Pyocyanin-Enhanced Neutrophil Extracellular Trap Formation Requires the NADPH Oxidase

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1371/journal.pone.0054205</td>
</tr>
<tr>
<td>Accessed</td>
<td>June 16, 2017 11:08:04 AM EDT</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:11181042</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>

(Article begins on next page)
Pyocyanin-Enhanced Neutrophil Extracellular Trap Formation Requires the NADPH Oxidase

Balázs Rada1,2*, Meghan A. Jendrysik1, Lan Pang2, Craig P. Hayes2, Dae-goon Yoo2, Jonathan J. Park1, Samuel M. Moskowitz3,4, Harry L. Malech1, Thomas L. Leto1,*

1 Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America, 2 Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America, 3 Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 4 Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

Beyond intracellular killing, a novel neutrophil-based antimicrobial mechanism has been recently discovered: entrapment and killing by neutrophil extracellular traps (NETs). NETs consist of extruded nuclear DNA webs decorated with granule proteins. Although NET formation is an important innate immune mechanism, uncontrolled NET release damages host tissues and has been linked to several diseases including cystic fibrosis (CF). The major CF airway pathogen *Pseudomonas aeruginosa* establishes chronic infection. Pseudomonas imbedded within biofilms is protected against the immune system, but maintains chronic inflammation that worsens disease symptoms. Aberrant NET release from recruited neutrophils was found in CF, but the underlying mechanisms remain unclear. One of the most important *Pseudomonas* virulence factors is pyocyanin, a redox-active pigment that has been associated with diminished lung function in CF. Here we show that pyocyanin promotes NET formation in a time- and dose-dependent manner. Most CF *Pseudomonas* clinical isolates tested produce pyocyanin in vitro. Pyocyanin-derived reactive oxygen species are required for its NET release. Inhibitor experiments demonstrated involvement of Jun N-terminal Kinase (JNK) and phosphatidylinositol 3-Kinase (PI3K) in pyocyanin-induced NET formation. Pyocyanin-induced NETs also require the NADPH oxidase because NET release in chronic granulomatous disease neutrophils was greatly reduced. Comparison of neutrophils from gp91phox- and p47phox-deficient patients revealed that pyocyanin-triggered NET formation is proportional to their residual superoxide production. Our studies identify pyocyanin as the first secreted bacterial toxin that enhances NET formation. The involvement of NADPH oxidase in pyocyanin-induced NET formation represents a novel mechanism of pyocyanin toxicity.

Editor: Amit Gaggar, University of Alabama-Birmingham, United States of America

Received August 10, 2012; Accepted November 26, 2012; Published January 14, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This work was supported by funds to TLL from the Intramural Research Program of the National Institutes of Health, National Institute of Allergy and Infectious Diseases (Z01-AI-000614), by Public Health Service grants K08HL067903 to SMM from the National Heart Lung and Blood Institute and R01AI067653 to SMM from the National Institute of Allergy and Infectious Diseases and by grant MOSKOW01A0 to the CF Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tleto@niaid.nih.gov (TLL); radab@uga.edu (BR)

Introduction

Polymorphonuclear neutrophil granulocytes (PMN) provide the first line of defense against bacteria. Neutrophils migrate to the site of infection, engulf and kill the invaders by exposing them to a variety of antimicrobial peptides, proteins and reactive oxygen species. Neutrophils also combat pathogens by a recently described novel mechanism, formation of neutrophil extracellular traps (NETs). NETs are composed of a DNA backbone decorated with histones and several antimicrobial neutrophil granule components: myeloperoxidase (MPO), lactoferrin, elastase and bactericidal/permeability-increasing protein. [1] NETs kill bacteria in vitro by ensnaring the microbes within high local concentrations of the neutrophils’ weaponry. Recent live imaging of in vivo NET formation in an acute bacterial skin infection model provided further evidence for the importance of NETs in immunity. [2] NET formation (NETosis) is a novel form of neutrophil cell death different from apoptosis or necrosis. [3,4] The mechanisms triggering NETs are poorly understood and are under investigation. Bacteria (whole cells, LPS, pili) or inflammatory mediators (IL-8, IFN I+I+, C5a) have been reported to induce NETs. [5] Reactive oxygen species (ROS) produced by the phagocytic NADPH oxidase are essential for NET formation, since neutrophils of chronic granulomatous disease (CGD) patients are unable to release NETs in response to a variety of stimuli. [4] CGD neutrophils produce very little or no superoxide due to genetic deficiencies in any one of several components of the superoxide-producing NADPH oxidase enzyme complex [6].

NETs are a crucial part of antimicrobial innate immunity; however, accumulating evidence suggests that uncontrolled NET release can also correlate with disease severity. [7] Aberrant NET formation has already been implicated in a variety of diseases including systemic lupus erythematosus, autoimmune small-vessel vasculitis and cystic fibrosis (CF). [8–10] Cystic fibrosis is a common inherited life shortening disease among Caucasians. [11] The primary cause of the disease is a genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a CAMP-regulated anion channel expressed in several
NET Formation Induced by Pyocyanin

Results

Pyocyanin Induces NET Formation

NET formation induced by bacteria requires ROS but it is unknown which microbial factor[s] mediate this process. [3] Since ROS originating from NADPH oxidase-independent sources (bolus H$_2$O$_2$, glucose oxidase (GO)) are capable of inducing NETs, we tested whether pyocyanin, a redox-active exotoxin of Pseudomonas, could affect NET formation. [4] Pyocyanin is essential for full virulence in a variety of Pseudomonas infection models. [15] One study found that sputa of three out of 4 CF patients contained pyocyanin at levels equal to or higher than those used in our study. [13] Another recent study reported high pyocyanin levels in CF patients’ sputum which negatively correlated with lung function, clearly indicating that pyocyanin is an important contributor to CF airway pathology. [19] To assess the importance of pyocyanin production in Pseudomonas airway infection in CF we examined in vitro pyocyanin production by 40 CF clinical isolates of *Pseudomonas aeruginosa*. Pyocyanin concentrations were measured in the culture supernatants of stationary phase cultures and compared to the laboratory control strain PA14. (Fig. 1). Most of the clinical isolates produced pyocyanin, only six of the forty isolates did not produce the toxin (Fig. 1). Clinical isolates obtained from CF patients with mild or severe disease and obtained from early or late phases of the disease (from the same 17 patients) were compared. A wide range of production capabilities was detected from these isolates and no trends in pyocyanin production were observed. Average pyocyanin concentrations were [mean ±/– SD, µM]: mild CF (17.5+/– 27.26), severe CF (24.2+/–31.01), early isolates (22.1+/–31.52), late isolates (19.7+/–26.57).

Next, we examined whether the purified toxin itself is capable of inducing NETs. Adherent neutrophils were exposed to 20 µM pyocyanin for 3 hrs and cells were stained simultaneously with the membrane impermeable DNA dye Sytox Orange or the membrane-permeable DNA stain Sytox Green. We found that PMNs released NETs in response to pyocyanin (Fig.2A). Extracellular DNAse treatment degraded pyocyanin-induced NETs (Fig. 2A). A negative black and white image of DAPI-stained NETs in pyocyanin-treated PMNs reveals fine, detailed DNA structure (Fig. 2B). In a concentration range characteristic for CF patients’ sputa (0–30 µM), pyocyanin induces NETs in a time- and dose-dependent manner (Fig. 2C). [18,19] To appreciate the contribution of pyocyanin to NET formation induced by *Pseudomonas aeruginosa*, we compared NET release by the pyocyanin-secreting PA14 wild type strain and its pyocyanin (PhzM)-deficient mutant. Pyocyanin deficiency results in a 58.6+/–34.3% reduction in NET release induced by *Pseudomonas aeruginosa* (Fig. 2D). Furthermore, addition of the purified toxin to wild-type *Pseudomonas* increases NET release and superoxide production in a dose-dependent manner (Fig. 2E). In NETs granule components are attached to DNA fibers. [1] Deamination of certain arginine residues into citrullin in histones by peptidylarginine deiminase 4 (PAD4) has been shown to be required for NET formation. [31–33] To show co-localization of granule components and histones with DNA, we co-stained pyocyanin-treated neutrophils for myeloperoxidase (MPO) or citrullinated histone H4 (citH4) and DNA (DAPI). Both, MPO and citH4 staining co-localized with DNA staining in pyocyanin-treated PMNs (Fig. 3A–B).

ROS are Required for Pyocyanin-triggered NETs

Although pyocyanin has been shown to cause a broad range of toxic effects in different host cells, its diverse toxicity originates from production of ROS. [23] Pyocyanin lowers intracellular NADPH levels in neutrophils as it generates intracellular ROS. [24] We therefore asked if NETs induced by pyocyanin are mediated by ROS. Using the Diogenes-based superoxide detection method we found that pyocyanin enhanced superoxide release by adherent neutrophils in a dose-dependent manner (Fig. 4A, B). We next found that pretreatment of neutrophils with the ROS...
scavengers N-acetyl-cysteine (NAC, 10 mM in HBSS) blocked both spontaneous and toxin-elicited NET release (Fig. 4C, D). Both basal and pyocyanin-elicited superoxide productions were abolished by NAC pre-treatment (Fig. 4E). We conclude that ROS are required for pyocyanin to induce NETs.

Jun N-terminal Kinase (JNK) and Phosphatidylinositol 3-kinase (PI3K) Mediate NET Release Induced by Pyocyanin

The signaling mechanisms behind NETosis are still largely unexplored although the Raf-MEK-ERK signaling pathway has already been implicated. [34] To gain insight into the signaling steps of pyocyanin-elicited NET formation, we surveyed different pathway inhibitors. We found that the JNK inhibitor (SB600125) and the PI3K inhibitor (wortmannin) exhibited strong inhibition (SB600125: 71.7%, wortmannin: 51.5%; mean, n = 4) on pyocyanin-stimulated NET release whereas inhibition of MEK1 and p38 had no significant effects (Fig. 4F).

Pyocyanin Enhances Superoxide Production in Neutrophils by Activating the NADPH Oxidase

Pyocyanin oxidizes reduced NADH or NADPH and produces superoxide under aerobic conditions (Fig. 5A). NAD(P)H oxidation by pyocyanin is insensitive to the NADPH oxidase inhibitor DPI in a cell-free in vitro system (Fig. 5A). In host cells, pyocyanin crosses the plasma membrane, oxidizes intracellular NAD(P)H pools and produces ROS. We therefore hypothesized that pyocyanin produces superoxide in PMNs in an NADPH oxidase-independent manner and that DPI would have no effect. The PMA-stimulated superoxide response was blocked by DPI as expected, but to our surprise DPI also entirely inhibited the pyocyanin-stimulated response (Fig. 5B). This indicates that pyocyanin is acting through a flavoenzyme in intact PMNs, most probably the NADPH oxidase. To test if pyocyanin-enhanced superoxide production is NADPH oxidase-dependent, we compared normal and X-CGD neutrophils by using three different indicators. DCF-DA oxidation measures low amounts of intracellular ROS, the insensitive lucigenin-based chemiluminescence detects mainly extracellular superoxide, whereas the fluorescent dye MitoSoxRed detects mitochondrial superoxide. Both DCF-DA and MitoSoxRed detected a small but significant intracellular ROS signal in both normal and X-CGD PMNs (Fig. 5C, D). These data are consistent with the fact that pyocyanin reacts with intracellular NAD(P)H directly. Using lucigenin the detected basal superoxide production in normal PMNs was further increased by pyocyanin (Fig. 5E). In contrast, in X-CGD PMNs basal superoxide release detected with lucigenin was completely absent and pyocyanin failed to increase it (Fig. 5E). To gain insight into the requirement of intracellular and/or extracellular ROS production for pyocyanin-induced NETs, we next measured superoxide production and NET release in the presence of the extracellular ROS scavengers, catalase and superoxide dismutase (SOD). Catalase- and SOD-treatment entirely blocked pyocyanin-stimulated (but not basal) ROS production and NET release (Fig. 5F). These data indicate that although pyocyanin produces superoxide by direct oxidation of NAD(P)H, extracellular superoxide mediating NET release in pyocyanin-exposed neutrophils comes from the activated NADPH oxidase.

CGD Neutrophils Show Impaired NET Formation in Response to Pyocyanin

Next we studied the question of whether the NADPH oxidase mediates pyocyanin-stimulated NET formation as well. To address this we exposed adherent PMNs obtained from four different CGD patients (patient 1, 3, 4, and 5) and healthy individuals to 0–30 μM pyocyanin, PMA or GO for 3.5 hrs and measured NET release (Fig. 6A–C). A longer time interval was chosen to detect spontaneous NET formation in CGD PMNs. Normal PMNs released 28.4% NETs without stimulation, which was further increased up to 44.2% by 30 μM pyocyanin and 46.3% by PMA (Fig. 6A). A longer time interval was chosen to detect spontaneous NET formation in CGD PMNs. Normal PMNs released 28.4% NETs without stimulation, which was further increased up to 44.2% by 30 μM pyocyanin and 46.3% by PMA (Fig. 6A). A longer time interval was chosen to detect spontaneous NET formation in CGD PMNs. Normal PMNs released 28.4% NETs without stimulation, which was further increased up to 44.2% by 30 μM pyocyanin and 46.3% by PMA (Fig. 6A). A longer time interval was chosen to detect spontaneous NET formation in CGD PMNs. Normal PMNs released 28.4% NETs without stimulation, which was further increased up to 44.2% by 30 μM pyocyanin and 46.3% by PMA (Fig. 6A). A longer time interval was chosen to detect spontaneous NET formation in CGD PMNs. Normal PMNs released 28.4% NETs without stimulation, which was further increased up to 44.2% by 30 μM pyocyanin and 46.3% by PMA (Fig. 6A). A longer time interval was chosen to detect spontaneous NET formation in CGD PMNs. Normal PMNs released 28.4% NETs without stimulation, which was further increased up to 44.2% by 30 μM pyocyanin and 46.3% by PMA (Fig. 6A). A longer time interval was chosen to detect spontaneous NET formation in CGD PMNs. Normal PMNs released 28.4% NETs without stimulation, which was further increased up to 44.2% by 30 μM pyocyanin and 46.3% by PMA (Fig. 6A).
formation among the four patients was different. NET release was completely undetectable in patient 1 whose cells have the lowest superoxide production (0.42%) (Fig. 6A). Adherent neutrophils were exposed to 20 μM pyocyanin or 100 nM PMA for 3 hours, stained with 2.5 μM Sytox Orange and 5 μM Sytox Green, and NETs were visualized by fluorescence microscopy. Samples in the lower panels were treated with 1 U/mL DNase1 (20 min 37°C). Two other experiments resulted in similar data. B) Negative black and white image of pyocyanin-stimulated neutrophils reveals fine structural details of pyocyanin-triggered NETs. Adherent neutrophils were stimulated with 20 μM pyocyanin in vitro for 3 hrs, stained with DAPI and details of the NET structures were visualized by fluorescence microscopy. Results were converted to negative black and white images to achieve better contrast between DNA network and the background. This picture is representative of data obtained on 4 different donors. C) Quantification of NETs induced by pyocyanin. Neutrophils were incubated for 2.5 hrs with different concentrations of pyocyanin (0–30 μM) in the presence of Sytox Orange (2.5 μM). Release of extracellular DNA (increase in fluorescence) was followed in time with the fluorescence microplate assay (one representative experiment of six) (left panel). NET release was (increase in fluorescence in 2.5 hours) quantitated as percentage of maximal. Data represent mean +/- S.E.M. (n = 6) (right panel). D) Human neutrophils were exposed to 2×10^6 wild-type (PA14 WT, pyocyanin-producing) and PhzM-deficient (PA14 PhzM, pyocyanin-deficient) Pseudomonas aeruginosa PA14 for 2.5 hours in the presence of 2.5 μM Sytox Orange. Increase in fluorescence induced by bacteria over baseline was calculated and expressed as increases in extracellular DNA (% of maximal) (mean +/- S.E.M., n = 4). E) Extracellular DNA release was initiated in adherent neutrophils by co-addition of wild-type Pseudomonas aeruginosa PA14 (2×10^6/well) and increasing concentrations of purified pyocyanin (0,3,10,30 μM). Sytox Orange fluorescence (extracellular DNA release, 2.5 μM) and Diogenes chemiluminescence (superoxide production, integrated RLU/60 min) were increased in a dose-dependent manner by pyocyanin (mean +/- S.E.M., n = 4). PMA, phorbol 12-myristate-13-acetate.
Figure 3. Myeloperoxidase and citrullinated histone H4 co-localize with extracellular DNA in pyocyanin-stimulated NETs. A) Human neutrophils were seeded on glass coverslips and incubated in the presence of 20 μM pyocyanin for 3 hours. Cells were fixed and stained for MPO (FITC-labeled anti-MPO Ab) and DNA (DAPI). Two independent fields show co-localization of MPO and DNA (one representative experiment, n = 3). B)
Citullinated histone H4 co-localizes with NET DNA structures in pyocyanin-stimulated neutrophils. Adherent neutrophils were treated with 20 μM pyocyanin for 3 hours, then fixed, washed and subjected to anti-citH4 immunostaining and DAPI staining. Two other experiments gave similar data. doi:10.1371/journal.pone.0054205.g003

Discussion

Neutrophil extracellular trap formation is a fascinating recently discovered mechanism by which neutrophils entrap bacteria. [1] NETs capture *Aspergillus nidulans*, *Candida albicans*, *Shigella flexneri*, *Staphylococcus aureus*, *Salmonella typhimurium*, nontypeable *Haemophilus influenzae* and Group A Streptococci. Recently, *Pseudomonas aeruginosa*, the major CF pathogen, has also been shown to trigger NETs. [35,36] However, Pseudomonas-triggered NET formation

![Image](https://example.com/image1)

Figure 4. Pyocyanin-triggered NET formation involves reactive oxygen species, Jun N-terminal Kinase and Phosphatidylinositol 3-kinase. A) Representative kinetics of superoxide production in adherent human neutrophils exposed to 1, 3, 10 μM pyocyanin (Diogenes, 60 min, another donor gave similar data). B) Extracellular superoxide production stimulated by pyocyanin is dose-dependent and abolished by 12.5 μg/ml superoxide dismutase (sod) (mean±S.D. of two different donors, *−* = untreated). C) NAC blocks pyocyanin-induced NET formation. Human neutrophils were pretreated with 10 mM NAC for 10 min followed by exposure to 20 μM pyocyanin for 3 hrs. Images of DAPI-stained NETs were taken with fluorescence microscopy. Similar results were obtained with another donor. D) Quantification of the inhibitory effect of NAC (10 mM) on pyocyanin-stimulated NET formation by the fluorescence (Sytox Orange) microplate assay. Data are mean±S.D. (n = 3). E) NAC (10 mM) blocks both basal and pyocyanin-elicited superoxide production in neutrophils (Lucigenin, Diogenes, mean±S.E.M., n = 3) F) Inhibitors of JNK (SB600125, 10 mM, p = 0.0124) and PI3K (wortmannin, 100 nM, p = 0.0374) suppress pyocyanin-stimulated NET formation whereas p38 and MEK1 pathway inhibitors were without any effect (10μM PD98059, 10 μM SB203580). Data show mean±S.E.M. (n = 4). NAC, N-acetyl-cysteine; RLU, relative luminescence unit; JNK, Jun N-terminal Kinase; PI3K, Phosphatidylinositol 3-kinase; sod, superoxide dismutase; * marks significant changes were p<0.05.

doi:10.1371/journal.pone.0054205.g004
Figure 5. The NADPH oxidase is the source of extracellular superoxide mediating NET release in pyocyanin-stimulated human neutrophils. A) Pyocyanin (50 μM) oxidizes β-NADH (20 μM) and β-NADPH (20 μM) in a cell-free system and produces superoxide anions as detected by the Diogenes assay. DPI (10 μM) and DMSO (solvent of DPI) have no effect (data are mean +/- S.E.M., n = 3). B) DPI inhibits basal, PMA- and pyocyanin-stimulated superoxide production in human neutrophils. PMNs were pretreated with 10 μM DPI, stimulated by 20 μM pyocyanin and superoxide production was measured by the Diogenes assay for 60 min. Concentrations of PMNs were: 10^6/mL for PMA stimulation and 5×10^6/mL for pyocyanin. C) Pyocyanin produces low-level intracellular ROS in the absence of the NADPH oxidase. DCFDA-loaded healthy and X-CGD neutrophils (patient 1) were exposed to 20 μM pyocyanin or 100 nM PMA and intracellular production of reactive oxygen species was measured by flow cytometry. Similar results were obtained with patient 2’s cells. D) Low mitochondrial superoxide levels are detected in both, healthy and X-CGD neutrophils stimulated by pyocyanin. Healthy or CGD neutrophils (patient #2) loaded with MitoSox Red were exposed to 30 μM pyocyanin for 30 min and mitochondrial superoxide production was measured by flow cytometry. Data were only obtained from one CGD patient. Antimycin A was used as positive control. E) Dose-dependence of pyocyanin-stimulated superoxide production in normal and X-CGD neutrophils (Lucigenin) (patient 2 and 3). F) Scavenging extracellular ROS (catalase and SOD) eliminates pyocyanin-induced ROS production and NET formation in human neutrophils. Human neutrophils were exposed to 30 μM pyocyanin in the presence or absence of 1500 U/mL catalase and 12.5 μg/mL SOD. Superoxide
by adherent neutrophils has not been characterized and the mechanisms involved have been unclear.

Most of the CF clinical isolates of Pseudomonas we surveyed produced pyocyanin (Fig. 1). Most of CF patients’ sputum samples contain pyocyanin levels higher than 10 μM, a concentration that increases spontaneous NET formation by 120% (Fig. 2C) [18,19,24]. Pyocyanin is essential for full Pseudomonas virulence in a variety of animal models. [16] Pyocyanin is a phenzamine exotoxin [37] with toxic effects in a broad range of target cells that are based on its ability to induce oxidative stress. [23] Although pyocyanin has been studied in several laboratories worldwide, and increased levels of both pyocyanin and neutrophil components in the CF lung have been associated with poor lung function, no reports to date have described any direct effects of pyocyanin on NET formation. Contrary to earlier reports showing that pyocyanin induces apoptosis in neutrophils, we found that pyocyanin in shorter time frames and at lower concentrations (typical for CF airways) induces NET formation (Fig. 2 and 3). [25] Antioxidant and inhibitor treatments revealed roles for ROS, JNK, and PI3K in pyocyanin-elicited NET formation (Fig. 4A-F).

We are the first to highlight a role of JNK in NET formation, whereas PI3Ks play an important role in regulating neutrophil functions such as NADPH oxidase assembly and affect NET induction by other agonists such as PMA. [38] The PI3K/Akt/mTOR pathway regulates autophagy in several cell types and autophagy has been implicated in NET formation. [4,39] ROS produced by NADPH oxidases have been associated with antibacterial autophagy. [40,41] Since our data show PI3K activation and ROS production by pyocyanin, it is possible that the toxin induces NET formation through autophagy.

Pyocyanin is a redox-active toxin that shuttles electrons between donors and acceptors, thereby catalyzing redox reactions in the host cell. Under aerobic conditions, molecular oxygen is the primary electron acceptor [42] and its reduction by pyocyanin results in production of superoxide anions by one-electron transfer. [22] The main electron donor is NADPH (Fig. 5A). Pyocyanin is a non-enzymatic NADPH oxidase (Fig. 5G) and thus executes the same chemical reaction as the members of the NADPH oxidase enzyme family (Nox 1–5 and Duox 1 and 2). [43] This could be explained by the similarity in chemical structures of pyocyanin and the core of the electron transport chain of every NADPH oxidase, their essential redox cofactor flavin adenine dinucleotide (FAD) (Fig. 5G). In PMNs, the Nox2-based NADPH oxidase is by far the most abundant and most important oxidase involved in crucial cell functions (respiratory burst, intracellular killing, NET formation). Under non-physiological conditions (maximal NADPH oxidase activation by PMA-stimulation), high concentrations of pyocyanin (50–100 μM) inhibit oxidase activity by consuming the substrate, NADPH; in contrast, our current study demonstrates that lower concentrations of pyocyanin (1–30 μM) stimulate NADPH oxidase activity in PMNs (Fig. 2E, 4A, B, E, 5B, E, F). [22] This pyocyanin-mediated superoxide release by PMNs is entirely DPI-sensitive and is absent in CGD PMNs (Fig. 5B, E). [22] We also found that basal, pyocyanin- or PMA-stimulated NET formation in CGD patients was greatly impaired (Fig. 6). Most of the toxic effects of pyocyanin described to date are attributed to the oxidative stress resulting from direct consumption of NADPH. We are the first to show here a new consequence of exposure to pyocyanin (NET formation) that is caused by oxidative stress not derived from direct NADPH oxidation but by activation of the phagocytic NADPH oxidase. Previously we have shown that higher doses of pyocyanin inhibit activation of another NADPH oxidase, Duox in airway epithelial cells. [22] The reason for the opposite effects of pyocyanin on two different NADPH oxidases could be related to the different cell types studied, different toxin doses used, or the relative amounts of pyocyanin and the NADPH oxidases compared to cellular NADPH pools. Further studies are required to unravel the exact mechanisms.

Most of the ROS data presented in our study measured superoxide production in neutrophils because superoxide anions are the primary products of both NADPH oxidase activity and direct oxidation of NADPH by pyocyanin. However, the exact molecular identity of ROS directly responsible to initiate NET formation remains to be studied. MPO-derived hypochlorous acid was found to be involved in NET release but no clear evidence for the involvement of hydrogen peroxide, superoxide or mitochondrial ROS has been presented yet. Most likely hydrogen peroxide plays an important role in NET initiation and superoxide is only the primary short-lived ROS product since hydrogen peroxide is relatively long-lived among ROS, can penetrate biological membranes, is readily formed from superoxide by dismutation and when added exogenously (by the glucose/GO system) it triggers maximal NET release [3].

By comparing neutrophils from 4 different CGD patients, we found that basal and PMA-stimulated NET formation was dependent on residual NADPH oxidase activity (Fig. 6). Interestingly, NETs induced by an external ROS source (glucose/GO system) were also dependent on the residual capacity of CGD neutrophils to produce ROS (Fig. 6A). We also showed that higher residual oxidase activity results in lower pyocyanin levels required to induce NETs in CGD PMNs (Fig. 6). These exogenous sources of ROS can trigger NET formation but they are not equivalent to and cannot compensate for some critical level of NADPH oxidase-derived ROS. These observations can be explained by a direct stimulatory effect of ROS on NADPH oxidase activation. NADPH oxidase activation triggered by exogenous hydrogen peroxide was described recently by two groups; one study showed H2O2 promotes membrane translocation of p40phox, whereas the other showed that H2O2 affects Ca2+ influx and cAb1 kinase activation upstream of PKC-delta. [44,45] Thus, there appears to be some critical “threshold” for NADPH oxidase-derived ROS required to induce NETs and this can be reached more readily in cells already exposed to oxidative stress through basal NADPH oxidase activation. This is the first study to show that NET formation among CGD patients can differ and depends on their residual respiratory burst activity. In the past we have shown the importance of residual superoxide production in neutrophil bacterial killing against Staphylococcus aureus. [46] Another recent study linked residual respiratory burst activity and patient survival in a large cohort of CGD patients. [6] According to our findings, the increased survival of CGD patients with higher residual oxidative responses could in part relate to a higher capacity for NET release. [47].
Figure 6. CGD neutrophils have impaired NET formation by pyocyanin. A) Comparison of pyocyanin-induced NET formation among three X-CGD patients, one p47-deficient CGD patient and their normal controls. Adherent non-CGD or CGD neutrophils (patients 1, 3, 4, 5) were exposed to 0–30 μM pyocyanin, 100 nM PMA or 0.1 U/mL glucose oxidase (GO), Sytox Orange fluorescence was monitored for 3.5 hrs and NET formation was quantified. The numbers in the boxes show residual superoxide productions of CGD neutrophils as % of the average of normal donors (100%). B) Images of adherent neutrophils of CGD patient 3 and a non-CGD control (Sytox Orange fluorescence) after 3.5 hour-exposure to 10, 30 μM pyocyanin, 0.1 U/mL glucose oxidase (GO) or 100 nM PMA. C) Images of NETs formed by p47-deficient CGD neutrophils and normal controls exposed to the same stimuli as previously. Magnified micrograph in the upper right corner shows normal neutrophils in different stages of NET formation at the end (3 hrs) of the Sytox Orange microplate assay. Examples for different stages are marked by white arrowheads and numbers. 1– These cells did not produce NETs. At 3 hrs their plasma membrane became somewhat permeable and Sytox Orange stains their resting multilobular nucleus. 2– These cells are in an intermediate phase. The plasma membrane is permeable, the typical lobulated nuclear morphology is lost but the integrity of the cell is still observed. 3– PMNs in the final stage of NETosis. The nuclear and cell morphology is completely lost, the DNA was released around the cell and it covers a larger area than the original cell size. Due to the weak fluorescent signal of NETs a longer exposure time had to be chosen and...
PMNs in stages 1 and 2 are overexposed. PMA, phorbol-myristate-acetate; PMN, polymorphonuclear neutrophil.

doi:10.1371/journal.pone.0054205.g006

Human Subjects/ethics Statement

Methods

Isolation of Human Neutrophils

Neutrophils were purified as described with some modifications. [48] Whole blood was drawn at the Transfusion Medicine Branch of the National Institutes of Health or at the Health Center of University of Georgia. 50 mL blood was anticoagulated by ACD (anticoagulant citrate dextrose) or heparin. 6 mL aliquots of blood were carefully layered on top of 6 mL Histopaque 1119 (Sigma) and centrifuged (800 g 30 min RT). The upper plasma layer was aspirated, and the middle phase containing white blood cells was collected and washed in PBS. Pellets were resuspended in 4 mL PBS and 2 mL were layered on top of a 5-step Percoll gradient (65, 70, 75, 80 and 85%, Sigma) in 15 mL conical tubes. After centrifugation the 75–78–80% Percoll layers containing neutrophils were collected and washed in PBS. Pelleted neutrophils were resuspended in autologous serum, cell concentrations were determined and cells were kept at room temperature until use. Viability of the cells was determined by Trypan Blue dye exclusion and resulted in >98% viable neutrophils. The purity of the preparations was determined by Wright-Giemsa staining and yielded >95% neutrophil granulocytes.

Pseudomonas Aeruginosa Strains

PA14 wild-type and pyocyanin-deficient mutants PhzM were provided by Frederick M. Ausubel (Harvard Medical School, Boston). Clinical isolates of Pseudomonas aeruginosa were cultured from sputum or oropharyngeal swabs obtained from CF patients participating in the “Genetics of CF Lung Disease” observational study. Isolates were categorized as “early” or “late” relative to the course of each patient’s onset of infection. Early isolates were obtained at 3 months to 11 years of age; late isolates were obtained at 5–20 years later than early isolates. All clinical isolates were stored in Luria-Bertani broth with 16% glycerol at −80°C.

Determination of Pyocyanin Concentration

Pseudomonas aeruginosa, the pyocyanin-producing control strain PA14 WT (wild-type) and the pyocyanin-deficient strain PA14 PhzM were grown in LB liquid medium for 48 hrs with continuous shaking. Bacteria were removed by high-speed centrifugation and pyocyanin concentrations in the culture supernatants were determined by subsequent chloroform/0.2 M HCl extraction steps. Absorbance was measured at 520 nm and concentration values (micromol/L) were calculated using a calibration series with known pyocyanin concentrations. The experiment was repeated three times and the mean+/−S.E.M. values are presented (Fig. 1). The clinical isolates were deidentified during the experiments and were only unblinded once the results were obtained. Pyocyanin was purchased from Cayman Chemical and dissolved in DMSO as 20 mM stock. Final concentrations were diluted in HBSS and were free of bacterial LPS as measured by the LAL endotoxin test kit.
Visualization of NETs by Fluorescence Microscopy

To visualize NETs released by pyocyanin-stimulated neutrophils, 5x10^7 neutrophils were allowed to adhere in 2 mL assay medium to poly-d-lysine-coated 35 mm glass bottom culture dishes (MatTek Corp) (30 min, 37°C). Pyocyanin (1, 3, 10 or 30 μM) was added to stimulate NET formation. After three hours, DAPI, Sytox Orange (2.5 μM) and/or Sytox Green (5 μM) were gently added and the samples were immediately analyzed without further disturbance with a Leica DM IRBE inverted fluorescence microscope. Images were taken, analyzed and processed with SPOT Advanced software (Spot Imaging Solutions, Sterling Heights, MI). To visualize pyocyanin-triggered NET formation, fluorescence images were also recorded on Sytox Orange-stained neutrophils studied in the 96-well plate assay with the Leica fluorescence microscope.

Quantification of Neutrophil Extracellular Traps

25,000 neutrophils/well were allowed to adhere on uncoated 96-well black transparent bottom plates at 37°C in 50 μL/well assay medium (FBS- and phenol red-free RPMI 1640 medium containing 1% HEPES and 0.1% human serum albumin (HSA)). After 15 minutes, 50 μL/well HSA-free assay medium containing 5 μM Sytox Orange (Invitrogen) membrane-impermeable dye (final cc: 2.5 μM) and stimuli or inhibitors were added gently. Fluorescence (excitation: 530 nm, emission: 590 nm) was recorded in fluorescence plate reader (Labsystems, Fluoroskan) for 3 hours at 2 min intervals (37°C, no shaking). The initial fluorescence in samples containing neutrophils and 0.5 mg/mL saponin was taken as maximal signal (100%). Relative fluorescence change in the unknown samples over the 2.5–3.5 hr period was calculated and referred to as NET formation (% of max). We used uncoated plates to promote spontaneous NET formation. When bacteria were used to induce NETs, PA14 wild-type and pyocyanin-deficient PhzM strains were grown overnight in LB medium. Bacteria were washed twice in HBSS and were added to adherent neutrophils (2x10^6 PA14/well) in HBSS. When inhibitors were applied the following concentrations were used: SB202474 (negative control for SB compounds, Sigma, 10 μM); SB600125 (JNK inhibitor, Sigma, 10 μM); wortmannin (PI3K inhibitor, Sigma, 100 nM); PD98059 (MEK1 inhibitor, Sigma, 25 μM); SB203580 (p38 inhibitor, Sigma, 10 μM). The ROS scavenger N-acetyl-cysteine (NAC) was dissolved at 1 M concentration in HBSS, the acidic pH was adjusted to 7.4 and NAC was used in the experiments at a final concentration of 10 mM.

Immunostaining of Myeloperoxidase (MPO) and Citrullinated Histone H4 (citH4)

2x10^6 neutrophils/well in 1 mL assay medium were allowed to adhere to sterile 13 mm round glass cover slips placed in 12-well plates for 30 min. Pyocyanin was added to the cells in 100 μL assay medium resulting in 20 μM final concentration. Neutrophils were incubated for 3 hours at 37°C, then fixed by 4% paraformaldehyde dissolved in PBS for 10 min. Cells were permeabilized in 0.1% Triton X-100 for 2 min RT, washed 3 times in PBS for 5 min and blocked with 5% donkey serum in PBS for 30 min 37°C. Neutrophils were incubated with monoclonal mouse anti-human myeloperoxidase/FTTC antibody (Dako, Clone MPO-7) (2 hrs, RT, dark, 1:1000), or polyclonal rabbit anti-histone H4 (citrulline 3) (Millipore, 1:1000), washed 3 times in PBS. After Alexa Fluor 488-labelled goat anti-rabbit secondary antibody was added (1 hr, 1:1000), cells were stained with DAPI (2 min, RT, 1:10000) and washed 3 times in PBS. Preparations were mounted with ProLong Antifade Kit (Molecular Probes) following the manufacturer’s instructions and analyzed with a Leica fluorescence microscope. Fluorescence images were analyzed with SPOT Advanced software. The original green fluorescence of the histone-staining was converted in the imaging software to red to illustrate the co-localization of DNA and citH4 (Fig. 3B).

Measurement of Superoxide Production

Superoxide production in neutrophils was measured either by Lucigenin (9,9'-Bis-N-methylacridinium nitrate)-amplified chemiluminescence or by the Diogenes cellular luminescence enhancement system (National Diagnostics, Atlanta, GA, USA). Lucigenin detects both, intracellular and extracellular superoxide but it is insensitive, whereas Diogenes only measures extracellular superoxide but it is highly sensitive. In both assays the cells were incubated in 96-well white plates and luminescence was followed in a Luminoskan Ascent microplate luminometer (ThermoScientific, Hudson, NH, USA). Superoxide production is either presented as kinetics of luminescence or as integrated luminescence units (int. RLU, area under the measured curve over specified time intervals).

Neutrophils were incubated with 50 μg/mL Lucigenin in HBSS for 10 min at 37°C before addition of any stimuli. To measure pyocyanin- or PMA-stimulated superoxide production, neutrophils (10^6/mL) were treated with 1 μM PMA or 1–100 μM pyocyanin and luminescence was recorded for 30 min at 37°C.

Superoxide production was also measured by the Diogenes cellular luminescence enhancement system (National Diagnostics, Atlanta, GA, USA). Neutrophils in suspension (10^6/mL, 10 min) or attached (50,000/well, 1 hr) were stimulated with 1 μM PMA or 1–30 μM pyocyanin and luminescence was recorded at 37°C.

Superoxide production by 50 μM pyocyanin in a cell-free system in the presence of 20 μM β-NADH or β-NADPH was measured for 30 min with the Diogenes assay.

Measurement of Intracellular ROS Production

Human neutrophils (normal and X-CGD) were incubated with 1 μM DCFH-DA (2′,7′-Dichlorodihydrofluorescein diacetate) for 10 min, washed twice in HBSS and exposed to 1 μM PMA or 20 μM pyocyanin. After 30 min ROS-mediated oxidation of H₂DCF into the highly fluorescent DCF was measured by flow cytometry (AlexaFluor 488, 20,000 cells/sample). Data are shown as histograms.

Measurement of Mitochondrial Superoxide

Neutrophils (normal and X-CGD) were incubated with 5 μM MitoSox Red (15 min 37°C), washed twice and stimulated either by 30 μM pyocyanin or 1 μM antimycin A. After 30 min mitochondrial superoxide production was detected by flow cytometry (exc/em: 510/580 nm).

Statistical Analysis of Data

Data are shown as mean +/- SEM. When independent variables were studied significance was calculated with Student’s t-test. When results of trends were compared data were analyzed by ANOVA and post-hoc Dunnett’s test. Significant changes were marked as * when p<0.05, ** when p<0.01 and *** when p<0.001.

Acknowledgments

We thank Sandra Anaya-O’Brien for recruiting the CGD patients, Douglas Kuhns for archived patient data, and Helen Song for help with normal neutrophil preparations. We are grateful to Kol Zarember for performing the LAL endotoxin test on the pyocyanin solutions.
Author Contributions
Provided patient derived material and supportive clinical data/medical histories: SM SMR. Recruited patients and maintained clinical protocols with institutional approval: HLM SMM BR. Conceived and designed the experiments: BR TLL. Performed the experiments: BR MAJ LP CH DY JJP TLL. Analyzed the data: BR TLL. Wrote the paper: BR TLL.

References