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Abstract 

Most common diseases have substantial heritable components but are characterized by 

complex inheritance patterns implicating numerous genetic and environmental factors.  A 

longstanding goal of human genetics research is to delineate the genetic architecture of these traits 

– the number, frequencies, and effect sizes of disease-causing alleles – to inform mapping studies, 

elucidate mechanisms of disease, and guide development of targeted clinical therapies and 

diagnostics.  Although vast empirical genetic data has now been collected for common diseases, 

different and contradictory hypotheses have been advocated about features of genetic architecture 

(e.g., the contribution of rare vs. common variants).  Here, we present a framework which combines 

multiple empirical datasets and simulation studies to enable systematic testing of hypotheses about 

both global and locus-specific complex trait architecture.  We apply this to type 2 diabetes (T2D). 

For T2D, we find that extreme models of global genetic architecture are excluded (e.g., 

models where T2D is a collection of rare Mendelian diseases), but a wide range of models remain 

consistent with epidemiology, linkage, and genome-wide association studies (GWAS).  Simulations 

predict that ongoing sequencing and genotyping studies (in tens of thousands of individuals) will 

further constrain architecture, but that very large sample sizes (e.g., >250K unselected individuals) 

will be required to localize most T2D heritability. 

To characterize allelic architecture at individual T2D loci, we develop haplotype-based 

methods to integrate data from GWAS and low-pass sequencing of thousands of T2D cases and 

controls.  We find varied architectures plausible at each locus.  At some loci, the most likely model 

implicates common causal variation (chr9p21, TCF7L2, KCNJ11, HNF1B).  At others, there is 

evidence for common variants of weak effect alongside independent low-frequency variants of larger 



 Abstract 

 

iv 
 

effect (CCND2, KCNQ1) or a burden of very rare protein-coding, disease-associated mutations 

(PPARG).  Finally, at several loci, further genetic and/or experimental interrogation is required to 

determine whether causal alleles are common, rare, or both (HMGA2, IGF2BP2).   

In this thesis, we have integrated diverse datasets to better understand the genetic and 

biological architecture of T2D.  This work informs future genetic and experimental studies of T2D, 

and provides methods for hypothesis testing that are broadly applicable to many complex traits.   
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Motivation and thesis overview 

The central goal of this thesis is to systematically test hypotheses about the global and 

locus-specific genetic architecture of the complex human disease type 2 diabetes (T2D). 

Why study type 2 diabetes (T2D)?  T2D is one of the most common human genetic diseases 

(affecting over 8% of the U.S. population), and is a leading cause of morbidity (causing blindness, 

kidney disease, nervous system damage, amputation) and mortality (a significant risk factor for heart 

disease and stroke).1  Existing treatments for T2D are of limited efficacy, and no available drugs can 

reverse or even halt progression of the disease.  The development of new therapies for T2D will 

require deeper understanding of its pathogenesis in human populations.  Human genetic studies 

provide a powerful and unbiased window into the genes, pathways, and processes that causally 

contribute to the onset of disease. 

Why study the genetic architecture of complex traits like T2D?  The genetic architecture of a 

disease describes the answers to many questions of interest.  How many genetic mutations across 

the genome contribute to risk of the disease?  How many mutations does each individual patient 

carry?  How frequent are these mutations in the population?  Do individuals have their own private 

mutations, or is the majority of disease attributable to mutations common across the population?  

And finally, by how much does each mutation increase or decrease risk of disease?  Do a very large 

number of mutations each modify disease risk very slightly, or do some mutations make an 

individual much more or less likely to be afflicted with disease?   

These questions have profound implications in both clinical and research realms.  The extent 

to  which   ‘personalized’  clinical  medicine  will  ever  be  possible   for  a disease like T2D, for example, 

depends on the underlying spectrum of disease-causing genetic variation: targeted diagnosis and 

treatment based on individual genome sequence will be more tractable if the disease is caused by 

rare mutations of large effect than if many genes and variants together contribute.2–5  The genetic 
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architecture of a trait also governs the success of future genetic mapping studies6–9, and informs on 

the choice of experimental designs and analytical methods that are optimally powered to uncover 

novel signals10,11.  Thus, understanding the genetic architecture of a trait is an important objective, 

both in order to design efficient future research studies and also to guide the translation of genetic 

information to clinical settings. 

A number of genetic studies have been performed in recent years to probe the genetic basis 

of complex human diseases, but it is challenging to quantify the constraints these data place on the 

underlying genetic architecture.  In this thesis, we address this question – focusing on T2D – in 

several ways.  First (in Chapters 1-3) we develop a simulation-based framework that is calibrated to 

empirical data and enables systematic testing of hypotheses about genetic architecture.  We begin 

by using forward evolutionary simulation to model human genetic variation in hundreds of thousands 

of individuals, recapitulating properties of empirical sequencing data (Chapter 1).  We then develop a 

principled set of simple, population genetic parameters to control the mapping of genotype to 

phenotype, which results in a wide space of potential genetic architectures for T2D (Chapter 2).  To 

evaluate each of these architectures, we perform (in silico) a number of different genetic studies, as 

they were conducted for T2D, under each simulated model and ask which models produce results 

consistent with an array of empirical observations (Chapter 3).  This work defines a novel approach 

in which many hypotheses about the architecture of a given trait can be simultaneously tested 

against an integrated panel of empirical data for the trait. 

In the next major section of this thesis (Chapters 4-6), we move from exploring the global 

genetic architecture of a disease to studying the local allelic architecture, or the spectrum of causal 

allele frequencies and effect sizes at individual disease loci across the genome.  In Chapter 4, we 

simulate the diverse panel of genetic architectures developed in Chapter 1-2 within human genes, 

generating thousands of simulated loci (in thousands of samples) with varying numbers of causal 

variants, each with different frequencies and effect sizes.  We use these simulations to evaluate the 

implications of genetic architecture on the power (and therefore choice) of different analytical 
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methods.  Specifically, we focus on the class of gene-based rare variant association methods; a 

large number of such methods have been published in recent years, yet they have not been 

systematically compared and evaluated under a broad range of locus architectures.  We describe 

the power of each method (at varying significance thresholds), and learn which methods are best 

powered to test different hypotheses about complex disease. 

In Chapters 5-6, we dive into characterizing the allelic architecture empirically observed at 

loci identified by GWAS for T2D (loci where common variants are known to be robustly associated 

with risk of T2D).  Armed with the insights learned in simulation studies from the first half of this 

thesis, we integrate GWAS and whole genome sequence data in unrelated cases and controls to 

test three principle hypotheses at these loci: (1) that common variant(s) causally modulate risk of 

T2D;;  (2)  that  rare  variants  create  ‘synthetic’  common  variant  associations;;  and  (3)  that  rare  variants  

(individually or in aggregate) have effects on T2D, independent of the common signals.  We 

characterize the architecture at a single, fascinating locus (chr9p21) in great depth (Chapter 5), and 

use this locus as a testing ground to compare different genotyping vs. imputation-based fine-

mapping strategies as well as develop a set of new haplotype-based methods for use with genome 

sequencing data.  We then apply these methods to ten other T2D-associated loci (Chapter 6), 

demonstrating that different genetic models are plausible at each locus.  In each case, we 

enumerate sets of candidate causal variants (common and rare) for use in functional follow-up 

studies of these loci. 

Finally, recognizing that human genetic studies are only the first step on the path towards 

actually gaining insight into the pathophysiology of a disease like T2D, we next attempt to integrate 

some of this genetic data with experimental biological datasets.  Because the vast majority of T2D 

loci  identified  in  GWAS  localize  to  “non-coding”  regions  of  the  genome  (regions  that  do  not  contain  

protein-coding exons), we focus in these chapters on characterizing the function of putative 

regulatory elements – regions which do not themselves encode proteins, but may function to control 

and modulate the expression of nearby genes.  Specifically, we perform in vitro tiling screens for 
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regulatory function across two T2D loci (chr9p21 and JAZF1; Chapter 7), and identify promising 

enhancers for further follow-up.  We also look for signatures of genome-wide enrichment for variants 

associated to T2D across elements predicted to have regulatory activity (Chapter 8); this analysis 

reveals broad enrichment for T2D association across regulatory elements in many cell types 

including adipocytes, hepatocytes, and pancreatic islets.         
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Background 

Human disease phenotypes have an inherited component 

It  has  long  been  appreciated  that  traits  (‘phenotypes’)  which we observe in the natural world 

are inherited in successive generations.  In the domestication of animals and plants, it has been 

known for centuries that selective breeding can enrich for desirable characteristics.  In the study of 

human phenotypes, it was also clear that children resembled their parents.  As William Bateson 

(who also gave the field of ‘genetics’  its  name) wrote in  1908,  “That  we  are  assemblages  or  medleys  

of  our  parental  characteristics   is  obvious.     We  all  know  that  a  man  may  have  his   father’s  hair,  his  

mother’s  color,  his  father’s  voice, his  mother’s  insensibility  to  music,  and  so  on.”1 

Two key discoveries in the late nineteenth century – made around the same time, but 

independently of one another – laid the foundation for modern understanding of genetics.  In 1859, 

Charles Darwin published The Origin of Species, describing his theory of natural selection and 

evolution.  In order for this theory to work, individuals must exhibit phenotypic variability, and must 

further be able to pass on these phenotypes to offspring; Darwin did not, however, know the 

mechanism of this transmission.  In 1865, Gregor Mendel published Experiments in Plant 

Hybridization2, in which he observed  a  “striking  regularity  with  which  the  same  hybrid  forms  always”  

appeared among offspring arising from artificial fertilization of pea plants.  These experiments – 

though not appreciated until decades later – established the mathematical rules of dominant and 

recessive inheritance, and suggested that (at least for some traits) inheritance occurs via the 

independent transmission of discrete units. 

By the turn of the century, the inheritance patterns of some human traits were recognized to 

bear resemblance to the rules Mendel described.  In 1902, Archibald Garrod observed higher 

incidence of the disease alkaptonuria (‘black   urine   disease’) among offspring of consanguineous 

parents,  and  reported  that  “the  law  of  heredity  discovered  by  Mendel  offers  a  reasonable  account  of  

such   [recessive]   phenomena.”3  Though the exact gene defect underlying alkaptonuria was not 
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discovered until the 1960s, this trait became among the first-described human diseases recognized 

to be caused by a single gene defect (and transmitted in a Mendelian fashion).  By 1925, shortly 

after Garrod’s  report, the inheritance of human blood groups was also shown to be explained by a 

system of triple alleles that were passed onto offspring in a manner consistent  with  Mendel’s  laws.  

In parallel to these observations about inheritance patterns, biologists were also forming 

theories about the physical matter by which heredity could operate.  In the mid-1880s, chromosomes 

were identified under the microscope (Boveri), and were recognized to occur in pairs (one maternal 

copy, and one paternal copy).  By 1903, W. Sutton had documented that pairs of chromosomes 

oriented  at  random  on  meiotic  spindles,  thus  raising  the  “probability  that  the  association  of paternal 

and maternal chromosomes in pairs and their subsequent separation during the reducing 

division…may  constitute  the  physical  basis  of  the  Mendelian  law  of  heredity.”4 

The  confluence  of  chromosomal  theory  and  Mendel’s  inheritance  laws  ultimately  resulted  in  

the recognition of the property of genetic linkage.  As early as 1900, it was observed by Carl Correns 

that some traits are more likely to be inherited together rather  than  independently  (as  Mendel’s  laws  

would have predicted).  In 1910, Thomas Hunt Morgan reported the sex-linked inheritance of white 

eyes (and other traits) in Drosophila, suggesting that the genes underlying these traits were 

physically coupled to the genes determining sex (e.g., on the X chromosome).  The  idea  of  “linkage 

groups”  was  developed  to  refer  to  the  idea  that  genes  on  the  same  chromosomes  were  more  likely  

to be inherited together.   

It was also realized, however, that recombination (“crossing  over”) could occur between such 

groups, and that the likelihood of recombination depended on the distance between two genes.  In 

1913, Alfred Sturtevant (then a  student  in  Morgan’s  laboratory),  developed  the  first  “linkage  map”  of  

a chromosome, using the strength of linkage (measured by co-inheritance) between genes on the 

Drosophila sex chromosome to deduce their approximate physical distance from one another.5  This 

concept of linkage would go on to have profound effects on the field of human genetics.  
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In order for the impact of such linkage maps to be realized, one key piece of the puzzle was 

needed: an understanding of genetic mutation.  How does variability in genes arise in the first place?  

In Drosophila studies, novel versions (alleles) of the same gene were recognized when new 

phenotypes spontaneously appeared in fly lineages.  Darwin’s  original  work,  too,  had  assumed the 

presence  of   “fluctuating  variations”  as   the  substrate  on  which  natural  selection  acts.4  In order for 

these hypothetical concepts of mutation to become concrete, however, the discovery of DNA (by 

James Watson and Francis Crick in 1953), followed by the development of methods to read out DNA 

sequence at sites in the genome (by Frederick Sanger, Walter Gilbert, and Allan Maxam in the 

1970s), was required.  Following this, sites of naturally occurring DNA polymorphisms (locations at 

which individuals commonly have different alleles) were identified across the human genome.  

These could then be used to construct human linkage maps (as Sturtevant had made for Drosophila) 

and trace the transmission of chromosomal regions through families.6 

By systematically correlating disease status with the transmission of particular alleles at 

polymorphic markers across the genome, it became possible to identify marker sites (and 

chromosomal regions) with which putative disease-causing alleles must be linked.  This advent of 

genetic mapping in humans resulted in the localization of genes underlying hundreds of ‘Mendelian’ 

disease phenotypes, ranging from Huntington Disease (in 1983) to cystic fibrosis (in 1988).7   

Common human diseases are ‘complex’, not Mendelian 

The mapping of Mendelian human traits has been hugely important: it has enabled diagnosis 

and (in some cases) treatment for a range of severe diseases, and further propelled forward our 

understanding of the biological processes contributing to disease pathophysiology.  However, most 

common human diseases (indeed, most phenotypes in general) actually do not show Mendelian 

patterns of inheritance.  Mendelian inheritance requires several features: a single genetic defect 

must be sufficient to produce the disease (thus, a single mutation must have an effect on 

phenotype), and it must also be necessary (there must not be other genetic or non-genetic causes of 

disease).  The diseases that affect most people around us – type 2 diabetes (T2D), hypertension, 
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heart disease, mental illness, and others – clearly have an inherited basis, but do not obey these 

Mendelian properties, and do not show patterns of recessive or dominant transmission in families. 

As   a   simple   example   of   such   ‘complexity’   in   human   phenotypes,   Sturtevant reported (in 

1940) on human inheritance of the trait tongue-rolling.  He compared the ability of parents and their 

offspring to roll their tongue (Figure B1), and observed 

confusing results: rolling appeared to be partially dominant, but 

two non-rolling parents could nonetheless have children 

capable of rolling their tongue.  This suggested that multiple 

genes might influence this trait, or perhaps that environmental 

influences were substantial (e.g. the trait could be learned).  In subsequent years, as more families 

(and  twins)  were  studied,   the  picture  grew  more  confusing  and  Sturtevant   later  wrote  that  “he  was  

embarrassed  to  see  it  listed…as  an  established  Mendelian  case.”4 

Such is the story for most common human phenotypes – their inheritance patterns appear 

complex.  Studies of human height provide the classical example of 

complex inheritance.  As early as 1886, Francis Galton invented the 

concept of regression while studying the height of parents and their 

offspring.8  He found that   while   parents’   height   clearly   influenced  

the height of offspring, the relationship was not deterministic, and 

only a fraction of the variance in offspring height could be explained 

by  the  parents’  phenotypes.     This   fraction  (related  to   the  slope  of  

the regression) came to be known as the heritability of a complex 

trait.  Galton   coined   the   phrase   “nature   vs.   nature”   to   refer   to   the   substantial non-genetic 

(environmental) influences he observed on complex human phenotypes. 

Galton’s  work, alongside that of others including Karl Pearson, gave rise to biometrics – a 

field concerned with the study of continuously varying traits (such as height), rather than traits 

showing discontinuous Mendelian inheritance.  In 1918, R. A. Fisher published his seminal paper 

Figure B1:  Sturtevant’s  results  on  
inheritance of tongue-rolling 

Figure B2:  Galton’s  regression  of  
offspring vs. mid-parent height 
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The Correlation between Relatives on the Supposition of Mendelian Inheritance9, in which he 

described novel statistical methods for analysis of variance (which are of course widely used today 

in many areas outside of genetics).  In this work, Fisher reconciled the divide between biometricians 

and Mendelian geneticists, demonstrating that continuous phenotypes could result from the 

aggregate additive effects of many genetic factors, each of which could be inherited in a Mendelian 

fashion and individually produce only a small effect on the total phenotype (a  ‘polygenic’  model). 

Common human disease phenotypes such as type 2 diabetes, however, are not observed as 

continuous traits; rather, they are dichotomous.  Evidence that such traits are heritable comes from 

the observation that the incidence of disease is higher among relatives (e.g. siblings) of affected 

individuals than it is in the general population.  The sibling relative risk for T2D, for example, is ~2.0-

2.5; this risk is lower than expected if T2D were inherited in a monogenic, Mendelian fashion, but the 

fact that the risk exceeds one suggests a genetic component (controlling for shared environment).  

In 1965, D. S. Falconer suggested that dichotomous traits might be studied as if a continuously 

varying trait was underlying them; disease could be thought to result above a threshold on this 

continuous ‘liability’  scale.10,11  Falconer pioneered heritability estimation for dichotomous diseases 

by using data on incidence rates among relatives; in the next decades, narrow-sense heritability (the 

component of phenotypic variance attributable to additive genetic effects) was estimated for a host 

of human disease phenotypes and found, in most cases, to range from ~30-80%.12,13 

Linkage mapping works for Mendelian traits, but fails for complex traits 

Given that common disease traits have a significant inherited basis, geneticists were keen to 

apply linkage mapping – which had worked so well in the case of rare Mendelian disease 

phenotypes – to localize the causal genetic variation underlying these traits.  This effort resulted in 

the identification of Mendelian sub-types of common diseases (e.g. familial forms of breast cancer 

caused by BRCA1/2 mutations,  diabetes  caused  by  mutations  in  one  of  several   ‘MODY’  genes, or 

Alzheimer’s  caused by APP mutations), but only explained a small fraction (usually <1%) of the total 

incidence of these diseases.  Moreover, these sub-types had different properties as compared to the 
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common forms of disease (they were usually more severe, exhibited earlier age of onset, and were 

not subject to environmental risk factors), making them distinct biological entities.  Linkage mapping 

studies in large families or siblings with the common forms of these diseases yielded largely 

equivocal results.7 

This finding was consistent with the biometric hypothesis that common diseases may be 

polygenic; that is, they may be caused by a large number of genetic mutations, such that no 

individual mutation (and no marker linked to it) shows any significant correlation with disease status.  

But it may also have simply been the expected result for traits with significant non-genetic 

components.  This question is addressed in Chapter 3 of this thesis. 

Genome-wide association studies identify numerous complex trait loci 

In the wake of these negative linkage findings, population genetic theory offered a new path 

forward.  Instead of tracing the transmission of disease mutations through families (where high 

penetrance and large effect sizes are required to observe an effect), what if the frequencies of 

millions of common polymorphisms across the genome could be compared between large, unrelated 

groups of affected and unaffected individuals?7 The justification for such genome-wide association 

studies (GWAS), was termed the ‘common   disease   common   variant’   (CDCV) hypothesis.  This 

hypothesis was multi-factorial, but was ultimately grounded in population genetic assumptions about 

a) human demographic history and b) natural selection.14,15 The human population was known to 

have grown exponentially after a bottleneck; it was therefore proposed that some deleterious alleles 

may have risen to common frequencies.  It was further reasoned that these disease alleles might 

have been subject to only mild natural selection because disease phenotypes that are common likely 

have limited effects on reproductive fitness.  Taken together, these simple assumptions suggested 

that perhaps systematic assay of common sites of variation could point to disease-relevant loci.  

GWAS were enabled by rapid advances in genomic technology in the early 2000s.16  After 

the human genome sequence was completed 2001, millions of common single-nucleotide 
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polymorphisms (positions at which two different alleles are common in the population) across the 

genome were systematically identified (by the International SNP Consortium).  Spurred by rapid 

strides in the development of efficient and cost-effective SNP genotyping technologies, the 

International HapMap Project was next initiated; by 2007, this project had completed genotyping of 

over three million SNPs in 270 individuals from four ethnically diverse populations.17,18 These data 

revealed  that  ‘recombination  hotspots’  were  scattered  across  the  genome,  and  essentially  provided  

granular,   detailed   descriptions   of   T.  H.  Morgan’s   ‘linkage  groups’.      These   linkage   blocks   (regions  

between recombination hotspots) exhibited low haplotype diversity and high correlation between the 

genotypes of neighboring SNPs.  It was recognized that these groups could be exploited to perform 

GWAS efficiently: only one of a set of correlated SNPs must be queried, with little loss in information.   

Over the next few years, genome-wide genotyping arrays containing ~500K common ‘tags’  

for each unique haplotype within linkage blocks were developed, and the first large-scale GWAS 

were published in 2007 for a range of common human disease traits, including type 2 diabetes.19–22 

By 2012, over 1300 GWAS had been conducted for common diseases ranging from inflammatory 

bowel disease to coronary artery disease to schizophrenia to asthma.  Because each GWAS tests 

hundreds of thousands of hypotheses, stringent standards for independent replication and statistical 

significance were established (after Bonferroni correction, only variants having an association p-

value < 5*10^-8 were considered  ‘genome-wide  significant’).  In order to attain high power in such a 

setting, GWAS were conducted in very large sample sizes (tens of thousands of unrelated 

individuals, often in a staged design).  A host of analytical methods were developed to correct for 

potential confounders such as population stratification. 

GWAS successfully identified hundreds of haplotype blocks across the genome in which 

common markers show robust (and replicable) association to a variety of human diseases.  In many 

cases, the association signals point to novel biology or pathways previously unconnected to disease.  

For example, GWAS of type 2 diabetes have identified over 70 genomic loci.  Reassuringly, some of 

these GWAS loci (e.g. HNF4A) were previously known to harbor mutations that cause Mendelian 
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forms of early-onset diabetes.  Several loci (e.g. KCNJ11) implicate pancreatic beta cell biology; 

given that T2D was thought to be principally a disease of insulin resistance in peripheral tissues, this 

was perhaps surprising.  Finally, other loci (e.g. 

associations near the cell cycle regulators 

CDKN2A/B and CCND2; Figure B3) suggest 

biological mechanisms of disease that are, as of yet, 

entirely unknown. 

The translation of GWAS findings to 

actionable therapeutic and diagnostic insights, 

however, has been challenging.  This has occurred 

for several reasons: (a) the associated markers are, 

in most cases, not directly disease-causing but rather just proxies for causal variation, (b) the linkage 

blocks implicated in GWAS are large, often spanning multiple different genes, (c) the associated 

variants often localize to poorly understood non-protein-coding regions of the genome, and (d) the 

effect sizes of disease-associated markers are, on average, very small (common marker odds ratios 

are typically less than 1.5, meaning that they increase disease risk by only a small amount).  As a 

result, the therapeutic targets suggested by most GWAS loci are far from clear, let alone the 

direction in which these targets should be modified.  The small effect sizes have made diagnosis 

based on genotype challenging; no individual variant is a strong predictor of disease, and even when 

taken together the GWAS loci do not (for most common diseases) improve risk prediction above 

what was previously achievable using family history and clinical factors.23,24   

There  are  widely  varied  hypotheses  about  ‘missing  heritability’  and  genetic  architecture 

The total fraction of heritability explained by all the genome-wide significant loci discovered in 

GWAS has been limited for most common diseases (~10% for type 2 diabetes).25  This so-called 

“missing  heritability”  of  disease26  has brought the debate about genetic architecture back to center 

Figure B3: Example GWAS locus identified for 
T2D (at chr9p21, near CDKN2A/B).58 
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stage.14,27–49  How many causal variants contribute to the risk of complex diseases, and what are 

their frequencies and effect sizes? 

Even pre-GWAS, the idea that allelic 

heterogeneity (multiple causal alleles at a locus) 

would substantially reduce the power of common 

variant association scans had been appreciated49; 

some have argued that many loci have been 

undiscovered by GWAS for this reason.  It has 

also been proposed that rare alleles (not tested 

by GWAS) could have larger effects than those detected at common GWAS alleles; disease 

mutations of large effect might have been kept rare due to purifying selection. In this case, rare 

variants (both at GWAS loci and elsewhere in the genome) might explain a large portion of yet-

undiscovered genetic risk.  At the extreme, some have even argued that common diseases are 

merely a poorly phenotyped aggregation of hundreds of Mendelian sub-types, suggesting that there 

may exist a very large number of individually rare, highly penetrant causal alleles.29,31,35   The many 

rare variants revealed by recent exome sequencing studies50–54 have been interpreted as supporting 

evidence for such hypotheses. 

Another rare variant model that has generated much discussion in the past two years is the 

idea that rare causal variants arising on the background of common disease-associated haplotypes 

are   actually   responsible   for   producing   ‘synthetic’  GWAS   signals.37  

In this scenario, rare causal mutations (not directly tested in GWAS) 

have occurred (by chance) on haplotypes which share an allele at a 

common marker that is typed on GWAS (Figure B5).  Thus, this 

common allele would show weak association; had the rare variants 

been tested, their effect sizes might have been larger.  It has been 

Figure B5: Possible synthetic 
association at GWAS locus.32 

Figure B4: Potential role of variants of different 
frequency and effect size in complex trait genetic 
architecture.33 
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Figure B6: Integrating insights from 
diverse genetic studies 

especially enticing to consider that the rare variants could be protein-coding (and might thus provide 

more clear therapeutic hypotheses).  At the time this thesis was begun, the discovery and 

characterization of rare genetic variants had just begun, and the extent to which such synthetic 

associations might exist at human GWAS loci was not known (this is addressed in Chapters 5-6). 

Of course, the common polygenic model originally described by Fisher and the other 

biometric scientists is also potentially consistent with the findings of GWAS.  Although the very 

existence   of   ‘outlier’   GWAS   signals  may   seem   incompatible   with   a  model   in   which   variants   have  

infinitesimal effects on phenotype, it has been argued that these signals could still represent the tail 

of a very large number of common mutations which each increase disease risk by very little. Indeed, 

it has been demonstrated that weak effects across the full tail of sub-genome-wide significant 

common variants in aggregate can explain a much larger fraction of disease heritability than just the 

top signals alone;36,39,41,45 it is still unclear, however, whether these weak effects represent causal 

signals or whether they are markers tagging causal variation that might very well have different 

properties. 

Thus, the results of linkage and GWAS studies have been construed in very different ways, 

to suggest very different properties of genetic architecture.  This has occurred, in part, because each 

study allows investigators only a partial view of the full 

architecture.  A key challenge (especially as genetic 

studies grow in scope and number) is how to integrate the 

findings of many studies to draw inference about the 

underlying   ‘elephant’   that   is   the   genetic   architecture  

(Figure B6).  A major goal of this thesis was to develop a 

systematic approach for stating principled hypotheses 

about genetic architecture and evaluating them against the entirety of empirical data. 
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Next-generation sequencing has recently enabled genetic studies of unprecedented depth 

Over the course of this thesis (2009-2013), the cost of sequencing DNA has fallen by more 

than ten-fold,  at  a  rate  that  has  far  surpassed  even  Moore’s 

Law in the semiconductor industry (Figure B7).  Next-

generation sequencing (NGS) technologies have 

exemplified the maxim “smaller, faster, and cheaper”: gains 

in cost efficiency have been accompanied by smaller input 

DNA requirements, lower sequencing time, and improved 

accuracy.  The technical advancements that made this 

possible are the subject of numerous reviews55–57, but their impact on human genetics research has 

been transformative.  NGS has made it possible to sequence the genome of many organisms and 

perform comparative and evolutionary studies; it has enabled high-resolution characterization of the 

transcriptome (via RNA-seq), and the microbiome; it has spawned a new wave of large-scale 

biological experiments which leverage sequencing-based read-outs; and of course, it has enabled 

re-sequencing of the human genome at unprecedented depth in thousands of individuals.   

An initial wave of human genetic studies, such as those conducted by the 1000 Genomes 

Project54, were not focused on any particular disease trait and instead sought to characterize the full 

spectrum of human genetic variation (both common and rare) in populations at large.  These studies 

pioneered novel methods for variant detection and genotyping from raw NGS data, and reported on 

the properties of tens of millions of SNPs, insertions and deletions, and structural variants found to 

be segregating in human populations.  Underscoring the challenge of genotype-phenotype 

correlation, these studies also documented the finding that the average individual (with no disease 

phenotype) carries numerous putative loss-of-function variants in annotated genes.  Additionally, 

numerous studies reported on the discovery of large numbers of variants that are rare in the human 

population;;  because  this  has  been  somewhat  inaptly  described  as  an  “excess”50–52 of rare variation 

Figure B7: Cost of sequencing 1Mb of 
DNA, 2001-2012. (Source: NHGRI)  
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(rather than the naturally expected outcome of human population growth), there has been rampant 

speculation about the role of these rare sites in human disease phenotypes. 

Most recently, a number of next-generation genetic studies have been designed to directly 

interrogate the genetic basis of human diseases.  For type 2 diabetes, a truly incredible set of 

genetic studies have been performed over the past three years: low pass whole-genome 

sequencing of 2,800 unrelated European individuals with imputation into >30k individuals, 

exome sequencing of 13k unrelated individuals of diverse ethnic ancestries and genotyping of 

low   frequency   coding   variants   in   up   to   80k   individuals   (via   the   ‘Exome   Chip’),   and   whole-

genome sequencing and imputation of ~1,000 individuals from large T2D pedigrees.  It is a 

challenging task to integrate findings from this set of varied studies, and draw cohesive 

inference about the underlying genetic architecture of T2D.  This thesis describes some 

foundational principles and first steps that will perhaps help guide this effort in coming years. 
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Chapter 1 

Forward simulation of population-scale human genetic variation 

 
The genetic architecture of any trait is the result of population genetic processes 

Population genetic principles provide a unifying framework in which to consider the genetic 

basis of complex traits such as T2D.  The genetic architecture of any trait has – by necessity – been 

shaped by the key forces of population genetics: mutation, drift, and selection.  Mutations at some 

(but not all) loci across the genome have the potential to alter disease risk;;  the  size  of  this  ‘disease  

target’  will  influence  the  magnitude  of  effect  that  individual  variants  can  have  on  disease  phenotype.  

Genetic drift and gene flow (influenced by human demographic history and migration) cause 

fluctuations in the frequencies of causal alleles, independent of phenotype effects.  Finally, natural 

selection produces directional changes in the frequencies of alleles that influence evolutionary 

‘fitness’,  which  is  itself  a  composite  of  many  traits  (including,  potentially,  the  disease  of  interest).   

Analytical or simulation-based models have yielded insight into the qualitative dependencies 

of genetic architecture (usually at a single locus) on subsets of these parameters.1–7 For example, 

explosive population growth following a bottleneck can allow even deleterious disease alleles to 

reach common population frequency.5 Conversely, strong selection against disease7, or high 

mutation rates coupled with mild selection6, could, in principle, enable rare alleles to explain much of 

heritability.  

To quantitatively investigate the extent to which such models are consistent with emerging 

data from association studies and population-based sequencing, we performed simulations that 

enabled granular predictions of genome-wide genetic architecture and study results.  Although the 

number of disease model parameters is potentially without bound, we sought to generate the 

simplest possible models considering only mutations (of additive effect), genetic drift, and purifying 

selection. If such simple models produce predictions inconsistent with empirical data, this does not 
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imply that more complex models could not be consistent.  However, if a simple model is consistent, 

then we can conclude that its features are indeed plausible given current data. 

Based on these considerations, we developed a three-stage framework: (1) forward 

evolutionary simulation to generate multi-locus DNA variation at large scale, (2) mapping of 

genotype to phenotype under a range of disease models, and (3) in silico prediction of genetic study 

results under each model, followed by comparison to empirical results (Figure 1.1).   For simplicity, 

we focused on Northern European populations (in which the majority of human genetic studies have 

been conducted).  Methods and results for each of Steps 1-3 are described in Chapters 1-3. 

 

    

Simulation of DNA sequence variation at population-scale 

A pre-requisite for any informative genetic model of human disease is population-scale DNA 

variation (in hundreds of thousands of samples) – ranging from common polymorphisms to 

singletons – that is consistent with empirically observed human genetic variation.  Since no empirical 

dataset of this size exists, we opted for a simulation-based strategy. 

Figure 1.1: Overall framework for simulation and evaluation of disease models for complex traits. 
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Simulation tool for forward evolutionary simulations.  We chose the publicly available forward 

evolutionary simulator software ForSim (Lambert et al8).  Although ForSim is more computationally 

demanding than coalescent modeling approaches, the ability to simulate rare variation according to 

a user-specified population demographic history and model of purifying selection was a key 

advantage.  In addition to producing genotype data for all variant sites, ForSim also tracks the 

evolutionary age, selection coefficient, and haplotype phase information associated with all genetic 

variants; these additional pieces of information were critical in the downstream implementation of 

disease models that relied, for example, on assumptions about purifying selection (see Chapter 2). 

Evaluation of the simulation tool.  Before using ForSim to fit a demographic model, we 

performed basic diagnostics on simulated data.  We ran a simple simulation of N=1,000 individuals 

(fixed population size) for 10,000 generations at a region of L=50kb. We assumed the mutation rate 

was u=1.8e-7.  We then asked whether the number of novel mutations introduced per generation, 

the fixation rate of new mutations, and the mean time to fixation were consistent with theoretical 

predictions under these conditions.  Indeed, we found that the mean number of new mutations per 

generation was ~15, consistent with the expectation 2*N*u*L = 18.  The expected ratio of the 

number of sites fixed to the number of sites lost is (1/(2N)) : (1-(1/(2N))) = 0.0005.  In sample 

simulated data, we found that ~110 SNPs were fixed, and ~180,000 were lost, yielding a ratio of 

0.0006 (consistent with theoretical prediction).  Finally, the expected average time to fixation is ~4N, 

or ~4000 generations.  In simulated data, we found that the mean time to fixation (for those sites 

reaching fixation) was on this order (~5090 generations).  Having confirmed that data generated by 

ForSim met basic diagnostic criteria, we next set out to simulate population-scale DNA variation that 

was consistent with empirically observed data.     

Fitting population genetic parameters to simulate realistic genetic variation.  We used ForSim 

to model the three main processes which determine the spectrum of DNA variation: (a) mutation and 

recombination, (b) demographic history, and (c) natural selection on segregating alleles.  Several 

models for European population history have been published, but each differs substantially in 
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assumptions about the mutation rate (µ), ancestral population size (Na), bottleneck size (Nb), 

duration (te) and rate (re) of exponential growth, and modern effective population size (Ne).   

We initially tested models of demographic history previously published by Gravel et al 

(History B; developed based on exome-wide 1000G Pilot data in 63 CEU samples) and Kryukov et al 

(History C; developed based on a re-sequencing dataset of 58 genes in ~800 individuals).  To test 

the sensitivity of results to bottleneck size, exponential growth curve, and modern effective 

population size, we tested >20 variants of these histories with different mutation rates (Table 1.1).  

 

Table 1.1: Demographic histories evaluated via forward simulation. 
‘Gravel  et  al   (History  B)’  and   ‘Kryukov  et  al   (History  C)’   represent   the original histories published by 
these  groups.  ‘Hybrid_1  (History  A)’  represents  a  demographic history with a bottleneck size of History 
B, but exponential growth similar to that of History C.  History A produced the best fit match to 
empirical site frequency spectra. Parameters highlighted in blue represent deviations from published 
histories which were tested directly via forward simulation. 
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To evaluate each demographic history, we used ForSim to forward simulate (with no purifying 

selection) a 200kb contiguous region in a large (>500K size) population according to the specified 

history.  We repeatedly sampled unrelated individuals (n=63, n=243, and n=1322) from the 

simulated population for comparison to various empirical datasets of different sample sizes.  We 

then compared the average SFS in simulated samples to the empirical SFS of synonymous sites 

(assumed neutrally evolving) in 1000G exome data (n=63 CEU or n=243 EUR individuals) as well as 

in exome data generated by the GO-T2D Consortium (n=1322 European samples). 

To compare exome-wide data to data at simulated loci, we normalized the mutational target 

size, using the total length of regions targeted on the exome hybrid capture array (~32.8 Mb total).  

We assumed that 30% of exonic target would result in synonymous (neutrally evolving) variation if 

mutated (yielding a synonymous target of ~9.8Mb), while 70% would result in non-synonymous 

variation (a non-synonymous target of ~22.9Mb).   

To account for imperfect sensitivity in variant calling and genotyping in empirical datasets, we 

estimated that ~95% of all exonic target regions were covered at adequate depth in exome 

sequencing, and that ~90% of individuals were covered at a given site.  We then adjusted simulated 

site frequency spectra according to these assumptions (see code below) and then compared the 

corrected simulated SFS under each demographic history to the SFS observed in empirical data.   

#Code used to correct simulated site frequency spectrum for imperfect empirical sensitivity 
#N = number of individuals; also the length of the SFS vector since this extends to MAF=50% 
#SFS is site frequency spectrum; number of variants seen at each Minor Allele Count 
 
percent_target_missed = 0.05 
percent_individuals_covered = 0.90 
 
N = length(simulated_sfs) 
simulated_sfs_corrected <- seq(from=0,to=0,length.out=N) 
 
for (i in 1:N) { 
for (j in i:N) { 

p=choose(j,i)*(percent_individuals_covered^i)*(1-percent_individuals_covered)^(j-i) 
simulated_sfs_corrected[i] <- simulated_sfs_corrected [i] + p*simulated_sfs[j] 
} 
} 
 

simulated_sfs_corrected=simulated_sfs_corrected*(1 - percent_target_missed) 
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We confirmed that each demographic history variable (bottleneck size, exponential growth 

rate, modern effective population size) behaved as expected in forward simulation (Figures 1.2-1.4). 

    

 

Figure 1.2: Evaluation of Gravel et al demographic history (History B) and variations via forward simulation 
The above panels (a-e) evaluate the previously published Gravel et al demographic history and variations of this 
history (see Table 1 for parameters of each history) against the empirical site frequency spectrum observed 
empirically in n=63 CEU samples from the 1000G Project. Within each panel, the left plots show number of 
singletons predicted under each history; right plots show the site frequency spectra from minor allele count of 2 
onward. a) Effect of varying mutation rate; b) Effect of varying rate of exponential growth; c) Effect of varying 
duration of exponential growth; d) Effect of varying bottleneck size; e) Variance in site frequency spectra produced 
under identical demographic history (History B); f) Comparison of data simulated under History B to the empirical 
site frequency spectrum observed in a much larger sample size, n=1322 EUR. 
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The above analyses confirmed that the SFS was sensitive to population genetic parameters 

as expected.  A higher mutation rate, as expected, resulted in a greater number of variants at all 

Figure 1.3: Evaluation of Kryukov et al demographic history (History C) and variations via forward simulation 
The above panels (a-e) evaluate the previously published Kryukov et al demographic history and variations of this 
history (see Table 1 for parameters of each history) against the empirical site frequency spectrum observed 
empirically in n=63 CEU samples from the 1000G Project.  Within each panel, the left plots show number of singletons 
predicted under each history; right plots show the site frequency spectra from minor allele count of 2 onward. a) Effect 
of varying mutation rate; b) Effect of varying rate of exponential growth; c) Effect of varying duration of exponential 
growth; d) Effect of varying bottleneck size; e) Variance in site frequency spectra produced under identical 
demographic history (History B); f) Comparison of data simulated under History B to the empirical site frequency 
spectrum observed in a much larger sample size, n=1322 EUR. 
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frequencies (especially variants of low count).  The final effective population size (Ne) heavily 

impacts the number of segregating rare variants; unsurprisingly, the number of alleles private to a 

single sampled individual (MAC = 1) is much higher when Ne is large.  For comparison, we also 

evaluated a demographic history published by Schaffner et al (History D; trained only on common 

variation)9, as well as a naïve history (History E) of constant population size (Na=Nb= Ne=10K).  

 We performed the final evaluation of each history in the large sample size (n=1322; Figure 

1.2f, Figure 1.3f).  We find that History B, due to a small Ne, generates too few rare alleles with MAF 

< 5%; conversely, History C generates data very close to the empirically observed distribution, but 

produces an excess of singletons due to a mild bottleneck and large resulting Ne.  History D 

(unsurprisingly, as it was developed from an empirical dataset of only common polymorphisms), is 

very well-calibrated for common sites but produces insufficient rare sites.  Finally, as expected, 

History E (fixed population size) produces an excess of common sites and far too few rare sites.  

 We ultimately selected a computationally tractable demographic history which has mixed 

features of the other histories and which produces a frequency spectrum most similar to that of 

empirical data (Figure 1.4).  The demographic history we chose is named “Hybrid_1  (History_A)”  in  

Table 1.1 and represents a hybrid of previously published histories from Kryukov et al and Gravel et 

al.  This model assumes a mutation rate (µ=2e-8) in line with findings of recent studies.10–12  It 

assumes that an ancestral population (Na=8.1K) underwent a severe bottleneck (to Nb=2K size) 

approximately 370 generations (te) ago, after which time rapid exponential growth (at a rate of 

re=1.3% per generation) occurred to an effective population size Ne=228K (intermediate between 

that of History B and C).  History A closely recapitulates the empirical SFS at both rare and common 

synonymous sites, in all sample sizes tested (n=63, n=243, and n=1322 individuals; Figure 1.4). 

 We also calibrated a uniform locus-wide recombination rate to match empirically observed 

pairwise linkage between common variants in data from the 1000 Genomes Project (Figure 1.5).  A 

recombination rate of 2 Mb/cM produced the best match to empirical data. 
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We next fit the distribution of purifying selection on protein-coding mutations by performing 

forward simulations under History A while applying per-variant selection coefficients drawn from a 

range of gamma distributions (as in previous reports13,14, we assumed that ~20% of non-

synonymous sites are neutrally evolving).  We initially tested the gamma distribution previously 

published by Kryukov et al.  We additionally tested 12 alternate distributions by sampling shape and 

scale parameters from a logarithmic grid centered at the published values (Table 1.2; Figure 1.6).  

Increasing  the  mean  value  (k  *  θ)  of  the  gamma  distribution  produced,  as  expected,  larger  selection  

coefficients and milder selection, shifting the site frequency spectrum towards more singletons.  The 

best-fit distribution (which produced a SFS closely matching that of non-synonymous sites in 

Figure 1.4: Comparison of data simulated under best-fit hybrid history (History A) to empirical datasets. 
a) Evaluation of hybrid demographic histories (Table 1) against empirical SFS observed in n=63 CEU samples from 
1000G Project. Left plot shows number of singletons predicted under each history; right plot shows SFS from minor 
allele count of 2 to 30. The history shown in green (Hybrid_1,   named   “History   A”) produced the best match to 
empirical data. b) Variance across SFS resulting from independent simulations of an identical demographic history 
(History A). c) Comparison of data simulated under History A to empirical data in a larger sample size, n=243 EUR 
from the 1000G Project. d) Comparison of data simulated under History A to empirical data in a very large sample 
size, n=1322 EUR from the GO-T2D Consortium. 
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empirical data) represents slightly weaker selection than previously published; this may result from 

our use of a much larger (exome-wide) empirical dataset as compared to the prior study which relied 

upon genetic variation across only a few (disease-associated) genes.   

 

 
 

 
 

Figure 1.5: Effect of recombination rate on observed linkage disequilibrium between common variants. 
a) Average pairwise r2 between pairs of common (MAF>5%) variants in data simulated under History A, with 
different (uniform) recombination rates. Pairs of common variants are binned by the physical distance between 
them (x-axis). Empirical data represents common variants on chr1 in 1000G Project WGS data in n=63 CEU 
individuals. Black line generated from all common variants; grey line generated from only pairs of common 
variants that lie within the same linkage disequilibrium block (e.g. between two recombination hotspots as 
measured in the HapMap Project). b) Same as (a) except shows pairwise  D’ between common variants. 

Table 1.2: Gamma distributions evaluated for distribution of selection coefficients. 
Values of theta and k values specifying a gamma distribution of selection coefficients were selected from a logarithmic grid. 
Pairwise combinations were tested via forward simulation and comparison to the empirical SFS for non-synonymous sites in 
exome sequencing data. Parameters in the orange row produced the best match to the empirical non-synonymous SFS. 
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 We assume all disease loci are under the same distribution of purifying selection (strength 

comparable to selection at protein-coding changes).  This simplifying assumption is likely reasonable 

for at least a portion of conserved non-coding regulatory elements15, but future simulations should 

consider selection distributions matched to different classes of biologically functional loci.   

 For the present purpose, however, the final set of parameters chosen – mutation rate, 

recombination rate, demographic history, and selection model – produced simulated data that 

recapitulated the properties of empirical protein-coding human genetic variation (Figure 1.7). 

Figure 1.6: Fit of selection coefficient distribution at non-synonymous sites seen in empirical data. 
a) Evaluation of different gamma distributions of selection coefficients (see Table 2) against empirical site 
frequency spectrum observed empirically at non-synonymous sites in n=63 CEU samples from the 1000G 
Project. Based on these data, a gamma distribution with k = 0.316 and theta = 0.01 was selected for forward 
simulations; shown in (b). c) Comparison of non-synonymous data simulated under this selection model (and 
demographic History A) to empirical non-synonymous data in a larger sample size, n=243 EUR from the 1000G 
Project. d) Comparison of simulated data to empirical data in a very large sample size, n=1322 EUR from the 
GO-T2D Consortium. 
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Ratio of missense to silent sites in empirical vs. simulated data under the best-fit parameters.  

The ratio of missense to silent sites is a (sample-size dependent) property of empirical sequencing 

datasets that has been previously reported16; this parameter is sometimes used as a quality metric 

to evaluate variant calling and site annotation in a new sequencing dataset (in fact, at the time the 

below analyses were performed, they revealed a bug in the annotation software being used by the 

1000 Genomes Project).  Thus, we explored the properties of this parameter in empirical sequencing 

datasets as well as in our simulated data (as another test of its similarity to empirical data).   

Figure 1.7: Patterns of genetic variation: forward simulated vs. empirically observed 
a) Number of singleton, rare (MAF<1%), intermediate frequency (1% < MAF < 5%), and common (MAF > 5%) 
synonymous sites per Mb of mutational target in empirical data from Go-T2D Consortium, n=1322 European 
samples. b) Number of simulated neutrally evolving sites per Mb under different human demographic histories:  
A = history chosen in this study (μ=2e-8, Na=8.1K, Nb=2K, te=370 generations, re=1.3%, Ne=228K), B = Gravel et 
al (μ =2.4e-8, Na=7.3K->14.4K, Nb=1.8K->1.0K, te=920 generations, re=0.4%, Ne=35.9K), C = Kryukov et al (μ 
=1.8e-8, Na=8.1K, Nb=7.9K, te=370 generations, re=1.3%, Ne=900K), D = Schaffner et al (μ =1.5e-8, Na=12.5K, 
Nb=7.7K->540, te=350 generations, re=0.7%, Ne=100K), E = Fixed 10K population (Na=Nb= Ne=10K). c) Number 
of non-synonymous (under purifying selection) sites per Mb in empirical data (dark blue) and in forward simulated 
data (light blue) using chosen demographic history and distribution of selection coefficients (inset). d) Full site 
frequency spectrum (n = 1322 samples) of simulated synonymous (green) and non-synonymous (light blue) sites 
compared to those in empirical data (black, dark blue). e) Average pairwise LD (measured by r2) as a function of 
physical distance between frequency-matched common (MAF > 5%) in simulated (green) and empirical (black) 
data. Linkage structure at a representative 200kb forward simulated locus, as generated in Haploview (inset). 
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First, we evaluated the distribution of missense vs. silent sites as a function of minor allele 

count in different sized subsets of the 1000 Genomes Project exome data.  Ng et al16 initially 

reported on the synonymous and non-synonymous site frequency spectrum observed after exome 

sequencing at ~50X coverage a sample of 12 individuals from a mix of ethnic backgrounds (4 YRI, 1 

CHB, 1 JPT, 6 EUR).  To recapitulate this and generate a ‘Ng   et   al-like’   dataset,   we   accessed 

publicly available (1000G) exome sequence data for 8 of the 12 individuals sequenced by Ng et al; 

because the other 4 individuals were European-Americans from a private sample, we randomly 

sampled an additional 4 European samples from the 1000G Project data to obtain a comparable 

sample of n=12.  The numbers of synonymous and non-synonymous sites in this n=12 sample, in 

n=63 CEU individuals, and in n=822 (multi-ethnic) exomes are shown in Table 1.3 and Figure 1.8. 

 

In the absence of purifying selection, the missense to silent ratio would be expected to be 

close to ~2 since there are approximately twice as many exonic positions at which point mutation will 

produce a missense change as compared to a synonymous change.  As seen in Table 1.3, 

however, natural selection removes a number of missense mutations from the population, and 

makes the observed ratio significantly lower than 2.  In larger samples, the ratio is higher because 

much more rare variation is captured.  This class of rare variation is enriched for missense variation 

because (a) it includes younger mutations that have not yet undergone purifying selection (this class 

of ‘new’  mutations  are ~2x more likely to be missense than synonymous), and (b) it includes older 

Table 1.3: Ratio of non-synonymous to synonymous sites in different sized exome sequencing samples 
Shown are total (exome-wide) counts of missense (non-synonymous) and silent (synonymous) variants.  Cancer 
genes represent 892 genes that are annotated as related to cancer (http://www.sanger.ac.uk/genetics/CGP/Census).   

http://www.sanger.ac.uk/genetics/CGP/Census
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missense mutations that have been kept rare due to purifying selection.  Interestingly, when we look 

across only a subset of genes believed to play a role in cancer, the missense to silent ratio is 

reduced, reflecting an absence of segregating missense sites (presumably due to a higher degree of 

purifying selection).  Thus, this ratio is actually an interesting read-out of selection strength. 

Importantly, we confirmed that forward   simulated   ‘exomes’   (using   the   best-fit models of 

demographic history and purifying selection described earlier in this chapter) recapitulate the 

observed properties of this missense to silent ratio; simulated synonymous and non-synonymous 

spectra in a sample of n=63 individuals are shown in Figure 1.8e; these data closely resemble the 

empirical data in Figure 1.8b. 

 

 

Simulated disease locus structure.  Having confirmed that forward simulated data matches 

empirical data on a number of dimensions, we next defined the structure of disease loci.  ForSim 

Figure 1.8: Frequency spectra of non-synonymous and synonymous sites in exome sequencing studies 
of different size, and in forward simulated data. 
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accepts a flexible, user-defined locus structure.  We chose to model disease loci   as   ‘average’  

protein-coding genes from the RefSeq database.  We calculated the median number of exons (8), 

median total coding length (2.6kb), and median total transcript length (22.2kb) of all unique 

transcripts in the RefSeq database.  Based on this, we model loci in ForSim as a series of 8 exons 

and 7 introns (alternating), with exons of length 300bp and introns of length 3kb such that the total 

coding length is 2.4kb and the total transcript length is 23.4kb (Figure 1.9).  Around each coding 

locus, we also simulate 100kb of neutral genomic target (in which causal variation does not arise) 

flanking both sides of the gene to enable downstream genetic association studies with markers in a 

large window around causal coding variants.  It is worth noting that although we have only simulated 

protein-coding genes in this study, this assumption can be easily modified in future work to model 

other classes of functional elements (e.g. non-coding regulatory regions) at which a different 

(perhaps weaker) signature of purifying selection may exist.  

 

Even though the gross structure of all loci generated in ForSim is identical, significant locus 

heterogeneity is generated by the stochastic nature of the evolutionary process; the number of 

coding genetic variants segregating in a sub-sampled population of ~10K individuals per locus 

ranges from 40 to 85, and the number of variants to which we ultimately assign phenotypic effects 

(see Chapter 2) also varies substantially across individual loci (Figure 1.10).    

Figure 1.9: Structure of disease loci simulated in ForSim. 
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Finally, as an illustration of the value of empirically calibrated population-scale simulations, 

we examined the relationship between the frequency of an allele and its deleteriousness (as 

measured by the selection coefficient).  There has been recent speculation, based on observation of 

abundant rare variation in sequencing studies17,18, that deleterious alleles are rare, and rare alleles 

are deleterious; this has in turn suggested support for rare variant models of disease.19  Simulated 

sequence data enabled us to test this hypothesis.  We thus asked two questions: under the best-fit 

model of selection, what fraction of deleterious non-synonymous sites is rare?  And what fraction of 

rare non-synonymous sites is deleterious?  These quantities can be described as P(R|D) and 

P(D|R), respectively, where R is the outcome that a non-synonymous variant is rare and D is the 

outcome that the variant has a deleterious effect on fitness (defined here as s>0.0005, representing 

~50% of all missense sites, as seen in Figure 1.6b). 

Figure 1.10: Heterogeneity in sequence variation and phenotypic effects across simulated disease loci arising 
from stochastic forward evolution. 
 

Each panel above is a histogram of simulated loci; in each case, loci are binned by a different feature of sequence 
variation. Although all loci are simulated with the same physical structure, stochastic forward evolution generates 
substantial diversity across loci. Simulated loci differ in the number of total coding variants (a), the number of common 
coding variants (b), the number of synonymous sites (c), the number of non-synonymous sites (d), the number of variants 
to which phenotypic effect is assigned (e), and the number of common variants to which phenotypic effect is assigned (f). 
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Evaluating P(R|D), we find that the vast majority (>90%) of all deleterious non-synonymous 

variants are indeed rare (MAF< 0.1% in n=10K samples), with the fraction increasing for more 

deleterious variants (Figure 1.11).  However, the converse is not true: less than 50% of even 

extremely rare missense variants (seen 1-2x in 10K samples) are deleterious (Figure 1.12), with the 

remainder essentially neutral (consistent also with recent empirical findings18).    

 

 

 

 

Figure 1.11: Frequency of simulated variants binned by selection pressure. 
Under best-fit model of selection, simulated variants are binned by their selection coefficients. (a) Fraction of sites 
in each bin with MAF <=0.1%; (b) Distribution of variant frequencies within each bin. 

Figure 1.12: Deleteriousness of simulated variants binned by minor allele frequency. 
Under best-fit model of selection, simulated variants are binned by their minor allele frequency (x-axis) as 
measured in a sample of 10K individuals. (a) shows fraction of sites in each bin with s >=5e-4 (classified here as 
‘deleterious’;;  as  seen  in  Fig 1.11, this represents ~50% of all missense variants, and is thus a lenient definition of 
deleterious); (b) shows the distribution of fitness effects of variants within each minor allele frequency bin. Fewer 
than half of even very rare sites seen only 1-2X in 10K samples are expected to be deleterious. 
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This modest probability results from the fact that P(D|R) = P(R|D)* P(D)/P(R), and P(R) is very high 

(simply a property of the site frequency spectrum resulting from human population growth).  Indeed, 

the majority of all variants are rare due to their recent age rather than any effect on fitness; P(R) is 

>80% even for neutrally evolving non-synonymous sites with no fitness impact (Figure 1.11).  Thus, 

most rare variants are simply new (Figure 1.13), and these simulations demonstrate that it would be 

inappropriate to infer functional consequence or historical selection pressure based on a  variant’s  

frequency alone. 

 

 

Collectively, these data demonstrate that variation that has been empirically observed in 

recent exome studies20–23 can be robustly simulated in very large sample sizes using a few, simple 

population genetic parameters (these are available as a ForSim configuration file for use in future 

studies; see Appendix A1).  It is important to note that these parameters represent a method by 

which to produce data that looks realistic and that is calibrated to empirical data; they do not 

represent inference about the actual demographic history of human populations.  Nonetheless, we 

anticipate that the methods described here may be useful in a variety of settings where simulated 

data can be informative; to learn properties of sequence variation (as we did in Figures 1.11-1.13), 

to train and optimize novel analytical methods (as we do in Chapter 4), or to evaluate different 

Figure 1.13: Age distribution of simulated variants binned by minor allele frequency. 
Under best-fit model of selection, simulated variants are binned by their minor allele frequency (x-axis) as 
measured in a sample of10K individuals. The distribution of variant age in each bin is shown above. 
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genetic study designs.  With these simulated genotype data in hand, we next turned to the question 

of how to map genotype to phenotype and model complex disease genetic architecture. 

References 

1. Price, A.L. et al. Pooled association tests for rare variants in exon-resequencing studies. American Journal of 
Human Genetics 86, 832-8 (2010). 

2. King, C.R., Rathouz, P.J. & Nicolae, D.L. An evolutionary framework for association testing in resequencing 
studies. PLoS Genetics 6, e1001202 (2010). 

3. Browning, S.R. & Thompson, E. a Detecting rare variant associations by identity-by-descent mapping in 
case-control studies. Genetics 190, 1521-31 (2012). 

4. Thornton, K.R., Foran, A.J. & Long, A.D. Properties and Modeling of GWAS when Complex Disease Risk Is 
Due to Non-Complementing, Deleterious Mutations in Genes of Large Effect. PLoS Genetics 9, e1003258 
(2013). 

5. Reich, D.E. & Lander, E.S. On the allelic spectrum of human disease. Trends in Genetics 17, 502-10 (2001). 
6. Pritchard, J.K. & Cox, N.J. The allelic architecture of human disease genes: common disease-common 

variant...or not? Human Molecular Genetics 11, 2417-23 (2002). 
7. Eyre-Walker, A. Genetic architecture of a complex trait and its implications for fitness and genome-wide 

association studies. PNAS 107, 1752-6 (2010). 
8. Lambert, B.W., Terwilliger, J.D. & Weiss, K.M. ForSim: a tool for exploring the genetic architecture of 

complex traits with controlled truth. Bioinformatics 24, 1821-2 (2008). 
9. Schaffner, S.F. et al. Calibrating a coalescent simulation of human genome sequence variation. Genome 

Research 15, 1576-83 (2005). 
10. Nachman, M.W. & Crowell, S.L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297-

304 (2000). 
11. Kondrashov, A.S. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian 

diseases. Human mutation 21, 12-27 (2003). 
12. Conrad, D.F. et al. Variation in genome-wide mutation rates within and between human families. Nature 

Genetics 43, 712-714 (2012). 
13. Ahituv, N. et al. Medical sequencing at the extremes of human body mass. American Journal of Human 

Genetics 80, 779-91 (2007). 
14. Kryukov, G.V., Shpunt, A., Stamatoyannopoulos, J.A. & Sunyaev, S.R. Power of deep, all-exon resequencing 

for discovery of human trait genes. PNAS 106, 3871-6 (2009). 
15. Ward, L.D. & Kellis, M. Evidence of Abundant Purifying Selection in Humans for Recently Acquired 

Regulatory Functions. Science 1675, (2012). 
16. Ng, S.B. et al. Targeted Capture and Massively Parallel Sequencing of Twelve Human Exomes. Nature 461, 

272-276 (2009). 
17. Cirulli, E.T. & Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-

genome sequencing. Nature Reviews Genetics 11, 415-25 (2010). 
18. Nelson, M. et al. An Abundance of Rare Functional Variants in 202 Drug Target Genes Sequenced in 14,002 

People. Science 337, 100-104 (2012). 
19. McClellan, J. & King, M.-C. Genetic heterogeneity in human disease. Cell 141, 210-7 (2010). 
20. Coventry, A. et al. Deep resequencing reveals excess rare recent variants consistent with explosive 

population growth. Nature Communications 1, 131 (2010). 
21. Johansen, C.T. et al. Excess of rare variants in genes identified by genome-wide association study of 

hypertriglyceridemia. Nature Genetics 42, 684-7 (2010). 
22. Li, Y. et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous 

coding variants. Nature Genetics 42, 969-72 (2010). 
23. Keinan, A. & Clark, A.G. Recent Explosive Human Population Growth Has Resulted in an Excess of Rare 

Genetic Variants. Science 336, 740-743 (2012).  
 
 



 Chapter 2 

 

38 
 

Chapter 2 

Modeling complex disease genetic architecture in populations 
 
Simple models of complex disease 
 

Having simulated extensive genotype data at loci that resemble human protein-coding genes 

in a large population, the next key challenge was to develop a principled approach for assigning 

phenotype in this population.  We define disease model as the mapping between simulated 

genotypes and individual phenotypes; it describes the evolutionary basis of a genetic disease.   

Under an additive liability threshold model, the relationship between genotype and 

phenotype is controlled by (a) the number of disease variants carried by an individual; (b) the effects 

on disease of each causal variant (these effects may or may not be related to the variant’s  selection  

coefficient); (c) the magnitude of non-genetic (e.g., environmental) influences; and (d) the liability 

threshold above which disease ensues.  By modulating these levers, it is possible to model a 

principled distribution of causal variant frequencies and effect sizes rather than specify them ad hoc.  

For a complex disease, the prevalence (~8% for T2D1) determines the liability threshold, and 

the heritability (~45% for T2D, estimated from family studies2) determines the relative magnitude of 

genetic (as compared to environmental) effects (Figure 2.1).  To model the number and effect sizes 

of causal variants, we specify only two variable parameters: the mutational target size (T) and the 

selection parameter (τ), a measure of coupling between purifying selection and phenotypic effects. 

 
 

 

 

 

Figure 2.1: Liability threshold model of complex disease 
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The number of disease variants carried by an individual is determined by the disease 

mutational target size (T), or the sum total of nucleotides that, if mutated, would influence risk of 

disease.  In this work, we assume that causal mutations occur only at sites under evolutionary 

constraint similar to that at non-synonymous changes under some purifying selection; thus only 

protein-coding loci and conserved non-coding regions3,4 (collectively spanning ~10%, or ~300Mb, of 

the human genome5,6) contribute to disease risk.  We simulated models with T ranging from 75kb to 

3.75Mb, corresponding to 0.02%-1.2% of this constrained genome sequence.  To model linkage 

between variants at structurally contiguous genomic regions, we grouped the disease target into 

‘loci’  (N=30, 100, 300, 500, 800, or 1500 causal loci in each model).  Each locus contains 2.4kb of 

functional target (under selection) flanked by neutrally evolving regions (as in Figure 1.9). 

The selection parameter (τ) describes the coupling between the strength of purifying 

selection and the phenotypic effect for each causal mutation. For lethal Mendelian diseases 

manifesting prior to reproduction, the coupling of phenotypic effect to purifying selection is clear 

(disease-causing variants are under clear, direct purifying selection which keeps them rare in the 

population).  But in the general case, where disease manifests after reproduction, or where there is 

pleiotropy, the relationship between selection and disease is less clear.7 In most cases, overall 

fitness results from multiple phenotypes (not a single trait), and each causal mutation may have 

multiple   effects.      Thus,   there   exist   a   range   of   possible   mappings   between   a   variant’s   selection  

coefficient (s) and its effect on a given disease (𝑔).  To represent this mapping using a single 

parameter (τ), we model the additive (disease-specific) effect of each variant as: 𝑔~𝑠ఛ  (see Eyre-

Walker8).  We performed simulations with τ  =  0,  0.1,  0.3, 0.5, and 1. Where τ = 1  (‘tightly  coupled’),  

variants with large effects on fitness have large effects on disease (e.g., there is direct selection 

against the disease phenotype). Where τ = 0   (‘uncoupled’),   there   is   no   relationship   between  

selection coefficients of causal mutations and their impact on the disease of interest (Figure 2.2). 

These two parameters (T and τ) are used to map genotype to phenotype for each individual 

in the simulated population using the following procedure.  First, each individual variant is assigned 
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an additive phenotypic effect based on the selection coefficient under which it evolved and the 

selection parameter assumed in the disease model: 

𝑔 = 𝑠ఛ ∗ (1 + 𝜖),    (Equation 1) 

where 𝑔 is  the  variant’s  additive  effect  on  phenotype,  s is the selection coefficient, and 𝜖 is a random 

variable drawn from a normal distribution.     

We assume that all genetic effects are additive, and further assume that there are no interactions 

between individual variants (no epistasis).  We thus assign each individual   a   total   ‘genetic  

phenotype’ G by simply summing the effects across all variants for which an individual carries the 

novel (non-ancestral) allele, across all disease-causing loci: 

𝐺௞ =   ∑ ∑ 𝑔௜௝௠
௜ୀଵ

ே
௝ୀଵ ,    (Equation 2) 

 

where 𝑔௜௝ is the effect of the ith variant at the jth gene locus at which individual k carries a disease-

causing allele.  The target size is represented by N, the total number of causal loci over which the 

genetic effects are summed.  Given a population distribution of genetic phenotypes G, we transform 

these to z-scores such that 𝑉𝑎𝑟(𝐺) = 1 by applying the transformation: 

𝐺௞௭ = (𝐺௞ − 𝑚𝑒𝑎𝑛(𝐺௞))/𝑠𝑡𝑑𝑒𝑣(𝐺௞)  (Equation 3) 

We then assign environmental phenotypes E, are each drawn from a normal distribution 𝑁(0,1) and 

are weighted by a constant factor b, to each individual to obtain a total phenotype P: 

𝑃௞ = 𝐺௞௭ + 𝑏𝐸௞,    (Equation 4.1) 

Assuming that genetic effects are independent of environmental effects, the co-variance of these 

population distributions is zero and so the total phenotypic variance is: 

𝑉𝑎𝑟(𝑃) = 𝑉𝑎𝑟(𝐺௭ + 𝑏𝐸) = 𝑉𝑎𝑟  (𝐺) + 𝑏ଶ𝑉𝑎𝑟(𝐸) + 𝐶𝑜𝑣(𝐺, 𝐸) 
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𝑉𝑎𝑟(𝑃) = 𝑉𝑎𝑟(𝐺௭) + 𝑏ଶ𝑉𝑎𝑟(𝐸)   (Equation 4.2) 

The weighting constant b is constrained by the empirically observed heritability of the disease, h 

such that: 

ℎ = ௏௔௥(ீ೥)
௏௔௥(௉) =

௏௔௥(ீ೥)
௏௔௥(ீ೥)ା௕మ௏௔௥(ா)   (Equation 4.3) 

Since 𝑉𝑎𝑟(𝐺௭) = 1 and 𝑉𝑎𝑟(𝐸) = 1, we find b as a function of the parameter h: 

𝑏 = ට(ଵି௛)
௛      (Equation 4.4) 

Thus,  each  individual’s  total  additive  phenotype  is  calculated  as: 

𝑃௞ = 𝐺௞௭ + ඥ(1 − ℎ)/ℎ ∗ 𝐸௞   (Equation 4.5) 

Finally, we apply a liability threshold model for categorical disease phenotypes.  Given the final 

population distribution of P, we use the disease prevalence p to calculate a threshold t above which 

an individual with phenotype 𝑃௞ is affected by disease.  Case and control status in the population, A, 

is assigned such that the total fraction of the population that is affected with disease is p.   

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙  𝑑𝑖𝑠𝑒𝑎𝑠𝑒  𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐴௞ =    ൜1  (𝑐𝑜𝑛𝑡𝑟𝑜𝑙), 𝑃௞ < 𝑡
2              (𝑐𝑎𝑠𝑒), 𝑃௞ ≥ 𝑡  (Equation 5) 

In this way, each  individual’s  genotype  is  mapped  to  a  binary  complex  disease  phenotype  using  only  

two disease model parameters: the target size T and selection parameter τ.    

The space of disease models tested 

We performed simulations for a range of target sizes and selection parameter values which 

defined a two-dimensional space of disease models (Figure 1.1).  Under each disease model, we 

simulated five fully independent replicates.  For each replicate, we randomly sampled N loci from 
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1500 unique loci simulated in ForSim (as described in Chapter 1), and performed all downstream 

steps (assigned each variant phenotypic effects, added environmental phenotypes, assigned 

disease status to individuals) independently.    

 

 

From each simulated population (in which both genotype and phenotype is now known for 

each individual), we sampled full-sibling pairs to confirm that the T2D heritability specified under the 

disease model (h=45%) could be recovered via phenotypic regression and analysis of variance9 

Figure 2.2: Relationship between causal variant selection coefficient and phenotypic effect under 
different disease models (with varying selection parameter τ). 
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(Figure 2.3; Table 2.1).  These analyses were performed using the underlying quantitative trait 

rather than the dichotomous trait, since heritability was set under a liability threshold model.   

 

 
 

 

 

Figure 2.3: Estimation of disease heritability via regression between sibling pairs sampled from populations.  

Table 2.1: Estimation of disease heritability via ANOVA performed in sampled full-sibling pairs. 
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We find that under tightly coupled models (τ = 1), the heritability is slightly over-estimated using 

linear regression due to concordant outliers carrying mutations of very large effect, but ANOVA 

confirms that the genetic contribution to trait variance is as expected under all disease models (close 

to 45%). 

Genetic architecture resulting under each disease model  

Importantly, the genetic architecture – that is the spectrum of causal variant frequencies and 

effect sizes – are outputs of these disease models and are not specified as inputs.  The only two 

parameters we specify are the target size and the selection parameter (T and τ); we hypothesized 

that varying these would produce genetic architectures with different properties.  While we had some 

analytical expectation for how architecture would vary with each parameter, we next sought to verify 

this. 

We first asked: how do rare and common variant effect sizes compare under different 

models?  We find that (as expected) under tightly coupled (τ=1) models, rare variants (those under 

strong purifying selection) have much larger effects than common variants, while under uncoupled 

(τ=0) models, rare and common alleles have comparable additive phenotypic effects (though there is 

still greater variance around the odds ratios measured for rare variants; Figure 2.4).  In contrast, the 

target size does not impact the relative effect sizes of rare and common variants; rather, increases in 

target size reduce causal variant effects across the entire frequency spectrum. This occurs because 

T2D prevalence and heritability are fixed, so a larger number of causal variants must be 

counteracted by smaller per-variant effects (Figure 2.5, Table 2.2).  Notably, under all models, the 

high prevalence and modest heritability of T2D constrain common (MAF>5%) variants to odds ratios 

<2, even at relatively small target sizes (e.g. T=75kb). 

  Next, we asked: how is disease heritability partitioned by allele frequency across the 

models?  The contribution of each causal variant to heritability (population genetic variance) is: 

𝑉௔ = 2 ∗ (𝑔ଶ) ∗ (1 − 𝑓) ∗ 𝑓10, where 𝑔 is  the  variant’s  additive  effect  and  𝑓 is its frequency.  Under 



 Chapter 2 

 

45 
 

tightly coupled (τ=1) models, where 𝑔 is very large for some rare alleles (often private to cases), the 

rare class (MAF<1%) collectively explains >90% of heritability.  Conversely, under uncoupled 

models (τ=0), common (MAF>5%) alleles with modest effects (OR<1.2) explain ~95% of heritability 

(Figure 2.6).  These relationships hold regardless of the target size. 

 

 

 

Figure 2.4: Distribution of rare and common causal variant odds ratios (as measured in 10K individuals 
sampled from simulated populations) under different disease models. 
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Figure 2.5: Distribution of common 
(MAF>5%) causal variant odds ratios as a 
function of target size. 

 

                
            
 

 

 

 
Finally, we examined the distribution of variant effects within each individual (rather than 

population-wide) to evaluate the potential of individualized risk prediction.  Under each simulated 

disease model, we asked how many unique risk variants each individual carried (Table 2.3).  As 

expected under an additive model, cases carry more disease-causing variants than controls. 

Table 2.2: Total number of segregating causal 
variants under disease models with varying 
target size (T); shown for tau = 0.5. 

Figure 2.6: Partitioning of population genetic variance by minor allele frequency under different disease 
models.  Each line represents an independent simulation replicate. 
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While the total number of causal alleles per person depends largely on the target size alone, the 

distribution of additive effects across these causal variants is a function of the selection parameter.  

From each population, we randomly sampled eight individuals affected with type 2 diabetes, and 

studied the distribution of additive effects carried by each individual.  We find that under tightly 

coupled models (even if the target size is relatively large), patients with T2D have only few (1-5) 

high-effect risk alleles (Figure 2.7), and these alleles are rarely seen among unaffected individuals.   

 

 

 

Table 2.3: Average number of causal risk alleles 
per individual under disease models with varying 
target size (T); shown for tau = 0.5. 

Figure 2.7: Distribution of additive effect sizes per individual patient under different disease models. 
 

Under each model, 8 patients are randomly sampled from the population. Y-axis shows additive effect size of 
each causal allele in the patient; variants are ordered by descending effect size.  For visualization, variants are 
alternately colored purple or grey in groups of two. 
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Conversely, under weakly coupled models with similar target size, each patient has hundreds of risk 

alleles with similar individual and cumulative effect (Figure 2.7); moreover, most of these alleles are 

also commonly observed among controls.  Thus, for a given target size, genetic risk prediction will 

be far more informative (diagnostic for some patients, assuming that effects at rare alleles can be 

discovered and accurately quantified) if there is strong coupling to selection.  This confirms the 

widely-discussed intuition that, under rare variant models of common disease, data from sequencing 

studies may greatly enhance clinical risk prediction. 

These properties of genetic architecture are perhaps best summarized by visualizing the 

distribution of heritability as a joint function of causal allele frequency and effect size (Figure 2.8).   

 

 

Figure 2.8: Heat maps showing the distribution of population genetic variance (heritability) in the two-
dimensional minor allele frequency (x-axis) and effect size (y-axis) space of causal variants. 
 

Dark colors indicate that variants in this bin contribute a very small fraction of disease heritability, while white 
indicates a larger proportion (scale shown at bottom right). 
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As this figure shows, the effects of each parameter are quite intuitive.  As the target size 

increases (going down rows in Figure 2.8), effect sizes decrease across the board because genetic 

risk is spread over a greater total number of causal variants.  When the coupling to selection is high, 

variants under strong selection (very rare) have very large additive effects, and thus individuals who 

have a handful of such rare variants become affected with disease.  The heritability, in this case, is 

concentrated among rare variants of large effect, and the upper left corner of Figure 2.8 essentially 

shows an architecture that assumes T2D is a collection of Mendelian sub-types.  When the coupling 

to selection is weak, heritability is concentrated among common variants of weak effect; the bottom 

right of Figure 2.8 represents the common polygenic model advocated by the biometric school. 

In summary, simple disease models with only two free parameters (target size and coupling 

to selection) are sufficient to generate a diverse set of genetic architectures with qualitative features 

that are consistent with prior expectation.  These architectures have very different properties with 

respect to the contribution of rare vs. common variants and the range of causal variant effect sizes, 

and they include many of the most widely debated models of complex disease genetics.   
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Chapter 3 

Application of the simulation framework to type 2 diabetes (T2D) 
 

In the last two chapters, we simulated large, comprehensively genotyped and phenotyped 

human populations in which the full genetic architecture is known.  A key aim of this framework, 

however, is to identify which architectures can and cannot be rejected for a particular disease on the 

basis of empirical data.  In practice, the true genetic architecture of a trait cannot be directly read 

out; the only observable data are the results of genetic studies.  Thus, in Chapter 3 we perform 

these studies (in silico) under each disease model.  We then address our main question: which of 

the disease models described in Chapter 2 produce genetic study results that are compatible with 

observed data in genetic studies of type 2 diabetes (T2D)?   Which genetic architectures are 

plausible for T2D? 

Performing T2D genetic studies in simulated populations 

Before we could directly evaluate each model, we needed to first define the set of genetic 

studies to conduct in simulated populations (to match studies conducted for T2D).  We also needed 

to collate the empirical results of these studies (in European populations).  These mainly included:  

(a) epidemiological estimates of sibling relative risk (~1.8-3.41–3);  

(b) meta-analysis of linkage scans in ~4,200 affected sibling pairs (ASPs) with T2D (max LOD 

score 2.24);  

(c) discovery GWAS in 4,549 cases and 5,579 controls (DIAGRAMv15; two genome-wide 

significant loci identified with p<5e-08);  

(d) replication of the top (p<0.0001) signals from the discovery GWAS in an effective sample 

size of ~55K (~16 total loci met genome-wide significance5);  

(e) larger-scale meta-analysis in 12,171 cases and 56,862 controls (DIAGRAMv3), followed 

by genotyping of top (p<0.005) signals on the Metabochip genotyping array in 34K cases and 

115K controls6,7 (39 genome-wide significant loci for T2D); and  
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(f)  ‘polygene  score’  logistic  regression8 using thousands of common marker effects learned in 

discovery GWAS (in aggregate, these explain 2.0-2.5% of test sample phenotypic variance, 

as  measured  by  Nagelkerke’s  R2).9  

We performed each of the above studies under each of the disease models described in 

Chapter 2.  At every step, we matched sample size and methodology to the empirical studies 

conducted for T2D.  Importantly, each simulated genetic study was analyzed without knowledge of 

which variants were, in fact, causal (as would be the case in an actual study).   

Simulation of linkage and sibling measurements.  From each simulated population, we 

sampled 10K unrelated cases and controls.  Because we simulate nuclear families with multiple 

offspring in each generation (mean two offspring per mating), knowledge of sibling genotype and 

phenotype is available in each simulation.  For each sampled case and control, we asked whether 

the  individual’s sibling was also  affected  with  T2D.    The  fraction  of  cases’  siblings  who  are  affected  

divided   by   the   fraction   of   controls’   siblings   who   are   affected   yields   the   sibling relative risk.  To 

perform affected sibling pair (ASP) linkage studies, we sampled 4200 sibling pairs in which both 

siblings are affected with T2D (matching the size of the largest European ASP meta-analysis for 

T2D4).  SNP data provides a marker map that is significantly denser, but less polymorphic, than the 

microsatellite marker maps that were used in published studies.  To model this, full sequence data 

was down-sampled across all causal loci; we included only variants with MAF>5% and pairwise LD 

(measured by r2) < 0.2.  The software package MERLIN was used to conduct non-parametric linkage 

analysis.  The Z-scores resulting from such analyses are normally distributed; to generate LOD 

scores  across  ‘background’  non-causal loci, we randomly sampled 500 independent Z-scores from a 

normal distribution (representing a unique marker every ~5Mb of the human genome, similar to 

typical microsatellite map densities) and converted these to LOD scores using the relation: LOD = 

Z2/(2*ln(10)).  We recorded the genome-wide (across both causal and non-causal loci) maximum 

LOD score in each simulated study.   Simulated models yielding a sibling relative risk of 1.8-3.5 (the 
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range observed across epidemiological studies of T2D) and no genome-wide LOD score greater 

than 3.0 (max LOD score observed for T2D was 2.2) were deemed consistent with empirical data. 

Table 3.1: Simulation of multi-staged GWAS to match empirical T2D studies 
 

 

Simulation of GWAS.  We simulated several stages of GWAS to match studies conducted for 

T2D (Table 3.1).  We simulated discovery phase GWAS for T2D (similar to DIAGRAM v1 stage 1) by 

sampling 4,549 cases with T2D and 5,579 controls from simulated populations under each disease 

model.  To simulate commercial GWAS arrays, full-sequence data across all causal loci was down-

sampled; we included only variants with MAF>5% and pairwise LD (measured by r2) < 0.5.  We 
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performed standard association analysis using the software PLINK.  To model markers across 

background non-causal loci, we randomly sampled p-values between 0 and 1 to fill a total marker set 

of 2M SNPs (2.2M total SNPs were imputed, for comparison, in the DIAGRAMv1 study).  We used 

the resulting distribution of genome-wide marker p-values to generate quantile-quantile plots and 

Manhattan plots for comparison to empirical data.  We recorded the number of unique loci at which a 

marker p-value was < 5e-08.  To simulate replication GWAS, we genotyped all markers from the 

discovery phase at which p < 0.0001 in 20K cases and 35K controls (effective sample size matched 

to that in DIAGRAMv1 replication), and performed association testing in this larger sample.  The 

resulting p-values were used to determine the number of unique genome-wide significant loci 

predicted under each disease model after replication.  Finally, we simulated large-scale GWAS in an 

effective sample size of ~35K total individuals, similar to DIAGRAMv3; we then simulated genotyping 

of all independent signals with p<0.005 on a genotyping array like Metabochip in an effective sample 

size of ~85K.  When appropriate, sample sizes were corrected to account for imputation uncertainty, 

and p-values were adjusted to account for genomic-control corrections performed in empirical 

studies.  The number of loci discovered at each stage of GWAS was compared to observed data for 

T2D from each published study.  Simulated models yielding 1-4 genome-wide significant loci in 

discovery (N=10K; empirically 2 loci observed for T2D), 10-30 loci in replication (N=55K; empirically 

16 loci observed for T2D), and 25-65 loci in large-scale meta-analysis (N=85K; empirically 39 loci 

observed for T2D) were deemed consistent with empirical data. 

Polygenic risk score analysis.  Polygene  ‘score’  analysis is a method by which to assess the 

aggregate predictive power of SNP alleles tested in a GWAS8,9.  Following Stahl et al9, we pruned 

common SNPs by their linkage disequilibrium, preferentially retaining the SNPs with lower discovery 

p-values to obtain a set of independent, maximally associated markers.  We used the p-values and 

effect sizes from discovery GWAS to select subsets of SNPs reaching four different PGWAS 

thresholds (0.001, 0.01, 0.1, and 0.5).  For each SNP set, we summed the log-odds-weighted risk 

allele counts for each individual in an independent test sample of 2K cases and 3K controls to assign 
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each  individual  a  polygene  risk  ‘score’.    We  then  tested  these  risk  scores  for  association  with  case-

control status using logistic regression.  The predictive power of the polygene score was measured 

by  Nagelkerke’s  R2.    Models  yielding  a  Nagelkerke’s  R2 between 0.01-0.04 for all PGWAS thresholds 

were deemed consistent with data for T2D (empirically, Nagelkerke’s   R2 was ~2-2.5% for all 

thresholds). 

Evaluating the sensitivity of genetic study results to disease model parameters 

 We find, unsurprisingly, that the results of each study depend heavily on the underlying 

genetic architecture (Figure 3.1).  The sibling relative risk (𝜆௦), for example, increases with 

increasing values of the selection parameter (τ); this occurs, intuitively, because under tightly 

coupled models (where τ  = 1), individual rare variants are relatively penetrant, and the chance that a 

sibling who shares a causal allele will also be affected with diabetes is high.  We also observe that   

𝜆௦  decreases as the target size (T) increases; the chance that two siblings share the same allele at 

all disease-causing sites decreases as the number of disease-causing sites grows. 

We find that the results of ASP linkage scans are most sensitive to the disease target size.  

Even in sample sizes as large as 4200 ASPs, we find that linkage peaks are only consistently 

observed (regardless of the selection parameter) when the target size is small (N<30 loci).  This is 

perhaps surprising, as it suggests that empirical studies were largely under-powered to test most 

models for a disease like T2D (with only modest heritability and high prevalence).  Even under tightly 

coupled models (where some rare variants have large effects), linkage peaks (LOD>3) are not 

detected unless the target size is also small; when N=30 loci, linkage peaks are observed in >90% of 

simulation replicates, but when N=100 loci, only 20% of replicates produce a linkage peak.  Thus, 

linkage data can only exclude a subset of oligogenic models for T2D, placing only limited bounds on 

the global genetic architecture of T2D. 

The results of GWAS show interesting dependencies on both disease model parameters.  

Unsurprisingly (given that GWAS test only common variants), many more GWAS signals result 

under models where there is weak coupling to selection (and where the majority of disease 
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heritability is explained by common variants; see Chapter 2).  When there is tight coupling to 

selection (τ  = 1), common causal variants have effects too weak to be detected in GWAS, and rare 

causal variants are poorly tagged by the common markers on GWAS arrays; as a result, very few 

GWAS signals are observed (regardless of target size).  Under disease models with moderate or 

weak coupling to selection, both the number and strength of GWAS signals depend heavily on the 

target size, however.   As the target size increases, genetic effects are spread out over more loci 

and the top GWAS signal decreases in strength.  Initially (e.g. as the target size increases from 

N=30 to N=100 loci), the number of unique loci identified in GWAS increases, simply because there 

are exist a greater total number of causal loci.  As the target size increases beyond 100 loci 

(T=250kb), however, the decreasing strength of signal at each locus causes the total number of 

genome-wide significant signals to decrease (Figure 3.1, 3.2, 3.3). 

 

 

Figure 3.1: Sensitivity of genetic study results to disease model parameters. 
 
Sensitivity of study results under models with N fixed at 300 loci and tau varying (left box) or tau fixed at 0.3 and 
N varying (right box). In each box, simulated data are shown (clockwise) for sibling relative risk, best genome-
wide LOD score in an affected sibling pair (ASP) study of 4200 ASPs, number of genome-wide significant (p-
value < 5*10^-8) loci detected in a GWAS of ~10K samples, and the Nagelkerke’s  R2 value in a polygene score 
logistic regression in 5K samples using common variants with a discovery p-value < 0.01 (PGWAS = 0.01). Green 
zones are centered (vertically) on empirically observed values for T2D, and represent the simulated values 
deemed consistent with empirical data. 
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Figure 3.2: Results of sibling relative risk measurement, linkage, and GWAS under disease models. 
 
Results are shown above across a range of simulated disease models, with varying selection parameter 
(columns) and target size (rows).  Text indicates the median (across simulation replicates) sibling relative risk, 
median top genome-wide ASP LOD score, and the median number of genome-wide significant (p<5e-08) loci 
found after discovery GWAS (D; ~10K samples), replication of top signals in a larger study (R; ~55K samples, as 
in Zeggini et al 20085), and larger-scale meta-analysis (M; ~80K effective sample size).  The Manhattan plot 
represents data from the large-scale meta-analysis (simulated to match Morris et al, 20126,7). 
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Figure 3.3: Simulated results of GWAS in ~10K samples under range of disease models. 
 
Quantile-quantile plots above represent results of discovery GWAS (in ~5K cases and ~5K controls) under 
different disease models.  Median across simulation replicates is shown above in black; beige shaded area 
represents range across replicates. 
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Finally, we measured the results of polygene score regression under each disease model. 

Given that this regression is performed using the full distribution of common variant signals observed 

Figure 3.4: Simulated polygene score logistic regression under range of disease models. 
 
Individuals  were  assigned  polygene  ‘scores’  using  the  log-odds-weighted sum of risk-allele counts, with odds 
ratios learned in a discovery GWAS of ~15K samples. Polygene R2 represents  Nagelkerke’s  R2 in a logistic 
regression of phenotype vs. polygene score in an independent test sample of 2K cases and 3K controls (as in 
Stahl et al 20129). Scores were computed using different p-value thresholds from the discovery GWAS. Error 
represents standard deviation across simulation replicates.  
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in GWAS, the R2 metric quantifies the fraction of test sample phenotypic variance captured by 

common marker genotypes.  We would expect, therefore, that this R2 would be highest under 

uncoupled (τ = 0) models where common variants explain the majority of genetic variance.  Indeed, 

we find that the R2 increases as the selection parameter decreases.  Given a target size of 300 loci, 

for example, the R2 ranges from < 0.001 when τ = 1 to over 0.10 when τ = 0.  As the target size 

increases, the polygene R2 value decreases as common variant effect sizes become weaker, and 

their estimates become noisier in discovery GWAS (Figure 3.1, 3.4). 

Comparing simulated genetic study outcomes to empirical data for T2D 

Having characterized the sensitivity of genetic study results to underlying properties of the 

disease models, we next evaluated each model for consistency with results for T2D.  Evaluation of 

the full space of models is shown in Figure 3.5; detailed comparison for a few selected models 

(those highlighted in yellow in Figure 3.5) is shown in Figure 3.6. 

 

 

Figure 3.5: Evaluation of the full space of tested disease models against empirical data for T2D. 
 
Space of disease models tested, each varying in target size (vertical axis) and selection coupling (horizontal axis). 
All models have fixed prevalence (8%) and heritability (45%), matching values observed for T2D. Each model 
produces results that are either inconsistent (red) or consistent (green) with empirical data for T2D. Inside red 
models, arrows indicate whether simulated results were too high or too low relative to empirical data. Dots in 
GWAS boxes indicate that the model is excluded by an excess of findings in large-scale (N~85K) GWAS (though 
results in 10K samples are consistent). 
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We   first   evaluated   ‘tightly   coupled’  models   (τ=1) for consistency with observed data (left-

most column of the grid in Figure 3.5).  As seen in Figure 3.1, these models produce relatively high 

sibling risk (λs> 4) due to rare, high effect mutations shared by ASPs.  The observation of linkage 

peaks (LOD>3.0) at small target sizes can exclude this subset of tightly coupled hypotheses, as no 

peaks were observed in empirical data for T2D.  We find that GWAS results are sufficient, however, 

to exclude all ‘tightly  coupled’  models,   regardless  of   target  size: under complete coupling, too few 

GWAS signals are observed even after large-scale follow-up (4-5 loci when T=250kb, for example, 

compared to 39 in empirical data; Figure 3.6b).  Under tightly coupled models, polygene score 

regression is also less successful than empirically observed (R2<0.5%, compared to ~2% for T2D).  

Thus, this class of disease models is globally inconsistent with data for T2D; it is unlikely that alleles 

under strong purifying selection have the largest effects on T2D, and it is thus unlikely that the T2D 

phenotype has been under direct evolutionary selection.  

Next,  we  evaluated  ‘uncoupled’  (τ=0) hypotheses (right portion of grid in Figure 3.5).  These 

models  produce  modest  risk  to  sibs  (λs≈2),  consistent  with  observed  data.   However, across a wide 

range of uncoupled models (up to T=3.75Mb, or N=1500 loci), an excess of GWAS findings is 

observed, as compared to empirical data.  An example of such a model (τ =0, T=1.25Mb, or N=500 

loci) is shown in Figure 3.6d; 11-19 GWAS loci are found in discovery (compared to 2 in empirical 

data), 61-71 loci after replication (16 empirically), and 99-102 loci in the large-scale GWAS followed 

by Metabochip genotyping (39 empirically). Under this uncoupled model, polygene score regression 

also explains a larger proportion of phenotypic variance than observed for T2D (R2>10% at p<1e-4, 

compared to ~2% in empirical data, Figure 3.6d).  While it is possible that uncoupled models with an 

even larger target size (T>3.75Mb, or N>1500 loci; not tested here) might be consistent with T2D 

data, these data suggest there is likely at least moderate coupling to selection for this phenotype. 

Biologically, we might interpret this to mean that the alleles contributing to T2D risk are, as a class, 

likely to influence phenotypes that are under some degree of negative selection; they may influence 

underlying metabolic traits, for example, which historically reduced evolutionary fitness. 
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While extreme models of genetic architecture are inconsistent with empirical data, a broad 

continuum of intermediate models remains consistent (green boxes in Figure 3.5).  This class of 

Figure 3.6: Simulated study results under representative disease models and comparison to T2D 
empirical data. 
 
At left (a) are shown empirical genetic study results for type 2 diabetes (black outline). To right are shown 
simulated genetic study results for four different disease models. b) T = 250kb (N = 100 loci), τ =1 (tight coupling 
to selection); an   ‘extreme’   rare   variant   model.   c) T = 1.25Mb (N = 500 loci), τ =0.5 (moderate coupling to 
selection); an intermediate model. d) T = 1.25Mb (N = 500 loci), τ =0   (no   coupling   to   selection);;   a   ‘common  
polygenic’  model.  e) T = 3.75Mb (N = 1500 loci), τ =0.1 (weak coupling to selection); a highly polygenic hybrid 
model. Red crosses indicate inconsistency with empirical data for T2D; green checks indicate consistency with 
empirical   data.   ‘GWS   loci’   refers   to   the   number of unique loci at which a variant isassociated to disease at 
genome-wide significance levels (p<5e-8). 
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consistent models includes those with moderate coupling and smaller target sizes, as well as those 

with weak coupling and larger target sizes.  Two examples are shown in Figure 3.6c, e (‘moderate’;; 

τ=0.5, T=1.25Mb, or N=500   loci)   and   (‘weakly   coupled’;;   τ=0.1, T=3.75Mb, or N=1500 loci).  

Predicted outcomes under both models are fully consistent with empirical data.  However, these 

architectures   have   quite   distinct   properties:   under   the   ‘moderate’   model,   rare   (MAF<5%) alleles 

explain  ~80%  of  heritability,  while  under  the  ‘weakly  coupled’  model,  rare  variants  explain  <25%  of  

heritability. These data indicate that strong statements about global genetic architecture – at least 

statements based on only the findings of linkage and GWAS – are, as yet, premature because many 

disease models with widely varying properties remain consistent with empirical data for T2D.   

As an aside, we note that it is even harder to constrain the locus-specific genetic architecture 

of T2D.  Even if models assuming tight coupling to selection across all disease loci are inconsistent 

with empirical data for T2D, for example, it is still possible that individual T2D loci might harbor rare 

variants of large effect.  We explored this possibility in Figure 3.7, where we further study the 

disease model with tight coupling to selection (τ=1) and a target size of T=250kb (N=100 loci).  This 

architecture is globally inconsistent with empirical results for T2D (Figure 3.6), but we wondered 

whether a locus-specific architecture that arises under this model may still be plausible at individual 

T2D loci.  Specifically, we asked whether synthetic associations10 could arise under tightly coupled 

models, and whether linkage peaks would be expected in such cases.   In Figure 3.7, we highlight 

two example simulated loci at which there exist rare variants of large effect, and where the common 

markers tagging the haplotypes on which these rare variants are present show (genome-wide 

significant) association to disease in a GWAS.  Both loci are silent in a linkage scan, however, and 

thus cannot be excluded on the basis of negative linkage findings, and are entirely consistent with 

positive GWAS findings.  These data underscore the challenge of constraining the locus-specific 

allelic architecture at complex disease loci.  Chapter 4 addresses this problem by evaluating the 

performance of rare variant association methods at complex disease loci, and Chapters 5-6 directly 

test rare variant genetic models at T2D loci using empirical sequencing data across these loci. 
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What will it take to know? Predicting the results of future and ongoing genetic studies of T2D 

Ongoing studies are now using (a) exome and whole-genome sequencing and (b) 

genotyping via an exome array to study rare and intermediate frequency variants in modest 

(thousands) and large (tens of thousands) samples, respectively. In coming years, it is predicted that 

sequencing will be performed in hundreds of thousands or even millions of people.  We thus asked: 

to what extent will these ongoing and future studies further constrain T2D genetic architecture?     

Figure 3.7: Synthetic associations could be observed under tightly coupled models and cannot be 
excluded by empirical linkage results. 
 
Shown above are two example loci simulated under a disease model with tight coupling to selection (tau=1) and a 
target size of 250kb (N=100 loci).  Blue points represent common (MAF>5%) markers used for the GWAS; green 
points are markers achieving genome-wide significant association; red points are causal variant at the locus (they 
would not have been typed in a GWAS, but if they were subsequently assayed their signals would be as shown). 
Horizontal lines indicate p=1e-4 and p=5e-8. 
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We simulated high-coverage, whole-genome sequencing of 3K and 10K individuals (sample 

sizes similar to those of studies being performed by the Go-T2D and T2D-GENES Projects, 

respectively), as well as a study in which a large proportion of rare coding variants are genotyped in 

20K cases and 35K controls (also similar to ongoing Exome Chip studies for T2D).  In each study, 

we simulated both single variant association as well as rare variant gene-based burden testing. To 

project studies that might be done in coming years, such as in the UK Biobank, we simulated 

complete genome sequencing of an unselected population cohort of 250K individuals (20K cases, 

230K controls). 

We then asked: at what point will disease models that are currently consistent with all 

available data diverge in these future studies?  As examples, we focused on the two consistent 

models depicted in Figure 3.6c (‘moderate’)  and  Figure 3.6e (‘weakly  coupled’).    For  both  models,  

whole-genome sequencing in 3K individuals discovers few signals not previously detected by GWAS 

(Figure 3.8).  In 10K samples, the models diverge slightly: ~15 novel loci (representing ~6% of 

heritability)   are   predicted   under   the   ‘moderate’   model,   whereas   ~5   loci   (representing   <1%   of  

heritability)   are   predicted   under   the   ‘weakly   coupled’   model.      The   most significant constraint, 

however, is predicted to come from large exome array studies: we predict ~80 novel loci under the 

‘moderate’  model   (bringing  cumulative  heritability  explained   to  ~50%),  but  only  ~10   loci  under   the  

‘weakly  coupled’  model  (and  ~15% of heritability explained).  Thus, at least one of these models will 

likely be inconsistent with the results of studies already planned for T2D.    

As sample size is expanded to 250K unselected individuals, these models diverge further.  In 

both cases, substantial discovery is predicted, but the total fraction of heritability explained, as well 

as  the  frequency  distribution  of  identified  causal  variants,  differs.    Under  the  ‘moderate’  model,  over  

half (~265 out of 500) of all disease loci would be discovered, and would collectively explain ~75% of 

T2D heritability.  At a majority of these loci, the most disease-associated variant would be rare 

(MAF<2%).    Under  the  ‘weakly  coupled’  model,  a  much  larger  fraction  of  disease  loci  would  remain  

undetected (due to the individually small effect sizes of very many causal variants), and a smaller 
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proportion of total heritability (~48%) would be explained.  However, the most associated variant at 

virtually all of these loci would be common (MAF>2%), and thus likely discoverable by GWAS alone 

of comparable sample size, without need for complete sequencing. 

 

 

Thus, ongoing sequencing and genotyping studies (and the extent to which they are 

successful) will likely place substantial bounds on T2D genetic architecture.  However, studies of 

Figure 3.8: Prediction of ongoing sequencing and large-scale genotyping studies for T2D under different 
disease models that are currently consistent with empirical data. 
 
Predictions under the two consistent disease models from Figure 3.6 are shown here: (a) a model with 
‘moderate’  coupling  to selection and a target size of T=1.25Mb (N=500 causal loci), and (b) a  ‘weakly  coupled’  
model with a target size of T=3.75Mb (N=1500 causal loci). Top charts show cumulative fraction of disease loci 
discovered by each study design: A = Discovery GWAS in 10K samples, followed by B = Replication genotying of 
top signals in 55K independent samples (as in Zeggini et al 2008); C = large-scale GWAS with discovery in an 
effective sample size of ~30K, followed by genotyping all independent signals with p<0.005 (as on Metabochip) to 
yield a total effective sample size of ~85K (as in Morris et al 2012); D = exome sequencing in 3K samples; E = 
exome sequencing in 10K samples); F = genotyping in 20K cases and 35 controls all rare variants (exome-wide) 
seen >= 2x in 5K controls (similar to Exome Chip); G = exome sequencing in 20K cases and 230K controls (a 
250K unselected population cohort with T2D prevalence 8%). Labels above bars indicate predicted number of 
novel loci (e.g. not found in the previous studies) discovered at each step. Bottom charts show cumulative fraction 
of population genetic variance (heritability) explained by loci uncovered in each study. Solid line indicates true 
variance explained by those loci; dotted line represents fraction estimated using frequencies and odds ratios 
(estimated in the study) of the most associated single variants at each locus. 
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hundreds of thousands of individuals will likely be required to discover many if not most of the genes 

underlying T2D, and even then a substantial fraction of heritability (and of causal loci) may remain 

undiscovered.  This is not meant as nihilistic – already much has been learned about the genetic 

basis of T2D, and our study suggests that in coming years a great deal more will be discovered, 

including further constraints on models of genetic architecture.   The challenge of localizing disease 

heritability may simply be the expected outcome for a population genetic process which results in 

many causal alleles, strong and weak, that are both common and rare.   

Limitations of this approach and future steps 

This study (the framework described in Chapters 1-3) has a number of limitations.  Although 

only two model parameters were sufficient to generate diverse architectures, more parameters could 

be included.  For example, causal variants were simulated only at regions under purifying selection; 

alternate models could be explored in which neutrally evolving alleles also have effects on disease.  

Positive selection was not simulated, and derived alleles were only modeled as increasing disease 

risk (though interestingly, this does not preclude the occurrence of significantly associated markers 

of protective effect; data not shown here). 

Additionally, locus structure in our study was uniform; we considered only causal loci 

modeled as protein-coding genes and did not model the structural properties of non-protein-coding 

functional elements.  Adding skew in the distribution of length, overall phenotypic contribution, and 

coupling to selection across disease loci could also produce more varied models.  Finally, non-

additive inheritance, epistasis, or gene-environment interactions were not modeled.  In future work, if 

the outcomes of many types of genetic studies (such as those directly simulated here) in human 

populations could be accurately predicted using analytical solutions, then an inferential approach 

may enable efficient traversal across disease models defined by many more variable parameters. 
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Chapter 4 

The power of gene-based association methods under different locus 
architectures 
 

The advent of next-generation sequencing studies in large case-control cohorts are now 

enabling insights into the contribution of rare variation to complex trait heritability for the first time.  

These studies, however, probe an almost limitless number of heterogeneous hypotheses about 

allelic architecture.  In this chapter (for which work was performed in close collaboration with Loukas 

Moutsianas at Oxford), we simulate a subset of the complex trait genetic architectures described in 

Chapter 2 at human disease loci, and evaluate the extent to which currently available gene-based 

association methods can identify such signals in sample sizes comparable to those of ongoing re-

sequencing studies.  We assess the impact of locus architecture, effect size, and functional variant 

filters on the power of each method at stringent levels of significance.  By evaluating all tests 

together at loci simulated under a range of continuous frequency-effect size distributions, we are 

able   to   characterize   each   method’s   specific   success   and   failure   modes,   and   describe   genetic  

hypotheses for which particular methods may be optimally powered. 

Background on gene-based rare variant association methods 

Single-variant association tests have limited ability to interrogate the role of rare (defined 

here as MAF<1%) genetic variation in disease; power to detect a variant with MAF 0.5% and RR 2.5 

in 3K case-control  samples  at  α=5e-8, for example, is less than 5%.1  Variants that are private to 

individuals, as some deleterious mutations are hypothesized to be, present greater challenges yet, 

as their association cannot be individually detected.  As a result, numerous statistical methods have 

been developed in recent years to test groups of rare variants in aggregate for association to 

disease.2–4 

A handful of targeted re-sequencing experiments have recently identified rare variants which 

modulate risk for common, complex diseases. Examples include variants in NOD2 for   Crohn’s  
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disease (4 variants with MAF 0.1-0.8%, ORs 1.4-4.0)5, PCSK9 for coronary heart disease (2 variants 

with MAF 0.8 and 1.8%, OR ~0.1)6, LPL for hypertriglyceridemia (154 missense variants with 

MAF<1% in cases, detected using the T1 method)7 and MTNR1B for type 2 diabetes (13 

functionally-screened variants with MAF<0.1%, collective OR ~5.5, detected using the KBAC 

method)8.  Each of these disease loci is characterized by different numbers, frequencies, and effect 

sizes of rare and low frequency variants, but in each of these selected examples, the estimated 

proportion of phenotypic variance explained per locus is ~0.5-1.5%.  It is also worth noting that in 

most of the above examples, the levels of statistical significance attained were modest: sufficient for 

a candidate gene study, but less informative in the setting of larger-scale sequencing studies. 

As such larger-scale studies are conducted (e.g. exome-wide or genome-wide) in thousands 

of samples, a number of questions emerge.  Are loci similar to LPL or MTNR1B scattered across the 

genome? If so, what is the power of different gene-based methods to detect them?  What effect 

sizes are required for studies of a given sample size to be well-powered, and what significance 

thresholds are appropriate?  In order to interpret the results of gene-based association methods in 

sequencing studies, it is critical to quantify the power of each method to detect signals under 

hypothesized locus architectures.   

Although the introduction of each novel gene-based association test has typically been 

accompanied   by   evaluation   of   the  method’s   performance  alongside   some  alternatives,   each   such  

analysis compared different subsets of tests, made different assumptions about locus architecture 

and study design, and employed different simulation approaches. A few studies have documented 

the relative power of different methods9–11, but they evaluated only a few methods (not including 

those most recently published), did so in small sample sizes, simulated ad hoc locus architectures 

(e.g., with fixed numbers of causal variants) that may not be representative of complex diseases, 

and  considered  only  nominal  levels  of  significance  (α>0.01).    Thus,  it  is  as  yet  unclear  which  gene-

based methods investigators should use to test specific genetic models of disease. 

 



 Chapter 4 

 

70 
 

Simulation of diverse genetic architectures at human haplotypes 

We developed a new simulation approach – informed by the simulations conducted in 

Chapters 1-3, but nonetheless distinct – to address these questions.  Specifically, we wanted to 

perform simulations at real human gene loci, where both the locus structure and haplotype diversity 

would reflect empirical reality.   

To this end, we adapted the software HAPGEN212 to simulate variation across the full SFS in 

thousands of samples.  We started with phased haplotypes from 379 European samples (1000G 

Project Phase 1, release 3).13 To expand this reference panel to a larger number of samples, we 

applied a staged, iterative approach which preserves linkage disequilibrium structure between 

relatively common variants while introducing new low-frequency variants upon the original 

haplotypes.  We then down-sampled variants to match the empirical SFS recently observed at 

protein-coding genes in over 12K samples14 (Figure 4.1).  We selected 24 human protein-coding loci 

of average coding length on chr10 (Figure 4.1a, Table 4.1) at which to perform simulations. 

As in Chapters 2-3, we modeled the complex disease type 2 diabetes (prevalence 8%).  We 

introduced phenotypic effects (odds ratios per variant) by sampling multiple causal variants per locus 

from six different joint distributions of causal variant frequencies and effect sizes (Table 4.2, Figure 

4.2). These distributions were learned from forward simulations of global genetic architecture under 

different disease models (Chapter 2); importantly, this ensured a principled distribution of causal 

variant frequencies and effect sizes (consistent with T2D prevalence and heritability) rather than an 

ad hoc distribution.  The three main architectures assumed very strong (AR1: τ=1), moderate (AR2: 

τ=0.5), or weak (AR3: τ=0) purifying selection against causal alleles.  As seen in Chapter 2, AR1 

results in a sharp inverse correlation between variant frequency and effect size, AR2 produces 

modest correlation, and AR3 is characterized by rare and common alleles that have similar effects 

on phenotype. We simulated two additional architectures, AR4 and AR5, which are variations of AR1 

and AR2, respectively, where only rare (MAF<1%) variants at a locus contribute to phenotype. 

Finally, AR6 assumes a frequency-effect size map identical to AR2, but assigns a 50%-50% mixture 
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of risk and protective effects; this represents the hypothesis that some variants in a gene increase 

disease risk, while other variants in the same gene can have a protective effect. 

 

 

Figure 4.1: Generation of simulated genotype data at human loci in large sample sizes with HAPGEN2 
 
Haplotypes  were  simulated  at  ‘average’  human  protein-coding genes drawn from the center of the distribution of 
RefSeq gene total exon length (a). Vertical dotted lines in red and green indicate the median and mean values of 
exon length, respectively. Blue points represent the 24 genes selected for simulation. (b,c) Simulated site 
frequency spectrum, as compared to observed human data.   Data were simulated via staged expansion of 1000 
Genomes Project haplotypes using the HAPGEN2 software; the mutation parameter was fit to match the site 
frequency spectrum of protein-coding variation observed in exome sequencing studies, e.g. as reported Nelson et 
al 2012. Raw simulated data from HAPGEN2 in large sample sizes producedan excess of rare sites; these were 
down-sampled to match observed data. The grey area in (c) represents the [5%,95%] interval across all 
simulated genes, obtained using bootstrapping. The site frequency spectrum of simulated data in a smaller 
sample size (N=2.7K) also matched an independent set of observed exome sequencing data from the GoT2D 
consortium (c). Haplotype structure, as measured by linkage disequilibrium between variants, was also preserved 
in the simulated data after sample expansion (d). Inset shows example simulations at the GATA3 gene locus. 
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Table 4.1: Human protein-coding loci at which simulations were performed 
 
24 genes on chr10 were selected from the center of the distribution of human gene coding length (Figure 4.1). 
Below are the genomic locations of these regions; HAPGEN2 simulations were performed across the full length of 
each transcript; causal variants were selected from exonic regions only, and burden testing was also performed 
on variants (causal and non-causal) within the exonic regions only. 

Table 4.2: Locus architectures modeled at simulated human disease loci 
 
The below range of locus architectures were modeled at simulated loci; variant effect sizes were sampled from 
joint frequency-effect size distributions learned from forward population genetic simulations (described in Chapter 
2). The architectures were chosen to reflect a range of different rare variant contributions and effect sizes. At 
each locus, the total number of causal variants depended on the effect sizes sampled, as loci were modeled to 
explain a fixed proportion of liability-scale phenotypic variance underlying a complex trait with 8% prevalence. 
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Figure 4.2: Variant frequency-effect size distributions under each simulated architecture 
 
The below frequency-RR distributions were learned the simulations of global genetic architecture described in 
Chapter 2. AR1 assumes strong coupling to purifying selection; that is, variants under selection (more likely rare) 
have larger effects on disease. AR3 assumes no coupling to selection, and thus effect sizes are more uniform 
across the frequency spectrum. 
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Evaluation of gene-based rare variant association methods under simulated architectures 

We evaluated a representative set of 10 gene-based association methods (BURDEN15, C-ALPHA16, 

CMC17, FRQWGT15, KBAC18, MADSEN19, SKAT20, SKAT-O21, UNIQ15, and VT22; see Table 4.3) on 

these simulated datasets. The tests we applied can be broadly categorized  as  unidirectional  ‘burden’  

tests, bidirectional variance-component tests (SKAT, CALPHA), and a unified, linear combination of 

these two classes (SKAT-O).  The unidirectional tests can be further sub-divided into collapsing 

regression methods (CMC), weighted sum methods (FRQWT, KBAC, MADSEN, VT), and 

permutation-based summary count methods (BURDEN, UNIQ). We selected this set of tests in part 

because they are readily available in the most recent releases of the widely-used software packages 

PLINK/Seq15 and EPACTS23.  Before further evaluation, we confirmed that all tests are well-

calibrated under (null) datasets where no effects are assigned to any variants (Figure 4.3). 

 
 

Each test was run on all exonic variants with MAF<1% (both causal and non-causal). The 

power of each method to detect a locus explaining 1% of the variance in disease liability24,25 in 1500 

Table 4.3: Published gene-based rare variant association methods evaluated in this study 



 Chapter 4 

 

75 
 

cases and 1500 controls (sample size comparable to that of ongoing sequencing studies) is shown 

as a function  of  significance  threshold  (α)  and  architecture  in  Figure 4.4. 

 

 
 

From Figure 4.4, we made several observations.  First, at nominal level of significance 

(α=0.05),  many  methods  have  high  power  (~75%-95%) to detect loci at which deleterious variants 

(AR1-AR5) explain ~1% of phenotypic variance.  KBAC is consistently the most well-powered 

method to detect deleterious effects at less stringent levels of significance (up to 95% power at 

α=0.05, under AR4).  This high power can be used to detect signals when a small number of 

hypotheses are being tested (e.g. sequencing across only a few targeted loci), or to confidently 

exclude rare variant models at the majority of loci tested in a larger-scale scan. 

Second, in 3K samples, mean power at an exome-wide  significance   threshold  of  α=2.5e-6 

(α=0.05,  after  Bonferroni  correction  for  ~20,000  genes)  is  very low (5-20%) across all architectures 

and   tests.  At  a   less  stringent   threshold  of  α=1e-4, which could be appropriate to nominate loci for 

further follow-up (under the null, only ~2 such genes are expected exome-wide), mean power of the 

best performing tests across AR1-AR5 still remains low (10-50%).  This is true irrespective of the 

allele frequency threshold used for inclusion of variants (data not shown). 

  

Figure 4.3: Type 1 error of gene-based association methods at alpha=0.05 
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Figure 4.4: Power of different gene-based rare variant association methods at simulated disease loci 
 

At each gene locus, 100 independent simulations of phenotypic effects were generated in a sample size of 3K 
individuals (1.5K cases / 1.5K controls). Variant effects were drawn from varied models of genetic architecture (a-f).  
At all loci, genetic variants together contribute 1% of the phenotypic variance underlying a trait with common 
prevalence (8%; modeled as type 2 diabetes). Power is measured as the fraction out of 100 simulations of each 
gene in which a gene-based test reported a p-value lower than the significance threshold. In (a-c), causal variants 
span the full frequency spectrum (including common alleles), and thus rare alleles account for only a partial fraction 
of the locus heritability; in (d-e), all causal variants are rare (MAF<1%). In (f), causal variants have bi-directional 
effects (some increase risk of disease, while others reduce risk). 



 Chapter 4 

 

77 
 

 

Third, some methods appear to be uniformly more powerful than others, independent of 

locus architecture.  Across all architectures in which causal variants have unidirectional (deleterious) 

effects (Figure 4.4a-e), KBAC and SKAT-O consistently achieve the highest mean power, while 

UNIQ is least-powered.  We do, however, observe differential behavior of these tests depending on 

the significance threshold; under all architectures, SKAT-O and the variance-component tests (C-

ALPHA, SKAT) retain greater power than unidirectional alternatives at stringent thresholds (α<1e-

05); at less conservative thresholds (α>1e-03), the opposite is true and KBAC is better-powered than 

SKAT-O (Figure 4.4a-f). 

Fourth, the allelic architecture is an important determinant of the power of the best-

performing methods. Unsurprisingly, power is uniformly higher when the rare variants included in the 

association test (e.g. those with MAF<1%) contribute the majority of the locus’   effect.      This   is  

evidenced  by  the  gain  in  KBAC  power  from  AR3  (9%  at  α=1e-4 in 3K samples) to AR2 (22%) to AR1 

(32%). Power is higher still under architectures where variants with MAF<1% (i.e. those variants 

tested) contribute all of  the  locus’  effect  (AR4  and  AR5):  KBAC  power  increases  to  >45%  at  α=1e-4 

and >90% at α=0.05. Power also depends on the direction of causal effects at a locus: under AR6 

(where both risk and protective effects are present), variance-component tests (C-ALPHA, SKAT) 

and SKAT-O outperform all other methods (as expected16,20,21),   retaining   ~10%  power  at   α=1e-4, 

while KBAC power is reduced to ~5% (Figure 4.4f).  As before, SKAT-O is better-powered at 

stringent significance thresholds; here, C-ALPHA and SKAT are optimal at a nominal threshold. 

We next asked how the power of gene-based methods compares to single variant 

association.  In direct contrast to gene-based methods, the power of single variant association tests 

decreases as  the  contribution  of  rare  variants  increase:  power  at  α=5e-08 is ~20%, 10%, and ~7% 

under AR3, AR2, and AR1, respectively.  In all cases, however, the joint application of gene-based 

and single variant methods yields greater power than single variant association alone (Figure 4.5a-

c).  As expected, the comparative advantage of gene-based tests is most evident under 
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architectures where there is strong purifying selection against causal alleles (under AR4, for 

example, the power of single-variant  tests  at  α=5e-8 is <5%, while gene-based tests achieve ~45% 

power at α=1e-04, and ~20% power even at α=2.5e-06).  Under AR3 (where limited purifying 

selection makes causal alleles more common), gene-based methods have lower absolute power 

than single variant association, but because different loci are detected by each, power is still 

maximal when both are applied together. 

 

 

Figure 4.5: Power of best-performing gene-based method as compared to single variant association 
 

Power is measured across 100 simulations of phenotypic effects in N=3K samples (as in Figure 4.4). Under each 
architecture (a-f), power of the best-performing gene-based test is compared to single variant association. The 
significance threshold used for the gene-based test is 1e-04;;  the  threshold  for  single  variant  association  (Fisher’s  
exact) is 5e-08. Blue boxplot shows range of power for single variant association across genes simulated; pink 
shows power of the gene-based test; green shows the fraction of loci detected only by the gene-based test (and 
not single variant association); yellow shows combined power of both gene-based and single variant association. 
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In order to characterize the impact of locus effect size on the power of gene-based tests, we 

simulated loci where the phenotypic variance explained (VE) by genetic variants is 0.5%, 1% (as in 

Figures 4.4-5), and 2% (all under AR2). Power at loci where VE=2% increases to nearly 40%, as 

compared to ~22% when VE=1% (Figure 4.6). When VE=0.5%, power is extremely low (<5% at 

α=1e-04 in 3K samples), indicating that exome-wide sequencing studies of this size are substantially 

under-powered to interrogate genes for weak effects.  It is worth noting that when VE=0.5%, KBAC 

outperforms  all  other  methods  at  α=0.05  by  a  wide  margin, and may thus be the method of choice to 

nominate loci for putative weak effects (data not shown). 

 

 

Figure 4.6: Power as a function of locus effect size, sample size, and neutral variation 
 

Power was measured across 100 simulations at each of 24 gene loci (as in Figures 4.4-5). Across all panels 
above, variant effects were drawn from the model AR2 (assuming moderate selection against causal variants, 
and thus modest inverse correlation between variant frequency and effect size). In (a), variant effects were 
sampled at each locus such that the total fraction of phenotypic variance explained by the locus was ~0.5%, 1% 
(as in Figures 2 and 3) or 2%. In (b), loci were simulated to explain 1% of phenotypic variance in sample sizes of 
1.5K cases/1.5K controls and 5K cases/5K controls.  In (a) and (b), all exonic variants with MAF < 1% were 
included in the burden test (both causal and non-causal variants, resulting in fewer than 50% of all tested variants 
being causal). In (c), non-causal (neutral) variants were selectively removed such that the ratio of causal variants 
to total variants tested ranged from 0.25 to 1 (only causal variants tested). 
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The relatively modest power of gene-based tests at stringent levels of significance presents 

challenges to investigators seeking to discover novel disease-associated loci in large-scale studies. 

Thus, we next investigated the extent to which power could be improved by: a) increasing sample 

size, b) excluding neutral variation at a locus, or c) selecting a combination of methods best powered 

to test a particular hypothesis.  

We find that some, but not all, methods exhibit substantial gains in power as sample size 

increases from 3K to 10K individuals (Figure 4.6). Median SKAT-O power, for example, increases 

from ~22% to >55% (at α=1e-04) and remains high (~45%) even at α=2.5e-06. However, the 

increase in power is not uniform across methods.  This occurs because (unlike for single variant 

tests) the relationship between sample size and power is not straightforward for gene-based tests: 

as sample size increases, causal alleles are observed more times, but the number of (rare) non-

causal alleles also grows sharply. As a result, methods that up-weight all rare alleles regardless of 

their observed effect (e.g., FRQWGT) do not necessarily benefit from larger sample sizes.   

The power of gene-based tests is highly sensitive, as has been described10,11,21, to the 

fraction of neutral variation at a locus. Our study (a) confirms that power increases as the fraction of 

neutral variants at a locus decreases, and (b) shows that unidirectional burden tests (and to a lesser 

extent, SKAT-O) exhibit the sharpest increases in power: in 3K samples, KBAC power increases to 

>50% (from ~22%) when only disease-causing variants are included (Figure 4.6c). These tests, 

therefore, are preferable for testing targeted hypotheses about a subset of genic variation where rich 

functional annotation is available. Conversely, variance-component tests as well as SKAT-O are 

characterized by relative immunity to neutral variation, and are therefore attractive options when 

jointly testing large numbers of less strictly filtered variants (e.g. in a pathway-based analysis). 

Concordance between the results reported by different gene-based association methods 

We next investigated the concordance between the results of different gene-based methods 

to assess the degree of overlap between signals detected by each method.  For each pair of 
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association   methods,   we   computed   Pearson’s   correlation   coefficients   between   their   reported   p-

values on a logarithmic scale (Figure 4.7a-b). We find that although tests with similar design 

characteristics (e.g., SKAT and C-ALPHA) exhibit very high correlation, other methods show varying 

concordance (Figure 4.7c). Some methods are highly correlated, but there is variability in the p-

values reported (e.g., KBAC and BURDEN, R2=0.89).  Other methods, such as SKAT and SKAT-O, 

show asymmetric concordance (R2=0.78): SKAT-O detects a set of causal loci entirely undetected 

by SKAT, but is more conservative on the whole, reporting p-values up to an order of magnitude 

higher than those reported by SKAT at the majority of loci tested.  These correlations are also 

architecture-dependent: under AR2 (where there are only deleterious effects), for example, SKAT-O 

exhibits highest concordance with KBAC (R2=0.86), while under AR6 (where bidirectional effects are 

present), SKAT-O is most concordant with C-ALPHA and SKAT (R2=0.93).  This behavior reflects 

the   ‘unified’  design  of  SKAT-O as a combination of a unidirectional burden test and a bidirectional 

variance-based method.21  

Finally, some pairs of gene-based methods are much less related (e.g., C-ALPHA and VT, 

R2=0.29) or even uncorrelated (e.g., SKAT-O and UNIQ; R2=0.02). While in this latter case the low 

correlation is driven by lower mean power of UNIQ relative to SKAT-O, there do exist a subset of 

true causal loci at which UNIQ reports p<1e-04, but SKAT-O reports p>0.01.  

To understand the drivers of such differences and identify scenarios where certain tests may 

be more powerful than others, we focused on pairwise comparisons between KBAC (one of the 

highest performing methods at α=1e-04 across AR1-AR5) and the other gene-based methods. For 

each comparison, we characterized the properties of loci at which KBAC (but not the other method) 

reports p<0.01, and vice-versa. In the comparison between KBAC and C-ALPHA (Figure 4.8a), we 

find that loci at which only KBAC detects signal are characterized by a higher aggregate skew in 

case to control counts (often driven by singletons, which do not contribute to the C-ALPHA 

dispersion statistic). Loci at which only C-ALPHA detects signal, on the other hand, are 
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characterized by a relatively common single variant of large effect (in the background of many 

variants with balanced case to control counts).  

 

 

Figure 4.7: Concordance between results of different gene-based methods 
 

Pairwise correlation coefficients (R2) between the p-values reported by different gene-based association methods 
under AR2 (moderate selection and unidirectional effects; shown in a) and under AR6 (moderate selection and bi-
directional effects, shown in b).  P-values above 0.1 are excluded in computation of the correlation. In c, scatter 
plots show the results (-log10 of the p-values) reported by a pair of gene-based tests under AR2; p-values lower 
than 5e-06 are plotted at 5e-06.  Each point represents an individual locus at which both gene-based methods 
were applied (2400 total points); points of the same color represent different simulations at the same human gene 
locus (e.g. same gene and haplotype structure,  but different sampling of variant phenotypic effects).  Dotted lines 
mark p=0.05, such that points above the horizontal line or to the right of the vertical line represent loci at which 
nominally significant results are reported by the gene-based methods.  All data above were generated in 3K 
samples (1.5K cases and 1.5K controls). 
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Figure 4.8: Properties of loci at which gene-based methods report discordant results 
 

Characteristics of causal loci at which KBAC (one of the methods with highest mean power at nominal levels of 
significance) produces discordant results as compared to another gene-based method. KBAC is compared to the 
(a) C-ALPHA, (b) BURDEN, and (c) UNIQ gene-based methods. In each pairwise comparison, loci are identified 
at which KBAC (but not the other method) reports a p-value < 0.01, or at which the other method (but not KBAC) 
reports a p-value < 0.01. For each group of loci, leftmost violin plot shows the distribution of aggregate case to 
control counts (number of minor alleles observed in cases divided by number of minor alleles observed in 
controls, for variants with MAF<1%). Middle violin plot shows distribution of case-unique counts (number of 
observations of alleles that are only present in cases and absent from controls). Rightmost violin plot shows 
distribution of the top single variant p-value observed for an exonic variant at the locus (log10 scale). Line plots at 
right show the distribution of variants (MAF < 1%) at representative simulated loci where the methods are 
discordant. Each line represents a variant; height above   line  measures   the   variant’s   case  counts,  while height 
below measures control counts. 
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For loci where the aggregate case to control count ratio is high, but no individual variant 

shows any substantial skew, the BURDEN test may be more effective than KBAC (Figure 4.8b). 

This makes sense: KBAC adaptively weights individual variants by their observed case-bias, and if 

all variants have low weights, the maximum KBAC statistic achievable is low, whereas BURDEN 

quantifies the significance of the observed signal in aggregate.  Finally, UNIQ (unsurprisingly) more 

readily detects loci at which signal is driven by either many rare variants private to cases, or by a 

single relatively frequent case-unique variant (Figure 4.8c). Taken together, these data indicate that 

although a given method may exhibit high mean power across divergent architectures, it can be less 

powerful than others for testing specific genetic hypotheses.  

Summary of findings 

This simulation study provides a number of insights informative for the interpretation of 

ongoing complex disease sequencing studies.  Given the low power of single variant association 

methods to detect rare causal alleles, we confirm that the application of gene-based methods 

increases power to detect loci at which rare variants drive the causal architecture.  In 3K case-

control samples, however, we find that the power of gene-based methods to detect loci explaining 

~1% of the phenotypic variance underlying a common trait such as type 2 diabetes is limited at 

stringent levels of significance (~5-20%   at   α=2.5e-06, and ~10-50%   at   α=1e-04; power exceeds 

~80%  only  at  α=0.05).     Even   in  10K  case-control samples, power of the best-performing methods 

(SKAT-O, SKAT, KBAC, and C-ALPHA) does not exceed  ~60%  at  α=1e-04; in fact, the increasing 

number of neutral (non-causal) rare variants in large sample sizes limits the gains in power of many 

methods (e.g. FRQWGT).  Thus, irrespective of the specific locus architecture, we expect that re-

sequencing studies will require in excess of 10K samples in order to detect (at very low rates of false 

discovery) disease loci of modest to large effect size. 

Given this low mean power, it is important to identify which particular methods are optimally 

powered a) to detect causal loci in hypothesis-free settings, across a wide range of architectures, 

and b) to test specific hypotheses about locus architectures.  We find that at stringent significance 
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thresholds   (α<1e-04), SKAT-O is the best-powered method across many architectures, especially 

when rare variants have bidirectional effects on disease.  For investigators looking to discover 

signals with high specificity across thousands of loci (e.g., in exome-wide scans where dense 

functional annotation is unavailable), SKAT-O may be the optimal choice.   

KBAC, on the other hand, is consistently best-powered to detect rare variants of deleterious 

effect  at   less  stringent   levels  of  significance  (up  to  95%  power  at  α=0.05  in  3K  samples),  and  also  

shows the greatest gain in power when neutral variation is excluded.  This attribute may be useful in 

various scenarios: to test a small number of biological hypotheses (e.g. at only a few loci, especially 

if functional annotations are available), to prioritize signals for further follow-up from a discovery 

scan, to confidently exclude genetic models at a majority of re-sequenced loci, or to place bounds 

(e.g., after an exome-wide sequencing study) on the total number of genes harboring rare variants of 

a given effect size that are likely to exist.  In addition to SKAT-O and KBAC, we find that other 

methods have individual strengths under particular scenarios (e.g. UNIQ to test whether a gene 

harbors an excess of penetrant rare variants, or BURDEN to detect a collection of variants each of 

very weak effect); these methods should be employed to test such specific hypotheses.   

In summary, we find that specific gene-based association methods are best deployed in the 

setting of particular experimental study designs, and to test for particular genetic models of disease.  

Such an approach will likely enable meaningful interpretation of both positive and negative findings 

in ongoing sequencing studies, and is bound to remain important even as sample sizes increase and 

new statistical methods for aggregate testing of rare variants are developed. 

References 

1. Purcell, S., Cherny, S.S. & Sham, P.C. Genetic Power Calculator: design of linkage and association genetic 
mapping studies of complex traits. Bioinformatics 19, 149-50 (2003). 

2. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nature Genetics 44, 623-30 
(2012). 

3. Asimit, J. & Zeggini, E. Rare variant association analysis methods for complex traits. Annual Review of 
Genetics 44, 293-308 (2010). 

4. Stitziel, N.O., Kiezun, A. & Sunyaev, S. Computational and statistical approaches to analyzing variants 
identified by exome sequencing. Genome Biology 12, 227 (2011). 



 Chapter 4 

 

86 
 

5. Rivas, M. a et al. Deep resequencing of GWAS loci identifies independent rare variants associated with 
inflammatory bowel disease. Nature Genetics 43, 1066-73 (2011). 

6. Cohen, J.C., Boerwinkle, E., Mosley, T.H. & Hobbs, H.H. Sequence Variations in PCSK9, Low LDL, and 
Protection against Coronary Heart Disease. New England Journal of Medicine 1264-1272 (2006). 

7. Johansen, C.T. et al. Excess of rare variants in genes identified by genome-wide association study of 
hypertriglyceridemia. Nature Genetics 42, 684-7 (2010). 

8. Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 
diabetes. Nature Genetics 44, 297-301 (2012). 

9. Bansal, V., Libiger, O., Torkamani, A.L.I. & Schork, N.J. An application and empirical comparison of statistical 
analysis methods for associating rare variants to a complex phenotype. Pac Symp Biocomput 76-87 (2011). 

10. Ladouceur, M., Dastani, Z., Aulchenko, Y.S., Greenwood, C.M.T. & Richards, J.B. The empirical power of 
rare variant association methods: results from Sanger sequencing in 1,998 individuals. PLoS Genetics 8, 
e1002496 (2012). 

11. Basu, S. & Pan, W. Comparison of Statistical Tests for Disease Association with Rare Variants. Genetic 
Epidemiology 35, 606-619 (2011). 

12. Su, Z., Marchini, J. & Donnelly, P. HAPGEN2: simulation of multiple disease SNPs. Bioinformatics 27, 2304-5 
(2011). 

13. The 1000 Genomes Project Consortium A map of human genome variation from population-scale 
sequencing. Nature 467, 1061-73 (2010). 

14. Nelson, M. et al. An Abundance of Rare Functional Variants in 202 Drug Target Genes Sequenced in 14,002 
People. Science 337, 100-104 (2012). 

15. PLINK/SEQ: A library for the analysis of genetic variation data. at <http://atgu.mgh.harvard.edu/plinkseq/> 
16. Neale, B.M. et al. Testing for an unusual distribution of rare variants. PLoS Genetics 7, e1001322 (2011). 
17. Li,  B.  &  Leal,  S.M.  Methods  for  Detecting  Associations  with  Rare  Variants  for  Common  Diseases  :  Application  

to Analysis of Sequence Data. The American Journal of Human Genetics 311-321 
(2008).doi:10.1016/j.ajhg.2008.06.024. 

18. Liu, D.J. & Leal, S.M. A novel adaptive method for the analysis of next-generation sequencing data to detect 
complex trait associations with rare variants due to gene main effects and interactions. PLoS Genetics 6, 
e1001156 (2010). 

19. Madsen, B.E. & Browning, S.R. A groupwise association test for rare mutations using a weighted sum 
statistic. PLoS Genetics 5, e1000384 (2009). 

20. Wu, S. et al. Rare Variant Association Testing for Sequencing Data Using the Sequence Kernel Association 
Test (SKAT). American Journal of Human Genetics 89, 82-93 (2011). 

21. Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample 
case-control whole-exome sequencing studies. American Journal of Human Genetics 91, 224-37 (2012). 

22. Price, A.L. et al. Pooled association tests for rare variants in exon-resequencing studies. American Journal of 
Human Genetics 86, 832-8 (2010). 

23. EPACTS: Efficient and Parallelizable Association Container Toolbox. at 
<http://genome.sph.umich.edu/wiki/EPACTS> 

24. So, H.-C., Gui, A.H.S., Cherny, S.S. & Sham, P.C. Evaluating the heritability explained by known 
susceptibility variants: a survey of ten complex diseases. Genetic Epidemiology 35, 310-7 (2011). 

25. Falconer, D.S. The inheritance of liability to diseases with variable age of onset, with particular reference to 
diabetes mellitus. Annals of Human Genetics 31, 1-20 (1967).  

 



 Chapter 5 

 

87 
 

Chapter 5 

Locus architecture at the T2D-associated chr9p21 non-coding region 
 

The first four chapters of this thesis leveraged simulation-based studies to model the global 

and locus genetic architecture of complex human diseases.  Simulations are only useful in bounding 

genetic architecture, however, when they can be compared directly to observed genetic data; deep 

characterization of empirical data will always remain the most critical part of the approach proposed 

in Chapters 1-3.  Moreover (as alluded to at the end of Chapter 3), constraints on global genetic 

architecture are not actually sufficient to exclude locus-specific allelic architectures at individual 

disease loci.  Even if the global architecture of type 2 diabetes (T2D) was most consistent with a 

common polygenic model, for example, models implicating rare causal variation could still exist at a 

subset of disease loci.  Such models have been especially difficult to interrogate in empirical data, 

however, because rare genetic variation had not (until recently) been discovered, genotyped, or 

characterized in large sample sizes.   

We were fortunate to have the opportunity to analyze data from a number of large-scale 

genetic studies that were undertaken for type 2 diabetes in the past few years (see Background).  

Amongst these was a low-pass whole-genome sequencing study of ~2800 unrelated European 

cases (with type 2 diabetes) and controls.  These data provided unprecedented (and near-complete) 

testing of both common and low-frequency genetic variation (in both protein-coding and non-protein-

coding regions of the genome) for association to risk of T2D.  Although power to discover novel loci 

is relatively low in this sample size (as seen in Figure 3.8), these data provided a unique opportunity 

to systematically characterize the allelic architecture at previously known T2D GWAS loci (most of 

which fall in non-protein-coding regions of the genome). 

In this chapter, we focus on the non-coding chr9p21 locus, which harbors one of the 

strongest known common variant GWAS signals for T2D.  Appendix A2 contains a manuscript we 

published in 2011, which compared genotyping and imputation strategies for fine-mapping at this 
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locus.  In this chapter, we extend this work and describe haplotype-based methods for fine-mapping 

and genetic hypothesis testing using complete sequence data.  We use these methods to nominate 

a set of candidate causal variants and exclude the possibility of synthetic associations at chr9p21.  

In Chapter 6, we perform similar analyses to characterize architecture at 10 other T2D GWAS loci.      

Background: fine-mapping of GWAS loci 

The causal variant(s) underlying signals discovered in genome-wide association studies 

(GWAS) for complex traits are, in most cases, unknown.  The allelic architecture at these loci – the 

number, frequencies, and effect sizes of causal mutations – is not yet understood, in part because 

GWAS directly tested only a subset of common marker polymorphisms.1  Identification of the causal 

class is a key step towards elucidating both the inheritance patterns and the biological mechanisms 

of common human diseases. 

A range of genetic models have been hypothesized to explain observed GWAS signals; 

these include common (MAF>5%) causal variants of weak effect, individual low frequency 

(1%<MAF<5%) variants of large effect, a burden of rare (MAF<1%) variants with aggregate effect on 

disease, or some combination of these.  The latter two genetic models, in which low frequency and 

rare causal variants are assumed to segregate on a subset of haplotypes carrying a GWAS disease-

associated  marker  allele,  have  been  described  as  models  which  could  produce  ‘synthetic’  common  

variant associations2–6.  Finally, it has also been hypothesized that common variants alone may 

underestimate the total contributions of GWAS loci to disease heritability, and that additional causal 

variants (independent of the original GWAS association signals) may exist at these loci.7,8 

In order to systematically test these hypotheses about allelic architecture at any GWAS 

locus, it is critical to (a) identify and genotype all segregating genetic variation (both common and 

rare) across the region in a phenotyped population sample, (b) test each variant for association to 

disease, both individually and in combination, (c) characterize the haplotypes on which GWAS tag 

SNPs originally produced an association signal, identifying all the genetic variants that tag or 
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partially tag these haplotypes, and (d) enumerate the plausible genetic models that would be 

consistent with these data.  The genetic models that remain can then be further evaluated for their 

statistical likelihood of explaining the observed data (e.g., in larger sample sizes), and the candidate 

causal variants implicated in each model can then be tested experimentally (e.g., in biological 

systems).     

Background: the chr9p21 T2D GWAS locus and previous fine-mapping efforts 

Association of common variants at chr9p21 to risk of T2D was first reported in multiple 

GWAS conducted in 2007.9–11  Since then, other variants across the broader locus have been 

associated with a host of human phenotypes, including myocardial infarction12, aneurysm, vertical 

cup disc ratio, glaucoma, and multiple cancers (leukemia13, breast cancer, melanoma, basal cell 

carcinoma, glioma).  The variants associated with T2D are independent (not in linkage disequilibrium 

with) these other variants, and are in fact confined to an (unusually small) ~10kb region that lies 

between two strong hotspots of recombination (Figure 5.1).  This region contains no protein-coding 

genes, and is over 100kb away from the nearest protein-coding genes (the tumor suppressors 

CDKN2A/B), suggesting that causal variants within this small region may alter the regulation of gene 

expression.14 

Further adding to the intrigue of the 

chr9p21 locus is the fact that there is strong 

evidence for multiple independent association 

signals within this ~10kb linkage block.  Two 

independent signals have been reported to 

create a three-tiered haplotype association; 

haplotypes can be classified as risk, neutral, or 

protective (reflecting the risk they confer for T2D) 

based on genotype at two common marker 

SNPs.15,16  The causal variants driving these association signals, however, remain unknown. 

Figure 5.1: Common variant GWAS signals across 
the chr9p21 locus (Source: Jessica Alston) 
 

The T2D signal is confined to a small ~10kb region 
between two strong hotspots of recombination. 
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Previous fine-mapping studies at the 9p21 locus were limited by incomplete catalogs of 

genetic variation, limited imputation accuracy (especially for rare variants), and genotyping assay 

failure.  To date, two main fine-mapping efforts have been undertaken at this locus.  The first (see 

Appendix A2 of this thesis)16 leveraged high-coverage targeted sequencing in 47 controls to 

assemble a catalog of intermediate frequency and common variants, followed by imputation into ~2K 

individuals phenotyped for T2D.  This study identified ten common SNPs (indistinguishable in this 

sample size) tagging the protective haplotype, but none tagging the risk haplotype.  This study also 

demonstrated that imputation quality increases dramatically when samples are densely genotyped 

(e.g., beyond GWAS array density).  The second17, more recent, fine-mapping effort at 9p21 

attempted direct genotyping of a panel of SNPs (including those our group detected in the first effort, 

as well as those discovered by the 1000 Genomes Project) across the T2D region in ~5K 

phenotyped individuals.  This study – again, limited to common and only some low frequency 

variants – identified a set of common SNPs likely to explain the GWAS signal.  Genetic hypotheses 

about low frequency and rare variants were largely untested by these studies. 

Results of analyses conducted in large panel of sequenced case-control samples 

Here, we analyzed data from a low-pass whole-genome sequencing study of ~2,800 

individuals of mixed European ancestry sampled from extremes of the phenotypic distribution 

(GoT2D Consortium; 2,657 samples after quality control).  We selected a 5Mb region at 

chr9:20,000,000-25,000,000 (hg19) and identified 55,359 total segregating variants (both SNPs and 

indels) across this region; 171 of these variants lie within the T2D GWAS locus (chr9:22,125,000-

22,142,000, a ~17kb region including the flanking recombination hotspots).  We confirmed that 

sequencing coverage was relatively uniform across this region, with >90% of samples having a 

median read depth of >=4 per base (Figure 5.2).  As expected, most segregating variants are rare: 

52 of the 171 variants were seen only once across all the sequenced samples, and an additional 34 

variants had MAF< 0.1%.  A limitation of low-pass sequencing is that we had only modest sensitivity 
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to detect such extremely rare variants (~30% sensitivity for singletons, and ~60% for non-singleton 

variants with MAF<0.1%). 

 

 

 
 

Nonetheless, this set of variants represents the largest catalog of segregating genetic 

variation across the non-coding 9p21 locus to date (Figure 5.3a).  In particular, we estimate that we 

have identified >90% of all genetic variants with MAF between 0.1-1%, and all variants with 

MAF>1%.  This is in stark contrast to the HapMap Phase 2 and 3 catalog, which includes only ~65% 

of common (MAF>5%) variants, and no representation of lower frequency variants at the 9p21 locus.  

The re-sequencing experiment conducted by Shea et al identified ~90% of common variants, and 

~60% of MAF 1-5% variants, but <20% of variants in the MAF 0.1-1% class.  Even the catalog of 

Figure 5.2: Sequencing coverage across the chr9p21 locus  
 

The chr9p21 locus was sequenced as part of a low pass whole genome sequencing study.  
Sequencing coverage across this locus (a) was relatively uniform, with ~75% of samples consistently 
having at least 4x read coverage at each position.  The second panel (b) shows each sample across 
the x-axis; the y-axis shows the percent of bases across the chr9p21 at which the individual was 
sequenced at 0x, 1-3x, 4-10x, or >10x depth. 
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variants  reported  by  the  1000G  Project’s  Phase  1  sequencing  of  Europeans,  while  nearly  complete  

for variants with MAF>1%, includes less than half of all variants in the MAF 0.1-1% class. 

 
 

 

We next asked what fraction of variation present in prior catalogs (e.g., from the 1000 

Genomes Project Phase 1 data) could have been successfully imputed into our disease samples, 

had we not undertaken complete sequencing of these samples.  In order for a variant catalog to be 

truly   ‘complete’   with   respect   to   a   phenotype   of   interest,   each   variant   identified  must   not   only   be  

discovered but also be genotyped accurately in a panel of phenotyped individuals such that its 

association to the trait can be tested.  This analysis revealed that public variant catalogs are in fact 

further incomplete for rare and intermediate frequency variants (Figure 5.3b).  When attempting 

imputation of 1000G Project variants into our panel of 2,657 sequenced samples (down-sampled to 

only those sites in HapMap Phase 2+3), we found that only about half of all variants with MAF 1-5% 

Figure 5.3: Variant catalog at the 9p21 T2D locus resulting from low pass sequencing of 2,657 European 
individuals, compared to previous catalogs of sequence variation. 
 

(a) Site discovery in this study as compared to HapMap Phase 2 and 3, prior re-sequencing by Shea et al, and the 
1000 Genomes Project Phase 1. (b) Genotype capture in this study as compared to imputation of variants from the 
1000G data.  The total number of variants per frequency bin is different from panel (a) because here only variants 
detected in GoT2D sequencing are included, e.g. white portions of bars in panel (a) are excluded in panel (b).  
Imputation was performed by down-sampling sequenced GoT2D data to only sites present in HapMap Phase 2 or 3 
(black), pre-phasing this panel using SHAPEIT, and finally imputing data from the phased 1000 Genomes project 
reference panel into the disease cohort using IMPUTE2. INFO score represents the metric reported by IMPUTE2. 
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and about a tenth of variants with MAF 0.1-1% could be imputed with an estimated r2 >= 0.8.  

Combined with incompleteness of the 1000 Genomes reference panel, this resulted in a genotype 

capture rate of ~50% among variants with MAF 1-5% and <5% among variants with 0.1-1%.  This is 

in contrast to the catalog resulting from direct sequencing of phenotyped samples, which enabled 

genotype capture of all variants with MAF 1-5% and ~90% of variants with MAF 0.1-1%.  Thus, this 

genetic dataset represents not only the largest but also by far the most complete catalog of variation 

at the chr9p21 T2D locus, and enables (for the first time) nearly comprehensive testing of all variants 

down to 0.1% frequency for association to risk of T2D. 

We first tested all individual variants (SNPs and indels, both common and rare) across a 5Mb 

region for association to T2D.  As expected, the top association signals fall within the previously 

known ~10kb block of linkage disequilibrium (LD) in which previously reported GWAS marker SNPs 

lie (Figure 5.4a-b).  In this region, the most associated variants are common; the top two signals are 

two closely linked (r2 = 0.96) SNPs, rs7018475 (OR = 1.28, MAF = 28%, p=4e-05) and rs12555274 

(OR = 1.28, MAF = 28%, p=5e-05).  Interestingly, neither of these variants was tested in initial 

GWAS for T2D; rs7018475 is in the HapMap catalog, but was not on first-generation GWAS arrays, 

and rs12555274 is not present in the HapMap variant catalog at all.   

We next asked whether signals independent of these top signals could be detected.  After 

conditioning on rs7018475, we find that a group of common (MAF~12%) SNPs in modest LD with 

each other (but low LD with rs7018475) show residual signal in the protective direction: the lead 

SNP after conditioning is rs1333051, which shows OR = 0.76 and p=2e-03 (Figure 5.4c).  These 

data suggested the presence of multiple independent signals, as was expected based on previous 

studies.15,16  Indeed, we confirmed that the previously described three-tiered haplotypic association – 

using haplotypes defined by the common markers rs10757282 and rs10811661 – is observed in this 

dataset (omnibus p=1.3e-04; Table 5.1). 

In order to better understand the relationship between the previously reported GWAS SNPs 

and the association signals observed in this dataset, we next sought to characterize the disease-
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associated haplotypes observed at the 9p21 locus.  To do this, we phased the genotype data (e.g. 

inferred haplotypes) across all individuals in the sequenced sample using the software BEAGLE.  

Focusing on only the 24 common (MAF>5%) variants in the ~10kb region (excluding recombination 

hotspots), we identified 28 unique haplotypes present at frequency >=0.1% (8 of these were 

observed >100 times; these are shown in Figure 5.5).  We then tested each haplotype for 

association to T2D; groups of haplotypes showing association in the risk and protective direction 

were immediately evident.   

 

 

Figure 5.4: Association results for T2D across all variants identified in the 9p21 region 
 

(a) Association results across a 5Mb region (chr9:20,000,000-25,000,000; hg19). (b) Association results 
across the T2D GWAS locus (chr9:22,125,000-22,140,000; hg19; includes recombination hotspots). 
(c) Association results, after conditioning on the top signal in this dataset (rs7018475). Manhattan plot 
shows -log10 (p-value); light blue line plot below indicates recombination rate across the region. In all plots, 
black points represent common SNPs (MAF>=5%); blue points represent rare or low frequency SNPs 
(MAF<5%); green points represent small insertions or deletions (of any frequency). 
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Furthermore, the relationship between different groups of variants was clarified by the 

haplotype structure.  The two top signals in our dataset – rs7018475 and rs12555274 – are the only 

two   SNPs   that   uniquely   define   the   ‘risk’   haplotypes (orange in Figure 5.5).  The group of SNPs 

Table 5.1: Evidence for previously described haplotype 
association in GO-T2D study of n=2,657 samples 
 

Figure 5.5: Haplotype structure observed in sequenced cases and controls at the 9p21 locus 
 
Haplotypes above were constructed using 24 common (MAF>5%) SNPs located in between the 
recombination hotspots at the T2D GWAS locus at chrp21 (these are labeled at bottom). The above eight 
haplotypes were the most common haplotypes observed in the GoT2D dataset; these were each observed 
>100 times across 2,657 samples. H7 and H8 appear to be recombinant haplotypes. 
 
Each  haplotype’s  frequency  among  cases  and  controls  as  well  as  the results of association testing between 
the  haplotype’s  dosage  and  risk  of  T2D  are  shown  at  left.  The two SNPs with grey shading above them are 
rs10757282 and rs10811661, the SNPs based on which a three-tiered haplotype association has been 
previously reported (as in Table 5.1).  SNPs tagging the risk haplotype are labeled in orange, while SNPs 
tagging the protective haplotypes are in green. 
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showing signal after conditioning on the risk SNPs (Figure 5.4c) are SNPs that tag, to varying 

degrees, the group of haplotypes that show association in the protective direction (green and yellow 

in Figure 5.5).  These SNPs include the previously described GWAS tag SNP rs10811661 as well 

as the top conditional signal in our dataset (rs1333051).  Interestingly, the GWAS marker SNP 

rs10757282 (previously described as the top independent signal after conditioning on rs10811661) is 

actually one of many common variants tagging neutral haplotypes (which show no significant 

association to T2D); the two alleles at rs10757282 separate the neutral and risk haplotypes after 

conditioning on the protective marker rs10811661 (grey shaded rectangles in Figure 5.5).  This 

highlights the challenge of interpreting conditional association signals without appropriate haplotype 

context; a statistically associated signal does not necessarily represent a candidate causal variant. 

Given these data, we reasoned that the most parsimonious genetic model for the locus 

would implicate only two causal variants, one on the risk haplotype and one on the protective 

haplotype.  We thus asked: which variants could alone explain the observed risk and protective 

haplotype associations?  To assemble this set of variants, we added, one by one, the dosage of 

each variant (common and rare) across the entire 5-Mb region at 9p21 to a logistic regression model 

of phenotype vs. haplotype dosage.  We performed this procedure separately for the risk and 

protective haplotypes, and recorded the variants which, when added to the model, resulted in no 

significant effect remaining at the haplotype dosage (e.g. these variants could individually explain the 

haplotype’s   association).     We   find   that   the   only   variants   that   can   statistically   explain   the   risk   and  

protective haplotype associations are common SNPs, and they all lie within the small T2D GWAS 

region (Table 5.2).  Unsurprisingly, these variants (2 on the risk haplotype, 13 on the protective 

haplotype) are the same as those visually seen as tagging the haplotypes in Figure 5.5. 

This analysis did not reveal any rare or intermediate frequency variants of sufficient effect 

size to individually produce  ‘synthetic’  association of the common risk or protective haplotypes; this 

is perhaps not surprising given the large effect sizes that would be required for an individual rare 

causal variant to drive association at a common marker.  The intermediate frequency variant with the 
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strongest observed association signal across the 9p21 T2D GWAS region is rs76011118 

(chr9:22133772; MAF 3.5%; OR=1.50, p=0.008). This variant occurs on the background of the risk 

haplotype and thus could potentially be a candidate causal variant, but the haplotype retains 

significant signal (OR=1.28, p=2.0e-05) even after conditioning on the dosage of rs76011118.  Thus, 

the observed genetic data exclude the possibility of synthetic associations produced by single rare or 

intermediate frequency variants. 

 
 

 
 

It has also been hypothesized that a collection of low frequency (MAF<5%) causal variants could, in 

aggregate, produce association at a common marker if these variants were localized, by chance, to 

the same common haplotype.  More precisely, it is possible that a group of low frequency variants 

sharing ancestry with a disease-associated   common  marker   allele   could   be   driving   the   marker’s  

association signal.  To test this hypothesis, we first used the phased genotype data to place all low 

Table 5.2a: Single variants sufficient to explain the common risk haplotype signal 
 

All single variants across the 5Mb were tested in a joint regression model with dosage of 
the common risk haplotype (H2); only the above two common SNPs were sufficient to 
reduce the association signal at the risk haplotype such that the haplotype p>0.05. 

Table 5.2b: Single variants sufficient to explain the common protective haplotype signal 
 

All single variants across the 5Mb were tested in a joint regression model with dosage of the 
common protective haplotype (H4+H6); only the above 13 common SNPs were sufficient to reduce 
the association signal at the protective haplotype such that the haplotype p>0.05. 
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frequency variants, excluding singletons, within the 9p21 T2D locus onto the background of the 

common haplotypes identified in Figure 5.5.  Given uncertainty in rare variant phase information, we 

checked the estimated phase in several ways to ensure that low frequency alleles were consistently 

observed on the same common haplotype background; in some cases, we manually corrected the 

BEAGLE-estimated phase.  Across the ~17kb 9p21 locus (where a total of 171 variants were seen), 

we identified 20 low frequency variants (excluding singletons) segregating on the risk haplotype, and 

19 variants on the protective haplotype (Table 5.3). 

  

 

 
While the strength of the recombination hotspots flanking the 9p21 T2D locus makes it 

unlikely that long-range haplotypes persist beyond these boundaries, it is possible that some 

individuals carry longer-range haplotypes.  In fact, since the hotspots were inferred based only on 

common variant genetic data, low frequency alleles outside the T2D locus may still share (more 

Table 5.3: Variants sharing ancestry with common risk and protective haplotypes 
 

Listed above are all rare and low frequency (MAF>5%, seen >1x) variants identified either as a) occurring on the 
background of the common risk / protective haplotypes (based on phasing of the sequenced data) within the T2D 
GWAS locus, or b) as sharing long-range ancestry with the risk or protective alleles (using ancestral recombination 
graphs).   Variants sharing long-range ancestry (e.g., falling outside the region flanked by recombination hotspots) 
are shaded in grey above.  Variants are sorted by odds ratio. 
 

Variants sharing ancestry with risk haplotype 
 

Variants sharing ancestry with protective haplotype 
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recent) ancestry with the common marker alleles tagging the risk and protective haplotypes.  

Moreover, it has been hypothesized2 that recombination may not completely eliminate synthetic 

associations.  To address these issues, we constructed ancestral recombination graphs (ARGs18) 

across the full 5-Mb region centered at the T2D locus (Figure 5.6a-b).  This analysis enabled us to 

quantify, for each chromosome in each individual, the length of the haplotype that shared ancestry 

with a given common marker allele (e.g. the haplotype region estimated to have undergone no 

recombination since the occurrence of the common allele).  The ARGs revealed that while the 

majority of chromosomes likely underwent recombination very close to the recombination hotspots, a 

subset of individuals carry haplotypes extending up to ~30kb away.  We thus identified an additional 

7 variants sharing ancestry with the risk haplotype and 1 variant sharing ancestry with the protective 

haplotype (Table 5.3).    

With these variants in hand (a total of 27 on the risk and 20 on the protective haplotypes), we 

next asked whether any subset of these variants could collectively explain the common haplotype 

association signals.  Starting with the logistic regression model of phenotype ~ haplotype dosage, 

we greedily selected the individual variant which, when added to the model, most reduced the effect 

size remaining at the haplotype.  We repeated this procedure (adding more and more variants to the 

regression) until the effect size remaining at the common haplotype could no longer be reduced.  

Under the hypothesis where low frequency causal variants  are  responsible  for  a  ‘synthetic’  common  

haplotype association, the low frequency variants should collectively be better predictors of 

phenotype than the common haplotype (which is an imperfect proxy), and no residual signal should 

remain at the common haplotype. 

In the case of the risk haplotype, this analysis resulted in the addition of 10 greedily selected 

low frequency variants to the model (Figure 5.6c-d).  The risk haplotype, however, still retained a 

significant (p=2e-03) effect size of OR=1.24 (reduced from 1.33), indicating that low frequency 

variants  are  not  sufficient  to  explain  the  common  haplotype’s  signal.    Furthermore,  a model including 

the 10 low frequency variants is not a statistically better predictor of phenotype than dosage of the 
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risk haplotype alone (log-likelihood ratio test p=0.19).  Results for the protective haplotype were 

similar; 9 low frequency variants were added to the model, but despite their inclusion the haplotype 

retained an effect size of OR=0.82 (Figure 5.7d). Again, the low frequency variants were not a better 

predictor of phenotype than the common protective haplotype dosage alone.   

 

 

Figure 5.6: Testing for synthetic associations at the chr9p21 locus in the sequenced panel 
 

Ancestral recombination graphs were constructed across the chr9p21 locus. Each graph identifies 
chromosomal segments (in each individual sample) that share ancestry with a common marker allele. An 
example is shown (a) for a marker of the risk haplotype (chr9:22137685, or rs7018475) and (b) for a marker 
of the protective haplotype (chr9:22134094, or rs10811661). Each horizontal line represents an individual 
chromosome carrying the minor allele of the marker SNP. Most chromosomes are inferred to have 
undergone recombination near the known recombination hotspots (dotted black lines), but some samples 
have longer-range haplotypes. Low frequency and rare variants in regions of shared ancestry were greedily 
selected for joint association testing along with dosage of the common haplotype, to minimize the residual 
effect remaining at the common haplotype (c,d). Variants were added until the common haplotype effect 
size could not be further reduced. To left of each plot is  the  added  variant’s  observed  case:control  counts.  
Each red line shows the effect size of the haplotype (95% confidence interval shown) in a joint regression 
model, after cumulative addition of the low frequency and rare variants. In both cases, joint regression 
models do not have statistically greater explanatory power than the original model with only the common 
haplotype dosage (p-values for delta log-likelihoods at each step shown at right; not significant). 
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While the above analyses demonstrate that low frequency variants at 9p21 are unlikely to be 

driving synthetic common variant associations, it is nonetheless possible that these variants have 

effects on T2D that are independent of the previously described GWAS signals.  To test this 

hypothesis, we (a) used group-based tests of association to evaluate whether rare variants at 9p21 

collectively show case-control skew, and (b) conducted joint logistic regression to estimate bounds 

on the total independent contribution of these variants to T2D heritability. 

We ran several group-based tests of association, including those identified in Chapter 4 as 

having highest power (KBAC and SKAT-O), across all the protein-coding genes in the region as well 

as across the entire ~10kb region.  Across all methods and different frequency thresholds 

(MAF<0.1%, 1%, or 5%), we observed no significant aggregate association signals for variants 

across the 9p21 locus (data not shown).  The singleton class in particular also showed no case-

control skew (27 singletons observed in cases, as compared to 25 singletons observed in controls).  

It is of course possible (indeed likely) that most variants across the ~10kb locus are neutral, and that 

only  a  subset  of   ‘functional’   variants  would  show  an  aggregate  effect;;   to  partially  address   this,  we  

restricted to only those variants falling within ENCODE-annotated peaks of DNase activity or histone 

modification, but still observed no significant effects. 

The absence of a significant aggregate association signal does not alone exclude the 

possibility that rare variants at this locus could have causal effects on T2D.  Power in this sample to 

detect effects at very rare alleles or effects of small size (especially if some alleles have effects in 

the risk direction, while others are protective) is limited (Chapter 4).  Moreover, the functional 

annotations we used above are imprecise; they do not reflect the likelihood that two alleles at a 

variant site will have differential activity, and certainly do not predict whether such activity differences 

would impact risk of T2D.   

Given these limitations, we are evaluating (work in progress) whether the observed 

sequencing data can enable us to place bounds on the total contribution of low frequency variants at 

9p21 to T2D heritability, independent of the common signals.  Due to linkage disequilibrium, the 
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contributions of individual low frequency variants cannot simply be added together; this would result 

in over-estimation.  The combined effect of two causal variants on the same haplotype, for example, 

would be measured at each of the two variants; and conversely, if only one variant is causal, the 

other variant would also show the same effect.  To account for this, we conducted joint logistic 

regression of phenotype against the full set of low frequency variants (excluding singletons and 

excluding one of every pair of variants in high LD with each other).  We included in this analysis the 

top common risk and protective variants, so as to measure effects at low frequency variants 

independent of the common signals.  The effect sizes estimated in this joint regression model (which 

is of course over-fit) suggest that rare and low frequency variants at 9p21 could potentially contribute 

~2% of additional disease heritability in addition to the ~2% explained by common GWAS signals 

(Figure 5.7).  No individual rare variant across the locus likely explains more variance than either of 

the common risk or protective signals.  The development of methods to place bounds on these 

estimates (given large standard errors for rare variant effects), is in progress. 

 

 

Taken together, these analyses suggest that the empirical sequencing data at 9p21 is most 

consistent with a model in which some subset of common variants (specifically, one or more of 2 

Figure 5.7: Quantifying the contribution of rare variants, independent of common signals at chr9p21 
 

Joint logistic regression was performed, including the dosage of common risk and protective variants as well 
as the dosage of all (LD-pruned, seen >1x) rare and low frequency variants.  The estimated phenotypic 
variance explained by each variant was calculated by converting odds ratios to relative risks, and then 
converting this effect to the additive liability scale.  The point estimate as well as the 95% upper bound for 
each individual variant is shown in (a); cumulative variance explained by all variants (using point estimates 
of their observed effect sizes) is shown in (b). 
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variants on the risk haplotype, and 13 variants on the protective haplotype) are causal.  To further 

refine this model, we imputed all common variants at the locus into a large panel of ~30K densely 

genotyped (via the Metabochip array19,20) case-control samples.  We confirmed that imputation 

quality was high for these common variants (data not shown), and performed association analysis in 

each cohort followed by inverse weighted meta-analysis.  From meta-analysis association results, 

we estimated the posterior probability that each variant is causally responsible for the haplotype 

association signal.  This resulted in a clear single signal on the risk haplotype: the 95% credible set 

for the risk haplotype includes only one variant, rs12555274 (Table 5.4).  For the protective signal, 

the 95% credible set includes 5 variants (rs10811662, rs10965250, rs10811661, rs10811660, 

rs1333051).  The top 4 signals on this haplotype are indistinguishable in this cohort; each has a 20-

25% probability of being causal.  

 
    

 
 

This study systematically tests a wide range of hypotheses about the causal architecture at 

the T2D-associated chr9p21 locus using sequencing data generated in a large sample of 2,657 

European individuals. These data firmly exclude the possibility that rare or low frequency variants 

Table 5.4: Results of association meta-analysis across >30K imputation case-control samples. 
 

All variants identified in sequencing across the chr9p21 locus were imputed into >30K densely genotyped (via 
the Metabochip) case-control European T2D cohorts.  Inverse variance-weighted meta-analysis was performed; 
effects, standard errors, and p-values observed for all candidate common variants tagging the risk and protective 
haplotypes are shown above.  Posterior probabilities were computed in a Bayesian framework, assuming a fixed 
prior on the beta for each variant and assuming that a single variant is causal on each haplotype.  Variants 
above the red line are within the 95% credible set of candidate causal variants. 
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could be driving the observed GWAS signals.  Models in which only two common variants (one risk 

and protective) are causal are sufficient to explain the three-tiered haplotype association, and we 

find that the 95% credible sets for causal variants on the risk and protective haplotypes include only 

1 and 5 common variants, respectively.  The data cannot exclude an independent role for rare and 

low frequency variation, but suggest that these variants could at most explain a limited portion of 

T2D heritability.  Much larger sample sizes would be required to test the rare and low frequency 

variants for independent association to risk of T2D.  
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Chapter 6 

Insights into allelic architecture across 10 T2D-associated GWAS loci 
 

In this chapter, we apply the fine-mapping methods developed and described in Chapter 5 to 

the study of ten other type 2 diabetes (T2D) GWAS loci.  As in Chapter 5, the majority of analysis 

was performed using data from a low-pass whole-genome sequencing study of ~2800 unrelated 

European T2D cases and controls sampled from phenotypic extremes.  Variants discovered in this 

panel were imputed into ~45K additional European samples that have been genotyped on GWAS 

arrays, and association to T2D across cohorts was combined using inverse-variance weighted meta-

analysis (performed by GoT2D Consortium collaborators at the University of Michigan and Oxford). 

For the majority of T2D GWAS loci, this dataset provides – to date – the most complete catalog of 

variants that have been genotyped in disease samples and tested for association to T2D.   

Somewhat unlike prior chapters – which represent work targeted for publication – this 

chapter is written primarily to guide future genetic and especially experimental follow-up studies of 

T2D loci (though analyses presented below will be included in a GoT2D Consortium manuscript 

currently under preparation).  In some cases, the analysis methods deployed are not necessarily 

novel, but we have endeavored to provide the full set of information (e.g. complete lists of all 

candidate causal variants, common and rare, observed in the sequencing data) required to design 

and prioritize experimental studies across a locus.  Although there does exist a literature1,2 (largely 

restricted to common variants, however) describing fine-mapping of T2D GWAS loci, the data 

required for follow-up are often not readily available in accessible formats from these publications. 

We selected ten T2D loci for fine-mapping on the basis of the strength of association 

observed across the locus in the GoT2D sequencing dataset, as well as the degree of interest within 

our lab in functional interrogation of the locus.  Table 6.1 lists these loci, and describes the 

association signal we observe in GoT2D samples (n=2,657 case-control individuals after quality 

control) at the previously reported GWAS tag SNP.   
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Within this chapter, we provide detailed descriptions of the signal at the first three loci 

(TCF7L2, CCND2, and HMGA2); these examples (alongside chr9p21) highlight the diversity of 

genetic data across T2D GWAS loci.  For the other seven loci, we provide only high-level summaries 

to give the reader a sense of which loci might be most interesting and also tractable to study.  At the 

three loci described in depth, we organize findings in the below format, in order to ask and answer 

the following questions:  

A) Characterization of the previously reported GWAS tag SNP and its LD partners 

a. How many variants are in LD with the tag SNP (a measure of haplotype complexity)? 
b. Are any of these tag SNPs protein-coding (attractive for follow-up)? 

B) Regional association signal(s) observed in the GoT2D sequenced panel 

a. Do any low frequency variants have signal exceeding that of the GWAS tag SNP? 
b. How many independent signals are present across the locus? 

C) Could low frequency or rare variants at the locus be producing synthetic associations? 

a. Can an individual low frequency variant drive the GWAS signal? 
b. Could a group of low frequency or rare variants be responsible, in aggregate? 

Table 6.1: List of T2D GWAS loci studied in this chapter, and association signal observed at the 
previously reported GWAS tag SNP in GoT2D sequenced panel (n=2,657 samples). 
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D) What is the role of rare variation, independent of the common GWAS signal? 

a. Is there a burden of T2D-associated variants across protein-coding genes? 
b. Which individual low frequency or rare variants show strongest association (e.g. for 

follow-up genotyping or experimental testing)?  
 

E) Summary of findings at the locus and recommendations for follow-up 
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Locus #1: TCF7L2 

A) Characterization of the previously reported GWAS tag SNP and its LD partners 

The GWAS tag SNP at this locus is rs7903146 (chr10:114,758,349; MAF=0.27; coordinates in 

hg19 throughout this chapter).  There is robust association to T2D observed at this SNP in the 

GoT2D panel (OR = 1.75; p= 2.7E-18; it is the third most associated variant in this dataset).  None of 

the top T2D-associated variants are rare or of low frequency (MAF<5%); however, one small 

insertion (G>GCT at chr10:114782581 is among the top few signals (Figure 6.1b) and is in strong 

LD with the GWAS tag SNP (r2 = 0.87).  There are 6 common variants in strong LD (r2 >= 0.8) 

with the GWAS tag SNP and 32 variants in modest LD (r2 >= 0.5); none of these are protein-

coding, and all fall within an intron of TCF7L2.  From this set, the top ten variants are listed below 

(sorted by association p-value).  The 6 variants in strong LD with the tag SNP show strongest signal 

in both the sequenced panel as well as in imputation analysis. 

Table 6.2: Top common variants in LD with GWAS tag SNP (rs7903146) 

 

B) Regional association signal(s) observed in the GoT2D sequenced panel 

Across both a 5Mb region surrounding this SNP (chr10:112250000-117250000) as well as a 

narrower interval defined by recombination hotspots around the tag SNP (chr10:114545000-

114942000), the previously described GWAS signal is the only clear association observed (Figure 

6.1a-b).  After conditioning on the top variant listed in the table above (chr10:114754784), no 

significant residual signal remains within the GWAS locus (Figure 6.1c), suggesting that there is 
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only one independent common variant T2D association signal within the GWAS locus (as defined by 

recombination hotspots).  Across the larger 5Mb interval, many low frequency variants show modest 

association signals (p-values in the 0.001 – 0.0001 range), but most of these signals are no longer 

present after conditioning on the GWAS tag SNP.  A few such rare variants retain independent 

association after conditioning; these are discussed in section D. 

 

Figure 6.1: Fine-mapping of TCF7L2 locus in GoT2D (n=2,657) whole genome sequencing panel 

 
C) Could low frequency / rare variants at the locus be producing synthetic associations? 

We identify 455 rare and low frequency (MAC > 1; MAF < 5%) variants segregating on the 

background of the GWAS T2D-associated common haplotype (and located within the interval 

defined by recombination hotspots).  No single variant among these can explain the common 

haplotype’s   association;;  over   50   variants  would   be   required   to   reduce   the  effect   size   (OR)   at the 
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haplotype to below 1.10 (Figure 6.1d).  The likelihood of a genetic model with only these 50 greedily 

selected rare and low-frequency variants (relative to the likelihood of a model in which only the 

common haplotype explains disease risk) is 0.002 (as assessed by AIC); these variants do not have 

greater explanatory power than the common signal alone.  Thus, at TCF7L2, rare and low frequency 

variants are extremely unlikely to explain the observed common variant GWAS signal. 

D) What is the role of rare variation, independent of the common GWAS signal? 

Across  the  TCF7L2  GWAS  interval,  there  are  no  ‘Goldilocks’  alleles  (defined here as having 

MAF > 1%, OR > 2 or OR < 0.5, p-value < 0.01) that retain association (p<0.01) after conditioning on 

the GWAS tag SNP.  However, across the larger 5Mb interval, there are a handful of such variants 

(none are protein-coding): 

Table 6.3: Potential Goldilocks’  low frequency variants across the broader 5Mb TCF7L2 interval 

 

As seen above, none of these variants shows any association after imputation meta-analysis 

It should be noted that imputation quality for variants of frequency <2% is highly variable, and this 

has not been evaluated for the variants above.  Nonetheless, given the absence of replication in the 

imputation cohorts, these low frequency variants should be further evaluated in ongoing genetic 

studies prior to experimental interrogation (especially since they are all rather far away from both the 

original T2D GWAS signal and the TCF7L2 transcript, and there is thus little prior biological reason 

to nominate these variants as causally associated with risk of T2D). 

Across the GWAS interval, there are two protein-coding genes (as seen in Figure 6.1b).  We 

applied the gene-based association test SKAT-O to non-synonymous (MAF<1%) as well as loss-of-

function variants (LOF; includes nonsense and frame-shift) identified within these genes.  No signal 
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was observed at VTI1A; at TCF7L2, however we observe nominal association across non-

synonymous variants (SKAT-O p-value = 0.035; p-value after including GWAS tag SNP as a 

covariate = 0.032).  This (weak) signal is driven mainly by a single variant (top listed below): 

Table 6.4: Rare non-synonymous (MAF<1%) variants in TCF7L2 gene driving burden signal 

   

No LOF variants were identified in the TCF7L2 gene. 

 
E) Summary of findings 

At the TCF7L2 locus, we do not observe any strong low frequency or rare variant 

associations that are independent of the GWAS signal (though we cannot exclude the possibility of 

any rare variant effects; some of the potentially interesting such variants are listed in Table 6.3 and 

6.4). The previously known genetic association to T2D at the TCF7L2 locus appears to be driven by 

a single common haplotype (on which one or more common variants may be causal).  Because >50 

rare and low frequency variants would be required to explain the large effect at this haplotype, such 

a model is extremely unlikely.  The set of most likely candidate causal variants is comprised of 6 

common variants (5 SNPs and one small insertion) that are in tight LD with the previously reported 

tag GWAS SNP.  These are the top 6 variants listed in Table 6.2.  
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Locus #2: CCND2 

A) Characterization of the previously reported GWAS tag SNP and its LD partners 

 The previously reported GWAS tag SNP at the CCND2 locus is rs11063069 

(chr12:4374373; MAF = 0.22).  Interestingly, this SNP was also reported to have significant evidence 

for sex-differentiated association to T2D (male OR = 1.12; female OR = 1.04; heterogeneity 

p=0.013).1  In the GoT2D panel, this SNP shows modest association signal (OR = 1.20; p= 0.007; 

Table 6.1).  It lies on a haplotype of extremely low complexity; there exist only 3 common variants in 

even modest LD (r2 >= 0.5) with the GWAS tag SNP: 

Table 6.5: Common variants in LD with CCND2 GWAS tag SNP (rs11063069) 

 

Each SNP shows similar association to T2D.  None of these variants are insertions or deletions; 

none are protein-coding.  All three SNPs are entirely upstream of the CCND2 transcript (though two 

of them are annotated as falling within the intron of a different non-coding transcript). 

 
B) Regional association signal(s) observed in the GoT2D sequenced panel 

 The regional association plot across the CCND2 locus is striking because a lone (and novel) 

low frequency variant (12:4384844; rs76895963; MAF = 2.3%; OR = 0.35; p = 5.9e-07; shown in 

blue in Figure 6.2b) shows stronger association to T2D than any common variants.  This is the 

strongest signal not only across an interval defined by recombination hotspots flanking the GWAS 

tag SNP (chr12:4314200-4407600), but also across a large 5Mb interval (chr12:1860000-6860000)  

Interestingly, the most-associated common variant observed in the GoT2D data (12:4379831; MAF = 

0.23; OR = 0.78; p=0.00017) is actually a variant tagging the common haplotype on which 

12:4384844 occurred; 86% of all observations of the low frequency variant 12:4384844 occur in 

phase with the common variant 12:4379831).  Thus, it is likely that the low frequency variant is 

actually driving weak association at this common SNP (which has very low r2 = 0.08 to the GWAS 
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tag SNP chr12:4374373).  The novel rare SNP is independent of the previously reported GWAS tag 

SNP (r2 = 0.007 to chr12:4374373).  

 
Figure 6.2: Fine-mapping of CCND2 locus in GoT2D (n=2,657) whole genome sequencing panel 

 After conditioning on the top low frequency signal (12:4384844), no strong independent 

signals are observed in this dataset (Figure 6.2c), though a few rare SNPs retain modest 

association (p~0.001).  Association signal at the GWAS tag SNP 12:4374373 is slightly reduced 

(OR=1.16, p=0.024), but the bulk of the effect size remains.  This suggests that there are indeed (at 

least) two independent signals at this locus: one common haplotype which is associated with 

increased T2D risk (tagged by 12:4374373), and another rare variant which is associated with 

decreased T2D risk.   

 Visualization of the haplotype structure at CCND2 (and phasing of the rare variant onto 

common haplotypes, as described in Chapter 5) further supports the conclusion that these are 

independent effects (Figure 6.3).  The diagram also clarifies why signal at the GWAS tag (red) is 
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slightly reduced after conditioning on the rare variant (blue); a rare protective signal on a non-risk 

common haplotype  (which does not have the GWAS risk allele) can explain a small fraction of the 

GWAS signal.  If only the rare protective variant (blue) were causal, however, then all common 

haplotypes not carrying it should appear uniformly (and very weakly) associated with increased risk 

of T2D; instead we observe clear association in the risk direction at only H2 and at no other 

haplotypes.  This observation here (in the GoT2D sequencing data), combined with our prior 

knowledge that variants tagging H2 are associated to risk of T2D at genome-wide significance levels 

in GWAS – suggests that indeed there are two independent signals at this locus.  

 

Figure 6.3: Fine-mapping of CCND2 locus in GoT2D (n=2,657) whole genome sequencing panel 

 

C) Could low frequency / rare variants at the locus be producing synthetic associations? 

 As discussed above, the novel low frequency variant (12:4384844) does indeed induce weak 

‘synthetic’  association  at  common  SNPs  that  tag  the  haplotype  on  which  it  arose.    However,  these  

common variants are not in LD with the disease-associated markers reported in T2D GWAS.  We 
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wondered whether the previously known GWAS signal could be explained by low frequency or rare 

variants. 

We identify 85 rare and low frequency (MAC > 1; MAF < 5%) variants segregating on the 

background of the GWAS T2D-associated common haplotype (on H2; located within the interval 

defined by recombination hotspots).  No single variant among these can explain the entire effect at 

the common haplotype; however, 9 variants would be sufficient to reduce the haplotype effect size 

(as measured by OR) to < 1.0 (Figure 6.2d).  A closer look at these variants (Table 6.6) reveals that 

these are exactly the kind of variants we might expect to potentially produce a synthetic association: 

their observations almost always occur on the common risk haplotype, and they have larger effect 

sizes than the common GWAS risk allele. 

Table 6.6: Rare / low frequency variants sufficient to explain CCND2 GWAS signal in GoT2D panel 

 

The likelihood of a genetic model with only these 9 greedily selected rare and low-frequency 

variants (relative to the likelihood of a model in which only the common haplotype explains disease 

risk) is 0.12 (as assessed by AIC).  Thus, these variants do not have greater explanatory power than 

the common haplotype alone (though it remains possible that they are causally driving the GWAS 

association).  Certainly, the more parsimonious explanation for the CCND2 GWAS signal is that a 

single common variant (one of the three variants listed in Table 6.5) is causal. 
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D) What is the role of rare variation, independent of the common GWAS signal? 

 We looked across both the 5Mb-interval as well as the narrower GWAS interval for putative 

Goldilocks (MAF > 0.01, OR > 2 or OR < 0.5, p-value < 0.01) variants (Table 6.7).  As seen above, 

the novel rare variant 12:4384844 represents the strongest such signal; within the GWAS interval, 3 

other variants in modest LD with this variant are also identified (all have weaker signal both in the 

sequenced panel as well as in the imputed data).  It is worth noting that 12:4384844 retains 

significant association even after imputation meta-analysis in ~50K samples, providing some further 

evidence for its candidacy as a causal variant; however, the fact that the p-value only improves from 

6.5e-07 to 2.8e-07 indicates that the effect size of this variant was much less in the other cohorts 

examined (cohorts other than the GoT2D sequenced panel).   

Table 6.7:  Potential  Goldilocks’  low  frequency  variants  at  the CCND2 locus  

 

 A variant at 12:4401201 is included in Table 6.7 above (despite not meeting our stringent 

definition of a Goldilocks variant) because it is another low frequency variant that falls within an 

intron of CCND2; given the signal at 12:4384844, we might be more interested in similar variants, 

especially if they are independent (as 12:4401201 is; r2 to 12:4384844 = 0.001).  However – 

underscoring the challenges of interpreting association data for putative novel signals in relatively 

small sample sizes – this variant shows no association after imputation meta-analysis (p=0.78).  Low 

imputation quality is a concern, but this variant has relatively high frequency (MAF=3%).  Further 
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genotyping of this variant could be warranted, but at present the evidence supporting its association 

to T2D is weak. 

 Similarly, across the larger 5-Mb interval, we observe three other variants that show 

moderately strong signal in the GoT2D panel, and retain association after conditioning on the other 

signals (unsurprisingly, given the distance between these variants and the GWAS interval).  

However, none of these variants show any association in the imputation meta-analysis. 

 Across this GWAS interval, CCND2 is the only protein-coding gene (as seen in Figure 6.2b).  

No significant burden of non-synonymous variation (MAF<1%) was observed in this gene (SKAT-O 

p=0.46).  No loss-of-function variants were identified in CCND2. 

 
E) Summary of findings 

 The data at the CCND2 locus suggest that there are two independent genetic associations to 

T2D here (one common signal, and one low frequency signal).  The common signal is tagged by 

only 3 common SNPs (listed in Table 6.5); one or more of these 3 variants is most likely to causally 

drive the T2D risk signal observed in GWAS.  It is also possible that a collection of (as few as 9) low 

frequency variants at this locus could be driving the GWAS signal (such a set is listed in Table 6.6), 

but this genetic model is less likely than models implicating a common causal variant.   

 We detect a second independent, low frequency protective signal at this locus at the non-

coding variant 12:4384844 (rs76895963; MAF=2.3%; OR = 0.35; imputation meta-analysis p=3e-07).  

Only one other variant (of   lower   frequency,   in  nearly  perfect  D’  with  12:4384844) shows signal of 

comparable strength after large-scale imputation: 12:4401472 (MAF=0.8%; p=2e-06 in meta-

analysis).  If follow-up genotyping or experimental studies are undertaken, both these variants 

should be further interrogated.  

 The CCND2 locus is a particularly attractive one for functional follow-up because of its 

relatively low complexity: only 5 variants with high likelihood of being causal have been identified (1 

of 3 variants tagging the common risk haplotype, and 1 of 2 low frequency variants).  A key 

challenge, of course, is that all these variants lie in non-protein-coding regions of the genome.   
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Locus #3: HMGA2 

A) Characterization of the previously reported GWAS tag SNP and its LD partners 

 The previously reported GWAS tag SNP at the HMGA2 locus is rs1531343 (12:66174894; 

MAF = 0.09).  In the GoT2D panel, this SNP has a relatively large effect size (OR = 1.37; p= 0.0013; 

Table 6.1).  In stark contrast to the CCND2 locus, this SNP lies on a haplotype of very high 

complexity; there exist 62 common variants in tight LD (r2 >= 0.8) with the GWAS tag SNP, and 132 

common variants in modest LD (r2 >= 0.5).  Because such a large number of variants show similar 

association signal in the GoT2D panel (seen as a thick row of points in the Manhattan plot in Figure 

6.4a), we relied on association signal in the imputation meta-analysis to build a credible set of 

candidate causal variants.  Using a Bayesian analysis (as done in Chapter 5, and as previously 

described2), we find that a 90% credible set of candidate causal variants contains 18 common SNPs 

(listed in Table 6.8); a 95% credible set contains 35 common SNPs.  These sets must be interpreted 

with caution, however, as the incremental differences between variants inside and outside these sets 

is extremely small (the original tag SNP, for example, is actually not included in either of these sets).   

Table 6.8: Common SNPs in 90% credible set, ranked by imputation p-value 
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Additionally, seven common insertion/deletion variants (Table 6.9) are also in tight LD with the tag 

SNP and show association signal in the GoT2D sequenced panel of comparable strength to the 

above SNPs.  Because these variants have not yet been imputed, they were not included in the 

Bayesian credible set analysis, but they must be considered in any future studies aimed at 

identifying causal variants at this locus. 

Table 6.9: Top common insertions/deletions in LD with tag SNP (rs1531343) 

 

 None of the variants in modest LD with the GWAS tag SNP are protein-coding. 

B) Regional association signal(s) observed in the GoT2D sequenced panel 

 Across a 5Mb region surrounding the tag SNP (chr12:63674894-68674894), the previously 

described GWAS signal appears to be one of many comparable signals (with association p-value ~ 

0.001); these other peaks could be further evaluated in the imputation meta-analysis to determine 

whether they likely reflect true association to T2D or noise in this relatively small sample size.  Here, 

we zoom into the narrower interval defined by recombination hotspots around the GWAS tag SNP 

(chr12:66158000-66399000) to characterize the signal that has been previously replicated in very 

large sample sizes (Figure 6.4b).  In this interval, we observe a think cluster of variants – the SNPs 

and insertion/deletion variants listed in section A – that all show comparable association signal.  No 

rare or low frequency variants appear to be part of this set.  The top signal in this dataset 

(12:66221060) is in tight LD with the prior GWAS tag SNP (r2 = 0.87). 

 After conditioning on this top signal, no residual signal remains across the locus, indicating 

that there is only one independent signal at the HMGA2 locus (that is detectable in this sample). 
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Figure 6.4: Fine-mapping of HMGA2 locus in GoT2D (n=2,657) whole genome sequencing panel 

C) Could low frequency / rare variants at the locus be producing synthetic associations? 

 We identify 142 rare and low frequency variants segregating on the GWAS risk haplotypes at the 

HMGA2 locus.  In part because the risk haplotype (and the GWAS tag SNP) at this locus is of 

relatively lower frequency (~9%), we find that only three low frequency variants would be sufficient to 

explain the GWAS signal.  There are actually 44 low frequency variants on the risk haplotype with 

MAF>2% and OR>1.3; any combination of three to four such variants would be sufficient to explain 

the GWAS signal.  Just one example of three such variants is shown in Figure 6.4d and listed in 

Table 6.10 (these should not be interpreted as the only three low frequency variants with this 

property).  In this case (unlike what we observed at CCND2), a genetic model with only these three 

low frequency variants actually has greater likelihood of explaining the observed data as compared 

to a model with the common risk haplotype alone (~2x more likely; based on AIC).   This certainly 
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does not rule out genetic models with common causal variants, but low frequency models at this 

locus must be considered.  It is important to keep in mind that in the scenario where a common 

variant was causal, it would be entirely expected for low frequency variants on the haplotype to show 

association in the same direction as the haplotype.  It just so happens that at this locus, a large 

number of such low frequency variants are segregating in the population, making the alternative low 

frequency model plausible. 

Table 6.10: Example of low frequency variants sufficient to explain HMGA2 GWAS signal in GoT2D  

 

 
 It is also worth noting that association signal at some of these candidate low frequency 

variants is replicated in the imputation meta-analysis (as seen for the first two variants listed in Table 

6.10); at other variants, we do not observe replication.  This could be used to further filter the list of 

candidate causal low frequency variants (after evaluating imputation quality at each site).  

 
D) What is the role of rare variation, independent of the common GWAS signal? 

 We identify only one Goldilocks (MAF > 0.01, OR > 2 or OR < 0.5, p-value < 0.01) variant 

within the HMGA2 GWAS locus, and 10 such variants across the broader 5-Mb interval (Table 6.11).   

Signal at none of these variants replicated in the imputation meta-analysis. 

 Gene-based association testing across the HMGA2 interval revealed a potentially interesting 

result at the HMGA2 gene (SKAT-O p=0.0021 for all non-synonymous variants with MAF<1%).  This 

signal remained unchanged after conditioning on the GWAS tag SNP (p=0.0028), suggesting that it 

was not driven by association of an underlying common haplotype.  The single missense variant 

driving this signal is listed in Table 6.12; it did not replicate in imputation meta-analysis, but its very 

low frequency (and thus uncertain imputation accuracy) still makes it a potential follow-up candidate.   
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Table 6.11:  Potential  Goldilocks’  low  frequency  variants  at  the  HMGA2 locus  

 

Table 6.12: Rare non-synonymous (MAF<1%) variants in HMGA2 gene driving burden signal 

 

No loss-of-function variants were identified in the HMGA2 gene. 

E) Summary 

Data at the HMGA2 locus indicate that the original GWAS signal is likely the main genetic 

association to T2D at this locus.  This signal could be explained, however, by either common 

variant(s) or by as few as three low frequency variants (such as those listed in Table 6.10).  Both of 

these genetic models need to be explored further; this is challenging at this locus, however, due to 

the very large number of both common and low frequency candidate causal variants.  To 

experimentally differentiate between these hypotheses, for example, an attractive strategy may 

involve using genome engineering to knock in the entire risk or non-risk haplotype amplified from 

human cells, and then individually mutate only candidate low frequency variants.  It may not be 

tractable to individually test the effect of each candidate common variant on the haplotype (as may 

be possible at a smaller locus with fewer common tag SNPs, such as chr9p21 or CCND2). 
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Locus #4: HNF1B; GWAS tag SNP rs4430796 (17:36098040; GoT2D MAF= 0.43; OR = 1.19) 

This tag SNP has 8 common SNPs in tight LD (r2 > 0.8) and 23 common variants (21 SNPs, 

and 2 insertion/deletion variants) in modest LD (r2 > 0.5).  None of these variants are protein-coding.  

There is evidence for two independent common signals at this locus: one is tagged by the above 

listed SNP (and is localized to the first intron of HNF1B), while the other is located downstream of 

the HNF1B transcript within a hotspot of recombination.  This second potentially novel signal 

(17:36022605; rs72830455; MAF = 0.11) shows strong association in the GoT2D panel (OR = 0.68; 

p=1.3e-05).  Its replication is weak in imputation meta-analysis (p= 6.4e-04), but is still comparable 

to the signal at the original tag SNP (p-value after imputation at 17:36098040 = 1.2e-04).  These two 

signals are independent of one another (r2 = 0.00). 

 
Figure 6.5: Association signal across the HNF1B GWAS locus 
 
 We asked whether rare or low frequency variants at this locus could explain the original 

GWAS signal (at 17:36098040).  Similar to findings at TCFL2, we find that over 50 such variants 

would be required, making the most parsimonious model, by far, one implicating common causal 

variant(s).  We did not perform this analysis for the second independent common variant signal. 

 Six  ‘Goldilocks’  variants  were  identified  across  the  5-Mb interval; none of these fell within the 

GWAS interval defined by recombination hotspots, and none of these variants had signal which 

replicated in imputation meta-analysis.  There was no significant burden of rare missense variants 

across HNF1B (SKAT-O p=0.295); no loss-of-function variants were identified. 
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Locus #5: IGF2BP2; GWAS tag SNP rs4402960 (3:185511687; GoT2D MAF= 0.32; OR = 1.25) 

Similar to the HMGA2 locus, this locus exhibits high haplotype complexity: the GWAS tag 

SNP has 76 common SNPs in tight LD (r2 > 0.8) and 83 common variants (including 8 

insertion/deletion variants) in modest LD (r2 > 0.5).  None of these variants are protein-coding; all are 

within an intron of IGF2BP2 or upstream of this transcript.  After conditioning on the top common 

variant, no independent common variant associations are observed. 

 
Figure 6.6: Association signal across the IGF2BP2 GWAS locus 
 
 Again similar to findings at HMGA2, we find that as few as 6 low frequency variants would 

be sufficient to explain the GWAS signal at the IGF2BP2 locus; in this case, the low frequency model 

actually has a much greater likelihood than a model with only the common haplotype (relative 

likelihood of common model = 0.0003, as assessed by AIC).  An example of a set of low frequency 

variants that could produce synthetic association are listed in Table 6.13: 

Table 6.13: Example low frequency variants sufficient to explain IGF2BP2 GWAS signal in GoT2D  

 

 Four ‘Goldilocks’  variants  were  identified  across  the  5-Mb interval; none fell within the GWAS 

interval, but one (3:182657186; MAF=1.5%, OR=0.49 in GoT2D) had directionally consistent signal 

after imputation meta-analysis (p=0.007), potentially meriting follow-up.  There was no burden of rare 

missense variants at IGF2BP2 (SKAT-O p=0.121); no LOF variants were identified in this gene.  
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Locus #6: PPARG; GWAS tag SNP rs1801282 (3:12393125; GoT2D MAF= 0.15; OR = 0.82) 

This GWAS tag SNP has 26 common SNPs in tight LD (r2 > 0.8) and 32 common variants 

(including 2 insertion/deletion variants) in modest LD (r2 > 0.5).  As is well-known at this locus3, the 

original tag SNP is protein-coding (PPARG; p.P12A); the remaining variants in LD with the GWAS 

tag SNP are all non-coding and localize to an intron of PPARG.  After conditioning on the top 

common variant, no independent signals are observed. 

 
Figure 6.7: Association signal across the PPARG GWAS locus 

 We find that the protective effect observed at this GWAS haplotype (OR = 0.82) could be 

explained by as few as 6 low frequency variants.  An example of such a set of variants is shown in 

Table 6.14 (none of these are protein-coding).  In this case, the low frequency model has a greater 

likelihood of explaining the data relative to a model with only the common haplotype (~12 times more 

likely, as assessed by AIC).  However, this should be interpreted with great caution given (a) that the 

common haplotype is tagged by a protein-coding missense variant with higher prior likelihood of 

altering function, (b) that the low frequency model is likely over-fit in this sample, and (c) that most of 

the candidate low frequency variants do not reproduce signal in imputation meta-analysis. 
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Table 6.14: Example low frequency variants sufficient to explain PPARG GWAS signal in GoT2D  

 

 Interestingly, we detect a nominally significant burden of rare non-synonymous variants at 

PPARG (SKAT-O p=0.045; p=0.051 after conditioning on the GWAS tag SNP; Table 6.15).  This 

burden signal is driven by 8 extremely rare, case-private singletons, including one loss-of-function 

variant p.S249*.  PPARG is the only gene across this GWAS locus that shows such a signal. 

Table 6.15: Rare non-synonymous (MAF<1%) variants in PPARG gene driving burden signal 

 

 Members of our laboratory are currently experimentally characterizing these and other non-

synonymous variants in the PPARG gene (including the common, missense GWAS tag SNP) to 

understand both their potential mechanism of action as well as their association to a range of 

metabolic phenotypes.  Across all ten T2D GWAS loci studied in this chapter, PPARG shows the 

strongest such burden of very rare disease-associated protein-coding variation. 
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Locus #7: CDKAL1; GWAS tag SNP rs7756992 (6:20679709; GoT2D MAF= 0.31; OR = 1.12) 

The CDKAL1 tag SNP has 12 common variants in tight LD (r2 > 0.8) and 47 common 

variants (including 6 insertion/deletion variants) in modest LD (r2 > 0.5).  None of these variants is 

protein-coding; all are non-coding and localize to an intron of CDKAL1.   

In the GoT2D panel, association at the tag SNP is relatively weak (p=0.05).  Visualization of 

association signal across the locus is somewhat deceptive: the top signal is actually a novel 

insertion/deletion mutation (located at 6:20730725; not seen in the 1000 Genomes Project) that is in 

only modest LD with the original tag SNP (r2=0.21).  Even after conditioning on the GWAS tag SNP, 

association at this variant remains (OR = 1.41, p= 1.49e-04).  However, upon closer inspection this 

variant occurs in a poly-A  track;;  it  is  an  “AAAAGAAAG” insertion; there is a high chance this variant 

is an artifact.  The top SNP signal (after excluding insertion-deletion events), however, still occurs at 

a site that is also in only weak LD with the original tag SNP: at 6:20741680 (r2 = 0.21; association 

p=2.3e-05 in GoT2D panel).  In the imputation meta-analysis, association at the tag SNP (p=1.8e-

22) is significantly stronger than association at this second SNP (for which p=7.8e-08), but the 

second signal is nearly genome-wide significant.  This suggests the possible presence of two 

independent common variant signals at the CDKAL1 locus. 

  

Figure 6.8: Association signal across the CDKAL1 GWAS locus 
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 The effect at the original GWAS tag SNP was too weak to evaluate the possibility of 

synthetic associations in this dataset, but we did look for evidence for rare or low frequency effects 

independent of the GWAS signal.  We  identified  2  ‘Goldilocks’  alleles  in  the  5-Mb interval; both were 

outside the GWAS locus, however, and neither replicated in imputation meta-analysis.  A scan for a 

burden of rare missense variation across protein-coding genes identified a weak protective signal at 

the CDKAL1 gene (collapsed SCORE test p=0.051; p=0.066 after conditioning on the tag SNP).  

This signal is driven by the variants listed in Table 6.16 below; no loss-of-function variants were 

identified.  Across a 5-Mb interval, CDKAL1 was the only gene showing nominal signal. 

 
Table 6.16: Rare missense (MAF<1%) variants in CDKAL1 gene driving (weak) burden signal 

 

 Missense variants in CDKAL1 could be further evaluated in ongoing (larger) exome 

sequencing and genotyping studies to further test the (therapeutically attractive) hypothesis that 

missense variation in this gene is associated with protection against T2D. 
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Locus #8: JAZF1; GWAS tag SNP rs849134 (7:28196222; GoT2D MAF= 0.48; no effect observed) 

The tag SNP at the JAZF1 locus has 16 common variants in tight LD (r2 > 0.8) and 22 

common variants (including 4 insertion/deletion variants) in modest LD (r2 > 0.5).  None of these 

variants is protein-coding; all are non-coding and localize to an intron of JAZF1.  No signal is 

observed at the GWAS tag SNP in the GoT2D sequenced panel; thus we looked to the imputation 

meta-analysis to perform credible set analysis (as we did for chr9p21 in Chapter 5, and HMGA2 

earlier in this chapter).  This reveals that 12 of the 18 SNPs (insertion-deletion variants were not 

imputed) in modest LD with the tag SNP comprise a 95% credible set of candidate common causal 

variants (above black line in Table 6.17).  These variants show essentially indistinguishable 

association signal, and either genetic studies in more samples or functional studies (see Chapter 7) 

will be required to identify individual variants with higher likelihood of being causal than others. 

Table 6.17: Common SNPs in 95% credible set at JAZF1 locus, ranked by imputation p-value 

 

The top signal in the GoT2D sequenced panel actually occurs at a putative novel common 

(MAF=15%) site (7:28109834) which shows OR = 0.76 and p=3.4e-04.  However, this variant shows 

little association after imputation meta-analysis (p=0.06), suggesting that it likely does not represent 

a true independent signal.   We see no strong evidence of independent rare variants of large effect 

at this locus.  There is no burden of T2D-associated protein-coding variation across the JAZF1 gene. 
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Locus #9: KCNJ11; GWAS tag SNP rs5215 (11:17408630; GoT2D MAF= 0.44; OR = 1.14) 

Like at PPARG, the tag SNP at the KCNJ11 locus is a missense variant in the KCNJ11 gene 

(p.V337I).  The haplotype which this SNP tags is fascinating: there are 18 common variants in tight 

LD (r2 > 0.8), of which three are missense variants!  In addition to the tag SNP, 11:17408630 

(p.K23E in KCNJ11; r2 to tag = 0.99) and 11:17408630 (p.A1369S in ABCC8; r2 to tag = 0.93) both 

show nearly identical association signal.  It is particularly interesting that these variants span two 

different genes, especially since the KCNJ11 and ABCC8 proteins are known to interact with one 

another as part of a potassium channel complex in beta cells (rare penetrant mutations in either 

gene are known to cause neonatal diabetes).  It is thus possible that a haplotype with three 

missense variants across these genes arose to common frequency due to epistasis (e.g., a 

synergistic biological effect of multiple mutations). 

Signal at this locus was too weak to test for the possibility synthetic associations.  We see no 

evidence for a burden of rare T2D-associated non-synonymous variation in either KCNJ11 (SKAT-O 

p=0.13) or ABCC8 (SKAT-O p=0.37).  We  detect  one  ‘Goldilocks’  variant  within  an  intron  of  KCNJ11  

(11:17392994; MAF = 1.1%; OR = 0.41 and p=0.002 in GoT2D), but this signal does not replicate in 

the imputation meta-analysis (p=0.08).  At this locus, we conclude that the three common missense 

variants are likely the most attractive signals to follow-up experimentally. 

Locus #10: KCNQ1; GWAS tag SNPs rs231362 (11:2691471; GoT2D MAF = 0.47; OR = 0.93)  

      rs163184 (11:2847069; GoT2D MAF = 0.44; OR = 0.78) 

The KCNQ1 locus (like chr9p21) is known to harbor two independent common variant 

association signals.1,4 The first (rs231362) has 1 only common variant in modest LD with it 

(11:2692249; r2 = 0.58); thus this tags a haplotype with very few candidate common causal variants.  

In the GoT2D sequenced panel, we observe no association signal at either of these SNPs (p=0.19 

and p=0.84); in the imputation meta-analysis, however, they both show comparable signal (p=1.0e-

05 at 11:2692249 and p=1.8e-05 at 11:2691471).   
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At the second GWAS tag SNP (rs163184, which is completely independent from the first tag 

SNP and separated by a peak of recombination; r2 = 0.00), we observe strong association in the 

GoT2D samples (p=1.2e-05; Figure 6.9).  This SNP has only 2 other common variants in tight LD 

with it (11:2838413 and 11:2844216) and 4 variants in modest LD (r2 > 0.5).  The association of all 

these variants in imputation meta-analysis is shown in Table 6.18.  None of these variants is protein-

coding; all are non-coding and localize to an intron of KCNQ1.   

 

Figure 6.9: Association signal across the KCNQ1 GWAS locus 
 
The meta-analysis results in particular raise the clear possibility that causal allele(s) at this 

locus could be either increasing or decreasing risk of T2D; the most associated variants after meta-

analysis are actually SNPs for which the major allele is in modest LD with the tag SNP (and the 

minor allele shows association in the direction of increased T2D risk).  It is never possible to infer 

with certainty, from only associated marker alleles, the causal direction of effect at any GWAS locus; 

the pattern of signals at KCNQ1 just highlights this challenge. 

Table 6.18: Top common variants in LD with KCNQ1 GWAS tag SNP rs163184 (11:2847069) 
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Interestingly, however, none of this group of variants in LD with rs163184 is actually the top 

association signal observed in the GoT2D dataset.  The top signal is a potentially third independent, 

relatively lower frequency signal which occurs at 11:2858440 (rs2237896; MAF = 5.5%; OR = 0.55, 

p=3.7e-06).  This variant is present in the HapMap catalog, but may not have been on first 

generation GWAS arrays.  After conditioning on this SNP, we see that association at the GWAS tag 

SNP rs163184 remains unchanged (and vice versa), suggesting that this is indeed an independent 

signal.   This variant is in LD with only 5 other variants; these are listed in Table 6.19 below.  In 

imputation meta-analysis, one of these SNPs shows genome-wide significant association to T2D 

(p=2.2e-08), confirming that this appears to be a true third signal.   

Table 6.19: SNPs tagging third independent, novel genome-wide significant signal at KCNQ1 

 
 

We asked whether rare or low frequency variants might explain the signal at the second 

GWAS tag SNP (rs163184).  We find that 15 variants segregating on the protective GWAS 

haplotype would be required to reduce the effect at the haplotype from 0.79 to 1.0, making a 

common causal variant the much more parsimonious genetic model.  In this case, interpretation of 

this finding is made more challenging by the fact that some of the low frequency protective variants 

that are selected to explain the GWAS signal also partially tag the haplotype underlying the third 

independent signal.  As a result, comparison of the explanatory power of the low frequency model to 

that of a model with only the common protective haplotype of rs163184 is confounded. 

There  are  several  (18)  low  frequency  ‘Goldilocks’  alleles  detected  across  the  KCNQ1  locus,  

but in most cases these signals are at least partially explained by one of the two strong common 

variant signals at the locus (especially 11:2858440, which has a low MAF of 5.5%).  Four of these 

variants show relatively strong association signal (p~1e-04 or less) in the imputation meta-analysis, 
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but their signal is much less than that observed at 11:2858440 (p=6.7e-08).  In the GoT2D panel, 

these SNPs have the property that their association is reduced (from p=5e-06 to p=0.001, for 

example) but not entirely eliminated after conditioning on 11:2858440 (Table 6.20).  All these four 

variants lie to the right of the GWAS interval (on the other side of a strong hotspot of recombination, 

up to 130kb away from 11:2858440), and exhibit only weak LD with 11:2858440 (r2 ~ 0.05).  To test 

the hypothesis that these low frequency variants might still be driving the association signal at 

11:2858440, we tested association at 11:2858440 after conditioning on these four variants, and 

found that it was reduced but not eliminated (OR = 0.65, p=0.0016).  These data collectively suggest 

that there might be additional, independent T2D association signals of low frequency at this locus.   

Some of these (Table 10.3) might be attractive candidates for follow-up genotyping in large samples. 

Table 6.20:  Potential  ‘Goldilocks’ novel low frequency signals at the KCNQ1 locus  

 

Finally, we did not detect a significant burden of rare T2D-associated missense variation in 

the KCNQ1 gene (SKAT-O p=0.27). 
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Chapter 7 

Functional studies of regulatory elements across the chr9p21 and 
JAZF1 loci 
 

The fine-mapping studies conducted in Chapters 5-6 narrow the space of genetic models 

plausible at any given T2D locus where genetic association is observed, but ultimately these 

hypotheses must be tested in biological systems in order to gain insight into mechanisms underlying 

the disease.  One of the challenges we face in testing these hypotheses, however, is that in the vast 

majority of cases, the set of candidate causal variation across a GWAS locus lies entirely within non-

protein-coding regions of the human genome.  In this chapter, we present some (preliminary) 

experimental work, undertaken with Jessica Alston and Jason Wright, aimed at identifying non-

coding regions with enhancer activity across the chr9p21 and JAZF1 loci.  We reasoned that 

annotating function across an otherwise poorly understood genomic region would be a first step 

towards both prioritizing candidate causal variants within the locus and shedding light on some of the 

regulatory pathways underlying T2D pathogenesis. 

Background: in vitro enhancer screening 

 Throughout this chapter, we use in vitro luciferase-based enhancer screens to identify 

fragments of the genome that may have regulatory function.  Briefly, in this technique, a test 

fragment of DNA is cloned in a plasmid upstream of a luciferase reporter gene, and then transfected 

into cells of interest (see Methods below).  The level of luciferase expression in cells transfected with 

the test fragment is compared to cells transfected with an  ‘empty’  vector  containing  only  a  minimal  

promoter and the luciferase gene; test fragments that significantly increase or decrease expression 

of the luciferase reporter gene are identified as having potential in vitro enhancer or silencer activity.  

This technique has been broadly used in the literature to characterize non-protein-coding regions of 

the genome with putative regulatory function.  
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 Of course, this screening method has many limitations in both its sensitivity and specificity.  

A  biological  enhancer’s  in vivo function may depend on many factors not recapitulated in an in vitro 

assay, such as the expression of particular genes and proteins (e.g. transcription factors), cellular 

state (e.g. dividing vs. senescent), and 3D chromatin structure (which may bring other parts of the 

genome in close proximity with a fragment to facilitate joint function).  Moreover, the in vitro assay is 

typically performed in a cell line (into which DNA can be transfected) which likely does not behave 

exactly as human tissues in the body do.  Thus, a fragment that does not show activity in this assay 

may very well still have endogenous in vivo activity.  Specificity, too, may be lacking in this 

experiment: a fragment that shows enhancer activity when it is artificially cloned immediately 

upstream of a reporter gene may not actually have the ability to modulate expression of (perhaps 

farther away) genes in the endogenous human genome.  Thus, all signals (both positive and 

negative) from such in vitro must be interpreted with great caution and must be further characterized 

(e.g. using newly available genome engineering techniques, for example, which enable manipulation 

of a test fragment in its endogenous genomic context; see Appendix A4). 

 Nonetheless, there are numerous examples in the literature of cases in which hits from an in 

vitro screen have enabled formulation of targeted biological hypotheses that could be highly 

informative on disease biology.  In fact, at chr9p21, a study recently reported the discovery of such 

an enhancer fragment located within the region where common variants are associated to coronary 

artery disease (CAD).1  This study identified an enhancer fragment containing a STAT1 binding site 

which appears to be disrupted by a CAD-associated variant.  The authors also reported that activity 

of this regulatory unit was modulated by interferon-γ signaling, suggesting that this inflammatory 

pathway may play a role in CAD pathogenesis.  This study did not report a systematic screen across 

the locus, and did not test all candidate causal variants for biological activity, but nonetheless 

presented a novel biological hypothesis that may merit further study.  The extent to which such 

hypotheses will be validated as genome engineering approaches are more broadly applied remains 
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to be seen, but during the time this thesis was conducted, in vitro enhancer screens remained 

among the most informative windows into the function of non-protein-coding regions of the genome. 

Biological background and motivation: chr9p21 

The T2D association signal at chr9p21 is entirely contained within a relatively small non-

protein coding region (as discussed in Chapter 5).  It has been speculated that these variants may 

play a role in regulating the expression of the genes CDKN2A, which encodes p16INK4a, and 

CDKN2B, which encodes p14ARF, both of which are potent tumor suppressors.  Evidence supporting 

this hypothesis comes from studies which demonstrate (a) that the targets of p16 are regulators of 

pancreatic beta-cell development2,3, and (b) that p16 may play a role in beta-cell aging4.  A causal 

variant which changes expression of these genes might cause dysregulation of cell cycle processes 

in beta cells, and might thereby cause the beta-cell burnout that is associated with the onset and 

progression of the human type 2 diabetes phenotype.   

Alleles at the variants associated with CAD at chr9p21 (independent of the T2D-associated 

variants) have actually been shown to be correlated with expression of CDKN2A/B, lending support 

to the hypothesis that common variants may influence risk of common diseases by modulating 

expression of these genes.  The T2D-associated alleles have not been correlated with CDKN2A/B 

expression in any studies conducted to date, but this absence of signal could be explained by the 

fact that few eQTL discovery studies have been performed in beta cells and other tissues relevant 

for T2D pathophysiology.  While the chr9p21 region associated with CAD has been characterized via 

deletion in mouse5 (and in vitro enhancer screening1, as mentioned above), the T2D-associated 

region had not yet been experimentally interrogated for regulatory function when this work was 

initiated (by Jessica Alston).  

Biological background and motivation: JAZF1 

Like at chr9p21, common variants near JAZF1 have been associated to a host of human 

phenotypes including prostate cancer6, human height, colon cancer, and lupus.  All the candidate 

(common) causal variants identified in LD with the T2D-associated SNP (in Chapter 6) lie within the 
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first intron of the JAZF1 transcript.  One attractive biological hypothesis is that variants within this 

intron are responsible for modulating expression of the JAZF1 gene.  This hypothesis is strongly 

supported by the finding that T2D-associated common variants are also eQTLs for the JAZF1 

transcript in adipose tissue; that is, alleles at these variants are associated with differences in the 

level of JAZF1 expression.  We confirmed this finding by analyzing the effect of genotype at two T2D 

tag SNPs (rs1635853 and rs849140) on JAZF1 expression in publicly available expression data from 

264 HapMap lymphoblastoid cell lines (Figure 7.1); these data suggest that the eQTL may be 

functional in many tissues (in addition to just adipose, where it was previously reported). 

 
Figure 7.1: Effect of genotype at JAZF1 tag SNPs on JAZF1 expression in HapMap cell lines 

Further evidence suggesting that JAZF1 may indeed be the gene target for T2D-associated 

regulatory variants comes from a recently described JAZF1 knock-out mouse, which has a 

metabolically dysregulated phenotype including postnatal growth retardation, reduced serum IGF1, 

excess fat accumulation, decreased muscle mass, and reduced insulin-stimulated whole body and 

muscle glucose uptake (unpublished; conference abstract).  Thus, we might speculate that variants 

that increase risk of T2D do so by subtly increasing or decreasing expression levels of the JAZF1 

gene in disease-relevant tissue types.  The enhancer screens we conducted test this hypothesis. 

Methods and experimental design 

At both the chr9p21 and JAZF1 loci, we defined a panel of tiled test fragments, each of about 

2-3kb in length, across the locus of interest.  We were careful to ensure that GWAS tag SNPs were 
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included within these fragments, and also designed fragments to cover the boundaries of histone 

modification peaks across the region (annotated by the ENCODE Project).  The test fragments 

designed for the chr9p21 T2D locus and the JAZF1 T2D locus are shown in Figure 7.2 and Figure 

7.3 (the T2D GWAS tag SNPs highlighted at green dotted lines).  As seen in both these figures, 

there is much reason to hypothesize that these regions may indeed contain regulatory functional 

elements.  At chr9p21, Figure 7.2 shows that the patterns of histone modification across multiple 

cell lines are consistent with the presence of several weak (yellow) and strong (orange) enhancer 

elements, at which many transcription factors have been shown to bind in ChIP-Seq experiments.   

 

 

In the first intron of JAZF1, we observe similar patterns: enhancer-associated histone 

modifications (e.g. H3K4Me3) are scattered across the (transcribed) intron across multiple cell types, 

and are also associated with the binding of numerous transcription factors (Figure 7.3).  These 

observations further motivated the enhancer screening experiments described below. 

Figure 7.2: Test fragments designed across the T2D chr9p21 locus.   
These are located in a non-protein-coding region of the genome >100kb away from the nearest gene. 
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 Each of the test fragments shown above was amplified from genomic DNA extracted from 

HapMap immortalized lymphoblastoid cell lines identified as being 

homozygous for the T2D-associated risk haplotype (different individual cell 

lines were used for chr9p21 and JAZF1 cloning).  Each test fragment was 

then cloned upstream of a minimal promoter and firefly luciferase gene into 

the Promega pGL4.26 plasmid (Figure 7.4).  Preps for all plasmids (at 

each locus) were produced on the same day, and concentrations were 

normalized before transfection to ensure maximal consistency across test fragments.  In order to be 

able to interpret the enhancer activity of these test fragments, we recognized that positive and 

negative controls would be useful.  These are difficult to define: there is not actually a vast literature 

on well-validated human enhancer elements, and the tissue-specificity of these elements makes it 

difficult to know which fragments likely have or lack pan-cell-type activity.  To address this challenge, 

we leveraged a set of in vivo (transgenic mouse) enhancer screening data available as part of the 

Figure 7.3: Test fragments designed across the T2D JAZF1 locus.   
These are located within the first intron of the JAZF1 gene.  
 

Figure 7.4: pGL4.26 plasmid 
used for enhancer screening  
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VISTA Enhancer Browser7.  In this resource, hundreds of candidate human enhancer regions were 

cloned upstream of a LacZ reporter gene, injected into mouse oocytes, and then profiled for activity 

across a wide range of embryonic tissues.  We used this dataset to identify fragments that showed 

constitutive  activity  across  all  embryonic  tissues  (one  such  fragment  on  chr9  is  termed  ‘m14’  below)  

and  fragments  showing  no  activity  (‘m15’  below). 

 Each plasmid was transfected alongside a normalization control.  This control plasmid 

contained a different luminescent reporter (renilla luciferase) downstream of a constitutively active 

promoter (in the pGL4.74 plasmid), and no test fragment.  This co-transfection protocol 

(accomplished using Promega DualGlo reagents) enabled us to control for differences in transfection 

efficiency across master mixes, and differences in cell number across wells (of a 96-well plate).  We 

optimized transfection conditions for a range of human cell lines (selected for a combination of ease 

of transfection as well as biological hypotheses about the cell types in which enhancer elements at 

chr9p21 and JAZF1 may function, respectively).  The protocol we followed is roughly outlined below: 

1. Plate cells in 96-well plate at ~10-20K cells per well. 
2. Add pGL4.74 to DMEM (no additives) at a concentration of 200ng per ~87ul media. 
3. Prepare each transfection master mix by mixing ~87ul DMEM+pGL4.74, 5ul test 

amplicon pGL4.26 plasmid (at 400ng/ul = 2ug total), and 8ul Fugene reagent. 
4. Shake and let sit for 20 minutes. 
5. Add 10ul of master mix to each well of cells, in which ~150ul media should be present. 
6. Shake the transfected plate of cells, and incubate at 37C. 
7. After ~36 hours, lyse cells and transfer to an opaque-bottom 96-well plate.  Read out 

firefly luminescence, and after quenching read out renilla luminescence per well. 
8. Record normalized (ratio of firefly to renilla) luminescence per well. 

 
Results: chr9p21 studies 

 Much of the chr9p21 experiments were performed by Jessica Alston, who cultured and 

transfected a wide variety of cell types selected to represent the range of phenotypic associations 

reported across the broader chr9p21 locus: MCF7 cells for breast cancer, T98G and U87MG for 

glioma, A375 for melanoma, and HEPG2 for T2D.  As part of this thesis, we developed protocols for 
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the culture and transfection of human primary pre-adipocytes, and performed the enhancer screen 

(in conjunction with Jason Wright) in rat pancreatic insulinoma cells (INS1E).  The results of these 

screens across this broad panel of cell types are shown in Figure 7.5 below.   

 

 

The positive and negative controls (m14 and m15, respectively) show consistent activity across all 

cell types.  No test fragment across the T2D locus shows pan-cell type activity, and in fact most 

fragments show no activity in any cell type.  However, we identify a single fragment (m67) which 

shows strong and reproducible enhancer activity that is exclusive to the INS1E (pancreatic) cell line.  

Figure 7.5: Enhancer screening across the chr9p21 T2D GWAS locus in a panel of cell lines identifies at a 
putative pancreas-specific regulatory element. 
 

Two bars for each test amplicon represent independent transfection experiments performed on different plates of 
cells on different days.  Standard deviations plotted for each bar represent range across wells of technical replicates. 
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Partially overlapping amplicons or sub-fragments of the m67 amplicon (m7, m9, m13b, and m11) do 

not show activity, suggesting that the full fragment is required to exert enhancer function. 

 
 

 Interestingly, m67 happens to also contain several T2D candidate causal variants on both 

the risk and protective haplotypes (including rs12555274, which was identified in Chapter 5 as being 

>99%  likely  to  drive  the  risk  haplotype’s  association), raising the hypothesis that different alleles at 

these variants might confer different regulatory activity at this element (Table 7.1).  Experiments to 

characterize the allele-specific activity of this fragment in INS1E cells – and also detect potential 

allele-specific differences in transcription factor binding – are currently being undertaken in our lab.  

We are also pursuing experiments to determine whether candidate transcription factors (such as 

HNF1B, which is predicted to bind at m67) are necessary for function of the element (e.g., by 

performing the screen in INS1E cells where HNF1B has been deleted).  Given the observation of 

enhancer activity at the m67 fragment, members of our lab are also pursuing genomic deletion of 

this sub-fragment from the endogenous genome in human cells (in addition to deletion of the entire 

T2D GWAS locus) in an effort to connect regulatory elements to the expression of specific candidate 

genes (e.g. CDKN2A, CDKN2B, MTAP, or the non-coding transcript ANRIL).  

Results: JAZF1 studies 

 At the JAZF1 T2D locus, we successfully cloned 19 out of the full panel of 32 test fragments 

designed in Figure 7.3.  We were unable to clone the remainder due largely to PCR failures.  Of the 

Table 7.1: Coordinates of chr9p21 enhancer amplicons, and candidate T2D variants within each fragment 
SNPs tagging the risk haplotype are listed in orange; SNPs tagging the protective haplotype are in green. 
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19 fragments that were cloned, several contain candidate common causal SNPs at the JAZF1 locus 

(from Table 6.8.1; see Table 7.2 below).  In addition, during the time these experiments were 

designed,   colleagues   in   Steve   McCarroll’s   laboratory   at   the   Broad   Institute   noticed a common 

structural variant at the JAZF1 locus (a 360bp deletion at chr7:28214300-28214664; hg19) in high 

LD with the protective allele at the T2D-associated GWAS tag SNP (r2=0.91).  A deletion of this size 

would be an interesting candidate causal variant, especially if it was overlying a region of putative 

regulatory function.  We thus designed fragments J29 and J30 (Figure 7.3) specifically to ensure 

that they contained the deleted region (we cloned the risk haplotype of these fragments, which did 

not contain the deletion, with the hypothesis that the deletion might reduce the  element’s  baseline  

regulatory activity).  J29 and J30 were among the 19 amplicons that were successfully cloned. 

 We screened these 19 fragments for enhancer activity in only a single human cell line (293T; 

data shown in Figure 7.6).  Most fragments show no activity, including J29 and J30.  Four 

fragments, however, appear to have strong enhancer activity, increasing expression of the luciferase 

gene by more than 4-fold relative to the empty vector containing only a minimal promoter. 

 

 

These four fragments – J10, J13, J18, and J25 – contain several T2D candidate SNPs (which could 

now be tested for allelic effects by cloning these fragments from human cells containing the 

Figure 7.6: Enhancer screening across the JAZF1 locus with a subset of successfully cloned amplicons. 
 

Error bars represent standard deviations across technical replicates. 
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Figure 7.7: Predicted transcription factor binding and 
histone modifications across the four fragments showing 
strong enhancer activity at the JAZF1 T2D GWAS locus. 

protective rather than risk T2D haplotype), as well as a number of annotated transcription factor 

binding sites (Figure 7.7).  These may provide interesting hypotheses to test in further studies. 

     
 
 Very recently (May 2013), a study reported allele-specific differences in enhancer activity at 

the T2D JAZF1 GWAS tag SNP rs1635852 (chr7: 28189411).8  The authors report a variety of allele-

specific effects, including lower transcriptional activity, increased binding to protein complexes, and 

preferential binding to the pancreatic master regulator PDX1.  Although the authors did not conduct 

a comprehensive screen for regulatory activity across the locus, and tested only 5 total SNPs in LD 

with the tag SNP (though there are 14 with r2 > 0.8), these data are very compelling, and must be 

considered as any future experiments at the JAZF1 are planned.  Unfortunately, this SNP falls within 

fragments J6, J7, and J8 in the enhancer screen designed here; these fragments are yet to be 

successfully cloned and so our data cannot support or reject this recently published hypothesis. 

Discussion 

In the set of experiments described above at chr9p21 and JAZF1, we have merely begun the 

process of annotating regulatory function across the T2D-associated locus.  Our observations – of 

Table 7.2 Coordinates of JAZF1 enhancer 
amplicons and candidate T2D variants 
within each fragment 

http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=342292491&db=hg19&position=chr7%3A28189411-28189411
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islet-specific enhancer activity at a single fragment at chr9p21, and strong enhancer activity at four 

sub-fragments at JAZF1 – contribute to functional characterization of these regions, and suggest 

that these regions may indeed play a role in the regulation of gene expression.  However, it is critical 

to recognize that these may just be the natural functions of these genomic regions, and the 

fragments we have identified may have nothing to do with T2D biology unless allele-specific effects 

are detected at SNPs that are associated with risk of T2D in human populations. 

Nonetheless, we hope that the reagents developed during this work and the data presented 

in this chapter may help future investigators refine and test biological hypotheses at the chr9p21 and 

JAZF1 loci. 
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Chapter 8 

Classes of variation genome-wide enriched for association to T2D 
 

In Chapter 7, we studied two individual loci at which genetic variants associated with risk of 

T2D are hypothesized to exert their effect by changing the function of non-protein coding regulatory 

elements.  This hypothesis is supported not only by the preliminary data we presented, but also by 

the observation that these loci are densely annotated with biochemical marks (‘epigenetic  

modifications’) suggestive of regulatory activity.  Ultimately, more experimental studies will be 

required to test whether T2D-associated variants do in fact modulate enhancer activity at these 

individual loci, but one parallel way to gain insight into the global regulatory mechanisms underlying 

T2D is to ask the reverse question: genome-wide, are variants that lie within putative regulatory 

regions enriched for association to T2D? 

The ability to ask this question has only recently been enabled by the vast datasets 

generated by public consortia including the ENCODE and Epigenome Roadmap Projects1.  Over the 

past few years, these projects have conducted thousands of experiments to profile histone 

modifications, DNase I hypersensitivity, transcription factor binding, gene expression, and more 

across a large number of human cell types.  Patterns of co-occurrence and spatial relationships 

within these data have then been used to build genome-wide   ‘chromatin   state’  maps,   or  maps  of  

regulatory state, for each cell type profiled.2  A host of recent publications have leveraged these data 

to demonstrate that common variants associated to human phenotypes in GWAS are more likely 

(than expected by chance) to lie within regulatory elements.3–6  For type 2 diabetes, for example, 

common SNPs at GWAS loci were shown to preferentially fall within ChIP-Seq peaks of the histone 

modification H3K4Me3 that occur in pancreatic islets and adult liver.5 

These studies were restricted, however, to study of only the most strongly associated 

(genome-wide significant) loci for each trait, and in some cases they considered only incomplete 

catalogs of common variation (e.g. only variants present in the HapMap Phase 2 and 3 catalog).  In 
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this chapter, we analyzed the whole-genome sequencing dataset described in Chapters 5-6 (which 

tests a complete catalog of genome-wide common and low frequency variation for association to 

T2D) to ask whether any regulatory classes (e.g. enhancers in any particular cell type) show 

evidence for enrichment for association to T2D.  We present results for only common (MAF > 5%) 

variants below. 

Method for evaluating enrichment 

Another   way   of   stating   the   above   ‘enrichment’   question   is   simply:   do   variants   falling   in  

regulatory regions have association p-values that are skewed to be less than p-values for variants 

outside regulatory regions?  This   ‘skew’   can   then   be   quantified   and   evaluated   for   statistical  

significance using a number of methods, including a hyper-geometric test performed at a given 

association p-value threshold (e.g. p=0.01).  This test is described in Figure 8.1 below.  Intuitively, 

this test asks whether the number of variants in regulatory regions that have a T2D association p-

value <0.01 is unusual, given the number of total variants that exist with p<0.01 and the number of 

variants in regulatory regions across the genome. 

 

 

We performed this hyper-geometric test at a variety of p-value thresholds, for common variants lying 

in regions annotated as enhancers, DNase I hypersensitivity sites, and FAIRE-Seq peaks (another 

open chromatin mark suggestive of regulatory activity) in a panel of 15 different human cell types 

(the cell lines GM12878, HepG2, NHEK, HUVEC, K562, HeLa, and HI-hESC, as well as primary cell 

types including pancreas, islet, adipose, smooth muscle, kidney, skeletal muscle, and colon). 

Figure 8.1: Hyper-geometric test for enrichment at T2D association p-value threshold of 0.01 
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Results 

The results of these analyses are shown in Figure 8.2-3.  Briefly, we detect strong 

enrichment signals in regulatory regions annotated as enhancers across a number of cell types, 

including pancreas, GM12878 (blood), HepG2 (a liver cell line), adipose tissue, smooth muscle, and 

kidney.  We also detect (weaker) enrichment for T2D association across common variants in islet 

FAIRE-Seq peaks.  It is interesting that this set of cell types contains numerous tissue types already 

thought to play a role in T2D biology (e.g., islets, liver, and adipose). 

 

 

The multitude of cell types that show enrichment was initially surprising (and in contrast to 

the tissue-specific enrichment results previously described5 at only the top T2D GWAS loci).  

However, regulatory regions are often active across a wide range of cell types, and thus the 

annotations may overlap a great deal; we have not yet characterized the degree of this overlap.  

This does not necessarily mean that a large number of tissue types must be implicated in T2D 

biology (though this is certainly possible); even if T2D variants lie in regions with broad activity, 

Figure 8.2: Examples of regulatory annotations that are not enriched, weakly enriched, or strongly enriched 
for common variant association to T2D. 
 

Quantile-quantile plots show all common variants intersecting the regulatory annotation (e.g. common variants 
falling within regions annotated as enhancers in hESCs) in light blue, variants not intersecting the track in dark blue, 
and all common variants genome-wide in black.  (Often the dark blue and black are indistinguishable if the 
regulatory annotation covers only a very small part of the genome).  Light grey lines (there are 50 in each plot) 
represent randomly generated negative control regulatory annotations, generated to match the test annotation in 
total number and frequency distribution of overlapping variants. Hyper-geometric test is performed at an association 
p-value threshold of 0.01 as shown in Figure 8.1.  As seen visually, significant enrichment is detected when the 
light blue points diverge from both the dark blue points, as well as from the negative controls (light grey). 
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allele-specific effects on function could only exist within certain cell types (due to the presence of 

particular factors expressed in these cells, for example).  

 

 

Given that the top T2D GWAS regions have been previously shown to be enriched for 

variants in regulatory regions, we wondered to what extent the genome-wide enrichments we 

observed were driven by already known GWAS signals vs. potentially novel regions of association.  

To assess this, removed all variants within 200kb of any T2D GWAS tag SNP or within 50kb of the 

protein-coding genes nearest GWAS tag SNPs.  We then re-computed hyper-geometric p-values 

and re-visualized the skew in T2D association p-values (as was done in Figure 8.2).  We find that 

for some regulatory annotations (e.g. the adipose enhancers), the enrichment is largely driven by 

GWAS loci (after removing GWAS loci, hyper-geometric p=0.22 as compared to 1.9e-09 before).  

However, for other annotations, such as HepG2 enhancers, significant enrichment remains even 

after removal of GWAS loci (hyper-geometric p=6.4e-06 after removal; see Figure 8.4).  This 

suggests that a broad set of common variants across HepG2 enhancers genome-wide might each 

be contributing weak effects to the inherited risk of T2D. 

Figure 8.3: Results of testing for enrichment for association to T2D at common variants across non-coding 
regulatory regions annotated in a panel of human cell types. 
 

Heat map shows –log10(hyper-geometric p-value) computed at an association p-value threshold of 0.01.  Grey 
indicates no regulatory annotation was available for this cell type.  Dark blue indicates more significant enrichment. 
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These findings, if true, have several implications.  First, the patterns of enrichment seen 

across multiple regulatory annotations would be consistent with genetic models in which a very large 

number of causal variants are spread across a large number of regulatory regions.  Because these 

variants are likely to alter gene expression rather than protein function (and that too in subtle ways, 

given the redundancy of regulatory elements), we might expect that the effect sizes of these variants 

are weak.  Second, the discovery of regulatory annotation classes that are clearly enriched for T2D 

association may improve power to discover novel disease associations in genetic studies; the prior 

probability that variants detected within such regulatory elements are associated to T2D would be 

higher, and this may facilitate more informed and targeted genetic follow-up (e.g. of a few variants, in 

larger sample sizes).  Finally, the identity of the cell types showing enrichment for T2D association 

may be useful for functional investigators studying particular genes and pathways.  Regions 

containing T2D-associated variants could be scanned for regulatory elements in the tissue types 

identified here; the presence of such elements may not only prioritize candidate causal variants, but 

also point to cell types in which these variants might be functionally interrogated. 

Figure 8.4: Example of enrichment (at HepG2 enhancers) not driven entirely by T2D GWAS loci 
 

Figure at left is shown for all common variants genome-wide (as in Figure 8.2).  At right, common variants in T2D 
GWAS regions have been removed. 
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Much further analysis is required, however, to further test and confidently interpret these 

findings.  For example, we have not yet accounted for linkage disequilibrium patterns between 

common variants.  If the haplotypes at disease-associated variants in regulatory regions are longer 

than average haplotypes, for example, this could explain a portion of the enrichment observed 

(many SNPs highly correlated with each other could be driving the top signals).  Such a finding 

would not negate the enrichment altogether, but may impact its interpretation (with respect to 

questions about the number of unique enhancers contributing to risk of T2D, for example).   

Additional tests of statistical significance (e.g., Mann Whitney rank-sum test, Kolmogorov-

Smirnov test) should be performed to further characterize the nature and robustness of the 

enrichments observed.  In particular, permutation-based approaches may also be informative: a 

distribution of negative controls (such as those depicted as grey lines in Figures 8.2) might be 

quantitatively compared to the observed set of p-values across a particular functional annotation 

category.  These negative controls could be randomly selected genome-wide SNPs matched on 

various properties (e.g. frequency, distance from genes, haplotype length), or they could be 

generated by locally shifting the regulatory annotations (e.g. to preserve locus properties, but 

evaluate whether common SNPs specific to those elements are actually producing excess 

association signal).   Future studies should also evaluate enrichment across low frequency and rare 

variants, as well as in regulatory annotations across a broader panel of cell types and tissues. 
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Future directions 

In this thesis, we have described various methods aimed at integrating diverse datasets to 

gain insight into the underlying architecture of disease type 2 diabetes (T2D).  These included a 

population genetic simulation framework, haplotype-based fine-mapping techniques, and 

approaches for interrogating experimental data at non-protein-coding disease-associated regions of 

the genome.  The work begun here is far from complete, and a number of exciting avenues of future 

research follow from the results presented in this thesis: 

(1) Extensions of the population genetic simulation framework.   

The simulations described in Chapters 1-3 could be improved to model more features of human 

genetic data in a number of ways: diverse locus structures could be simulated, non-protein coding 

regions could be simulated around genes (with different distributions of purifying selection), and 

multi-ethnic population histories could be simulated to evaluate genetic studies conducted in non-

European populations.  Such extensions can be made readily by training a few novel simulation 

parameters and using the methods already presented here. 

(2) Incorporation of data from recently completed T2D genetic studies into the framework. 

Chapter 3 compared the results of simulated genetic studies – linkage and GWAS – to those 

generated empirically for T2D, and generated predictions for the results of ongoing sequencing and 

large-scale genotyping studies under different disease models.  In particular, we predicted that the 

results of such studies would diverge significantly under models that currently appear to be 

consistent with the results of GWAS.  As this thesis is being written, analysis of these sequencing 

studies is ongoing and very soon these data could be rigorously compared to simulations under 

disease models that could not yet be excluded at the end of Chapter 3.  These data may place much 

tighter bounds on the genetic architecture of T2D. 
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(3) Follow-up genotyping and experimental characterization of variants identified in fine-

mapping studies. 

In order to translate the genetic results presented in Chapters 5-8 into biological mechanisms of 

T2D, a great deal of follow-up is required.  We hope that the results presented here constrain, to 

some extent, the full space of plausible hypotheses that must be tested.  At some loci, for example, 

we describe a relatively small set of candidate causal mutations that might each be engineered in 

human cells (perhaps in tissue types that showed enrichment for association to T2D in Chapter 8).  

In other cases, we identify a handful of putative low frequency variants that might be prioritized for 

genotyping in a follow-up study.  Finally, at chr9p21 and JAZF1, the regulatory elements we 

identified could be tested for allele-specific effects and potentially connected to biological pathways. 

(4) Application of these methods to the study of other complex traits. 

All the methods described here are applicable to the study of many complex traits.  Linkage and 

GWAS have been conducted for a host of common diseases, and genotyping and sequencing 

studies are now underway.  For every trait, integrating data from these diverse studies (alongside 

epidemiological data on the prevalence and heritability of the trait) presents a daunting challenge; 

specifying precise hypotheses that are grounded in population genetic principles offers one route to 

insight about the underlying genetic architecture.  If the framework we describe in this thesis were 

applied to a range of complex traits for which different patterns have been observed in GWAS (e.g. 

autism, inflammatory bowel disease, AMD), it would be fascinating to compare and contrast the 

constraints placed  by  empirical  data  on  each  trait’s  genetic architecture.   

These are just some of the most immediate follow-on research projects apparent to us at the 

present time; readers of this thesis will hopefully be inspired to forge others!  Even though the 

analytical and experimental methods available to investigators are likely to change in coming years, 

we hope that the framework for hypothesis testing presented here may retain enduring value for 

future research in the field of human genetics. 
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Appendix A1 

ForSim configuration file containing best-fit evolutionary parameters 
 

Below is the configuration file containing the mutation and recombination rates, demographic 

history parameters, and selection coefficient distribution which produced the best match to empirical 

sequencing data (as described in Chapter 1).  This file can be used with the forward simulation 

software tool ForSim1 to generate empirically calibrated human genetic sequence variation in large 

sample sizes. 
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Configuration file 

global begin 
fertility poisson 2.0 
 
2.0 megabases per centiMorgan male 
2.0 megabases per centiMorgan female 
mutation rate 2.0 e -8.0 female 
mutation rate 2.0 e -8.0 male 
 
generations 50371 
event 50000 setCarryingCapacity Population 2000 
event 50001 setCarryingCapacity Population 2026 
event 50002 setCarryingCapacity Population 2052 
event 50003 setCarryingCapacity Population 2078 
event 50004 setCarryingCapacity Population 2105 
event 50005 setCarryingCapacity Population 2132 
event 50006 setCarryingCapacity Population 2159 
event 50007 setCarryingCapacity Population 2187 
event 50008 setCarryingCapacity Population 2215 
event 50009 setCarryingCapacity Population 2244 
event 50010 setCarryingCapacity Population 2273 
event 50011 setCarryingCapacity Population 2302 
event 50012 setCarryingCapacity Population 2332 
event 50013 setCarryingCapacity Population 2362 
event 50014 setCarryingCapacity Population 2392 
event 50015 setCarryingCapacity Population 2423 
event 50016 setCarryingCapacity Population 2454 
event 50017 setCarryingCapacity Population 2486 
event 50018 setCarryingCapacity Population 2518 
event 50019 setCarryingCapacity Population 2550 
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event 50020 setCarryingCapacity Population 2583 
event 50021 setCarryingCapacity Population 2616 
event 50022 setCarryingCapacity Population 2650 
event 50023 setCarryingCapacity Population 2684 
event 50024 setCarryingCapacity Population 2719 
event 50025 setCarryingCapacity Population 2754 
event 50026 setCarryingCapacity Population 2789 
event 50027 setCarryingCapacity Population 2825 
event 50028 setCarryingCapacity Population 2861 
event 50029 setCarryingCapacity Population 2898 
event 50030 setCarryingCapacity Population 2935 
event 50031 setCarryingCapacity Population 2973 
event 50032 setCarryingCapacity Population 3011 
event 50033 setCarryingCapacity Population 3050 
event 50034 setCarryingCapacity Population 3089 
event 50035 setCarryingCapacity Population 3129 
event 50036 setCarryingCapacity Population 3169 
event 50037 setCarryingCapacity Population 3210 
event 50038 setCarryingCapacity Population 3251 
event 50039 setCarryingCapacity Population 3293 
event 50040 setCarryingCapacity Population 3335 
event 50041 setCarryingCapacity Population 3378 
event 50042 setCarryingCapacity Population 3422 
event 50043 setCarryingCapacity Population 3466 
event 50044 setCarryingCapacity Population 3511 
event 50045 setCarryingCapacity Population 3556 
event 50046 setCarryingCapacity Population 3602 
event 50047 setCarryingCapacity Population 3648 
event 50048 setCarryingCapacity Population 3695 
event 50049 setCarryingCapacity Population 3743 
event 50050 setCarryingCapacity Population 3791 
event 50051 setCarryingCapacity Population 3840 
event 50052 setCarryingCapacity Population 3889 
event 50053 setCarryingCapacity Population 3939 
event 50054 setCarryingCapacity Population 3990 
event 50055 setCarryingCapacity Population 4041 
event 50056 setCarryingCapacity Population 4093 
event 50057 setCarryingCapacity Population 4146 
event 50058 setCarryingCapacity Population 4199 
event 50059 setCarryingCapacity Population 4253 
event 50060 setCarryingCapacity Population 4308 
event 50061 setCarryingCapacity Population 4363 
event 50062 setCarryingCapacity Population 4419 
event 50063 setCarryingCapacity Population 4476 
event 50064 setCarryingCapacity Population 4534 
event 50065 setCarryingCapacity Population 4592 
event 50066 setCarryingCapacity Population 4651 
event 50067 setCarryingCapacity Population 4711 
event 50068 setCarryingCapacity Population 4772 
event 50069 setCarryingCapacity Population 4833 
event 50070 setCarryingCapacity Population 4895 
event 50071 setCarryingCapacity Population 4958 
event 50072 setCarryingCapacity Population 5022 
event 50073 setCarryingCapacity Population 5087 
event 50074 setCarryingCapacity Population 5153 
event 50075 setCarryingCapacity Population 5219 
event 50076 setCarryingCapacity Population 5286 
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event 50077 setCarryingCapacity Population 5354 
event 50078 setCarryingCapacity Population 5423 
event 50079 setCarryingCapacity Population 5493 
event 50080 setCarryingCapacity Population 5564 
event 50081 setCarryingCapacity Population 5636 
event 50082 setCarryingCapacity Population 5709 
event 50083 setCarryingCapacity Population 5783 
event 50084 setCarryingCapacity Population 5857 
event 50085 setCarryingCapacity Population 5932 
event 50086 setCarryingCapacity Population 6008 
event 50087 setCarryingCapacity Population 6085 
event 50088 setCarryingCapacity Population 6163 
event 50089 setCarryingCapacity Population 6242 
event 50090 setCarryingCapacity Population 6322 
event 50091 setCarryingCapacity Population 6403 
event 50092 setCarryingCapacity Population 6485 
event 50093 setCarryingCapacity Population 6569 
event 50094 setCarryingCapacity Population 6654 
event 50095 setCarryingCapacity Population 6740 
event 50096 setCarryingCapacity Population 6827 
event 50097 setCarryingCapacity Population 6915 
event 50098 setCarryingCapacity Population 7004 
event 50099 setCarryingCapacity Population 7094 
event 50100 setCarryingCapacity Population 7185 
event 50101 setCarryingCapacity Population 7278 
event 50102 setCarryingCapacity Population 7372 
event 50103 setCarryingCapacity Population 7467 
event 50104 setCarryingCapacity Population 7563 
event 50105 setCarryingCapacity Population 7660 
event 50106 setCarryingCapacity Population 7759 
event 50107 setCarryingCapacity Population 7859 
event 50108 setCarryingCapacity Population 7960 
event 50109 setCarryingCapacity Population 8063 
event 50110 setCarryingCapacity Population 8167 
event 50111 setCarryingCapacity Population 8272 
event 50112 setCarryingCapacity Population 8379 
event 50113 setCarryingCapacity Population 8487 
event 50114 setCarryingCapacity Population 8596 
event 50115 setCarryingCapacity Population 8707 
event 50116 setCarryingCapacity Population 8819 
event 50117 setCarryingCapacity Population 8933 
event 50118 setCarryingCapacity Population 9048 
event 50119 setCarryingCapacity Population 9165 
event 50120 setCarryingCapacity Population 9283 
event 50121 setCarryingCapacity Population 9403 
event 50122 setCarryingCapacity Population 9524 
event 50123 setCarryingCapacity Population 9647 
event 50124 setCarryingCapacity Population 9771 
event 50125 setCarryingCapacity Population 9897 
event 50126 setCarryingCapacity Population 10024 
event 50127 setCarryingCapacity Population 10153 
event 50128 setCarryingCapacity Population 10284 
event 50129 setCarryingCapacity Population 10416 
event 50130 setCarryingCapacity Population 10550 
event 50131 setCarryingCapacity Population 10686 
event 50132 setCarryingCapacity Population 10824 
event 50133 setCarryingCapacity Population 10963 
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event 50134 setCarryingCapacity Population 11104 
event 50135 setCarryingCapacity Population 11247 
event 50136 setCarryingCapacity Population 11392 
event 50137 setCarryingCapacity Population 11539 
event 50138 setCarryingCapacity Population 11688 
event 50139 setCarryingCapacity Population 11839 
event 50140 setCarryingCapacity Population 11991 
event 50141 setCarryingCapacity Population 12145 
event 50142 setCarryingCapacity Population 12301 
event 50143 setCarryingCapacity Population 12459 
event 50144 setCarryingCapacity Population 12619 
event 50145 setCarryingCapacity Population 12782 
event 50146 setCarryingCapacity Population 12947 
event 50147 setCarryingCapacity Population 13114 
event 50148 setCarryingCapacity Population 13283 
event 50149 setCarryingCapacity Population 13454 
event 50150 setCarryingCapacity Population 13627 
event 50151 setCarryingCapacity Population 13803 
event 50152 setCarryingCapacity Population 13981 
event 50153 setCarryingCapacity Population 14161 
event 50154 setCarryingCapacity Population 14343 
event 50155 setCarryingCapacity Population 14528 
event 50156 setCarryingCapacity Population 14715 
event 50157 setCarryingCapacity Population 14905 
event 50158 setCarryingCapacity Population 15097 
event 50159 setCarryingCapacity Population 15291 
event 50160 setCarryingCapacity Population 15488 
event 50161 setCarryingCapacity Population 15688 
event 50162 setCarryingCapacity Population 15890 
event 50163 setCarryingCapacity Population 16095 
event 50164 setCarryingCapacity Population 16302 
event 50165 setCarryingCapacity Population 16512 
event 50166 setCarryingCapacity Population 16725 
event 50167 setCarryingCapacity Population 16940 
event 50168 setCarryingCapacity Population 17158 
event 50169 setCarryingCapacity Population 17379 
event 50170 setCarryingCapacity Population 17603 
event 50171 setCarryingCapacity Population 17830 
event 50172 setCarryingCapacity Population 18060 
event 50173 setCarryingCapacity Population 18293 
event 50174 setCarryingCapacity Population 18529 
event 50175 setCarryingCapacity Population 18768 
event 50176 setCarryingCapacity Population 19010 
event 50177 setCarryingCapacity Population 19255 
event 50178 setCarryingCapacity Population 19503 
event 50179 setCarryingCapacity Population 19754 
event 50180 setCarryingCapacity Population 20008 
event 50181 setCarryingCapacity Population 20266 
event 50182 setCarryingCapacity Population 20527 
event 50183 setCarryingCapacity Population 20791 
event 50184 setCarryingCapacity Population 21059 
event 50185 setCarryingCapacity Population 21330 
event 50186 setCarryingCapacity Population 21605 
event 50187 setCarryingCapacity Population 21883 
event 50188 setCarryingCapacity Population 22165 
event 50189 setCarryingCapacity Population 22451 
event 50190 setCarryingCapacity Population 22740 
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event 50191 setCarryingCapacity Population 23033 
event 50192 setCarryingCapacity Population 23330 
event 50193 setCarryingCapacity Population 23631 
event 50194 setCarryingCapacity Population 23935 
event 50195 setCarryingCapacity Population 24243 
event 50196 setCarryingCapacity Population 24555 
event 50197 setCarryingCapacity Population 24871 
event 50198 setCarryingCapacity Population 25191 
event 50199 setCarryingCapacity Population 25515 
event 50200 setCarryingCapacity Population 25844 
event 50201 setCarryingCapacity Population 26177 
event 50202 setCarryingCapacity Population 26514 
event 50203 setCarryingCapacity Population 26856 
event 50204 setCarryingCapacity Population 27202 
event 50205 setCarryingCapacity Population 27552 
event 50206 setCarryingCapacity Population 27907 
event 50207 setCarryingCapacity Population 28266 
event 50208 setCarryingCapacity Population 28630 
event 50209 setCarryingCapacity Population 28999 
event 50210 setCarryingCapacity Population 29373 
event 50211 setCarryingCapacity Population 29751 
event 50212 setCarryingCapacity Population 30134 
event 50213 setCarryingCapacity Population 30522 
event 50214 setCarryingCapacity Population 30915 
event 50215 setCarryingCapacity Population 31313 
event 50216 setCarryingCapacity Population 31716 
event 50217 setCarryingCapacity Population 32125 
event 50218 setCarryingCapacity Population 32539 
event 50219 setCarryingCapacity Population 32958 
event 50220 setCarryingCapacity Population 33383 
event 50221 setCarryingCapacity Population 33813 
event 50222 setCarryingCapacity Population 34249 
event 50223 setCarryingCapacity Population 34690 
event 50224 setCarryingCapacity Population 35137 
event 50225 setCarryingCapacity Population 35590 
event 50226 setCarryingCapacity Population 36048 
event 50227 setCarryingCapacity Population 36512 
event 50228 setCarryingCapacity Population 36982 
event 50229 setCarryingCapacity Population 37458 
event 50230 setCarryingCapacity Population 37940 
event 50231 setCarryingCapacity Population 38429 
event 50232 setCarryingCapacity Population 38924 
event 50233 setCarryingCapacity Population 39425 
event 50234 setCarryingCapacity Population 39933 
event 50235 setCarryingCapacity Population 40447 
event 50236 setCarryingCapacity Population 40968 
event 50237 setCarryingCapacity Population 41496 
event 50238 setCarryingCapacity Population 42031 
event 50239 setCarryingCapacity Population 42572 
event 50240 setCarryingCapacity Population 43120 
event 50241 setCarryingCapacity Population 43675 
event 50242 setCarryingCapacity Population 44238 
event 50243 setCarryingCapacity Population 44808 
event 50244 setCarryingCapacity Population 45385 
event 50245 setCarryingCapacity Population 45970 
event 50246 setCarryingCapacity Population 46562 
event 50247 setCarryingCapacity Population 47162 



 Appendix A1 

 

161 
 

event 50248 setCarryingCapacity Population 47769 
event 50249 setCarryingCapacity Population 48384 
event 50250 setCarryingCapacity Population 49007 
event 50251 setCarryingCapacity Population 49638 
event 50252 setCarryingCapacity Population 50277 
event 50253 setCarryingCapacity Population 50925 
event 50254 setCarryingCapacity Population 51581 
event 50255 setCarryingCapacity Population 52245 
event 50256 setCarryingCapacity Population 52918 
event 50257 setCarryingCapacity Population 53600 
event 50258 setCarryingCapacity Population 54290 
event 50259 setCarryingCapacity Population 54989 
event 50260 setCarryingCapacity Population 55697 
event 50261 setCarryingCapacity Population 56414 
event 50262 setCarryingCapacity Population 57141 
event 50263 setCarryingCapacity Population 57877 
event 50264 setCarryingCapacity Population 58623 
event 50265 setCarryingCapacity Population 59378 
event 50266 setCarryingCapacity Population 60143 
event 50267 setCarryingCapacity Population 60918 
event 50268 setCarryingCapacity Population 61703 
event 50269 setCarryingCapacity Population 62498 
event 50270 setCarryingCapacity Population 63303 
event 50271 setCarryingCapacity Population 64118 
event 50272 setCarryingCapacity Population 64944 
event 50273 setCarryingCapacity Population 65781 
event 50274 setCarryingCapacity Population 66628 
event 50275 setCarryingCapacity Population 67486 
event 50276 setCarryingCapacity Population 68355 
event 50277 setCarryingCapacity Population 69235 
event 50278 setCarryingCapacity Population 70127 
event 50279 setCarryingCapacity Population 71030 
event 50280 setCarryingCapacity Population 71945 
event 50281 setCarryingCapacity Population 72872 
event 50282 setCarryingCapacity Population 73811 
event 50283 setCarryingCapacity Population 74762 
event 50284 setCarryingCapacity Population 75725 
event 50285 setCarryingCapacity Population 76700 
event 50286 setCarryingCapacity Population 77688 
event 50287 setCarryingCapacity Population 78689 
event 50288 setCarryingCapacity Population 79703 
event 50289 setCarryingCapacity Population 80730 
event 50290 setCarryingCapacity Population 81770 
event 50291 setCarryingCapacity Population 82823 
event 50292 setCarryingCapacity Population 83890 
event 50293 setCarryingCapacity Population 84971 
event 50294 setCarryingCapacity Population 86066 
event 50295 setCarryingCapacity Population 87175 
event 50296 setCarryingCapacity Population 88298 
event 50297 setCarryingCapacity Population 89435 
event 50298 setCarryingCapacity Population 90587 
event 50299 setCarryingCapacity Population 91754 
event 50300 setCarryingCapacity Population 92936 
event 50301 setCarryingCapacity Population 94133 
event 50302 setCarryingCapacity Population 95346 
event 50303 setCarryingCapacity Population 96574 
event 50304 setCarryingCapacity Population 97818 
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event 50305 setCarryingCapacity Population 99078 
event 50306 setCarryingCapacity Population 100354 
event 50307 setCarryingCapacity Population 101647 
event 50308 setCarryingCapacity Population 102956 
event 50309 setCarryingCapacity Population 104282 
event 50310 setCarryingCapacity Population 105625 
event 50311 setCarryingCapacity Population 106986 
event 50312 setCarryingCapacity Population 108364 
event 50313 setCarryingCapacity Population 109760 
event 50314 setCarryingCapacity Population 111174 
event 50315 setCarryingCapacity Population 112606 
event 50316 setCarryingCapacity Population 114056 
event 50317 setCarryingCapacity Population 115525 
event 50318 setCarryingCapacity Population 117013 
event 50319 setCarryingCapacity Population 118520 
event 50320 setCarryingCapacity Population 120047 
event 50321 setCarryingCapacity Population 121593 
event 50322 setCarryingCapacity Population 123159 
event 50323 setCarryingCapacity Population 124745 
event 50324 setCarryingCapacity Population 126352 
event 50325 setCarryingCapacity Population 127980 
event 50326 setCarryingCapacity Population 129629 
event 50327 setCarryingCapacity Population 131299 
event 50328 setCarryingCapacity Population 132990 
event 50329 setCarryingCapacity Population 134703 
event 50330 setCarryingCapacity Population 136438 
event 50331 setCarryingCapacity Population 138195 
event 50332 setCarryingCapacity Population 139975 
event 50333 setCarryingCapacity Population 141778 
event 50334 setCarryingCapacity Population 143604 
event 50335 setCarryingCapacity Population 145454 
event 50336 setCarryingCapacity Population 147328 
event 50337 setCarryingCapacity Population 149226 
event 50338 setCarryingCapacity Population 151148 
event 50339 setCarryingCapacity Population 153095 
event 50340 setCarryingCapacity Population 155067 
event 50341 setCarryingCapacity Population 157064 
event 50342 setCarryingCapacity Population 159087 
event 50343 setCarryingCapacity Population 161136 
event 50344 setCarryingCapacity Population 163212 
event 50345 setCarryingCapacity Population 165314 
event 50346 setCarryingCapacity Population 167443 
event 50347 setCarryingCapacity Population 169600 
event 50348 setCarryingCapacity Population 171785 
event 50349 setCarryingCapacity Population 173998 
event 50350 setCarryingCapacity Population 176239 
event 50351 setCarryingCapacity Population 178509 
event 50352 setCarryingCapacity Population 180808 
event 50353 setCarryingCapacity Population 183137 
event 50354 setCarryingCapacity Population 185496 
event 50355 setCarryingCapacity Population 187885 
event 50356 setCarryingCapacity Population 190305 
event 50357 setCarryingCapacity Population 192756 
event 50358 setCarryingCapacity Population 195239 
event 50359 setCarryingCapacity Population 197754 
event 50360 setCarryingCapacity Population 200301 
event 50361 setCarryingCapacity Population 202881 
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event 50362 setCarryingCapacity Population 205494 
event 50363 setCarryingCapacity Population 208141 
event 50364 setCarryingCapacity Population 210822 
event 50365 setCarryingCapacity Population 213538 
event 50366 setCarryingCapacity Population 216289 
event 50367 setCarryingCapacity Population 219075 
event 50368 setCarryingCapacity Population 221897 
event 50369 setCarryingCapacity Population 224755 
event 50370 setCarryingCapacity Population 227650 
event 50370 set maxOffspringNumber 2 
 
output 50371 
outputXML false 
matingWithReplacement false 
 
finalPedigreeDepth 2 
extraPedigrees 0 
extraSingleAscertainmentPedigrees 0 
trackSNPs false 
end 
 
chromosome begin 
length 250000 
 
gene begin 
name flank1 
location 0 
length 100000 
gamma 0.316228 0.01 
probabilityNoEffect 1 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name exon1 
location 100001 
length 300 
gamma 0.316228 0.01 
probabilityNoEffect 0.44 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name intron1 
location 100303 
length 3000 
gamma 0.316228 0.01 
probabilityNoEffect 1 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name exon2 
location 103305 
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length 300 
gamma 0.316228 0.01 
probabilityNoEffect 0.44 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name intron2 
location 103607 
length 3000 
gamma 0.316228 0.01 
probabilityNoEffect 1 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name exon3 
location 106609 
length 300 
gamma 0.316228 0.01 
probabilityNoEffect 0.44 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name intron3 
location 106911 
length 3000 
gamma 0.316228 0.01 
probabilityNoEffect 1 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name exon4 
location 109913 
length 300 
gamma 0.316228 0.01 
probabilityNoEffect 0.44 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name intron4 
location 110215 
length 3000 
gamma 0.316228 0.01 
probabilityNoEffect 1 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
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gene begin 
name exon5 
location 113217 
length 300 
gamma 0.316228 0.01 
probabilityNoEffect 0.44 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name intron5 
location 113519 
length 3000 
gamma 0.316228 0.01 
probabilityNoEffect 1 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name exon6 
location 116521 
length 300 
gamma 0.316228 0.01 
probabilityNoEffect 0.44 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name intron6 
location 116823 
length 3000 
gamma 0.316228 0.01 
probabilityNoEffect 1 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name exon7 
location 119825 
length 300 
gamma 0.316228 0.01 
probabilityNoEffect 0.44 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name intron7 
location 120127 
length 3000 
gamma 0.316228 0.01 
probabilityNoEffect 1 
probabilityLethalEffect 0 
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probabilityPositiveEffect 0 
end 
 
gene begin 
name exon8 
location 123129 
length 300 
gamma 0.316228 0.01 
probabilityNoEffect 0.44 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
gene begin 
name flank2 
location 123431 
length 100000 
gamma 0.316228 0.01 
probabilityNoEffect 1 
probabilityLethalEffect 0 
probabilityPositiveEffect 0 
end 
 
end 
 
phenotype begin 
name total_selection 
definition 1.0 + flank1 + exon1 + intron1 + exon2 + intron2 + exon3 + intron3 
+ exon4 + intron4 + exon5 + intron5 + exon6 + intron6 + exon7 + intron7 + 
exon8 + flank2 
end 
 
population begin    
name Population 
birth 0 
initialSize 8100 
carryingCapacity 8100 
growthRate 10.0 
death 60372 
selection total_selection functional 1.0 * Phenotype 
environmentNormal total_selection 0.0 0.0000001 
familyEnvironmentNormal total_selection 0.0 0.0 
end 
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Appendix A2 

Comparing fine-mapping strategies for common SNPs at chr9p21 
 

The manuscript and figures that follow were published in Nature Genetics in 2011.  

Supplementary material is not included below, but has been published online. 

Comparing strategies to fine map the association of common SNPs on 
chromosome 9p21 to Type 2 Diabetes and Myocardial Infarction 

 
Jessica Shea1,2,3, Vineeta Agarwala1,3,4,5, Anthony A. Philippakis1,3,4,5,6,7, Jared Maguire1, Eric 

Banks1, Mark DePristo1, Brian Thomson1, Candace Guiducci1, The Myocardial Infarction 
Genetics Consortium, Sekar Kathiresan1,6,8,9,10, Stacey Gabriel1, Noël P Burtt1,  Mark J. 

Daly1,6,8,10, Leif Groop11, and David Altshuler1,3,6,9,10,12 

 
 
1. Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of 
Technology, Cambridge, Massachusetts, USA 
2. Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA 
3. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA 
4. Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA 
5. Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Harvard Medical 
School, Boston, Massachusetts, USA 
6. Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA 
7.  Department  of  Medicine,  Brigham  and  Women’s  Hospital,  Boston,  Massachusetts,  USA 
8. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA 
9. Cardiovascular Research Center, Massachusetts General Hospital, Massachusetts, USA 
10. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA 
11. Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmö, Lund 
University, Malmö, Sweden 
12. Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA 
 

Non-coding variants at human chromosome 9p21 near CDKN2A and CDKN2B are associated 

with type 2 diabetes (T2D)1-4, myocardial infarction (MI)5-7, aneurysm8, vertical cup disc ratio9, 

and at least five cancers10-16.  We compared approaches to more comprehensively assess 

genetic variation in the region.  We performed targeted sequencing at high coverage in 47 

individuals and compared the results to pilot data from the 1000 Genomes Project.  We 

imputed variants into T2D and MI cohorts directly from targeted sequencing, from a 

genotyped reference panel derived from sequencing, and from 1000 Genomes low-coverage 

data.  Common polymorphisms were captured similarly by all strategies.  Imputation of 

intermediate frequency polymorphisms required a higher density of tag SNPs in disease 
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samples than available on first generation Genome Wide Association Study (GWAS) arrays.  

Association analyses identified more comprehensive sets of variants demonstrating 

equivalent statistical association to T2D or MI, but did not identify stronger associations the 

original GWAS signals. 

Following the identification of a disease-associated region by GWAS, comprehensive study 

of sequence variation in the region is required to identify the full set of variants that might explain the 

association signal.  Since GWAS arrays incompletely capture DNA variation in each region, it has 

been hypothesized that causal variants partially captured by linkage disequilibrium (LD) – due to 

location near recombination hotspots or lower minor allele frequency – might, if directly tested, 

display stronger association to phenotype than the tag SNPs used in GWAS.  In particular, because 

HapMap and GWAS arrays contain primarily variants with minor allele frequency (MAF) >5%, first 

generation GWAS studies failed to test polymorphisms of somewhat lower frequency that might 

have larger effects on disease risk.  Finally, even in regions where the true association signal is well 

captured by LD to array SNPs, enumeration of all associated variants is a necessary prerequisite to 

functional experiments that will identify causal mutation(s). Thus, an important next step following 

GWAS is to assemble a more complete catalog of variation present in an associated region, and to 

test it for association to the phenotype of interest.   

With the advent of next generation sequencing and the emergence of data from the 1000 

Genomes (1000G) Project, investigators must choose between (or combine) multiple strategies for 

creating and testing a reference panel of polymorphic sites.  We re-sequenced ~240kb on 

chromosome 9p21 (chr9:21936711-22176221, hg18) spanning the T2D and MI associations in 47 

unrelated individuals of European ancestry from the HapMap CEU population17 as part of a 

sequencing project spanning six T2D-associated regions (Supplementary Table A2.1).  

Sequencing was performed at the Broad Institute on Illumina Genome Analyzers (Supplementary 

Note A2, all data available in the NCBI Short Read Archive).  An analytical framework 

(Supplementary Note A2, Supplementary Table A2.2, Supplementary Figs. A2.1-5), since 



 Appendix A2 

 

169 
 

extended and incorporated in the Genome Analysis Tool Kit18,19, was developed and includes 

methods to empirically recalibrate Illumina base quality scores, a Bayesian framework to call SNPs, 

local re-alignment to identify insertions/deletions (and remove clusters of false positive SNPs), and 

filters to remove false positive SNP calls based on discrepancy between forward and reverse 

strands. 

This targeted sequencing identified 635 high-confidence SNPs on chromosome 9p21 (4,463 

across the six regions) (Supplementary Table A2.3, Supplementary Fig. A2.6, SNPs available in 

dbSNP).  We evaluated sensitivity against HapMap II17 and the high coverage Pilot 2 data from the 

1000 Genomes Project20 (Supplementary Note A2): at sites in overlapping samples with 10x or 

greater read coverage (70% of the region), sensitivity was 99% for HapMap variants and 97% for 

variants found in 1000G Pilot 2 (Supplementary Fig. A2.7a-c).  To evaluate specificity, we 

genotyped 257 sites found on chromosome 9p21 but not previously genotyped in HapMap 

(Supplementary Fig. A2.7d-e).  Overall, 96% of variants seen more than once in sequencing 

validated in the genotyping data (Supplementary Table A2.4).   

We compared these variants to those discovered in the low-coverage Pilot 1 of the 1000 

Genomes Project 20, limiting comparison to 32 CEU individuals studied in both projects.  Across the 

six regions, both projects identified similar numbers of variants: 3,897 SNPs in the high coverage 

targeted sequencing as compared to 4,043 in 1000G Pilot 1. However, the variants found were in 

fact only partially overlapping.  Of variants seen in the high coverage targeted sequencing, 22% 

were missed by 1000G Pilot 1 (Fig. A2.1), nearly all of which were rare: 72% of these sites were 

singletons and 12% were seen twice (Fig. A2.1, Table A2.1).  Pilot 1 successfully identified 97% of 

SNPs seen more than 5 times in high coverage sequencing (Table A2.1).   Of variants identified in 

Pilot 1 but not in targeted sequencing (n=998), nearly all were sites at which target capture failed to 

achieve high coverage: 65% of these sites had zero coverage. Thus, targeted capture and low-pass 

whole genome had distinct and non-overlapping failure modes.   

We evaluated methods for testing these variants for association to disease via linkage 
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disequilibrium and haplotype-based imputation.  First, we genotyped SNPs found in targeted re-

sequencing on chromosome 9p21 in 168 individuals (56 parent offspring trios) from the HapMap 

extended CEU population21 (Supplementary Note A2).  We used MACH22,23 to impute variants from 

this reference panel into 1,000 T2D patients and 1,048 controls from the Diabetes Genetics Initiative 

(DGI) cohort1 and 1,274 MI cases and 1,407 controls from the Myocardial Infarction Genetics 

(MIGen) Consortium cohort6, each previously genotyped on Affymetrix GWAS arrays 

(Supplementary Note A2).  

 

 
 

 

We compared the results of imputation with this augmented reference panel (n=464 variants, 

Supplementary Table A2.5) to those obtained when imputing from HapMap II alone (n=238 

Number of times  
non-reference allele 

observed in this study 

Number of 
SNPs called, 

this study 
% Contained in 
1000G Pilot 1 

% in dbSNP, 
build 129 

% Validated on 
chr9p21 

1X 941 35% 13% 91% 
2X 300 68% 42% 88% 
3X 239 82% 55% 100% 
4X 154 87% 66% 86% 
5X 186 91% 67% 70% 

>5X 2077 97% 92% 98% 
 

Table A2.1: Sensitivity of 1000 Genomes Pilot 1 for variants detected in targeted, high-coverage 
sequencing of samples common to both projects.  

Figure A2.1: Comparison of targeted sequencing to 1000 Genomes Pilot 1 data.  
Variant calls were made in all six regions of type 2 diabetes association in the 32 individuals 
sequenced as part of both this targeted, high-coverage sequencing effort (47 CEU HapMap 
individuals) and 1000 Genomes Pilot 1 (60 CEU HapMap individuals). 
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variants).  The addition of genotype data for a more complete collection of common variants 

provided imputation data for a much larger number of SNPs than was possible with HapMap II, 

which contains only 50-60% of common variants (Fig. A2.2a-b, Supplementary Fig. A2.8a-b).   

However, even with the augmented reference panel, the tag SNP density characteristic of the first 

generation GWAS arrays on which our disease samples were typed allowed only 80% of common 

(MAF > 5%) variants to be captured (either directly typed or imputed with a MACH-estimated r2  

0.8).  Moreover, only a small fraction of intermediate frequency variation (MAF 2-5%) was imputed 

with an estimated r2 above this stringent threshold (Fig. A2.2c-d, Supplementary Fig. A2.8c-d).  

 

 

Figure A2.2: Fraction of variation on chr 9p21 captured in T2D cohort by different imputation scenarios 
MACH imputation quality estimates (a, c, e) and overall fraction of variation captured in T2D samples (b, d, f) for 
different imputation scenarios.  (a, c, e) The MACH-estimated r2 for each SNP is plotted as a function of genomic 
position.  SNPs not observed in the reference panel are assigned an r2 of zero.  Recombination rate (estimated from 
HapMap) is plotted to reflect local LD structure.  Gene annotations were taken from the University of California-Santa 
Cruz Genome Browser. (b, d, f) The fraction of variants captured in T2D samples is shown as a function of MAF and 
MACH-estimated r2.  Imputation scenarios are: (a, b) Imputing from HapMap II (n=238 SNPs in 60 individuals) into 
the SNPs genotyped on the Affymetrix 500K array;  (c, d) Imputing from 112 individuals genotyped at HapMap II 
sites and validated sequencing sites (total n=464 SNPs) into the SNPs genotyped on the Affymetrix 500K array;  (e, 
f) Imputing from the same reference panel as c, d into SNPs genotyped on the Affymetrix 500K array plus additional 
tag SNPs genotyped in the T2D cohort (genotyped marker density in T2D samples ~1 SNP/1.5kb).  
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To evaluate the impact of tag SNP density on imputation performance, we increased the 

number of tags across the region to approximately 1 SNP per 1.5kb (the previous density was 

~1SNP/5kb in T2D samples and ~1SNP/3kb in MI samples) in the T2D and MI cohorts 

(Supplementary Note A2). With this increased density of tag SNPs, nearly all common variants 

(~98%) were captured with r2  0.8 in disease samples.  Moreover, performance for intermediate 

frequency variants was dramatically improved, rising from 2% to 75% with r2  0.8 (Fig. A2.2e-f, 

Supplementary Fig. A2.8e-f).  This result was not specific to the Affymetrix GWAS arrays, as we 

observed a similar improvement in imputation ability upon addition of tag SNPs using multiple other 

GWAS arrays (Supplementary Fig. A2.9). 

We next compared different reference panels, imputing in each case into disease samples 

with the higher tag SNP density.  The reference panels were:  (a) the genotyped reference panel of 

168 individuals above (112 unrelated individuals), (b) the targeted sequencing data (47 individuals, 

without genotyping and expansion into a larger sample set), and (c) 1000 Genomes Pilot 1 (55 

individuals).  We considered both the fraction of variants in each reference panel successfully 

imputed (which is related to the quality and completeness of SNP genotypes and to the size of the 

reference panel) and the fraction of all variation captured (which, in addition, depends on the 

proportion of all known SNPs represented in the reference panel).   

The union of the three reference panels contained 582 variants (Fig. A2.3a).  Each panel 

was partially incomplete, due to genotyping assay failure in the genotyped panel (14% of SNPs 

missing), sample size and low coverage in 1000 genomes (16% of SNPs missing), and sample size 

and gaps in coverage in the targeted sequencing (19% of SNPs missing).  For common variants, 

there is little difference in bulk performance between the reference panels.  Considering only SNPs 

contained in each reference panel (Fig. A2.3b) the genotyped panel has the highest proportion of 

variants imputed well.  However, when all variation is considered (Fig. A2.3c), a lower proportion of 

common variation is captured by imputing from the genotyped reference panel, owing to the fact that 

some SNPs were missing in this panel because they failed assay design or quality control.  Notably, 
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the 1000G (freely available) and sequencing (costly) strategies performed equivalently for these 

common variants. 

For intermediate frequency variants, there are more pronounced differences between the 

panels (Fig. A2.3b-c).  These variants were best imputed from the genotyped reference panel (Fig. 

A2.3b), which was the largest and also contained trio information.  This was true even when all 

variation was considered (Fig. A2.3c), suggesting that the improved imputation quality from 

genotype data and increased sample size offset the loss of variants in this panel due to genotyping 

failure.  Comparing the high coverage re-sequencing and 1000G reference panels, lower frequency 

variants were better imputed from the high coverage re-sequencing data both when considering only 

the SNPs within each reference panel (Fig. A2.3b) and when considering the overall proportion of 

low frequency variants captured by imputation from each reference panel (Fig. A2.3c).  This is 

consistent with the low coverage 1000G pilot 1 data being less complete and accurate for lower 

frequency variants20.  

 

 
 

Figure A2.3: Comparison of imputation from a genotyped reference panel, directly from high coverage re-
sequencing data, and directly from 1000G Pilot 1 data 
(a) Variants present in the three reference panels and their overlap.  The 67 variants present in the genotyped 
reference panel but not in the high coverage sequencing reference panel (denoted by asterisk) were called in 
high coverage sequencing as singletons and so were excluded from the sequencing reference panel.  40% of 
these variants are not singletons in the larger genotyped reference panel.  (b) The fraction of sites within each 
reference panel captured with a MACH-estimated r2 of at least 0.8.  (c) The overall fraction of known variants 
captured with a MACH-estimated r2 of at least 0.8 by imputation from each reference panel. 
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We tested variants for association to T2D and MI using imputation from all three reference 

panels to maximize the number of variants captured (Supplementary Note A2).  Overall, we have 

captured 461 of the 582 polymorphic variants observed across all three reference panels in our T2D 

and MI samples with a MACH-estimated r2 of at least 0.8: this represents ~ 92% of all known 

common variants and ~52% of intermediate frequency variants (at a MACH-estimated r2 of 0.5, 

these figures are 98% of common variants and 83% of intermediate frequency variants).   In 

comparison, only 176 of the 582 variants were previously captured by imputation from HapMap.  

Despite testing many additional SNPs in partial LD with the index GWAS hits and at allele 

frequencies not well captured by first generation GWAS arrays and HapMap, we found no example 

of a SNP with stronger association to T2D or MI than the initial GWAS signals.  

However, we did identify multiple additional variants in strong LD with the GWAS hits that 

might underlie each association. We observed the three-tiered haplotypic association to T2D first 

reported by the Wellcome Trust Case Control Consortium with protective, risk, and neutral 

haplotypes (Table A2.2).  The protective alleles of the GWAS SNP (rs10811661) and nine other 

SNPs in strong LD with this variant tag the protective haplotype (Fig. A2.4a, Supplementary Table 

A2.6).  Interestingly, no single SNP yet identified marks the risk haplotype.  Association analyses for 

MI identified 7 SNPs in LD with each other and with equivalent evidence for association (P < 10-4) as 

well as 54 additional SNPs with only slightly less evidence for association (P < 10-3) (Fig. A2.4b, 

Supplementary Table A2.6).  Knockout of the MI-associated region in mouse alters regulation of 

CDKN2A and CDKN2B24, and two of the associated SNPs have recently been shown to disrupt a 

STAT1 binding site25.  Interestingly, in addition to the SNPs disrupting the STAT1 site, there are 

other variants with equivalent MI association and with putative functional annotations, including 

variants overlapping exons of the non-coding transcript CDKN2BAS, highly conserved regions, and 

predicted, conserved transcription factor binding sites (Supplementary Table A2.6). 
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This study is limited by the investigation of a single region (albeit one with at least eight 

different disease associations), by the early nature of the sequencing data analyzed, by the small 

number of samples sequenced in SNP discovery, and by the sample size of our disease cohorts.  

Nonetheless, the observations on the strengths and weaknesses of different methods for fine 

mapping GWAS signals are likely general: targeted high coverage sequencing provides high 

Haplotypes defined by rs10757282, rs10811661 
 

Haplotype 
 

Frequency 
 

OR 
 

P-value 
Overall Evidence -- -- 4.40 x 10-5 

CT 0.30 1.29 3.99 x 10-4 
TT 0.54 0.96 5.24 x 10-1 

CC 0.16 0.72 2.71 x 10-4 
 

Table A2.2: Haplotypic association to T2D on chromosome 9p21 
 

rs10757282 and the reported SNP from GWAS, rs10811661, define haplotypes with three levels of risk 
(risk, protective, and neutral) for T2D. 

Figure A2.4: Association results for T2D and MI on chromosome 9p21 
 

Regional plots showing association signal for (a) T2D and (b) MI.  The signal for each SNP (represented as -log10 p-
value) is plotted as a function of genomic position.  The size of the diamond for each SNP represents the LD 
(measured as r2) between that SNP and the original GWAS SNP (rs10811661 for T2D and rs4977574 for MI). 
Recombination rate (estimated from HapMap) is plotted to reflect the local LD structure in the region.  Gene 
annotations were taken from the University of California-Santa Cruz Genome Browser. 
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sensitivity for lower frequency variants, but has gaps in coverage; the 1000G Pilot 1 resource offers 

more even coverage at lower depth, currently sufficient for capture of most common variation; 

creating a genotyped reference panel improves accuracy and sample size, but is limited by assay 

conversion failures; tag SNP density characteristic of first generation GWAS is inadequate to 

maximally extract information with current imputation algorithms.  To some extent, these limitations 

are transient: the growing 1000 Genomes Project resource is sequencing over 2,000 diverse 

samples with both low-pass whole genome and high coverage targeted exon approaches, increasing 

the accuracy and completeness of the public reference panel.  However, our results suggest that 

fully exploiting this resource for imputation may require increasing tag density in GWAS disease 

samples and / or improved algorithms for imputation.   

Finally, our study did not find evidence for stronger association at 9p21 to SNPs in moderate 

LD with the initial tags.  While the maximum achievable association signal for lower frequency 

variants was limited by our sample size, we did not observe lower frequency variants with effect 

sizes that could individually explain the common variant associations.  We do, however, identify 

additional common variants in LD with the GWAS hits that might underlie each association.  

Enumeration of all variants on 9p21 that might explain each association signal will be needed as a 

foundation for systematic functional studies that aim to understand how different non-coding variants 

in this single genomic interval can lead to such varied and clinically significant phenotypic 

associations. 

Methods 

Targeted Re-Sequencing 
Six regions associated with T2D were selected for targeted re-sequencing (Supplementary Table 
A2.1).  Because the goal of this study to was to identify additional SNPs that might explain the initial 
GWAS signal, region boundaries were selected to encompass all SNPs showing detectable linkage 
disequilibrium (r2  0.2) to the T2D associated SNP with the most significant p-value.  DNA was 
captured for sequencing by long-range PCR with 2-5kb amplicons or by hybrid selection (HS) using 
170bp baits tiled across the region on an Agilent microarray26.  All sequencing was performed at the 
Broad Institute in 2008 using Illumina Genome Analyzers.  Runs from PCR-based capture generated 
36bp reads and runs from HS-based capture generated 46-50bp reads.  Methods for alignment, 
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quality score adaptation and recalibration, and variant calling are described in detail in the 
Supplementary Note A2. 

SNP Genotyping and Quality Control 
Genotyping was performed on the Sequenom MassARRAY iPLEX platform.  Quality control filters 
included 1) > 95% genotyping rate, 2) Hardy Weinberg equilibrium (with P > 0.001) and 3) Mendel 
error rate < 5%. 

Phasing and Imputation 
We compared several strategies and publicly available tools for phasing and imputation directly from 
Illumina sequencing data (Supplementary Fig. A2.10-11).  Phased haplotypes for all reference 
panels were created using the PHASE software package (Version 2.1)27,28.  For the genotyped 
reference panel, trio information was used in phasing (-P1 option).  For sequencing reference 
panels, known phase was specified at HapMap sites (-k option).  All other PHASE parameters were 
default values.  Imputation from reference haplotypes was performed using MACH22,23 (Version 
1.0.16).  100 rounds were used; all other MACH parameters were default values. 

Association Analyses 
Variants were tested for association using logistic regression on imputed genotype dosages and 
individual disease status.  EIGENSTRAT29 (DGI) or PLINK30 (MIGen) was used to estimate principal 
components which track with the ancestry of the study samples1,6; the first ten components were 
used as covariates in logistic regression to account for population structure.  For T2D analyses, 
additional covariates used were: age, gender, and body mass index.  For MI analyses additional 
covariates used were age, gender, BMI, and smoking. Tests for haplotypic association to T2D were 
performed using the PLINK30 (Version 1.05) software package.  
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Appendix A3 

Exploring the role of 3D genome structure in human translocations 
 

The manuscript and figures that follow were published in PLoS One in 2012.  Supplementary 

material is not included in entirety below, but has been published online. 
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Abstract 

The human genome adopts nonrandom three-dimensional conformations within the nucleus.  

It is unclear, however, the extent to which genome structure contributes to chromosomal 

rearrangements in human disease.  In particular, spatial co-localization of chromosomal breakpoints 

prior to rearrangement has been implicated in the genesis of chromosomal translocations in cancer.  

We performed a genome-wide analysis by intersecting Hi-C spatial proximity maps with collections 

of 1,533 chromosomal translocations from cancer and germline genomes.  Hi-C detects spatial co-

localization of many translocation partners in normal human cells prior to rearrangement, including 

the cancer translocation partners BCR-ABL and MYC-IGH.  While translocation breakpoints occur 

most commonly in broad regions of open chromatin, we demonstrate that long-range physical 

interactions between pairs of genomic loci additionally predispose them to rearrange.  Moreover, 

translocation breakpoints reported in human hematologic malignancies are particularly enriched for 
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co-localization signal in chromosome conformation experiments conducted in a lymphoid cell line, 

suggesting that genome structure may provide one mechanism for tissue-specific chromosomal 

alterations.  Hi-C also reveals existing chromosomal rearrangements in abnormal genomes, allowing 

for detection and fine-mapping of novel chromosomal translocations in the K562 erythroleukemic cell 

line.  Our results support a broad role for three-dimensional genome structure in translocation-

partner selection and establish Hi-C as a key method for dissecting the structural features that 

contribute to human disease. 

Author Summary 

Chromosomal translocations are key features of cancer genomes that contribute to disease 

progression.  These alterations involve breaks in the primary DNA sequence followed by illegitimate 

repair between inappropriate pairs of genomic loci.  While the functional consequences of these 

mutations can be severe, the factors that predispose certain genomic regions to rearrange with each 

other are poorly understood.   One attractive hypothesis to explain translocation partner preferences 

is that pairs of rearrangement-prone loci physically co-localize in the nuclei of normal cells; when 

one partner is damaged, it is mistakenly joined to a nearby available sequence.  While individual 

examples support this prediction, a genome-wide demonstration of this principle has proven elusive 

due to limitations in the scale and resolution of microscopy.  In this study, we leverage recent 

advances in sequence-based interrogation of three-dimensional genome conformation to show, for 

the first time, that many chromosomal translocation partners co-localize prior to rearrangement.  We 

further find that the same technology can precisely locate breakpoints of rearranged loci after the 

mutagenic event.  This insight supports an important role for three-dimensional genome architecture 

in the genesis of cancer translocations. 

Introduction 

 Chromosomal translocations play an important role in both inherited and acquired human 

disease.  Translocations affect cellular function by changing gene copy number, creating fusion 

genes with aberrant function, or repositioning regulatory elements.  In cancer, translocations 
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contribute to malignant transformation of hematologic cells [1, 2] and have more recently been 

implicated in multiple epithelial neoplasms [3, 4, 5, 6].  Classic examples of driver rearrangements in 

cancer are the BCR-ABL translocation (observed in >90% of cases of chronic myeloid leukemia) and 

the TMPRSS2-ERG fusion (observed in ~50% of prostate cancers) [7, 8, 9, 10].  

  Emerging evidence suggests that the formation of chromosomal rearrangements is a 

nonrandom process.  Repeated observation of specific translocations, as well as the existence of 

rearrangement hotspots in cancer [11], suggests that intrinsic cellular and genomic features 

predispose certain regions to translocate.  One attractive hypothesis is that higher-order genome 

organization - that is, the physical proximity of chromosomes in the nucleus prior to translocation - 

contributes to the occurrence of specific translocations [12, 13].   

 Indeed, recent work demonstrates that the human genome adopts nonrandom conformations 

in the nucleus [14, 15, 16, 17, 18], suggesting that three-dimensional genome architecture could play 

a role in translocation partner selection.  Case studies using fluorescence in situ hybridization (FISH) 

show that genes involved in recurrent translocations in several cancer types are positioned non-

randomly and relatively close to one another in the nuclei of normal cells prior to malignant 

transformation [5, 19, 20, 21].  Furthermore, the intermingling of chromosomal territories appears to 

correlate with translocation frequency between pairs of chromosomes [22].  These data suggest that 

physical interaction between non-homologous chromosomes may be an important mechanism 

underlying recurrent translocations.  However, current imaging methods have insufficient resolution 

and throughput to examine these relationships on a large scale.  Without a genome-wide, high-

resolution technology to characterize spatial organization, we have limited ability to determine 

whether proximity contributes to the thousands of observed chromosomal rearrangements in cancer.  

The physical size of the genomic regions involved in these interactions, as well as their tissue-

specificity, are also uncharacterized. 

 Here we leverage Hi-C, a next-generation sequencing method for probing the three-

dimensional architecture of the genome [18], to investigate the structural features that may 



 Appendix A3 

 

183 
 

contribute to translocation partner preferences.  We systematically test the hypothesis that 

translocations occur between spatially co-localized regions of the genome, integrating a total of 

1,533 chromosomal rearrangements from both cytogenetic and sequencing-derived datasets.  We 

find that many translocation partners are located in broad chromatin domains that interact in normal 

cells, thus predisposing them to chromosomal rearrangements.  Hi-C also identifies existing 

rearrangements in malignant cells and enables fine-mapping of chromosomal breakpoints.  Our 

results support a broad role for 3D genome structure in translocation-partner selection and establish 

Hi-C as a method for dissecting structural features contributing to human disease. 

Results 

 Hi-C detects proximity of canonical translocation partners.  We obtained Hi-C 

interaction maps generated in lymphoblastoid and erythroleukemic cell lines from Liebermann et al. 

[18].  Previous iterations of chromosome conformation capture technology have succeeded in 

identifying specific interactions between genes and regulatory elements [23, 24] as well as between 

actively transcribed or repressed genes [25, 26].  However, it was unclear whether Hi-C would have 

the power to detect the variable interactions that occur between translocation partners in an 

aggregate cell population. 

 To address this question, we examined the canonical translocation partners BCR and ABL, 

which form an unbalanced, often-amplified rearrangement in K562 cells (Figure A3.1A) and have 

been shown by FISH to co-localize in the nuclei of multiple normal hematopoietic cell types prior to 

the translocation event [12, 19, 27].  In K562 cells, Hi-C detected a strong interaction (1,996 reads) 

in the 1-Mb bin containing BCR-ABL (Figure A3.1C).  In immortalized lymphoblastoid cells that do 

not harbor the translocation (Figure A3.1B), on the other hand, the signal in the region surrounding 

BCR-ABL was markedly reduced (10 reads, Figure A3.1D).  The large difference in raw read count 

between the two cell lines reflects the fact that these regions of chromosomes and 9 and 22 interact 

in cis in K562 and trans in GM06690. 
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 While this analysis highlighted the existing BCR-ABL translocation in K562 cells, the raw 

read count data are susceptible to biases introduced by differences in mappability and frequency of 

restriction enzyme sites in each megabase bin.  To more robustly examine the weaker interactions 

between loci prior to rearrangement, we calculated a normalized Hi-C score (see Methods) for each 

megabase bin and again examined the BCR-ABL in K562 (Figure A3.1E) and GM06690 (Figure 

A3.1F) cells. Remarkably, in the karyotypically normal GM06690 cell line, the interaction extended 

beyond the megabase including BCR and ABL and included much of 9q34 and 22q11 (Figure 

A3.1F).  To quantify this relationship, we calculated the average interaction score across the two-

dimensional interaction map for 9q34 and 22q11.  Compared to random regions of the same size on 

chromosomes 9 and 22, the bands containing BCR and ABL fell above the 90th and 95th percentiles 

of interaction scores in K562 and GM06690 cells, respectively (Figure A3.1G).  The relatively lower 

score for the K562 cell line in the normalized data is due to the correction for the total number of 

trans-chromosomal reads observed for each megabase. 

 We next examined the loci involved in the t(8;14)(q24;q32) translocation, a rearrangement 

associated  with  Burkitt’s   lymphoma   that   brings   the  oncogene  MYC under the control of activating 

enhancer elements at the IGH locus [28].  In lymphoblastoid cells, the chromosomal bands including 

MYC and IGH interacted more strongly than regions of the same size on the same chromosome 

pair, thus representing a local hotspot of trans-interaction between chromosomes 8 and 14 (Figure 

A3.1H).  In comparison, the trans-interactions between the control loci MYC-TGFBR2 and IGH-

TGFBR2, which are not observed to undergo translocation in cancer cells, did not differ significantly 

from background, consistent with previous results obtained with FISH [20].  These results 

demonstrated that Hi-C can detect the spatial co-localization of translocation partners in 

karyotypically normal cells.     

 Many translocation partners co-localize in the nucleus.  To assess the broader role of 

three-dimensional genome architecture in translocation partner selection, we gathered four datasets 

totaling 1,533 chromosomal rearrangements (Table A3.1) [29, 30, 31].   Identified by cytogenetic 
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and high-throughput sequencing modalities in cancer and germline genomes from multiple tissues, 

these four genome-wide datasets broadly sampled the space of possible chromosomal 

translocations (see Supplemental Materials).   

 

Figure A3.1: Hi-C detects interaction 
between known translocation partners 
BCR-ABL and MYC-IGH.    

Chromosomes 9 and 22 are physically joined in 
(A) K562, but not in (B) GM06690.  Hi-C maps 
show the extremely high read counts mapping 
to the megabase bin containing BCR (22q11) 
and ABL (9q34) in (C) K562 compared to (D) 
GM06690.  (E and F) Normalized Hi-C scores 
provide better resolution for detecting trans-
chromosomal interactions.  (G) Centered 
interaction scores of 9q34:22q11 (red dots) are 
compared to the distribution of scores for 
random regions of the same size from 
chromosomes 9 and 22, excluding centromeres.  
(H) Centered interaction scores for the 
chromosomal bands containing the 
translocation partners MYC-IGH as well as the 
control partners MYC-TGFBR2 and IGH-
TGFBR2, compared to the background 
distribution of scores on the same chromosome 
pairs.  Error bars in (G) and (H) represent the 
5th and 95th percentiles.   
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 Importantly, the Mitelman Database and multiple myeloma datasets contained hundreds of 

translocations from lymphoid-derived malignancies, matching the cell lineage of our lymphoblastoid 

Hi-C data.  Throughout our analysis, we focused on inter-chromosomal (trans) as opposed to intra-

chromosomal (cis) events: trans events provide a more compelling test of the relationship between 

spatial proximity and partner selection [32] because loci on different chromosomes are not physically 

connected by a continuous DNA sequence.  

 

  

 To measure the level of spatial proximity between translocation partners, we devised a 

permutation-based approach (Supp. Figure A3.1).  For each translocation, we mapped the 

chromosomal bands to genome coordinates and assigned a Hi-C interaction score by calculating the 

mean of the normalized read counts of all overlapping megabase bins.  To assess the significance of 

translocation-partner interactions, we generated null distributions of Hi-C scores using five 

permutation methods (Methods).  This robust permutation strategy corrected for potential biases 

including 1) systematic differences in association between pairs of chromosomes, 2) regions of the 

genome that interact with many other regions, 3) sizes and positional biases of regions in our 

translocation sets, and 4) broad chromatin features. Throughout, we observed similar results for all 

five permutation methods; we present results from Permutation Method 1 in the main text, and the 

others in the supplement. 

Dataset Mean Hi-C 
Score 

(Translocations) 

Mean Hi-C 
Score 

(Permutations) 

Permut
ation P-
Value 

Rank-
Sum P-
Value 

Total Unique 
Translocations 

% 
Genome 
Covered 

% 
Interactions 

Covered* 

Source 

Mitelman 
Database 
(all) 

-1.09 -1.17 <0.001 1.18E-11 577 79.7% 1.12% Ref [31] 

Mitelman 
Database 
(blood) 

-1.08 -1.16 <0.001 5.67E-11 440 72.4% 0.87% Ref [31] 

Mitelman 
Database 
(non-blood) 

-1.12 -1.17 <0.001 0.026 137 45.2% 0.27% Ref [31] 

Multiple 
Myeloma 

-1.05 -1.17 <0.001 0.021 89 22.9% 0.03% Ref [30] 

Prostate 
Cancer -1.09 -1.15 0.012 0.069 89 21.9% 0.03% Ref [29] 
Mendelian -1.12 -1.16 <0.001 0.069 779 91.5% 0.79% DACRO 
*Percentage of inter-chromosomal 1-Mb bins that are covered by translocations. 
 

Table A3.1: Translocation datasets and permutation results 
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 We applied our permutation method to test each translocation dataset for evidence of 

increased interaction between translocation partners.  In Hi-C interaction maps from karyotypically-

normal lymphoblastoid cells, translocation partners interacted more strongly than permuted regions 

with similar characteristics (Table A3.1, Supp. Table A3.1).  Although the magnitude of the effect 

was incremental compared to the overall distribution of trans Hi-C scores (Supp. Figure A3.2), the 

finding was statistically significant (P < 0.05, permutation test) in all four datasets, including 

translocations found in multiple cancer types as well as rare Mendelian disorders (Table A3.1, 

Figure A3.2A,C).  A closer examination of the distribution of interaction scores for true and 

permuted translocations showed that this signal arose from the sum of small effects across a broad 

range of translocations, rather than from large effects from a smaller number of rearrangements 

(Figure A3.2B, A3.2D, Supp. Figure A3.3), particularly for translocations from the Mitelman 

Database.   

Supp. Figure A3.1: Schematic diagram of our permutation approach 
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 Permutation testing also highlighted multiple individual translocation partners that showed 

significant interactions (Table A3.2).  Many of the high-scoring translocations included 19p13, the 

site of the E2A gene, which is frequently dysregulated in acute lymphoblastic leukemia (Figure 

A3.2E) [33].  Several translocations included 14q32, the chromosomal band including the IGH locus, 

reflecting the high number of double-stranded breaks in this region.  For example, t(4;14)(p16;q32), 

is frequently found in multiple myeloma patients, causing dysregulated expression of FGFR3 and/or 

MMSET (Figure A3.2F) [34, 35].  Spatial proximity may play a particularly important role in the 

genesis of these individual translocations. 

 

 

  

 

Tissue-specific effects.   Multiple lines of evidence suggest that genome organization is highly 

context-dependent.  Gene-level or chromosomal contacts exhibit specific and reproducible changes 

across tissue types and time points [27, 36, 37, 38], or in response to perturbation [5, 39].   We 

therefore hypothesized that the evidence for spatial proximity would be highest for translocation 

partners observed in malignancies derived from cells similar to a lymphoblastoid cell line.  Indeed, 

Figure A3.2: Many translocation partners co-localize in the normal nucleus. 
   

Permutation test results for blood translocations from the Mitelman Database (A and B) and multiple myeloma 
whole genome sequences (C and D).  Histograms represent the mean Hi-C scores for 1,000 permuted sets of 
translocations that preserve the characteristics of the true set (Permutation Method 1, see Methods).  Q-Q plots 
compare the permuted scores for individual translocations with the observed scores for each set.  Heatmaps 
show Hi-C interactions in GM06990 cells for (E) t(4;14)(p16;q32) and (F) t(12;19)(q13;q13).  Red boxes indicate 
the chromosomal bands containing the translocation breakpoints. 
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recurrent translocations observed in blood cancers in the Mitelman database overlapped significantly 

with regions of the genome that co-localize in lymphoblastoid cells (P < 10-11, Wilcoxon rank-sum 

test), while the translocations observed in non-blood tumors overlapped less strongly (P < 0.05, 

Wilcoxon rank-sum test, Table A3.1).  For example, the translocations partners for 

t(12;15)(p13;q15), a rearrangement found in acute lymphoblastic leukemia and lymphoblastic 

lymphoma, interacted much more significantly (P < 0.001, permutation test) in GM06690 cells than 

another pair of translocating loci on the same chromosomes, t(12;15)(p13;q26), found in 

fibrosarcoma (P > 0.3, permutation test).  Furthermore, the set of translocations identified through 

sequencing of multiple myeloma (P < 0.001, permutation test) interacted more significantly than the 

set of translocations identified in prostate cancer (P < 0.012, permutation test).  These results 

suggest that tissue-specific changes in genome organization may predispose specific regions to 

translocate in different malignancies. 

 

 
 Chromatin status of translocation partners.  One explanation for the observed frequency 

of interaction between translocation partners is that these regions have preferentially high gene 

content, or lie in the open chromatin compartment, rendering them easily accessible and mutable.  

Alternatively, proximity-mediated rearrangements might occur in both the open and closed chromatin 

compartments.  To distinguish between these models, we repeated our permutation method, scoring 

genomic regions for gene content and chromatin compartment score rather than on interaction 

Dataset Karyotype 
Permutation 

P-Value Disease 
Mitelman Database t(12;19)(q13;p13) <0.001 Multiple myeloma 
 t(16;20)(p13;q13) <0.001 Multiple myeloma 
 t(12;15)(p13;q15) <0.001 Acute lymphoblastic leukemia/lymphoblastic lymphoma 
 t(1;19)(q22;p13) <0.001 Acute lymphoblastic leukemia/lymphoblastic lymphoma 
 t(3;19)(p21;p13) <0.001 Acute lymphoblastic leukemia/lymphoblastic lymphoma 
 tas(19;22)(q13;q13) <0.001 Giant cell tumor of bone 
Multiple Myeloma t(11;X)(p11.12;p11.1) <0.001 Multiple myeloma 
 t(4;14)(p16.3;q32.33) 0.049 Multiple myeloma 
Prostate Cancer none - - 

Mendelian Disease t(16;20)(p13.3;q13.33) <0.001 Developmental delay, polycystic kidneys, ventricular septal defect, 
pulmonary stenosis 

 t(12;14)(q24;q32) <0.001 Coffin-Siris syndrome 
 t(4;8)(p16;p23) <0.001 Waardenburg syndrome, type IIC 
 t(X;4)(q21;q13) <0.001 Ovarian dysgenesis and primary amenorrhoea 
 

Table A3.2: Previously known translocation-prone loci that significantly co-localize in normal 
nuclei 
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frequency.  We found that in all four datasets, translocation breakpoints were significantly enriched 

for gene-rich, euchromatic regions (Figure A3.3A-B).  

 

  

 

 

 To control for the contribution of chromatin state to translocation partner interactions, we 

repeated our permutation tests controlling for chromatin compartment (open versus closed, see 

Methods).  We found that even after controlling for chromatin compartment, translocation partners 

interacted more strongly than expected by chance, although the significance of this finding was 

reduced across all datasets (Figure A3.3C, Supplemental Tables A3.1-2).  Translocations whose 

partners resided in the same chromatin compartment interacted more strongly and more significantly 

than translocations with one partner in each compartment (Figure A3.3C).  While translocation 

partners are more likely to reside in euchromatic regions, spatial proximity within the nucleus 

provides additional information.   

 Fine-mapping translocation breakpoints in the K562 cell line.    The Hi-C data provided 

evidence not only for pre-translocation chromosomal proximity in both normal and K562 cell lines, 

but also for translocations that have already occurred.  As seen in the case of the BCR-ABL 

Figure A3.3: Features of translocation breakpoints 

Comparison of average (A) gene content (% bases spanned by transcripts; includes both exons and introns) and (B) 
chromatin compartment score for translocations (red) and 1,000 permuted sets that preserve the characteristics of the 
true set.  Chromatin compartment scores are calculated using the first eigenvector of the inter-chromosomal Hi-C 
data (see Methods).  Positive and negative scores indicate open and closed chromatin compartments, respectively. 
(C) Mean Hi-C interaction scores for Mitelman blood translocations (red) compared to sets of permuted regions 
selected from the same chromatin compartments (gray).   
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translocation (Figure A3.2A), the signal strength for existing translocations is much higher than 

subtler signal of pre-translocation interactions.  We thus attempted to use Hi-C data to fine-map 

chromosomal breakpoints in K562 cells. Although K562 is a widely used cancer cell, the exact 

breakpoints and genes implicated its translocations remain largely unknown.  We assembled a set of 

13 previously described, coarsely-mapped translocations in K562 cells (Table A3.3), and explored 

the raw Hi-C data at these loci in order to locally refine the intervals containing the DNA breakpoints.  

We observed a local hotspot of inter-chromosomal reads for 6 of these 13 previously described 

rearrangements.  That we did not observe evidence for half of the previously reported translocations 

is not entirely surprising: K562 lines in culture across different laboratories may have divergent 

karyotypes, though all share the BCR-ABL driver translocation.  Moreover, the reported cytogenetic 

rearrangements were not validated by secondary methods.   

 At the 6 loci at which Hi-C signal was detected, we counted the number of raw Hi-C reads 

mapping to 50-kilobase intervals in the broad region of peak interaction signal.  At 3 of the 6 regions, 

a heat map showing read counts at 50-kb resolution showed a pattern of peak signal at a corner, 

with signal decaying in a single direction along both chromosomes (Figure A3.4, Supp. Figure 

A3.3A-C).  This is an expected pattern for an unbalanced translocation; signal is highest at the 

location of the chromosomal breakpoints, where ligation has occurred, and decays with distance 

away from the breakpoints along the fused chromosomal bands.  For the BCR-ABL translocation, for 

example, we mapped the breakpoint to a 50-kb region spanning chr9:132,550,000-132,600,000 and 

chr22:21,950,000-22,000,000 (Figure A3.4A, Table A3.3).  Within this region, three reads (the 

highest local density) mapped to within a kilobase of the described precise breakpoint for the BCR-

ABL translocation in the K562 cell line (chr9:132,596,950-132,597,013 and chr22:21,962,697-

21,962,754) [40]. 
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 We next attempted to identify the breakpoint region for the other loci showing Hi-C signal 

characteristic for a translocation in the K562 cell line (Table A3.3, Supp. Figure A3.3B-C).  

Sequence-based identification of fusion gene transcripts in the K562 cell line has recently identified 

a second translocation between chr9 and chr22 involving the gene partners NUP214 and XKR3 [41].  

The Hi-C data also showed clear evidence for a translocation between these loci; fine-mapping at 

the 50-kilobase scale revealed a likely breakpoint at chr9:133,050,000-133,100,000 and 

Supp. Figure A3.3: Fine mapping of previously reported inter-chromosomal translocations in 
K562.  
 
Heat maps above show the observed number of reads mapping to 50kb x 50kb bins at the BCR-ABL locus (A), the 
CDC25A-GRID1 locus (B), the NUP214-XKR3 locus (C), as well as three other loci sites of previously reported inter-
chromosomal translocations in the K562 cell line (D, E, F). At coarse resolution (1Mb x 1Mb, as seen in the Hi-C Data 
Browser), all six of these loci showed patterns characteristics of unbalanced translocation, but at fine 50kb resolution 
only 3 (those shown in A, B, and C) show a pattern of peak signal in a corner with signal decaying along each 
chromosome in one direction. In A-C, the 50kb bin with peak signal is most likely to contain the translocation 
breakpoint on each chromosome. 
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chr22:15,650,000-15,700,000.  Further fine-mapping revealed that 14 reads (nearly all reads 

mapping to the 50-kilobase region) clustered tightly within a region at chr9:133,064,000-133,065,000 

and chr22:15,680,000-15,681,000, suggesting that the breakpoint lies between the HindIII restriction 

sites in these regions (see Methods). 

 

 

 Finally, we applied a similar fine-mapping procedure to identify breakpoint regions for a 

translocation t(3;10) that had been previously reported in a cytogenetic study [42].  This 

rearrangement has previously only been described based on its visual karyotypic appearance, and 

even the cytogenetic bands involved in this translocation have yet not been identified.  The Hi-C data 

showed clear evidence for a translocation (Figure A3.4B); we were able to fine-map the breakpoint, 

for the first time, to a region spanning chr3:48,150,000-48,200,000 and chr10:87,800,000-

87,850,000.  Hi-C read data was too sparse to perform further fine-mapping, but these regions 

Source Reported K562 
translocation Evidence in Hi-C data? Breakpoint region (hg18) Annotated gene closest to 

predicted breakpoint 
K562  
Karyotype [42] 

t(9;22) Yes chr9:132,550,000–
132,600,000 

chr9: ABL1 

   chr22:21,950,000–
22,000,000 

chr22: BCR 

 t(3;10) Yes chr3:48,150,000 – 
48,200,000 

chr3: CDC25A (cell cycle 
division 25A isoform A) 

   chr10:87,800,000 – 
87,850,000 

chr10:  GRID1 

 t(10;17) Yes chr10:42,200,000–
42,250,000 

chr10: BC039000 (Homo 
sapiens cyclin Y-like 2) 

   chr17:22,150,000–
22,200,000 

chr17: enhancer marks in K562 

 

t(9;17) Yes chr9:20,150,000–20,200,000 chr9: MLLT3 
(myeloid/lymphoid or mixed-
lineage leukemia, translocated 
to 3) 

   chr17:22,150,000–
22,200,000 

chr17: enhancer marks in K562 

 t(5;6) Yes chr5:69,000,000–69,050,000 chr5: GUSBP3  
   chr6:27,000,000–27,050,000 chr6: GUSBP1 
 t(9;13) No - - 
 t(1;21) No - - 
 t(2;19) No - - 
 t(19;20) No - - 
 t(6;11) No - - 
 t(12;19) No - - 
K562 
Next-Gen 
Sequencing [40, 41]* 

t(9;22)_2 Yes chr9: 133,050,000–
133,100,000 

chr9: NUP214 

   chr22: 15,650,000–
15,700,000 

chr22: XKR3 

 t(1;11) No  - - 
*Targeted sequencing of 476 cancer-related gene cDNA transcripts only; did not detect non-coding breakpoints or translocations affecting other 
genes 

Table A3.3: Fine-mapping known K652 translocation breakpoints in Hi-C data 
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overlap the CDC25A (cell cycle division 25A isoform A) transcript on chr3 and the GRID1 transcript 

on chr10.   

 

  

  

 

 

 

Figure A3.4: Fine mapping of previously reported translocations in the K562 cell line.   

Heat maps showing the observed number of reads mapping to 50Kb bins at selected regions of (A) BCR-ABL and (B) the 
novel t(3;10) CDC25A-GRID1 translocation.  (C) Gene expression for dysregulated translocation partners (1), normally-
regulated translocation partners (2), and constitutively-expressed myeloid genes (3) in MV4-11 (AML) and K562 (CML) cell 
lines.  Expression values for each gene are normalized to the median expression for all genes.  Note that XKR3, the 
translocation partner of NUP214, is not assayed on this microarray platform.  (D) CML-to-AML log2 fold-change for all 
assayed genes, sorted in increasing order.  Red lines indicate the fold-change for labeled genes.  The dysregulated 
translocation partners CDC25A, NUP214, and ABL1 are highly up-regulated in CML, all falling in the upper quartile of 
genes in terms of fold-change.  (E) ENCODE ChIP-seq data for transcription factors and H3K4me1 near the predicted 
GRID1 breakpoint.  Color for H3K4me1 corresponds to cell type (only K562 shows significant signal in this region).  Color 
for transcription factor data is proportional to the ChIP-seq signal.  Data was viewed with the UCSC Genome Browser, 
genome build hg18 (http://genome.ucsc.edu) [50]. 
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 Since CDC25A is an oncogene required for progression from G1 to S phase, we 

hypothesized that this translocation may result in aberrantly upregulated CDC25A.  When we 

compared the expression of CDC25A in K562 cells [43] and an AML cell line [44], we found that 

CDC25A was approximately 8-fold higher in K562 cells (P < 10-6,  Student’s  t test).  The significance 

and magnitude of this result was comparable to other dysregulated translocation partners in K562 

cells (ABL1 and NUP214, Figure A3.4C-D).  Translocation partners that supply regulatory elements 

(BCR, GRID1) and genes constitutively expressed in the myeloid lineage (MZF1, ELF4, and 

GAPDH) were not significantly upregulated.  Interestingly, the breakpoint region on chr10 maps to 

an intronic region of the GRID1 transcript; within this 50-kilobase region, there are strong K562-

specific H3K4Me1 histone marks and ChIP-seq derived transcription factor binding sites that are not 

present in any other ENCODE cell type, suggesting that perhaps the fusion event either brings 

CDC25A under control of an existing enhancer, or creates a novel regulatory element that might 

drive CDC25A expression (Figure A3.4D).  Our results suggest that the GRID1-CDC25A 

translocation may represent a novel functional fusion, although further characterization of this 

rearrangement will be required to define its exact functional role.  

Discussion 

 Given the frequency of driver genomic rearrangements in multiple tumor types, identification 

of the specific genomic loci as well as the predisposing factors for transformative translocations have 

important implications for the genesis of cancer.  Here we provide evidence that many translocation 

breakpoints spatially co-localize in the normal genome, suggesting a broad role for proximity in 

determining the frequency of translocations between partner loci.  Four complementary collections of 

rearrangements yielded concordant results, albeit of varying significance, suggesting that our 

conclusions are robust to the differences in bias and selection present in these datasets.  Our results 

also are consistent after controlling for differences in chromosome positioning, region size, 

mappability, coverage, and chromatin state, although it is conceivable that additional, unidentified 

variables are producing a synthetic association. 
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 Several factors may explain the quantitatively small, albeit statistically significant, increase in 

Hi-C interactions for translocation partners.  First, interactions between translocation-prone loci may 

be transient, or occur in only a small fraction of the assayed cells.  Second, it is theoretically possible 

that subpopulations of the cultured cells in fact harbor de novo translocations that we detect as a 

weak signal; indeed, expression of the BCR-ABL fusion gene can be detected at a very low level in 

the blood of nearly a third of healthy adults [45].  We note, however, that the distribution of trans 

reads across the chromosome cannot be entirely explained by this phenomenon.   

 Notably, our analysis identified a difference in significance between translocations from 

hematologic and non-hematologic cancers, suggesting that the relationship between translocation 

frequency and spatial interaction is tissue-specific.  At the same time, datasets of translocation from 

other tissues still passed the threshold for significance.  This suggests that the conformational 

variation of the genome may not vary drastically between cell types, and that some translocation 

partners may interact regardless of cell type.  Additional Hi-C experiments in multiple matched cell 

types may help to elucidate lineage-dependent variation in global chromosomal conformation and its 

contribution to translocation partner selection. 

 Recurrent translocations in the Mitelman Database produced an interaction signal 

substantially higher than that of the primary translocation datasets.  We speculate that this is due not 

only to the larger sample size of the Mitelman dataset, but also to the higher proportion of stochastic, 

passenger rearrangements present in the primary cancer datasets.  Surprisingly, the set of prostate 

tumor translocations interacted more significantly than the set of multiple myeloma translocations.  

This finding may be consistent with recent observations that some translocations in prostate cancer 

may occur through specific proximity-mediated mechanisms [6].  It is possible that there is a 

systematic mechanistic difference in translocation genesis that is unique to prostate cancer, 

especially given the relatively high rate of observed rearrangements in these genomes.  

 Our results support a model where translocation partners reside in broad interacting domains 

that span multi-megabase chromosomal regions.  Indeed, when we examined the 1-Mb region 
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surrounding each breakpoint in the primary tumor datasets, we did not observe significantly elevated 

local signal (Supp. Table A3.1).  This suggests that it is not just the breakpoint loci that contact each 

other prior to translocation, but also the larger chromatin domains that contain them.  These broad 

interactions, occurring across an aggregate cell population, bring translocation partners into close 

spatial proximity, increasing the likelihood of rearrangement.   

 While we report that chromosome conformation correlates with translocation partner 

selection,  consistent  with  the  “contact  first”  model  of  genomic  rearrangements, some translocations 

may   arise   in   part   or   entirely   by   other  mechanisms.      In   particular,   the   “breakage   first”   hypothesis  

suggests that the ends of double-stranded breaks are highly mobile, and that cellular mechanisms 

exist to gather such lesions after a breakage has occurred, potentially over a large distance [46].  It 

is possible that these mechanisms are responsible for the chromosomal rearrangements that did not 

show elevated Hi-C signal in this study.  Context-specific induction of proximity could also explain a 

subset of these results.  To dissect the contributions of spatial proximity, double-stranded break 

mobility, and other cellular processes to translocation partner selection, investigators will need to 

examine translocations induced by experimental mutagenesis, prior to selection in the tumor 

microenvironment. 

 Finally, our results demonstrate the utility of the genome-wide chromosome conformation 

capture approach in mapping existing translocation breakpoints to kilobase resolution. Other groups 

have recently demonstrated targeted and genome-wide sequencing-based methods to resolve 

translocation breakpoints [29, 30, 40, 41].  However, we suggest that Hi-C may provide an 

alternative and more sensitive method for detecting translocations genome-wide compared to other 

methods, since genomic rearrangements produce robust signals involving regions up to a megabase 

from the breakpoints.  These long-range interactions may allow for sequence-based karyotyping by 

illuminating the linkage between multiple breakpoints on rearranged chromosomes. 

 Given a role for spatial proximity in translocation partner selection, the molecular 

mechanisms that govern three-dimensional genomic architecture in normal and cancerous cells may 
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prove etiologically important in our understanding of oncogenic transformation.  Work to characterize 

the interactions between chromosome conformation and triggers for rearrangements may provide a 

foundation for advances in prevention and treatment of these malignancies. 

Methods 

 Translocation datasets.  We collected four large inter-chromosomal translocation datasets, 

derived both from karyotyping and high-throughput sequencing studies.  First, we collected a set of 

recurrent trans-chromosomal cancer translocations that have been observed in multiple patient 

cases from the Mitelman Database, available at the NCI Cancer Genome Anatomy Project website 

(http://cgap.nci.nih.gov/Info/CGAPDownload/).  The Mitelman Database describes translocations 

using chromosomal bands; precise breakpoints were not available.   The average size of defined 

chromosomal translocation bands in this database was large (~10Mb).  While positive selection 

modifies the frequency of cancer translocations, particularly driver rearrangements, we expected that 

many of these recurrent translocations were predisposed to recur due to factors such as genome 

organization. 

 Translocations from multiple myeloma and prostate cancer were identified from whole-

genome or exome sequences using the dRanger algorithm (Drier Y. et al., submitted).  We used 

translocations with at least three supporting reads in our analysis.  Multiple myeloma translocations 

were obtained from Chapman et al. [30].  Prostate cancer translocations were obtained from the 

supplement of Berger et al. [29].  Compared to the Mitelman Database, we expected catalogs of 

translocations in primary tumors to contain a higher frequency of passenger rearrangements, as well 

as a higher proportion of private mutations that occurred stochastically rather than systematically 

due to predisposing factors.   

 Finally, we collected all two-partner inter-chromosomal translocations (n=947) associated 

with Mendelian syndromes from the Disease Associated Chromosomal Rearrangement Database 

(https://www1.hgu.mrc.ac.uk/Softdata/Translocation/).  Again, precise breakpoints were not available 
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for this dataset.  Because these translocations can cause severe phenotypes, many of these 

mutations are not transmitted through generations: these diseases, though rare, are caused by 

recurrent de novo translocations.  In addition, these genomic rearrangements do not experience the 

same positive selective pressures as the cancer translocations, complementing the previous 

datasets. 

 For the first Mitelman and Mendelian translocation databases, we mapped the cytogenetic 

bands (e.g. t(9;22)(p13;q13)) to human genome coordinates using the UCSC Genome Browser 

Build hg18.  We considered 3-way translocations as 3 distinct two-way translocations, and excluded 

all translocations involving more than 3 partners.  We also excluded translocations involving entire 

chromosomal arms, and did not include any inter-chromosomal rearrangements (e.g. inversions). 

 Chromosomal conformation capture.  We used public Hi-C data (GEO accession 

GSE18199) generated to interrogate the long-range genomic interactions in the GM06690 

lymphoblastoid and K562 erythroleukemic cell lines [18].  We used the processed, mapped reads 

and the one-megabase binning scheme as described.  To control for differences in coverage, 

number of HindIII sites, mappability, and other features unique to each one-megabase bin, we 

normalized read counts within each bin using the universe of all inter-chromosomal (trans) reads:  

Hi-C Score = log2 [(number of trans-reads with one mate-pair mapping to region 1) × (number of 

trans-reads with one mate-pair mapping to region 2) / (total number of trans-reads in entire dataset)].  

We applied the log variance-stabilizing transformation to reduce the contributions of strong outliers 

when calculating summary statistics over a region. 

 Chromatin compartment and gene content.  We assigned regions to chromatin 

compartments using principal component analysis as described [18].  Positive and negative scores 

indicate open and closed chromatin compartments, respectively, and correlate with other genomic 

features such as gene content, histone modification, and DNAseI hypersensitivity.  For each 

translocation region, we calculated a compartment score as the mean of the principal component 
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values for all overlapping megabase bins.  We represented gene content as the percentage of bases 

covered by RefSeq genes, including both exons and introns. 

 Permutation testing.  We employed a permutation strategy to search Hi-C data for 

evidence of interaction between translocation breakpoints.  We calculated the interaction between 

each translocation region as the mean Hi-C score of all overlapping megabase bins.  We obtained 

similar results when considering the median instead of the mean (data not shown).  When 

calculating these summary statistics, we did not include bins that 1) overlapped centromeres or 2) 

had no coverage across the entire dataset.  To assess the significance of individual translocations, 

we generated a null distribution by considering 1,000 random pairs of regions with one of four 

permutation methods: 

1) We selected regions of identical size from the same chromosome pair.  This within-
chromosome permutation scheme controlled for the systematic differences in association between 
pairs of chromosomes: smaller gene-rich chromosomes, for instance, tend to group together [15]. 

2) We fixed one region, and selected as a partner a random region of identical size on 
the same chromosome.  This controlled for features of the translocation partners that might 
predispose them to interact with many other regions on the same chromosome. 

3) We fixed one region, and selected as a partner a random region of identical size on 
any other chromosome.  This controlled for features of the translocation partners that might 
predispose them to interact with many other regions across the genome. 

4) We fixed one region, and selected as a partner a random region from the entire set 
of translocations partners that did not fall on the same chromosome as the fixed partner. 
 

In all cases where we selected random regions, we required that less than 50% of the bins in the 

random region overlapped with centromeric regions or bins with no coverage across the entire 

dataset.   

 For each individual translocation, we calculated the p-value for each translocation as the 

fraction of permuted locations that exceeded its interaction score, and corrected for multiple 

hypothesis testing using the Benjamini-Hochberg method. 

 We assessed the significance of each translocation dataset as a group using a similar 

approach.  For each of our four datasets, we generated 1,000 randomized datasets that preserved 
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the overall properties of the group of translocations: the chromosome pairings and region sizes 

matched the original set.  We calculated a summary score for each of these randomized datasets 

that represented the mean interaction score across all translocations, and calculated a p-value by 

comparing these statistics to the null distributions.  We also assessed the differences between the 

interaction   scores   of   the   true   and   randomized   data   distributions   using   the   Student’s   t test and 

Wilcoxon rank sum test to monitor the degree to which outliers drove the result in the permutation 

scheme. 

 Permutations within chromatin compartment.  We also evaluated the significance of our 

results by controlling for chromatin compartment in Permutation Methods 1-3.  To accomplish this, 

we allowed swapping only within compartments.  For each translocation partner, we calculated the 

chromatin score and chosen randomly from similarly-sized regions whose chromatin scores had the 

same sign. 

 Fine-mapping of translocation breakpoints.  To identify likely chromosomal breakpoints 

responsible for previously reported translocations, we first identified the 1Mb x 1Mb bin across the 

chromosome pair with the highest total normalized read count.  We then selected all reads mapping 

to a 3Mb x 3Mb window around this bin.  We then counted the number of observed reads mapping 

to 50Kb x 50Kb bins, and looked for a pattern characteristic of unbalanced translocation.  We then 

selected the corner-most 50Kb bin, and counted reads mapping to 1Kb x 1Kb regions within this 

larger bin.  In some cases, the read count was sufficient to allow breakpoint identification at this fine 

scale, but in other cases read coverage was too sparse to further localize the breakpoint.  In all 

cases, resolution is limited by the density of HindIII restriction sites (i.e., the sites at which DNA is 

cleaved during the Hi-C experiment).  Heat maps of raw read count at the 50-kilobase pair scale are 

shown in supplementary materials.   

 Gene expression analysis.   We downloaded publicly available microarray data from the 

NCBI Gene Expression Omnibus for K562 (CML) and MV4-11 (AML) cell lines from GSE12056 [43] 

and GSE26114 [44], respectively.  Both experiments used the Affymetrix HG-U133 Plus 2.0 array 
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platform.  We preprocessed and normalized the raw CEL files using the GC-RMA algorithm [47] 

implemented in R Bioconductor [48], and mapped probes to genes using the custom CDF from 

BrainArray [49].  Although the distributions of gene expression appeared similar, we quantile-

normalized the data to ensure that arrays from the two different cell lines were comparable.  In 

Figure A3.4C, we calculated the fold-change between each gene and the median expression for all 

genes.  In Figure A3.4D, we calculated the fold-change between the average values of three 

replicate (for MV4-11) and nine replicate (for K562) arrays. 
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Appendix A4 

Optimizing the design and specificity of CRISPR genome engineering 
tools 
 

The microbial nuclease system called CRISPR (Clustered Regularly Interspaced 

Short Palindromic Repeats) has been recently discovered and characterized for application in 

eukaryotic genome engineering.  In prokaryotic systems, CRISPR functions as an immune system 

that confers resistance to exogenous plasmids and phages.  Briefly, the system functions in bacteria 

by incorporating short segments of foreign DNA   (“spacers”)   into   the  bacterial genome at CRISPR 

loci (which encode cas, or CRISPR-associated nuclease or helicase proteins as well as non-coding 

RNA elements that confer specificity of nucleic acid cleavage).  RNA expressed from the CRISPR 

locus is then processed into small RNAs that guide the cas proteins to silence specific exogenous 

genetic material (e.g., by cleaving homologous dsDNA sequences).     

It has been recognized that this microbial system could be exploited for engineering targeted 

cleavage (and subsequent deletion, or recombination) in the genomes of human (or other 

eukaryotic) cells.  Methods have now been developed to use CRISPRs as a powerful tool for genetic 

perturbation, alongside existing zinc-finger proteases and transcription activator-like effector 

nucleases (TALENs).1  A single RNA chimera (a synthetic sgRNA “spacer”)  with  complementarity  to  

a desired target genomic sequence can be used to reprogram sequence specificity for the Cas9 

endonuclease (part of the type II CRISPR system).  The target sequence for Cas9 is determined by 

the sgRNA spacer, and further specificity is conferred by the requirement that the target sequence 

be followed in the genome by a proto-spacer-associated motif (PAM) sequence (which for Cas9 is 

‘NRG’).   

Until very recently, the genome-wide specificity of Cas9 CRISPR systems had not been 

characterized; it was unknown to what extent cleavage could occur at off-target sites sharing only 

partial homology with the sgRNA spacer (e.g. sites with 1-5 mismatched base pairs).  We developed 
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a bio-informatics tool to predict, score, and assay all genome-wide off-target sites in the human 

genome for a given sgRNA spacer – and also select spacers that are optimized for a low off-target 

burden.  This tool was used in a recent publication2 to characterize the degree of cleavage at 

predicted off-target sites, and is now also available as an online web tool (http://www.genome-

engineering.org/crispr/; web interface built by Benjamin Holmes) for the experimental community to 

optimize the choice of CRISPR spacers across a target region. 

What does the CRISPR Design tool do? 
 

The CRISPR Design computational pipeline optimizes the choice of sgRNA within a user's 

target sequence. The goal is to minimize total off-target activity across the human genome. For each 

possible sgRNA choice, the tool identifies all off-target sequences (preceding either NAG or NGG 

PAMs) across the human genome that contain up to 5 mismatched base-pairs. The cleavage 

efficiency at each off-target sequence is predicted using an experimentally-derived weighting 

scheme (based on data described here2). Each possible sgRNA is then ranked according to its total 

predicted off-target cleavage; the top-ranked sgRNAs represent those that are likely to have the 

greatest on-target and the least off-target cleavage. 

In addition, this tool facilitates automated reagent design for CRISPR construction, primer 

design for the on-target Surveyor assay, and primer design for high-throughput detection and 

quantification of off-target cleavage via next-generation sequencing. 

What kind of information does the tool take in? 

The CRISPR Design tool takes in three simple inputs from the user:  

1. User’s target region input sequence (between 23-1000bp, e.g. the genomic sequence of an exon)  
2. A target identifier (e.g. the name of the gene user would like to target)  
3. User’s e-mail address 

What kind of output does the tool generate? 

1. A PDF file "_CRISPR_design.pdf" containing a summary of all possible sgRNAs, ranked in 
order of increasing predicted off-target cleavage.  
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2. An Excel spreadsheet "_CRISPR_design.csv" containing the sequence, location, and 
primers required for design of every possible sgRNA. This spreadsheet also contains 
information on all predicted off-target sequences for each sgRNA: the number of mismatched 
base-pairs, and the chr, pos, strand, and gene (if any) at which the off-target cleavage may 
be predicted to occur.  

3. An Excel spreadsheet "_off_target_primers.csv" containing a set of F and R primer pairs that 
could be used to amplify ~90-130bp around the on-target and all off-target sequences 
predicted for every possible sgRNA.  These primers are optimized for construction of a next-
generation MiSeq sequencing library. 

 

An example of the PDF output pages we developed is shown above; such a page is generated 

for  all  possible  sgRNA  sequences  identified  within  the  user’s  input  sequence.  Users can peruse the 

top 10 predicted off-target sites in this visual output, as well as all off-target sites in the spreadsheet 

output.  Different sgRNAs have different properties: some have very few (e.g. 1-2) high-scoring off-

targets and a tail of very weak off-targets, others have no high-scoring off-targets but a very large 

number of weak off-target sites.  Some users might prefer the former scenario, in which clones could 
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be screened for a single off-target site; others may prefer the latter scenario in which the overall 

probability of off-target cleavage may be lower.  Some users may be especially interested in 

minimizing protein-coding off-target sites.  The tool is designed to enable users to design CRISPR 

reagents that are best-suited for their application. 

We have used this tool to optimize the design of CRISPRs targeting both the human and rat 

genome (the latter because members of our laboratory wanted to perform engineering in the rat 

pancreatic insulinoma INS1E cell line). 
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