mAbs were pre-incubated with

Dynabeads M-450, magnetic beads with sheep anti-mouse IgG,

(Dynal ASA, Oslo, Norway) in 0.1% BSA/PBS. After removing

unbound mAbs, rat ATII cells were mixed with the bead

suspension and rocked gently for 30 min at 4dC. Unbound cells

were isolated and plated on polycarbonate Transwells (Corning

Costar Co., Cambridge, MA) with a 0.4 mm pore size. Cells were

seeded at a concentration of 1.56106 cells/cm2 in DMEM-H21

medium containing 10% low endotoxin fetal bovine serum, 1%

penicillin and streptomycin and kept at 37uC in a humidified 95%

air-5% CO2 incubator. Twenty-four hours later, nonadherent

epithelial cells were removed by washing with PBS and fresh

medium added to the lower compartments of the Transwells, thus

maintaining the ATII cell monolayers with an air-liquid interface

on their apical side. After 72–96 hours, cells that formed confluent

monolayers reaching a transepithelial electrical resistance greater

than 1500 ohms.cm2 were used for experiments.

Human alveolar epithelial type II cells were isolated from

human lungs that were not used by the Northern California

Transplant Donor Network following approval from the Univer-

sity of California, San Francisco Committee on Human Research.

Our studies indicated that these lungs were in good condition,

both physiologically and pathologically [26]. Cells were isolated

after the lungs have been preserved for 4–8 hours at 4uC, using

methods previously described [27]. A lobe of the human lung was

selected that had no evidence of injury on the pre-harvest chest

radiograph, could be normally inflated and had no area of

consolidation or hemorrhage. The pulmonary artery for this

segment was perfused with 37uC PBS solution and the distal

airspaces of a segmental bronchus was lavaged 10 times with 37uC
Ca2+, Mg2+ free PBS solution containing 0.5 mM EGTA and

EDTA. Sixty to ninety ml of pancreatic porcine elastase (8 units/

ml) diluted in a Ca2+, Mg2+free HBSS solution was instilled into

the airspaces of 50 g of the chosen segment of lung tissue. The

lung was incubated in a water bath for 30 min at 37uC and

minced finely in the presence of fetal bovine serum and DNase I

(500 mg/ml). The cell rich fraction was filtered sequentially

through one-layer gauze, two-layer gauze, 150 mm and 30 mm

nylon meshes. The cell suspension was then layered onto a

discontinuous percoll density gradient 1.04–1.09 g/ml solution

and centrifuged at 4006g for 20 min to remove red blood cells.

The cells that accumulated at the interface of the solution and the

percoll, were a mixture of type II pneumocytes and alveolar

macrophages. These cells were recovered by centrifugation at

2006g for 10 min at 4uC. The pellet was resuspended in DMEM

containing 10% FCS. The cells were incubated in DMEM

containing magnetic beads coated with an anti-CD-14 antibody

(Dynabeads M/450 CD14, Dynal, Oslo, Norway) at 4uC for

40 min under constant mixing to eliminate macrophages. The cell

viability was assessed by trypan-blue exclusion. The purity of

Table 1. List of class I PI3K isoform inhibitors and their
respective in vitro IC50.

Inhibitors PI3Ka PI3Kb PI3Kc PI3Kd

PIK90 11 nM 350 nM 18 nM 58 nM

PW12 15 nM 830 nM 970 nM 730 nM

SW14 8.9 mM 700 nM 21 nM 8.5 nM

TGX 784 nM 5 nM 3.2 mM 15 nM

Assays were conducted side by side with 10 mM ATP using the method
described previously [22].
doi:10.1371/journal.pone.0063907.t001
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isolated human alveolar type II cells was checked by Papanicolaou

staining or by staining with anti-human type II cell antibody

(obtained from Leland Dobbs, UCSF) and the purity has

consistently been more than 90%. Human alveolar type II cells

were seeded on collagen I coated Transwells at a density of 16106

cells/cm2. The cells were grown in an air-liquid interface 72 h

after seeding. Five days after the cells are seeded, the monolayer

developed a transepithelial electrical resistance greater than

1500 ohms.cm2, as reported for rat ATII cell monolayers.

3T3 Fibroblasts were obtained from ATCC (Manassas, VA),

and cultured in DMEM +10%FBS+P/S, according to ATCC

standard protocols.

Cell Viability
Cell viability after exposure to different experimental conditions

was measured by the Alamar Blue assay [28]. Cell media were

replaced by medium containing 10% Alamar Blue and placed at

37uC in the cell incubator for 2 to 3 hours. The media was then

collected and read on a plate reader at 570 nm.

S-Glutathionylation of HMGB1
HMGB1 glutathionylation was performed using previously

described method [29,30]. Purified HMGB1 (3 mg) in 100 ml

PBS was incubated with GSH (0 or 100 mM) for 15 minutes,

followed by exposure to H2O2 (200 mM) for an additional 15

minutes. Samples were then purified using spin desalting columns

(Thermo Scientific) and amounts of non oxidized and oxidized

HMGB1 determined using Western Blot analysis.

Multiple Scratches Cell Supernatant (MS Cell Sup)
Primary rat ATII cells were grown to confluence in 6-well plates

(1.56106 cells per well). Cells were washed three times with

DMEM, and a sterile pipette was used to make 6 linear wounds.

Cells were washed three times with DMEM to remove debris, and

fresh DMEM (1 ml) was added to the monolayer for 6 hours

before collection of the supernatant. Supernatant was directly used

on rat ATII monolayers or kept frozen for later use. Condition

media was fresh DMEM added to control cells (no scratch) for 6

hours before collection. MS Cell Sup in presence of 5 mM DTT

caused a significant increase in epithelial wound closure, which

was not statistically different than MS Cell Sup alone (data not

shown).

Wound Closure Analysis
Primary rat ATII cells were grown to confluence. Cells were

washed three times with DMEM, and a sterile pipette was used to

make a linear wound. Cells were washed three times with DMEM

to remove debris. The degree of wound closure was quantified by

calculating the percentage of the original wound area that was

covered 16 h after wounding. Images were taken at 0 and 6 and

16 h (images were also taken at 24 h in preliminary studies). All

experiments were done in triplicate. For each condition, three

wounded areas were analyzed in parallel, and all experiments were

repeated at least three times. Cell spreading, cell migration, and

cell proliferation are well-known mechanisms of epithelial wound

closure [2,3]. To evaluate the contribution of proliferation on

epithelial wound closure, we used mitomycin C (10 mg/ml), the

DNA crosslinking inhibitor, in the cell media after wounding. We

verified that mitomycin C treatment resulted in negligible BrdU

incorporation in rat ATII cells, demonstrating an absence of DNA

synthesis. Mitomycin C had no effect on MS Cell Sup, HMGB1,

IL-1b, or TGF-b1-dependent increase in the degree of wound

closure of primary rat ATII cell monolayers described in this study

(data not shown).

Depletion of HMGB1 by Immunoprecipitation
HMGB1 Ab (Novus Biologicals, Littleton, CO) was directly

added (30 ug) to the MS Cell Sup obtained from 6-well plate

monolayers (1 ml). HMGB1 was then immunoprecipitated using

Protein A Dynabeads (Life technologies, Grand Island, NY)

according to manufacturer’s instructions, and HMGB1-depleted

supernatants were directly used in functional (wound closure) and

biochemical assays (western blots).

Bioassay for TGF-b Activation
Polarized rat ATII cells (56105 cells) were stimulated with IL-

1b (10 ng/ml). Anti-avb6 (30 mg/ml) blocking Ab or their isotype

control Ab were added 30 min before stimulation. Then, as we

have described previously [31], mink lung epithelial reporter cells

(TMLC; 56104 cells), expressing firefly luciferase under the

control of the TGF-b sensitive plasminogen activator inhibitor-1

promoter, were seeded onto the ATII cell monolayer in absence or

presence of blocking Ab. Co-culture was maintained for 16–20 h,

and the final lysates were assayed for luciferase activity, as

previously described [31].

Measurement of Active TGF-b1
Rat active TGF-b1 levels were measured in triplicate by a

commercially available enzyme-linked immunosorbent assay

(ELISA) from R&D Systems (Minneapolis, MN), as we have done

before [8]. The assay was performed according to the manufac-

turer’s protocol on primary rat alveolar type II cells. The

sensitivity of the assay was 1.7 pg/mL active TGF-b1. This assay

recognizes both natural and recombinant TGF-b1. No significant

cross-reactivity or interference was observed.

Measurement of IL-1b
IL-1b levels were measured in triplicate by a commercially

available enzyme-linked immunosorbent assay (ELISA) from R&D

Systems (Minneapolis, MN). The assays were performed according

to the manufacturer’s protocol, in cell lysates. The sensitivity of the

assay was less than 5 pg/ml. No significant cross-reactivity or

interference was observed.

Measurement of HMGB1
HMGB1 levels were measured in triplicate by a commercially

available enzyme-linked immunosorbent assay (ELISA) from IBL

International (Toronto, ON). The assays were performed accord-

ing to the manufacturer’s protocol, in cell lysates. The sensitivity of

the assay was less than 0.3 ng/ml. Cross-reactivity with

HMGB2,2%.

RhoA Activation Assay
RhoA activity was determined from endothelial and alveolar

epithelial cells using the luminescence-based G-LISATM RhoA

activation assay biochemistry kit according to the manufacturer’s

instructions (Cytoskeleton Inc., Denver, CO), as we have done

before [8]. Briefly, cells were stimulated with IL-1b (10 ng/ml) for

10 min and lysed. The lysates were clarified by centrifugation at

4uC (8,0006g, 2 min), the protein concentration determined, and

the final protein concentrations adjusted to 1.0 mg/ml. After

incubating the lysates in the Rho-GTP affinity plate and adding

the secondary Ab and detection reagents, luminescence was

determined using the Wallac Victor 1420 (Perkin Elmer, Shelton,

CT).

HMGB1 Promotes Alveolar Epithelial Repair
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Western Blot Analyses
Western blot analyses from frozen lungs and cells homogenates

were performed as described previously [32]. After equal amounts

of protein were loaded in each lane and separated by 10% SDS-

PAGE, proteins were transferred to Invitrogen iBlotTM PVDF

membranes (Invitrogen, Carlsbad, CA). Membranes were blocked

for 1 hour with Odyssey blocking buffer (LI-COR Biosciences,

Lincoln, NE), which was also used as primary and secondary

antibodies incubation buffer. Primary antibodies were used at

dilutions of 1:500 and 1:1000, incubated overnight at 4uC. Near-

infrared (IR) detection was used with the IRDyeH-conjugated

secondary antibodies (LI-COR Biosciences, Lincoln, NE) which

were either goat anti-mouse IRDyeH 800CW or goat anti-rabbit

IRDyeH 680, used at 1:10,000 dilution and imaged at 84 mm

resolution with the Odyssey Infrared Imaging System (LI-COR

Biosciences, Lincoln, NE). Quantification was performed with the

LI-COR Biosciences analysis software.

Statistics. For the statistical analysis we used Statview

Version 5.0 and MedCalc Version 7.2.0.2. The normal distribu-

tion was verified using the Kolmogorov-Smirnov test. For

normally distributed data, data are summarized as means 6

SEM. One-way analysis of variance and the Fisher’s exact t-test

were used to compare experimental with control groups. For data

that were not normally distributed, the data were subsequently

analyzed with non-parametric tests and the data presented in the

figures as box plots with medians, IQRs and lower and upper

ranges. The Kruskal-Wallis test followed by the Dunn test was

used to compare three or more experimental groups. The Mann-

Whitney test was used to compare two experimental conditions. A

p value of ,0.05 was considered statistically significant.

Results

Endogenous HMGB1 Released by Damaged Primary Rat
ATII Cells Increases Alveolar Scratch Wound Closure

HMGB1 is a multifunctional cytokine involved in inflamma-

tory responses and in the repair of wounded skin. Therefore, we

hypothesized that HMGB1, released during scratch wound of

alveolar epithelial cell monolayers, could enhance alveolar

epithelial wound closure. Collected supernatants from cell

monolayers that underwent multiple scratch wounds (MS Cell

Sup, see Methods) or from cell monolayers that did not undergo

scratch wounds (condition media) were used in the following set

of experiments. We found that HMGB1 was elevated in MS

Cell Sup (9.160.9 ng/ml) compared to condition media of

monolayers that did not undergo scratch wounds (0.960.1 ng/

ml) measured by ELISA (Figure 1A). When added to primary

rat ATII cell monolayers immediately after wounding, we found

that MS Cell Sup caused a significant increase in epithelial

wound closure, an effect not observed after depletion of

HMGB1 by immunoprecipitation (Figure 1B&C). Since

HMGB1 is known to signal through RAGE and TLR4 [14–

16], and to induce migration by binding to CXCR4 when it

forms a heterocomplex with CXCL12 [33], we added anti-

RAGE, anti-TLR4 antibodies or the CXCR4 inhibitor

AMD3100 with MS Cell Sup to primary rat ATII cell

monolayers immediately after wounding. Although RAGE

expression in ATII cells has been shown to increase overtime

in culture [34], we found that pretreatment with an anti-RAGE

antibody blocked 50% of the HMGB1 effect. Pretreatment with

an anti-TLR4 antibody completely inhibited the MS Cell Sup-

dependent increase in wound closure. Lastly, we found that the

MS Cell Sup –dependent increase in wound closure is not

CXCR4-dependent (Figure 1D).

Endogenous HMGB1 Released by Damaged Primary Rat
ATII Cells Increases Alveolar Scratch Wound Closure via
an IL-1b-dependent Mechanism

Since we have previously shown that IL-1b enhances in vitro

alveolar epithelial wound closure [2] and because HMGB1 causes

the release of IL-1b in lung endothelial cells [35], we next

examined whether supernatants from cell monolayers that

underwent multiple scratch wounds could increase the release of

IL-1b by rat ATII cell monolayers. We found that MS Cell Sup

increased the release of IL-1b by rat ATII cell monolayers, an

effect that was blocked after depletion of HMGB1 by immuno-

precipitation and by an antibody against TLR4, which is also a

receptor for HMGB1 (Figure 2A). Then we tested whether the

increase in wound closure due to MS Cell Sup was mediated

through an IL-1b-dependent mechanism. We found that indeed

IL-1RA prevented the increase in the rate of alveolar epithelial

wound closure caused by MS Cell Sup (Figure 2B).

We next tested whether human reduced recombinant HMGB1

could reproduce the effect of endogenous HMGB1 released by

wounded rat ATII cell monolayers. We found that human

recombinant HMGB1 (10 ng/ml) increased by 80% the rate of

wound closure, an effect that was blocked by glycyrrhizin, a

specific inhibitor of HMGB1 or IL-1RA added to the cell

monolayers immediately after wounding (Figure 3A&B). We then

sought to determine whether HMGB1 would increase the

secretion of IL-1b. We found that HMGB1 caused a dose-

dependent release of IL-1b in ATII cell monolayers (control

values: 8.3+1.1 pg/ml), an effect blocked by pretreatment with

zVAD, an inhibitor of caspase-1, suggesting that HMGB1 induces

the secretion of IL-1b via an activation of the NPLR3

inflammasome, which has been shown for lung endothelial cells

[35] (Figure 3C). Although the fully reduced HMGB1 used in

these experiments could perhaps be partially oxidized after been

added to the cell medium of primary cultures of ATII cells, we

tested the effect of a fully oxidized HMGB1 (see Methods) on the

secretion of IL-1b required for the wound closure of ATII cell

monolayers. The results show that oxidized HMGB1 does not

induce the secretion of IL-1b by the ATII cell monolayers

(Figure 3C). Finally, we found that IL-1b-dependent increase in

the rate of alveolar epithelial wound closure was not affected by

glycyrrhizin added to the cell monolayers immediately after

wounding, indicating that IL-1b did not induce the release of

HMGB1 by ATII cell monolayers and that IL-1b effect on the

alveolar epithelial wound closure was HMGB1 independent

(Figure 3D). Given the relatively high sensitivity of rat ATII

cells to HMGB1, we performed additional control experiments in

3T3 fibroblasts. We found that 3T3 fibroblasts required a 100-fold

higher concentration of HMGB1 to reach the same increase in the

rate of wound closure over a 16 hour time period (Figure 3E). To

better understand this cell-type specific difference, we also

determined the amount of IL-1b secreted by 3T3 fibroblasts in

response to exposure to HMGB1. We found that 3T3 fibroblasts

showed no significant secretion of IL-1b even at very high doses of

HMGB1 (1000 ng/ml) (Figure 3F). These results demonstrate a

clear difference in sensitivity of ATII cells to HMGB1 when

compared with 3T3 fibroblasts. Taken together, these results show

that HMGB1 is released by primary rat ATII cell monolayers after

wounding, and leads to a significant increase in alveolar epithelial

wound closure via an IL-1b-dependent mechanism.

HMGB1 Promotes Alveolar Epithelial Repair
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IL-1b Increases Alveolar Scratch Wound Closure via a p38
MAP Kinase-, RhoA- avb6 Integrin- and TGF-b1-
dependent Mechanism in Primary Rat and Human ATII
Cell Monolayers

IL-1b (10 ng/ml, 16 hours) significantly increases the rate of

wound closure in primary rat ATII cell monolayers (Figure 4A)

via an avb6 integrin- and TGF-b1-dependent mechanism. The

IL-1b effect was also blocked by treating the cell monolayers

immediately after wounding with either a blocking antibody

against avb6 integrin, a RGD peptide or a TGF-b1 soluble

chimeric receptor II (TGF-bscRII) (Figure 4B–D). We next

examined the signaling pathways implicated in the activation of

TGF-b1 via the avb6 integrin. We found that inhibiting the

activation of p38 MAPK prevented the IL-1b-dependent

activation of TGF-b1 (Figure 5A). Using mink lung epithelial

reporter cells expressing luciferase under the control of the

TGF-b sensitive plasminogen activator inhibitor-1 promoter, we

showed that blocking avb6 integrin did not have any additive

effect to p38 MAPK inhibition on the IL-1b-dependent

activation of TGF-b1 (Figure 5B). Furthermore, inhibiting

RhoA by an inhibitor of the RhoA-dependent kinase (Y27632)

did not affect the IL-1b-mediated activation of p38 MAP kinase

nor the phosphorylation of its downstream kinase MAPKAPK-2

(Figure 5C). In contrast, we found that inhibiting p38 MAP

kinase prevented RhoA activation by IL-1b (Figure 5D),

indicating that RhoA activation by IL-1b is downstream of the

activation of p38 MAP kinase. Finally, to further validate the

Figure 1. Endogenous HMGB1 released by damaged primary rat ATII cells increases alveolar epithelial wound closure. (A) HMGB1
was elevated in cell supernatant from rat ATII monolayers that underwent scratch wounds (MS Cell Sup) compared to cell supernatant from rat ATII
monolayers that did not undergo scratch wounds (condition media). (B) MS Cell Sup increases the rate of wound closure of primary rat ATII cell
monolayers compared to cell supernatant from rat ATII monolayers that did not undergo scratch wounds. HMGB1 was depleted from MS Cell Sup by
immunoprecipitation using 30 mg/ml of HMGB1 specific Ab (MS Cell Sup IP w/HMGB1 Ab). Controls were MS Cell Sup immunoprecipitated with a
control IgG (MS Cell Sup IP w/Cont Ab). (C) HMGB1 is secreted by primary rat ATII cell monolayers after scratch wounds. Multiple scratches (MS) were
performed on primary rat ATII cell monolayers. Fresh cell media were added for 6 hours to the monolayers after extensive washes. Cell supernatants
were then centrifuged to remove dead cells and cell debris, then analyzed by western blot (40 ml loaded per lanes from a 1 ml MS Cell Sup sample).
(D) MS Cell Sup increases the rate of wound closure of a primary rat ATII cell monolayers via RAGE- and TLR4-dependent pathways, but not via a
CXCR4-dependent mechanism. MS Cell Sup, and either 30 mg/ml of blocking RAGE or TLR4 antibodies or their isotype control IgG, or 1 mM of
AMD3100, a CXCR4 inhibitor, were added to the monolayers after the scratch. Rate of wound closure is expressed as percent of control 16 h after
wounding. *p,0.05 from monolayers exposed to control cell media; **p,0.05 from monolayers exposed to MS Cell Sup. For western blot
experiments, one representative experiment is shown, three additional experiments gave comparable results; *p,0.05 from monolayers exposed to
condition media.
doi:10.1371/journal.pone.0063907.g001
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previous observations in rat ATII cell monolayers, we also

demonstrated that IL-1b increased alveolar epithelial wound

closure via a TGF-b1-dependent mechanism in primary human

ATII cells (Figure 6A&B). Taken together, these experiments

demonstrated that the IL-1b-enhanced alveolar scratch wound

closure via an avb6 integrin-dependent activation of TGF-b1 in

ATII cell monolayers.

TGF-b1 Increases Alveolar Scratch Wound Closure via
PI3Ka-dependent Mechanism

Because PI3 kinase has been implicated in epithelial cell

migration [36], we determined if PI3 kinase signaling mediates the

IL-1b- and TGF-b1-dependent increase in alveolar epithelial

wound closure. We found that IL-1b increased Akt phosphory-

lation on its serine 473 in rat ATII cells (Figure 7A). The IL-1b-

induced Akt phosphorylation was blocked by both a avb6 integrin

blocking antibody (Figure 7A) and a TGF-b1 soluble chimeric

receptor II (TGF-bscRII) (Figure 7B). These results indicate that

TGF-b1 mediates the IL-1b-dependent activation of PI3 kinase

through the avb6 integrin. Secondly, we found that PI3 kinase

inhibition completely blocked the TGF-b1-dependent increase in

alveolar epithelial wound closure (Figure 7C). Finally, using

isoform-specific PI3 kinase inhibitors, we found that pretreatment

with an inhibitor of PI3Ka (PW12), but not of PI3Kb, c and d,

prevented the IL-1b-induced increase in epithelial wound closure

(Figure 7D). Taken together, these data indicate that the IL-1b-

mediated increase in epithelial wound closure in primary rat ATII

cell monolayers is mediated via a p38 and RhoA -dependent

activation of TGF-b1 by the integrin avb6 and active TGF-b1

triggers an increase in wound closure via a PI3Ka-dependent

mechanism.

Endogenous HMGB1 Released by Wounded Primary Rat
ATII Cell Monolayers Increases Alveolar Scratch Wound
Closure via an IL-1b and avb6 Integrin -dependent
Activation of TGF-b1

In the last series of experiments, we tested the hypothesis that

supernatants from wounded cell monolayers (MS Cell Sup) and

human recombinant HMGB1 were both sufficient to activate

TGF-b1 via an IL-1b signaling pathway in ATII cell monolayers.

We found that MS Cell Sup activated TGF-b1, an effect that was

blocked by IL-1 receptor antagonist (IL-1RA) (Figure 8A).

Furthermore, human recombinant HMGB1 (10 and 50 ng/ml)

also activated TGF-b1, an effect also blocked by IL-1RA

(Figure 8B). We further confirmed these results by performing

a western blot analysis that showed that HMGB1 also caused

phosphorylation of Smad2/3 in ATII cells (Figure 8C). Finally,

we demonstrated that a RGD blocking peptide or TGF-bscRII

added immediately after wounding inhibited the HMGB1-induced

increase in the rate of wound closure of rat ATII cell monolayers

(Figure 8C&D). Taken together, these data demonstrate that

HMGB1, released by wounded ATII cell monolayers, activates

TGF-b1 via an IL-1b- and avb6-dependent mechanism, thus

enhancing wound closure in primary rat ATII cell monolayers.

Discussion

Acute lung injury (ALI) is a clinical syndrome manifested by the

rapid onset of respiratory failure associated with high mortality

[37]. ALI is characterized by increased permeability of the

alveolar-capillary barrier, decreased surfactant function, and

impaired alveolar fluid clearance [1]. Importantly, a small subset

of patients with ALI who do not have severe epithelial damage and

thus retain maximal alveolar fluid clearance have better clinical

outcomes [3]. For the patients whose alveolar epithelium is

injured, the re-epithelialization of the distal lung is crucial to clear

the edema fluid and restore normal lung function. The mecha-

Figure 2. Endogenous HMGB1 released by primary rat ATII cell monolayers after scratch wounds increases alveolar epithelial
wound closure via an IL-1b-dependent mechanism. (A) Supernatant from primary rat ATII monolayers collected 6 hours after multiple
scratches (MS Cell Sup) induces an increase in the secretion of IL-1b by primary rat ATII cell monolayers via a TLR4-dependent pathway. MS Cell Sup, a
blocking TLR4 antibody or its isotype control IgG were added to the monolayers after the scratch. HMGB1 was depleted from MS Cell Sup by
immunoprecipitation using 30 mg/ml of HMGB1 specific Ab (MS Cell Sup IP w/HMGB1 Ab). Controls were MS Cell Sup immunoprecipitated with a
control IgG (MS Cell Sup IP w/Cont Ab). IL-1b was measured by ELISA (see methods) in the cell supernatant. (B) IL-1b receptor antagonist (IL-1RA)
prevented the MS Cell Sup-dependent increase in the rate of wound closure of primary rat ATII cell monolayers. MS Cell Sup, and IL-1b receptor
antagonist (IL-1RA, 1 mg/ml) or its vehicle were added to the monolayers after the scratch. Rate of wound closure is expressed as percent of control
16 h after wounding. *p,0.05 from monolayers exposed to condition media. **p,0.05 from monolayers exposed to MS Cell Sup.
doi:10.1371/journal.pone.0063907.g002
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nisms implicated in the repair of the alveolar epithelium are

complex and include spreading, migration, proliferation and

differentiation of resident progenitor cells (such as ATII cells) and

local or bone marrow-derived stem cells [38]. Although the

definitive identification of alveolar epithelial progenitor cells

remains elusive, recent work has suggested that there is a stable

progenitor population of alveolar epithelial cells in the lung that

are positive for the integrin a6b4 and can respond dynamically to

injury by proliferation and differentiation [39].

Alveolar epithelial repair can be stimulated by multiple factors

including soluble ligands, structural elements, signaling pathways

and mechanical environment [40]. During the last decade, there is

Figure 3. Human recombinant HMGB1 increases alveolar epithelial wound closure via an IL-1b-dependent signaling pathway. (A)
Human recombinant HMGB1 increases the rate of wound closure of primary rat ATII cell monolayers. HMGB1 (10 ng/ml) or its vehicle was added to
the monolayers after scratch. Phase contrast microscopy (20X magnification) immediately after wounding (left panels, t = 0 h) and after 16 h (right
panels t = 16 h). Scale bar: 100 mm. In some experiments, glycyrrhizin or its vehicle was added to the monolayers after the scratch. (B) IL-1 receptor
antagonist (IL-1RA) prevents HMGB1-dependent increase in rate of wound closure of primary rat ATII cell monolayers. HMGB1 (10 ng/ml) and/or IL-1
receptor antagonist (IL-1RA, 20 mg/ml) or their respective vehicles were added to the monolayers after the scratch. Phase contrast microscopy (20X
magnification) immediately after wounding (left panels, t = 0 h) and after 16 h (right panels t = 16 h). Scale bar: 100 mm. (C) HMGB1 increases the
secretion of IL-1b by primary rat ATII cell monolayers. HMGB1 (10, 50 and 250 ng/ml, 6 h) or fully oxidized HMGB1 (ox HMGB1, 250 ng/ml) or their
respective vehicles was added to the cell monolayers, and IL-1b was measured by ELISA (see methods) in the cell supernatant. In some experiments,
zVAD or its vehicle was added to the cell medium 30 min prior to HMGB1. (D) Glycyrrhizin prevents HMGB1-dependent increase in rate of wound
closure of primary rat ATII cell monolayers. (E) High dose of Human recombinant HMGB1 (1 mg/ml) is required to increase the rate of wound closure
of 3T3 fibroblasts. HMGB1 (50, 250, 1000 ng/ml) or its vehicle was added to the monolayers after scratch. (F) HMGB1 does not increase the secretion
of IL-1b by 3T3 fibroblasts. HMGB1 (50, 250 and 1000 ng/ml, 6 h) or its vehicle was added to the cell monolayers, and IL-1b was measured by ELISA
(see methods) in the cell supernatant. IL-1b (10 ng/ml) and glycyrrhizin (20 mg/ml) or their respective vehicles were added to the monolayers after the
scratch. Rate of wound closure is expressed as percent of control 16 h after wounding. *p,0.05 from monolayers exposed to HMGB1 or IL-1b
vehicles. **p,0,005 from monolayers exposed to HMGB1.
doi:10.1371/journal.pone.0063907.g003

Figure 4. IL-1b increases wound closure via avb6 integrin and TGF-b1 in primary rat ATII cell monolayers. (A) IL-1b increases the rate of
wound closure of primary rat ATII cell monolayers. IL-1b (10 ng/ml) or its vehicle was added to the monolayers after the scratch. Phase contrast
microscopy (20X magnification) immediately after wounding (left panels, t = 0 h) and after 16 h (right panels t = 16 h). Scale bar: 100 mm. (B) A b6
blocking antibody (3G9) prevents IL-1b-dependent increase in rate of wound closure of a primary rat ATII cell monolayer. IL-1b (10 ng/ml). A b6
blocking antibody or its isotype control antibody was added to the monolayers after the scratch. (C) RGD peptides prevent IL-1b-dependent increase
in rate of wound closure of a primary rat ATII cell monolayers. IL-1b (10 ng/ml) and RGE or RGD peptide were added to the monolayers after the
scratch. (D) A TGF-b1 soluble receptor (TGF-bscRII) prevents IL-1b-dependent increase in rate of wound closure of primary rat ATII cell monolayers. IL-
1b (10 ng/ml) and/or TGF-bscRII or their respective vehicles were added to the monolayers after the scratch. Degree of wound closure is expressed as
percent of control 16 h after wounding. *p,0.05 from monolayers exposed to IL-1b vehicle. **p,0.05 from monolayers exposed to IL-1b.
doi:10.1371/journal.pone.0063907.g004
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been a growing body of evidence that growth factors and

inflammatory mediators released in the alveolar milieu during

the acute phase of ALI not only cause damage to lung epithelial

cells, but may also accelerate physiologic alveolar epithelial repair

or induce a dysfunctional repair that results in the development of

lung fibrosis. Importantly, damaged ATII cell monolayers can

repair themselves in the absence of exogenous factors suggesting

that autocrine modification of the ATII cell monolayer milieu

promotes alveolar epithelial repair. For example, recent work has

shown that soluble autocrine factors, such as CINC-1 and ICAM

secreted by damaged ATII cell monolayers in response to cell

damage, play a functional role in alveolar epithelial healing

process [38]. HMGB1, a member of the damage associated

molecular patterns family (DAMPs) that is actively secreted or

passively released from necrotic or injured cells [11], has been

shown to be an important inflammatory mediator in several

experimental models of acute lung injury [11–13] and has been

detected in the alveolar milieu of patients with lung injury [41,42].

However, HMGB1 has also been shown to promote scratch

wound closure of keratinocytes [20] and to correct impaired would

healing in diabetic skin [21], although its potential role in

stimulating alveolar epithelial wound closure has not been

addressed. In the present study, we found that HMGB1, released

by primary rat ATII cell monolayers after scratch wound,

enhanced the rate of wound closure when added to primary rat

ATII cell monolayers immediately after wounding. The concen-

tration of endogenous HMGB1 released in the extracellular space

by damaged ATII cells was sufficient to stimulate alveolar scratch

wound closure, an effect that was lost when endogenous HMGB1

was removed from the cell supernatant prior to exposure to

wounded ATII cell monolayers. This result indicates that in

addition to its role as endogenous inflammatory mediator,

Figure 5. IL-1b induces a avb6 integrin-dependent activation of TGF-b1 via p38 and RhoA in primary rat ATII cell monolayers. (A) IL-
1b increases active TGF-b1 expression via a p38 MAP kinase-dependent mechanism in primary rat ATII cell monolayers. IL-1b (10 ng/ml, 6 h) or its
vehicle was added to the monolayers 30 minutes after pretreatment with a p38 MAP kinase inhibitor (SB202190, 10 mM) or its vehicle. Active TGF-b1
was measured by ELISA, as described in the methods. (B) IL-1b increases TGF-b1 activity via a b6 integrin and p38 MAP kinase-dependent mechanism
in primary rat ATII cell monolayers. IL-1b (10 ng/ml, 6 h) or its vehicle was added to the monolayers, 30 minutes after pretreatment with either a b6
blocking antibody, an isotype control antibody, a p38 MAP kinase inhibitor (SB202190, 10 mM) or its vehicle. Active TGF-b1 was measured using mink
lung epithelial reporter cells (TMLC, Bioassay for TGF-b1 as described in the methods). (C) RhoA inhibition does not prevent p38 MAP kinase
activation by IL-1b in primary rat ATII cell monolayers. IL-1b (10 ng/ml, 10 min) or its vehicle was added to the monolayers 30 minutes after
pretreatment with RhoA inhibitor (Y-27632, 10 mM) or its vehicle. (D) A p38 MAP kinase inhibitor (SB202190) prevents RhoA activation by IL-1b in
primary rat ATII cell monolayers. IL-1b (10 ng/ml, 30 min) or its vehicle was added to the monolayers, 30 minutes after pretreatment with a p38 MAP
kinase inhibitor (SB202190, 10 mM) or its vehicle. *p,0.05 from monolayers exposed to IL-1b vehicle. **p,0.05 from monolayers exposed to IL-1b. For
western blot experiments, one representative experiment is shown, three additional experiments gave comparable results; *p,0.05 from monolayers
exposed to IL-1b vehicle.
doi:10.1371/journal.pone.0063907.g005
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HMGB1 may play an important role in the repair of the lung

epithelium after severe injury.

What are the signaling pathways by which HMGB1 stimulates

alveolar epithelial wound closure? Multiple studies have previously

reported that HMGB1 signals via toll-like receptors, RAGE and

CXCR4; whether HMGB1 stimulate these receptors on alveolar

epithelial cells is still unknown. Previous in vitro work has shown

that HMGB1 acting through TLR4 and a synergistic collabora-

tion with TLR2 and RAGE signaling, mediates inflammasome

activation and IL-1b secretion from lung endothelial cells [35].

Another study reported that HMGB1 increases lung endothelial

permeability via RAGE as the primary receptor signaling the

HMGB1-induced increase in paracellular permeability and

intercellular gap formation [16]. Furthermore, HMGB1 also

modulates the response of immune cells in acute lung injury. For

example, HMGB1 has been shown to inhibit phagocytosis of

apoptotic neutrophils by macrophages in vivo and in vitro. Phos-

phatidylserine was directly involved in the inhibition of phagocy-

tosis by HMGB1, as blockade of HMGB1 by this mediator

eliminates the effects of HMGB1 on efferocytosis [43]. Finally,

in vivo work demonstrated that HMGB1 contributes to the

development of lung injury after severe hemorrhage [12] and

that HMGB1-mediated lung inflammation depends on TLR4 in

the early phase and on TLR2 in the late phase following

hemorrhagic shock [41]. However, despite this body of experi-

mental work, it was still not known if HMGB1 stimulates these

receptors on alveolar epithelial cells. A recent study by Schiraldi

et al. [33], has shown that CXCR4 is important for cell motility in

response to HMGB1 in fibroblasts and monocytes. These authors

demonstrated that elevated concentrations of HMGB1/CXCL12

heterocomplexes induced cell migration by binding to CXCR4 in

these cell types. However, using the CXCR4 inhibitor AMD3100,

we found that the effect of HMGB1 wound closure was not

mediated through CXCR4 in primary rat ATII cells. In contrast,

the results of the present study indicate that blocking TLR4

completely inhibited the effect of HMGB1, while blocking RAGE

only inhibits 50% of the HMGB1 effect on alveolar scratch wound

closure, indicating that these two receptors play an important role

in HMGB1 signaling in the alveolar epithelium. Although several

studies have reported the potential existence of cross-talk between

these receptors [44], further examinations would be required to

determine its importance for the observations presented here.

The third important finding of the present study is that HMGB1

mediates its effect via an IL-1b-avb6 integrin-dependent activation

of TGFb1. We have previously reported that IL-1b can activate

the avb6 integrin and TGFb1 in alveolar epithelial cells that

results in an increase in paracellular epithelial permeability [8].

Other investigators have reported that thrombin, PAR-1 agonists,

and lysophosphatidic acid (LPA) via its receptor 2 are also able to

activate this pathway [45–47]. We found in the present study that

the extracellular release of IL-1b by HMGB1 is inhibited by a

caspase-1 inhibition suggesting the involvement of the NPLR3

inflammasome, as it has previously been shown in lung endothelial

cells [35]. However, it should be point out that HMGB1 can also

form protein complexes with cytokines or TLR-ligands to enhance

inflammatory mediator release [48–50]. Furthermore HMGB1,

via the release of IL-1b, activates the avb6 integrin by causing a

contraction of the epithelial cells via a p38 MAP kinase and RhoA-

dependent mechanism. This result is in accordance with a

previous work that has shown that LPA and PAR-1 agonists

activate RhoA via GaQ, but not Gai or Ga12/13, and cause

cytoskeletal reorganization leading to epithelial contraction and

activation of the avb6 integrin and TGFb1 [45]. However, there

are other mechanisms by which TGFb1 can be activated such as

Figure 6. IL-1b increases wound closure via a TGF-b1-dependent mechanism in primary human ATII cell monolayers. (A) IL-1b
increases the rate of wound closure in primary human ATII cell monolayers. IL-1b (10 ng/ml) and/or TGF-bscRII or their respective vehicles were
added to the monolayers after the scratch. Phase contrast microscopy (20X magnification) immediately after wounding (left panels, t = 0 h) and after
36 h (right panels t = 36 h). Scale bar: 100 mm. (B) TGF-b1 soluble receptor (TGF-bscRII) prevents IL-1b-dependent increase in rate of wound closure of
primary human ATII cell monolayers. IL-1b (10 ng/ml) and/or TGF-bscRII or their respective vehicles were added to the monolayers after the scratch.
Rate of wound closure was expressed as percent of control 16 h after wounding. *p,0.05 from monolayers exposed to IL-1b vehicle. **p,0.05 from
monolayers exposed to IL-1b.
doi:10.1371/journal.pone.0063907.g006
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physical processes, including acidification, temperature changes

and oxidation, proteases including plasmin, tryptase, elastase and

matrix metalloproteinases (MMP)-2 and 9 and interaction with

thrombospondin (reviewed in [51]). Interestingly, HMGB1 has

been shown to activate MMP2 and 9 in in human lung epithelial

cancer cells [40]. Furthermore, the avb6 integrin can upregulate

MMP9 and promotes migration of normal oral keratinocytes [3].

Thus, as our results indicate that in the present in vitro model the

inhibition of the avb6 integrin with blocking antibody or small

peptides completely prevented the effect of HMGB1 and IL-1b on

alveolar epithelial wound closure. Our data do not exclude that

there is a potential role for MMP9 in directly activating TGF-b1

by cleavage from the latent associated protein in addition to the

known spatially restricted activation of this mediator by the avb6

integrin.

Is TGF-b1 implicated in the process of alveolar epithelial

wound closure? Previous studies have provided evidence that

TGF-b1 accelerates the wound closure in primary alveolar type II

and bronchial epithelial cells [9,52,53], although its activation by

another integrin, avb8, delays bronchial epithelial wound closure

[54]. We demonstrated here that the effect of TGF-b1 is mediated

by its activation of the PI3Ka. These results are in accordance

with those of Rogel et al. that reported a critical role for vimentin

in the wound closure of alveolar epithelial cell monolayers

mediated by TGF-b1 [53]. Indeed, a recent report shows that

TGF-b1 increases the expression of vimentin via PI3K/Akt- and

MAP kinase ERK1/2-dependent mechanisms in A549 cells, an

alveolar epithelial cell line [55]. In addition to TGF-b1 enhancing

alveolar epithelial wound closure, it plays an important role in the

development of lung fibrosis during the late phase of acute lung

injury via epithelial-mesenchymal transformation (EMT) of

alveolar epithelial cells [56]. Recent experimental work has

suggested new mechanisms to explain some of the prior

observations that TGF-b1 can have opposing effects depending

Figure 7. TGF-b1 increases alveolar epithelial repair via PI3Ka in primary rat ATII cell monolayer. (A) A b6 blocking antibody (3G9)
prevents IL-1b-dependent phosphorylation of Akt in primary rat ATII cell monolayers. IL-1b (10 ng/ml, 30 min) or its vehicle was added to the
monolayers 30 minutes after pretreatment with a b6 blocking antibodies or its isotype control antibody (3G9, Cont IgG, 1 mg/ml). (B) TGF-b1 soluble
receptor (TGF-bscRII) prevents IL-1b-dependent phosphorylation of Akt in primary rat ATII cell monolayers. IL-1b (10 ng/ml, 30 min) or its vehicle was
added to the monolayers 30 minutes after pretreatment with a TGF-b1 soluble receptor (TGF-bscRII, 20 mg/ml) or its vehicle. (C) PI3 kinase inhibition
prevents TGF-b1-dependent increase in rate of wound closure of primary rat ATII cell monolayers. TGF-b1 (10 ng/ml) and a broad inhibitor of PI3K
(PIK90, 1 mM) or their respective vehicles were added to the monolayers after the scratch. (D) Inhibition of PI3Ka prevents TGF-b1-dependent increase
in rate of wound closure of primary rat ATII cell monolayers. TGF-b1 (10 ng/ml) and isoform-specific inhibitors of PI3K (PW12, TGX220, SW14, 0.5 mM)
or their respective vehicles were added to the monolayers after the scratch. See Table 1 for PI3K isoform-specific inhibitors IC50. Rate of wound
closure is expressed as percent of control 16 h after wounding. *p,0.05 from monolayers exposed to TGF-b1 vehicle. For western blot experiments,
one representative experiment is shown, three additional experiments gave comparable results; *p,0.05 from monolayers exposed to IL-1b vehicle.
For immunofluorescence experiments, one representative experiment is shown; four additional experiments gave comparable results.
doi:10.1371/journal.pone.0063907.g007
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Figure 8. HMGB1 augments alveolar epithelial wound closure via TGF-b and IL-1b in primary rat ATII cells. (A) Supernatant from
primary rat ATII monolayers collected 6 hours after multiple scratches (MS Cell Sup) induces the activation of TGF-b1, which is t blocked by IL-1
receptor antagonist (IL-1RA). MS Cell Sup, and IL-1RA (1 mg/ml) or its vehicle were added to the monolayers for 6 hours. Active TGF-b1 was measured
by ELISA, as described in the methods. (B) IL-1 receptor antagonist (IL-1RA) prevents HMGB1-dependent activation of TGF-b1 in primary rat ATII cell
monolayers. HGMB1 (10 and 50 ng/ml, 6 h) or its vehicle was added to the monolayers 30 min after pretreatment with IL-1RA or its vehicle. (C)
Human recombinant HMGB1 (10 ng/ml, 1 h) causes Smad2/3 phosphorylation in rat primary ATII cell monolayers. (D) RGD peptides prevent HMGB1-
dependent increase in rate of wound closure of primary rat ATII cell monolayers. HMGB1 (10 ng/ml) or its vehicle and RGE or RGD peptides (20 mg/ml)
were added to the monolayer after the scratch. Phase contrast microscopy (20X magnification) immediately after wounding (left panels, t = 0 h) and
after 16 h (right panels t = 16 h). Scale bar: 100 mm. (E) A TGF-b1 soluble receptor (TGF-bscRII) prevents HMGB1-dependent increase in the rate of
wound closure of primary rat ATII cell monolayers. HMGB1 (10 ng/ml) and TGF-b1 soluble receptors (TGF-bscRII, 20 mg/ml) or their respective vehicles
were added to the monolayers after the scratch. Phase contrast microscopy (20X magnification) immediately after wounding (left panels, t = 0 h) and
after 16 h (right panels t = 16 h). Scale bar: 100 mm. Active TGF-b1 was measured by ELISA, as described in the methods. Rate of wound closure is
expressed as percent of control 16 h after wounding. *p,0.05 from monolayers exposed to control cell media or HMGB1 vehicle. **p,0.05 from
monolayers exposed to MS Cell Sup or HMGB1.
doi:10.1371/journal.pone.0063907.g008
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on the response of the epithelial cell to injury. Repeated injury

associated with persistent inflammation and hypoxia may over-

whelm normal lung repair mechanisms and create sustained

fibrogenesis [56]. One recently discovered mechanism is related to

the disruption of cell contacts with the basement membrane via

the a3b1 integrin and laminin followed by the formation of

complexes between the a3b1 integrin, E-cadherin, b-catenin, and

TGF-b1 receptors. These protein complexes cause the phosphor-

ylation of b-catenin and Smad-2 and drive EMT [56].

In summary, this study demonstrates that the HMGB1 released

by wounded epithelial cell monolayers, accelerates wound closure

in the distal lung epithelium via the IL-1b-mediated avb6-

dependent activation of TGF-b1, and thus could play an

important role in the resolution of acute lung injury by promoting

repair of the injured alveolar epithelium. These results also

indicate that after injury a limited lung inflammatory response

may have a beneficial effect on the tissue repair and restoration of

the organ function, suggesting that a complete inhibition of this

response by anti-inflammatory agents may have adverse effect on

the lung epithelial repair. In contrast, when this inflammatory

response becomes uncontrolled and maladaptive because of too

severe or repeated insults, it may become an important mechanism

in the development of lung fibrosis.
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