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Developmental Toxicity Data and Calculating Joint

Risk BMDs Based on the Plackett-Dale Distribution

Abstract

In developmental toxicity studies, multiple levels of correlation exist between multi-

ple outcomes of interest, complicating the estimation of models and risk assessment for

data collected from these studies. The first chapter describes these multiple layers of cor-

relation, the problems that arise from them, and provides a detailed literature review of

the statistical methodology developed in order to address these problems.

The second chapter presents a method for modeling death and malformation out-

comes based on the bivariate Plackett-Dale distribution. The method defines three as-

sociation parameters to describe all litter-level correlations, and then derives bivariate

Plackett-Dale distributions based on these three associations. A pseudolikelihood based

on the probability mass functions of these distributions is used as a basis for estimating

the model parameters for death and malformation as well as the three association pa-

rameters. The model relaxes the conditional independence assumption and, unlike meth-

ods assuming an underlying latent normal distribution, allows for assuming death and

malformation following a Bernoulli distribution. The method is applied to two different

datasets and compared to other methods. The third chapter examines the small sample

behavior of the proposed model in chapter two with simulations. A comparison to other

methods, as well as an examination of the robustness of the model to misspecification of

second order parameters is also presented.

The fourth chapter proposes a method for joint risk estimation for the proposed
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model as well as for Carey’s method, an approach to modeling the data without assum-

ing conditional independence but with no development for joint risk estimation. These

methods were compared to methods that do assume conditional independence with the

two data sets used in chapter two, as well as with simulations.

Finally, the fifth chapter summarizes the work presented and its specific contribution

to the field of analysis of developmental toxicity data. The advantages and limitations of

the proposed model are discussed, as well as and possible avenues for future research.
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1.1 Introduction

Controlled animal studies play an important role in determining safe doses for environ-

mental toxic substances, drugs, and other chemical agents. Unlike studies that determine

efficacy of treatments, studies that determine the toxicity of a substance cannot use hu-

man subjects. Thus, animal studies are often the only method where experimental data

can be obtained to assess toxicity. Along with other information, a proper analysis of ex-

perimental data can be helpful to regulators who need to decide on an acceptable dose

of the substance in question. These assays can range from studies for determining risk of

various types of cancer, an area where much of the early work in dose-response modeling

and risk assessment was developed, to studies for various non-cancer related toxicities

such as developmental and neurotoxicities.

In developmental toxicology studies, female animals (rodents or rabbits) are mated,

and then exposed to specific doses of the toxin under study. Although sample sizes may

vary by study, it is recommended at least 20 pregnant animals (dams) are assigned to

each dose group, and the study have at least three dose-groups in addition to a control

group (Kimmel and Price, 1990) (United States Environmental Protection Agency, 1991).

During gestation some embryos are resorbed back into the uterus while others mature

but do not survive gestation. These two embryolethality outcomes are known as resorp-

tions and fetal deaths, respectively. Fetuses that survive gestation are at risk for adverse

events including low birth weight and skeletal, visceral, and external malformations. Be-

fore natural birth, the dams are sacrificed and uterine contents are examined. The main

endpoints of interest are typically the number of embryolethalities, and for fetuses that

would be born, number of malformed fetuses (along with what kind of malformation)

and fetal weights and lengths. Table 1.1 exhibits summary data by dose from a develop-

mental toxicity data of Ethylene Glycol (EG) in rats reported by Price, Kimmel, Tyl, and

Marr (Price et al., 1985).

The trends observed in this study are consistent with what is seen in many develop-

2
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mental toxicology assays. As is shown in Table 1.1, as dosage increases, the number of

implants tends to remain the same, due to dose being assigned after mating, while the

embryolethality rate tends to increase. Accordingly, litter size tends to decrease as dose

increases. Note that the standard deviation of litter size also tends to increase with dose,

illustrating litter response heterogeneity. For the live outcomes, malformation rate in-

creases while fetal weight decreases as dose increases. Note, also, that at the highest dose

of the study, standard deviation is significantly larger for fetal weights, again indicating

more heterogeneity at the higheset dose level.

Developmental toxicity data can have complexities that make proper analysis chal-

lenging. First, the observed endpoints are clustered into litters, and animals from the

same litters tend to be correlated. Second, among living fetuses, different outcomes from

the same fetus may also be correlated. Third, live outcomes, such as fetal weight and

malformations, have a hierarchical relationship with death, which further complicates

the interpretation of the data. Calculating a proper safe dose needs to involve taking

into account both intra-litter and inter-outcome correlations, as well as the hierarchical

relationship between live fetal outcomes and number of dead fetuses in a given litter.

Figure 4.1 shows the relationships between the various commonly measured outcomes in

developmental toxicity.

1.2 Risk Assessment

Historically, the NOAEL (No Observed Adverse Effect Level) played an important role

in determining safes doses of toxins (Catalano and Ryan, 1994). The NOAEL is defined

as the largest dose in a toxicology experiment in which no statistically significant adverse

effect is observed. The NOAEL has several weaknesses that make it unattractive for de-

velopmental toxicology. First, NOAEL studies are restricted to actual doses from the

experiment, so a NOAEL may not even exist for a particular study. Second, the NOAEL

approach to finding safe doses encourages small sample size studies. Since the NOAEL

is determined by testing for a difference between adverse effects in the control group and

4
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the dose groups, small sample studies with low power are less likely to detect a statisti-

cally significant difference at lower dose groups, leading, paradoxically, to higher accept-

able doses. Perhaps the most damning weakness for the NOAEL approach is it does not

provide any corresponding estimate of associated risk (Crump, 1984).

For these reasons, the NOAEL has been mostly abandoned in favor of the Bench-

mark Dose (BMD) method, first proposed by Crump (Crump, 1984). Instead of using

an ANOVA-like approach where hypothesis tests are the major tool for determining safe

doses, Crump proposes fitting a quantitative, continuous dose-response model to the ex-

perimental data, for example, in the form of p(dose) = f(β0 + β1dose) where f is a link

function that ensures p(dose) is bounded between 0 and 1. Popular dose-response models

that have been used in developmental toxicology studies include the probit model, the

logit model, extreme-value model, and Weibull model:

Probit: p(dose) = Φ(β0 + β1dose)

Logit : p(dose) =
1

1 + exp[−(β0 + β1dose)]

Extreme-Value : p(dose) = 1− exp[−exp(β0 + β1dose)]

Weibull : p(dose) = 1− exp[−(β0 + β1dose
γ)]

5



When working with binary outcomes such as malformations or fetal deaths, the BMD is

defined as the dose that corresponds to a pre-specified risk above background, known as

the Benchmark Dose (BMR). For example, if we were interested in an extra risk (BMR)

of 0.1, the BMD is the dose that solves r(dose) = p(dose)−p(0)
1−p(0)

= 0.1, where p(dose) is the

probability of an adverse event at the specified dose, defined by the dose-response model.

Alternatively, one can define the BMD using an additional risk function, in which case the

BMD solves p(dose) − p(0) = 0.1. Extra risk is sometimes preferred over additional risk

because, extra risk can be interpreted as the added risk of an adverse event out of those

not affected had they not received a dose.

Toxicologists are often also interested in continuous outcomes such as fetal weight.

For these endpoints, determining what outcomes constitute an adverse event is not as

clear as for binary endpoints. In this situation, a cut-off value is usually determined based

on the estimated mean and standard deviation of the control group. Given that, in the

case of fetal weight, an abnormally low outcome is cause for concern, the cut-off of point,

wc can follow the formula: wc = w(0) − k × sd(0) where sd(0) is the estimated standard

deviation for the control group and k is an arbitrary chosen threshold, generally ranging

from 1.5 to 3. Alternatively, a cutoff can be determined by a low percentile (for example,

1%) of the control group distribution. Once the cut-off is determined, probability of an

adverse event is defined as p(w < wc) (Gaylor et al., 1998).

Because a relationship betwen the dose and outcome is specified, a BMD should exist

in every experiment and is not limited to the experimental doses. More importantly, a

confidence interval can be placed on the BMD so that a 95% lower bound, called the

BMDL.95, can be calculated. Because a safe dose will be determined by the BMD’s lower

bound, this approach encourages larger sample size studies.

There are multiple methods for calculating the BMDL.95. One intuitive approach

is to let BMDL.95 = BMD − 1.645
√
var(BMD). However, this approach allows for

nonsensical negative BMDLs. Kimmel and Gaylor propose calculating the dose that

corresponds an excess risk of 0.1 for the 95% upper confidence bound of the dose-

6



response curve (Kimmel and Gaylor, 1988). This translates to finding the dose that

solves r̂(dose) + 1.645se(r̂(dose)) = 0.1, where se(r̂(dose)) is obtained using the delta

method. However this method is not invariant under parameter transformations. An-

other method, preferred by several authors, is to calculate confidence bounds based on

likelihood ratio statistics. Let lmax be the unrestricted maximized log-likelihood and l1

the log-likelihood under some constraint. The dose that satisfies 2(lmax − l1) = 1.6452

and minimizes the BMD is a BMDL.95. This method is preferred since it is invariant un-

der transformations. However, it can only be used when a full likelihood distribution is

assumed.

The methods described above only use information from a single adverse outcome to

determine the safe dose. However, it is also important to consider the joint risk from mul-

tiple outcomes. Traditionally, when multiple outcomes are of interest, BMDs or NOAELs

are calculated for each outcome and the smallest of these doses is chosen as the safe dose.

In the case where adverse outcome are highly correlated, this approach is reasonable.

However, in general, this approach is not satisfactory. For example, consider a case where

there are two outcomes of interest, malformation and fetal weight. If two separate models

are fit and two BMDs are calculated, one for each outcome, and the malformation BMD

is chosen as the ”more conservative” BMD, then the BMD may not take into account

the additional toxic effects the substance poses to fetal weight. If the two outcomes are

highly correlated, this additional toxic effect may be small. However, if the two outcomes

are nearly independent, this additional toxic effect may be quite large, and ignoring this

effect will lead to underestimating the safe dose (Ryan, 1992).

A more accurate approach would be to calculate a BMD based on the combined risk

of all outcomes, while still allowing separate descriptions of dose-response relationships

for each outcome. That is, instead of calculating a BMD for each outcome and choos-

ing the most conservative, it is more advantageous to be able calculate one BMD where

p(dose) is the probability of any adverse outcome at the specified dose (for example, the

probability of malformation or low fetal weight). Note that, in order to have a formula

7



for the joint probability, p(dose), it is necessary to clearly define the correlations of the

multiples responses, in some cases within and between animals.

1.3 Methods for Accommodating Litter Effects

The litter effect is an ever present issue in the analysis of developmental toxicology data

and much of the early statistical work in this area focused on this problem. Outcomes

from fetuses of the same dam tend to be correlated, and this correlation must be taken

into account for a valid analysis. An analysis ignoring the litter effect will tend to un-

derestimate variances, and thus, lead to misleadingly low p-values. Willliams proposed

a famous model in which fetuses from the same dam share the same probability of mal-

formation, but malformation probability would differ by dam (Williams, 1975). For dam

k, let nk be the number of live fetuses and Mk be the number of malformations. The so

called beta-binomial model is a hierarchical model where Mk|nk, pk ∼ Binomial(nk, pk)

and pk ∼ Beta(α(dose), γ(dose)), so

P (Mk = y|nk) =

(
Mk

y

)
B(α(dose) + y, nk + γ(dose)− y)

B(α(dose), γ(dose))

The model assumes that intra-litter correlation is always positive. In the setting of devel-

opmental toxicity, it is expected that fetuses from the same litter will have similar out-

comes, so this is considered a reasonable assumption.

For the purposes of parameter estimation, it is advantageous to reparameterize

the model parameters to µ(dose) = α(dose)
α(dose)+γ(dose)

and θ(dose) = 1
α(dose)+γ(dose)

. Here,

E[Mk] = nkµ(dose) and V ar[Mk] = nkµ(dose)(1 − µ(dose))(1 + (nk − 1) θ(dose)
1+θ(dose)

). Un-

der this reparameterization, the intra-litter correlation for litter k is ρm(dose) = θ(dose)
1+θ(dose)

.

Note that (1 + (nk − 1) θ
1+θ

) is an inflation factor to the binomial variance which takes into

account the extra-variation induced by the intra-litter correlation.

Also, under this reparameterization, the probability of observing a malformation for a

fetus in litter k is µ(dose) . While it is possible to estimate µ separately for each dose group,
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a more useful approach, in terms of risk assessment, is to fit a dose-response model by

letting µ = f(β0 + β1dose). Then, through maximum likelihood estimation, β0 and β1 (as

well as θ(dose)) can be estimated to calculate a BMD and its associated BMDL.

Other notable extensions to the binomial model include the correlated binomial

model (Kupper and Haseman, 1978) which allowed for negative intra-litter correlation,

and the multiplicative binomial model (Altham, 1978). The correlated binomial model

assumes that the correlation parameter is bounded, and these bounds are a function of

nk and pk. Indeed, in the case of binary data, it is impossible to have a correlation of −1,

except for the special case when n = 2. A perfect negative correlation implies one ob-

served malformation in a litter implies all other fetuses will not be malformed, while one

observed non-malformation corresponds to all other observations being malformations.

This logic is contradictory in the case where litter size is greater than 2.

Many other extensions to handle correlated binary data exist but only a handful of

important models will be described in this section. Ochi and Prentice, instead of gen-

eralizing the binomial model, took the approach of using the multivariate normal dis-

tribution, exploiting its flexible correlation structure (Ochi and Prentice, 1984). They as-

sume that malformations from litter k are determined by latent variables, m̃k, that fol-

low a multivariate normal distribution with mean µk1n and variance-covariance matrix

σ2
k((1−ρk)Ink +ρkJnk) where σ2

k is the variance of the latent variable and ρk is the common

intra-litter correlation. Without loss of generality, the threshold that m̃jk needs to surpass

for a malformation to be observed is assigned to be 0.

These assumptions lead to the correlated-probit model among the observable out-

comes:

P (Mk = y) =

(
nk
y

)∫
A

φn(m̃k|µk, σk, ρk) dm̃k

where A = (mk|(m̃jk > 0, j ≤ y) ∪ (m̃jk ≤ 0, j > y)).

The area of integration, A, reflects that in order to observe y malformations, y of nk latent

variables must exceed 0 and the remaining nk−y latent variables must be less than y. Note

that the above likelihood formulation contains an nk dimensional integral, making it dif-
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ficult to compute the first and second derivatives of the log likelihood necessary for esti-

mating the regression parameters. Ochi and Prentice re-express the log likelihood deriva-

tives in a form where the approximation of Mendell and Elston can be used (Mendell and

Elston, 1974). Also, note that the correlation parameter in this model does not have addi-

tional constraints like the correlated-binomial model, because the model is based on the

continuous normal distribution.

The Ochi-Prentice model is an important contribution to developmental toxicology

methodology in that it introduces the concept of using latent variables to model binary

outcomes. For many toxicologists, the concept of a quantal outcome being defined by

whether an occult latent variable crosses a threshold is attractive from a biological the-

ory perspective. However, given the computation complexity of the model and the the

existence of simpler, more intuitive models based on the binomial distribution, the latent

variable approach may seem unnecessary. Yet, the use of latent variables becomes a com-

mon feature in later models that incorporate both binary and continuous outcomes, since

the latent formulation of a binary outcome can serve as a link between binary and contin-

uous outcomes. These models are discussed in more detail in the mixed outcome section

of the paper.

Rai and Van Ryzin (Rai and Van Ryzin, 1985), instead of developing a model based

on classical statistical distributions, attempted to develop a more biologically motivated

model based on the one-hit dose-response model, a concept borrowed from early car-

cinogenicity studies where the one-hit model was an established and popular method for

cancer modeling and low-dose extrapolation. Biologically, the model assumes that only

one ”hit” or one genetic mutation from a toxic insult is necessary to begin the cascade

to change a normal cell to a cancer cell. The dose-response model Rai and Van Ryzin

propose is as follows:

P (mjk = 1|dose, nk) = (1− e−(β0+β1dose))e(−nk(θ0+θ1dose))

where dose ≥ 0, nk ≥ 0, β0 ≥ 0, β1 ≥ 0 and θ0 + θ1dose ≥ 0 for all dk. The first factor,

(1 − e−(β0+β1dose)), can be interpreted as the probability of a toxic event occurring in dam
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k at the specified dose, such that its offspring may be affected as well, and the second

factor, e(−nk(θ0+θ1dose)), can be interpreted as the conditional probability of a fetus from

dam k experiencing an adverse event given that dam k experienced a toxic event where

the litter size for dam k is nk. Instead of taking into account the litter effect through the

likelihood, Rai and Van Ryzin include litter size as part of the dose-response model as

an ad-hoc method for handling the litter effect. Unfortunately, others have shown that

this method does not account for all of the extra-binomial variation inherent in the data

and, in general, does not fit the observed data well (Carr and Portier, 1991). Because the

approach of fitting biologically motivated models have not successfully produced good

fitting models, further research in developmental toxicity models is motivated less from

biological theory and more on statistical flexibility.

All of the methods mentioned above specify a likelihood model for the outcome.

Thus if the assumed likelihood model is misspecified, resulting parameters can be bi-

ased. Liang and Zeger’s generalized estimating equations (GEE) (Liang and Zeger, 1986),

an extension of the quasi-likelihood method (Wedderburn, 1974), makes it possible to es-

timate regression model parameters without having to correctly specify the distributions

and correlations of the various outcomes. For this reason, the GEE has been a popular al-

ternative to likelihood methods in many areas, including non-cancer toxicology studies.

With GEEs, the following estimating equations:

U(β) =
K∑
k=1

DT
kV

−1
k (mk − µk) = 0

are solved for β, where mk is the outcome vector (in this case, say, malformation) for

litter k, µk is the mean vector for the outcomes (in this case, the vector of malformation

probabilities p(dosek)1nk ), Dk =
∂µjk
∂β

, and Vk = A
1
2
kR(α)A

1
2
k is the working covariance

matrix for mk where Ak = diag[var(mjk)], R(α) is the assumed correlation matrix for

mjk and α is the parameter characterizing the correlation. When working with binary

outcomes such as malformations, var(mjk) = p(dosek)(1 − p(dosek))]. In developmental

toxicity, where it is reasonable to assume fetuses within a litter are equally correlated, a

compound symmetry structure is usually chosen for R(α). That is, R(α) = (1− α)I + αJ.
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If this is the correct correlation structure, then the covariance estimator for β̂ is Σβ̂,N =(∑K
k=1 D

T
kV

−1
k Dk

)−1

. However, one can also use the sandwich estimator:

Σβ̂,R =

(
K∑
k=1

DT
kV

−1
k Dk

)−1

×

(
K∑
k=1

DT
kV

−1
k (mk − µk)(mk − µk)

TV−1
k Dk

)(
K∑
k=1

DT
kV

−1
k Dk

)−1

(1.1)

which is a consistent estimator, regardless of whether R(α) is correctly specified.

Like the likelihood methods discussed above (not including the Rai-Van Ryzin

model), there is a great degree of flexibility in terms of choosing a dose-response model.

In general, one can fit any model that follows the form: µk = p(mk) = f(Xβ), where X

is the nk × p matrix of covariates for mk (including, of course, dose) and β is the p × 1

vector of regression parameters. Note that the likelihood models described above are all

litter-level models since they treat the number of malformations as the outcome of in-

terest. Thus, if one were to add additional covariates to the dose-response model, the

new covariates would also have to be at the litter-level. By fitting a mean model where

the outcomes are the binary malformation status of each fetus instead of the malforma-

tion count, we are free to allow fetus-specific covariates, such as sex, to be included in

the model. Furthermore, the GEE approach using the sandwich estimator is a popular

method, since it is robust to variance misspecification and can include a wider range of

covariates.

However, the fact that minimal assumptions need to be made to use GEEs also poses

a slight disadvantage in terms of quantitative risk assessment. Specifically, BMD calcu-

lations that require the likelihood cannot be completed since no likelihood is specified in

this approach.
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1.4 Multiple Binary Outcomes

In non-cancer studies, toxicologists are almost always interested in more than one type of

adverse outcome. For example, there may be interest in probability of death in addition to

probability of malformation, or in different kinds of malformations (e.g. skeletal, visceral,

and external). The possible inter-outcome correlations further complicates analyses in this

scenario.

Ryan and Lefkopoulou proposed a robust method, using GEEs, to model multiple

binary outcomes (Lefkpoulou et al., 1989). Letting Mi·k be the number of malformations

of type i from dam k and pik be the probability of fetus from litter k has a malformation of

type i, they specify the moments forMi·k asE[Mi·k] = nkpik and V ar[Mi·k] = nkpik(1−pik)φ

where φ is a dispersion parameter which takes into account the extra-binomial variation

due to the litter effect. Then the following GEEs are used to solve for the logistic regres-

sion model logit(pik) = δi + Xkβ:

U(δi,β) =
K∑
k=1

DT
kV

−1
k (Mk − nkpk) = 0

where DT
k is the matrix of mean derivatives, ∂pk

∂βk
, Mk is the vector of counts for each type

of outcome, pk is the vector of probabilities for each type of outcome, nk is the the number

of fetuses in dam k and K is the number of dams in the study. Vk = NkφA
1/2
k R(α)A

1/2
k

where Ak = diag[pik(1 − pik)] and R(α) is the matrix characterizing the correlation be-

tween the multiple outcomes within one fetus. Note that the variance matrix contains

two parameters to account for two different types of correlation: α, which describes the

intra-fetus correlation between the various outcomes, and φ, the dispersion parameter for

V ar[Mi·k], which is related to the correlation of two fetuses in the same litter on the same

outcome (ρk = φ−1
nk−1

).

Note that in this particular mean model, there is a unique δi for each response, but

only a single β. Thus, the model assumes that the dose-response curves for each response

are parallel, but with different intercepts. In other words, this mean model allows for
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the estimation of one parameter to describe the common dose effect of across all out-

comes. This assumption, that dose affects all outcomes in the same way, makes testing

for an overall dose effect relatively simple since there is only a singe degree of freedom

used for estimating the dose effect. However, for some data sets, this assumption may

be too restrictive and a more flexible model such as logit(pik) = αi + Xkβi, where dose

is assumed to have a separate effect on each outcome, may be more appropriate. In-

deed, being able to separately quantify the dose-response for each outcome is of interest

to many toxicologists, especially since it is possible that some outcomes may be signif-

icantly more sensitive to dose than others. In cases where only a small proportion of

the outcomes are sensitive to the toxin, an analysis assuming a common dose effect may

misleadingly conclude that the toxin has no overall effect when in fact some outcomes of

interest are affected by the toxin while others are unaffected. Also note that, unlike the

GEE approach described earlier, this method treats the outcome of interest as malforma-

tion counts. Thus, including fetus-level covariates is not possible.

Using GEEs to handle multiple outcomes and the litter effect is advantageous since

the method gives robust parameter estimates that are not biased from mis-specifying

the covariance matrix, and minimal assumptions are required. However, because this

method does not specify how to characterize the joint probability of multiple outcomes,

it cannot be used to calculate a joint BMD, even though the correlation parameters can be

easily estimated through method of moments.

1.5 Mixed Outcomes

The way toxic substances negatively affect fetal development is not limited to causing

deaths and malformations. A low fetal weight from a fetus without the presence of a mal-

formation can still indicate that a substance has a harmful effect and may be a sensitive

outcome of toxicity, especially at low doses. Thus, in the interest of utilizing all available

information to assess risk, toxicologists are also interested in fetal weights. However, the

fact that fetal weight is a continuous outcome, and known to be correlated with binary
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outcomes like malformation status, presents an analytic complication (Ryan et al., 1991).

The simplest approach to this problem is to dichotomize the continuous outcomes by

choosing an arbitrary cutpoint and defining an outcome below that cutpoint as an ad-

verse event. This allows the use of methods developed for multiple binary outcomes.

However, this approach essentially ignores that fetal weight is measured on a continuous

scale and thus leads to a loss of information, both in terms of statistical efficiency and in

terms of losing the ability to quantify how dose directly affects fetal weight. Thus, the

models presented in this section maintain fetal weight as a continuous outcome while

still accounting for the litter effect and inter-outcome correlation.

A common feature of the models described below is that they all circumvent defining

the joint probability of malformation and fetal weight. Instead, they rely on the fact that

the joint likelihood can be expressed as the product of the marginal distribution of one

variable and the conditional distribution of the other variable. For example, the joint den-

sity of fetal weight and malformation, fm,w(m,w), can be expressed as fm|w(m|w)fw(w),

the product of conditional probability of malformation given weight and the marginal

density of weight. Using this factorization allows for separately modeling mean and mal-

formation based on simpler likelihood models while also taking into account that the two

outcome are correlated.

One such model, proposed by Catalano and Ryan (Catalano and Ryan, 1992) assumes

the underlying distribution for the outcomes is a multivariate normal, much like the Ochi-

Prentice model. Malformation, the observed binary outcome, is assumed to be deter-

mined by a latent variable m̃ which follows the normal distribution. By taking this latent

variable approach, it is possible to characterize the intra-outcome and inter-outcome cor-

relations between these types of outcomes. More specifically, the proposed model is:

wjk = α0 + α1dk + εwjk

m̃jk = β0 + β1dk + εmjk

where wjk is the fetal weight and m̃jk is the latent variable for malformation for the j-th
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fetus in litter k, and

εjk =

(
εwjk
εmjk

)
∼ N

((
0
0

)
,

(
σ2
w τσwσm

τσwσm σ2
m

))
where σ2

w is the variance for wjk, σ2
m is the variance for m̃jk, and τ is the correlation be-

tween wjk and m̃jk on the same fetus. A result of this formulation is that m̃jk|wjk, dk ∼

N(β0 + β1dk + (σ1

σ2
)τ(wjk − (α0 + α1dk)), σ

2
m(1− τ 2)) which leads to the result:

P (mjk = 1|wjk, dk) = Φ

(
β0 + β1dk + (σ1

σ2
)τ(wjk − (α0 + α1dk))√
σ2
m(1− τ 2)

)

In order for all coefficient parameters to be estimable, the model must be reparameterized

to

P (mjk = 1|mjk, dk) = Φ(β∗0 + β∗1dk + β∗2(wjk − (α0 + α1dk)).

Of course, for the model to have practical use, it must be extended to also address

intra-litter correlation. Fortunately, the multivariate normal makes including this cor-

relation structure relatively easy to do. In Catalano-Ryan’s extended model, the latent

variable follows a multivariate normal with the following moments:

E

(
wk

m̃k

)
=

(
1 dk1 0 0
0 0 1 dk1

)
α0

α1

β0

β1


and

V ar

(
wk

m̃k

)
=

(
σ2
w[(1− ρw)I + ρwJ] σwσm[(τ − ρwmI + ρwmJ]

σwσm[(τ − ρwmI + ρwmJ] σ2
m[(1− ρm)I + ρmJ]

)
where ρwm is the correlation between wjk and m̃jk , ρw is the intra-litter correlation for fetal

weight, and ρw is the intra-litter correlation for the latent variables for malformation.

Thus, the conditional distribution for malformations is m̃k|wk ∼ N(µwk, σ
2
mΣk)
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where

µwjk = β0 + β1dk +
σm
σw

(
τ + (Nk − 1)ρwm
1 + (Nk − 1)ρw

)ēwk +
σm
σw

(
τ − ρwm
1− ρw

)(ewjk − ēwk)

ewjk = mjk − (α0 + α1dk)

ēwk = m̄k − (α0 + α1dk)

Σk = [(1− ρw)− (τ − ρwm)2

1− ρw
]I + [ρm −

(1− ρm)(τ 2 + (Nk − 1)ρ2
wm)− (τ − ρmw)2

(1− ρw)(1 + (Nk − 1)ρw)
]J

After reparameterizing the model to ensure estimability, the model becomes

E[mjk|wk] = Φ(β∗0 + β∗1dk + β∗2 ēwk + β∗3(ewjk − ēwk)). Note that ewjk is the fetus-specific

residual of the weight model and ēwk is the average of the litter weight residuals. Thus,

according to this model, both individual fetal weight and average litter weight affect the

probability of malformation. More specifically, when the average litter weight is lower

than expected (êwjk is negative), a fetus of that litter is more likely to be malformed. Simi-

larly, when the weight of a fetus is lower than the average weight for that litter (ewjk− ŵjk
is negative), the fetus will also have a higher malformation rate. Thus, these two ad-

ditional parameters reflect the inherent correlation between malformation rate and fetal

weight within a fetus, as well as intra-litter correlation.

Catalano and Ryan propose using two sets of estimating equations to estimate pa-

rameters:
K∑
k=1

XT
kV

−1
wk(wk −Xkα) = 0

K∑
k=1

∂E[mk|wk]

∂β
V−1mk(mk − E[mk|wk]) = 0

Note that α̂ obtained from solving the first estimating equation, substitutes α inE[mk|wk]

for the second estimating equation without iteration.

While the model’s latent formulation has an intuitive appeal, it also has some disad-

vantages. For instance, the regression parameters for the malformation model are con-

ditional on fetal weight. Thus, the β parameters in this model do not have a marginal

interpretation because of the nonlinear link function. Without a model that characterizes
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marginal risk for malformation, it is not possible to calculate a univariate BMD for that

response.

Fitzmaurice and Laird (Fitzmaurice and Laird, 1995) propose a similar model that

reverses the role of weight and malformation conditioning in terms of characterizing

the joint density. In the Fitzmaurice-Laird model, mj follows a Bernoulli distribution

and wj follows a normal distribution, conditional on malformation status. That is,

mj ∼ Bernoulli(pj) and wj|mj ∼ N(Xjα + γ(mj − pj), σ
2), where logit(pj) = Xjβ and

γ is the parameter from a regression of wj on mj . Thus, in this model, the joint distri-

bution is characterized as fmj ,wj(mj, wj) = fwj |mj(wj|mj)fmj(m), defined by the marginal

distribution of malformation status and conditional distribution of fetal weight, whereas

the Catalano-Ryan model defines the joint density as the product of the marginal distribu-

tion of fetal weight and conditional distribution of malformation status. The advantage of

the Fitzmaurice-Laird model is, sinceE[wj|mj] = Xjα+γ(mj−pj), E[wj] = E[E[wj|mj]] =

Xjα. Thus, both α and β parameters have a marginal interpretation in this setting.

In the clustered setting, the mean models are as follows:

logit(pk) = Xkβ

E[wjk|mk] = Xjkα + γ1(mjk − pjk) + γ2

nk∑
j=1

(mjk − pjk)

and the following GEEs are used to solve for β and α2 = (α, γ1, γ2):

K∑
k=1

(
∂E[mk]
∂β

∂E[mk]
∂α2

∂E[wk|mk]
∂β

∂E[wk|mk]
∂α2

)T

V ar−1

(
mk

wk|mk

)(
mk − E[mk]

wk − E[wk|mk]

)
= 0

which can be expressed as:

K∑
k=1

(
XTpmk(1− pmk)Ink −(γ1 + γ2)XTpmk(1− pmk)Ink

0 WT

)
(

V−1
mk

0
0 V−1

wk|mk

)(
mk − pk

wk − E[wk|mk]

)
= 0

where Wk = (W1k,W2k, ...,Wjk, ...,Wnkk), and Wjk = (Xjk,mjk − pjk,
∑nk

j=1(mjk −

pjk)) (Fitzmaurice and Laird, 1995). Note that, while the malformation model only de-
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pends on β, the weight model is conditional on pmk and therefore on β as well as α2,

which is why ∂E[mk]
∂α2

is 0 while ∂E[wk|mk]
∂α2

is not, leading to a non-symmetric matrix for DT .

In order to calculate a joint BMD, it is necessary to characterize joint risk through a

likelihood and to estimate the parameters that characterize the correlation between the

outcomes. The Fitzmaurice-Laird model only defines likelihoods for the malformation

and weight conditional on malformation. Furthermore, the model accounts for corre-

lation between fetal weight and malformation through the parameters γ1 and γ2 in the

conditional weight model but these parameters do not directly estimate the correlation

between weight and malformation. On the other hand, the Catalano-Ryan model does

specify the joint probability, but the correlation parameter, τ , which describes the rela-

tionship between fetal weight and malformation is not directly estimated. Thus, neither

method can be used calculate a joint BMD.

Regan and Catalano (Regan and Catalano, 1999) propose a method which retains esti-

mation of the inter-outcome correlation but also takes advantage of the robust properties

of GEE. Like the Catalano-Ryan model, the distribution of w and m are determined by

the distribution of w and latent variable m̃ which follow a bivariate normal distribution.

Without loss of generality, m̃jk is further standardized so that σm = 1. Thus, the density

function for the weight and latent malformation variable is

f(wjk, m̃jk) =
1

2πσw
√

1− τ 2
×

exp

(
−1

2(1− τ 2)

[(
wjk − µw

σw

)2

− 2τ

(
wjk − µw

σw

)
(m̃jk − γm) + (m̃jk − γm)2

])

where γm = µm/σw, the mean of the standardized m̃jk. From this density, it can be shown

that f(wjk,mjk) = Φ(γm|wjk)
mjk [1 − Φ(γm|wjk)

(1−mjk)]f(wjk) where γm|wjk =
γm+τ

wjk−µw
σw√

1−τ2 .

Also note that, in addition to mean weight and malformation, weight variance and inter-

outcome correlation can also be modeled as dose-dependent. Previously proposed mod-

els have assumed these parameters to be non-dose-dependent. However, in developmen-

tal toxicity data, it is often the case that the negative correlation between malformation

and fetal weight grows stronger, and that fetal weight variance increases, as dose in-
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creases (Chen and Gaylor, 1992).

Therefore, the dose response components in this model are as follows:

γmjk = XT
jkβ τjk = e

XTjkθ−1

e
XT
jk

θ
+1

µwjk = XT
jkα log(σ2

wjk
) = XT

jkη

To account for clustering, the parameters are estimated using the the following GEE

which uses a working covariance matrix to allow for the possible misspecification of

correlation:

K∑
k=1


∂E[mk|wk]

∂β
0 0

∂E[mk|wk]
∂θ

0 0
∂E[mk|wk]

∂α
E[wk]
∂α

0
∂E[mk|wk]

∂η
0 E[sk]

∂η


 Vmk Vwmk 0

Vwmk Vwk 0
0 0 Vsk

−1 mk − Φ(γm|wk)
wk − µwk

sk − σ2
wk

 = 0

where

sjk = (wjk − µw)2

Vwk = Σ1/2
wk

[(1− ρw)Inj
+ ρwJnk

]Σ1/2
wk

Vmk = Σ1/2
mk

[(1− ρm)Imj
+ ρmJnk

]Σ1/2
mk

VSk = Σ1/2
sk

[(1− ρm)Imj
+ ρmJnk

]Σ1/2
sk
/φm

Vwmk = Σ1/2
wk

[−ρwmInk
+ ρwmJnk

]Σ1/2
mk
/φ1/2

m

and

Σmk = diag[Φ(γm|wjk)(1− Φ(γm|wjk))]

Σwk = diag[σ2
wjk

]

Σsk = diag[2σ4
wjk

]

and φm is a scale parameter. Method of moments estimation is used to calculate estimates

for the correlation parameters τw, ρm and ρwm, as well as φm.

Regan and Catalano use the assumed joint likelihood model for risk assessment. Be-

cause the inter-outcome correlation is also estimated, a joint BMD can be calculated. Let
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us assume that a malformation or a fetal weight lower than the cutpoint wc is considered

an adverse event. Then,

p(dose) = P (adverse event at dose) = 1− P ((mjk = 1) ∩ (wjk > wc)) =

1−
∫ γm(d)

−∞

∫ ∞
wc

φ2(wjk,mjk|µw = µw(dose), µm̃ = 0, σw = σw, σm̃ = 1, τ = τ)dwjkdm̃jk

where φ2 is the bivariate normal density function and µw, σw, and τ are functions of dose.

This formula reduces to

Φ(γm(dose)) + Φ2

(
−γm(dose),

wc − µw(dose)

σw(dose)
|τ(dose)

)
where Φ and Φ2 are the cumulative distribution functions for the standard univariate and

standard bivariate normal distribution, respectively. This joint risk formulation can be

used to calculate a joint BMD and associated BMDL.

Molenberghs, Geys, and Buyse (Molenberghs et al., 2001) propose an entirely differ-

ent model, based on the Plackett-Dale distribution rather than a latent bivariate normal

distribution. Let Fwk(x) = cumulative distribution function forwk and let Fmk(y) = cumu-

lative distribution function for mk . Under the Plackett-Dale model, the joint cumulative

distribution function for mk and wk is

Fwk,mk =

{
1+(Fwk+Fmk )(ψk−1)−S(Fwk ,Fmk ,ψk)

2(ψk−1)
ψk 6= 1

FwkFmk ψk = 1

where

S(Fwk , Fmk , ψk) =
√

[1 + (ψk − 1)(Fwk + Fmk)]
2 + 4ψk(1− ψk)FwkFmk

ψk, known as the global cross-ratio, defines the dependence structure of wk and mk,

ψk =
Fwk,mk(1− Fwk − Fmk + Fwk,mk)

(Fwk − Fwk,mk)(Fmk − Fwk,mk)

and is used to derive the above joint cumulative density function.

From this definition, the joint density function is derived to be

fwk,mk(w, 0) =

{
fwk (w)

2
[1− 1+Fwk (w)(ψk−1)−Fmk (0)(ψk+1)

S(Fwk (w),Fmk (0),ψk
] ψk 6= 1

fwk(w)(1− pk) ψk = 1

fwk,mk(w, 1) = fwk(w)− fwk,mk(w, 0)
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To account for clustering, a pseudo-likelihood score function, pl =∑K
k=1

∑J
j=1 ln(fwjk,mjk(w,m)), rather than a full likelihood score function, is used

for computational simplicity and stability.

Letting θjk = (µjk, σ
2
jk, πjk, ψjk)

T , the vector of parameters of interest, we can charac-

terize the dose response model as

ηjk =


µjk

ln(σ2
jk)

logit(pjk)
ln(ψjk)

 = Xjkβ

Estimates for β can be obtained from solving the following score-based estimating func-

tion:

U(β) =
K∑
k=1

Uk(β) =
K∑
k=1

nk∑
j=1

(
∂ηk
∂β

)T (
∂ηk
∂θk

)−T (∂ln(fwjk,mjk(x, y))

∂θi

)
= 0

The dependence structure for the two outcomes is defined by the global cross-cut

ratio, ψk. Thus, this approach allows for great flexibility in choice of marginal distribu-

tions. The global cross-ratio can be interpreted as the odds-ratio comparing malformation

odds and fetal weight odds, where fetal weight is thought of as a dichotomized variable

using an unestimated cut point, wc. That is, when ψk = 1, the two outcome are indepen-

dent, when ψk > 0, there is a positive correlation between weight and malformation, and

when ψk < 0, there is a negative correlation. Thus, the model’s characterization of the

association is completely different than that of the probit model, which uses a correlation

parameter from a multivariate normal distribution.

Again, assuming observing a malformation or a fetal weight lower than the cutpoint

wc is considered an adverse event, the probability of an adverse event can be characterized

as

P (w < wc ∪m = 1|dose) = p(m = 1|dose) + p(w < wc|dose)− p(m = 1 ∩ w < wc|dose)

= p(m = 1|dose) + Fw,m(wc, 0|ψ(dose)).

Using this formulation of the joint risk, a joint BMD can be calculated (Geys et al., 2001).
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1.6 Hierarchical Outcomes

The models described above have mostly focused on outcomes from live fetuses, namely,

fetal weight and malformation or multiple types of malformations. Another important

outcome that toxicologists consider is early prenatal loss and fetal death, often collec-

tively termed embryolethality. The addition of death as an outcome of interest presents a

new statistical challenge because of the hierarchical relationship between death and live

outcomes in the litter. In particular, being able to observe malformation status and fetal

weight is conditional on the fetus being alive at the time of sacrifice. Say we are only in-

terested in deaths and malformations as outcomes. Within a dam, one can easily estimate

p(d) with Dk/nk and, similarly, p(m|d̄) with Mk/lk, where Dk and Mk are the number of

deaths and malformations observed respectively, nk is the number of implants in dam k

and lk = nk −Dk is the number of live fetuses (litter size) for dam k. However, it is more

difficult to characterize the joint risk of both death and malformation. Similarly, any risk

statement we can make on fetal malformation is conditional on those fetuses surviving

gestation. Many methods obviate this road block by assuming conditional independence:

that d and m,w|d are independent. This assumption simplifies the construction of joint

risk from multiple outcomes to P (d)P (m,w|d̄). The calculation may be appropriate for

univariate unclustered hierarchical outcomes because observing a death in one animal

would not inform the malformation rate or fetal weight for a different animal. However,

this logic breaks down in litter data where death rate of a litter is expected to inform the

malformation status and fetal weights of animals in the same litter.

For an example of a hierarchical model that assumes conditional independence, Cata-

lano, Ryan and Scharfstein (Catalano et al., 1994) present a method to model the dose

response for two hierarchical binary outcomes. In their approach, two dose-response

models are fitted: one for death and one for malformation, with the malformation model

being conditional the fetus surviving the gestation period. Letting pd(dose) be the proba-

bility of death at the specified dose and pm(dose) be the probability of malformation, two
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sets of GEEs are solved simultaneously:

K∑
k=1

nk∑
j=1

∂pd(dose)

∂βd
V−1
djk

(djk − pd(dose)1nk) = 0

K∑
k=1

nk−Dk∑
j=1

∂pm(dose)

∂βm
V−1
mjk

(mjk − pm(dose)1nk−Dk) = 0

where Vdjk and Vmjk are the assumed covariance matrices for death and malforma-

tions, respectively, βd and βm are the parameters from the death and malformation dose-

response model, and djk is a length nk vector indicating death for fetuses from dam jk

while mjk is a length nk −Dk vector indicating malformations for live fetuses from dam

jk.

In order to perform a risk assessment analysis, they define an adverse event as either

observing a death or malformation. Assuming conditional independence, P (d ∪ m) =

1− P (d̄ ∩ m̄) = 1− P (d̄)P (m̄|d̄) = 1− (1− P (d))(1− P (m|d̄)). Thus, since they assume d

and m|d̄ are fully independent, they can fit a model with death as the outcome of interest

where number of implants is considered the denominator, while also fitting a separate

model treating malformations as the outcome of interest where number living fetuses is

considered the denominator, to calculate the overall probability of an adverse event. This

probability can then be used to calculate a BMD. Catalano, Scharfstein, et al. extend this

approach to include fetal weight as an outcome of interest by modeling the live outcomes

(malformations and weight) together using the Catalano-Ryan probit model (Catalano

et al., 1993).

Another example of a model that incorporates lethality as an outcome is the Dirichlet-

trinomial model (Chen et al., 1991), which extends the beta-binomial model to include two

binary outcomes, malformation and death, by replacing the binomial with a trinomial

and beta with a Dirichlet distribution. The resulting, more general, hierarchical model

can be also used for calculating a joint BMD. Note that the assumption of conditional

independence is implicit in the likelihood formulation. However, both of these papers

ignore the inter-outcome litter effects that may be present in the hierarchical outcomes.

24



In situations without clustered data, conditional independence is a reasonable as-

sumption. One would expect that outcomes from one animal would not inform the like-

lihood for a live fetus from another animal. However, when fetuses are clustered into

litters, as in developmental or other animal studies involving litter data, it is possible that

knowing the death experience of a given litter can affect the malformation rate and fetal

weight distribution of the remaining live outcomes in the same litter. In particular, one

might expect that a litter with a high death rate could also have a high malformation rate

and a lower fetal weight distribution for the live fetuses. In practice, and somewhat con-

tradictory to the conditional independence assumption that many models employ, litter

size is often included as a covariate in regression models for live-outcomes as an ad-hoc

method for taking into account the possibility that death rate may affect malformation

rates and fetal weights (Chen, 1993).

Christensen (Christensen, 2004) formalizes this ad hoc approach and extends the

Ochi-Prentice model by including fetal death as a variable in such a way that it does

not assume conditional independence. Essentially, three possible outcomes, no adverse

event, malformation, and death are treated as ordinal events. In Christensen’s model, two

threshold parameters, τm and τd, are used to define how the latent variable relates to the

observed outcomes. Letting ỹjk be the latent variable for fetus j from dam k, if ỹjk < τm,

then no adverse event is observed for that fetus, if τm < ỹjk < τd, then a malformation

is observed for the fetus and if ỹjk > τd, a fetal death is observed. Like the Ochi-Prentice

model, ỹk, the vector denoting the latent variables for the fetuses from dam k, follows a

multivariate normal distribution with mean µ1n and variance σ2((1− ρ)In + ρJn). Letting

Hk denote the number of healthy fetuses from litter k, the joint distribution of the three

outcomes from litter k can be expressed as:

P (Hk,Mk, Dk) ∝
∫
B

φn(z̃k|0, 1, ρ)dz̃k
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where

z̃k = ỹk − 1nkµ

B = (z̃k|(z̃k < −γm, k ≤ Hk) ∪ (γm ≤ z̃jk < −γd, Hk < k < Hk +Mk)

∪ (z̃jk ≥ −γd, j > Hk +Mk)))

γm = τm − µ

γd = τd − µ

γm and γd are standardized cutpoints.

From this formulation, it follows that the probablity of death is Φ(γd) and probability

of malformation is Φ(γm) − Φ(γd). Using the above likelihood, the model specification is

as follows:

µ = f(X1β)

γm = −τm + β0 + f(X1β) = τ ∗m(Xmλm) + f(X1β)

γD = −τD + β0 + f(X1β) = τ ∗d (Xdλd) + f(X1β)

ρ = g(X2ξ)

where g(·) can either be the identity function or Fisher’s Z-transformation.

In order to compute MLE’s for the parameters of interest, it is necessary to take

derivatives of the log-likelihood. The derivatives of the log-likelihood with respect to

µ and ρ can be quite complicated as they involve differentiating the following integrals:∫
B

nk∑
j=1

z̃jkφn(z̃k|0, 1, ρ)dz̃k

∫
B

nk∑
j=1

nk∑
j′=1

z̃jkz̃j′kφn(z̃k|0, 1, ρ)dz̃k.

As in the Ochi-Prentice model, moment generating functions are used to express the

integrals as the product of univariate normal density function and a (n-1)-dimensional
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multivariate normal integral, conditional on one of the two thresholds. Using this

method, we can calculate the first and second derivatives of interest for the likelihood.

As with the Ochi-Prentice model, approximations developed by Mendell and El-

ston (Mendell and Elston, 1974) are used to carry out the calculations. Using this method,

the joint risk of the outcomes of a litter:

P (z̃1 < −γm, ..., z̃Mk
< −γm, z̃Mk+1 < −γd, ..., z̃Mk+Dk < −γd) =

ΠMk
k=1P (z̃k < −γm|z̃k < −γm, ..., z̃k−1 < −γm)×

ΠMk+Dk
j=Mk+1P (z̃j < −γd|z̃ < −γm, ..., z̃Mk

< −γ, z̃Mk+1 < −γd, ..., z̃j−1 < −γd)

can be approximated by Π
Mj

j=1Φ(qj)Π
Mj+Dj
k=Mj+1Φ(uj).

For the first product, wj = 1, wj + 1 = (wj − awjrj)/σj, rj = (rj−2 − 1)/σ2
j−1 + 1, wj =

−φ(wj)/Φ(wj) and σ2
j = 1 − r2

jawj(awj − wj) for j = 1, ...,Mk. For the second product, uj

must be calculated in two stages. First, for u1, ..., uMk+1, u1 = −γd and us+1 = ut−wwsrt/σs,

where aws, rs, and σ2
s are the same as above. For uMj+1, ..., uMj+Dj , us + 1 = (us − ausrs)/σs

where rs = (rs−1 − 1)/σ2
s−1 + 1, aus = −φ(us)/Φ(us), and σ = 1− r2

saus(aus − us).

Christensen also extends this model to include fetal weight by assuming fetal weight

and the latent variable follow a multivariate normal distribution. In this case, regression

models can be specified for all parameters of interest: fetal weight mean and variance,

both litter-effect correlations, and the inter-outcome correlation.

The likelihood for this model can be extremely complicated, and even using approx-

imation techniques to make certain calculations more tractable, the method can be com-

putationally intensive, sensitive to starting values, and unstable with certain outcome

data patterns. Also, as a likelihood method, it is not robust to model misspecification.

However, it is one of the first models that allows joint risk assessment without assuming

conditional independence.

As mentioned above, it is common practice to adjust the live-outcome models by the

litter’s death rate or litter size to informally take into account the conditional indepen-

dence in the observed data. While Christensen’s model formally incorporates conditional
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dependence into his model, its complexity makes it unappealing for many researchers.

Carey (Carey, 2006) develops a model which relaxes the conditional independence as-

sumption but also retains the simplicity and accessibility of the more commonly used

ad-hoc methods. Essentially, Carey uses adjustment covariates for conditional models

that are derived from a proper likelihood model that does not assume conditional inde-

pendence.

Unlike Christensen’s method, Carey’s likelihood uses two latent variables, one for

death and one for malformation, denoted as d̃ and m̃ respectively. The two latent variables

and fetal weight follow a multivariate normal distribution. More specifically, for the k-th

litter:  d̃k
wk

m̃k

 ∼ N

 µd
µw
µm

 ,

 Σd Σdw Σdm

Σdw Σw Σwm

Σdm Σwm Σm


where

µd = (α̃0 + α̃1dosek)1nk

µw = (β0 + β1dosek)1lk

µm = (η̃0 + η̃1dosek)1lk

Σd = σ2
d((1− ρd)Ink + ρdJnk)

Σw = σ2
w((1− ρw)Ilk + ρwJlk)

Σm = σ2
m((1− ρm)Ilk + ρmJlk)

Σdw = ΣT
wd = ρwdσwσdJnk×lk

Σdm = ΣT
md = ρmdσmσdJnk×lk

Σwm = ΣT
mw = ρwmσwσmJlk

and lk denotes the number of live fetuses while nk denotes the number of implants in

litter k.

As weight is observed only when death does not occur for a fetus, it may be of

greater interest to consider w|d. Similarly, the conditional distribution m|d,w may be
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more attractive than the marginal distribution of malformation. Unlike the marginal dis-

tributions, the conditional distributions w|d and m|w,d both take into account the death

outcomes of the litter and therefore may inform how death from the litter relates to mal-

formation rate and fetal weight.

Given the above likelihood, the marginal distribution of death and conditional distri-

bution of fetal weight and malformation can be expressed as: d̃k
wk|d̃k

m̃k|wk, d̃k

 ∼ N

 µd
µw|d
µm|w,d

 ,

 Σd 0nk×lk 0nk×lk
0lk×nk Σw|d 0lk
0lk×nk 0lk Σm|w,d


Note that, after conditioning on the means, the conditional and marginal outcomes are

assumed to be uncorrelated. For example, how d̃ informs w|d̃ is taken into account via

the conditional mean µw|d and conditional variance Σw|d.

Now, µw|d and µm|w,d can be expressed as

µw|d = (β0 + β1dose)

+ (ρwdσw)(1 + ρd(nk − 1))−1

(
Σnk
j=1d̃ij − nk(α̃0 + α̃1)

σd

)
µm|w,d = (η̃0 + η̃1dose)

+
σm[ρmd(1 + ρw(lk − 1))− ρmwρwdlk]

(1− ρw(lk − 1))(1 + ρd(nk − 1))− ρ2
wdlknk

(
Σnk
j=1d̃jk − nk(α̃0 − α̃1dose)

σd

)

+
σm[ρmw(1 + ρd(nk − 1))− ρmwρwdnk]

(1 + ρw(nk − 1))(1 + ρw(lk − 1))− ρ2
wdnklk

(
Σlk
j=1wjk − lk(β0 − β1dose)

σw

)

Note that µw|d can be expressed as the sum of marginal model for weight plus an adjust-

ment covariate. More specifically, this additional adjustment covariate is a function of

the mean standardized residuals for fetal death. Similarly, µm|w,d can be expressed as the

sum of the marginal model for malformations plus two additional adjustment covariates,

one a function of the mean standardized deaths and the other a function of the mean

standardized weights. Unfortunately, these adjustment terms are quite complicated and

include parameters from the latent theory that are not estimable. However, these theoret-

ical models can be used to motivate simpler adjustment terms.
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First, the latent death model must be rewritten to reflect that death is observed as

a binary outcome. Thus, µd = E[djk] = P (djk = 1) = P (d̃jk > 0) = Φ(
d̃jk
σd

> 0) =

Φ(α0

σd
+ α1

σd
dose) = Φ(α0 +α1dose) where the α̃0 and α̃1 are reparameterized to α0 and α1 to

ensure estimability.

From here, the conditional weight model can be expressed as:

µw|d = β0 + β1dose+ β2(1 + ρd(nk − 1))−1

(
Σnk
j=1djk/njk − nk(α0 + α1)√

Φ(α̃0 − α̃1dose)[1− Φ(α0 + α1dose)]/nk

)
where ρwdσw is taken to be a single parameter, β2 and ρd is estimated using the method of

moments from the residuals of the fitted dose-response model.

For the conditional malformation model the theoretical adjustment covariates are

quite complicated and include parameters from the latent model that are not estimable.

However, this theoretical mean model can be used to motivate simpler adjustment terms

and helps justify models that previously used ad-hoc approaches. Specifically, Carey

derives adjusted covariates based on a first order bivariate Taylor expansion around the

mean number of implants and mean litter size. In addition, like the marginal death model,

a reparameteriztion of the parameters is necessary for estimability. This approximation

to the conditional mean is expressed as:

µm|w,d = (η0 + η1dose) + η2

(
d̄k − Φ(α̂0 + α̂1dose)√

Φ(α̂0 − α̂1dose)[1− Φ(α̂0 + α̂1dose)]/nk

)

+ η3(Dk − D̄)

(
d̄k − Φ(α̂0 + α̂1dose)√

Φ(α̂0 − α̂1dose)[1− Φ(α̂0 + α̂1dose)]/nk

)

+ η4(nk − n̄)

(
d̄k − Φ(α̂0 + α̂1dose)√

Φ(α̂0 − α̂1dose)[1− Φ(α̂0 + α̂1dose)]/nk

)

+ η5

(
w̄k − µ̂w
σ̂w/
√
lk

)
+ η6(nk − n̄)

(
w̄k − µ̂w
σ̂w/
√
lk

)
+ η7(Dk − D̄)

(
w̄k − µ̂w
σ̂w/
√
lk

)

The covariates for the parameters η2 and η5 characterize the main effect of death ex-
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perience of the litter and fetal weight, respectively. The other four covariates can be inter-

preted as interaction effects in which the main effects are multiplied by either the litter’s

deviation from the average number of implants or the litter’s deviation from the average

number of deaths.

Given these marginal and conditional models, and using the following dose-response

framework:

E[djk]/
√
V ar(djk) = Φ(α0 + α1dosek)

E[mjk]/
√
V ar(mjk) = Φ(η0 + η1dosek)

E[wjk] = β0 + β1dosek

we can fit the following GEE:

I∑
k=1


∂E(dk)
∂α

0 0
∂E(wk|dk)

∂α
∂E(wk|dk)

∂β
0

∂E(wk|wk,dk)
∂α

∂E(wk|wk,dk)
∂β

0


T  Vdk 0 0

0 Vwk 0
0 0 Vmk

−1

×

 dk − Φ(α0 + α1dosek)1nk
wk − E(wk|dk)

mk − E(mk|wk,dk)

 = 0

where

Vdk = Σ
1/2
dk

[(1− ρd)Ink + ρdJnk
]Σ

1/2
dk
/φd

Vwk = Σ1/2
wk

[(1− ρw)Ilk + ρwJlk ]Σ
1/2
lk

Vmk = Σ1/2
mk

[(1− ρm)Ilk + ρmJlk ]Σ1/2
mk
/φm

and

Σdk = diag[Φ(α0 + α1dose)(1− Φ(α0 + α1dose))]

Σwk = diag[σ2
w|d]

Σmk = diag[Φ(η0 + η1dose)(1− Φ(η0 + η1dose))]
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Depending on the specific data set, not all adjustment covariates for the conditional

malformation model may be significant, especially given the high potential for collinear-

ity among them. The interaction terms, in general, do not tend to be significant, but both

main effect adjustment terms tend to be informative. What covariates one decides to in-

clude in the mean model should ultimately depend on the data. While using adjustment

covariates based on litter size and death rate have been in use as an ad-hoc method to

improve model fit, Carey establishes a theoretical basis that justifies the use of such ad-

justment covariates and specifies what adjustment covariates are appropriate given the

assumed likelihood.

1.7 Research Plan

Analysis of developmental toxicology data presents several layers of statistical chal-

lenges, brought on by the litter effect and the correlation between multiple outcomes

of interest. Early methods have focused on specific pieces of the problem, such as the

litter effect, while later methods have built on these early models and added features to

account for multiple outcomes and their inherent correlation. More recent methods, for

example, allow an analysis which incorporates the hierarchical nature of live and non-

live outcomes while not resorting to the assumption of conditional independence and

still accounting for clustering.

The ultimate goal for developmental toxicity data analysis is to use the data to con-

duct an informed risk assessment of the toxin under study while characterizing the dose-

response relationships of individual outcomes. Typically, this is done by calculating a

joint BMD and associated BMDL. When multiple outcomes are concerned, a joint likeli-

hood that fully specifies how the multiple outcomes are correlated is required to calculate

a joint BMD. While GEEs may be used to ensure estimates for model parameters are

robust to mis-specification of between-litter correlations, as is the case with the Regan-

Catalano model, ultimately, the joint likelihood of the multiple outcomes must be spec-

ified in order to characterize total risk and calculate a joint BMD. Thus, in any method
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with applications to developmental toxicology, there is a trade-off between specifying

enough likelihood to allow calculation of a BMD and forgoing making such assumptions

in favor of methods that calculate robust estimates that are not dependent on likelihood

assumptions.

Two methods, Christensen’s model and Carey’s model, discussed previously incor-

porate death as an outcome while not resorting to assuming conditional independence.

Both methods assume underlying latent variables following a normal distribution to

characterize the distribution of outcomes. This general approach, which assumes mal-

formations and deaths are observed when thresholds for latent variables are exceeded,

appeals to intuition and toxicological theory. It also presents a natural way to describe

inter-outcome correlation. However, these approaches have some limitations. First, the

accuracy of inference and risk estimation based on these models depends on the initial

likelihood assumptions. Second, the latent formulation of the likelihood makes some the-

oretical parameters non-estimable. In the case of Carey’s model, the latter issue forces the

use of approximations to the actual adjustment covariates derived from the theory for the

conditional malformation model.

An alternative approach that may work to circumvent some of these issues is to ex-

plore using a Plackett-Dale-type model instead of the multivariate normal to model the

three outcomes of interest. Recall that the Plackett-Dale approach for mixed outcomes

discussed in this paper. For live outcomes, the association between malformation and

weight is defined by the global cross-ratio:

ψk =
Fwk,mk(1− Fwk − Fmk + Fwk,mk)

(Fwk − Fwk,mk)(Fmk − Fwk,mk)

which is used to derive the joint cumulative distribution:

Fwk,mk =

{
1+(Fwk+Fmk )(ψk−1)−S(Fwk ,Fmk ,ψk)

2(ψk−1)
ψk 6= 1

FwkFmk ψk = 1
(1.2)

where

S(Fwk , Fmk , ψk) =
√

[1 + (ψk − 1)(Fwk + Fmk)]
2 + 4ψk(1− ψk)FwkFmk
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which can, in turn, be used to derive the joint density function fwk,mk . The orig-

inal approach discussed in the paper by Molenberghs et al. considers the associa-

tion due to clustering as a nuisance and therefore the psuedo-likelhiood score function

used, pl =
∑K

k=1

∑nk
j=1 ln(fwjk,mjk(w,m)), does not incorporate any parameters defining

the association between littermates. Geys et al. do propose an extension of the log-

pseudolikelihood function above that includes intra-litter association parameters. The

log-pseudolikelihood has the following form:

pl =
K∑
k=1

nk∑
j=1

ln(f1(wjk,mjk)) +
K∑
k=1

nk∑
j 6=j′

ln(f2(wjk,mj′k))

+
K∑
k=1

∑
j′<j

ln(f3(wjk, wj′k)) +
K∑
k=1

∑
j′<j

ln(f4(mjk,mj′k))

where f1, f2, f3, f4 are all bivariate Plackett densities, but characterized by different odds

ratios. That is, f1 is the joint probability of weight and malformation from the same fetus,

f2 is the joint probability of weight and malformation of two different fetuses in the same

litter, f3 is the joint probability of weights between two different animals in the same litter

and f4 is the joint probability of malformations between two different animals in the same

litter. Thus, instead of using the global cross-ratio to define only the association between

malformation and weight of a fetus, Geys proposes using the same Plackett framework to

define all associations present within a litter. By assuming exchangeability within litters,

the number of cross-ratios to be estimated is reduced to four.

Borrowing this framework of using cross-ratios to determine within-litter association

may be of use in establishing a Plackett-Dale approach to developmental toxicology that

includes death as an outcome. While still defining a distribution for the outcomes so that

univariate and joint BMDs can be calculated, the approach allows greater flexibility in

deciding marginal distributions for the outcomes. In particular, binary variables such as

malformations can be modeled directly by a Bernoulli distribution rather than through

a more complex latent normal distribution. This feature may allow circumventing the

issue of non-estimable parameters that affects methods based on the multivariate normal

distribution.
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Given that malformation and death are hierarchical outcomes, it may be useful to

think of death, malformation, and absence of an adverse outcome as three possible out-

comes on an ordinal scale. Methods that model multiple ordinal responses based on the

Plackett distribution have been developed but not adapted to clustered multiple outcome

litter data, (Molenberghs and Lesaffre, 1994) and may be used as a template for a model

directly applicable to developmental toxicology. In particular, certain assumptions can

be exploited to reduce the number of association parameters that need to be estimated.

For example, by assuming exchangeability, we can claim the association between any

two littermates is identical. Thus, we should be then able to incorporate the intra-litter

correlation through a bivariate density of two ordinal variables, the outcome of fetus j

and the outcome of fetus j′, to characterize the litter association and avoid conditional

independence.

In the ordinal scale, the global cross ratios can be interpreted as cumulative odds

ratios. In the case of two trinomial outcomes, this amounts to four ratios to estimate.

Letting Hj , Mj , and Dj denote no adverse event, malformation, and death for fetus j,

respectively, the four cross-ratios are defined to be:

ψ1 =
P (Hj ∪Mj|Hj′ ∪Mj′)/P (Dj|Hj′ ∪Mj′)

P (Hj ∪Mj|Dj′)/P (Dj|Dj′)

ψ2 =
P (Dj|Hj′ ∪Mj′)/P (Hj ∪Mj|Hj′ ∪Mj′)

P (Dj|Dj′)/P (Hj ∪Mj|Dj′)

ψ3 =
P (Hj ∪Mj|Dj′)/P (Dj|Dj′)

P (Hj ∪Mj|Hj′ ∪Mj′)/P (Dj|Hj′ ∪Mj′)

ψ4 =
P (Dj|Dj′)/P (Hj ∪Mj|Dj′)

P (Dj|Hj′ ∪Mj′)/P (Hj ∪Mj|Hj′ ∪Mj′)

Note that, because the two ordinal outcomes measure associations between are the same

variable but on different fetuses, ψ1 and ψ4, as well as ψ2 and ψ3, are the same cumulative

odds-ratios. Thus, number of association parameters to estimate can be reduced to two

in this setting.

Given this framework, we can construct the joint distribution of death and malfor-

mation which accounts for clustering via the two cross-ratio parameters. Furthermore,

we will explore how the distribution can be factorized into the resulting marginal distri-
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bution for death and conditional distribution of malformation given death. It will be of

particular interest to discover how the death of littermates affects the conditional distri-

bution of malformation and, specifically, how it compares to Carey’s model based on the

multivariate normal distribution.

Once a method that accounts for the association between death and malformation

without resorting to assuming conditional independence is developed, it will be of in-

terest to explore ways to extend the model to include fetal weight via the Plackett-Dale

approach discussed above. In particular, the conditional malformation model may be

used to motivate deriving the distribution of weight and malformation conditional on

death similar to (2). Again, it will be of interest to derive the conditional distribution of

fetal weight and malformation in order to assess how the death of littermates may affect

the joint distribution malformation and weight and whether the adjustment covariates

motivated by this conditional distribution are comparable to those described by Carey

and Christensen.

In both cases, it will be necessary to explore the forms of dose-response models to

fit for the mean and association parameters that will depend on dose, and how to for-

mulate the pseudolikelihood for robust correction of litter effects not captured by the

Plackett-Dale formulation. Estimating equations will be derived from score functions of

the log-psuedolikelihood similar to the one used in the Placket-Dale model. The use of

sandwich estimators similar to (1.1) may be necessary to ensure the robustness of vari-

ance estimators. Since we are developing a likelihood model, it will be possible to use a

χ2 goodness-of-fit statistic to empirically evaluate the how well the model fits the data.

Methods for assessing joint risk so that a BMD can be calculated is another issue that must

be addressed. In the case where death and malformation are the only outcomes of inter-

est, the risk of an adverse event can be characterizes by 1−P (H). However, the inclusion

of fetal weight as an outcome may complicate how to characterize joint risk depending

on the nature of the model developed.

A comparison to already developed models that do not assume conditional inde-
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pendence, namely Christensen’s method and Carey’s method, ideally using the same

datasets, would be needed to evaluate whether the new methods give good fitting pa-

rameter estimates and BMDs. We have access to many datasets to empirically evaluate

the method, including 10 EPA datasets of a variety of chemicals of standard sample size

(100-150 dams per study) as well as 1 very large study of the chemical 2,4,5-T with over

10,000 dams. In addition, 150 or so other National Toxicology Program (NTP) studies in

multiple agents are available that can be used to empirically evaluate ”asymptotic”-like

behavior. These include many positive studies as well as some negative studies, so the

model can be tested on a variety of data patterns. Also, simulation studies to assess how

robust the method is to deviations from the assumptions and performance under various

study sample sizes will also be conducted.
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2.1 Introduction

Controlled animal studies are used to study the effects of various potentially toxic sub-

stances such as drugs or environment contaminants. In such studies, human subjects are

not appropriate and researchers must rely on animal studies to assess toxicity from ex-

perimental data. Developmental toxicology studies are designed to examine the effect of

chemical substances on developing organisms. These studies involve exposing pregnant

animals (usually mice, rats, or rabbits) to a test substance during pregnancy and exam-

ining the effects on the fetuses. Studies typically use three or four dose groups plus a

control group, with at least 20 dams per dose group. The dams are sacrificed before de-

livery and the contents of the uterus examined. Outcomes of interest typically include

number of resorptions (early deaths), number of fetal deaths, and out of the surviving

fetuses: the number and type of malformations, fetal weights and fetal lengths. Malfor-

mations are typically categorized into three general types: Skeletal, Visceral, or External.

Figure 4.1 illustrates the relationships between all the various outcomes of interest (Kim-

mel and Price, 1990). The outcomes given the most emphasis in determining safe doses

are number of embryolethalities (resorption and deaths), number of malformations, and

reductions in fetal weight.

As one can see from figure 4.1, the data involve many correlations that must modeled,

making proper analysis challenging. For one, the major units of observation are clustered

into litters so intra-litter correlation between outcomes from the same dam is expected.

Secondly, among the live fetuses, we are interested in multiple outcomes (malformation

status and fetal weight) from each fetus and an inter-outcome correlation is also expected.

This correlation is usually not trivial and must be properly modeled for valid inference.

Also, the fact that malformation status is a binary outcome while fetal weight is a con-

tinuous outcome adds another layer of complication. Third, the hierarchical relationship

between the live outcomes and death further complicates interpretation the data. That

is to say, the live outcomes (malformation status and fetal weight) may not only be cor-

related with other live fetuses, but also with dead fetuses within the saml litter, and this
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Figure 2.1: Outcomes in Developmental Toxicity

correlation should not be ignored in the data analysis.

The ultimate goal of the data analysis is to fit a dose-response model to each out-

come, and to use these models to inform safe doses for regulation purposes. A key

step translating the dose-response model to a ’safe’ a dose is the calculation of the BMD

(benchmark dose) and BMDL (benchmark dose - lower bound) (Gaylor et al., 1998), a

process referred to as quantitative risk estimation, part of the larger goal of quantita-

tive risk assessment. The BMD is defined as the dose that corresponds to a given x %

increase in risk above background, where x is usually 5 or 10. The BMDL is the statis-

tical lower-bound (usually 95%) of the BMD, and is the quantity most useful in assess-

ing and establishing safety standards. Often, a BMDL is calculated for each outcome

and the smallest is chosen, which can lead to underestimating the safe dose and ignores

any correlation. A more valid approach would be to calculate a joint BMD that accounts

for the combined risk of all outcomes. This approach requires that joint risk, the prob-

ability of any adverse outcome, be estimable, meaning that a joint distribution for the

outcomes must be specified and that relevant inter-outcome correlations must be esti-

mated. For methods where this is not possible (often because inter-outcome correlations

are not estimated), conditional independence is assumed. That is, it is assumed that the
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Table 2.1: Malformation rates by different death rates and dose for 2,4,5-T data (CD-1
strain)

Controls and No Intervention 0.020 or 0.030 g/kg
Death Rate Live Fetuses Malformation Live Fetuses Malformation

Count Rate Count Rate
≤ 5 % 2231 0.0049 2338 0.0081
5 - 15 % 1568 0.0038 2068 0.0063
15 - 25 % 783 0.0026 1126 0.0142
25 - 35 % 85 0.0 213 0.0
35 - 45 % 41 0.0 48 0.0833
> 45 % 24 0.0417 25 0.1600

0.045 g/kg or 0.060 g/kg 0.075 or 0.090 g/kg
Death Rate Live Fetuses Malformation Live Fetuses Malformation

Count Rate Count Rate
≤ 5 % 1117 0.0858 119 0.5714
5 - 15 % 1270 0.1402 118 0.4492
15 - 25 % 1025 0.1737 107 0.7196
25 - 35 % 139 0.3237 16 1.0
35 - 45 % 70 0.2143 13 0.7692
> 45 % 100 0.69 64 0.8594

live outcomes (malformation and fetal weight) are independent of the death outcomes.

In other words, the death rate of a litter does not inform the malformation rate (or fetal

weights) of the litter. Thus, for example, if we are only interested in death and malfor-

mation outcomes, the joint risk, P (AdverseEvent) = P (DeadorMalformed), simplifies to

1− (1−P (Dead) ∗ (1−P (Malformed|NotDead))). The approach, while commonly used,

is not satisfying, as there is no theoretical basis for this assumption, and indeed, an ex-

amination of a large data set, from the 2,4,5-Trichlorophenoxyacetic Acid Developmental

Toxicity Study (Chen and Gaylor, 1992), suggests there is a noticeable positive association

between death rate and conditional malformation rate. Table 2.1 shows that for any given

dose, litters with higher death rates tend to have higher conditional malformation rates

as well.
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2.1.1 Previous Methods

Early research focused on the problem of accounting for intra-litter correlation when only

considering a single binary outcome, like embryolethality. Many important early models

were developed in the late 1970’s and early 1980’s, including the Beta-binomial model

(Williams, 1975), an extension of the binomial model, and the Ochi-Prentice model (Ochi

and Prentice, 1984), which used an underlying latent multivariate normal distribution to

describe the intra-litter correlation. The development of generalized estimating equations

(GEE) (Liang and Zeger, 1986) allowed researchers to model this data and perform ac-

curate inference without having to correctly specify the distributions or correlations of

the outcomes, making it a popular method for analyzing not just developmental toxicity

data, but a wide variety of clustered discrete data.

The research on mixed outcomes has largely focused on methods based on the latent

multivariate normal distribution, which gives us an intuitive and relatively simple way to

characterize the correlation between malformation and fetal weight. Catalano and Ryan

(Catalano and Ryan, 1992), as well as Fitzmaurice and Laird (Fitzmaurice and Laird,

1995), take advantage of the fact that the joint likelihood can be expressed as the prod-

uct of the marginal distribution for weight and conditional distribution of malformation

given weight. The factorization allows weight and malformation to be modeled sepa-

rately while still accounting for their correlation. Neither method is, however, conducive

for formal risk estimation as joint BMDs cannot be calculated using either model. Regan

and Catalano (Regan and Catalano, 1999) extend and improve on Catalano and Ryan’s

methodology. Their model, while still using the factorization of the latent normal distri-

bution as a framework, allows for the estimation of the inter-outcome correlation by dose

which makes the joint risk, and therefore the BMD and BMDL, possible to calculate. The

correlation parameters tend to increase with dose so allowing for them to be modeled as

a function of dose is an important feature of the methodology.
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2.1.2 Plackett-Dale Models

Molenbergs, Geys, and Buyse (Molenberghs et al., 2001) have taken an alternative ap-

proach, using the Plackett-Dale distribution to model the two outcomes of interest. The

Packett-Dale (Plackett, 1965) (Dale, 1986) approach has an advantage over more tradi-

tional probit models in that there is flexibility in choosing the marginal distributions of

the outcomes. So, for example, it is possible to assume the marginal distribution for mal-

formation is binomial rather than what is implied, for example, by the latent normal. Let

Fwk(x) be the cumulative distribution function forwk, the fetal weight of a fetus from litter

k and let Fmk(y) be the cumulative distribution function for mk, the malformation status

of a fetus from litter k. Then, if (mk, wk) follows a Plackett-Dale distribution, their joint

cumulative distribution function is

Fwk,mk =

{
1+(Fwk+Fmk )(ψk−1)−S(Fwk ,Fmk ,ψk)

2(ψk−1)
ψk 6= 1

FwkFmk ψk = 1

where

S(Fwk , Fmk , ψk) =
√

[1 + (ψk − 1)(Fwk + Fmk)]
2 + 4ψk(1− ψk)FwkFmk

ψk, known as the global cross-ratio, defines the dependence structure of wk and mk,

ψk =
Fwk,mk(1− Fwk − Fmk + Fwk,mk)

(Fwk − Fwk,mk)(Fmk − Fwk,mk)

and is used to derive the above joint cumulative density function. A psuedo-likelihood

based estimating equation, pl =
∑K

k=1

∑nk
j=1 ln(fwjk,mjk(w,m)), is used to estimate dose-

response parameters.

Geys et al. (Geys et al., 2001) suggest, but do not implement, an extension of this

method that also estimates the within-litter associations for the malformation and weight

outcomes in which all associations are estimated. As we can see from figure 2.2, the

within-fetus malformation-weight association is not the only source of correlation. There

are also the litter-level associations, namely the association between malformation out-

comes within a litter, the association between fetal weights within a litter, and the asso-

ciation between malformation outcomes and fetal weights between fetuses of the same
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Figure 2.2: Associations present in live outcomes developmental toxicity data

litter, but these are essentially ignored in this method. One approach is to define each of

these associations through a global cross-ratio and then define Plackett-Dale distributions

around the cross-ratios. The estimating equation are based on a log-pseudolikelihood

with the following form:

pl =
K∑
k=1

nk∑
j=1

ln(f1(wjk,mjk)) +
K∑
k=1

nk∑
j 6=j′

ln(f2(wjk,mj′k))

+
K∑
k=1

∑
j′<j

ln(f3(wjk, wj′k)) +
K∑
k=1

∑
j′<j

ln(f4(mjk,mj′k))

where f1, f2, f3, f4 are all Plackett densities characterizing different odds ratios: f1 is the

joint probability of weight and malformation from the same fetus, f2 is the joint probabil-

ity of weight and malformation of two different fetuses in the same litter, f3 is the joint

probability of weights between two different animals in the same litter and f4 is the joint

probability of malformations between two different animals in the same litter. Note that,

by assuming exchangeability within litters, the number of intra-litter association param-

eters to be estimated is reduced to three. Also note that, for the f2, f3, and f4 parts of

the log-pseudolikelihoods, we are summing over all possible pair-combinations within a

litter.

2.1.3 Hierarchical Relationship Between Outcomes

Less research has been done on accounting for the correlation induced by the hierarchi-

cal relationships between death and the live outcomes (malformation and fetal weight).
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For the sake of simplicity, we will ignore fetal weight and focus on the case where only

death and malformation are outcomes of interest. Dose response modeling is interested

in estimating the probability of death for a fetus as well as probability of malformation

given the fetus survived and it is straight forward to estimate them separately within a

dam. However, estimating joint risk of both outcomes is not as intuitive, unless we as-

sume conditional independence. Because this assumption is not necessarily expected to

be true in litter data, to compensate models typically include a covariate (usually litter

size or proportion dead) for the malformation dose-response model to serve as an ad-hoc

adjustment for the effect of death on malformation. This approach acknowledges the hi-

erarchical nature of the data by separating the effect of dose and the effect of death-rate

on malformation in the modeling. However, in joint risk assessment, this hierarchical

correlation is still often ignored and conditional independence is still assumed when cal-

culating joint risk.

Most methods proposed for this problem have been inspired from previous work re-

lying on the latent multivariate normal distribution. Christensen (Christensen, 2004) pro-

poses an extension to the Ochi-Prentice model, where death, malformation, and healthy

outcomes are considered ordinal. Specifically, two threshold parameters, τm and τd, are

used to define how the latent variable relates to the observed outcomes. Letting ỹjk be the

latent variable for fetus j from dam k, if ỹjk < τm, then no adverse event is observed for

that fetus, if τm < ỹjk < τd, then a malformation is observed for the fetus and if ỹjk > τd,

a fetal death is observed. ỹk, the vector denoting the latent variables for the fetuses from

dam k, is assumed to follow a multivariate normal distribution with mean µ1n and vari-

ance σ2((1 − ρ)In + ρJn). Letting Hk denote the number of healthy fetuses from litter k,

Mk denote the number of malformed fetuses from litter k, and Dk denote the number of

dead fetuses from litter k, the joint distribution of the three outcomes from litter k can be

expressed as:

P (Hk,Mk, Dk) ∝
∫
B

φn(z̃k|0, 1, ρ)dz̃k
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where

z̃k = ỹk − 1nkµ

B = (z̃k|(z̃k < −γm, k ≤ Hk) ∪ (γm ≤ z̃jk < −γd, Hk < k < Hk +Mk)

∪ (z̃jk ≥ −γd, j > Hk +Mk)))

γm = τm − µ

γd = τd − µ

γm and γd are standardized cutpoints.

Using the above likelihood, the model specification is as follows:

γm = τ ∗m(Xmλm) + µ(X1β)

γD = τ ∗d (Xdλd) + µ(X1β)

ρ = g(X2ξ)

where g(·) can either be the identity function or Fisher’s Z-transformation. X1 is a ma-

trix of litter-specific covariates common to both both thresholds, while Xm and Xd are

litter specific litter-covariates specific to each threshhold. X2 is the matrix of litter-specific

covariates to ρ. β, λm, λd, and ξ are their respective model pararemter vectors.

Thus, since the status of a fetus is assumed to be determined by a latent normal dis-

tribution, one correlation parameter, ρ, characterizes all three correlations of interest. Es-

timation under certain data scenarios can be difficult. However, calculating joint risk, the

risk that a fetus experiences death or a malformation, is very easy and intuitive under this

model (joint risk is simply Φ(γm)).

Carey (Carey, 2006) develops a simpler model that still allows for conditional depen-

dence. Essentially, the model formalizes the ad-hoc approach of adding an adjustment

covariate to the malformation dose-response model to adjust for the death-malformation

correlation. The adjustment covariate is derived from a latent multivariate normal distri-

bution. However, because the correlation parameters are reparameterized into the adjust-
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ment covariate, joint risk estimation is not intuitive. Also, because the adjustment vari-

able is based on the continuous normal distribution while the observed data are binary,

the actual adjustment covariate used is an approximation of the theoretical adjustment co-

variate. It is unclear whether these approximations are accurate or whether it potentially

introduces bias.

Because we compare our proposed method with Carey’s method, we present Carey’s

method more formally, as applied to our situation, when only death and malformation

are outcomes of interest. Unlike Christensen’s model, Carey’s likelihood uses two latent

variables, one for death and one for malformation, denoted d̃ and m̃ respectively. The two

latent variables are assumed to follow a multivariate normal distribution. More specifi-

cally, for the k-th litter: (
d̃k
m̃k

)
∼ N

((
µd
µm

)
,

(
Σd Σdm

Σdm Σm

))
where

µd = (α̃0 + α̃1dosek)1nk

µm = (β̃0 + β̃1dosek)1lk

Σd = σ2
d((1− ρd)Ink + ρdJnk)

Σm = σ2
m((1− ρm)Ilk + ρmJlk)

Σdm = ΣT
md = ρmdσmσdJnk×lk

and lk denotes the number of live fetuses while nk denotes the number of implants in

litter k.

Given the above likelihood, the marginal distribution of death and conditional distri-

bution of fetal weight and malformation can be expressed as:(
d̃k

m̃k|d̃k

)
∼ N

((
µd
µm|d

)
,

(
Σd 0nk×lk 0nk×lk

0lk×nk 0lk Σm|d

))
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where µm|d can be expressed as

µm|d = (β̃0 + β̃1dose) + (ρmdσm)(1 + ρd(nk − 1))−1

(
Σnk
j=1d̃ij − nk(α̃0 + α̃1)dose

σd

)
.

Note that µm|d can be expressed as the sum of marginal model for latent malformation

plus an adjustment covariate that is a function of the mean standardized residual for fetal

death. While the adjustment term is a bit complicated and includes parameters from the

latent theory that are not estimable, this theoretical model is used to motivate a simpler

adjustment term:

µm|d = (β0 + β1dose) + β2

(
d̄k − Φ(α̂0 + α̂1dose)√

Φ(α̂0 − α̂1dose)[1− Φ(α̂0 + α̂1dose)]/nk

)
Mean models are then fit using GEEs with the following dose-response framework:

E[djk]/
√
V ar(djk) = Φ(α0 + α1dosek)

E[mjk]/
√
V ar(mjk) = Φ(β0 + β1dosek)

To enable easy comparison between the models, we use a logit version of Carey’s method

rather than the proposed probit model. Given the two link functions tend to estimate

similar trends in practice, we believe the derived adjustment covariate derived by Carey

will still apply when the logit link function is used. Thus, in our comparisons, the Carey

model was fit using the following dose-response functions:

logit(E[djk]) = α0 + α1dosek

logit(E[mjk|D̄]) = β0 + β1dosek + β2

(
d̄k − Φ(α̂0 + α̂1dose)√

Φ(α̂0 − α̂1dose)[1− Φ(α̂0 + α̂1dose)]/nk

)
(2.1)

2.2 Proposed Method

We propose a method using the Plackett-Dale framework to model dose-response for hi-

erarchical data. It essentially takes an approach similar to Geys et al. in their proposed

extension but applies it to hierarchical data. As discussed earlier, the Plackett-Dale ap-

proach has certain advantages. It is not restricted to assuming the marginal distributions
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Figure 2.3: Associations present in heirarchical devlopmentoal toxicity data

are latent normal. Instead the marginal distributions are flexible. This also gives added

flexibility in choosing the link function for the dose-response models and also allows sep-

arate marginal models for each outcome, rather than have to model one outcome condi-

tional on the other. These advantages allow the resulting models to be easier to interpret.

It also allows for the direct estimation and modeling of the association parameters, pro-

viding a potential path to calculating joint risk.

The various outcomes and associations of interest present within a litter can be visu-

alized in figure 4.2. There is also the association between death outcomes within a cluster.

For the fetuses that did not die, there is the association between malformation outcomes

within a cluster. Finally, there is the association between death outcomes and malfor-

mation outcomes, which determines how the death rate of a particular dam will affect

the corresponding conditional malformation rate for the same litter. The idea here is not

to create a complicated likelihood model that will incorporate all possible outcomes and

possible associations, but rather to apply the Plackett-Dale framework to each association

parameter so that we can estimate all relevant association parameters as well as the death

rates and conditional malformation rates.

Formalizing the notation, let djk be a binary random variable that is 1 if fetus j from

dam k is dead and 0 if alive, and let ψd be the odds ratio of a fetus j death outcome when

fetus j′, a fetus in the same dam group, is also dead vs when fetus j′ is not dead. Likewise,
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let mjk|D̄jk be a binary random variable that is 1 if fetus j from dam k is malformed and

0 if not, given that fetus jk is known to not be dead, and let ψm be the odds ratio of fetus

j having a malformation outcome when fetus j′ is also malformed vs when fetus j′ is not

malformed, assuming both fetus j and j′ are not dead. Finally, let ψ3 be the odds ratio of

fetus j (which is known to be alive) having a malformation outcome when fetus j′ is dead

vs when fetus j′ is not dead. Mathematically, their expressions are as follows:

ψd =
P (Dj|Dj′)/P (D̄j|Dj′)

P (Dj|D̄j′)/P (D̄j|D̄j′)

ψm =
P
(
Mj|D̄j

∣∣Mj′|D̄j′
)
/P
(
M̄j|D̄j

∣∣Mj′ |Dj′
)

P
(
Mj|D̄j

∣∣M̄j′|D̄j′
)
/P
(
M̄j|D̄j

∣∣M̄j′ |D̄j′
)

ψdm =
P
(
Mj|D̄j

∣∣Dj′
)
/P
(
M̄j|D̄j

∣∣Dj′
)

P
(
Mj|D̄j

∣∣D̄j′
)
/P
(
M̄j|D̄j

∣∣D̄j′
)

where Dj is a death outcome for fetus j and Mj is a malformation outcome for fetus

j. As with Regan-Catalano’s method, a dose-response model can be estimated for the

association parameter, ψ, and thus BMDs can be calculated.

Parameters ψd, ψm, ψdm can be thought of as global cross-ratios that define the various

associations present in the data: ψd is the within-cluster association between death out-

comes, ψm is the within-cluster association between malformation outcomes, and ψ3 is the

association between death outcome and malformation outcome that is induced by con-

ditional dependence. From these cross-ratios, the joint probabilities for two deaths, two

malformations (given they are not dead), and one death and one malformation (given the

malformed fetus was known not to be dead), can be derived as:

F1 = P (Dj, Dj′) =

{
1+(2pd)(ψ1−1)−S(pd,pd,ψd)

2(ψd−1)
ψd 6= 1

p2
d ψd = 1

F2 = P (Mj|D̄j,Mj′ |D̄j′) =

{
1+(2pm|D̄)(ψm−1)−S(pm|D̄,pm|D̄,ψm)

2(ψm−1)
ψm 6= 1

p2
m|D̄ ψm = 1

F3 = P (Mj|D̄j′ , Dj′) =

{
1+(pm|D̄+pd)(ψdm−1)−S(pm|D̄,pd,ψdm)

2(ψdm−1)
ψdm 6= 1

pm|D̄pd ψdm = 1

where S(p1, p2, ψ) =
√

[1 + (ψ − 1)(p1 + p2)]2 + 4ψ(1− ψ)p1p2.
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From these joint probabilities we can derive the the probability mass functions for the

paired outcomes to be:

G1(dj, dj′) =


F1(pd, ψd) dj = 1, dj′ = 1
2(pd − F1(pd, ψd)) dj 6= dj′
1− 2pd + F1(pd, ψd) dj = 0, dj′ = 0

G2(m|D̄j,m|D̄j′) =


F2(pm|D̄, ψm) m|D̄j = 1,m|D̄j′ = 1
2(pm|D̄ − F2(pm|D̄, ψ)) m|D̄j 6= m|D̄j′

1− 2pm|D̄ + F2(pm|D̄, ψm) m|D̄j = 0,m|D̄j′ = 0

G3(m|D̄j, dj′) =


F3(pm|D̄, pd, ψdm) m|D̄j = 1, dj′ = 1
pm|D̄ − F3(pm|D̄, ψdm) m|Dj = 1, dj′ = 0
pD − F3(pD, ψdm) m|Dj = 0, dj′ = 1
1− pm|D̄ − pd + F3(pm|D̄, ψdm) m|D̄j = 0, dj′ = 0

We take a similar approach to the one proposed in Geys et al. to derive the estimating

equations. Geys et al. propose summing all likelihoods to create a psuedolikelihood

to form the estimating equations. However, they were only considering live outcomes

(malformation and fetal weight). If we take the same approach and use the following

pseudolikelihood:

pl =
K∑
k=1

∑
j′<j

ln(G1(djk, dj′k))

+
K∑
k=1

∑
j′<j

ln(G2(mjk|D̄jk,mj′k|D̄j′k))

+
K∑
k=1

∑
j 6=j′

ln(G3(djk,mj′k|D̄j′k))

then we ignore the hierarchical relationship inherent in the data and we get biased es-

timates. Simulation studies show that pd was consistently underestimated and pm|D̄ was

consistently overestimated. We believe that simultaneously estimating the parameters for

the death and malformation models in this way possibly leads to a positive feedback loop

due to the presence of the G3 portion of the likelihood. The presence of G3 portion in the

pseudolikelihood means that in the estimation procedure, the estimate for pm|D̄ informs

the estimate of pd and vice versa in a very direct way and which may potentially lead to

extreme bias.

Thus, we propose a 2-step procedure for the estimation. First, estimate dose response
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parameters for pd and ψd from estimating equations based on

pl1 =
K∑
k=1

∑
j′<j

ln(G1(djk, dj′k))

Then, estimates for pm, ψm, and ψ3 can then be estimated from estimating equations based

on

pl2 =
K∑
k=1

∑
j′<j

ln(G2(mjk|D̄jk,mj′k|D̄j′k))

+
K∑
k=1

∑
j 6=j′

ln(G3(djk,mj′k|D̄j′k))

by substituting parameters for pd and ψd with their estimates obtained from step one.

Thus, we estimate two dose-response models:

ηk1 =

(
logit(pdk)
log(ψdk)

)
= Xk1β1

ηk2 =

 logit(pm|d̄k)

log(ψmk)
log(ψdmk)

 = Xk2β2

We use the logit-link for the probability models and the log-link for the ψ models, but

other options, such as the probit-link for the probability models are also possible.

The estimating equations used to estimate β1 and β2 are

U(β1) =
N∑
k=1

(
∂ηk1

∂β1

)T (
∂ηk1

∂β1

)−T (
∂pl1
∂θk1

)
and

U(β2) =
N∑
k=1

(
∂ηk2

∂β2

)T (
∂ηk2

∂β2

)−T (
∂pl2
∂θk2

)
respectively, where θ1 = (pd, ψd) and θ2 = (pm|D̄, ψm, ψdm).

The covariance estimates for β1 and β2 are

ˆcov(β̂1)=

(
N∑
k=1

∂Uk(β1)

∂β1

)−1( N∑
k=1

Uk(β1)Uk(β1)T

)(
N∑
k=1

∂Uk(β1)

∂β1

)−T∣∣∣∣∣∣
β1=β̂1
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and

ˆcov(β̂2)=

(
N∑
k=1

∂Uk(β2)

∂β2

)−1( N∑
k=1

Uk(β2)Uk(β2)T

)(
N∑
k=1

∂Uk(β2)

∂β2

)−T∣∣∣∣∣∣
β2=β̂2

respectively.

Because this method treats each possible pairing within a dam as the outcome, it

weighs each dam differently than other methods that use the implant or fetus as an out-

come. For example, when modeling pd, a logistic regression would weight each dam by

the number of implants for that dam, nk. However, the Plackett-Dale model, because it

treats each possible pairing from a dam as a data point, weights each dam by something

closer to n2
k. This can lead to potentially biased estimates and inference inconsistent with

established methods. Indeed, examining the three log-likelihoods shows us that they do

not simplify to what one would expect under independence. The three log-likelihoods of

dam k under independence are as follows:

∑
j′<j

ln(G1(djk, dj′k)) = (nk − 1)[nk,d=1ln(pdk) + nk,d=0ln(1− pdk)]∑
j′<j

ln(G2(mjk|D̄jk,mj′k|D̄j′k))=(lk − 1)[lk,m=1ln(pm|d̄) + lk,m=0ln(1− pm|d̄)]∑
j 6=j′

ln(G3(djk,mj′k|D̄j′k)) = (lk)nk,d=1ln(pdk) + (lk − 1)nk,d=0ln(1− pdk)

+ (nk − 1)[lk,d=1ln(pm|d̄) + lk,d=0ln(1− pm|d̄)]

The likelihoods for each dam are weighted by a function of number of implants or litter

size (or both) when no litter-level associations exist (ψd = 1, ψm = 1, ψdm = 1). Ideally, in

the case that no litter-level associations exist, we expect the log-likelihood to be similar

to the log-likelihoods used in a ordinary logistic regression, where each fetus is weighted

equally. However, dams with larger implant sizes and litter sizes are weighted more

heavily in our method, giving weight to fetuses of lower doses, which could potentially

influence parameter estimates and inference. In order to prevent this extraneous weight-

ing where dams with larger implant counts or litter sizes are weighted disproportionately

higher, we divide the derivative of the log-likelihood by the weighting factor so that our
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method conforms to the same weighting as a standard logistic regression under complete

independence. Thus, instead of using(
∂pl1
∂θk1

)
=

( ∑
j′<j

∂
∂pdk

ln(G1(djk, dj′k))∑
j′<j

∂
∂ψdk

ln(G1(djk, dj′k))

)
and

(
∂pl2
∂θk2

)
=


∑

j′<j
∂

∂pm|D̄k
ln(G2(m|D̄jk,m|D̄j′k)) +

∑
j 6=j′

∂
∂pm|D̄k

ln(G3(djk,m|D̄j′k))∑
j′<j

∂
∂ψm|D̄k

ln(G2(m|D̄jk,m|D̄j′k))∑
j 6=j′

∂
∂ψk

ln(G3(djk,m|D̄j′k))


we use

(
∂pl1
∂θk1

)
=


1

nk−1

∑
j′<j

∂
∂pdk

ln(G1(djk, dj′k))∑
j′<j

∂
∂ψdk

ln(G1(djk, dj′k))


and

(
∂pl2
∂θk2

)
=


1

lk−1

∑
j′<j

∂
∂pm|D̄k

ln(G2(m|D̄jk,m|D̄j′k)) + 1
nk−1

∑
j 6=j′

∂
∂pm|d̄k

ln(G3(djk,m|d̄j′k))∑
j′<j

∂
∂ψm|d̄k

ln(G2(m|D̄jk,m|D̄j′k))∑
j 6=j′

∂
∂ψk

ln(G3(djk,m|D̄j′k))


in our estimating equations.

Because the units are the paired outcomes, if no pairs exist for a particular dam, that

data can’t be included in the analysis. This includes litters with only one implant and with

only one surviving fetus. The former case is so rare that it doesn’t merit any consideration.

The second case though is not impossible if the data set considered is large enough and

the number of implants are relatively small. In such cases, the death outcome pairs and

the malformation-death pairs can contribute to the estimation for the models for pd, ψd,

ψdm, but we cannot use the outcome of the surviving fetus to inform the models for pm|D̄

and ψm. Typically, however, this phenomenon is rarely observed in practice. The only

realistic scenario in which we would observe a significant number of litters with only one

surviving fetus is the case where the highest dose group has an extremely high death rate

such that many of the dams in that dose group have no or just one surviving fetuses. In

such situations, it is common to drop that dose-group entirely from the analysis because

it will potentially affect the dose-response model greatly even though it does not really

54



inform the low-dose effect of the study agent due to a differing mechanism of action

toxicologically at the highest dose. So for the purposes of developmental toxicity studies,

this limitation is not a significant problem.

The above estimation procedure was programmed in R (version 2.15). For both steps

of the estimation procedure, the Newton-Raphson algorithm for non-linear sets of equa-

tions is used to estimate the model parameters. Both backtracking and the perturbation

of the jacobian when not positive definite are implemented in the algorithm (Press et al.,

2007). Functions to calculate first and second derivatives for G1, G2, and G3 with respect

to each parameter were created. Starting values for the pd and pmd̄ models are calculated

by running the equivalent logistic regression models with GEEs. For the starting values

for the ψd, ψm, and ψdm models, a starting value of 0.0001 is used. For the EG mice dataset

(presented below), a study with a typical sample size and data-pattern, the first estima-

tion procedure took 4 iterations and the second estimation procedure took 3 iterations

for convergence. The first procedure took 13.36 seconds while the second procedure took

28.48 seconds on a Dell Precision 390 desktop computer with an Intel(R) Pentium(R) 4

CPU 3.00 GHz 2.99 GHz processer running Windows 7 Professional.

2.3 Example

2.3.1 NTP Study of EG in Mice

To illustrate our method, we fit the model to a developmental toxicity study conducted by

the National Toxicology Program to study the effect of Ethylene Glycol (EG) in mice. Rele-

vant summary statistics for the data set are presented in table 2.3.1. While developmental

toxicity studies typically examine multiple types of malformations, for our purposes we

will define a malformation outcome as any type of malformation observed. The data set

exemplifies typical traits of such investigations. Both the death rate and the conditional

malformation rate increase with dose, but the conditional malformation rate appears to

be more sensitive to dose. In the addition, the outcomes have very different background
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Table 2.2: Summary Statistics for EG Mice Data
dose (g/g/day) Dams Implants Deaths % Malformations %
0 25 384 37 11.1 1 0.337
0.75 24 310 34 11.0 26 9.42
1.5 23 266 37 13.9 89 38.9
3.0 23 283 57 20.4 129 57.1

Table 2.3: Model Selection for EG data for pd and ψd models. An asterisk under 1, d or d2

indicate a constant, linear, or quadratic dose trend respectively
logit(pd) log(ψd)

Model 1 d d2 1 d
1 * * * * *
2 * * * *
3 * * *
4 * *

Comparison Wald-test statistic p-value
1-2 0.213 0.644
2-3 0.0386 0.844
3-4 6.80 0.009

rates of response; the baseline malformation rate is near 0 but the control death rate is

non-trivial at greater than 10%.

We fit the following models:

logit(pd) = βd0 + βd1dose

ln(ψd) = αd0

logit(pm|d̄) = βm0 + βm1dose+ βm2dose
2 (2.2)

ln(ψm) = αm0

ln(ψdm) = αdm0

We decided this model fit the data best after model selection was performed. There was

not strong evidence of the association parameters changing with dose. Hence, for the sake

of parsimony, they are assumed to be constant across dose groups. The quadratic model

for the conditional malformation outcomes fit the data better than the linear model and

thus was chosen for this analysis. Table 2.3.1 shows Wald test comparisons for the pd and

ψd models and Table 2.3.1 show Wald test comparisons for the pm, ψm, and ψdm models.

The resulting parameter estimates and associated standard errors are shown in Table
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Table 2.4: Model Selection for EG data for pm, ψm and psidm models. An asterisk under 1,
d or d2 indicate a constant, linear, or quadratic dose trend respectively. All models are fit
with the same death model specifications (linear in logit(pd) and constant in ln(ψd))

logit(pm) log(ψm) log(ψdm)
Model 1 d d2 1 d 1 d

1 * * * * * * *
2 * * * * * *
3 * * * * *

Comparison Wald-test statistic p-value
1-2 17.4 0.00003
1-3 3.55 0.169

Table 2.5: Parameter Estimates, Standard Errors, and 95% Confidence Intervals for EG
mice data (model 4.4)

param estimate standard error 95% confidence interval
βd0 -2.20 0.180 (-2.55, -1.85)
βd1 0.264 0.101 (0.07, 0.46)
αd0 0.521 0.139 (0.25, 0.79)
βm0 -5.26 0.563 (-6.36, -4.16)
βm1 4.60 0.804 (3.02, 6.18)
βm2 -0.917 0.219 (-1.35, -0.49)
αm0 1.23 0.219 (0.80, 1.66)
αdm0 0.218 0.158 (-0.09, 0.528)

A.1. Typically, the second-order parameters (here, the αs) tend to have larger standard

errors and much wider confidence intervals and it is harder to achieve statistical signif-

icance for those parameters. For this data set, we see that none of the dose-response

parameters for the ψ models were statistically significant at the .05 level, and in fact, the

death-malformation association is not detectable at the 0.05 level for this data set (p-value

= 0.17). However, the positive estimate for the parameter hints that the model is capturing

the expected positive correlation between death and malformation.

The estimated probabilities for each dose group are shown in Table 2.3.1 with the

estimated ψs shown in table 2.3.1.

For the death dose-reponse model, we calculated a BMD0.05 of 1.60 g/kg/day and

BMDL0.05 of 1.10 g/kg/day. For the malformation dose-response model, we calculated a

BMD0.05 of 0.596 g/kg/day andBMDL0.05 of 0.522 g/kg/day. As expected, theBMD0.05
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Table 2.6: Estimates for Probabilities by Dose
dose (g/kg) LCL p̂d UCL LCL log(p̂m) UCL
0.0 0.0726 0.100 0.136 0.00172 0.00516 0.0154
0.75 0.0951 0.120 0.149 0.0631 0.0889 0.124
1.5 0.117 0.142 0.171 0.286 0.395 0.515
3.0 0.143 0.197 0.267 0.432 0.570 0.698

Table 2.7: Estimates for ψs for EG data
ψ estimate 95% confidence interval
ψd 1.68 (1.28, 2.21)
ψm 3.43 (2.23, 5.25)
ψdm 1.24 (0.911, 1.70)

and BMDL0.05 estimates are much lower for malformation outcomes than death out-

comes, since malformation rate was shown to be more sensitive to dose in this study.

We do not present the results of the models fitted, but we note that the probability

models were very robust to how theψ parameters were estimated. Theψ model estimates,

on the other hand, were more sensitive to how the probability models were specified.

2.3.2 2,4,5-T Study in Mice

We also evaluated our method on a larger data set from a study examining the effects

of 2,4,5-Trichlorophenoxyacetic Acid (2,4,5-T) (Chen and Gaylor, 1992). Several strains

of mice were used in this large experiment and we examine here a subset of the data in

the CD-1 strain. Relevant summary statistics for the data set are presented in table 2.3.2.

As we can see by the number of dams per dose group, the study did employ a balanced

study design because doses were added dynamically as the experiment was conducted

over time.

In this large data set, we would expect the phenomenon of conditional dependence to

be more easily observed. Christiansen made a convincing case that a correlation between

conditional malformation rate and death rate for this data by looking at the conditional
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Table 2.8: Malformation rates by different death rates and dose for 2,4,5-T data (CD-1
strain)

dose (g/kg/day) Dams Implants Deaths % Malf %
0.000 698 8061 820 10.2 33 0.456
0.020 307 3637 410 11.3 24 0.744
0.030 722 8300 1079 13.0 79 1.09
0.045 98 1120 229 20.4 110 12.3
0.060 592 6865 1408 20.5 858 15.7
0.075 44 482 214 44.4 159 59.3
0.090 83 917 494 53.9 268 63.4

malformation rates by dose and by death rate. He observes that even for dams at the

same dose level, dams with higher death rates tend to also have higher malformation

rates. Table 2.1 shows the malformation rates by death rates for dose group. The data

from this table only includes litters with 10 to 13 implants to control for the possible effect

of litter size. It also only includes litters with at least one live outcome.

Thus, for these data, we would expect to be able to detect statistically significance for

the ψdm parameters. Using the same model-fitting strategy we employed for the EG data,

we found the following best fitting model:

logit(pd) = βd0 + βd1dose+ βd2dose
2

ln(ψd) = αd0 + αd1dose

logit(pm|d̄) = βm0 + βm1dose (2.3)

ln(ψm) = αm0 + αm1dose

ln(ψdm) = αdm0

Tables 2.3.2 and 2.3.2 show the relevant Wald-test comparisons.

We note that the baseline ψdm is indeed statistically significant. The model parame-

ter estimates, standard errors, and 95% confidence intervals are shown in Table A.1. For

this data set, we observe that αdm0 is statistically significant at the two-sided 0.05 level,

confirming that the death-malformation association is indeed detectable. There is no ev-
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Table 2.9: Model Selection for 2,4,5-T data for pd and ψd models. An asterisk under 1, d or
d2 indicate a constant, linear, or quadratic dose trend respectively

logit(pd) log(ψd)
Model 1 d d2 1 d d2

1 * * * * * *
2 * * * * *
3 * * * *
4 * * * *

Comparison Wald-test statistic p-value
1-2 2.10 0.147
2-3 36.01 < 0.0001
2-4 30.71 < 0.0001

Table 2.10: Model Selection for 2,4,5-T data for pm, ψm and ψdm models. An asterisk under
1, d or d2 indicate a constant, linear, or quadratic dose trend respectively. All models are
fit with the same death model specifications (quadratic in logit(pd) and linear in ln(ψd))

logit(pm) log(ψm) log(ψdm)
Model 1 d d2 1 d d2 1 d d2

0 * * * * * * * *
1 * * * * * * * *
2 * * * * * * *
3 * * * * * *
4 * * * * *
5 * * * *
6 * * * *

Comparison Wald-test statistic p-value
1-2 2.72 0.100
0-2 1.73 0.188
2-3 1.12 0.290
3-4 0.087 0.768
4-5 671.7 < 0.0001
4-6 9.74 0.00180
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Table 2.11: Parameter Estimates, Standard Errors, and 95% Confidence Intervals for 245T
data (CD-1 strain)

param estimate standard error 95% confidence interval
βd0 -2.15 0.0551 (-2.26, -2.04)
βd1 -3.58 3.75 (-10.9, 3.77)
βd2 304.23 50.69 (204.9, 403.6)
αd0 0.887 0.149 (0.596, 1.19)
αd1 16.7 3.01 (10.8, 22.6)
βm0 -6.33 0.174 (-6.68,-5.99)
βm1 79.3 3.06 (73.3, 85.3)
αm0 3.51 0.367 ( 2.79, 4.23)
αm1 -18.6 5.94 (-30.2, -6.90)
αdm0 0.613 0.0739 (0.468, 0.758)

idence that this association increases with dose. The significantly positive αdm0 confirms

that conditional dependence is detectable with a sufficiently large data set. We also note

that the method estimates αm1 to be negative and the baseline association to be extremely

high. It is possible this is an artifact of the low malformation rates in the control group.

When an extreme number of the same outcome (in this case, non-malformed fetuses) are

observed, the level of association may be inflated, resulting in a high baseline estimate for

ψm and an estimated negative trend.

The estimated probabilities and ψ values for each dose group are shown in Table 2.3.2.

The estimate for log(ψdm) is 0.613 with a confidence interval of (0.468, 0.758).

For the death dose-repose model, we calculated a BMD of 0.0430 g/kg/day and

BMDL0.05 of 0.0379 g/kg/day. For the malformation dose-response model, we calcu-

lated a BMD of 0.0432 g/kg/day and BMDL0.05 of 0.0419 g/kg/day. We note that, un-

like the EG data where the malformation BMD is much lower than the death BMD, the

two BMDs estimates for the 2,4,5-T data are very similar. Here, the common practice of

choosing the smaller of the two BMDLs as a guide to a safe dose may actually signifi-

cantly underestimate the overall risk of a negative outcome. In this case, that approach

would completely ignore the risk of malformation even though the malformation risk is

similar to the death risk at low dose levels. This data set underlies the importance of
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Table 2.12: Estimates for Probabilities and ψs by Dose
dose (g/kg) LCL p̂d UCL LCL log(ψ̂d) UCL
0.0 0.0946 0.104 0.115 0.596 0.887 1.18
0.020 0.102 0.109 0.117 1.02 1.22 1.42
0.030 0.112 0.121 0.131 1.21 1.39 1.56
0.045 0.144 0.155 0.167 1.48 1.64 1.80
0.060 0.203 0.219 0.236 1.69 1.89 2.08
0.075 0.297 0.330 0.366 1.88 2.14 2.39
0.090 0.428 0.498 0.569 2.06 2.39 2.72
dose (g/kg) LCL p̂m|d̄ UCL LCL log(ψ̂m|d̄) UCL
0.0 0.00126 0.00177 0.00249 2.79 3.51 4.23
0.020 0.00683 0.00860 0.0108 2.64 3.14 3.65
0.030 0.0157 0.0188 0.0225 2.56 2.96 3.36
0.045 0.0525 0.0593 0.0669 2.41 2.68 2.95
0.060 0.155 0.171 0.190 2.18 2.40 2.62
0.075 0.364 0.405 0.448 1.84 2.12 2.40
0.090 0.636 0.691 0.742 1.42 1.84 2.27

exploring satisfactory ways of calculating joint risk so that a joint BMD can be calculated

for risk assessment. The proposed method does not have a straight forward formula to

calculate joint risk because it is not based on a full likelihood model; a possible avenue of

research is to construct a method for joint BMD calculation that takes advantage of direct

calculations of the association parameter between death and malformation outcomes.

2.4 Comparison to other models

In this section, we compare the P-D model proposed here to previously proposed meth-

ods that account for correlation between death and malformation. We examine estimates

for pd and pm|d by dose group for four methods: the P-D method, Carey’s method, a

”naive” method, and an ”empirical” method. The ”naive” method is merely fitting a

logistic regression for the death data and the malformation data with GEEs and assum-

ing conditional independence. For Carey’s model, we fit the same dose response models

but add the adjustment covariate described in (2.1) for the malformation model. In both

cases, we assume exchangeability for the working correlation matrix. The ”empirical”
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Table 2.13: Estimated Probabilities by Dose and Estimation Method for EG Mice Data
dose (g/kg) p̂d-Emp p̂d-Naive p̂d-P-D p̂d-Carey
0.0 0.108 0.102 0.100 0.102
0.75 0.110 0.122 0.120 0.122
1.5 0.139 0.145 0.142 0.145
2.0 0.201 0.202 0.197 0.202
dose (g/kg) p̂m|d̄-Emp p̂m|d̄-Naive p̂m|d̄-P-D p̂m|d̄-Carey
0.0 0.00337 0.00537 0.00537 0.00527
0.75 0.0942 0.0906 0.0889 0.0918
1.5 0.389 0.396 0.395 0.404
2.0 0.571 0.567 0.570 0.572

method simply calculates the empirical probabilities without any modeling. The empiri-

cal method gives estimates closest to the true probabilities and can be used to gauge bias

that might be introduced in model-fitting for each of the methods presented.

We also compare BMD and BMDLs calculated using our method, Carey’s method

and the ”naive” method. There are several choices for how to calculate a malformation

BMD from Carey’s model. We take the simplest approach by calculating risk at the mean

of the residual terms. Theoretically, the mean adjustment covariates, which are based on

residuals of the death model, should have mean zero. Thus, it is reasonable to interpret

the dose-response parameter as the marginal dose effect on malformation (conditional on

the fetus being alive). The BMDs and corresponding BMDLs are for a 5% increase in risk.

Note that for the death model, Carey’s method and the ”naive” method are identical so

a separate BMD for the naive method is not included. BMDLs are calculating using the

method proposed by Kimmel and Gaylor (Kimmel and Gaylor, 1988).

2.4.1 Comparisons using EG Study Data

Table 2.4.1 shows the probability estimates by dose and estimation method. We note that

both pd and pm|D̄ estimates are fairly similar by dose across estimation methods, and are

consistent with the empirical estimates.
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Table 2.14: Comparison of BMD and BMDL from various models
Death model Malformation model
P-D Carey P-D Carey Naive

BMD 1.60 1.55 0.596 0.587 0.590
BMDL 1.10 1.08 0.522 0.509 0.513
Relative Difference 0.312 0.303 0.124 0.132 0.131

Table 2.14 show the BMD and BMDL estimates for each method. We see that for

both the death and malformation models, our model predicts slightly higher BMD and

BMDL. The differences for the death model are, however, very small. Figure 2.4 show

the dose response models for death and malformation, as well as the empirical death and

malformation rates by dose (shown in green). We see that both methods provide very

similar fits. We also note that, while the quadratic malformation model gives us a better

fit than the linear model, with probability estimates more consistent with the empirical

estimates, it also assumes the malformation rate peaks at around 2.5 g/kg and then starts

to decline. In other words, it is a non-monotonic trend. This may be controversial but we

believe that for the purposes of benchmark dose analysis, accuracy in low dose estimates,

which the quadratic model provides, is more important.

Table 2.14 also gives the relative difference between BMD and BMDLs (BMD−BMDL
BMD

).

We see no large difference between methods, suggesting that the BMD variability is es-

sentialy the same for all methods.

2.4.2 Comparisons using 2,4,5-T Study Data

Table 2.4.2 shows the probability estimates by dose and estimation method. We note

that the pd estimates are fairly similar by dose across estimation methods, and appear

consistent with the empirical estimates. However, we note that the pm|D̄ estimates for

Carey’s method and our method diverge in the higher dose groups. The pm|D̄ estimates

from Carey’s method is much higher than the pm|D̄ estimate from our method or the

naive method for dose group (0.60 g/kg) and higher. Figure 2.5 shows the dose re-
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Table 2.15: Estimated Probabilities by Dose and Estimation Method
dose (g/kg) p̂d-Emp p̂d-Naive p̂d p̂d-Carey
0.000 0.101 0.109 0.104 0.109
0.020 0.110 0.112 0.109 0.112
0.030 0.130 0.123 0.120 0.123
0.045 0.195 0.157 0.155 0.157
0.060 0.196 0.222 0.219 0.222
0.075 0.412 0.335 0.330 0.335
0.090 0.530 0.506 0.498 0.506
dose (g/kg) p̂m|d̄-Emp p̂m|d̄-Naive p̂m|d̄ p̂m|d̄-Carey
0.000 0.00456 0.00190 0.00177 0.00108
0.020 0.00745 0.00910 0.00860 0.00698
0.030 0.00109 0.0198 0.0188 0.0176
0.045 0.123 0.0616 0.0593 0.0678
0.060 0.157 0.176 0.172 0.228
0.075 0.592 0.410 0.405 0.545
0.090 0.633 0.694 0.691 0.830

sponse models for death and malformation and illustrate the same phenomenon. We

note that the p̂m|D̄(0.090g/kg) for Carey’s model (0.830) is much greater than the empir-

ical p̂m|D̄(0.090g/kg) (0.633) but the p̂m|D̄(0.075g/kg) for our model (0.405) and the naive

model (0.410) is much lower than the empirical p̂m|D̄(0.075g/kg) (0.592), making it diffi-

cult to make a judgment on which method provides the better fit. All methods give very

similar estimates for the lower doses, suggesting that the estimates for the BMDs will not

vary greatly between methods.

Table 2.16 shows the BMD and BMDL estimates from each method and we indeed

see that for both death models, our model has slightly higher BMDs and BMDLs. On the

other hand, for the malformation model, our BMD and BMDL are higher than Carey’s

model. Both differences are, however, very small. Our model’s BMDL is 2% smaller than

Carey’s BMDL for the deaths and 3% greater for the malformations. Figure 2.5 show the

dose response models for death and malformation. Overall, we see that both methods

give us similar results in terms of quantitative risk assessment. The relative differences

also shown in Table 2.16 also indicate that the variability of the BMD is similar across

methods.

66



0.
00

0.
02

0.
04

0.
06

0.
08

0.00.20.40.60.81.0
24

5T
 d

at
a 

(m
ic

e)

D
os

e 
(g

/k
g)

Death/Resorption rate

*
*

*
*

*

*

*

0.
00

0.
02

0.
04

0.
06

0.
08

0.00.20.40.60.81.0

24
5T

 d
at

a 
(m

ic
e)

D
os

e 
(g

/k
g)

Malformation rate

*
*

*

*
*

*
*

P
−

D
 m

od
el

C
ar

ey
’s

 m
od

el

Fi
gu

re
2.

5:
D

os
e

R
es

po
ns

e
m

od
el

fo
r

de
at

h
an

d
m

al
fo

rm
at

io
n

fo
r

24
5T

da
ta

(m
ic

e)
.

Ea
ch

do
t

re
pr

es
en

ts
th

e
ob

se
rv

ed
de

at
h/

re
so

rp
ti

on
ra

te
or

co
nd

it
io

na
lm

al
fo

rm
at

io
n

ra
te

of
a

lit
te

r
in

th
e

da
ta

se
t.

67



Table 2.16: Comparison of BMD and BMDL from various models
Death model Malformation model

P-D Carey P-D Carey Naive
BMD 0.0430 0.0438 0.0432 0.0417 0.0427
BMDL 0.0379 0.0387 0.0418 0.0406 0.0413
Relative Difference 0.118 0.116 0.0324 0.0264 0.0328

2.5 Discussion

In this paper, we use the Plackett-Dale distribution as a framework to develop a method

for modeling hierarchical clustered developmental toxicity data. The method allows us

to marginally evaluate death and conditional malformation as a function of dose while

accounting for the various litter-level associations that are present in the data, including

the association between death and malformation within a litter. It also allows us to model

the litter-level associations as a function of dose.

One advantage of this approach is that it is more flexible in its distributional assump-

tions. Previously proposed methods that account for the hierarchical nature of the data,

such as Christiansen’s model and Carey’s model, are developed from the latent normal

distribution. In Christiansen’s model in particular, this assumption necessitates model-

ing outcome-specific thresholds rather than direct probabilities, making the interpreta-

tion of dose-response parameter estimates for the probability models less intuitive than

more commonly used methods for binary data, such as logistic regression. However the

Plackett-Dale approach to analyzing the data allows us to choose the marginal distribu-

tions for outcomes of interest. Thus, we can choose to assume binary outcomes, death

and malformation, come from a binomial distribution, and use the corresponding logistic

link. Also, our method is more flexible in terms of describing the various associations

among outcomes. While Christiansen’s model assumes all litter-level associations can be

described with one parameter, our method more flexibily estimates the litter-level associ-

ations into three different components.
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The method also has the advantage of modeling the conditional malformation di-

rectly, unlike Carey’s method or previous ad-hoc procedures that include an adjustment

covariate to adjust for the death-malformation association. Thus, we can interpret the

dose-response parameter for the conditional malformation as the overall effect of dose

on malformation rate, whereas Carey’s method must interpret the dose-response param-

eter as the effect of dose on malformation rate conditional on the adjustment covariate.

It is not clear what this interpretation tells us. One possible interpretation is that it is the

effect of dose on the malformation rate if there was no death-malformation correlation.

Or, since the adjustment covariate is based on the residuals of the death model and thus

should have mean zero, another possible interpretation is that it is the overall dose effect

(since on average, the adjustment covariate should not have an effect). Even when assum-

ing these interpretations are valid, there is still a danger in using Carey’s model. Carey’s

adjustment covariate is derived from a latent normal framework. However, because we

cannot collect data on the latent values, the adjustment covariates are transformed to the

binary setting by necessity. The resulting loss of information may result in bias that may

affect dose-response estimates. In contrast, our method’s interpretations are much more

straight forward.

We fit the model on two data sets and found probability estimates, as well as BMD

and BMDLs, to be consistent with similar models at low dose levels. We also note that

when we applied our method to a large data set that had strong empirical evidence sug-

gesting that the conditional independence assumption does not hold (the 2,4,5-T study),

we were able to detect a statistically significant baseline association between death out-

comes and malformation outcomes. It is also worth noting the malformation model for

this method does deviate somewhat from Carey’s model at higher doses.

There are several avenues for further research. One is to take advantage of our es-

timate for ψdm to develop a method for joint risk estimation. Currently, we can estimate

BMDs for each outcome, but ideally, we would like to be able to estimate joint risk so

we could calculate a joint BMD. Our method estimates the relevant association, ψdm, that
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ties the two outcomes together, but the nature of the Plackett-Dale distribution, in which

pairs of fetuses are the unit of analysis, makes translating the information to calculate

joint risk for one fetus not straightforward. Another research area would be to extend the

method to include continuous outcomes such as fetal weight. Because the Plackett-Dale

distribution allows flexibility in the marginal distribution, incorporating this continuous

outcome should be possible, though the number of associations parameters to estimate

would increase substantially.

It would also be of interest to explore the behavior of our model in different settings

(for example, data with higher correlations) and compare results with Carey’s model. We

would be interested in whether model estimates and standard errors, as well as BMDs

and BMDLs, differ substantially between the two methods. Also of interest is the small

sample behavior of our method. Does our calculation method of the model parameters

lead to a systematic bias of the parameter estimates? And do the theoretical standard

errors for the parameters match up with what we observe in simulations? These kinds of

inquiries can be made through simulations studies where we have more control over the

trends in the data.
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3.1 Introduction

Controlled animal studies are used to study the effects of various potentially toxic sub-

stances such as drugs or environment contaminants. In such studies, human subjects are

not appropriate and researchers must rely on animals to assess toxicity from experimen-

tal data. Developmental toxicology studies are designed to examine the effect of chemical

substances on developing organisms. These studies involve exposing pregnant animals

(usually mice, rats, or rabbits) to a test substance during pregnancy and examining the

effects on the developing implants and fetuses. Studies typically use three or four dose

groups plus a control group, with at least 20 dams per dose group. The dams are sac-

rificed before delivery and the contents of the uterus examined. Outcomes of interest

typically include number of resorptions (early deaths), number of fetal deaths, and out

of the surviving fetuses: the number and type of malformations, fetal weight and fetal

length. Malformations are typically categorized into three general types: Skeletal, Vis-

ceral, or External. Figure 3.1 illustrates the relationships between the various outcomes

of interest (Kimmel and Price, 1990). The outcomes given the most emphasis in deter-

mining safe doses are number of embryolethalities (resorption and deaths), number of

malformations, and reductions in fetal weight.

As one can see from figure 3.1, the data involve many correlations that must modeled,

making statistical proper analysis challenging. For one, the major units of observation are

clustered into litters so intra-litter correlation between outcomes from the same dam is ex-

pected. Secondly, among the live fetuses, there is interest in analyzing multiple outcomes

(malformation status and fetal weight) from each fetus and an inter-outcome correlation

is also expected. This correlation is usually not trivial and must be properly modeled for

valid inference. Also, the fact that malformation status is a binary outcome while fetal

weight is a continuous outcome adds another layer of complication. Third, the hierarchi-

cal relationship between the live outcomes and death further complicates interpretation

the data. That is to say, the live outcomes (malformation status and fetal weight) may

not only be correlated with other live fetuses, but also with dead fetuses within the same
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Figure 3.1: Outcomes in Developmental Toxicity

litter, and this correlation should not be ignored in the data analysis. Indeed, an examina-

tion of a large data set, from the 2,4,5-Trichlorophenoxyacetic acid developmental toxicity

study (Chen and Gaylor, 1992), suggests there is a measurable and non-trivial positive

association between death and conditional malformation.

3.1.1 Previous Methods

Early research focused on the problem of accounting for intra-litter correlation when only

considering a single binary outcome, like death. Many important early models were de-

veloped in the late 1970’s and early 1980’s, including the beta-binomial model (Williams,

1975), an extension of the binomial model, and the Ochi-Prentice model (Ochi and Pren-

tice, 1984), which used an underlying latent multivariate normal distribution to describe

the intra-litter correlation. The development of generalized estimating equations (GEE)

(Liang and Zeger, 1986) allowed researchers to model these data and perform accurate

inference without having to correctly specify the distributions or correlations of the out-

comes, making it a popular method for analyzing not just developmental toxicity data,

but a wide variety of clustered discrete data.
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The research on mixed outcomes has largely focused on methods based on the la-

tent multivariate normal distribution, which gives us an intuitive and relatively simple

way to characterize the correlation between malformation and fetal weight. Catalano

and Ryan (Catalano and Ryan, 1992), as well as Fitzmaurice and Laird (Fitzmaurice

and Laird, 1995), take advantage of the fact that the joint likelihood can be expressed as

the product of the marginal distribution for weight and conditional distribution of mal-

formation. The factorization allows weight and malformation to be modeled separately

while still accounting for their correlation. Neither method is, however, conducive for

formal risk estimation as joint BMDs cannot be calculated using either model. Regan

and Catalano (Regan and Catalano, 1999) extend and improve on Catalano and Ryan’s

methodology. Their model, while still using the factorization of the latent normal distri-

bution as a framework, allows for the estimation of the inter-outcome correlation by dose

which makes joint risk, and therefore joint BMD and BMDL, possible to calculate. The

correlation parameters tend to increase with dose so allowing for them to be modeled as

a function of dose is an important feature of the methodology.

3.1.2 Hierarchical Relationship Between Outcomes

Less research has been done on accounting for the correlation induced by the hierarchical

relationships between death and live outcomes (malformation and fetal weight). For the

sake of simplicity, here we will ignore fetal weight and focus on the case where only

death and malformation are outcomes of interest. Dose response modeling is interested

in estimating the probability of death for a fetus as well as probability of malformation

given the fetus survived and it is easy enough to estimate them separately within a dam.

However, estimating joint risk of both outcomes is not as intuitive, unless we assume

conditional independence. Because this assumption is not necessarily expected to be true

in litter data, to compensate some models include a term (usually litter size) as a covariate

for the malformation dose-response model to serve as an ad-hoc adjustment for the effect

of death-rate on malformation. This approach acknowledges the hierarchical nature of

the data by separating out the effect of dose and the effect of death-rate on malformation
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in the modeling. However, in joint risk assessment, this hierarchical correlation is still

often ignored and conditional independence is still assumed when calculating joint risk.

Most methods proposed for this issue have been inspired from previous work relying

on the latent multivariate normal distribution. Christiansen (Christensen, 2004) proposes

an extension to the Ochi-Prentice model, where death, malformation, and healthy out-

comes are considered ordinal. Specifically, two threshold parameters, τm and τd, are used

to define how the latent variable relates to the observed outcomes. Letting ỹjk be the la-

tent variable for fetus j from dam k, if ỹjk < τm, then no adverse event is observed for that

fetus, if τm < ỹjk < τd, then a malformation is observed for the fetus and if ỹjk > τd, a fetal

death is observed. The vector, ỹk, denoting the latent variables for the fetuses from dam

k, is assumed to follow a multivariate normal distribution with mean µ1n and variance

σ2((1− ρ)In + ρJn). Under these assumptions, it is possible to fit linear models for τm, τd,

and ρ. Parameters µ and σ are inestimable and are assumed to be 0 and 1 respectively.

In this model, since the status of a fetus is assumed to be determined by a latent

normal distribution, one correlation parameter, ρ, characterizes all three correlations of

interest. Estimation under certain data conditions can be difficult. However, calculating

joint risk, the risk that a fetus experiences death or malformation, is straight forward and

intuitive under this model (joint risk is simply Φ(τm)).

Carey (Carey, 2006) develops a simpler model that still allows for conditional de-

pendence. Essentially, she formalizes the ad-hoc approach of adding a covariate to the

malformation dose-response model to adjust for the death-malformation correlation. The

adjustment covariate is derived from a latent multivariate normal distribution. However,

because the correlation parameters are reparameterized into the adjustment covariate,

joint risk estimation is not intuitive. Also, because the adjustment variable is based on the

continuous normal distribution while the observed data are binary, the actual adjustment

covariate used is an approximation of the theoretical adjustment covariate. It is unclear

whether these approximations are accurate or whether it potentially introduces bias.
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3.1.3 Plackett-Dale

Molenbergs, Geys, and Buyse (Molenberghs et al., 2001) have taken an alternative ap-

proach, using the Plackett-Dale distribution to model malformation and fetal weight. The

Packett-Dale (Plackett, 1965) (Dale, 1986) approach has an advantage over more tradi-

tional probit models in that there is flexibility in choosing the marginal distributions of

the outcomes. So, for example, it is possible to assume the marginal distribution for mal-

formation is binomial rather than what is implied, for example, by the latent normal. Let

Fwk(x) be the cumulative distribution function forwk, the fetal weight of a fetus from litter

k and let Fmk(y) be the cumulative distribution function for mk, the malformation status

of a fetus from litter k. Then, if (mk, wk) follows a Plackett-Dale distribution, their joint

cumulative distribution function is

Fwk,mk =

{
1+(Fwk+Fmk )(ψk−1)−S(Fwk ,Fmk ,ψk)

2(ψk−1)
ψk 6= 1

FwkFmk ψk = 1

where

S(Fwk , Fmk , ψk) =
√

[1 + (ψk − 1)(Fwk + Fmk)]
2 + 4ψk(1− ψk)FwkFmk

ψk, known as the global cross-ratio, defines the dependence structure of wk and mk,

ψk =
Fwk,mk(1− Fwk − Fmk + Fwk,mk)

(Fwk − Fwk,mk)(Fmk − Fwk,mk)

and is used to derive the above joint cumulative density function. A psuedolikelihood

based estimating equation, pl =
∑K

k=1

∑nk
j=1 ln(fwjk,mjk(w,m)), is used to estimate dose-

response parameters.

Geys et al. (Geys et al., 2001) suggest, but do not implement, an extension of this

method that also estimates the within-litter associations for the malformation and weight

outcomes in which all associations are estimated. As we can see from figure 3.2, the

within-fetus malformation-weight association is not the only source of correlation. There

are also three other correlations to potentially model, but are essentially ignored in this

method. For their extension, they propose defining each of these associations through a
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Figure 3.2: Associations present in live outcomes developmental toxicity data

global cross-ratio and then define Plackett-Dale distributions around the cross-ratios. The

estimating equation are based on a log-pseudolikelihood with the following form:

pl =
K∑
k=1

nk∑
j=1

ln(f1(wjk,mjk)) +
K∑
k=1

nk∑
j 6=j′

ln(f2(wjk,mj′k))

+
K∑
k=1

∑
j′<j

ln(f3(wjk, wj′k)) +
K∑
k=1

∑
j′<j

ln(f4(mjk,mj′k))

where f1, f2, f3, f4 are all Plackett densities characterizing different associations present

in the data: ψ1, ψ2, ψ3 and ψ4.

3.1.4 Extension to Hierarchical Outcomes

Cudhea proposed a method using the Plackett-Dale framework to model dose-response

for hierarchical data (Cudhea, 2013). It essentially takes the same approach of Geys et al.

in their proposed extension but applies it to hierarchical data.

The various outcomes and associations of interest present within a litter can be visu-

alized in figure 3.3. First, there is the association between two death outcomes within a

cluster. For the fetuses that did not die, there is the association between two malformation

outcomes within a cluster. Finally, there is the association between death outcomes and

malformation outcomes, which determines how the death experience of a particular dam

will affect the corresponding conditional malformation rate for the same dam.

Let us formalize the notation. Let djk be a binary random variable that is 1 if fetus j

77



Dam

D

�
�
�

�
�	

D̄

@
@
@
@
@R

M |D̄

�
�
�

�
�	

M̄ |D̄

@
@
@
@
@R

ψd
-� -�

ψm
-� -�

ψdm
@

@@I

@
@@R

Figure 3.3: Associations present in hierarchical developmental toxicity data

from dam k is dead and 0 if alive, and let mjk|D̄jk be a binary random variable that is 1 if

fetus j from dam k is malformed and 0 if not, given that fetus jk is known to not be dead.

All three ψ parameters have odds ratio interpretations. Specifically:

ψd =
P (Dj|Dj′)/P (D̄j|Dj′)

P (Dj|D̄j′)/P (D̄j|D̄j′)

ψm =
P
(
Mj|D̄j

∣∣Mj′|D̄j′
)
/P
(
M̄j|D̄j

∣∣Mj′ |Dj′
)

P
(
Mj|D̄j

∣∣M̄j′|D̄j′
)
/P
(
M̄j|D̄j

∣∣M̄j′ |D̄j′
)

ψdm =
P
(
Mj|D̄j

∣∣Dj′
)
/P
(
M̄j|D̄j

∣∣Dj′
)

P
(
Mj|D̄j

∣∣D̄j′
)
/P
(
M̄j|D̄j

∣∣D̄j′
)

where Dj is a death outcome for fetus j and Mj is a malformation outcome for fetus

j. As with Regan-Catalano’s method, a dose-response model can be estimated for the

association parameters: ψd, ψm and ψdm.

Parameters ψd, ψm, ψdm can be thought of as global cross-ratios that define the various

associations present in the data: ψd is the within-cluster association between death out-

comes, ψm is the within-cluster association between malformation outcomes, and ψ3 is the

association between death outcome and malformation outcome that is induced by con-

ditional dependence. From these cross-ratios, the joint probabilities for two deaths, two

malformations (given they are not dead), and one death and one malformation (given the
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malformed fetus was known not to be dead), can be derived as:

F1 = P (Dj, Dj′) =

{
1+(2pd)(ψ1−1)−S(pd,pd,ψd)

2(ψd−1)
ψd 6= 1

p2
d ψd = 1

F2 = P (Mj|D̄j,Mj′ |D̄j′) =

{
1+(2pm|D̄)(ψm−1)−S(pm|D̄,pm|D̄,ψm)

2(ψm−1)
ψm 6= 1

p2
m|D̄ ψm = 1

F3 = P (Mj|D̄j′ , Dj′) =

{
1+(pm|D̄+pd)(ψdm−1)−S(pm|D̄,pd,ψdm)

2(ψdm−1)
ψdm 6= 1

pm|D̄pd ψdm = 1

where S(p1, p2, ψ) =
√

[1 + (ψ − 1)(p1 + p2)]2 + 4ψ(1− ψ)p1p2.

From these joint probabilities one can derive the the probability mass functions for

the paired outcomes to be:

G1(dj, dj′) =


F1(pd, ψd) dj = 1, dj′ = 1
2(pd − F1(pd, ψd)) dj 6= dj′
1− 2pd + F1(pd, ψd) dj = 0, dj′ = 0

G2(m|D̄j,m|D̄j′) =


F2(pm|D̄, ψm) m|D̄j = 1,m|D̄j′ = 1
2(pm|D̄ − F2(pm|D̄, ψ)) m|D̄j 6= m|D̄j′

1− 2pm|D̄ + F2(pm|D̄, ψm) m|D̄j = 0,m|D̄j′ = 0

G3(m|D̄j, dj′) =


F3(pm|D̄, pd, ψdm) m|D̄j = 1, dj′ = 1
pm|D̄ − F3(pm|D̄, ψdm) m|Dj = 1, dj′ = 0
pD − F3(pD, ψdm) m|Dj = 0, dj′ = 1
1− pm|D̄ − pd + F3(pm|D̄, ψdm) m|D̄j = 0, dj′ = 0

The method uses a 2-step estimation procedure. The model first estimates dose response

parameters for pd and ψd from estimating equations based on

pl1 =
K∑
k=1

∑
j′<j

ln(G1(djk, dj′k)).

Then, estimates for pm, ψm, and ψ3 can then be estimated from estimating equations based

on

pl2 =
K∑
k=1

∑
j′<j

ln(G2(mjk|D̄jk,mj′k|D̄j′k))

+
K∑
k=1

∑
j 6=j′

ln(G3(djk,mj′k|D̄j′k))

by substituting parameters for pd and ψd with their estimates obtained from step one.
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Thus, we estimate two sets of dose-response models:

ηk1 =

(
logit(pdk)
log(ψdk)

)
= Xk1β1

ηk2 =

 logit(pm|d̄k)

log(ψmk)
log(ψdmk)

 = Xk2β2.

We use the logit-link for the probability models and the log-link for the ψ models, but

other options, such as the probit-link for the probability models are also easily accommo-

dated.

The estimating equations used to estimate β1 and β2 are

U(β1) =
N∑
k=1

(
∂ηk1

∂β1

)T (
∂ηk1

∂β1

)−T (
∂pl1
∂θk1

)
and

U(β2) =
N∑
k=1

(
∂ηk2

∂β2

)T (
∂ηk2

∂β2

)−T (
∂pl2
∂θk2

)
respectively, where θ1 = (pd, ψd) and θ2 = (pm|D̄, ψm, ψdm).

The derivatives of the psuedolikelihoods (pl1 and pl2) are defined as follows:

(
∂pl1
∂θk1

)
=


1

nk−1

∑
j′<j

∂
∂pdk

ln(G1(djk, dj′k))∑
j′<j

∂
∂ψdk

ln(G1(djk, dj′k))


and

(
∂pl2
∂θk2

)
=



1
lk−1

∑
j′<j

∂
∂pm|D̄k

ln(G2(m|D̄jk,m|D̄j′k))

+ 1
nk−1

∑
j 6=j′

∂
∂pm|d̄k

ln(G3(djk,m|d̄j′k))

∑
j′<j

∂
∂ψm|d̄k

ln(G2(m|D̄jk,m|D̄j′k))

∑
j 6=j′

∂
∂ψk

ln(G3(djk,m|D̄j′k))


.

The covariance estimates for β1 and β2 are

ˆcov(β̂1)=

(
N∑
k=1

∂Uk(β1)

∂β1

)−1( N∑
k=1

Uk(β1)Uk(β1)T

)(
N∑
k=1

∂Uk(β1)

∂β1

)−T∣∣∣∣∣∣
β1=β̂1
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and

ˆcov(β̂2)=

(
N∑
k=1

∂Uk(β2)

∂β2

)−1( N∑
k=1

Uk(β2)Uk(β2)T

)(
N∑
k=1

∂Uk(β2)

∂β2

)−T∣∣∣∣∣∣
β2=β̂2

respectively.

The Plackett-Dale approach to analyzing developmental toxicity data has been used

empirically to analyze several toxicity data sets but the method has not been systemati-

cally evaluated. Therefore, it is of great interest to study the behavior of this model in a

more controlled setting. Thus, this paper sets out to investigate the properties and operat-

ing characteristics of the method via simulations. Specifically, we investigate whether our

method’s estimates under reasonable sample sizes are, on average, consistent with their

expectations. We study this by comparing the values of parameter estimates at each dose,

obtained from simulations, to their expected values at each dose, obtained by running

the model on a simulated data with an extremely large sample size in order to establish

”population” values.

While methods have been developed to model the issue of conditional dependence,

there has yet to be a systematic comparison of these methods. In addition, there has been

little research investigating how different the results from these more sophisticated mod-

els are from a naive method that assumes conditional independence. For these reasons,

we also compare the behavior of the proposed method to Carey’s method as well as to the

naive method (which assumes conditional independence). Christiansen’s method is not

included in the analysis because his method does not model conditional malformation

(it is also known to be computationally intensive). Because we compare our proposed

method with Carey’s method in this paper, we present Carey’s method, as applied to our

situation, when only death and malformation are outcomes of interest, more formally

here. Unlike Christensen’s model, Carey’s likelihood uses two latent variables, one for

death and one for malformation, denoted as d̃ and m̃ respectively. The two latent vari-

ables are assumed to follow a multivariate normal distribution. More specifically, for the
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k-th litter: (
d̃k
m̃k

)
∼ N

((
µd
µm

)
,

(
Σd Σdm

Σdm Σm

))
where

µd = (α̃0 + α̃1dosek)1nk

µm = (β̃0 + β̃1dosek)1lk

Σd = σ2
d((1− ρd)Ink + ρdJnk)

Σm = σ2
m((1− ρm)Ilk + ρmJlk)

Σdm = ΣT
md = ρmdσmσdJnk×lk

and lk denotes the number of live fetuses while nk denotes the number of implants in

litter k.

Given the above likelihood, the marginal distribution of death and conditional distri-

bution of fetal weight and malformation can be expressed as:(
d̃k

m̃k|d̃k

)
∼ N

((
µd
µm|d

)
,

(
Σd 0nk×lk 0nk×lk

0lk×nk 0lk Σm|d

))
where µm|d can be expressed as

µm|d = (β̃0 + β̃1dose) + (ρmdσm)(1 + ρd(nk − 1))−1

(
Σnk
j=1d̃ij − nk(α̃0 + α̃1)dose

σd

)
.

Note that µm|d can be expressed as the sum of marginal model for latent malformation

plus an adjustment covariate that is a function of the mean standardized residuals from

the fetal death model. While the adjustment term is a bit complicated and includes pa-

rameters from the latent theory that are not estimable, this theoretical model is used to

motivate a simpler, more practical adjustment term:

µm|d = (β0 + β1dose) + β2

(
d̄k − Φ(α̂0 + α̂1dose)√

Φ(α̂0 − α̂1dose)[1− Φ(α̂0 + α̂1dose)]/nk

)
.
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Mean models are then fit using GEEs with the following dose-response framework:

E[djk]/
√
V ar(djk) = Φ(α0 + α1dosek)

E[mjk]/
√
V ar(mjk) = Φ(β0 + β1dosek)

To enable easy comparison between our model and Carey’s model, we use a logit model

version of her method rather than the proposed probit model. Given the two link func-

tions tend to estimate similar dose-response trends in practice, we believe the derived

the adjustment covariate derived by Carey will still apply when the logit link function

is used. Thus, in our comparisons, the Carey models was fit using the following dose-

response models:

logit(E[djk]) = α0 + α1dosek

logit(E[mjk]) = β0 + β1dosek (3.1)

+ β2

(
d̄k − logit−1(α̂0 + α̂1dose)√

logit−1(α̂0 + α̂1dose)[1− logit−1(α̂0 + α̂1dose)]/nk

)

Finally, the paper investigates the sensitivity of dose-response parameters to the

model choice for the association parameters. Since the association parameters are mod-

eled simultaneously along with the probability parameters, how we choose to model the

association parameters will affect the resulting probability models. Thus, how sensitive

the probability parameters are to mis-modeling the ψ models is of great interest, and the

simulations give us an opportunity to study, on average, this sensitivity.

3.2 Simulations

3.2.1 Simulation Methodology

We conducted a simulation study to investigate the behavior of our model. Because the

model is not based on a single full-likelihood, it is impossible to simulate data from a

true distribution consistent with our model. Furthermore, simulating from a Plackett-

Dale distribution can be fairly complex. Instead, here we simulate from a multivariate
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latent normal distribution, and account for conditional dependence in a manner similar to

Carey’s model. This allows for a simpler simulation model and facilitates more intuitive

comparisons between previously proposed models, specifically Carey’s model. Using a

multivariate normal framework for simulating the data means that we cannot calculate

theoretical ψ values, however, we can determine arbitrarily accurate estimates for the

”true” ψ values, as will be shown. Basing the simulation method on Carey’s method

also allows for flexibility in how each of the three association parameters vary with dose.

Thus, it is possible to simulate data where we know fitting a linear dose-response model

for the ψ parameters is accurate.

We present the latent normal framework used in simulating the data more formally

below: For litter k, (
d̃k
m̃k

)
∼ N

((
µd
µm

)
,

(
Σd Σdm

Σdm Σm

))
where

µd = (α̃0 + α̃1dosek)1nk

µm = (η̃0 + η̃1dosek)1lk

Σd = σ2
d((1− ρd)Ink + ρdJnk)

Σm = σ2
m((1− ρm)Ilk + ρmJlk)

Σdm = ΣT
md = ρmdσmσdJnk×lk .

Here, d̃k and m̃k denote the latent variable vectors for death and malformation, respec-

tively while nk and lk denote the number of implants and litter size for litter k. We use a

factorization argument to to re-express the joint density as(
d̃k

m̃k|d̃k

)
∼ N

((
µd
µm|d

)
,

(
Σd 0nk×lk

0lk×nk Σm|d

))
where

µm|d = (β0 + β1dose) + (ρmdσm)(1 + ρd(nk − 1))−1

(
Σnk
j=1d̃ij − nk(α̃0 + α̃1)

σd

)
Σm|d = σ2

m((1− ρm)Ilk + ρmJlk)− ρ2
mdσ

2
wnk(1 + ρd(nk − 1))−1Jlk
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Table 3.1: Simulation Parameters by Dose
dose (g/kg/day) cdk cmk ρd ρm ρdm
0 -1.175 -1.200 0.000 0.000 0.000
0.75 -1.075 -0.900 0.066 0.054 0.060
1.5 -0.960 -0.590 0.142 0.123 0.141
2.0 -0.725 0.110 0.300 0.300 0.300
dose (g/kg/day) pd pm|D̄ ψd ψm ψdm
0 0.120 0.115 0.994 1.000 1.002
0.75 0.142 0.180 1.241 1.177 1.208
1.5 0.169 0.264 1.555 1.377 1.495
3.0 0.235 0.501 2.382 1.960 2.163

and use this latent distribution to simulate our data. In practice, for each dam, we simu-

late the death latent outcomes from a N(0nk ,Σd) distribution and then use a dose-specific

cutoff, cdk , to determine whether a particular fetus is dead or alive (a cutoff of 0 would

mean there is a 50% chance the fetus is dead). In simulating the corresponding malfor-

mation data for the same dam, we simulate from a N(0lk ,Σm|d) distribution and then use

cmk−(ρmdσm)(1+ρd(nk−1))−1

(
Σ
nk
j=1d̃ij

σd

)
as the cutoff for that dam, where cmk is the cutoff

(independent of the death outcomes for the litter) for malformation.

We simulated 5,000 datasets. Each data set had 100 dams equally distributed among

four dose groups to conform to typical toxicity study sample sizes. The dose groups we

used were 0 g/kg/day (control), 0.75 g/kg/day, 1.5 g/kg/day, and 3 g/kg/day. Each

dam had 15 implants, again consistent with studies in rodents and rabbits. The cutoffs

and correlation parameter values we used for each dose, as well as the corresponding

probabilities and ψs for these parameter values are shown in Table 3.1.

The probabilities and ψ values were estimated by running an intercept model via our

method on four data sets, one per dose group, each with 125,000 dams. The parameter

estimates from each intercept model are considered the ”true” values for our simulation

study. Our goal was to eliminate as much lack-of-fit as possible so we could evaluate any

potential bias of the method independent of bias due to model lack-of-fit. The parameter

values were chosen so that the relationship between logit(p) and dose, as well the rela-
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tionship between log(ψ) and dose, would be linear. This linearity was established for all

five dose-response parameters via trial and error. Because the method is not based on a

full-likelihood method, and because of the complexity of the Plackett-Dale distribution,

it is not practical to simulate the data in such a way that the true values for each param-

eter in each dose-response model is a known quantity. However, in order to study the

method’s consistency with respect to its expectations, we need to understand the true

values.

The parameter values are chosen to be consistent with the trends typically seen in

toxicity studies. Specifically, with increasing dose, we would expect to see an increase

in death rate, a relatively much higher increase in conditional malformation rate corre-

sponding to a dose increase, and an increase in all three correlation parameters with dose.

In particular, we emulated the trends observed in the EG mice data set.

It is somewhat more difficult to ascertain what would be an appropriate range of

values for the ρ parameters. While our simulation scheme is essentially the same frame-

work assumed for Carey’s model, her model considers these parameters ancillary and are

not directly estimated. To obtain an idea of appropriate values for ρ, we fit a GEE inter-

cept model (assuming exchangeability) for each dose on the EG mice data and examined

the estimates of the correlation parameters, shown in Table 3.2. We note that, while the

change in association parameters was not statistically significant in this analysis, the ta-

ble suggests that there is a trend for association to increase with dose. In particular, ρm

appears to range from near 0 to around 0.37. For the sake of simplicity, we chose to range

our ρ values from 0 to 0.3 for all 3 ρ parameters. This allows for a fairly strong overall

trend for association with dose that allows us to observe the behavior of our model in

a somewhat complex situation in terms of correlation structure. Given that a potential

concern for our model is that the probability models may be susceptible to bias when the

association parameters are large, we thought it prudent to look at the model’s behavior

with somewhat high values for the ρ parameters.

Table 3.3 gives the true values for logit(pd), logit(pm|D̄), lm(ψd), lm(ψm), lm(ψdm) by
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Table 3.2: Correlation estimates by dose for EG mice data
dose (g/kg/day) ρd ρm
0 0.0415 -0.00557
0.75 0.0786 0.0170
1.5 0.0557 0.274
3 0.0929 0.366

Table 3.3: True values for logit(pd), logit(pm|D̄), lm(ψd), lm(ψm), and lm(ψdm) by dose
dose (g/kg/day) logit(pd) logit(pm|D̄) lm(ψd) lm(ψm) lm(ψdm)

0 -1.99 -2.04 -0.00582 -0.000173 0.00196
0.75 -1.80 -1.52 0.216 0.163 0.189
1.5 -1.59 -1.03 0.441 0.320 0.402
3.0 -1.18 0.00415 0.868 0.671 0.771

each dose group, as calculated from running the intercept model on 125,000 simulated

data sets with the parameter specifications used for our study (shown in Table 3.1). Fig-

ure 3.4 shows these points and straight line fits for each of the five parameters. From these

figures we can visually verify that the goodness of fit of the linear model with the chosen

link functions is very high.

While we treat these values as the true outcomes in our study, ultimately they are

all estimates obtained from a very large simulated data set, and thus have corresponding

confidence intervals. These confidence intervals and their lengths are shown in Table 3.2.1

for the logit(pd) and logit(pm|D̄) parameters and in Table 3.2.1 for log(ψd), log(ψm), and

log(ψdm). Table 3.6 shows the lengths of confidence intervals relative to the range for each

parameter, by dose (range being defined as the difference between the parameter value at

the highest dose and the lowest dose, which in this case is 3β where β is the slope of the

parameter’s dose response model). We feel that the lengths of the confidence intervals

are short enough that the sample size of 125,000 dams is sufficiently large to approximate

the true expected value for our proposed model.

The estimation of the model parameters were programmed and executed in R (ver-

sion 2.13). For both steps of the estimation procedure, the Newton-Raphson algorithm
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Figure 3.4: True values of logit(pd), logit(pm|D̄), lm(ψd), lm(ψm), and lm(ψdm) by dose with
linear model fit

Table 3.4: Confidence intervals and their ranges for the estimated true probability param-
eter estimates by dose

logit(pd) logit(pm|D̄)
dose CI length CI length
0 (-1.994, -1.984) 0.00876 (-2.042, -2.033) 0.00955
0.75 (-1.807, -1.798) 0.00967 (-1.521, -1.512) 0.00910
1.5 (-1.597, -1.587) 0.0107 (-1.030, -1.021) 0.00917
3.0 (-1.186, -1.174) 0.0124 (-0.00112, 0.00940) 0.0105
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Table 3.5: Confidence intervals and their ranges for the estimated true probability param-
eter estimates by dose

lm(ψd) lm(ψm) lm(ψdm)
dose CI length CI length CI length
0 (-0.0108, -0.0008) 0.0100 (0.0062, 0.0059) 0.0121 (-0.0020, 0.0059) 0.0079
0.75 (0.210, 0.221) 0.0114 (0.158, 0.169) 0.0105 (0.185, 0.193) 0.0080
1.5 (0.435, 0.448) 0.0129 (0.315, 0.325) 0.0105 (0.398, 0.406) 0.0089
3.0 (0.860, 0.876) 0.0158 (0.665, 0.678) 0.0134 (0.765, 0.777) 0.012

Table 3.6: CI length relative to range for logit(pd), logit(pm|D̄), lm(ψd), lm(ψm), and lm(ψdm)
by dose

dose logit(pd) logit(pm|D̄) lm(ψd) lm(ψm) lm(ψdm)
(g/kg/day)
0 0.0108 0.00467 0.0115 0.0180 0.0102
0.75 0.0119 0.00446 0.0130 0.0157 0.0104
1.5 0.0132 0.00449 0.0148 0.0157 0.0116
3.0 0.0154 0.00515 0.0180 0.0200 0.0157

for non-linear sets of equations is used. Both backtracking and the perturbation of the

jacobian when not positive definite are implemented in the algorithm (Press et al., 2007).

Functions to calculate first and second derivatives for G1, G2, and G3 with respect to each

parameter were created. Starting values for the pd and pmd̄ models were calculated by

running the equivalent logistic regression models with GEEs, ignoring hierarchical corre-

lation. For the starting values for the ψd, ψm, and ψdm models, a starting value of 0.0001

is used. The simulations were done on a Rocks cluster with Sun Grid Engine (SGE), with

each node having a processor speed of 2.66 GHz. The total running time for the simula-

tions, which included simulating data sets and formatting them to allow analysis via the

P-D method, the actual calculations of the model parameters for both the P-D method,

Carey’s method and the naive method, and the compilation of summary statistics, took

26.06 hours. The seed was set at 984.

89



Table 3.7: Simulation Results: Means
dose (g/kg/day) pd pm|d̄ ψd ψm ψdm
0 0.119 0.115 1.02 0.998 1.02
0.75 0.142 0.178 1.24 1.16 1.22
1.5 0.168 0.265 1.52 1.37 1.47
3 0.233 0.500 2.37 1.96 2.18

Table 3.8: Simulation Results: Bias
dose pd pm|d̄ ψd ψm ψdm
(g/kg/day)
0 −9.48 ∗ 10−4 −2.08 ∗ 10−4 2.43 ∗ 10−2 −2.30 ∗ 10−3 1.41 ∗ 10−2

0.75 2.88 ∗ 10−4 −2.21 ∗ 10−3 1.73 ∗ 10−4 −1.10 ∗ 10−2 1.23 ∗ 10−2

1.5 −8.62 ∗ 10−4 1.08 ∗ 10−3 −2.88 ∗ 10−2 −2.39 ∗ 10−3 −2.07 ∗ 10−2

3 1.26 ∗ 10−3 −1.97 ∗ 10−4 −1.05 ∗ 10−2 −1.18 ∗ 10−3 2.14 ∗ 10−2

3.2.2 Simulation results

For each of the 5,000 data sets we fit the following model:

logit(pd) = βd0 + βd1dose

ln(ψd) = αd0 + βm1dose

logit(pm|d̄) = βm0 + βm1dose (3.2)

ln(ψm) = αm0 + αm1dose

ln(ψdm) = αdm0 + αdm1dose.

Out of the 5,000 datasets, the method successfully converged 4,997 times. Table 3.7 shows

the means for the estimates of interest, pd, pm, ψd, ψm, ψdm, by dose. Tables 3.8 and 3.9

show the bias and percentage bias, respectively, for each parameter by dose (under the

heading ”P-D method” for Table 3.9). We see that the bias is relatively small and there

does not seem to be any consistent direction or pattern for any particular dose group or

parameter.

Table 3.10 shows the mean parameter estimates for the model as well as the mean and

empirical standard deviations for each parameter (under the heading ”P-D method”). We
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Table 3.9: Simulation Results: Percentage Bias by dose for the P-D method, Carey’s
method, and the naive method

P-D method Carey’s method Naive method
dose pd pm|d̄ ψd ψm ψdm pd pm|d̄ pd pm|d̄
(g/kg/day) (%) (%) (%) (%) (%) (%) (%) (%) (%)
0 -0.79 -0.18 2.45 -0.23 1.40 -0.79 -1.98 0.79 -0.12
0.75 0.20 -1.22 0.01 -0.93 1.01 0.21 0.45 0.21 -1.32
1.5 -0.51 0.41 -1.85 -0.17 -1.38 -0.51 4.11 -0.51 0.0058
3 -0.53 -0.04 -0.44 -0.06 0.99 -0.51 5.55 -0.51 -0.76

note that the mean and empirical standard deviations are fairly close though the empirical

standard deviations are slightly larger, with the exception of βd0 .

We also examined the coverage of the parameter values for each dose. Typically,

these are not calculated in a standard simulation analysis. Instead, the coverage and

bias for the model parameters would be calculated. However, in our case, because our

method is not based on a full likelihood model, we feel it is more appropriate to examine

estimates for each dose, where we we have a very precise estimate for the true values.

Table 3.11 shows the coverage for each probability and ψ for each dose. The coverage

is consistently lower than 95% regardless of parameter for dose. This may have to do

with the fact that our calculation method seems to slightly underestimate the standard

deviation of the parameters. We also note that the coverage seems to decrease as dose

increases. However, the coverage is fairly close to 0.95 at the lower doses.
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Table 3.10: Mean, Empirical Standard Deviation, and Mean Theoretical Standard Devia-
tion for Parameter Estimates for the P-D method, Carey’s method, and the naive method

P-D method
parameter mean emp sd mean theoretical sd
β̂d0 -2.00 0.138 0.135
β̂d1 0.269 0.0947 0.0910
α̂d0 0.00138 0.183 0.171
α̂d1 0.276 0.126 0.115
β̂m0 -2.05 0.140 0.135
β̂m1 0.684 0.0884 0.0833
α̂m0 -0.0197 0.186 0.176
α̂m1 0.221 0.118 0.110
α̂dm0 -.00649 0.137 0.132
α̂dm1 0.252 0.0959 0.0930

Naive method
parameter mean emp sd mean theoretical sd
β̂d0 -2.01 0.139 0.136
β̂d1 0.269 0.0957 0.0932
β̂m0 -2.05 0.142 0.138
β̂m1 0.697 0.0898 0.0885

Carey’s method
parameter mean emp sd mean theoretical sd
β̂d0 -2.01 0.139 0.136
β̂d1 0.269 0.0957 0.0932
β̂m0 -2.09 0.145 0.139
β̂m1 0.749 0.0960 0.0788
β̂m2 0.333 0.0660 0.0656

Table 3.11: Coverage by dose for each parameter
dose (g/kg/day) pd pm ψd ψm ψdm
0.0 0.945 0.941 0.938 0.935 0.943
0.75 0.941 0.940 0.920 0.923 0.940
1.5 0.934 0.935 0.902 0.926 0.923
3.0 0.928 0.923 0.879 0.888 0.927
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3.2.3 Comparison to Carey’s method and Naive method

We also fit Carey’s model (3.1) on the same 5,000 simulated data sets to compare to the

P-D method. Specifically, we fit the following model:

logit(pd) = βd0 + βd1dose

logit(pm|D̄) = βm0 + βm1dose

+ β2

 d̄k − logit−1(β̂d0 + β̂d1dose)√
logit−1(β̂d0 − β̂d1dose)[1− logit−1(β̂d0 + β̂d1dose)]/nk


where dk is the observed death rate for dam k and nk is the number of implants for dam

k.

The naive model is simply fitting the logistic regression model for pd and pm|D̄ using

GEE, without any consideration for correlation in the hierarchical outcomes. Specifically

the models fit are:

logit(pd) = βd0 + βd1dose

logit(pm|D̄) = βm0 + βm1dose.

Table 3.10 shows the mean parameter estimates for Carey’s model as well as the mean

and empirical standard deviations for each parameter. As expected, we see that condi-

tional malformation dose response is quite different between the two methods. We also

observe that the empirical standard deviations seem to be slightly higher for the equiva-

lent parameters from the P-D model. This is possibly due to lack of fit in Carey’s mode

and the naive model. However, given that this is true even for the death models, and

both models give near identical means for their parameter estimates, it may indicate that

the P-D model gives slightly more stable results, despite the added complexity. We also

observe that the mean theoretical standard deviation also tends to be slightly lower than

the empirical standard deviation for all three methods.

We also evaluated the bias of the three methods. Table 3.9 shows the percentage bias

for pd and pm|D̄ for each dose group. Not surprisingly, the differences in bias are small
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between all methods for the death model. For the malformation model, we find that

the P-D method is less biased than Carey’s method, especially for the higher dose groups.

This is expected, since the parameters of the simulations were chosen to fit the P-D model.

The bias of the naive model is actually comparable to the P-D model. Only the percentage

bias for the last two dose group is substantially different for the two methods, and even

there, the percent bias does not exceed 1%.

3.2.4 Sensitivity to ψ model specification

We also examine the sensitivity of the pd and pm|d̄ parameters to what models are fit to

the ψ parameters. In the simulation studies above we fit linear models to the each of

the three ψ parameters that we know to be true. In practice though, it may be difficult to

detect a trend in these second order parameters because the standard deviations are much

higher. Indeed, even in the 2,4,5-T study, with a sample size of over 2,500 dams, a linear

trend in dose for the ψdm was not statistically significant (Cudhea, 2013). Thus, incorrectly

fitting a constant model for these association parameters is entirely plausible, making it

important to assess how the pd and pm model parameters are affected when oversimplified

association model parameters are used. To examine this sensitivity, we fit two alternative

models to the same 5,000 simulated data sets. One in which the ψdm parameter is assumed

to be constant across doses and another in which all three ψ parameters are assumed to

be constant across doses. Specifically, the two alternative models are as follows:

logit(pd) = βd0 + βd1dose

ln(ψd) = αd0 + βm1dose

logit(pm|d̄) = βm0 + βm1dose (3.3)

ln(ψm) = αm0 + αm1dose

ln(ψdm) = αdm0
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Table 3.12: Mean Parameter Estimates for models (3.2), (3.3), and (3.4)
parameter mean (model 3.2) mean (model 3.3) mean (model 3.4)
β̂d0 -2.00 -2.00 -2.01
β̂d1 0.269 0.269 0.269
α̂d0 0.00138 0.00143 0.484
α̂d1 0.276 0.276 NA
β̂m0 -2.05 -2.05 -2.05
β̂m1 0.684 0.681 0.681
α̂m0 -0.0197 -0.0191 0.477
α̂m1 0.221 0.221 NA
α̂dm0 -.00649 0.424 0.424
α̂dm1 0.252 NA NA

and

logit(pd) = βd0 + βd1dose

ln(ψd) = αd0

logit(pm|d̄) = βm0 + βm1dose (3.4)

ln(ψm) = αm0

ln(ψdm) = αdm0 .

The mean parameter estimates for all three models are shown in Table 3.12. The per-

centage biases by dose for pd and pmD̄ for each of the three models are shown in Table 3.13.

Both tables show that the bias on pd and pm|d̄ introduced by misfitting the ψ parameters

is minimal. Oversimplifying the ψ models does seem to slightly bias the estimates for the

probabilities in higher doses, but even in those cases the percent bias does not exceed 1%.

Likewise, oversimplifying the ψdm appears to have little effect on the model parameters

for ψd and ψm. Table 3.13 also compares the percent bias for these parameters between

models 3.3 and 3.4 and the results do not seem to indicate that the ψd and ψm parameters

are more sensitive to misspecification of the ψdm model than the pd and pm|D̄ parameters

are.
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Table 3.13: Simulation Results: Percentage Bias of parameters for models 3.2, 3.3, and 3.4
model 3.2 model 3.3 model 3.4

dose (g/kg/day) pd(%) pm|D̄(%) pd(%) pm|D̄(%) pd(%) pm|D̄(%)

0 -0.79 -0.18 -0.78 0.021 -0.78 0.032
0.75 0.21 -1.22 0.21 -1.22 0.20 -1.21
1.5 -0.51 0.41 -0.51 0.27 -.51 0.26
3 -0.51 -0.04 -0.54 -0.34 -.52 0.35
dose (g/kg/day) ψd(%) ψm(%) ψd(%) ψm(%)
0 2.45 -0.23 2.44 -0.18
0.75 0.01 -0.93 0.01 -0.93
1.5 -1.85 -0.17 -1.85 -0.23
3 -0.44 -0.06 -0.44 -0.23

3.3 Discussion

In this paper, we conduct a simulation study to explore the small sample behavior of the

P-D method for model developmental toxicity data without assuming conditional inde-

pendence. The method, based on the Plackett-Dale distribution, allows for the evaluation

death and conditional malformation outcomes as a function of dose while accounting for

the various litter-level associations that are present in the data, including the association

between death outcomes and malformations within a litter. It also allows for modeling the

litter-level association with an odds-ratio interpretations, including as function of dose.

Theoretically, the model has some advantages over previously proposed models that also

relax the conditional independence assumption. One advantage of this approach is that

it is more flexible in its distributional assumptions. Since the method does not rely on

the latent normal distribution, it allows for a theoretical justification to use the intuitive

and widely prevalent logistic link function over the probit link function. It also not only

allows for the possibility that litter-level associations can change with dose, but that dif-

ferent types of litter level associations can increase at different rates. It also models the

conditional malformation probability directly, unlike previous methods.

The simulation study showed the method’s variance estimators are close to the em-

pirical variances and that the estimation procedure did appear be able to estimate the
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parameters with minimal bias. Thus, the small sample behavior of the model seems to

be consistent with its large sample expectations. We also compared the simulations re-

sults from the P-D model to Carey’s model and the naive model and found that for the

comparable parameters (the parameters for the death model and the intercept parameter

for the malformation model), the estimates are fairly similar for the naive and the P-D

models. We also found that using the equivalent parameter for Carey’s model to estimate

conditional tended to overestimate the conditional malformation probabilities. This is not

surprising since Carey’s model estimates the conditional malformation probability slope

given the adjustment covariate which depends on the death rate of the litter. It is worth

noting the simulation study indicates that if one only uses βm1 to describe the increase in

conditional malformation probabiilty by dose, then one will overestimate the trend. We

also observed that, despite the complexity of the P-D model, the variance estimates for

the parameters were fairly close on average as well (for the comparable parameters).

We also assessed the how sensitive the probability model parameters were to mis-

fitting the ψ model parameter and found that oversimplifying the ψ models had only a

small impact on the estimates for pd and pmD̄. This is not surprising given how similar the

probability estimates are between the P-D model and the naive model.

There are several avenues for further research to explore. One is to extend the method

to include continuous fetal weight as an outcome of interest. Because the Plackett-Dale

distribution allows flexibility in the marginal distribution, incorporating this continues

outcome should be possible (though the number of associations parameters to estimate

would increase substantially). It would also be of interest to explore the behavior of our

model in different settings (for example, data with higher correlations) and compare re-

sults with Carey’s model. In particular, It would be of interest to see whether model

estimates and standard deviations, differ substantially between the two methods.

The ultimate goal of the data analysis, however, is to fit a dose-response model to

each outcome, and to use these models to inform safe doses for regulation purposes. A

key step translating the dose-response model to a ’safe’ a dose is the calculation of the
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BMD (benchmark dose) and BMDL (the associated lower bound) (Gaylor et al., 1998), a

process referred to as quantitative risk estimation, part of the larger and more general

goal of quantitative risk assessment. The BMD is defined as the dose that corresponds

to a given percent increase in risk above background (usually 5 or 10%). The BMDL is

the statistical lower-bound (usually 95%) of the BMD, and is the quantity most useful in

assessing and establishing safety standards. Often, a BMDL is calculated for each out-

come and the smallest is chosen, which can lead to underestimating the safe dose and

ignores any correlation. A more valid approach would be to calculate a joint BMD that

accounts for the combined risk of all outcomes. This approach requires that joint risk, the

probability of any adverse outcome, be estimable, meaning that a joint distribution for

the outcomes must be specified and that relevant inter-outcome correlations must be esti-

mated. For methods where this is not possible (often because inter-outcome correlations

are not estimated), conditional independence is assumed. That is, it is assumed that the

live outcomes (malformation and fetal weight) are independent of the death outcomes.

In other words, the death rate of a litter does not inform the malformation rate (or fetal

weights) of the litter. Thus, for example, if we are only interested in death and malfor-

mation outcomes, the joint risk, P (Adverse Event) = P (Dead or Malformed), simplifies

to 1 − (1 − P (Dead) ∗ (1 − P (Malformed |Not Dead))). The approach, while commonly

used, is not satisfying, as there is no theoretical basis for this assumption.

Therefore, it is of great interest to take advantage of our estimate for ψdm to develop

a method for joint risk estimation. Currently, we can estimate BMDs separately for each

outcome, but ideally, we would like to be able to estimate joint risk so we could calculate a

joint BMD. Our method estimates the relevant association, ψdm, that ties the two outcomes

together, but the nature of the Plackett-Dale distribution, in which pairs of fetuses are the

unit of analysis, makes translating the information to calculate joint risk for one fetus not

straightforward. Thus, pursuing a method to calculate joint BMDs from the P-D model, as

well as Carey’s method, would be worthwhile. By applying these methods to real data, as

well as various simulated scenarios, we can compare the various methods to one another.
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4.1 Introduction

Controlled animal studies are used to study the effects of various potentially toxic sub-

stances such as pharmaceuticals or environmental contaminants. In such studies, human

subjects are often not appropriate and researchers must rely on animal studies to assess

toxicity from experimental data. Developmental toxicology studies are designed to ex-

amine the effect of chemical substances on developing organisms. These studies involve

exposing pregnant animals (usually mice, rats, or rabbits) to a test substance during preg-

nancy and examining the effects on the fetuses. Studies typically use three or four dose

groups plus a control group, with at least 20 dams per dose group. The dams are sac-

rificed before delivery and the contents of the uterus examined. Outcomes of interest

typically include number of resorptions (early deaths), number of fetal deaths, and out

of the surviving fetuses, the number and type of malformations, fetal weights and fe-

tal lengths. Malformations are typically categorized into three general types: Skeletal,

Visceral, or External. Figure 4.1 illustrates the relationships between all the various out-

comes of interest (Kimmel and Price, 1990). The outcomes given the most emphasis in

determining safe doses are number of embryolethalities (resorption and deaths), number

of malformations, and reductions in fetal weight.
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Figure 4.1: Outcomes in Developmental Toxicity
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As one can see from Figure 4.1, the data involve many possible correlations that must

be modeled, making proper analysis challenging. The major units of observation are

clustered into litters so intra-litter correlation between outcomes from the same dam is

expected. Secondly, among the live fetuses, there are multiple outcomes (malformation

status and fetal weight) from each fetus and an inter-outcome correlation is also expected.

This correlation is usually not trivial and must be properly modeled for valid statistical

inference. The fact that malformation status is a binary outcome while fetal weight is a

continuous outcome adds another layer of complication. Third, the hierarchical relation-

ship between the live outcomes and death further complicates interpretation the data.

That is to say, the live outcomes (malformation status and fetal weight) may not only be

correlated with other live fetuses, but also with dead fetuses within the same litter, and

this correlation cannot be ignored in the data analysis.

The ultimate goal of the data analysis is to measure dose-response relationships in

each outcome, and to use these models to inform safe doses for regulation purposes. This

process, referred to as quantitative risk estimation, is part of the larger goal of quantitative

risk assessment. In the past, a key step in translating the dose-response model to a ’safe’

a dose was the calculation of the NOAEL (no-observed-adverse-effect level), the highest

observed dose in which the chemical has a statistically significant effect. However, this

metric has major flaws, in that they are restricted to actual doses from the experiment,

they encourage poor (small sample size) study designs, and does not provide a corre-

sponding estimate of associated risk (Crump, 1984). Thus this statistic has been replaced

in favor of the more precise and dose-response model driven BMD (benchmark dose) and

BMDL (benchmark dose - lower bound) (Gaylor et al., 1998).

The BMD is defined as the dose that corresponds to a given percent increase in risk

above background (usually 5 or 10 %). The increase is known as the benchmark response,

or BMR. The BMD is obtained from solving p(dose)−p(0)
1−p(0)

= BMR.

The BMDL is the statistical lower-bound (usually 95%) of the BMD, and is the quan-

tity most useful in assessing and establishing safety standards. There are several meth-
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ods to calculate the BMDL including the standard Wald approach, where BMDL.95 =

BMD − 1.645 ∗ sqrt(var(BMD)), and the maximum likelihood approach, where the

BMDL.95 is the dose that satisfies 2(lmax−l1) = 1.6452 and minimizes the BMD (lmax is the

unrestricted maximized log-likelihood and l1 is the log-likelihood under some constraint).

The Wald approach is known to yield unstable results and the maximum likelihood ap-

proach requires a model that assumes a full likelihood distribution. For this paper, we use

a method for calculating a BMDL proposed by Kimmel and Gaylor (Kimmel and Gaylor,

1988). In this method, we calculate the dose that corresponds to the specified excess risk

for the 95% upper confidence bound of the dose-response curve. In practice, this means

the BMDL.95 is the dose that solves r̂(dose) + 1.645se(r̂(dose)) = BMR where se(r̂(dose)

is calculated via the delta method.

Characterizing risk using the methods described above works well when only con-

sidering a single adverse outcome. However, in many cases, more than one outcome is of

interest (for example death and malformation). The simplistic approach to determining a

safe dose in this scenario is to calculate a BMD for each outcome and then choose the low-

est one. This approach does not take into account the joint toxic effects of the outcomes,

however, and can lead to an underestimation of the safe dose, especially when the out-

comes have low correlation (Ryan, 1992). A better approach is to calculate a BMD based

on joint risk that combines all outcomes of interest. In the context of developmental tox-

icology, where death and malformation are outcomes of interest, this means calculating

one BMD based on P (M∪D|dose) rather than choosing the smaller of two BMDs based on

P (D|dose) and P (M |D̄, dose). This approach requires that joint risk, the probability of any

adverse outcome, be estimable, meaning that a joint distribution for the outcomes must

be specified and that relevant inter-outcome correlations must be estimated. For methods

where this is not possible (often because inter-outcome correlations are not estimated),

conditional independence is assumed. That is, it is assumed that the live outcomes (mal-

formation and fetal weight) are independent of the death outcomes. In other words, the

death rate of a litter does not inform the malformation rate of the litter. Thus, the joint
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risk, P (Adverse Event) = P (Dead or Malformed), simplifies to

P (Adverse Event) = 1− (1− P (Dead) ∗ (1− P (Malformed |Not Dead))). (4.1)

The approach, while commonly used, is not satisfying, as there is no theoretical basis for

this assumption and it ignores potentially substantial correlation in the litter.

In this paper, we present three methods to analyze such data, and then propose three

approaches to calculate the joint risk BMD that take advantage of the unique properties

of the method. We then evaluate and compare the resulting joint BMDs in real data as

well as in simulated scenarios.

4.2 Methods

4.2.1 Naive Method

The naive method simply assumes conditional independence, and thus ignores the hierar-

chical correlation present in the data. In other words, death outcomes and malformation

outcomes (conditional on the fetuses being alive) are modeled separately. The intra-litter

correlations, between death outcomes and between malformation outcomes, need not be

ignored and are accounted for via using GEEs (Liang and Zeger, 1986) to estimate the

model parameters and their standard errors.

4.2.2 Carey’s Method

Carey (Carey, 2006) develops a straightforward model that allows for conditional depen-

dence. The method, taking a similar approach to Regan’s model for fetal malformation

and fetal weight (Regan and Catalano, 1999), essentially formalizes the ad-hoc approach

of adding an adjustment covariate to the malformation dose-response model to adjust for

the death-malformation correlation.
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Carey’s likelihood uses two latent variables, one for death and one for malforma-

tion, denoted as d̃ and m̃ respectively. The two latent variables are assumed to follow a

multivariate normal distribution. More specifically, for the k-th litter:(
d̃k
m̃k

)
∼ N

((
µd
µm

)
,

(
Σd Σdm

Σdm Σm

))
(4.2)

where

µd = (α̃0 + α̃1dosek)1nk

µm = (β̃0 + β̃1dosek)1lk

Σd = σ2
d((1− ρd)Ink + ρdJnk) (4.3)

Σm = σ2
m((1− ρm)Ilk + ρmJlk)

Σdm = ΣT
md = ρmdσmσdJnk×lk

and lk denotes the number of live fetuses while nk denotes the number of implants in

litter k.

Given the above likelihood, the marginal distribution of death and conditional distri-

bution of fetal malformation can be expressed as:(
d̃k

m̃k|d̃k

)
∼ N

((
µd
µm|d

)
,

(
Σd 0nk×lk 0nk×lk

0lk×nk 0lk Σm|d

))
where µm|d is given by

µm|d = (β̃0 + β̃1dose) + (ρmdσm)(1 + ρd(nk − 1))−1

(
Σnk
j=1d̃ij − nk(α̃0 + α̃1)dose

σd

)

or the sum of the marginal model for latent malformation plus an adjustment covariate

that is a function of the mean standardized residual for fetal death. While the adjustment

term is a bit complicated and includes parameters from the latent theory that are not

estimable, this theoretical model is used to motivate a simpler adjustment term:

µm|d = (β0 + β1dose) + β2

(
d̄k − Φ(α̂0 + α̂1dose)√

Φ(α̂0 − α̂1dose)[1− Φ(α̂0 + α̂1dose)]/nk

)

104



Mean models are then fit using GEEs within the following dose-response framework:

E[djk]/
√
V ar(djk) = Φ(α0 + α1dosek)

E[mjk]/
√
V ar(mjk) = Φ(β0 + β1dosek)

To enable easy comparison between our model and Carey’s model, we use a logit model

version of her method rather than the proposed probit model. Given the two link func-

tions tend to estimate similar trends in practice, we believe the adjustment covariate de-

rived by Carey will still apply in principle even under the logit link:

logit(E[djk]) = α0 + α1dosek

logit(E[mjk]) = β0 + β1dosek + β2

(
d̄k − logit−1(α̂0 + α̂1dose)√

logit−1(α̂0 − α̂1dose)[1− logit−1(α̂0 + α̂1dose)]/nk

)
Both dose-response models are fit using GEEs.

4.2.3 Plackett-Dale framework

Cudhea proposed a method using the Plackett-Dale framework to model dose-response

for hierarchical data (Cudhea, 2013). It takes a similar approach to Geys (Geys et al., 2001)

but applies it to hierarchical data.

The various outcomes and associations of interest present within a litter can be vi-

sualized in Figure 4.2. First, there is the association between two death outcomes within

a litter. For fetuses that did not die, there is the association between two malformation

outcomes within a cluster. Finally, there is the association between death outcomes and

malformation outcomes, which determines how the death experience of a particular dam

will affect the corresponding conditional malformation within the same dam.

Let us formalize the notation. Let djk be a binary random variable that is 1 if fetus j

from dam k is dead and 0 if alive, and let mjk|D̄jk be a binary random variable that is 1 if

fetus j from dam k is malformed and 0 if not, given that fetus jk is known to not be dead.

Parameters ψd, ψm, ψdm from Figure 4.2 can be thought of as global cross-ratios that
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Figure 4.2: Associations present in hierarchical developmental toxicity data

define the various associations present in the data: ψd is the within-cluster association

between death outcomes, ψm is the within-cluster association between malformation out-

comes, and ψ3 is the association between the death outcome and malformation outcome

that is induced by conditional dependence. From these cross-ratios, the joint probabili-

ties for two deaths, two malformations (given they are not dead), and one death and one

malformation (given the malformed fetus was known not to be dead), can be derived as:

F1 = P (Dj, Dj′) =

{
1+(2pd)(ψ1−1)−S(pd,pd,ψd)

2(ψd−1)
ψd 6= 1

p2
d ψd = 1

F2 = P (Mj|D̄j,Mj′ |D̄j′) =

{
1+(2pm|D̄)(ψm−1)−S(pm|D̄,pm|D̄,ψm)

2(ψm−1)
ψm 6= 1

p2
m|D̄ ψm = 1

F3 = P (Mj|D̄j′ , Dj′) =

{
1+(pm|D̄+pd)(ψdm−1)−S(pm|D̄,pd,ψdm)

2(ψdm−1)
ψdm 6= 1

pm|D̄pd ψdm = 1

where Dj is a death outcome and Mj is a malformation outcome for fetus j, and

S(p1, p2, ψ) =
√

[1 + (ψ − 1)(p1 + p2)]2 + 4ψ(1− ψ)p1p2.

From these joint probabilities one can derive the probability mass functions for the
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paired outcomes:

G1(dj, dj′) =


F1(pd, ψd) dj = 1, dj′ = 1
2(pd − F1(pd, ψd)) dj 6= dj′
1− 2pd + F1(pd, ψd) dj = 0, dj′ = 0

G2(m|D̄j,m|D̄j′) =


F2(pm|D̄, ψm) m|D̄j = 1,m|D̄j′ = 1
2(pm|D̄ − F2(pm|D̄, ψ)) m|D̄j 6= m|D̄j′

1− 2pm|D̄ + F2(pm|D̄, ψm) m|D̄j = 0,m|D̄j′ = 0

G3(m|D̄j, dj′) =


F3(pm|D̄, pd, ψdm) m|D̄j = 1, dj′ = 1
pm|D̄ − F3(pm|D̄, ψdm) m|Dj = 1, dj′ = 0
pD − F3(pD, ψdm) m|Dj = 0, dj′ = 1
1− pm|D̄ − pd + F3(pm|D̄, ψdm) m|D̄j = 0, dj′ = 0

The method uses a 2-step estimation procedure, The model first estimates dose response

parameters for pd and ψd, and then uses the parameter estimate for pd to estimate pm,

ψm and ψdm. The exact estimation equations used for both steps are described by Cud-

hea (Cudhea, 2013), as are the formulas for the covariance estimates.

4.3 Estimation of Joint Risk

The methods presented that don’t assume conditional independence divide the corre-

lation parameter into three separate association parameters (between death outcomes,

between malformation outcomes, and between death and malformation outcomes) and

are based on distributions that explicitly connect hierarchical association (between death

and malformation outcomes) and joint risk. However, no intuitive formula for P (M ∪D)

exists for these two models. This is so because, for Carey’s model, the association param-

eters are not directly estimated, and for the P-D model, a full likelihood distribution is not

assumed or used in the estimation of the parameters. These two methods do, however,

estimate parameters that measure the level of correlation between the death and malfor-

mation outcomes. The challenge then, is to incorporate this information into joint risk for

death and malformation so that a joint BMD can be calculated.
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4.3.1 Naive Method

The naive method for calculating joint risk is to use formula (4.1). The formula is derived

from the assumption that conditional dependence is true. In other words, it assumes that

the death rate of a litter will not inform the conditional malformation rate that same litter,

the very assumption that we seek to relax in our models. Thus, it is a somewhat unsat-

isfying to use this formula for BMD and BMDL estimation. Nevertheless, it is a simple

and popular way to calculate joint risk, so the option is explored in this paper. Theoreti-

cally, ignoring the hierarchical correlation in joint risk, as this method does, should lead

to overestimating joint risk and thus underestimating the joint BMD as long as the hierar-

chical association is positive at all doses. Thus, in all practical scenarios, we expect using

this naive joint risk formula to be a conservative method for calculating a joint BMD.

4.3.2 Mean adjustment method

In principle, the mean adjustment method is not very different from the naive method.

It uses the same joint risk formula, but it uses an alternative way to calculate P (M |D̄).

Recall that, in Carey’s method, conditional malformation is modeled as a function of

dose and also an adjustment covariate that is a function of litter size and death rate.

If we choose to model logit(pm|D̄) linearly with dose then we would fit the model

logit(pm|D̄) = β0 + β1dosek + β2

(
d̄k−logit(α̂0+α̂1dose)√

logit(α̂0−α̂1dose)[1−logit(α̂0+α̂1dose)]/nk

)
. Theoretically, on

average, the adjustment covariate should be zero, since both d̄k and logit(α̂0 + α̂1dose)

are unbiased estimators of the death rate at the specified dose. Therefore, in the naive

method, β2 is ignored in calculating P (M |D̄). An alternative way of calculating joint

risk is to include the adjustment covariate in the calculation of the conditional malforma-

tion probability. Since the adjustment covariate is dam specific rather than dose specific,

(because nk and d̄k varies by dam), we propose using the observed mean adjustment co-

variate for the purpose of calculating joint risk. By including β2 into the formula for joint

risk, we can incorporate information about the association between death and malforma-

tion outcomes into the calculation of the BMD and BMDL. Theoretically, the mean of the
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adjustment covariate is expected to be zero, and thus, the estimate of the BMD should

not differ much from using the naive method. In practice however, the mean adjustment

covariate is often non-zero (examples can be found in appendix A.2). Thus, it is possible

that ignoring the adjustment covariate will lead to a biased estimate of Pm|D̄ and therefore,

of the BMD as well. Furthermore, the inclusion of the β2 parameter in the calculation of

the BMDL will actually take into account the uncertainty associated with that parameter.

Using the naive method with Carey’s model ignores this uncertainty and thus possibly

underestimates the BMDL.

4.3.3 Placket-Dale method

Recall that in the Plackett-Dale model, the parameter that measures the association be-

tween death and malformation is ψdm. Thus, to incorporate the association between hi-

erarchical outcomes in a joint risk formula for the P-D model must entail including this

parameter. We propose using the formula

P (Adverse Event) = 1−G3(0, 0).

Recall that G3(m|D̄j, dj′) is the full probability mass function derived from F3(m|D̄j, dj′),

the joint probability that fetus j is malformed and fetus j′ is dead, given that fetus j is

not dead. Parameter ψdm characterizes the association between fetus j and fetus j′. Thus,

G3(0, 0) is the probability, for a given pair of fetuses from the same dam, that neither are

malformed or dead, given that one is known to be not dead. It is not the probability

that a single fetus experiences no adverse outcomes. Although somewhat ad-hoc, we

believe that G3 does have properties that make it a plausible candidate to use as a proba-

bility mass function for the outcome of one fetus. First, in the absence of any correlation

between death and live outcomes in a dam, G3(0, 0) simplifies to Pd(0)Pm(0|D̄), the prob-

ability of a fetus being healthy when conditional independence is assumed. Second, the

manner in which the estimate for ψdm affects joint risk is, for the most part, intuitive. Let

us assume the death rate and conditional malformation rate are the same between two

dams, but one has a higher ψdm. Then, we would expect the litter with the higher ψdm
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to have a higher joint risk, since an increase in ψdm results in an increase in G3(0, 0) and

thus, a decrease in joint risk. This is consistent with our intuitive understanding of how

hierarchical outcomes correlations should affect joint risk. The higher this correlation, the

higher one would expect the death outcome and the malformation outcomes to be con-

sistent, and thus the outcome of no adverse event (no death or malformation) should be

more likely.

4.4 Example

To illustrate the methods described above, we apply them to two different datasets, an

NTP study examining the effects of Ethanol Glycol (EG) in mice (Price et al., 1985) and

a large sample study examining the effects of 2,4,5-Trichlorophenoxyacetic Acid (2,4,5-T)

in mice (Chen and Gaylor, 1992). The EG data set is an example of a fairly typical study,

with 98 dams and four dose groups. The 2,4,5-T data set is much larger, with 2455 dams

and 7 dose groups. The following five methods are used to calculate the BMD and BMDL

for both datasets:

1. Using the naive model with the naive joint risk formula

2. Using the P-D model with the naive joint risk formula

3. Using Carey’s model with the naive joint risk formula

4. Using the P-D model with the P-D formula for joint risk

5. Using Carey’s model with the mean-adjustment joint risk.

The naive formula is applicable for all models and thus examined for all three models

discussed here. The model fits used are the same as those used by Cudhea (Cudhea,

2013), and are shown in appendix A.1.
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Table 4.1: BMD, BMDL, and Relative Difference (RD) for EG Mice data
Method 1 2 3 4 5
BMD 0.504 0.512 0.503 0.517 0.503
BMDL 0.420 0.434 0.407 0.389 0.424
RD 0.168 0.153 0.191 0.248 0.158

4.4.1 NTP Study of EG in Mice

Table 4.1 shows the BMD and BMDL estimates for five different methods for the EG study.

The BMD estimates range from 0.503 g/kg to 0.517 g/kg. We see that using the P-D

model, regardless of what method we use to calculate the BMD, gives us a higher BMD

than the other methods. The BMDL estimates range from 0.389 to 0.434. We do not note

any obvious pattern with regards to how the BMDLs differ by method. The relative differ-

ences between BMD and BMDL (defined to be (BMD−BMDL)/BMD) range from 0.153

to 0.248. The P-D joint risk formula includes the parameter ψdm, a second order parameter

that tends to have estimates with a high variance, and that added uncertainty in the joint

risk estimates is expected to be reflected in a higher variance BMD estimate. Thus, it is

not surprising that the relative difference between BMD and BMDL when using method

4 (P-D model with P-D risk formula) is much greater than the relative difference using

method 2 (P-D model with the naive joint risk formula). It is, however, somewhat sur-

prising that we observe the relative difference of method 5 (Carey’s model with the joint

risk formula that includes the adjustment term) is actually smaller than that of method 3

(Carey’s model with the naive joint risk formula) since method 5 includes an additional

parameter in its joint risk formula. This is especially interesting since we do not observe

a strong positive correlation between the adjustment term and the other parameter esti-

mates in the conditional malformation model. The P-D model assumes ψdm is constant

across dose and estimates ψdm for this data set to be a relatively low 1.24 (95% CI of (0.912,

1.70)) which explains the homogeneous BMD estimates from the five different estimation

methods.
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Table 4.2: BMD, BMDL, and Relative Difference (RD) for 2,4,5-T Mice data
Method 1 2 3 4 5
BMD 3.45 3.41 3.46 3.46 3.47
BMDL 3.09 3.06 3.12 2.92 3.13
RD 0.104 0.103 0.097 0.158 0.098

4.4.2 Study of 2,4,5-T in Mice (CD-1 strain)

Table 4.2 shows the risk estimates for the same five methods for a study of 2,4,5-T on

mice (CD-1 strain). All five methods give similar estimates for the BMDs, ranging from

3.41 dg/g to 3.47 dg/g. The Plackett-Dale joint risk formula gives the lowest BMDL

while Carey’s model (regardless of what which joint risk formula is used) give the largest

BMDLs. The P-D-model assumes ψdm is constant across dose and estimates ψdm to be 1.85

(95% CI of (1.60, 2.13 )), much higher than what was estimated for the EG study, making

the homogeneity BMD estimates from the five different estimation methods observed for

this data set somewhat surprising.

4.5 Simulations

4.5.1 Methodologic development

A simulation study was conducted to examine the behavior of the five BMD and BMDL

methods, under 8 different scenarios, each defined by three parameters, the increase in

the magnitude of the death dose response, the magnitude of the conditional malformation

dose response, and the increase in magnitude of the within-cluster correlations (including

the correlation between death and malformation correlation) by dose. We evaluate the

simulation design parameters in a binary fashion (”high” and ”low”). Thus the eight

different scenarios can be described as:

1. high pd slope, high pm|D̄ slope, high ψ slopes
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2. high pd slope, high pm|D̄ slope, low ψs slopes

3. high pd slope, low pm|D̄ slope, high ψs slopes

4. high pd slope, low pm|D̄ slope, low ψs slopes

5. low pd slope, high pm|D̄ slope, high ψs slopes

6. low pd slope, high pm|D̄ slope, low ψs slopes

7. low pd slope, low pm|D̄ slope, high ψs slopes

8. low pd slope, low pm|D̄ slope, low ψs slopes

The method of simulation is based on Carey’s model. The latent normal framework used

is shown in equations (4.2) and (4.3).

We use a factorization argument to re-express the joint density as(
d̃k

m̃k|d̃k

)
∼ N

((
µd
µm|d

)
,

(
Σd 0nk×lk

0lk×nk Σm|d

))
where

µm|d = (β0 + β1dose) + (ρmdσm)(1 + ρd(nk − 1))−1

(
Σnk
j=1d̃ij − nk(α̃0 + α̃1)

σd

)
Σm|d = σ2

m((1− ρm)Ilk + ρmJlk)− ρ2
mdσ

2
wnk(1 + ρd(nk − 1))−1Jlk

and use this latent distribution to simulate the data. In practice, for each dam, we simu-

late the death latent outcomes from a N(0nk ,Σd) distribution and then use a dose-specific

cutoff, cdk , to determine whether a particular fetus is dead or alive (a cutoff of 0 would

mean there is a 50% chance the fetus is dead). In simulating the corresponding malfor-

mation data for the same dam, we simulate from a N(0lk ,Σm|d) distribution and then use

cmk−(ρmdσm)(1+ρd(nk−1))−1

(
Σ
nk
j=1d̃ij

σd

)
as the cutoff for that dam, where cmk is the cutoff

(independent of the death outcomes for the litter) for malformation.

For each scenario, 5,000 data sets were simulated, each with 4 dose groups (0, 0.75,

1.5, and 3.0), 25 dams per dose group, and 15 fetuses per dam. The cutoff values and
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correlation values by dose for each simulation scenario can be found in appendix A.3. In

some simulations scenarios, not all data sets were successfully simulated. However, these

cases compromised less than 1% of attempts.

For each scenario we modeled the data in three different ways: via the naive condi-

tional independence method, the P-D method, and the mean-adjustment method. Specif-

ically, for the naive method, we fit the model:

pd = logit−1(βd0 + βd1dose)

pm|D̄ = logit−1(βm0 + βm1dose)

For the P-D method, we fit the model:

pd = logit−1(βd0 + βd1dose)

pm|D̄ = logit−1(βm0 + βm1dose)

ψd = exp(αd0 + αd1dose) (4.4)

ψm = exp(αm0 + αm1dose)

ψdm = exp(αdm0 + αdm1dose)

For Carey’s method, we fit the model:

pd = logit−1(βd0 + βd1dose)

pm|D̄ = logit−1(βm0 + βm1dose+ βm2adjustment)

In other words, for each parameter, we fit a simple linear model with with no polynomial

terms.

For some data sets, an attempt to calculate a BMD failed. In some cases, it is possible

that a BMD does not exist for the fitted model due to a shallow death rate or the con-

ditional malformation rate (or both) (or due to the event rates actually decreasing rather

than increasing with dose). In these cases, which are much more common in scenarios

where the death rate or conditional malformation rate are low, a joint BMD will not exist.

Table 4.5.1 shows the number of times we were not able to calculate a joint BMD for each
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Table 4.3: Number of failed BMD calculation attempts by scenario and BMD calculation
method

method 1 method 2 method 3 method 4 method 5
Scenario 1 0 0 0 0 0
Scenario 2 0 0 0 0 0
Scenario 3 0 0 0 0 0
Scenario 4 0 0 0 0 0
Scenario 5 0 0 0 0 0
Scenario 6 0 0 0 0 0
Scenario 7 31 34 31 105 32
Scenario 8 16 14 16 48 16

joint BMD calculation method and simulation scenario. As is evident in the table, this

only occurred in scenarios 7 and 8, where both the increase in death rate by dose, and the

increase in malformation rate by dose are relatively low by design. The fact that we ob-

serve more failures in scenario 7, where the correlations increase more quickly with dose,

is possibly an artifact of the conditional malformation rates tending to decrease as the cor-

relation parameters increase. It is worth noting that we do observe that method 4, which

uses the P-D BMD calculation method, is more susceptible to failure than the others. This

is not surprising since, in extreme circumstances, it is possible for the P-D joint risk for-

mula to decrease with dose even as the death rate and conditional rate are estimated to

increase with dose (See appendix A.5 for detail). However, given how rarely these fail-

ures occur (2.1% of the time for Scenario 7) and are only observed in extreme scenarios

designed specifically for understanding performance of the methods under sub-optimal

conditions, it does not appear that this is a significant practical weakness of the method.

4.5.2 Results

Figure 4.3 shows the BMD distributions for the five methods via modified boxplots for

simulation scenarios 1-4. Likewise, Figure 4.4 shows the same for scenarios 5-8. These

boxplots show the median BMDL (red) and empirical BMDL (green) for each method

and their corresponding confidence intervals. The median BMDL is the median of the
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BMDL distribution while the empirical BMDL is the 5th percentile BMDs calculated from

the relevant empirical distribution. The mean BMD is also included, indicated with a

blue dot. The rest of the plot is the same as a typical boxplot where the box spans the 25th

percentile to the 75th percentile and the central bar signifies the median.

For all eight scenarios, we observe consistent patterns between the five methods.

First, Carey’s model using the naive joint risk formula always gives the lowest median

BMD. On the opposite end of the spectrum, the BMDs using the P-D model with the P-D

joint risk formula are consistently the least conservative. We also note that BMDs from

method 1 (naive method with naive joint risk) have a very similar distribution to method 2

(P-D method with P-D joint risk), but with method 2 consistently having a slightly higher

median BMD. Method 5 (mean-adjustment model with mean-adjustment joint risk) does

not hold to a consistent pattern in relation to the other four methods. In the simulation

scenarios where the dose-response for pd is high (1-4), method 5 gives the second lowest

median BMD, below method 1 (naive model with naive joint risk) but above method 2

(P-D model w/ P-D joint risk). In the other four scenarios, where the dose response for pd

is low, method 5 actually provides median BMDs that are higher than the median BMDs

for method 1. In the case of scenarios 5 and 6 (both scenarios in which pd dose response

is low and pm dose response is high), method 5’s median BMDs are actually higher than

those of method 2.

The distribution of empirical BMDLs appears to follow those for the BMDs. For sce-

narios 7 and 8, the empirical BMDLs have very wide confidence intervals, such that all

five overlap, and thus it is difficult to discern specific patterns. The median calculated

BMDLs, on the other hand, do not follow the same patterns as the median BMDs. In

fact, in most situations, the confidence intervals for the calculated median BMDLs do not

overlap with the confidence intervals for the empirical BMDLs. For the methods that use

the naive joint risk formula, the calculated median BMDs are consistently higher than the

empirical BMD. For method 4 (PD model w/ P-D joint risk), the opposite is true; the me-

dian calculated BMDL is lower than the empirical BMD. For method 5 (mean-adjustment
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Figure 4.3: Boxplots of joint BMDs for simulation scenarios 1, 2, 3, and 4
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Figure 4.4: Boxplots of joint BMDs for simulation scenarios 5, 6, 7, and 8
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method w/ mean-adjustment joint risk), there is no clear pattern. In scenarios 1 and 2,

the median BMDL is lower than the lower bound of the empirical BMDL, in scenarios 3

and 4, the median BMDL is higher than the upper bound of the empirical BMD, while in

scenarios 5 and 6, the median BMDL is contained within the confidence interval of the

95% confidence interval. Because the calculated BMDLs have a different pattern than the

BMDs, determining which method is most conservative or least conservative according

to BMDL is dependent on the dose-response patterns. For scenarios 1, 2, 3, 5, and 7, we

observe that method 3 is still the most conservative. However, in scenarios 4, 6, and 8, it

appears method 4 is most conservative. However, we do note that for scenarios 4, 6, and

8, the the difference in median BMDL for methods 3 and 4 are fairly slight whereas they

are much more pronounced in methods 1, 2, 3, and 5.

Numerical mean and median summaries for the joint BMDs and BMDLs, as well as

associated standard deviations, are shown in Table 4.5.2 for all 8 scenarios.

It is also worth noting that for each method and scenario, the distribution of the BMDs

appear to be right-skewed. This is not surprising given the nature of the data (theoretical

minimum of 0 with no theoretical maximum). In addition, the skew seems to increase as

the respective median increases.

4.5.3 Relationship between BMD estimates and association parameters

We note that, as expected, the differences between the five methods seem to be more ex-

treme in the scenarios where the dose-response for the association parameters is higher.

When we compare BMD distributions from scenarios where the dose-response between

high vs. low ψ values, it is clear that the difference between methods 4 and 5 (methods

that account for death-malformation association in the calculation of the BMD) and meth-

ods 2 and 3 (methods that use the same modeling technique but use the naive joint risk

to calculate joint BMDs) is much greater under the high ψ scenario. However, it is impor-

tant to note that these scenarios don’t necessarily share the same dose-response for pd and
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Figure 4.5: Mean, median and standard deviations for the joint BMD and BMDLs, as well
as the empirical BMDL values, from all eight simulation scenarios for all five methods

BMD BMDL
Scenario Method mean median stdev empirical mean median stdev

1 1 0.331 0.326 0.0411 0.275 0.287 0.284 0.0301
2 0.336 0.331 0.0406 0.280 0.294 0.291 0.0306
3 0.299 0.296 0.0346 0.251 0.267 0.265 0.0280
4 0.357 0.351 0.0476 0.292 0.289 0.287 0.0289
5 0.324 0.320 0.0366 0.273 0.272 0.268 0.0303

2 1 0.301 0.299 0.0229 0.266 0.271 0.270 0.0195
2 0.303 0.302 0.0232 0.269 0.274 0.273 0.0197
3 0.288 0.286 0.0217 0.255 0.262 0.261 0.0191
4 0.311 0.309 0.0248 0.275 0.269 0.268 0.0188
5 0.299 0.297 0.0223 0.265 0.263 0.262 0.0196

3 1 0.466 0.450 0.0871 0.358 0.380 0.373 0.0524
2 0.469 0.454 0.0851 0.363 0.386 0.379 0.0526
3 0.419 0.405 0.0762 0.326 0.355 0.349 0.0491
4 0.508 0.488 0.105 0.383 0.371 0.365 0.0465
5 0.434 0.421 0.0724 0.343 0.360 0.353 0.0515

4 1 0.468 0.456 0.0699 0.377 0.392 0.390 0.0457
2 0.470 0.458 0.0699 0.379 0.396 0.390 0.0457
3 0.442 0.431 0.0443 0.358 0.378 0.372 0.0443
4 0.447 0.437 0.0638 0.365 0.382 0.376 0.0449
5 0.491 0.478 0.0788 0.391 0.374 0.369 0.0391

5 1 0.448 0.430 0.0911 0.345 0.365 0.430 0.0509
2 0.463 0.446 0.0937 0.357 0.381 0.373 0.0537
3 0.421 0.406 0.0837 0.326 0.353 0.345 0.0523
4 0.513 0.486 0.132 0.380 0.368 0.361 0.0479
5 0.463 0.446 0.132 0.361 0.368 0.359 0.0586

6 1 0.422 0.415 0.0538 0.351 0.365 0.361 0.0376
2 0.429 0.421 0.0549 0.356 0.372 0.368 0.0384
3 0.411 0.404 0.0530 0.341 0.360 0.356 0.0385
4 0.447 0.438 0.0612 0.367 0.357 0.354 0.0337
5 0.429 0.422 0.0549 0.356 0.366 0.362 0.0405

7 1 0.886 0.722 0.653 0.499 0.556 0.525 0.135
2 0.924 0.756 0.664 0.518 0.587 0.553 0.143
3 0.834 0.677 0.518 0.466 0.553 0.518 0.148
4 1.26 0.884 1.24 0.565 0.544 0.521 0.107
5 0.892 0.726 0.652 0.504 0.577 0.541 0.156

8 1 0.962 0.832 0.550 0.578 0.643 0.613 0.143
2 0.992 0.853 0.581 0.593 0.663 0.633 0.149
3 0.940 0.810 0.542 0.560 0.646 0.615 0.150
4 1.13 0.933 0.782 0.624 0.598 0.579 0.107
5 0.962 0.831 0.546 0.579 0.659 0.629 0.153
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pm|D̄. Indeed, we note that the BMDs from the high ψ scenarios from methods 1, 2, and

3 (all using the naive joint risk formula) are also higher than their counterparts from the

low ψ scenarios. Thus, there is a possibility that the discrepency between the difference

between BMDs from calculation methods that account for conditional dependence and

calculation methods that ignore conditional dependence for high ψ vs low ψ scenarios is

actually not related to the magnitutde of the death-malformation association and more to

do with the magnitude of the risk of death and malformation outcomes.

To investigate this discrepancy while accounting for BMD magnitude, we examined

a standardized version of the difference between methods 2 and 4, and the difference

between methods 3 and 5. Specifically, for each simulation scenario, we report (median

BMD for method 4 - median BMD for method 2) / median BMD for method 2 and (me-

dian BMD for method 5 - median BMD for method 3) / median BMD for method 3. Ta-

ble 4.5.3 shows these values for each scenario. While we do observe that high ψ scenarios

have a higher relative difference than their low ψ counterparts across both methods, we

also note that these relative differences vary by pd and pm|D̄ specification and still seem

to depend on individual outcome risk. Therefore, individual outcome risk is still poten-

tially a confounder (summary statistics for individual outcome risk BMDs estimates can

be found in appendix A.6).

A more helpful plot might be Figure 4.6 which shows all eight relative differences for

both methods against their respective naive BMDs. These plots illustrate that, for the P-D

method, even when controlling for individual outcome risk, the relative differences for

the BMDs tend to be higher for high ψ scenarios. While we cannot make any definitive

conclusions based on these results due to small sample size, the observed trend does seem

to suggest that BMD calculation methods that account for the hierarchical correlation are

indeed sensitive to the hierarchical correlation. It is also worth noting that it appears that

the relative difference in the P-D method seems to increase as the naive BMD increases,

but no such strong trend is observed for the mean-adjustment method.

To more thoroughly understand how the differences between methods change as the
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Table 4.4: Relative difference between median BMDs of method 2 and 4, and of method 3
and 5

P-D method mean adjustment method
(method 2 vs. 4) (method 3 vs. 5)
high ψs low ψs high ψs low ψs

high pd, high pm|D̄ 0.0579 0.0259 0.0813 0.0389
high pd, low pm|D̄ 0.0756 0.0433 0.0410 0.0141
low pd, high pm|D̄ 0.0900 0.0406 0.0999 0.0438
low pd, low pm|D̄ 0.1698 0.0936 0.0733 0.0260
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Figure 4.6: Relative Difference vs. median naive BMD for the P-D method and Carey’s
method
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magnitude of the correlation increases, we conduct another simulation study, looking at

10 simulation scenarios in total, but only where the ρs change in the simulation parame-

ters. The correlation parameters used for each scenario can be found in Table A.3 in ap-

pendix A.3. To distinguish these simulation scenarios from the eight used in section 4.5.2,

they are labeled with an asterisk (*). For cdk and cmk , the same values are used as in sce-

narios 1 and 2, the ones corresponding to the high pd, high pm|D̄ scenarios. The reason

for using these cutoffs is to minimize the number of BMD calculations that fail due to

the simulated study having a negative dose-response trend for one of the outcomes. The

likelihood of this happening increases when combining low dose-response trends for the

outcomes and high dose-response trends for the correlation parameters. Since we look at

fairly high correlation patterns for this examination, using a high dose-response for the

outcome probabilities seemed especially prudent in order to minimize bias resulting from

failed BMD calculations.

Because these various scenarios won’t necessarily have the same death and malfor-

mation probabilities for each dose, we examine the median relative differences between

methods to control for individual level risk. Again, we define the relative difference

between the BMD from method A from method B to be (BMDA − BMDB)/BMDB.

Figure 4.7 plots these relative differences against the median estimated αdm1 , the dose-

response parameter for the ψdm model, for a given simulation scenario, to evaluate how

the median relative differences change as the level of hierarchical association changes.

The figure shows the trend for most of the 10 relative differences examined is fairly linear

or exponential. Thus, the degree to which these methods differ from each other, for the

most part, appears to increase as the associations increase, and does so at a predictable

rate. There are, however, two notable exceptions. The median relative difference between

method 2 (naive/P-D) vs method 1 (naive/naive), as well as between method 4 (P-D / P-

D) vs. method 1 (naive/naive), increase as hierarchical correlation initially increases, but

then begin to decrease for scenarios where hierarchical association slopes are fairly high.

For the median relative difference between methods 2 and 1, this shift occurs somewhere

between scenarios 7* and 8* while for the median relative difference between methods
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4 and 1, the shift occurs somewhere between scenarios 9* and 10*. The median relative

difference between methods 2 and 1 actually changes from positive to negative, meaning

the joint BMD estimates for method 2 are smaller for method 1 in these extreme scenarios.

Since these two methods use the same naive joint risk formula, and since the death model

parameter estimates have been observed to be fairly consistent for any given estimation

method, it is resonable to suspect that what is driving this shift in relative difference

are the parameter estimates for the malformation model. Specifically, in scenarios with

extremely high correlation dose-response trends, the P-D model predicts a lower dose-

response for malformation than the naive model does. It should be stressed though that

scenarios 7* through 10* are not likely to be observed in practice. Thus, we do not believe

this somewhat odd behavior of the P-D model based methods is a weakness in practice.

4.5.4 BMDs for individual outcomes

Figures 4.8 and 4.9 show the distribution of the individual death and malformation BMDs

in comparison to the distribution of the joint BMDs via boxplots (without whiskers, as in

Figures 4.3 and 4.4). As expected, the joint BMDs are consistently lower than either of the

individual BMDs, once again highlighting the danger of underestimating risk when only

using single-outcome BMDs for risk assessment, especially in scenarios when the risk of

one outcome is not dominant relative to the other. Also as expected, the death BMDs for

each method have very similar distributions, since it has been observed in previous sim-

ulations that the death model from the P-D method gives estimates very similar to simply

using GEEs (Cudhea, 2013). The malformation BMDs, however, differ quite significantly

based on method. The figures illustrate that the individual malformation BMDs, not the

death BMDs, are a primary driver in the differences in joint BMDs between methods.

In some cases, such as scenarios 3 and 4, where the death rate is overwhelmingly low

compared to the malformation rate, we see that the joint BMD is not much lower than

the death BMD. However, in more realistic scenarios where the conditional malformation

rate is consistently higher than the death rate, the difference between joint and individual

BMDs seems to be non-trivial.
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Figure 4.8: Boxplots of joint and individual BMDs for simulation scenarios 1, 2, 3, and 4
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Figure 4.9: Boxplots of joint BMDs for simulation scenarios 5, 6, 7, and 8
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4.5.5 Sensitivity to mis-specifying ψ models

It is also of interest to investigate how sensitive the P-D method for joint BMD calculation

is to misspecification of the ψ models, and in particular, the ψ3 model. It has been shown

that the pd and pm|D̄ models are robust to ψ model misspecification (Cudhea, 2013). How-

ever, for joint BMD calculations, the estimates for the ψ3 model are also used and over

simplifying the model may affect the joint BMD estimates significantly. Figure 4.10 shows

the distributions of the joint BMDs, and the corresponding median joint BMDLs (both cal-

culated and empirical) from a simulation study for three different ψ model specifications,

for both scenarios 5 and 6 (exact numerical values of summary statistics can be found in

appendix ). Specifically, the ψ model specifications are as follows:

ln(ψd) = αd0 + βm1dose

ln(ψm) = αm0 + αm1dose (4.5)

ln(ψdm) = αdm0

and

ln(ψd) = αd0

ln(ψm) = αm0 (4.6)

ln(ψdm) = αdm0 .

and the original specification (4.4) used in the previous simulations.

We observe that the mean and median of the BMD estimates are slightly higher for

models 4.5 and 4.6. This is as expected, since the simplified ψdm models used should the-

oretically overestimate the ψdm parameters at the lower doses, near to where the BMD

resides. We also observe that the difference between the BMD distribution for model 4.4

and models 4.5 and 4.6 is greater for scenario 5 than in scenario 6. This is also as expected

since the hierarchical correlation is greater for scenario 6. We also note that the gap be-

tween estimated BMD and estimated BMDL seems to be relatively stable among all three

models, implying that simplifying the second order parameter models does not greatly
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Figure 4.10: Boxplots of joint BMDs for models 4.4, 4.5, and 4.6 for simulation scenarios 5
(left) and 6 (right), and corresponding BMDL estimates.

Table 4.5: Relative differences between median BMD and median BMDL for mod-
els 4.4, 4.5, and 4.6 for scenarios 5 and 6

model 4.4 model 4.5 model 4.6
Scenario 5 0.257 0.247 0.250
Scenario 6 0.192 0.190 0.190

influence BMDL estimation. Table 4.5 shows the median relative difference between BMD

and BMDL (defined to be (BMD-BMDL)/BMD) for each method and each scenario exam-

ined. Given the difficulty in detecting statistical significance in the slope for second order

parameters, if being conservative is a priority, it is perhaps advisable to use the full model

to estimate ψdm even when the dose-response trend for the parameter is not statistically

significant.
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4.5.6 Bias

While the investigations above have compared how the various methods for BMD cal-

culations differ from one another, they do not provide any insight into bias. In order

to investigate bias, we must know the ”true” joint risk at each dose so that a true joint

BMD can be calculated from the data. How we characterize the true joint risk depends

on how we simulate the data. Using Carey’s model’s as a basis for simulation is a useful

approach. The joint distribution of a death and malformation outcome from the same

fetus can be expressed as(
d̃jk

m̃jk|d̃jk

)
∼ N

((
µd
µm|d

)
,

(
σd 0
0 σm|d

))

where µd = α̃0 + α̃1dose, µm|d = β̃0 + β̃1dose+ (ρdmσm)
(1+ρd(nk−1))

(
Σ
nk
j=1d̃ij−nk(α̃0+α̃1)dose

σd

)
, σd = 1 and

σm|d = 1 − ρdmnk
1+ρd(nk−1)

. Because the correlation between d̃jk and m̃jk|d̃jk are assumed to be

zero in this factorized form, the joint risk formula is given by 1− (1−P (D))(1−P (M |D̄)).

This model is the basis for how the data are simulated in all the simulations presented

earlier in the paper, letting µd and µm equal zero and define cutoffs that deterimine how

the latent variable translates into an outcome in practice. Thus, P (D) is defined to be

Φ(α̃0 + α̃1dose|µ = 0, σ = σd) and P (M |D̄) is defined to be Φ((β̃0 + β̃1dose) + (ρdmσm)(1 +

ρd(nj−1))−1
(

Σ
nj
k=1d̃jk−nj(α̃0+α̃1)dose

σd

)
|µ = 0, σ = σm|d). However, in the simulation scenarios

presented, the cutoffs were determined arbitrarily for each dose. Thus, the exact joint risk

is known only for the four doses, making it impossible to calculate a true joint BMD.

We conduct a new set of simulations here, where µd, µm, and ρdm follow simple linear

dose-response trend so that joint risk is known for every dose, and thus the true joint

BMD can be calculated for each simulation scenario. Note that the formula for P (M |D̄) is

dependent on the death outcomes for the entire litter. For a marginal value for P (M |D̄),

we replace the adjustment covariate with the expected mean of the adjustment covariate,

which is 0, so that P (M |D̄) = Φ((β̃0 + β̃1dose)|µ = 0, σ = σm|d). Hierarchical correlation is

not ignored in this formula since σm|d is a function of ρdm.

We examine four simulation scenarios (A, B, C and D). In all four scenarios, the mod-
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Table 4.6: ρdm parameter values for simulation scenarios A, B, and C as well as their
corresponding joint risk values by dose

dose ρdm joint risk
A B C D A B C D

0 0 0 0 0.197 0.248 0.248 0.248 0.238
0.75 0 0.0749 0.171 0.268 0.366 0.360 0.353 0.345
1.5 0 0.149 0.332 0.336 0.504 0.489 0.470 0.469
3.0 0 0.291 0.598 0.462 0.771 0.739 0.710 0.722

els for death and malformation cutoff are the same. Specifically, we use the models death

cutoff = −1.25 + 0.2dose and malformation cutoff = −1 + 0.5dose. These parameters were

chosen to reflect a typical study in which the malformation outcome is more sensitive to

dose than the death outcome. The ρdm parameter changes with differs for each scenario.

Specifically, in scenario A, we use g(ρdm) = 0, in scenario B, we use g(ρdm) = 0.1dose, in

scenario C we use g(ρdm) = 0.23dose, and in scenario D, we use g(ρdm) = 0.2 + 0.1dose

where g is Fisher’s z-transformation. In Scenario A, there is no correlation so conditional

independence is a valid assumption. In scenario B, the correlation is relatively low even

in the higher dose groups. In scenario C, the correlation begins low but increases dramat-

ically with dose while in scenario D, the inter-outcome correlation is relatively high even

at lower doses. Table 4.5.6 shows the correlation parameters at each dose as well as the

corresponding joint risk based on this model. The true joint BMDs calculated from this

joint risk formula for scenarios A, B, C and D are, 0.258, 0.269, 0.312, and 0.318 respec-

tively.

Because the data are simulated under a probit model, and we are assessing bias for

these simulations, the joint BMD estimates are also calculated under the probit model. Ta-

ble 4.5.6 shows the median joint BMD, percent bias, and median joint BMDL for each of

the four scenarios using the probit link. We see that the bias is much smaller for scenario

A when the probit link is used. For scenarios C and D, in which the hierarchical correla-

tion parameter is the highest, method 4 has the least bias of the five methods examined.

For these two scenarios, all other methods substantially underestimate the true joint BMD

ranging from 19% to 9.1% bias. Both method 2 and method 4 are substantially less biased

131



than method 1, which completely ignores hierarchical association. Method 3 is not only

the most biased of these methods, but also does not follow an intuitive pattern. Namely,

the median BMD does not appear to increase as hierarchical correlation increases. For sce-

nario B, however, method 4 is the worst performing method, overestimating the true joint

BMD by 5% while method 1, which assumes conditional independence in both model and

joint risk formula, is the most accurate. It is possible that when the hierarchical correla-

tion is low but not zero, the ψ3 estimates are not as stable, leading to inaccurate estimates.

Whatever the reason, the simulations suggest that the methods’ accuracy is highly de-

pendent on the strength of the correlation: For high correlation scenarios, method 4 is

recommended while for weak correlation scenarios methods 1 and 5 are more reliable.

It is also worth noting that the method 1 results for scenarios B and C appear to

confirm that, in scenarios where the hierarchical association is fairly strong, using the

simplest method for analyzing the data, and thus completely ignoring conditional de-

pendence, does indeed lead to an underestimation of the joint BMD. Furthermore, at

least for scenarios C and D, the more complicated models that do not ignore hierarchical

association appear to be significantly more accurate, underlying the importance of using

such methods in risk assessment. Methods 2 and 5, while still underestimating the BMD

in these scenarios, have median BMD estimates higher than the naive method so seem

to account for at least some of the correlation present in the data. It is also worth noting

that, differences in median joint BMDL estimates are much smaller compared to the BMD

estimates because the variance for the BMD in method 4 is much larger compared to other

methods. For example, in scenario C, methods 1, 4 and 5 have almost the same median

joint BMDL despite the stark contrast in median joint BMD.

As equally important factor in BMD estimation is the link function used for the death

and malformation models. Table 4.5.6 shows the same simulation results as Table 4.5.6

but with the model parameters estimated using a logit link function. For the four sce-

narios investigated, the BMD results from the logit link are consistently greater than the

equivalent results from the probit link. The relative differences between the median logit
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link BMDs and and probit link BMDs are shown in the table as well. Median BMD esti-

mates from logit models are 6% to 9% higher than medians from the probit models, exact

differences being dependent on scenario and method. The discrepancy between the pro-

bit and logit models appears to increase as correlation increases for all five methods, and

that discrepancy increases at different rates depending on the method. For example, for

method 1, the logit median BMD appears to overestimate the probit median BMD by 6.5%

in scenario A and by 6.9% in scenario D. In method 5, the logit median BMD is also 6.5%

greater than the probit median BMD in scenario A, but for scenario D it is 8.7% greater.

Thus, the simulation results show that using the wrong link function leads to significantly

less accurate BMD estimates. In scenario A, where all five methods were fairly accurate

using the probit link, the logit link overestimates by about 7%. Similarly, while for sce-

narios C and D, method 4 was very accurate with the probit models, it overestimates the

BMD by about 7.5% using the logit models. This is expected since the data were simu-

lated under a latent multivariate normal framework, which implies the probit link is the

correct model.

One of the most important aspects of joint risk assessment is in the low-dose extrap-

olation that is made possible by fitting dose-response models. Unfortunately, in practice,

there is no theoretical basis for assuming one link function is more appropriate than the

other. In addition, studies do not typically collect dose-response data for very low doses

where the BMD likely resides, making it difficult to ascertain which link function is the

most appropriate for a given data set.

4.6 Discussion

In this paper we present five different methods for calculating joint BMDs for develop-

mental toxicity data, four of which are based on models that relax the common but theo-

retically unsatisfactory conditional independence assumption. These five methods were

formally evaluated and compared via simulations under various scenarios. Specifically,

the five methods evaluated are as follows:
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Table 4.7: Expected BMD, median joint BMDs, and % bias for all five BMD calculations
methods examined for simulation scenarios A, B, C, and D (probit link)

BMD Calculation Method
Truth 1 2 3 4 5

Scenario A
Joint BMD 0.258 0.260 0.260 0.260 0.260 0.260
% bias -0.508 4.83 4.90 -0.506 -0.542
Joint BMDL 0.245 0.246 0.246 0.234 0.245

Scenario B
Joint BMD 0.269 0.270 0.274 0.260 0.283 0.270
% bias -0.158 -1.90 3.55 -5.12 0.430
Joint BMDL 0.245 0.250 0.239 0.239 0.246

Scenario C
Joint BMD 0.312 0.277 0.288 0.253 0.311 0.280
% bias 11.2 7.52 18.8 0.311 10.0
Joint BMDL 0.243 0.255 0.229 0.245 0.244

Scenario D
Joint BMD 0.318 0.275 0.289 0.258 0.318 0.288
% bias 13.6 9.10 18.8 0.0286 9.37
Joint BMDL 0.245 0.258 0.235 0.258 0.252
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1. Using the naive model and using the naive joint risk formula

2. Using the P-D model and using the naive joint risk formula

3. Using Carey’s model and using the naive joint risk formula

4. Using the P-D model and using the P-D formula for joint risk

5. Using Carey’s model with mean-adjustment formula for joint risk.

The simulations showed that method 3 consistently gave the most conservative BMD

estimates while method 4 was consistently the most anti-conservative. Individual mal-

formation BMDs for the different models showed a similar trend while individual death

BMDs tended to be similar. The calculated BMDLs tended to over or underestimate the

empirical BMDL (5th percentile of the simulated BMDs) depending on method and sce-

nario. Specifically, the methods that used the naive joint risk formula (1, 2 and 3) tended

to have median BMDLs higher than the equivalent empirical BMDs while method 4’s

median BMDLs were consistently lower than the equivalent empirical BMDs. Therefore,

when comparing these methods based on BMDL, method 4 is no longer consistently the

most anti-conservative. Also, comparisons between the methods that use the naive joint

risk formula and methods that do not suggest that the difference between these methods

are indeed dependent on the magnitude of the hierarchical correlation. An investigation

in how the specification of the ψ models affects BMD and BMDL estimates confirmed

that assuming that ψ3 does not change with dose increases the BMD and BMDL estimates

(assuming the hierarchical correlations increase with dose in reality), but only slightly.

We also conducted a separate simulation study focusing specifically on evaluating

differences between these methods as the hierarchical correlation increases. The study

showed that the relative differences between the methods, for the most part, increased in

a fairly linear and predictable pattern as hierarchical correlation (measured with median

ψdm slope) increased.
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Another simulation study was conducted to assess the bias of the five methods. While

it is difficult to make any conclusions about methods using the P-D model due to possi-

ble lack-of-fit driving the bias estimates, the results suggest that when the hierarchical

associations are fairly high, the P-D method gives the most accurate BMD estimates. Both

methods 2 and 5 give similar estimates that are higher than those from method 1, as

expected, since ignoring this hierarchical correlation should theoretically increase the es-

timated risk. Method 3 BMD estimates seem to differ very little among the four scenarios,

suggesting that the interpretation of β2 for Carey’s model is, indeed, the dose-response

for the conditional malformation outcome if no hierarchical correlation exists in a litter.

However, since this correlation often does exist, this interpretation has little practical use.

Even as we observe that the joint risk methods based on the P-D model are the most

accurate, it must be noted that in the P-D model, every kind of association, between death

outcomes and malformation outcomes or otherwise, is conceptualized as between two

different fetuses, only existing in a group of implants. Thus, applying this concept to

evaluate risk for a single implant is still an ad-hoc approach born out of convenience

and intuition. Perhaps because of this, the method can lead to unintuitive results in cer-

tain situations. In particular, in the case where we have the marginal P (D) and P (M |D̄)

increasing relatively slowly with dose, but ψdm increasing quickly with dose, we may

observe that the joint-risk decreases as dose increases. This paradoxical situation is an

unfortunate aspect of our formula for joint risk. F3(0, 0) increases as ψdm increases, but

also decreases as pd and pm decreases. Thus, in certain scenarios, it is possible for F3(0, 0)

to increase, and thus 1−G3(0, 0) to decrease, as dose increases. It should be noted, how-

ever, that this scenario where ψdm increases at a relatively high rate while pd and pm|D̄ do

not is an extreme hypothetical scenario that has not been observed in experimental data.

To illustrate, consider a scenario where pd = .1, pm|D̄ = .1, and ψdm = 1.1 for a given dose.

Then, according to the P-D method, the joint BMD at this dose is 0.189. In order for the

joint BMD to decrease slightly, say to 0.186, then pd and pm|D̄ must increase only slightly,

from 0.1 to 0.105 while ψdm must increase dramatically from 1.1 to 3.0. This illustrates the

behavior of the joint risk method but the numerical example is extreme and not expected
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Table 4.9: Median adjustment covariate for the EG mice data
dose 0 0.75 1.5 3.0

adjustment covariate
(median) -0.117 -0.492 -0.225 -0.306

Table 4.10: Median adjustment covariate for the 2,4,5-T mice data
dose 0 0.02 0.03 0.045 0.06 0.075 0.09

adjustment covariate
(median) -0.373 -0.402 -0.422 -0.255 -0.929 -0.0141 0.306

in practice.

It should also be noted that method 5, where we use the mean of the adjustment

covariate, is still a somewhat simplistic approach that ignores the possibility that this

covariate changes with dose. Indeed, assuming the adjustment covariate changes with

dose can be thought of as a possible parallel to how the P-D method can assume ψdm

increases with dose since β2

(
d̄k−logit(α̂0+α̂1dose)√

logit(α̂0−α̂1dose)[1−logitα̂0+α̂1dose)]/nk

)
and ψdm(dose) both char-

acterize the association between death and malformation outcomes at a particular dose.

Thus, fitting a linear regression model to the adjustment covariates and using dose spe-

cific means is a potential alternative to using the overall mean. For statistical inference,

such an approach may be unsatisfactory since the uncertainty of the linear model will

not be accounted for in the resulting BMDL calculations. However, it may offer a more

accurate picture of the BMD (and thus the BMDL as well). In both EG and 2,4,5-T data

sets, there does not seem to be an obvious pattern between adjustment covariate and

dose (Table 4.9 and Table 4.10 shows the median adjustment covariate by dose for the EG

study and 2,4,5-T study, respectively), so in practice this alternative approach may not re-

sult in significantly different BMD results. How the mean/median adjustment covariate

changes with respect to dose in various situations is something that should be studied to

assess the appropriateness of this approach (the adjustment covariate may not increase in

a linear fashion, for example, making a simple linear regression possibly inappropriate).
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The ability to estimate joint BMDs is an essential part of any method that models

developmental toxicity data since defining a safe dose is the ultimate goal for these stud-

ies. The hierarchical nature of the outcomes of these studies has made if very difficult

for a single method to both allow joint BMD estimation and also model death and condi-

tional malformation as unique outcomes with parameters that are easy to interpret. The

P-D model and Carey’s model are two models that account for hierarchical associations

inherent in the data but also model both death and conditional malformation outcomes

separately in a relatively straightforward manner, but had no obvious way to integrate

the parameters pertaining to the hierarchical association to joint BMD calculation. The

joint BMD calculation methods proposed in this paper (methods 4 and 5) are an attempt

to improve the utility of these models by making it possible to use them for joint risk esti-

mation, negating the need to fit a completely separate model to the data (such as a model

that treats all adverse outcomes as one binary or ordinal variable) in order to answer

questions about joint risk.

There are several other avenues of further research to explore. One possibility is to ex-

plore the aforementioned extension to method 5, by modeling the adjustment covariate.

An investigation of bias conducted in this paper hints that such an approach may not be

significantly more accurate in practice, but a more formal assessment may prove useful.

Another possibility is to formalize a method for weighting the outcomes (e.g: weigh-

ing death as more significant than malformation) in such a way that a weighted joint

BMD statistic can be calculated. The models presented open the opportunity for such a

method by treating death and malformation as different outcomes. Another is to study

existing goodness-of-fit statistics (such as Pearson’s Chi-square statistic), or develop new

goodness-of-fit tests specific to Carey’s model and the P-D model, so that investigators

will have better diagnostic tools when considering model fit or choosing which model is

most appropriate for the data. It is also of interest to study the distribution of the various

BMD calculation methods proposed in yet more detailed simulations, especially scenar-

ios in which the hierarchical correlation is high even in the low doses, and scenarios in

which the three correlations increase by dose at different rates.
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5.1 Conclusions

Using the methodology developed, we can model the dose-response trends for both death

and malformation, as well as three litter-level association parameters, including an asso-

ciation parameter for the hierarchical association between death and malformation. The

model allows us to not only relax the potentially erroneous assumption of conditional

independence between live and non-live outcomes, and also estimates the association

defining this conditional dependence and can model how it changes with dose.

The model assumes that the litter-level correlation can be described by three distinct

association parameters, the association between death outcomes, the association between

live-outcomes, and the association between death and live outcomes, each with an odds

ratio interpretations. This means each association parameter describes the association

between two fetal outcomes within a litter, and thus exchangeability is assumed within

a litter. The model assumes that each kind of pairing within a litter follows a bivariate

Plackett-Dale distribution. The dose-response parameters for death, and then the param-

eters for malformation and the death-malformation association, are estimated sequen-

tially. The method allows for separate dose-response models for death and malformation

(conditional on the fetus not being dead), as well as the three association parameters.

While the model does estimate these association parameters, it does not use a full-

likelihood distribution to describe the data. Therefore, the calculation of joint risk is not

straightforward. A joint risk formula is developed based on the proposed model that

takes advantage of the estimation of the death-malformation association. BMDs calcu-

lated using this joint risk formula performed exceptionally well compared to other meth-
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ods in simulation scenarios where conditional dependence was strong.

5.2 Advantages

Previous methodology that relaxes the conditional independence assumption either sim-

plify the correlation structure of the data (Christensen’s method (Christensen, 2004) uses

only one parameter to describe all inherent litter-level correlations) or do not directly

estimate all relevant correlation parameters (In Carey’s method (Carey, 2006), the param-

eter for the adjustment term contains information on the magnitude of the hierarchical

correlation, but is not a direct estimate). The proposed model, on the other hand, as-

sumes a flexible correlation structure that assumes three separate association parameters

to describe all litter-level correlation (like Carey’s model) and also allows for the direct

estimation (like Christensen’s method) for each one. In addition, the method allows for

modeling the dose-response for each of these parameters, allowing for a fairly complete

picture of the nature of how the data changes as dose changes.

The dose-response parameters also have more intuitive interpretations than the

equivalent models in other methods. Christensen’s method models cutoffs for a theo-

retical latent normal distribution. Thus, none of the parameters directly estimates con-

ditional malformation risk (instead, it models death risk and adverse event risk), which

is not ideal for toxicologists who are specifically interested in conditional malformation

risk. Carey’s method models death and conditional malformation in a straightforward

manner. However, the malformation model involves an adjustment covariate based on

the death-model residuals. Thus, the interpretation of the dose-response parameter is

conditional on the adjustment covariate being zero in a litter. This is not ideal since toxi-

cologists are ultimately interested in malformation risk at the population level, not at the

litter-specific level (Theoretically, the adjustment variable should be zero on average, but

this has not been observed in datasets). The proposed model has an advantage over both

latent normal methods in that it models death risk and malformation risk in a straight-

forward matter, but also does not rely on adjustment covariates to relax conditional in-
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dependence. Thus, the dose-response parameter for conditional malformation can be

safely interpreted as the population level effect of dose. In addition, the Plackett-Dale

framework allows for assuming a Bernoulli random variable for death and conditional

malformation rather than a latent normal. This allows for the theoretically justified use

of the more widely used logit link function for modeling death and malformation rather

than the probit link.

Furthermore, Simulations conducted in chapter 4 suggest the joint risk BMD calcu-

lation method proposed for this model is much more accurate than naive methods that

assume conditional independence or the ad-hoc non-naive method developed for Carey’s

method, at least in high correlation scenarios. Given that the ultimate goal of these studies

is risk assessment, this is a very promising finding.

5.3 Limitations

The same BMD bias assessment simulations also fond that the proposed method’s BMDs

overestimated the bias when correlation was low, suggesting that the method is not nec-

essarily appropriate for all data patterns. The second order parameter estimates also tend

to have high variances, making any dose-response trend in the association parameters

harder to detect in studies with small sample sizes. This is especially problematic for

BMD calculations since they rely on the estimate of the hierarchical association parameter.

Simulations conducted showed that the BMD calculations are fairly robust to misspeci-

fication of the correlation parameter for certain data patterns. However, it is possible

this may be of concern for scenarios where the dose-response trend for the association

parameter is more extreme.

The high variance of the second order parameters also affect the statistical inference

for the BMDs. The BMDL calculations account for uncertainty in the ψdm parameter.

In many data patterns, we see that even as the BMD calculations are the most accurate

for the proposed model, they are the least precise and have lower BMDLs than other
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methods. Thus, even while we observed that other methods were overly conservative in

BMD estimation, in practice, the proposed method can have the lowest BMDL and thus,

be the most conservative approach, negating any practical advantage the method may

have in terms of accuracy.

A significant limitation of the model, because it considers pairs of fetuses as the unit

of data, is its inability to include fetus-level effects. In the context of these toxicity studies,

studying the population level effect of dose on the outcomes is a priority so including

fetus-level effects are not necessary. However, not being able to include individual-level

covariates limits the use of this model outside of this somewhat narrow context.

Finally, extending the Plackett-Dale approach to include other outcomes, namely lit-

ter weight, is not as straightforward as methods that assume a latent normal distribution.

The Plackett-Dale distribution is well-suited for modeling mixed outcomes. However, the

framework we developed would include many more second order parameters to estimate

if the method were to be extended to include fetal weight. This, in turn may decrease the

precision of the model significantly, and may even lead to a lack of stability. Estimation of

the parameters is also likely to be very computationally intensive if fetal weights were to

be included. In the proposed method, for each type of pairing, there are at most four pos-

sible outcomes, greatly simplifying the computations for parameter estimation. No such

shortcut is likely to exist if a continuous outcome is introduced into the model. In addi-

tion, as the method is based on bivariate Plackett-Dale distribution, there is no intuitive

method for calculating joint risk for three outcomes.

5.4 Future Research

The Plackett-Dale approach we developed to modeling hierarchical outcomes, as yet,

does not include fetal weight. An obvious next step would be expand the model to in-

clude this outcome. However, as outlined in section 5.3, computational difficulties can

be foreseen using this approach, and the resulting model may not be all that pragmatic
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to use. However, there is much to be studied concerning the method already developed.

More extensive simulations to study the model’s behavior, under a wider variety of sim-

ulation scenarios, would be useful in understanding in what circumstances, if at all, the

model will break down. It would also be of great interest to get a better understanding of

which data patterns the BMD estimates are the most accurate in, and which data patterns

the BMD estimates tend to be biased in. In particular, the thesis did not explore how the

model is affected by varying correlation dose-responses. It would be of interest to see

how the model behaves in scenarios, for example, where the hierarchical correlation is

low but death and malformation correlation is high, and how that differs from scenarios

where all three correlations are high.

Part of the reason this kind of detailed investigation of how changes in specific cor-

relation parameters affect model performance and behavior was not done is that certain

combinations of malformation probability and correlation parameter values leads to a

correlation matrix for m̃|d̃ that is not positive definite. A more thorough investigation of

what combinations are possible for using Carey’s latent normal framework to simulate

data may act as a useful guide for any future work in the field, especially for conducting

simulations for methods not based on a full-likelihood model. A comparison of the data

patterns between data simulated from Carey’s method and Christensen’s method may

also be of interest. In particular, how much the single correlation parameter from Chris-

tensen’s model contributes to conditional dependence has not been studied, and may be

of interest to researchers considering using its latent normal framework for simulating

data.

Another research path that is potentially of great pragmatic use is to develop simple

diagnostic methods for conditional dependence. Carey’s model’s adjustment term pa-

rameter may potentially serve as as a theoretically justified diagnostic statistic. Alterna-

tively, diagnostic plots that are easily interpreted and are informative could be developed.

Variations of plotting the distribution of malformation rate and fetal weight against death

rate and dose could provide insight for toxicologists who want an intuitive understand-
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ing of how much the conditional independence assumption is violated.

Examining different approaches for BMD estimation using Carey’s model may also

be of interest. The differences between using the sum of the adjustment terms at the in-

dividual level and at the litter-level, for example, could be examined. A more formal

development of integrating out the adjustment term to obtain a marginal joint risk esti-

mate may also be possible. Since Carey’s method is not computationally intensive and

easy to implement, and had relative differences between BMDs and BMDLs that were

comparable to naive methods, being able to obtain accurate joint BMD estimates with

this model would be very useful to toxicologists.

Finally, while this thesis focused entirely on the frequentist approach to the statistical

problems present in this data, a Bayesian approach to the problem also shows promise.

Indeed, given the multiple layers of hierarchy present in the data, a Bayesian approach

may be well suited for the statistical issues present in the data. Exploring a way to model

the data that not only explicitly assumes conditional dependence, but also can estimate

the correlation parameter defining the conditional dependence, under a Bayesian frame-

work could be worth pursuing.
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Appendix A

Supplementary material for chapter 4

A.1 Models fit

For the EG data set, the models fit are as follows:

logit(pd) = βd0 + βd1dose

ln(ψd) = αd0

logit(pm|d̄) = βm0 + βm1dose+ βm2dose
2

ln(ψm) = αm0

ln(ψdm) = αdm0

The parameter estimates are shown in table A.1.

For the 2,4,5-T data set, the models fit are as follows:

logit(pd) = βd0 + βd1dose+ βd2dose
2

ln(ψd) = αd0 + αd1dose

logit(pm|d̄) = βm0 + βm1dose

ln(ψm) = αm0 + αm1dose

ln(ψdm) = αdm0

The parameter estimates are shown in table A.1.
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Table A.1: Parameter Estimates, Standard Errors, and 95% Confidence Intervals for EG
mice data

param estimate standard error 95% confidence interval
βd0 -2.20 0.180 (-2.55, -1.85)
βd1 0.264 0.101 (0.07, 0.46)
αd0 0.521 0.139 (0.25, 0.79)
βm0 -5.26 0.563 (-6.36, -4.16)
βm1 4.60 0.804 (3.02, 6.18)
βm2 -0.917 0.219 (-1.35, -0.49)
αm0 1.23 0.219 (0.80, 1.66)
αdm0 0.218 0.158 (-0.09, 0.528)

Table A.2: Parameter Estimates, Standard Errors, and 95% Confidenece Intervals for 2,4,5-
T data (CD-1 strain)

param estimate standard error 95% confidence interval
βd0 -2.15 0.0551 (-2.26, -2.04)
βd1 -3.58 3.75 (-10.9, 3.77)
βd2 304.23 50.69 (204.9, 403.6)
αd0 0.887 0.149 (0.596, 1.19)
αd1 16.7 3.01 (10.8, 22.6)
βm0 -6.33 0.174 (-6.68,-5.99)
βm1 79.3 3.06 (73.3, 85.3)
αm0 3.51 0.367 ( 2.79, 4.23)
αm1 -18.6 5.94 (-30.2, -6.90)
αdm0 0.613 0.0739 (0.468, 0.758)
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A.2 Summary statistics of adjustment covariates for EG
and 2,4,5-T data

For the EG data set, the mean adjustment covariate is -0.0506 (95% confidence interval of

(-0.126, 0.0248) ) and the median adjustment covariate is -0.306 (95% confidence interval

of (-0.311, -0.225)), while the mean for the 2,4,5-T data set is -.0454 (95% confidence in-

terval of (-0.0669, -0.0240)) and the median is -0.509 (95% confidence interval of (-0.509,

-0.482)) . Given that the distribution of the adjustment covariates are right-skewed for

both distributions, perhaps the median is the more meaningful metric for these cases.

A.3 Parameter values for the simulation scenarios

The cutoff values for death and malformation (cdk and cmk , respectively), as well as the

between-death correlation (ρd), between-malformation correlation (ρd), and hierarchical

correlation (ρdm), for the 8 simulation scenarios detailed from section 4.5.1 are shown in

Table A.3. The correlation parameters for the 10 simulation scenarios from section 4.5.3

are shown in Table A.3.

A.4 Estimates of mean ψdm from simulation scenarios

Table A.4 shows the median ψdm estimates from the model, along with the corresponding

dose and corresponding ρdm from the simulation scenarios presented in section 4.5.6.

A.5 Marginal probabilities for P-D method for joint risk
assessment

Using G3 to describe risk for a single fetus, and that P (H) = G3(0, 0), it is possible to

derive the marginal probalities for each outcome. We know that P (D) = pd = (pd −

148



Table A.3: Parameter values for the 8 simulation scenarios

Scenario 1 Scenario 2
dose cdk cmk ρd ρm ρdm dose cdk cmk ρd ρm ρdm
0 -1.175 -1.200 0.000 0.000 0.000 0 -1.200 -1.200 0.000 0.000 0.000
0.75 -1.075 -0.900 0.132 0.108 .120 0.75 -0.900 -0.900 0.066 0.054 0.060
1.5 -0.960 -0.590 0.284 0.246 .282 1.5 -0.590 -0.590 0.142 0.123 0.141
3.0 -0.725 0.110 0.600 0.600 .600 3.0 0.110 0.110 0.300 0.300 0.300

Scenario 3 Scenario 4
dose cdk cmk ρd ρm ρdm dose cdk cmk ρd ρm ρdm
0 -1.200 -1.200 0.000 0.000 0.000 0 -1.200 -1.175 0.000 0.000 0.000
0.75 -0.900 -1.150 0.132 0.108 .120 0.75 -0.900 -1.075 0.066 0.054 0.060
1.5 -0.590 -0.950 0.284 0.246 .282 1.5 -0.590 -0.960 0.142 0.123 0.141
3.0 0.110 0.400 0.600 0.600 .600 3.0 0.110 -0.725 0.300 0.300 0.300

Scenario 5 Scenario 6
dose cdk cmk ρd ρm ρdm dose cdk cmk ρd ρm ρdm
0 -1.175 -1.200 0.000 0.000 0.000 0 -1.175 -1.200 0.000 0.000 0.000
0.75 -1.075 -0.900 0.132 0.108 .120 0.75 -1.075 -0.900 0.066 0.054 0.060
1.5 -0.960 -0.590 0.284 0.246 .282 1.5 -0.960 -0.590 0.142 0.123 0.141
3.0 -0.725 0.110 0.600 0.600 .600 3.0 -0.725 0.110 0.300 0.300 0.300

Scenario 7 Scenario 8
dose cdk cmk ρd ρm ρdm dose cdk cmk ρd ρm ρdm
0 -1.175 -1.200 0.000 0.000 0.000 0 -1.200 -1.200 0.000 0.000 0.000
0.75 -1.075 -1.075 0.132 0.108 0.120 0.75 -0.900 -1.150 0.132 0.108 .120
1.5 -0.960 -0.900 0.284 0.246 0.282 1.5 -0.590 -0.950 0.284 0.246 .282
3.0 -0.725 -0.500 0.600 0.600 0.600 3.0 0.110 0.400 0.600 0.600 .600
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Table A.4: ρ parameters for 10 simulation scenarios for examining how the difference in
methods changes as the hierarchical correlation changes

Scenario 1* Scenario 2*
dose ρd ρm ρdm dose ρd ρm ρdm
0 0.000 0.000 0.000 0 0.000 0.000 0.000
0.75 0.000 0.000 0.000 0.75 0.0022 0.018 0.020
1.5 0.000 0.000 0.000 1.5 0.0473 0.041 0.047
3.0 0.000 0.000 0.000 3.0 0.100 0.100 0.100

Scenario 3* Scenario 4*
dose ρd ρm ρdm dose ρd ρm ρdm
0 0.000 0.000 0.000 0 0.000 0.000 0.000
0.75 0.044 0.036 0.040 0.75 0.066 0.054 0.060
1.5 0.0947 0.082 0.094 1.5 0.142 0.123 0.141
3.0 0.200 0.200 0.200 3.0 0.300 0.300 0.300

Scenario 5* Scenario 6*
dose ρd ρm ρdm dose ρd ρm ρdm
0 0.000 0.000 0.000 0 0.000 0.000 0.000
0.75 0.088 0.072 0.080 0.75 0.110 0.090 0.100
1.5 0.189 0.164 0.188 1.5 0.237 0.205 0.235
3.0 0.400 0.400 0.400 3.0 0.500 0.500 0.500

Scenario 7* Scenario 8*
dose ρd ρm ρdm dose ρd ρm ρdm
0 0.000 0.000 0.000 0 0.000 0.000 0.000
0.75 0.132 0.108 0.120 0.75 0.154 0.126 0.140
1.5 0.284 0.246 0.282 1.5 0.331 0.287 0.329
3.0 0.600 0.600 0.600 3.0 0.700 0.700 0.700

Scenario 9* Scenario 10*
dose ρd ρm ρdm dose ρd ρm ρdm
0 0.000 0.000 0.000 0 0.000 0.000 0.000
0.75 0.176 0.144 0.160 0.75 0.198 0.162 0.180
1.5 0.379 0.328 0.376 1.5 0.426 0.369 0.423
3.0 0.800 0.800 0.800 3.0 0.900 0.900 0.900

Table A.5: ρdm parameter values for simulation scenarios A, B, C, and D, and their corre-
sponding median ψdm values by dose

dose ρdm median ψdm
A B C D A B C D

0 0 0 0 0.197 1.002 1.028 1.052 1.848
0.75 0 0.0749 0.171 0.268 1.002 1.360 1.592 2.148
1.5 0 0.149 0.332 0.336 1.001 1.484 2.408 2.496
3.0 0 0.291 0.598 0.462 1.000 2.142 5.509 3.372
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Table A.6: Mean, median and stardard deviations for the death BMD and BMDLs, as
well as the empirical BMDL values, from all eight simulation scenarios for the P-D and
Carey/Naive method

Scenario Method mean BMD median BMD BMD SD empirical BMDL
1 P-D 0.523 0.517 0.0557 0.443

Carey/Naive 0.523 0.517 0.0561 0.443
2 P-D 0.0408 0.515 0.0401 0.458

Carey/Naive 0.519 0.515 0.0401 0.458
3 P-D 0.517 0.512 0.0517 0.441

Carey/Naive 0.521 0.516 0.0538 0.443
4 P-D 0.515 0.512 0.0383 0.456

Carey/Naive 0.517 0.514 0.0389 0.457
5 P-D 2.87 1.36 46.9 0.896

Carey/Naive 6.93e+11 1.37 4.85e+13 0.892
6 P-D 1.66 1.37 2.94 0.964

Carey/Naive 1.67 1.37 2.48 0.961
7 P-D 2.86 1.36 47.0 0.895

Carey/Naive 6.94e+11 1.36 4.86e+13 0.892
8 P-D 1.65 1.36 2.95 0.960

Carey/Naive 1.66 1.36 2.48 0.960

F3(pd, pm|d̄, ψdm)) + F3(pd, pm|d̄, ψdm) = G3(mj|D̄j = 0, Dj′ = 1) +G3(mj|D̄j = 1, Dj′ = 1) =

G3(0, 1) + G3(1, 1). And since we already assume P (H) = G3(0, 0), this leaves us with

P (M) = G3(1, 0). Thus, in our interpretation, the marignal probability for malformation

decreases as ψdm increases.

A.6 Summary statistics for death and malformation BMDs
and BMDLs

Table A.6 gives summary statistics for the death BMDs and BMDLs for the 8 simulatoin

scenarios presented in section 4.5.1. Table A.6 shows the same summary statistics for

malformation BMDs and BMDLs.
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Table A.7: Mean, median and standard deviations for the malformation BMD and
BMDLs, as well as the empirical BMDL values, from all eight simulation scenarios for
all five methods

Scenario Method mean BMD median BMD BMD SD empirical BMDL
1 P-D 0.786 0.756 0.161 0.598

Carey / Naive 0.589 0.576 0.0902 0.475
Carey / Carey 0.691 0.676 0.107 0.553
Naive / Naive 0.760 0.728 0.170 0.575

2 P-D 0.616 0.515 0.0401 0.524
Carey / Naive 0.547 0.543 0.0524 0.471
Carey / Carey 0.589 0.584 0.0562 0.507
Naive / Naive 0.604 0.597 0.0635 0.514

3 P-D 9.59 2.49 246.6 1.29
Carey / Naive 7.16 1.41 348.9 0.892
Carey / Carey 8.08 1.64 388.5 1.03
Naive / Naive 5.31 2.31 24.7 1.22

4 P-D 7.64 2.73 56.5 1.39
Carey / Naive 3.97 1.93 23.1 1.12
Carey / Carey 4.26 2.07 24.9 1.20
Naive / Naive 12.3 2.64 185.5 1.36

5 P-D 0.603 0.596 0.0697 0.504
Carey / Naive 0.528 0.523 0.0574 0.444
Carey / Carey 0.597 0.591 0.0619 0.506
Naive / Naive 0.576 0.569 0.0668 0.481

6 P-D 0.560 0.557 0.0478 0.489
Carey / Naive 0.528 0.525 0.0449 0.460
Carey / Carey 0.558 0.555 0.0467 0.488
Naive / Naive 0.548 0.545 0.0462 0.479

7 P-D 1.89 1.40 4.75 0.953
Carey / Naive 1.51 1.14 8.19 0.791
Carey / Carey 1.69 1.28 8.97 0.904
Naive / Naive 1.65 1.28 3.56 0.884

8 P-D 3.61 1.84 31.8 1.15
Carey / Naive 2.33 1.63 4.59 1.05
Carey / Carey 2.46 1.72 4.82 1.11
Naive / Naive 2.63 1.73 10.5 1.10
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Table A.8: Mean joint BMD, median joint BMD, median joint BMDL, and empirical joint
BMDL for BMD calculation methods 1, 2, and 4, for simulation scenarios 5 and 6

Scenario Method Mean BMDL Median BMD Median BMDL Empirical BMDL
5 1 0.513 0.486 0.361 0.380

2 0.512 0.492 0.371 0.391
4 0.514 0.493 0.369 0.392

6 1 0.447 0.438 0.354 0.367
2 0.451 0.442 0.359 0.373
4 0.451 0.443 0.358 0.373

A.7 Summary statistics of death and malformation BMDs
and BMDLs

Table A.7 shows the mean BMD, median BMD, median BMDL, and empirical BMDL for

BMD calculation methods 1, 2, and 4, for simulation scenarios 5 and 6.
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