GENETIC PREDICTORS OF WEIGHT LOSS AND WEIGHT REGAIN AFTER INTENSIVE LIFESTYLE MODIFICATION, METFORMIN TREATMENT, OR STANDARD CARE IN THE DIABETES PREVENTION PROGRAM

LINDA M. DELAHANTY, MS, RD1,2
QING PAN, PhD3
KATHLEEN A. JARLONSKI, PhD3
KAROL E. WATSON, MD, PHD4
JEANNE M. MCCAFFERY, PhD5
ALAN SHULDINER, MD6

RESEARCH DESIGN AND METHODS—Sixteen obesity-predisposing single nucleotide polymorphisms (SNPs) were tested for association with short-term (baseline to 6 months) and long-term (baseline to 2 years) weight loss and weight regain (6 months to study end).

RESULTS—Irrespective of treatment, the Ala12 allele at PPARG associated with short- and long-term weight loss (β = −0.63 and −0.93 kg/allele; P ≤ 0.005, respectively). Gene–treatment interactions were observed for short-term (LYPLAL1 rs2605100; Psubgroup×SNP = 0.032; GNPDA2 rs10938397, Psubgroup×SNP = 0.016; MTCH2 rs10838738, Psubgroup×SNP = 0.022) and long-term (NEGR1 rs2815752, Psubgroup×SNP = 0.028; FTO rs9939609, Psubgroup×SNP = 0.044) weight loss. Three of 16 SNPs were associated with weight regain (NEGR1 rs2815752, BDNF rs6265, PPARG rs1801282), irrespective of treatment. TMEM18 rs6548238 and KCTD15 rs29941 showed treatment-specific effects (Psubgroup×SNP < 0.05).

CONCLUSIONS—Genetic information may help identify people who require additional support to maintain reduced weight after clinical intervention.

Diabetes Care 35:363–366, 2012

From the 1Diabetes Research Center, Massachusetts General Hospital, Boston, Massachusetts; the 2Department of Medicine, Harvard Medical School, Boston, Massachusetts; the 3Biostatistics Center, George Washington University, Rockville, Maryland; the 4David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; the 5Weight Control and Diabetes Research Center, The Miriam Hospital and Brown Medical School, Providence, Rhode Island; the 6Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, and Program in Genetics and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland; the 7Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, Washington; the 8National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona; the 9Center for Human Genetic Research, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; the 10Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts; the 11Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hospital, Malmö, Sweden; and the 12Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts.

Corresponding author: Paul W. Franks, paul.franks@med.lu.se and dppmail@biostat.bsc.gwu.edu.

Received 25 July 2011 and accepted 23 October 2011.

DOI: 10.2337/dc11-1328. Clinical trial reg. no. NCT00004992, clinicaltrials.gov.

This article contains Supplementary Data online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc11-1328/-/DC1.

A complete list of centers, investigators, staff, additional methods, results, and list of Diabetes Prevention Program Research Group investigators (Genetics version) can be found in the Supplementary Data online. The opinions expressed are those of the investigators and do not necessarily reflect the views of the Indian Health Service or other funding agencies.

© 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
Genetics of weight regain

(Supplementary Table 3) (2). Genetic risk scores were constructed by summing effect alleles (see Supplementary Data) (7). Models are annotated in Supplementary Data.

Primary end points are 1) short-term WL (baseline to 6 months), 2) long-term WL (baseline to 2 years), and 3) average rate of WR (6 months to study end (range 2–4.5 years). WL analyses included all participants, whereas WR analyses included 1,411 participants who had achieved ≥3% WL at 6 months. Analyses were conducted in the pooled sample adjusting for self-reported ethnicity; sensitivity analyses were repeated in NHW only to rule out population stratification. Unless there was statistical evidence of gene x treatment interactions, data were pooled from the three study arms and models were adjusted for age, sex, ethnicity, treatment, and baseline value for the dependent variable. Where such interactions were observed, treatment-specific genetic effects were estimated. For general linear models assuming additive allele effects (except Pro12Ala, which was coded with Pro12Pro vs. Ala12×), nominal allele effects are reported here when allele effects differ in the three treatment groups. The empty cells correspond to cases for which SNP effects were observed, treatment-specific genetic effects were estimated. Listed P values are not adjusted for multiple comparisons. All P values for the same outcome are adjusted for multiple comparisons, and significant SNP effects are reported (8): for short-term WL, there are three significant SNP*treatment interactions (13 + (3*3) = 22 tests are corrected for); for long-term WL, there are two significant interactions (14 + (3*2) = 20 tests are corrected for); and for WR, there are six significant interactions (10 + (6*3) = 28 tests are adjusted for).

RESULTS—Baseline data are reported in Supplementary Tables 1 and 4. P values for self-reported ethnicity; sensitivity analyses were repeated in NHW only to rule out population stratification. Unless there was statistical evidence of gene x treatment interactions, data were pooled from the three study arms and models were adjusted for age, sex, ethnicity, treatment, and baseline value for the dependent variable. Where such interactions were observed, treatment-specific genetic effects were estimated. For general linear models assuming additive allele effects (except Pro12Ala, which was coded with Pro12Pro vs. Ala12×), nominal allele effects are reported here when allele effects differ in the three treatment groups. The empty cells correspond to cases for which SNP effects were observed, treatment-specific genetic effects were estimated. Listed P values are not adjusted for multiple comparisons. All P values for the same outcome are adjusted for multiple comparisons, and significant SNP effects are reported (8): for short-term WL, there are three significant SNP*treatment interactions (13 + (3*3) = 22 tests are corrected for); for long-term WL, there are two significant interactions (14 + (3*2) = 20 tests are corrected for); and for WR, there are six significant interactions (10 + (6*3) = 28 tests are adjusted for).
in Table 1 are obtained from the regressions; however, only SNPs that remain statistically significant after adjusting for multiple comparisons are reported in this section.

WL

Short- and long-term WL were greatest in the lifestyle intervention group, and both lifestyle and metformin groups had significantly greater WL than the placebo (control) group (4,5). Irrespective of treatment, the minor Ala12 allele at PPARγ was associated with short- and long-term WL (Table 1). Statistically significant gene–lifestyle interactions were observed for short-term (LYPLAL1 rs2605100; GPNPDA2 rs10938397; MTCH2 rs10838738) and long-term (NEGR1 rs2815752; FTO rs9939609) WL (Pinteraction < 0.05).

WR

The rate of WR (in kilograms per year) from 6 months to study end was greatest in the lifestyle group and least in the placebo group (Supplementary Table 1). Those who lost ≥3% body weight from baseline to 6 months had a mean (SD) WR of 0.94 (±4.68) kg/year. Three of 16 SNPs were associated with WR (NEGR1 rs2815752, BDNF rs6265, PPARγ rs1801282), irrespective of treatment. TMEM18 rs6548238 and KTCD15 rs29941 showed treatment-specific effects. In aggregate, the risk alleles associated with WR associated with faster WR (0.274 kg/year/allele [SE = 0.097]; P = 0.005), whereas these alleles had no detectable impact on WR in the control group (Supplementary Fig. 1). Sensitivity analyses performed in NHW participants, who are essentially free of admixture (9), yielded effect estimates of comparable magnitude, indicating that population stratification does not confound our findings (Supplementary Table 5).

CONCLUSIONS

Analyses were also performed assessing putative mediating roles of specific lifestyle factors (details in Supplementary Data). However, none explained a statistically significant amount of variance in the SNP-phenotype relationships.

Mediator analyses

Analyses were also performed assessing putative mediating roles of specific lifestyle factors (details in Supplementary Data). However, none explained a statistically significant amount of variance in the SNP-phenotype relationships.

Acknowledgments

This work was funded by R01 DK-072041-02 to J.C.F., K.A.J., and A.S. (P.W.F. and W.C.K. are coinvestigators). P.W.F. was supported by grants from Novo Nordisk, the Swedish Research Council, the Swedish Heart-Lung Foundation, and the Swedish Diabetes Association. S.E.K. is supported in part by the Department of Veterans Affairs. J.C.F. is supported by a Doris Duke Charitable Foundation Clinical Scientist Development Award. The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health funded the clinical centers and the Coordinating Center for the design and conduct of the study and the collection, management, analysis, and interpretation of the data. The Southwestern American Indian Centers were supported directly by the NIDDK and the Indian Health Service. The General Clinical Research Center Program, National Center for Research Resources, supported data collection at many of the clinical centers. The Office of Research on Minority Health, the National Institute of Child Health and Human Development, the National Institute on Aging, the Centers for Disease Control and Prevention, Office of Research on Women’s Health, the Department of Veterans Affairs, and the American Diabetes Association funded data collection and provided participant support. This research was also supported, in part, by the intramural research program of the NIDDK. The Henry M. Jackson Foundation provided support services under subcontract with the Coordinating Center.

LifeScan, Health O Meter, Hoescht Marion Roussel, Merck-Medco Managed Care, Merck and Co., Nike Sports Marketing, Slim Fast Foods Co., and Quaker Oats Co. donated materials, equipment, or medicines for concomitant conditions. Bristol-Myers Squibb and Parke-Davis provided medication. McKesson BioServices Corporation and Matthews Media Group provided support services under subcontract with the Coordinating Center. No other potential conflicts of interest relevant to this article were reported.

L.M.D. conceived the analysis, designed the analysis plan, interpreted the results, wrote the manuscript, and provided critical input on the manuscript revisions. Q.P. designed the analysis plan, conducted the statistical analyses, interpreted the results, wrote the manuscript, and provided critical input on the manuscript revisions. K.A.J. designed the analysis plan, conducted the statistical analyses, and provided critical input on the manuscript revisions. S.E.K. and W.C.K. conducted the clinical trial, provided the phenotypic data, and provided critical input on the manuscript revisions. J.C.F. designed the analysis plan, coordinated the genotyping, and provided critical input on the manuscript revisions. P.W.F. conceived the analysis, designed the analysis plan, interpreted the results, wrote the manuscript, and provided critical input on the manuscript revisions and is the guarantor of this article.

The investigators acknowledge the commitment and dedication of all participants in the Diabetes Prevention Program Research Group, without whom this work would not have been possible.

References

1. Lindgren CM, Heid IM, Randall JC, et al.; Wellcome Trust Case Control Consortium; Procardis Consor tium; Giant Consortium. Genome-wide association scan