I. Stereoselective Construction of Polycyclic Architectures: Enantioselective Catalytic Transannular Ketone-Ene Reactions and an Enantioselective Total Synthesis of (+)-Reserpine II. Synthesis of Chiral Bisthioureas for Anion-Abstraction Catalysis #### Citation Rajapaksa, Naomi Samadara. 2013. I. Stereoselective Construction of Polycyclic Architectures: Enantioselective Catalytic Transannular Ketone-Ene Reactions and an Enantioselective Total Synthesis of (+)-Reserpine II. Synthesis of Chiral Bisthioureas for Anion-Abstraction Catalysis. Doctoral dissertation, Harvard University. #### Permanent link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11181228 #### Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA # **Share Your Story** The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>. Accessibility #### I. Stereoselective Construction of Polycyclic Architectures: Enantioselective Catalytic Transannular Ketone-Ene Reactions and an Enantioselective Total Synthesis of (+)-Reserpine #### II. Synthesis of Chiral Bisthioureas for Anion-Abstraction Catalysis A thesis presented by Naomi Samadara Rajapaksa to The Department of Chemistry and Chemical Biology in partial fulfillment of the requirements for the degree of **Doctor of Philosophy** in the subject of Chemistry Harvard University Cambridge, Massachusetts July 2013 #### I. Stereoselective Construction of Polycyclic Architectures: # Enantioselective Catalytic Transannular Ketone-Ene Reactions and an Enantioselective Total Synthesis of (+)-Reserpine #### II. Synthesis of Chiral Bisthioureas for Anion-Abstraction Catalysis #### Abstract The research presented herein explores three aspects of asymmetric catalysis: (1) the development of new catalytic enantioselective reactions, (2) the application of stereoselective catalysis to natural product total synthesis, and (3) the design and synthesis of new chiral catalysts. In Chapter 1, an asymmetric transannular ene reaction of electronically unactivated ketones is reported. The transformation is catalyzed by a new chromium(III) tridentate Schiff-base catalyst and provides access to *trans*-decalinol frameworks in high diastereo- and enantioselectivity. A convergent total synthesis of indole alkaloid (+)-reserpine is presented in Chapter 2. The synthesis uses two key catalytic asymmetric methods: an enantioselective kinetic resolution of terminal epoxides catalyzed by an oligomeric Co(salen) complex and a catalyst-controlled diastereoselective formal aza-Diels–Alder reaction catalyzed by a primary aminothiourea. These methods enabled an enantioselective synthesis of the classic target and addressed the historically problematic C3 stereocenter of the molecule. Through the investigation of various synthetic routes we were able to access two unnatural diastereomers of methyl reserpate: 16-*epi*-(+)-methyl reserpate and 15,16-di-*epi*-(+)-methyl reserpate. Chapter 3 describes the syntheses of rationally designed bisthioureas for anion-abstraction catalysis. Recent mechanistic investigations have led to the identification of productive and nonproductive thiourea dimerization modes in the context of an asymmetric alkylation of α -chloroethers. Based on this work, we synthesized covalently tethered thioureas that enforce proximity of the hydrogen bond donor moieties for cooperative electrophile activation while disfavoring nonproductive self-aggregation. Significant enhancements in reactivity are obtained with the bisthioureas relative to analogous monomeric thioureas in the model reaction. ### **Table of Contents** | Abstract | iii | |--|-----| | Table of Contents | v | | Acknowledgments Dedication | | | | | | Chapter 1. Enantioselective Catalytic Transannular Ketone-Ene | 1 | | Reactions | 1 | | 1.1. Introduction | 2 | | 1.2. Catalytic Enantioselective Transannular Reactions | 2 | | 1.2.1. Enantioselective Desymmetrization of <i>Meso</i> Epoxides | 3 | | 1.2.2. Enantioselective Transannular Diels-Alder Reactions | 4 | | 1.2.3. Asymmetric Transannular Aldol Reactions | 5 | | 1.2.4. Enantioselective Transannular Claisen Rearrangements | 6 | | 1.3. The Ketone-Ene Reaction | 7 | | 1.4. Substrate Choice | 13 | | 1.5. Results and Discussion | 15 | | 1.5.1. Substrate Synthesis | 15 | | 1.5.2. Catalyst Screen | 16 | | 1.5.3. Chromium(III) Tridentate Schiff-Base Catalysts | 17 | | 1.5.4. Catalyst Optimization Studies | 20 | | 1.5.5. Substrate Scope | 24 | |--|-----| | 1.5.6. Limitations | 27 | | 1.6. Conclusions | 28 | | 1.7. Experimental Section | 30 | | 1.8. X-Ray Crystallographic Analysis of Benzoate S14 | 67 | | Chapter 2. Enantioselective Total Synthesis of (+)-Reserpine | 82 | | 2.1. Introduction | 83 | | 2.2. Previous Strategies to Obtain the Desired C3 Configuration | 84 | | 2.2.1. The Woodward Approach: Conformational Biasing and | 84 | | C3 Epimerization | 04 | | 2.2.2. The Stork Approach: Kinetic Cyclization of an Amino- | 85 | | Nitrile | | | 2.2.3. The Kwon Approach: C3 Stereochemical Relay via a | 86 | | 6π -Electrocyclization | 80 | | 2.3. Previous Work towards the Synthesis of (+)-Reserpine in the | 88 | | Jacobsen Group | 00 | | 2.4. Remaining Challenges | 93 | | 2.5. Improved Synthesis of Enone 19 | 94 | | 2.6. Strategies for the Completion of the Reserpine Synthesis | 96 | | 2.6.1. Attempted Closure of the E-Ring Via Enamine | 96 | | Alkylation | 70 | | 2.6.2. Radical Deoxygenation Attempts for Installing the C15 | 100 | | Stereogenic Center | 100 | | | 2.6.3. Re-evaluation of an Enal Hydrogenation | 103 | |--------|--|------| | | 2.6.4. Hydrogenation of an Unprotected Indole Intermediate | 106 | | | 2.7. Completion of the Synthesis of (+)-Reserpine | 109 | | | 2.8. Conclusions | 113 | | | 2.9. Experimental Section | 115 | | | 2.10. Spectroscopic Comparisons of Synthetic (+)-Reserpine and | 1.42 | | | Commercial (–)-Reserpine | 142 | | | 2.11. X-Ray Crystallographic Analysis of 60 | 143 | | Chapte | er 3. Synthesis of Chiral Bisthiourea Catalysts | 160 | | | 3.1. Introduction | 161 | | | 3.2. Hydrogen Bond Donor-Assisted Anion-Abstraction | 161 | | | 3.3. Proposed Mechanistic Scenario | 163 | | | 3.4. Synthetic Strategies | 167 | | | 3.4.1. Strategy 1: Esterification of Two Functionalized | 167 | | | Thiourea Monomers | 107 | | | 3.4.2. Strategy 2: Late-Stage Installation of Thiourea B | 170 | | | 3.4.3. Strategy 3: Late-Stage Installation of Thiourea A | 172 | | | 3.4.4. Synthesis of Bisthiourea 8 | 173 | | | 3.5. Comparison of Bisthioureas 7 and 8 with Monomer 3 | 176 | | | 3.6. Conclusions and Outlook | 177 | | | 3.7 Experimental Section | 181 | #### Acknowledgments I was supported by several people during my time in graduate school, and today, I am very pleased to have the opportunity to thank all of them. I would like to thank Professor Eric Jacobsen for his advice, patience, and encouragement over the past six years. Eric has a talent for providing students with an ideal balance of independence and guidance, and this environment allowed me to develop as a scientist. I truly feel lucky to have worked with Eric, and I will always be grateful for his mentorship. I acknowledge Professors Andrew Myers and Emily Balskus for serving on my thesis committee and for providing valuable suggestions and discussions. I also thank Andy for kindly allowing me to spend much of my first year in his lab during the Jacobsen lab renovation. Emily's enthusiasm for science is inspiring, and I am grateful for all of her advice on research and presentations. I would also like to thank Professors David Evans and Ted Betley for their contributions at early stages in my graduate career. My mentors from my undergraduate years deserve credit for providing me with an essential foundation for graduate school. Professor Zhenan Bao was generous enough to accept me into her lab at Stanford University when I was just starting to explore research, and I appreciate all the encouragement she has given me since those early days. I would also like to thank Professor Barry Trost for giving me the opportunity to work in his group, an experience that shaped decisions I made in graduate school. I was fortunate enough to be paired up with Sushant Malhotra as my graduate student mentor. Although his impressive productivity may have given me an unrealistic impression of what it means to pursue a PhD in chemistry, I am grateful for everything he taught me and for his friendship. I would also like to thank John Flygare, Richard Mackman, Oliver Saunders, and Jeff Tom for mentoring me during internships. John is a role model of mine, and I am very grateful for his advice and support throughout graduate school. I had the opportunity to collaborate with a number of incredibly talented chemists during my time in the Jacobsen group. Meredeth McGowan deserves special thanks. She initiated and carried out much of the reserpine synthesis and taught me so much during my early years in graduate school. Matt Rienzo joined the reserpine project at a later stage as an undergraduate and made more significant contributions towards its completion than he probably realizes. I really appreciated his determined work ethic and chill attitude, and I wish him the best in graduate school. I would also like to thank Mat Lalonde and Stephan Zuend for (rather unconventional) collaborations and for their help with the FADA and Strecker reactions. Dan Lehnherr, Masa Wasa, and I worked closely on the synthesis of thiourea dimers, and I appreciated their help and suggestions. Most recently,
Mike Witten and I carried out large-scale Strecker reactions together, and it was fantastic working with him. Charles Yeung, Adam Brown, Meredeth McGowan, Cheyenne Brindle, Andy Rötheli, Dave Ford, Dan Lehnherr, and Song Lin read and provided feedback on portions of this thesis. Their input significantly improved the quality of the final product, and I gratefully acknowledge their help. I would also like to thank Corinna Schindler, who proofread just about every other document I produced during graduate school. I had the pleasure of overlapping with a number of other people in the lab who made graduate school enjoyable. Nicole Minotti was extremely helpful, and I thank her for her encouragement (particularly during the nerve-racking moments before committee meetings!). Matt Schiffler, Meredeth McGowan, and Chris Uyeda made my transition to graduate school a smooth one by welcoming me to pre-renovation M202A and to lunchtime Jeopardy. I should also thank Chris for not dumping a beer on my head. Bekka Klausen, Rebecca Loy, and Stephan Zuend contributed to my graduate school experience by spearheading weekly group outings to Charlie's and introducing me to mixed drinks. My post-renovation officemates, Andy Rötheli, Corinna Schindler, and Charles Yeung, have been great friends and coworkers, and they also maintained a fairly steady supply of chocolate and other equally healthy snacks in the office. Andy has been an amazingly supportive friend, and I will miss working with him. I know that graduate school would not have been so enjoyable if we did not share an office. I also thank Corinna and Cheyenne for always being willing to chat about synthesis and for numerous coffee breaks. Adam Brown and I joined the Jacobsen group at the same time, and I thank him for being a great friend. He is a very talented chemist and is a genuinely nice guy. I wish him the best of luck, and I am sure our paths will cross in the future. Jim Birrell, Dave Ford, and Song Lin all joined the group a year after I did, and together they represented a very hardworking and talented class. Jim and I shared a bay for the last four years, and during that time we engaged in many chemistry and non-chemistry discussions, broadened each other's exposure to music, and only occasionally drove each other crazy. Dave and I were amazingly compatible sinkmates, and I valued his insights on acquiring NMR spectra and on navigating the intricacies of email etiquette. Song is a very creative chemist and despite the numerous jokes he told at my expense, I look forward to hanging out with him on the west coast. Although this class of graduate students joined a year after Adam and I did, we all defended within months of each other. It was priceless being able to share the entire graduate school experience—complete with frustrations and successes—with the four of them, and I hope we will remain good friends far into the future. I wish Amanda Turek and Mike Witten the best of luck in their new roles as senior graduate students. It was a pleasure getting to know them and the younger graduate students, and I wish Gary Zhang, YP, Steven Banik (of Banik Challenge fame), Baye Galligan, Rose Kennedy, and Ania Levina all the best. Ania has a fantastic attitude, and I thank her for occasional chats during the thesis writing process. The postdoctoral fellows in the group are truly top-notch, and I particularly enjoyed working with Mary Watson, Rob Knowles, Noah Burns, Cheyenne Brindle, Corinna Schindler, Charles Yeung, and Sean Kedrowski. The group and I benefitted tremendously from their insights, and I know that they will accomplish great things through their academic careers. My final thanks are for my friends and family. Luckily, three of my closest friends, Victoria Chu, Vineeta Agarwala, and Cammie Lee, were in Cambridge during my time in graduate school, and I further enjoyed the experience because of them. Although Shun Kawamura and I were apart from each other for much of the past six years, his love and support carried me through the ups and downs of graduate school, and I look forward to being together with him in California. Finally, I thank my parents, Dayananda and Ranjani, and my sisters, Sam and Amanda, for encouraging me to do my best and for their constant support. for my parents, Dayananda and Ranjani Rajapaksa #### **List of Abbreviations** Å angstrom Ac acetyl AcOH acetic acid Ad 1-adamantyl AIBN azobisisobutyronitrile APCI atmospheric pressure chemical ionization Ar aryl atm atmosphere Bn benzyl Boc *tert*-butoxycarbonyl brsm based on recovered starting material Bu butyl °C degree Celsius CAN ceric ammonium nitrate CH₂Cl₂ dichloromethane conv. conversion cis on the same side δ chemical shift in parts per million D dextrarotatory D Deuterium DBU 1,8-diazobicyclo[5.4.0]undec-7-ene DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone DIPEA di-isopropylethylamine DMAP 4-*N*,*N*-dimethylaminopyridine DMF dimethylformamide DMP Dess-Martin Periodinane DMSO dimethyl sulfoxide dr diastereomeric ratio E Ger., entgegen EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) ee enantiomeric excess *ent-* enantiomeric equiv equivalents ESI electrospray ionization Et ethyl Et₂O ethyl ether Et₃N triethylamine EtOAc ethyl acetate EtOH ethanol FADA formal aza-Diels-Alder g gram GC gas chromatography h hour H₂ hydrogen HF hydrogen fluoride HOBt hydroxybenzotriazole HPLC high-performance liquid chromatography HRMS high-resolution mass spectroscopy Hz Hertz *i* iso IR infrared J coupling constant KH potassium hydride KHMDS potassium hexamethyldisilazide L liter L levorotatory LDA lithium diisopropylamide LHMDS lithium hexamethyldisilazide LRMS low-resolution mass spectrometry m meta M molar Me methyl MeCN acetonitrile MeOH methanol min minute mol mole Ms methanesulfonyl MS molecular sieves *n* normal N normal NaBH₄ sodium borohydride NMR nuclear magnetic resonance nOe nuclear Overhauser effect NOESY nuclear Overhauser effect spectroscopy o ortho p para Pd/C palladium on carbon Ph phenyl PMB *p*-methoxybenzyl ppm parts per million Pr propyl psi pounds per square inch PtO₂ platinum dioxide quant. quantitative pyr pyridine R rectus rac- racemic RSM recovered starting material rt room temperature s second S sinister SFC supercritical fluid chromatography t tertiary TBAF tetra-*n*-butylammonium fluoride TBME *tert*-butyl methyl ether TBS *t*-butyldimethylsilyl Tf trifluoromethanesulfonyl TFA trifluoroacetic acid TFAA trifluoroacetic anhydride THF tetrahydrofuran TLC thin-layer chromatography TMB 3,4,5-trimethoxylbenzoyl TMS trimethylsilyl trans on opposite sides Ts *p*-toluenesulfonyl *p*-TsOH *p*-toluenesulfonic acid UV ultra-violet Z Ger., zusammen # Chapter 1 **Enantioselective Catalytic Transannular Ketone-Ene Reactions**¹ Portions of this chapter have been published: Rajapaksa, N. S.; Jacobsen, E. N. Org. Lett. 2013, 15, 4238. #### 1.1. Introduction Transannular chemical reactions are noteworthy for generating structurally and stereochemically rich products from relatively simple precursors in a single transformation. ² The first applications of chiral catalysts to promote transannular reactions were recently identified, and these methods will be discussed in the following section. Motivated by the power of ene-type reactions in organic synthesis, we became interested in extending the asymmetric catalytic transannular reaction concept to this important class of C–C bond-forming reactions. ³ In this chapter, we present the development of an enantioselective catalytic transannular ketone-ene reaction. #### 1.2. Catalytic Enantioselective Transannular Reactions The use of chiral catalysts to achieve absolute stereocontrol in transannular reactions is an area of chemistry that has only recently received attention. As the following examples demonstrate, this powerful strategy provides access to challenging molecular architectures. Two of the examples further illustrate the elegance of the approach through the application of an asymmetric transannular reaction to a natural product total synthesis. - ² For reviews on the application of transannular reactions to the synthesis of natural products, see: a) Marsault, E.; Toró, A.; Nowak, P.; Deslongchamps, P. *Tetrahedron 57*, **2001**, 4243. b) Clarke, P. A.; Reeder, A. T.; Winn, J. *Synthesis* **2009**, *5*, 691. ³ For a general review of asymmetric ene reactions, see: a) Mikami, K.; Shimizu, M. *Chem. Rev.* **1992**, 92, 1021. ## 1.2.1. Enantioselective Desymmetrization of Meso Epoxides⁴ During their investigations of base-promoted isomerizations of epoxides derived from medium-sized cyclic *cis*-olefins, Hodgson and coworkers identified a transannular bond forming process that proceeds with good enantioselectivity and high yields with a catalytic amount of chiral amine **5** (Scheme 1.1). In these transformations, a chiral lithium base effects an enantioselective α-deprotonation of *meso* epoxides **1** and **3**, which is followed by a diastereoselective bond insertion across the ring to generate fused polycyclic products **2** and **4** in good yield and enantioselectivity. Although Hodgson only demonstrated the catalytic desymmetrization with two epoxides, it is noteworthy that similar levels of product enantioenrichment were obtained for **2** and **4** despite differences in substrate ring-size (8 vs. 9) and the bond participating in the insertion reaction (C–H vs. N–C). **Scheme 1.1.** Enantioselective Desymmetrization of *meso* Epoxides ⁴ a) Hodgson, D. M.; Lee, G. P.; Marriott, R. E.; Thompson, A. J.; Wisedale, R.; Witheringon, J. Chem. Soc. Perkin Trans. 1, 1998, 2151. b) Hodgson, D. M.; Robinson, L. A. Chem Commun. 1999, 309. c) Hodgson, D. M.; Cameron, I. D.; Christlieb, M.; Green, R.; Lee, G. P.; Robinson, L. A. J. Chem. Soc. Perkin Trans. 1, 2001, 2161. #### 1.2.2. Enantioselective Transannular Diels-Alder Reactions⁵ In 2007, Jacobsen and coworkers reported a highly enantioselective catalytic
transannular Diels–Alder (TADA) reaction of macrocycles containing dienophiles and (E,E)-dienes. Oxazaboroldine Lewis acid **6** catalyzes this transformation and is remarkably tolerant to substrate modifications to the dienophile identity (enoate vs. enone) and ring-size (14–16) (Scheme 1.2). A range of macrocyclic substrates were found to undergo asymmetric TADA reactions to provide tricyclic products in good diastereo- and enantioselectivity. Scheme 1.2. Catalytic Asymmetric Transannular Diels–Alder (TADA) Reactions The authors took advantage of the predictable selectivity of the oxazaborolidine-catalyzed TADA reaction in a total synthesis of bicyclic sesquiterpene natural product 11,12-diacetoxydrimane 10 (Scheme 1.3). The TADA reaction of 15-membered cyclic silyl ether 7 afforded tricycle 8 in high efficiency and selectivity, and this single operation installed all four contiguous stereocenters of natural product. Importantly, executing the Diels–Alder reaction in a transannular context was found to be essential, as an analogous acyclic substrate did not undergo the corresponding intramolecular Diels– ⁵ Balskus, E. P.; Jacobsen, E. N. Science 2007, 317, 1736. Alder with catalyst **6**, under thermal conditions, or even in the presence of a stronger Lewis acid.⁶ **Scheme 1.3.** Application of the Catalytic Asymmetric TADA to a Total Synthesis of 11,12-diacetoydrimane #### 1.2.3. Asymmetric Transannular Aldol Reactions⁷ List and coworkers reported an asymmetric transannular aldol reaction of medium-sized cyclic diketones that is catalyzed by 4-fluoro-proline derivative 11 (Scheme 1.4).⁸ Several 1,4-cyclooctanediones were found to undergo aldol cyclizations to provide *cis*-fused bicyclic alcohols in good yields and excellent enantioselectivities (94–96% ee). The synthetic utility of the method was illustrated through an enantioselective total synthesis of (+)-hirsutene (13), which uses an efficient and highly selective transannular aldolization of 12 as a key step. ⁶ Balskus, E. P. Ph.D. Dissertation, Harvard University, **2007**. ⁷ Chandler, C. L.; List, B. J. Am. Chem. Soc. **2008**, 130, 6737. ⁸ For related examples of enantioselective transannular aldol reactions that utilize stoichiometric or superstoichiometric chiral reagents, see: a) Inoue, M.; Sato, T.; Hirama; M. *Angew. Chem., Int. Ed.* **2006**, *45*, 4848. b) Inoue, M.; Lee, N.; Kasuya, S.; Sato, T.; Hirama; M, *J. Org. Chem.* **2007**, *72*, 3065. c) Knopff, O.; Kuhne, J.; Fehr, C. *Angew. Chem., Int. Ed.* **2007**, *46*, 1307. **Scheme 1.4.** Enantioselective Transannular Aldol Reactions A striking feature of this chemistry is its sensitivity to deviations from the 1,4-cyclooctanedione substrate framework (Figure 1.1). For example, products **14** and **15**, which are obtained through transannular aldolizations of cyclononanediones have substantially diminished levels of enantioenrichment. Similarly, **16** and **17**, derived from 10-membered cyclic diketones are obtained in low selectivities, with **17** being formed as a racemate. Finally, 1,4-cyclononanedione and 1,4-cyclodecanedione undergo transannular aldol condensations to afford achiral products **18** and **19**. Figure 1.1. Transannular Aldolizations of 9- and 10-Membered Cyclic Diketones # 1.2.4. Enantioselective Transannular Claisen Rearrangements⁹ Hiersemann and coworkers reported an asymmetric Claisen rearrangement of macrocyclic O-allyl- α -ketoesters (21a–c) that is catalyzed by chiral copper salt 20 (Scheme 1.5). Unlike the previous examples, this transformation does not afford 6 ⁹ Jaschinski, T.; Hiersemann, M. Org. Lett. 2012, 14, 4114. polycyclic products but results in the synthesis of medium-sized cycloalkanes with vinyl and α -ketoester substituents. The highly Lewis acidic copper bis(oxazoline) complex **20** promotes the arrangement of a series of (*E,E*)-macrocyclic allyl vinyl ethers to afford *trans*-substituted cycloalkanes in excellent enantioselectivity but with low to moderate diastereoselectivity. Scheme 1.5. Hiersemann's Transannular Claisen-Rearrangement #### 1.3. The Ketone-Ene Reaction These four examples demonstrate the efficiency of catalytic enantioselective transannular reactions in accessing challenging scaffolds. Inspired by this precedent, we became interested in developing a chiral catalyst for enantioselective transannular ketoneene reactions. The carbonyl-ene reaction is a valuable C–C bond forming process that occurs between an enophile (a carbonyl) and an ene component (an olefin possessing an allylic hydrogen) to afford homoallylic alcohols and generate up to two new stereocenters (Scheme 1.6). 10,11 ¹⁰ For reviews on the carbonyl-ene reaction, see: a) Oppolzer, W.; Snieckus, V. Angew. Chem., Int. Ed. **1978**, 17, 476. b) Snider, B. B. Acc. Chem. Res. **1980**, 13, 426. ¹¹ For reviews on enantioselective, catalytic carbonyl-ene reactions, see: a) Ref. 3. b) Mikami, K.; Terada, M. in *Comprehensive Asymmetric Catalysis*, Vol. 3 (Eds. Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.) Springer, Berlin, **1999**, 1143. c) Clarke, M. L.; France, M. B., *Tetrahedron* **2008**, *64*, 9003. $$(R^{1})H \qquad R^{2} \qquad R^{4} \qquad \qquad \begin{array}{c} \text{heat} \\ \text{or} \\ \text{Lewis acid} \\ \text{enophile} \qquad \text{ene} \end{array}$$ **Scheme 1.6.** The Carbonyl-Ene Reaction This pericyclic reaction can be promoted under thermal or Lewis acidic conditions. Although a number of Lewis acid-catalyzed aldehyde-ene reactions have been reported, tetones are generally very poor reacting partners in Lewis acid-catalyzed processes. To date, enantioselective catalytic ketone-ene reactions have only been achieved with highly electrophilic ketones bearing strongly electron-withdrawing substituents. It is a provided to the first catalytic enantioselective ketone-ene reaction. They demonstrated that C2-symmetric copper bis(oxazoline) complex 23 catalyzes ketone-ene reactions between 1,1-disubstituted olefins (used in 5–10-fold excess) and methyl pyruvate (24) in high yield and enantioselectivity (Scheme 1.7). . ¹² For selected examples of metal-catalyzed enantioselective carbonyl-ene reactions of α-ketoester and diketones, see: a) Evans, D. A.; Tregay, S. W.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T. *J. Am. Chem. Soc.* **2000**, *122*, 7936. b) Yang, D.; Yang, M.; Zhu, N.–Y. *Org. Lett.* **2003**, *5*, 3749. c) Mikami, K.; Aikawa, K.; Kainuma, S.; Kawakami, Y.; Saito, T.; Sayo, N.; Kumobayashi, H. *Tetrahedron: Asymmetr.* **2004**, *15*, 3885. d) Doherty, S.; Knight, J. G.; Smyth, C. H.; Harrington, R. W.; Clegg, W. *J. Org. Chem.* **2006**, *71*, 9751. e) Mikami, K.; Kawakami, Y.; Akiyama, K.; Aikawa, K. *J. Am. Chem. Soc.* **2007**, *129*, 12950. f) Zhao, J.–F.; Tsui, H. –Y.; Wu, P. –J.; Lu, J.; Loh, T. –P. *J. Am. Chem. Soc.* **2008**, *130*, 16492. g) Luo, H.–K.; Woo, Y. –L.; Schumann, H.; Jacob, C.; van Meurs, M.; Yang, H.–Y.; Tan, Y.–T. *Adv. Synth. Catal.* **2010**, *352*, 1356. h) Zheng, K.; Yang, Y.; Zhao, J.; Yin, C.; Lin, L.; Liu, X.; Feng, X. *Chem. Eur. J.* **2010**, *16*, 9969. i) Zhao, Y.–J.; Li, B.; Tan, L.–J. S.; Shen, Z.–L.; Loh, T.–P. *J. Am. Chem. Soc.* **2010**, *132*, 10242. ¹³ Examples of Brønsted acid catalyzed ketone-ene reaction of α,α,α-trifluoropyruvates: a) Clarke, M. L.; Jones, C. E. S.; France, M. B. *Beilstein J. Org. Chem.* **2007**, *3*, 24. b) Rueping, M.; Thiessmann, T.; Kuenkel, A.; Koenigs, R. M. *Angew. Chem., Int. Ed.* **2008**, *47*, 6798. **Scheme 1.7.** Evans's Enantioselective Copper Bis(oxazoline)-Catalyzed Ene Reactions of Methyl Pyruvate Since this pioneering report, all subsequently reported enantioselective ketone-ene reactions have also employed α -keto-carbonyl compounds, either due to the necessity for two-point binding of the substrate to the catalyst, or because of the enhanced electrophilicity of the ketone. Yang demonstrated that intramolecular ene reactions of α -keto-esters with internal olefins were catalyzed in high yield and selectivity by a related copper bis(oxazoline) complex (Scheme 1.8A). Strategies to expand the scope of either the ene or enophile component in asymmetric intermolecular ketone-ene reactions have centered on electronic activation. Mikami showed that a dicationic palladium complex prepared through an *in situ* counterion exchange of 26 catalyzes the intermolecular ene reaction of α -ketoesters. With the introduction of the highly electron-withdrawing trifluoromethyl group, pyruvate 27 undergoes selective ene reactions with typically unreactive monosubstituted olefins (Scheme 1.8B). In a subsequent report, the same group demonstrated that the use of silyl enol ethers allowed the enophile scope to be expanded to α -diketones. Let In a particularly impressive example, unsymmetrical diketone **28** is converted to **29** as a single regioisomer and in excellent enantioselectivity (Scheme 1.8C). **Scheme 1.8.** Lewis Acid-Catalyzed Enantioselective Ketone-Ene Reactions Recently, Brønsted acid catalysts **30** and **31** have also been shown to catalyze enantioselective ketone-ene reactions (Scheme 1.9). However, both of these methods are limited to the highly reactive trifluoromethyl pyruvate **27**. 13 30 (1 mol%) or 31 (10 mol%) OEt 27 2.0 equiv $$Ar^{2}$$ **Scheme 1.9.** Brønsted Acid Catalyzed Ketone-Ene Reactions The Jacobsen group's work in the area of enantioselective hetero-ene reactions has involved the development of chiral Cr(III) tridentate Schiff-base complexes for interand intramolecular aldehyde-ene reactions (Scheme 1.10). The Cr(III)-catalyzed intermolecular aldehyde-ene reaction occurs only with electron-rich olefins, and the intramolecular variant readily takes place with unactivated olefins. However, attempted extension of the developed aldehyde-ene methodologies to asymmetric inter- or intramolecular ketone-ene reactions of even highly activated trifluoromethyl ketones yielded unsatisfactory results (Scheme
1.11). 14c,15b ¹⁴ a) Ruck, R.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2002**, *124*, 2882. b) Ruck, R. T.; Jacobsen, E. N. *Angew. Chem., Int. Ed.* **2003**, *39*, 4771. c) Ruck, R. T. Ph.D. Dissertation, Harvard University, **2003**. ¹⁵ a) Grachan, M. L.; Tudge, M. T.; Jacobsen, E. N. *Angew. Chem., Int. Ed.* **2008**, *47*, 1469. b) Grachan, M. L. Ph.D. Dissertation, Harvard University, **2008**. (A) Cr(III)-Catalyzed Intermolecular Aldehyde-Ene Reactions **Scheme 1.10.** Cr(III)-Catalyzed Aldehyde-Ene Reactions **Scheme 1.11.** Ketone-Ene Reactions with Cr(III) Tridentate Schiff-Base Catalysts Although the scope of reported ketone-ene methodologies remains limited by the apparent necessity for an activated α -dicarbonyl functionality, we envisioned that a transannular ketone-ene reaction may not require this feature. Given that the transannular disposition of reacting partners can confer a significant entropic advantage and corresponding reactivity enhancements, we considered the possibility of effecting enantioselective transannular ene reactions of electronically unactivated ketones using chiral Schiff-base chromium(III) catalysts. #### 1.4. Substrate Choice We were particularly interested in studying the transannular ketone-ene reaction of (*E*)-cyclodecenones, as the resulting products contain a decalinol framework that is prevalent in terpene natural products (Scheme 1.12). Furthermore, diastereoselective ketone-ene reactions of this substrate framework have been demonstrated. Yamamura reported thermal and Lewis acid-promoted transannular ketone-ene reactions of natural product preisocalamendiol 35 to afford dienol 36 in good yield (Scheme 1.13). The successful cyclization in the presence of AlCl₃ under mild conditions suggested that chiral Lewis acid catalysts may be able to induce enantioselective transannular ketone-ene reactions of cyclodecenone substrates. Additionally, the use of elevated temperatures (180 °C) to effect the thermal ketone-ene reaction of preisocalamendiol is an indication that background cyclization of related substrates would likely not compete with a Lewis acid-catalyzed pathway. _ ¹⁶ For a recent review of natural sesquiterpenoids, see: Fraga, B. M. Nat. Prod. Rep., 2011, 28, 1580. ¹⁷ Niwa, M.; Iguchi, M.; Yamamura, S. Bull. Chem. Soc. Jpn. **1976**, 49, 3148. **Scheme 1.12.** Proposed Enantioselective Transannular Ketone-Ene Reaction and Selected Examples of Natural Products Featuring *trans*-Decalinol Frameworks **Scheme 1.13.** Thermal and Lewis Acid-Promoted Transannular Ketone-Ene Reactions of Preisocalamendiol We recognized that our efforts would need take into consideration the known temperature-dependent planar chirality of medium-sized cyclic (E)-olefin substrates. ¹⁸ For efficient, enantioselective transannular ene reactions to be possible, the reaction must necessarily occur under conditions where interconversion of the enantiomeric conformers of the substrate takes place. In that context, Barriault has studied diastereoselective ene reactions of (E)-cyclodecenones in cascade oxy-Cope-ene transformations and has shown that those cyclic structures are configurationally flexible under the elevated temperatures of the thermal reaction (140–220 °C) (Scheme 1.14). ¹⁹ Additionally, the configurational ¹⁸ Nakazaki, M.; Yamamoto, K.; Naemura, K. in Stereochemistry, Topics in Current Chemistry, vol. 125 (Eds. Vogtle, F.; Weber, E.) Springer, Berlin, **1984**, 1. ¹⁹ a) Warrington, J. M.; Yap, G. P. A.; Barriault, L. *Org. Lett.* **2000**, 2, 663. Sauer, E. L. O.; Hooper, J.; Woo, T.; Barriault, L. *J. Am. Chem. Soc.* **2007**, *129*, 2112. b) Sauer, E. L. O.; Barriault, L. *J. Am. Chem. Soc.* **2004**, *126*, 8670. instability of some cyclic (E)-olefins, determined through racemization half-life measurements, suggests that elevated temperatures will not be required for conformer interconversion of cyclodecenones containing trisubstituted olefins (Figure 1.2).²⁰ $$\begin{array}{c} \text{OH} \\ \text{CH}_3 \end{array} \xrightarrow{\begin{array}{c} \text{CH}_3 \end{array}} \xrightarrow{\begin{array}{c} \text{CH}_3 \end{array}} \begin{array}{c} \text{220 °C, toluene} \\ \text{63\%} \\ \text{single diastereomer} \end{array} \\ \text{Oxy-Cope} \end{array} \xrightarrow{\begin{array}{c} \text{CH}_3 \end{array}} \begin{array}{c} \text{ketone-ene} \\ \text{CH}_3 \end{array}$$ Scheme 1.14. Barriault's Tandem Oxy-Cope-Ene Reaction **Figure 1.2.** The Half-Life of Racemization for Medium-Sized Cyclic (*E*)-Olefins #### 1.5. Results and Discussion #### 1.5.1. Substrate Synthesis Based on the prior studies on this substrate framework, we chose to study the transannular ketone-ene reaction of (*E*)-5-methyl-cyclodec-5-enone **39a**, which was readily synthesized from cyclohexene oxide in four steps (Scheme 1.15). A coppercatalyzed epoxide opening with isopropenyl magnesium bromide provided secondary alcohol **37** in quantitative yield. Under Swern oxidation conditions, the alcohol was converted to a β , γ -unsaturated ketone, which was reacted with vinylmagnsium bromide to **2011**, *133*, 1754. 15 ²⁰ a) Cope, A. C.; Banholzer, K.; Keller, H.; Pawson, B. A.; Whang, J. J.; Winkler, H. J. S. J. Am. Chem. Soc. **1965**, 87, 3644. b) Westen, H. H. Helv. Chim. Acta **1964**, 47, 575. c) Binsch, G.; Roberts, J. D. J. Am. Chem. Soc. **1965**, 87, 5158. d) Tomooka, K.; Ezawa, T.; Inoue, H.; Uehara, K.; Igawa, K. J. Am. Chem. Soc. provide divinyl alcohol **38** in good yield and in >19:1 diastereomeric ratio. Treatment of **38** with potassium hydride and 18-crown-6 ether effected an anionic oxy-Cope rearrangement to provide **39a** as a single olefin isomer.²¹ Cyclodecenone **39a** can be stored neat at -30 °C for at least three months without decomposition or isomerization.²² **Scheme 1.15.** Synthesis of Model Substrate (*E*)-5-methyl-cyclodec-5-enone **39a** #### 1.5.2. Catalyst Screen With the model substrate in hand, an evaluation of chiral metal(salen) and metal tridentate Schiff-base complexes, was conducted under conditions that afforded no observable background conversion of cyclodecenone **39a** (Scheme 1.16). Of the Lewis acids evaluated, the chromium(III) tridentate Schiff-base complex **33**, ^{14b, 23} was uniquely effective in promoting the desired transformation. The ketone-ene reaction catalyzed by **33** provided *trans*-decalinol **40a** as a single regioisomer in 62% yield, >19:1 dr, and 79% ee. The high substrate conversion along with high product enantioenrichment confirmed that cyclodecenone **39a** is configurationally dynamic under the reaction conditions. ²² Many of the cyclodecenones studied, including **39a**, undergo ene reactions in the presence of acid. As such, NMR samples were only taken in CDCl₃ that was pre-treated with K_2CO_3 , and cyclodecenones were purified on DavisilTM or neutral alumina instead of silica gel. ²¹ Evans, D. A.; Golob, A. M. J. Am. Chem. Soc. 1975, 97, 4765. ²³ The (R,S)- or (S,R)- designation preceding catalyst numbers refers to the stereochemistry of the cis-1,2-aminoindanol portion of the ligand. ^aYields and conversions (in parantheses) were deteremined by ¹H NMR analysis of crude reaction mixtures using 1,3,5-trimethoxy-benzene as an internal standard. ^b **39a** was completely consumed, and afforded **40** as a single regioisomer and diastereomer, as deteremined by ¹H NMR analysis of the crude reaction mixture. Yield was determined by isolation. ^dDetermined by GC analysis using commercial chiral columns. #### Scheme 1.16. Initial Screen of Chiral Lewis Acids #### 1.5.3. Chromium(III) Tridentate Schiff-Base Catalysts Chromium(III) tridentate Schiff-base complexes were first developed for enantioselective hetero-Diels-Alder (HDA) reactions of aldehydes and monooxygenated dienes (Scheme 1.17A).²⁴ Related complexes were subsequently shown to be effective for a number of other asymmetric pericyclic transformations involving aldehyde and _ ²⁴ a) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. *Angew. Chem., Int. Ed.* **1999**, *38*, 2398. b) Gademann, K.; Chavez, D. E.; Jacobsen, E. N. *Angew. Chem., Int. Ed.* **2002**, *41*, 3059. c) Chavez, D. E.; Jacobsen, E. N. *Org. Synth.* **2005**, 82, 34. quinone substrates, including variants of the HDA reaction, ²⁵ aldehyde-ene reactions (Scheme 1.10), and quinone-Diels-Alder (QDA) cycloadditions (Scheme 1.17B). ²⁶ Mechanistic investigations have indicated that the catalysts activate carbonyl groups through single-point binding. ^{14c} **Scheme 1.17.** Enantioselective Cr(III)-Catalyzed HDA and QDA Reactions The depictions of complexes **32–34** and **41–42** used in Schemes 1.10 and 1.17 summarize key structural data that has been gained about these catalysts (Scheme 1.18). X-ray crystallography data indicate that complex **34**, derived from *ortho-t*-Bu-substituted salicylaldimine **43**, is a dimer in the solid state with the two Cr(III) centers bridged by oxygen atoms of the aminoindanol ligand. This class of dimeric catalysts will be referred to as Type II dimers for the remainder of the chapter.²⁷ The optimal HDA catalyst (**42**) ²⁵ a) Joly, G. D.; Jacobsen, E. N. *Org. Lett.* **2002**, *4*, 1795. b) Chavez, D. E.; Jacobsen, E. N. *Org. Lett.* **2003**, *5*, 2563. ²⁶ Jarvo, E. R.; Lawrence, B. M.; Jacobsen, E. N. Angew, Chem., Int. Ed. **2005**, 44, 6043 ²⁷ This notation was used by Rebecca Ruck (Ref. 14c). displays an alternate dimerization mode (Type I), wherein a water molecule bridges the two Cr(III) centers. This complex is derived from ortho-(1-adamantyl)-substituted Schiffbase ligand 44. The bulky adamantyl group is thought to preclude formation of an aminoindanol bridged Type II dimer. Mechanistic studies carried out by former graduate student, Rebecca Ruck, provided evidence that the dimeric structures of 34 and 42 are maintained in solution and are relevant for catalysis of the aldehyde-ene and HDA reactions. 28 Complex 41, which is also derived from
tridentate Schiff base 44, is prepared under identical conditions to complex 42 except for an acidic workup. This catalyst was found to crystallize as a monomer. Evidence that solid structure data for 41 and 42 have reactivity implications is shown in Scheme 1.17B. Monomer 41 affords faster and more selective QDA reactions than dimeric catalyst 42 (entries 1–2). The Cr(III) centers of all three of these complexes have octahedral geometry with water molecules occupying available coordination sites. A feature common to all methods that employ Cr(III) tridentate Schiff-base complexes is the requirement for desiccant (molecular sieves or BaO). It is proposed that this additive sequesters a coordinated water molecule from the highly Lewis acidic Cr(III) center to provide a free coordination site for carbonyl activation. ²⁸ A lack of a nonlinear effect (NLE) upon varying the ee of catalyst **34** in the aldehyde-ene reaction, in combination with a positive NLE upon varying the ee of ligand **43**, provide strong evidence that the catalyst is dimeric in solution and does not undergo ligand exchange. Molecular weight osmometry studies and a first order kinetic dependence on the catalyst indicate that catalyst **42** is dimeric in the solution state. **Scheme 1.18.** Different Classes of Cr(III) Tridentate Schiff-Base Complexes #### 1.5.4. Catalyst Optimization Studies Based on the results of our initial catalyst screen, we evaluated complexes **34**, **41**, and **42** as representative members of each Cr(III) tridentate Schiff-base crystal-type (Type II dimer, monomer, and Type I dimer, respectively) for the transannular ketone-ene reaction of **39a** (Table 1.1). In the presence of activated 4Å molecular sieves, all three catalyzed the desired reaction providing nearly complete conversion after 48 h. These catalysts afforded *trans*-decalinol **40a** in moderate to good enantioselectivity and all provided the same sense of enantioinduction. Unlike the QDA reaction, the transannular ketone-ene reaction does not show a pronounced selectivity difference with monomeric and dimeric catalysts **41** and **42** (entries 2 and 3).²⁹ **Table 1.1.** Evaluation of Structurally Different Cr(III) Tridentate Schiff-Base Complexes ^a Conversion was approximated as 100*(**40a**–**39a**)/(**40a**+**39a**), based on ¹H NMR integration of the crude reaction mixture. Product diastereomeric ratio was determined to be >19:1 based on ¹H NMR analysis of the crude reaction mixture. ^bDetermined by GC analysis using commercial chiral columns. Further optimization studies were carried out on the two dimeric catalyst scaffolds. ³⁰ A series of catalysts containing variation at the *para*-position of the salicylaldehyde portion of the Schiff-base ligands was evaluated (Table 1.2). However, the effect of modifying this substituent on product enantioselectivity was minimal for both types of dimers. ³⁰ These designations are based on the assumption that chloride complexes containing an *ortho*-Ad group and prepared with a neutral aqueous work up are Type I dimers and catalysts containing an *ortho-t*-Bu are Type II dimers. 21 ²⁹ In general, the Cr(III)-catalyzed ketone-ene reactions of **39a** afforded **40a** as a single regioisomer and in >19:1 dr; exceptions will be noted. The volatility of product **40a** caused significant errors in isolated yield measurements during early optimization studies. For this reason, conversion data will be presented. **Table 1.2** Variation of the Schiff-base *para*-Substituent ^a Conversion was approximated as 100*(**40a-39a**)/(**40a+39a**), based on ¹H NMR integration of the crude reaction mixture. Product diastereomeric ratio was determined to be >19:1 based on ¹H NMR analysis of the crude reaction mixture. ^bDetermined by GC analysis using commercial chiral columns. The HDA reaction shows reactivity and selectivity dependence on the identity of the catalyst counterion. A counterion exchange on complex 42 from chloride to the noncoordinating SbF₆⁻ counterion induced rate accelerations and selectivity enhancements for some substrates. Hence, we broadly investigated the impact of modifying the counterion associated with catalyst 42 on the ketone-ene reaction. Pronounced effects were observed, with reactivity increasing steadily as the coordinating ability of the counterion decreased (Table 1.3). Catalysts 52 and 53, bearing PF₆⁻ and SbF₆⁻ counterions, respectively, promoted complete conversion within 24 h, albeit with diminished enantioselectivities as compared to the chloride complex (entries 6–7 vs. entry 1). Complexes bearing sulfonate counterions were somewhat less reactive, but induced significantly improved enantioselectivities (entries 3 and 4), with triflate complex 50 identified as the optimal catalyst of the series. 22 2 $^{^{31}}$ The transannular ketone-ene reaction conducted with complex 53 afforded minor olefin byproducts (<10%), an indication of diminished regionselectivity with this more Lewis acidic catalyst. **Table 1.3.** Counterion Effects on Reactivity and Selectivity | entry | catalyst | conv. (%) ^a | dr ^b | ee (%) ^c | | |-------|--|------------------------|-----------------|---------------------|----------------| | 1 | (<i>R</i> , <i>S</i>)-42 (X = Cl) | 50 | >19:1 | 60 | CH₃ | | 2 | (S,R)-49 (X = OTs) | 67 | >19:1 | -84 | | | 3 | (<i>R</i> , <i>S</i>)-50 (X = OTf) | 76 | >19:1 | 93 | AN O | | 4 | (<i>R</i> , <i>S</i>)-51 (X = NTf ₂) | 98 | >19:1 | 46 | Cr | | 5 | (<i>R</i> , <i>S</i>)-52 (X = PF ₆) | 100 | >19:1 | 50 | (R,S)-catalyst | | 6 | (R,S)-53 (X = SbF ₆) | 100 | >19:1 | 56 | (N,S)-catalyst | ^aDetermined by GC analysis of the crude reaction mixtures using dodecane as an internal standard. ^bDetermined by 1H NMR analysis of the crude reaction mixtures. ^cDetermined by GC analysis using commercial chiral columns. Analogous counterion exchanges were carried out on the optimal Type I and II chloride complexes **45** and **47** (identified from the experiments in Table 1.2) and monomer **41**. Triflate **54** catalyzed a more selective ketone-ene reaction than the corresponding chloride complex, providing decalinol **40a** in 87% ee. This enhancement in selectivity is in accord with the counterion effect observed between Type I chloride complex **42** and triflate **50**. Enantioselectivity induced by triflate **55** was fairly similar to that of the corresponding Type II chloride complex (85% vs. 87% ee). In contrast, the triflate complex **56** provided the ketone-ene product with significantly lower enantioenrichment than the corresponding monomeric chloride complex (1% ee vs. 60% ee). Although these data are not conclusive about the structure of optimal catalyst **50**, they empirically indicate that the catalyst preparation procedure is important.³² - ³² CD spectroscopy, which has previously been used to characterize all three structural types of Cr(III) complexes, could not distinguish triflate catalysts **50** and **56**. **Scheme 1.19.** Counterion Effects Based on the Chloride Complex Structure Type ## 1.55. Substrate Scope³³ With complex **50** identified as the optimal catalyst, the substrate scope of the enantioselective transannular ketone-ene reaction was evaluated (Table 1.4). Full conversion of cyclodecenone **39a** was achieved by extending the reaction time to 48 h, and product **40a** was obtained in 81% yield and 93% ee (entry 1). The absolute stereochemistry of **40a** was determined by X-ray crystallographic analysis of the corresponding *para*-Br-benzoate, and the assignments for the other products were made by analogy (Figure 1.3). _ ³³ Cyclodecenones were synthesized via anionic or palladium-catalyzed oxy-Cope rearrangements of divinyl alcohols: a) Ref 21. b) Bluthe, N.; Malacria, M.; Gore, J. *Tetrahedron Lett.* **1983**, 24, 1157. **Figure 1.3.** ORTEP Diagram of the *para*-Br-benzoate of **40a** Showing 50% Probability Displacement Gem-dimethyl-substituted *trans*-decalinols **40b** and **40c**, were accessed in high yield and enantioselectivity (entries 2 and 3), but the closely analogous product **40d** was obtained in low yield and as a racemate (entry 4). Analysis of the chair-chair conformations of these substrates provides a plausible explanation (Figure 1.4).³⁴ Only cyclodecenone **40d** possesses a *syn*-pentane relationship between its methyl substituents, and the pseudo-axial methyl substituent at C3 is also likely to interfere with complexation of the Lewis acidic catalyst. With these substitution effects in mind, we probed more highly functionalized substrates (Table 1.4, entries 5 and 6). The acid-sensitive acetal **40e** and unconjugated diene **40f** both proved to be effective substrates, affording the corresponding ene products in high enantioselectivities and good yields. Additionally, ether **57** and cyclononenone **59** underwent enantioselective ketone-ene reactions to afford the corresponding bicyclic alcohol products, although in diminished yields and enantioselectivities. ³⁴ Chair-like transition structures that are consistent with reaction outcomes have been determined computationally for diastereoselective thermal ketone-ene reactions of (*E*)-cyclodecenones: Terada, Y.; Yamamura, S. *Tetrahedron Lett.* **1979**, *20*, 1623. Table 1.4. Substrate Scope of the Cr(III)-Catalyzed Ketone-Ene | entry | substrate | product | yield (%) ^{a,b} | dr ^c | ee (%) ^d | |----------------|-------------------------------|---------------------|--------------------------|-----------------|---------------------| | 1 | 39a ^{CH₃} | OH
:
H
40a | 81 | >19:1 | 93 | | 2 | 39b CH ₃ | OH
:
H
40b | 96 | >19:1 | 94 | | 3 | 39c ^{CH} 3 | OH
H
40c | 84 | >19:1 | 94 | | 4 | 39d ^{CH₃} | OH
H
H
40d | 32° | >19:1 | 0 | | 5 | 0 CH ₃ | OH
OH
39e | 87 | >19:1 | 96 | | 6 | 39f CH ₃ | OH
H
H
40f | 62 | >19:1 | 94 | | 7 ^f | 57 CH ₃ |
OH
OH
H
58 | 13 | >19:1 | 49 | | 8 ^f | 59 CH ₃ | 60
OH | 18 | >19:1 | 68 | ^aReactions were performed on a 0.2 mmol scale with 5 mol% catalyst **50** (10 mol% based on Cr) and in the presence of powdered 4 Å molecular sieves at rt in anhydrous toluene ([**substrate**] = 4 M). Unless otherwise noted, reactions showed complete conversion after 48 h and the bicyclic alcohol product was obtained as a single regioisomer. ^bIsolated yield of the ketone-ene products following purification by flash chromatography. ^cDetermined by ¹H NMR analysis of the crude reaction mixtures. ^dDetermined by GC analysis using commercial chiral columns. ^eCombined yield of **40d** and an inseparable regioisomeric product. ^fReaction time was 24 h. **Figure 1.4.** Rationale for the Low Observed Reactivity of **39d** Relative to **39b** and **39c** Tetrasubstituted alkene **61** proved much less reactive than trisubstituted olefins **39a-f** under the catalytic conditions, undergoing only 19% conversion after 24 h at 50 °C. The transannular ketone-ene reaction afforded *trans*-decalinol **62**, bearing a quaternary stereocenter, in 12% yield and 73% ee (Scheme 1.20). Cyclodecenone (+)-**61** was recovered in 69% yield and in 10% ee, confirming that this substrate undergoes racemization slowly under the catalytic conditions, and that complex **50** induced a measurable kinetic resolution.³⁵ Scheme 1.20. Kinetic Resolution of Planar Chiral Cyclodecenone 61 #### 1.56. Limitations Acyclic ketones **63** and **64** did not undergo intramolecular ene reactions under the optimized conditions or at 50 °C (Scheme 1.21). These results may be an indication that the reactivity enhancements conferred to transannular substrates are essential for Cr(III)-catalyzed ketone-ene reaction. However, attempted ketone-ene reactions of a number of _ ³⁵ A kinetic resolution of planar chiral cyclic ethers has been achieved through an enantioselective transannular [2,3]-Wittig rearrangement: Tomooka, K.; Komine, N.; Fujiki, D.; Nakai, T.; Yanagitsuru, S. *J. Am. Chem. Soc.* **2005**, *127*, 12182. other cyclic substrates were unsuccessful as well. For example, (*Z*)-5-methyl-cyclodecenone (65), the olefin isomer of model substrate 39a did not afford any of the predicted *cis*-fused decalinol. (*E*)-Cyclodecenones 66 and 67, which differ from 39a in the relative positions of the ene and enophile components in the ring, and were predicted to afford [3.5.0]-bicyclic alcohols, were also unreactive. Finally, 11-membered cyclic keto-olefin 68 did not afford the corresponding ketone-ene product. The sensitivity of the reaction to perturbations in ring-size is similar to that of List's transannular aldol reaction. These data suggest that the transannular strategy, which properly aligned the two reactive components of model substrate 39a for the ene reaction, might have the opposite effect with many of these other medium-sized cyclic substrates, prohibiting the desired reaction from taking place. Scheme 1.21. Unsuccessful Substrates #### 1.6. Conclusions In conclusion, we have demonstrated that chiral chromium(III) tridentate Schiffbase complex **50** catalyzes transannular ketone-ene reactions of (*E*)-cyclodecenones in high diastereo- and enantioselectivity to access *trans*-decalinols. The dramatic counterion effects observed in the ketone-ene reaction are intriguing and are not well understood at this time. Structural elucidation of complex **50** may provide an understanding of the role the triflate counterion has in defining the chiral environment of the catalyst. Significantly, the transannular strategy provides entropic activation for the ketone-ene reaction and allows electronically unactivated ketones to be engaged as substrates in a chiral Lewis acid-catalyzed process. This finding is in line with previous observations regarding the Cr(III)-catalyzed aldehyde-ene reactions: intermolecular reactions occurs only with activated electron-rich olefins whereas the entropically activated intramolecular variant tolerates unactivated olefins. This trend suggests that other typically inert functional groups may undergo transannular reactions with appropriate electronic tuning of the reaction partner. #### 1.7. Experimental Section #### A. General Information Unless otherwise noted, all reactions were performed under a positive pressure of anhydrous nitrogen or argon in flame- or oven-dried glassware. Moisture- and airsensitive reagents were dispensed using oven-dried stainless steel syringes or cannulae and were introduced to reaction flasks through rubber septa. Reactions conducted below ambient temperature were cooled by external baths (dry ice/acetone for –78 °C and ice/water for 0 °C). Reactions conducted above ambient temperature were heated by an oil bath. Analytical thin layer chromatography (TLC) was performed on glass plates precoated with silica 60 F₂₅₄ (0.25 mm) or on aluminum sheets pre-coated with neutral aluminum oxide 60 F₂₅₄ (0.2 mm). Visualization was carried out by exposure to a UV-lamp (short wave 254 nm, long wave 365 nm), and by heating after staining the plate with a ceric ammonium molybdate, potassium permanganate, or phosphomolybdic acid solution. Extraction and chromatography solvents were reagent or HPLC grade and were used without further purification. Flash column chromatography was carried out over silica gel (60 Å, 230–400 mesh) from EM Science, DavisilTM (Grade 643, 150 Å, 200–425 mesh) from Aldrich, or activated neutral aluminum oxide (Brockman I standard grade, 58 Å, 150 mesh) from Aldrich. Flash column chromatography was conducted on a Biotage Isolera automated chromatography system. *Materials*. Commercial reagents and solvents were used with the following exceptions: tetrahydrofuran, diethyl ether, toluene, and dichloromethane employed as reaction solvents were dried by passage through columns of activated alumina. Triethylamine was distilled from calcium hydride at 760 torr prior to use. Chloroform-d was treated with and stored over anhydrous potassium carbonate prior to use. Powdered 4Å MS were purchased from Sigma-Aldrich, activated by heating in a commercial microwave oven, and stored in a vial sealed with parafilm in a desiccator. 4,4-dimethyl-cyclohexanone was prepared according to the reported procedure. Intermediates S10, S11 and S12 were prepared according to reported procedures. *Instrumentation.* Proton nuclear magnetic resonance (1 H NMR) spectra and carbon nuclear magnetic resonance (13 C NMR) spectra were recorded on a Varian Mercury-400 (400MHz), Inova-500 (500MHz), or an Inova-600 (600MHz) spectrometer at 23 $^{\circ}$ C, unless otherwise noted. Chemical shifts for protons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃: 7.26 ppm). Chemical shifts for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the NMR solvent (CDCl₃: 77.16 ppm). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, and coupling constant (J) in Hertz (Hz). Infrared (IR) spectroscopy was performed on the neat compounds on a Brucker Tensor 27 FT-IR ³⁶ Meyer, W. L.; Brannon, M. J.; Burgos, C. d. G.; Goodwin, T. E.; Howard, R. W. J. Org. Chem. **1985**, *50*, 438. ³⁷ Reetz, M. T.; Kindler, A. J. Organomet. Chem. **1995**, 502, C5. ³⁸ Grisé, C. M.; Rodrigue, E. M.; Barriault, L. *Tetrahedron* **2008**, *64*, 797. ³⁹ Clément, R.; Grisé, C. M.; Barriault, L. Chem. Commun. 2008, 3004. Spectrometer using OPUS software. Data are represented as follows: frequency of absorption (cm⁻¹), intensity of absorption (s = strong, m = medium, w = weak). Mass spectra were obtained on an Agilent 1200 series 6120 Quadrupole LC/MS. Optical rotation data were collected using a 1-mL cell using a 0.5 dm path length on a Jasco P-2000 polarimeter and are reported as $[\alpha]_D^{23}$ (concentration in grams/100 mL solvent). Reported rotations are the average of 3–5 measurements per sample. #### **B.** Catalyst Preparation and Characterization ## Chromium(III) Chloride Complex (*R*,*S*)-42 Catalyst (R,S)-42 was prepared according to the published procedure. ^{24c} ## Chromium(III) Chloride Complex (S,R)-42 Catalyst (S,R)-42 was prepared according to the published procedure.^{24c} #### **General Procedure A** – Counteranion Exchange A flame-dried 50 mL round-bottom flask equipped with a stir bar and septum was wrapped with aluminum foil and charged with a silver salt bearing the desired counterion (0.0924 mmol, 0.95 equiv). To this flask was added complex **42** (50 mg, 0.097 mmol, 1 equiv). To the flask, under an atmosphere of argon, was added TBME (16.2 mL). The reaction mixture was stirred at room temperature for 3 h, after which the contents were filtered through Celite®. The pad of Celite® was rinsed with an additional portion of TBME (16.2 mL). The filtrate was concentrated to afford the desired complex, which was used without further purification. ## Chromium(III) Tosylate Complex (S,R)-49 Following General procedure A, the counterion exchange was performed with (*S*,*R*)-42 (100 mg, 0.19 mmol, 1 equiv) and AgOTs (50.5 mg, 0.18 mmol, 0.95 equiv) to provide catalyst (*S*,*R*)-49 as a brown powder (84%). FTIR (neat, cm⁻¹) 3198 (br m) 2902 (m) 1616 (s) 1538 (m) 1434 (m) 1307 (w) 1229 (s) 1169 (m) 1078 (m) 1010 (m) 945 (w) 812 (m) 744 (s). ## Chromium(III) Triflate Complex (R,S)-50 Following General Procedure A, the counterion exchange was performed with (*R*,*S*)-42 (200 mg, 0.39 mmol, 1 equiv) and AgOTf (95 mg, 0.37 mmol, 0.95 equiv) to provide catalyst (*R*,*S*)-50 as a brown powder (244 mg, 98%). FTIR (neat, cm⁻¹) 3271 (br w) 2902 (m) 2845 (w) 1614 (m) 1538 (m) 1453 (w) 1294 (m) 1227 (s) 1170 (s) 1026 (s) 980 (w) 811 (w) 746 (s). ## Chromium(III) Triflimide Complex (R,S)-51 Following General
Procedure A, the counterion exchange was performed with (*R*,*S*)-42 (50 mg, 0.097 mmol, 1 equiv) and AgNTf₂ (35.9 mg, 0.0924 mmol, 0.95 equiv) to provide catalyst (*R*,*S*)-51 as a brown powder (62.3 mg, 83%). FTIR (neat, cm⁻¹) 3538 (br w) 2905 (w) 2850 (w) 1614 (m) 1541 (m) 1431 (w) 1349 (m) 1298 (m) 1227 (m) 1188 (s) 1135 (m) 1057 (s) 981 (m) 748 (m). ## Chromium(III) Hexafluorophosphate Complex (R,S)-52 Following General Procedure A, the counterion exchange was performed with (*R*,*S*)-42 (50 mg, 0.097 mmol, 1 equiv) and AgPF₆ (23.4 mg, 0.0924 mmol, 0.95 equiv) to provide catalyst (**R,S**)-52 as a brown powder (50.3 mg, 82%). FTIR (neat, cm⁻¹) 3532 (br w) 2901 (m) 2848 (w) 1614 (m) 1538 (m) 1431 (w) 1300 (w) 1228 (m) 1151 (m) 1054 (m) 839 (s) 749 (m). ## Chromium(III) Hexafluoroantimonate Complex (R,S)-53 Following General Procedure A, the counterion exchange was performed with (*R*,*S*)-42 (50 mg, 0.097 mmol, 1 equiv) and AgSbF6 (31.8 mg, 0.0924 mmol, 0.95 equiv) to provide catalyst **53** as a brown powder (67.4 mg, 96%). This complex has previously been characterized.^{24c} #### C. Substrate Syntheses General Synthetic Scheme for Transannular Ketone-Ene Substrates 39a, 39c, 39d, and 59 General Procedure B – Cu-catalyzed addition of Grignard reagents to meso epoxides⁴⁰ A flame-dried 3 L round-bottom flask under N₂ was charged with CuI (2.9g, 15.3 mmol, 0.15 equiv) and THF (1 L) and cooled to –30 °C (dry ice/acetone). To this suspension was added a solution of Grignard in THF (150 mmol, 1.5 equiv) over a period of 30 m. After another 10 m at –30 °C, meso epoxide (100 mmol, 1 equiv) was added dropwise, neat, over 10 m, and the reaction mixture was allowed to gradually warm to room temperature overnight. The dark reaction mixture was cooled to 0 °C and quenched by slow addition of saturated aqueous NH₄Cl (200 mL). The contents were diluted with DI H₂O (200 mL) and extracted with Et₂O (3 x 500 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was re-dissolved in CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated to afford crude alcohol that, unless otherwise noted, was carried on to the next reaction without further purification. $$(\pm)-(1S,2R)-2-(prop-1-en-2-yl)cyclohexanol (37)^{41}$$ $$CH_3$$ 37 ⁴⁰ This procedure is adapted from Huynh, C.; Derguini-Boumechal, F.; Linstrumelle, G. *Tetrahedron Lett.* **1979**, *17*, 1503. ⁴¹ Warrington, J. M.; Yap, G. P. A.; Barriault, L. *Org. Lett.* **2000**, 2, 663. This compound was prepared according to General Procedure B, with cyclohexene oxide (9.8 g, 100 mmol, 1 equiv) and isopropenylmagnesium bromide (0.5 M in THF, 300mL, 150 mmol, 1.5 equiv). The known alcohol **37** was obtained as a yellow oil (12.7 g) that was carried forward to the following reactions without further purification. $(\pm)-(1S,2R)-2-(3-methylbut-2-en-2-yl)cyclohexanol (\textbf{S1c})$ This compound was synthesized according to General Procedure B, with cyclohexene oxide (600 mg, 6.11 mmol, 1 equiv) and (3-methylbut-2-en-2-yl)magnesium bromide (0.25 M, 30mL, 1.5 equiv). The crude product was purified by flash column chromatography (SiO₂, Biotage, 0 to 50% Et₂O/hexanes) to afford **S1c** (698mg, 4.15 mmol, 68%) as a clear oil. R*f*=0.2 (50% Et₂O/hexanes); ¹H NMR (500 MHz, CDCl₃) δ ppm 3.43 (td, *J*=9.84, 4.58 Hz, 1 H) 2.45 (ddd, *J*=11.79, 9.96, 3.89 Hz, 1 H) 2.02 - 2.09 (m, 1 H) 1.75 - 1.82 (m, 1 H) 1.73 (s, 3 H) 1.71 (s, 3 H) 1.64 - 1.70 (m, 2 H) 1.58 (s, 3 H) 1.44 - 1.52 (m, 1 H) 1.18 - 1.39 (m, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 128.7, 127.6, 71.2, 49.1, 34.3, 29.3, 26.0, 25.1, 21.4, 20.4, 13.1; FTIR (neat, cm⁻¹) 3417 (br m) 2929 (s) 2857 (m) 1449 (m) 1375 (w) 1272 (w) 1162 (w) 1146 (w) 1060 (s) 1010 (m) 962 (m) 852 (m). MS (APCI) *m/z* calc'd for C₁₁H₁₉ [M–H₂O+H₃⁺: 151.1; found: 151.1. (\pm) -(1S,2R)-2-(prop-1-en-2-yl)cyclopentanol (S8) This compound was prepared according to General Procedure B with s8 cyclopentene oxide (8.4 g, 100 mmol, 1 equiv) and isopropenylmagnesium bromide (0.5M in THF, 300 mL, 1.5 equiv). The crude product was obtained as a yellow oil (8.6 g) and was carried forward to the following reaction without further purification. General Procedure C – Swern oxidation to generate β - γ unsaturated ketone intermediates An oven-dried 250 mL round-bottom flask under argon was charged with a stir bar, CH_2Cl_2 (39 mL), and oxalyl chloride (3.5 mL, 40.9 mmol, 1.2 equiv) and cooled to -78 °C. To this solution was added dropwise a solution of DMSO (6.0 mL, 85.2 mmol, 2.5 equiv) in CH_2Cl_2 (39 mL). After the mixture was stirred for 5 m, a solution of alcohol (34.1 mmol, 1.0 equiv) in CH_2Cl_2 (30 + 2 x 5 mL rinses) was added dropwise. The reaction mixture was stirred 1 h at -78 °C, at which point it was quenched by addition of NEt₃ (23.8 mL, 170 mmol, 5.0 equiv) and immediately warmed to room temperature. The contents were diluted with DI H_2O (50 mL) and extracted with CH_2Cl_2 (3 x 50 mL). The combined organics were dried over Na_2SO_4 , filtered, and concentrated. To remove amine salts, the crude residue was twice suspended in 5% Et_2O /hexanes, filtered, and concentrated to isolate the β - γ unsaturated ketone. This product was carried forward without further purification.⁴² #### **General Procedure D** – Grignard addition to β - γ enone intermediates A flame-dried 500 mL round-bottom flask was charged with a stir bar, β-γ unsaturated ketone (14.5 mmol, 1 equiv) and THF (145 mL) and cooled to 0 °C. A solution of Grignard reagent in THF (17.4 mmol, 1.2 equiv) was added dropwise under argon. The reaction was allowed to warm to room temperature overnight and was then quenched by slow addition of saturated aqueous NH₄Cl (50 mL). The crude mixture was diluted with _ ⁴² Attempted purification of some β - γ unsaturated ketone intermediates resulted in partial isomerization to the conjugated enone. DI H₂O (50 mL) and extracted with Et₂O (3 x 100 mL). The combined organics were diluted with CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography to afford the divinyl alcohol. **General Procedure E** – Cerium trichloride mediated Grignard addition to β-γ enones⁴³ A flame-dried 100 mL round-bottom flask was charged with anhydrous cerium trichloride (2.1 g, 8.5 mmol, 2.5 equiv) and THF (17 mL), and the resultant suspension was stirred for 2 h at room temperature. The flask was cooled to -78 °C, and tbutyllithium (1.7 M in pentane) was added dropwise until the suspension took on a persistent faint pink color (\sim 5 drops). The flask was brought to room temperature, and β - γ unsaturated ketone (3.4 mmol, 1.0 equiv) was added as a solution in THF (10 mL + 2 x 3.5 mL rinses). The suspension was stirred under N_2 at room temperature for an additional 2 h. The flask was cooled to -78 °C and the reaction mixture was stirred at this temperature for 8 h, at which point saturated aqueous NH₄Cl was added (20 mL) and the flask was brought to room temperature. The resultant emulsion was treated with 1 N HCl (10 mL) and was extracted with Et₂O (3 x 20 mL). The combined organics were diluted with CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated to afford the crude product which was purified by flash column chromatography to afford the desired divinyl alcohol. ⁴³ Martin, C. L.; Overman, L. E.; Rohde, J. M. J. Am. Chem. Soc. **2008**, 130, 7568. Procedure C to afford known ketone **2a** as a dark orange oil (4.2 g). This product was carried forward without further purification. reacted with vinylmagnesium bromide (1.0 M in THF, 17.4 mL, 17.4 mmol, 1.2 equiv) to afford the crude addition product in 20:1 dr in favor of the title compound. The crude residue was purified by flash column chromatography (SiO₂, Biotage, 0 to 6% Et₂O/hexanes) to afford the divinyl alcohol **38** (1.32 g, 7.9 mmol, 55% yield) as a pale yellow oil. R/=0.34 (10% Et₂O/hexanes, KMnO₄); ¹H NMR (500 MHz, CDCl₃) δ ppm 5.87 (ddd, *J*=17.17, 10.76, 1.37 Hz, 1 H) 5.11 - 5.23 (m, 1 H) 4.92 - 5.02 (m, 1 H) 4.81 - 4.89 (m, 1 H) 4.73 (d, *J*=0.92 Hz, 1 H) 2.04 (dd, *J*=12.59, 3.43 Hz, 1 H) 1.74 (s, 3 H) 1.71 - 1.80 (m, 2 H) 1.58 - 1.71 (m, 2 H) 1.49 - 1.57 (m, 1 H) 1.39 - 1.49 (m, 2 H) 1.21 - 1.30 (m, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 148.4, 146.5, 111.8, 110.7, 72.8, 52.5, 38.1, 27.4, 26.2, 25.7, 21.3; FTIR (neat, cm⁻¹) 3551 (m), 3482 (br m), 3082 (w), 2933 (s), 2856 (m), 2671 (w), 1638 (m), 1447 (m), 1373 (m), 1285 (m), 1197 (w), 1077 (m), 997 (m), 971 (s), 916 (s), 856 (m), 838 (m), 666 (m), 611 (m). MS (APCI) *m*/*z* calc'd for C₁₁H₁₇ [M–H₂O+H]*: 149.1; found: 149.1. Procedure C to afford ketone **S2c**, which was carried forward without purification. According to General Procedure E, ketone **S2c** was reacted with vinylmagnesium bromide (1.0 M in THF, 9.6 mL, 9.6 mmol, 2.5 equiv) to afford the crude addition product in >19:1 dr in favor of the title compound. The crude residue was purified by flash column chromatography (SiO₂, Biotage, 0 to 25% Et₂O/hexanes) to afford **S3c** as a clear oil (518 mg, 2.7 mmol, 68% yield over 2 steps). R*f* = 0.37 (10% Et₂O/hexanes) ¹H NMR (500 MHz, CDCl₃) δ ppm 5.86 (dd, *J*=17.40, 10.99 Hz, 1 H) 5.12 (dd, *J*=16.94, 1.37 Hz, 1 H) 4.91 (dd, *J*=10.99, 1.37 Hz, 1 H) 2.55 (dd, *J*=12.59, 2.98 Hz, 1 H) 1.84 - 1.97 (m, 1 H) 1.75 - 1.83 (m, 1 H) 1.66 - 1.74 (m, 1 H) 1.64 (br. s., 3 H) 1.62 (s, 6 H) 1.51 - 1.61 (m, 3 H) 1.18 - 1.39 (m, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 148.4, 146.5, 111.8, 110.7, 72.8, 52.5, 38.1, 27.4, 26.2, 25.7, 21.3; FTIR (neat, cm⁻¹) 3491 (br m) 3084 (w) 2929 (s) 2959 (m) 1640 (w) 1447 (s) 1413 (m) (1375 (m) 1268 (m) 1244 (m) 1164 (m) 1150 (m) 1056 (w) 992 (m) 963 (s) 916 (s) 859 (w) 816 (m) 668 (m). MS (APCI) *m/z* calc'd for C₁₃H₂₁ [M–H₂O+H]⁺: 177.2; found: 177.2. OH H CH₃ According to General Procedure D, crude ketone **S2a** (1.0 g, 7.2 mmol, 1 equiv) was reacted with
2-methyl-1-propenylmagnesium bromide (0.5 M in (\pm) -(1S,2R)-1-(2-methylprop-1-enyl)-2-(prop-1-en-2-yl)cyclohexanol (S3d) THF, 17.4 mL, 17.4 mmol, 1.2 equiv) to afford the crude addition product in 6:1 dr in favor of the title compound. The crude product was purified by flash column chromatography (Davisil®, Biotage, 0 to 25% Et₂O/hexanes) to afford **S3d** (452 mg, 2.3 mmol, 32% yield) as a pale yellow oil. R_f =0.75 (10% Et₂O/hexanes, KMnO₄); ¹H NMR (500 MHz, CDCl₃) δ ppm 5.19 (s, 1 H) 4.88 (s, 1 H) 4.78 (s, 1 H) 2.06 (dd, J=12.36, 2.75 Hz, 1 H) 1.88 (d, J=14.19 Hz, 1 H) 1.83 (s, 3 H) 1.81 (s, 3 H) 1.69 - 1.78 (m, 3 H) 1.67 (s, 3 H) 1.35 - 1.63 (m, 4 H) 1.23 (qt, J=13.58, 3.20 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 149.2, 132.49, 132.46, 112.2, 73.5, 53.5, 38.5, 27.8 (2 C) 26.3, 25.7, 21.6, 18.8; FTIR (neat, cm⁻¹) 3559 (m) 3502 (br m) 2078 (w) 2930 (s) 2855 (s) 1667 (m) 1637 (m) 1447 (s) 1375 (m) 1323 (w) 1286 (m) 1212 (w) 1179 (w) 1069 (m) 978 (s) 949 (m) 895 (s) 863 (m) 734 (m). MS (ESI) m/z calc'd for $C_{13}H_{21}$ $[M-H_2O+H]^+$: 177.1638; found: 177.1637. #### (\pm) -(1S,2R)-2-(prop-1-en-2-yl)-1-vinylcyclopentanol (S9) Alcohol S8 (1.0g, 7.9 mmol, 1 equiv) was dissolved in CH_2Cl_2 (80 mL) in a 200 mL round-bottom flask. Dess-Martin periodinane (4.0 g, 9.4 mmol, 1.2 equiv) was added as a solid in one portion. The reaction was stirred at room temperature under N2 for 1 h, at which point the contents of the flask were poured into a 1 L Erlenmeyer flask containing a large stir bar and Et₂O (80 mL). A 10% aqueous sodium thiosulfate solution (80 mL) and saturated aqueous NaHCO₃ (80 mL) were added to the flask, and the contents were vigorously stirred for 1 h. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated. The crude ketone was taken forward without purification. According to General Procedure D, the intermediate ketone was reacted with vinylmagnesium bromide (1.0 M in THF, 9.5 mL, 9.5 mmol, 1.2 equiv) to afford the crude addition product in 9:1 dr in favor of the title compound. The crude product was purified by flash column chromatography (SiO₂, Biotage, 0 to 25% Et₂O/hexanes) to afford divinyl alcohol **S9** as a yellow oil (497 mg, 3.2 mmol, 41% over 2 steps). Characterization data match reported values.^{20d} ### **General Procedure F** – Anionic oxy-Cope rearrangement A flame-dried 250 mL round-bottom flask was charged with KH (866 mg, 21.7 mmol, 2.4 equiv), 18-crown-6 (6.8 g, 25.7 mmol, 2.8 equiv), and THF (150 mL) and cooled to 0 °C under an atmosphere of argon. A solution of divinyl alcohol (9.0 mmol, 1 equiv) in THF (30 mL + 10 mL rinse) was added dropwise via cannula. The reaction was stirred at 0 °C for 30 m, after which it was warmed to room temperature. Once the reaction was determined to be complete by TLC analysis, the flask was cooled to 0 °C and quenched by slow addition of saturated aqueous NH₄Cl (10 mL). The reaction was further diluted with 100 mL DI H₂O and extracted with Et₂O (3 x 100 mL). The combined organics were diluted with CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography to afford the keto-olefin. ## (E)-5-methylcyclodec-5-enone (39a)^{33b} According to General Procedure F, divinyl alcohol **38** (1.5g, 9.0 mmol, 1 equiv) underwent an anionic oxy-Cope rearrangement. The crude product was purified by flash column chromatography (neutral Al₂O₃, Biotage, 0 to 10% Et₂O/hexanes) to afford cyclodecenone **39a** (978 mg, 5.9 mmol, 65% yield). The product is a clear oil at room temperature and freezes to a white solid upon storage at 5 °C. Rf=0.26 (10% Et₂O/hexanes, CAM); ¹H NMR (500 MHz, 23 °C,CDCl₃) δ ppm 5.17 (t, J=7.10 Hz, 1 H) 1.47 (s, 3 H) 1.12 - 2.81 (m, 14 H); ¹H NMR (500 MHz, -20 °C, CDCl₃) δ ppm 5.18 (dd, *J*=10.07, 3.20 Hz, 1 H) 2.64 (dd, *J*=16.25, 9.84 Hz, 1 H) 2.25 - 2.47 (m, 3 H) 2.17 (dd, *J*=12.36, 5.95 Hz, 1 H) 1.97 - 2.12 (m, 3 H) 1.52 - 1.89 (m, 5 H) 1.46 (s, 3 H) 1.20 - 1.40 (m, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 209.6, 137.9, 126.8, 45.3, 43.4, 41.4, 29.0, 28.6, 26.0, 22.5, 16.0; FTIR (neat, cm⁻¹) 3392 (w), 2922 (s), 2852 (m), 2678 (w), 1703 (s), 1443 (s), 1425 (s), 1359 (m), 1181 (w), 1096 (s), 1017 (w), 924 (m), 859 (m), 809 (m), 774 (m), 733 (w). MS (ESI) m/z calc'd for $C_{11}H_{19}O$ [M+H]⁺: 167.1430; found: 167.1425. ## (E)-4,4,5-trimethylcyclodec-5-enone (**39c**) According to General Procedure F, divinyl alcohol S3c (388 mg, 2.0 mmol, 39c 1 equiv) underwent an anionic oxy-Cope rearrangement. The crude product was purified by flash column chromatography (neutral Al₂O₃, Biotage, 0 to 50% Et₂O/hexanes and SiO₂, Biotage, 0 to 10% Et₂O/hexanes) to afford cyclodecenone **39c** (294 mg, 0.1.5 mmol, 76% yield) as a pale yellow oil. ¹H NMR (500 MHz, 23°C, CDCl₃) δ ppm 5.24 (td, J=7.33, 0.92 Hz, 1 H) 2.18 - 2.81 (m, 4 H) 2.09 (br. s., 3 H) 1.48 - 1.97 (m, 5 H) 1.45 (s, 3 H) 1.07 (s, 6 H); ¹H NMR (500 MHz, -40 °C, CDCl₃) δ ppm 5.19 (d, J=10.74 Hz, 1 H) 2.57 (dd, J=16.36, 10.01 Hz, 1 H) 2.49 (t, J=13.70 Hz, 1 H) 2.26 - 2.38 (m, 2 H) 2.06 - 2.17 (m, 1 H) 1.95 - 2.05 (m, 1 H) 1.90 (dd, *J*=14.89, 4.64 Hz, 1 H) 1.66 -1.82 (m, 2 H) 1.51 - 1.63 (m, 1 H) 1.39 (s, 3 H) 1.23 - 1.35 (m, 2 H) 1.06 (s, 3 H) 0.97 (s, 3 H); ¹³C NMR (126 MHz, -40 °C, CDCl₃) δ ppm 210.2, 143.0, 124.4, 45.8, 39.3, 39.1, 39.0, 29.3, 28.6, 28.0, 24.8, 22.1, 13.6; FTIR (neat, cm⁻¹) 2921 (m) 1705 (s) 1446 (m) 1370 (m) 1355 (m) 1179 (w) 1132 (s) 1080 (w) 1064 (w) 1040 (m) 1000 (w) 910 (m) 853 (m) 807 (m) 733 (m); MS (ESI) m/z calc'd for $C_{13}H_{21}$ $[M-H_2O+H]^+$: 177.1638; found: 177.1642. #### (E)-3,3,5-trimethylcyclodec-5-enone (**39d**) According to General Procedure F, divinyl alcohol **S3d** (200 mg, 1.03 mmol, 1 equiv) underwent an anionic oxy-Cope rearrangement. The crude product was purified by flash column chromatography (neutral Al₂O₃, Biotage, 0 to 5% Et₂O/hexanes) to afford cyclodecenone **39d** (120 mg, 0.61 mmol, 61% yield) as a white crystalline solid. R*f*=0.4 (10% Et₂O/hexanes); ¹H NMR (500 MHz, -40 °C, CDCl₃) δ ppm 5.20 (t, *J*=6.80 Hz, 1 H) 2.60 (dd, *J*=16.36, 10.50 Hz, 1 H) 2.40 (d, *J*=14.65 Hz, 1 H) 2.27 (dd, *J*=16.36, 9.03 Hz, 1 H) 1.95 - 2.03 (m, 3 H) 1.92 (d, *J*=14.65 Hz, 1 H) 1.85 (d, *J*=12.21 Hz, 1 H) 1.68 - 1.78 (m, 2 H) 1.55 (s, 3 H) 1.45 - 1.57 (m, 1 H) 1.36 (s, 3 H) 1.24 - 1.33 (m, 1 H) 0.91 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 209.9, 138.6, 129.0, 54.1, 53.0, 46.4, 43.3, 34.8, 28.5 (2C), 27.1, 22.2, 18.8; FTIR (neat, cm⁻¹) 2952 (s) 2925 (m) 1703 (s) 1447 (m) 1365 (m) 1286 (w) 1152 (m) 1109 (m) 1057 (m) 979 (m) 890 (w) 793 (m) 735 (m). MS (APCI) *m/z* calc'd for C₁₃H₂₃O [M +H]⁺: 195.2; found: 195.2. ## (E)-5-methylcyclonon-5-enone (**59**) According to General Procedure F, divinyl alcohol **S9** (200 mg, 1.32 mmol, 1 equiv) underwent an anionic oxy-Cope rearrangement. The crude product was purified by flash column chromatography (neutral Al₂O₃, Biotage, 0 to 5% Et₂O/hexanes) to afford cyclononenone **59** (83 mg, 0.54 mmol, 42% yield) as a pale yellow solid. Characterization data match reported values.^{20d} #### Scheme for the Synthesis of Transannular Ketone-Ene Substrate 39b ⁴⁴ This procedure was adapted from: Huang, J.; Bunel, E. Faul, M. M. Org. Lett. **2007**, 9, 4343. A thick-walled vial was charged with a stir bar, 4,4-dimethyl cyclohexanone (252 mg, 2.0 mmol, 1 equiv), and [(t-Bu₃P)PdBr]₂ (19 mg, 0.025 mmol, 1.25 mol%) and sealed with a pressure septum cap. Under a positive pressure of N₂, toluene (4 mL) was added followed by a solution of LHMDS (1.0 M in toluene, 5 mL, 5 mmol, 2.5 equiv). The resultant suspension was stirred for 5 m at room temperature, after which 2-bromopropene (262 µL, 3.0 mmol, 1.5 equiv) was added in a single portion. The N₂ inlet was removed, and the vial was immersed in a 80 °C oil bath and stirred at this temperature for 24 h. The vial was cooled to room temperature and the contents were poured into Et₂O (10 mL) and washed with saturated aqueous NH₄Cl (5 mL) and DI water (5mL). The organic layer was diluted with CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography (SiO₂, Biotage, 0 to 40% Et₂O/hexanes) to afford **S2b** (146 mg, 0.88 mmol, 44% yield) as a clear oil. Rf=0.45 (20% Et₂O/hexanes); ¹H NMR (600 MHz, CDCl₃) δ ppm 4.90 - 4.97 (m, 1 H) 4.72 (dt, J=1.76, 0.88 Hz, 1 H) 3.15 (dd, J=13.33, 5.42 Hz, 1 H) 2.44 - 2.55 (m, 1 H) 2.29 (ddd, *J*=14.64, 4.69, 2.90 Hz, 1 H) 1.79 (t, *J*=13.47, 1H) 1.61 - 1.76 (m, 3 H) 1.72 (s, 3 H) 1.23 (s, 3 H) 1.05 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 211.3, 143.5, 113.1, 54.1, 44.8, 39.7, 38.5, 31.6, 30.7, 24.4, 21.2; FTIR (neat, cm⁻¹) 2955 (m), 2925 (m), 2865 (m), 1712 (s), 1649 (w), 1462 (m), 1446 (m), 1308 (w), 1153 (m), 1099 (m), 1009 (w), 890 (s), 828 (w), 732 (w); MS (ESI) m/z calc'd for $C_{11}H_{19}O$ [M+H]⁺: 167.1430; found: 167.1422. (±)-(1S,2R)-4,4-dimethyl-2-(prop-1-en-2-yl)-1-vinylcyclohexanol (S3b) According to General Procedure E, ketone S2b (267.3 mg, 1.6 mmol, 1.0 equiv) was reacted with vinylmagnesium bromide (1.0 M in THF, 4.0 mL, 4.0 mmol, 2.5 equiv) to afford the crude addition product in 4.6:1 dr in favor of the title compound. The crude residue was purified by flash column chromatography (SiO₂, Biotage, 0 to 5% Et₂O/hexanes) to afford **S3b** (114 mg, 0.58 mmol, 36% yield) as a pale yellow oil. R*f*=0.59 (5% Et₂O/hexanes, KMnO₄); ¹H NMR (500 MHz, CDCl₃) δ ppm 5.90 (dd, *J*=17.09, 10.74 Hz, 1 H) 5.19 (dd, *J*=17.09, 0.98 Hz, 1 H) 4.99 (dd, *J*=10.74, 0.98 Hz, 1 H) 4.90 (t, *J*=1.47 Hz, 1 H) 4.75 (s, 1 H) 2.23 (dd, *J*=13.67, 3.42 Hz, 1 H) 1.75 (s, 3 H) 1.58 - 1.72 (m, 4 H) 1.48 (dt, *J*=12.94, 3.05 Hz, 1 H) 1.19 (ddd, *J*=12.21, 5.37, 2.44 Hz, 1 H) 1.12 (dt, *J*=13.18, 2.93 Hz, 1 H) 0.96 (s, 3 H) 0.94 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 147.9, 146.2, 111.8, 110.9, 72.3, 47.8, 40.0, 34.1, 33.7, 33.0,
30.2, 25.7, 23.9; FTIR (neat, cm⁻¹) 3553 (m), 3482 (br m), 3083 (m), 2951 (s), 2865 (m), 1638 (m), 1449 (m), 1365 (m), 1283 (m), 1099 (m), 992 (m), 962 (s), 917 (s), 897 (s), 668 (m); MS (ESI) *m*/*z* calc'd for C₁₃H₂₁ [M−H₂O+H]⁺: 177.1638; found: 177.1639. ## (E)-5,8,8-trimethylcyclodec-5-enone (**39b**) 1 equiv) underwent an anionic oxy-Cope rearrangement. The crude product was purified by flash column chromatography (Davisil®, Biotage, 0 to 7% Et₂O/hexanes) to afford cyclodecenone **39b** (55 mg, 0.28 mmol, 50% yield) as a white crystalline solid. R*f*=0.24 (10% Et₂O/hexanes, KMnO₄); ¹H NMR (500 MHz, 23 °C,CDCl₃) δ ppm 5.30 (t, *J*=7.33 Hz, 1 H) 1.51 - 3.09 (m, 12 H) 1.41 (s, 3 H) 0.97 (br. s., 6 H); ¹H NMR (500 MHz, -40 °C, CDCl₃) δ ppm 5.30 (d, *J*=11.87 Hz, 1 H) 2.85 (dd, *J*=16.65, 10.20 Hz, 1 H) 2.23 - 2.35 (m, 2 H) 2.16 (dd, *J*=12.13, 6.20 Hz, 1 H) 2.03 - 2.13 (m, 2 H) 1.99 (dd, *J*=14.07, 12.26 Hz, 1 H) 1.76 - 1.90 (m, 2 H) 1.60 - 1.72 (m, 2 H) 1.41 (s, 3 H) 1.19 (t, *J*=12.39 Hz, 1 H) 1.00 (s, 3 H) 0.91 (s, 3 H); ¹³C NMR (126 MHz, -40 °C, CDCl₃) δ ppm 210.0, 138.6, 123.4, 43.4, 41.5, 40.7, 40.0, 34.3, 34.2, 33.1, 26.4, 24.3, 16.0; FTIR (neat, cm⁻¹) According to General Procedure F, divinyl alcohol S3b (110 mg, 0.57 mmol, 2951 (m) 2928 (m) 2868 (w) 1707 (s) 1472 (w) 1443 (m) 1426 (m) 1386 (m) 1363 (m) 1173 (w) 1108 (s) 910 (w) 839 (w) 740 (w). MS (ESI) m/z calc'd for $C_{13}H_{23}O$ [M +H]⁺: 195.1743; found: 195.1739. Schemes for the Synthesis of Transannular Ketone-Ene Substrates 39e and 39f ketal formation NOTBS TBAF TBAF CH₃ S1e TBAF CH₃ S1f S1e S1e S2e: R,R = $$-OCH_2CH_2O$$ S2e: R,R = $-OCH_2CH_2O$ S2f: R,R = CH_2 S3f: S1e $$(\pm)(7R,8S)-7-(prop-1-en-2-yl)-1,4-dioxaspiro[4.5]decan-8-ol (S1e)$$ An oven-dried 50 mL round-bottom flask fitted with a Dean-Stark trap and reflux condenser was charged with **S10** (1.4 g, 5.2 mmol, 1 equiv), ethylene glycol (294 μL, 5.2 mmol, 1 equiv), benzene (10.4 mL) and pTsOH•H₂O (15 mg, cat.). The side arm of the Dean-Stark trap was filled with benzene (10 mL), and the flask was immersed in a 80°C oil bath under N₂ overnight. The contents of the flask were concentrated to afford the crude acetal an orange oil that was carried forward without purification. An oven-dried 50 mL round-bottom flask was charged with the intermediate silyl ether and THF (5 mL) and cooled to 0 $^{\circ}$ C. To this was added a solution of TBAF (1.0M in THF, 10.4 mL, 10.4 mmol, 2 equiv). The ice bath was removed and the reaction was stirred at room temperature for 48 h. The reaction was quenched with DI water and extracted with Et₂O (3 x 5 mL). The combined organics were diluted with CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography (SiO₂, Biotage, 20 to 100% Et₂O/hexanes) to afford **S1e** (681mg, 3.44 mmol, 66% yield, 2 steps) as a pale yellow oil. R*f*=0.28 (50% Et₂O/hexanes, CAM); ¹H NMR (500 MHz, CDCl₃) δ ppm 4.93 (s, 1 H) 4.91 (s, 1 H) 3.90 - 4.00 (m, 4 H) 3.44 - 3.55 (m, 1 H) 2.33 (ddd, *J*=13.18, 9.77, 3.91 Hz, 1 H) 1.98 - 2.09 (m, 1 H) 1.83 (d, *J*=1.95 Hz, 1 H) 1.78 (dt, *J*=9.40, 2.87 Hz, 1 H) 1.71 (s, 3 H) 1.67 - 1.73 (m, 1 H) 1.58 - 1.67 (m, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 145.32, 113.97, 108.42, 69.90, 64.59, 64.55, 51.26, 37.98, 33.23, 31.03, 18.93; FTIR (neat, cm⁻¹) 3454 (br m), 3073 (w), 2946 (m), 2881 (m), 1646 (w), 1361 (m), 1142 (m), 1142 (m), 1088 (s), 1022 (s), 947 (m), 924 (s); MS (ESI) *m/z* calc'd for C₁₁H₁₉O₃ [M +H]⁺: 199.1329, found: 199.1338. $$(\pm)-(7R,8S)-7-(prop-1-en-2-yl)-8-vinyl-1,4-dioxaspiro[4.5]decan-8-ol$$ Alcohol **S1e** (681 mg, 3.4 mmol, 1.0 equiv) was oxidized according to General Procedure C to afford the corresponding β , γ -unsaturated ketone **S2e** that was carried forward without further purification. According to General Procedure E, crude ketone **S2e** (267.3 mg, 1.6 mmol, 1.0 equiv) was reacted with vinylmagnesium bromide (1.0 M in THF, 8.4 mL, 8.4 mmol, 2.5 equiv) to afford the crude addition product as a yellow oil and in 9.7:1 dr in favor of the title compound. The crude residue was purified by flash column chromatography (SiO₂, Biotage, 0 to 40% Et₂O/hexanes) to afford **S3e** (441 mg, 2.0 mmol, 57% yield over 2 steps) as a clear oil. R*f*=0.54 (50% Et₂O/hexanes, CAM); ¹H NMR (500 MHz, CDCl₃) δ ppm 5.88 (dd, *J*=17.17, 10.76 Hz, 1 H) 5.20 (d, *J*=17.40 Hz, 1 H) 5.01 (d, *J*=10.53 Hz, 1 H) 4.91 (d, *J*=1.37 Hz, 1 H) 4.74 (s, 1 H) 3.80 - 4.11 (m, 4 H) 2.44 (dd, *J*=13.74, 3.66 Hz, 1 H) 2.06 (t, *J*=13.28 Hz, 1 H) 1.96 (td, *J*=13.39, 4.35 Hz, 1 H) 1.70 - 1.85 (m, 2 H) 1.74 (s, 3 H) 1.61 - 1.68 (m, 1H) 1.55 - 1.60 (m, 1 H) 1.51 (dt, *J*=12.82, 2.98 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 146.81, 145.41, 112.44, 111.50, 109.08, 72.03, 64.39, 49.60, 35.80, 35.60, 30.03, 25.58, 25.55; FTIR (neat, cm⁻¹) 3483 (br w), 2965 (m), 2883 (w), 1683 (w), 1438 (w), 1343 (m), 1272 (m), 1211 (w), 1180 (m), 1101 (s), 1037 (m), 992 (s), 953 (s), 917 (s), 733 (s). MS (ESI) *m/z* calc'd for C₁₃H₁₉O₂ [M–H₂O+H][†]: 207.1380, found: 207.1377; calc'd for C₁₃H₂₀NaO₃ [M+Na][†] 247.1305, found 247.1313. #### **General Procedure G** – Palladium-Catalyzed oxy-Cope Rearrangement A flame-dried 50 mL round-bottom flask was charged with a stir bar, divinyl alcohol (1.79 mmol, 1 equiv), and THF (17.9 mL). To the resultant solution was added (C₆H₅CN)₂PdCl₂ (69 mg, 0.18 mmol, 0.1 equiv) as a solid. The flask was capped with a plastic stopper and was stirred at room temperature overnight. The reaction mixture was concentrated to afford the crude product, which was purified by flash column chromatography. ## (*E*)-12-methyl-1,4-dioxaspiro[4.9]tetradec-12-en-8-one (**39e**) According to General Procedure G, divinyl alcohol **S3e** (401 mg, 1.79 mmol, 1 equiv), underwent the palladium-catalyzed oxy-Cope rearrangement. The crude product, an orange solid, was purified by flash column chromatography (SiO₂, Biotage, 0 to 50% EtOAc/hexanes) to afford **39e** (234 mg, 1.04 mmol, 58% yield) as a white crystalline solid. R*f*=0.24 (20% EtOAc/hexanes, CAM); ¹H NMR (500 MHz, CDCl₃, 23 °C) δ ppm 5.29 (t, *J*=6.87 Hz, 2 H) 3.84 - 4.02 (m, 4 H) 3.04 (br. s., 1 H) 1.49 - 2.55 (m, 11 H) 1.44 (s, 3 H); ¹H NMR (500 MHz, CDCl₃, -40 °C) δ ppm 5.26 (d, *J*=11.23 Hz, 1 H) 3.84 - 4.05 (m, 4 H) 3.03 (dd, *J*=17.09, 10.25 Hz, 1 H) 1.97 - 2.47 (m, 8 H) 1.81 (td, *J*=12.21, 3.40 Hz, 1 H) 1.65 (d, *J*=10.25 Hz, 1 H) 1.51 - 1.61 (m, 1 H) 1.41 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃, 23 °C) δ ppm 208.66, 139.99, 121.42, 109.78, 64.33, 42.86, 40.97, 39.00, 37.84, 31.10, 25.17, 15.79; FTIR (neat, cm⁻¹) 2936 (M), 2904 (m) 2882 (m), 1696 (s), 1428 (m), 1363 (m), 1261 (m), 1173 (w), 1107 (s), 1033 (s), 983 (m), 915 (s), 888 (s), 673 (w). MS (ESI) *m/z* calc'd for C₁₃H₂₁O₃ [M+H]⁺: 225.1485, found: 225.1499; calc'd for C₁₃H₂₀NaO₃ [M+Na]⁺ 247.1305, found 247.1319. $$(\pm) - tert-butyldimethyl((1R,2S)-4-methylene-2-(prop-1-en-2-4-methylene-2$$ To an oven-dried 25 mL round-bottom flask containing a stir bar and methyltriphenylphosphonium bromide (845 mg, 2.25 mmol, 1.5 equiv) was added Et₂O (10 mL) under nitrogen. The white suspension was cooled to 0 °C, and after 5 m at this temperature, KOt-Bu (236 mg, 2.1 mmol, 1.4 equiv) was added as a solid, portion-wise (roughly thirds) over 10 m, resulting in the formation of a bright yellow suspension. After stirring the reaction mixture at 0 °C for an additional 30 m, a solution of ketone **S10** (402 mg, 1.5 mmol, 1 equiv) in Et₂O (2 mL + 2 x 1 mL rinses to complete the transfer) was added dropwise. The reaction mixture was stirred under nitrogen allowing the temperature to gradually reach room temperature. After 16 h, the pale orange reaction mixture was quenched by addition of saturated aqueous NH₄Cl (5 mL). The reaction mixture was diluted with H_2O (15 mL) and extracted with Et_2O (3 x 10 mL). The combined organics were diluted with CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated to provide a yellow solid which was purified by
flash column chromatography (silica gel, Biotage, 0 to 4% Et₂O in hexanes) to provide the desired silyl ether **S4f** as a clear oil (385 mg, 1.44 mmol, 96% yield). Rf = 0.9 (5% Et₂O in hexanes) ¹H NMR (500 MHz, CDCl₃) δ ppm 4.78 (d, J=5.37 Hz, 1 H), 4.78 (d, J=5.37 Hz, 1 H), 4.64 (d, J=6.35 Hz, 1 H), 4.64 (d, J=6.35 Hz, 1 H), 3.63 (td, J=9.16, 4.15 Hz, 1 H) 2.29 (dt, J=14.16, 3.90 Hz, 1 H) 2.22 (dd, J=8.79, 1.95 Hz, 1 H) 2.00 - 2.14 (m, 3 H) 1.95 (dq, 3.90 Hz)J=12.57, 3.95 Hz, 1 H) 1.71 (s, 3 H) 1.33 - 1.45 (m, 1 H) 0.85 (s, 9 H) 0.03 (s, 3 H) 0.01 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 147.72, 147.22, 111.69, 108.05, 72.98, 54.23, 38.44, 36.33, 32.76, 25.96 (3 C), 20.98, 18.23, -3.85, -4.70; FTIR (neat, cm⁻¹) 2937 (m), 2857 (m), 1650 (w), 1462 (w), 1362 (w), 1255 (m), 1101 (s), 1055 (w), 1006 (w), 886 (s), 834 (s), 773 (s), 670 (m); MS (ESI) m/z calc'd for $C_{16}H_{31}OSi [M+H]^+$: 267.2139, found: 267.2140; calc'd for $C_{16}H_{30}KO [M+K]^{+} 305.1698$, found 305.1699. $$(\pm)$$ -(1S,2R)-4-methylene-2-(prop-1-en-2-yl)cyclohexanol (S1f) Fig. An oven-dried 25 mL round-bottom flask under nitrogen was charged with a stir bar, **S4f** (755.1 mg, 2.83 mmol, 1 equiv), and Et₂O (2.8 mL), in that order. The resultant solution was cooled to 0 °C, and after stirring for 5 m at this temperature, TBAF (5.7 mL, 1 M solution in THF, 5.7 mmol, 2.0 equiv) was added dropwise. The flask was brought to room temperature and the reaction mixture was stirred for 48 h, at which point it was returned to 0 °C and quenched by the addition of DI H₂O (5 mL). The mixture was diluted with H₂O (5 mL) and extracted with Et₂O (3 x 10 mL). The combined organics were diluted with CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated to provide the crude product as an orange oil, which was purified by flash column chromatography (silica, Biotage, 0 to 40% Et₂O/hexanes) to provide **S1f** as a clear oil (412 mg, 2.7 mmol, 96% yield) Rf = 0.12 (20% Et₂O in hexanes, KMnO₄); ¹H NMR (500 MHz, CDCl₃) δ ppm 4.89 (quin, J=1.60 Hz, 1 H) 4.84 (s, 1 H) 4.64 - 4.67 (m, 1 H) 4.63 (d, J=1.37 Hz, 1 H) 3.55 (td, J=10.07, 4.12 Hz, 1 H) 2.26 - 2.33 (m, 1 H) 2.19 - 2.24 (m, 1 H) 1.97 - 2.14 (m, 5 H) 1.70 (s, 3 H) 1.27 - 1.37 (m, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 146.82, 145.86, 113.40, 108.66, 70.37, 55.03, 37.93, 34.63, 32.73, 18.99; FTIR (neat, cm⁻¹) 3404 (br, m), 3073 (w), 2938 (m), 1647 (m), 1439 (m), 1253 (w), 1067 (s), 1043 (m), 1021 (m), 888 (s), 834 (w), 654 (s). MS (ESI) m/z calc'd for C₁₀H₁₇O [M+H]⁺: 153.1274, found: 153.1273; calc'd for C₁₀H₁₆NaO [M+Na]⁺ 175.1093, found 175.1101. (±)-(1S,2R)-4-methylene-2-(prop-1-en-2-yl)-1-vinylcyclohexanol (S3f) Alcohol S1f (400 mg, 2.63 mmol, 1.0 equiv) was oxidized according to General Procedure C to afford the corresponding β , γ -unsaturated ketone **S2f** that was carried forward without further purification. According to General Procedure E, ketone **S2f** was reacted with vinylmagnesium bromide (1.0 M in THF, 6.5 mL, 6.5 mmol, 2.5 equiv) to afford the crude addition product as a yellow oil and in >19:1 dr in favor of the title compound. The crude material was purified by flash column chromatography (SiO₂, Biotage, 0 to 10% Et₂O/hexanes) to provide **S3f** as a pale yellow oil (246 mg, 1.4 mmol, 52% yield, 2 steps). R*f* = 0.43 (10% Et₂O in hexanes, KMnO₄); ¹H NMR (500 MHz, CDCl₃) δ ppm 5.85 (dd, *J*=17.17, 10.76 Hz, 1 H) 5.20 (dd, *J*=17.40, 1.37 Hz, 1 H) 5.00 (dd, *J*=10.53, 1.37 Hz, 1 H) 4.89 - 4.94 (m, 1 H) 4.77 (s, 1 H) 4.65 - 4.68 (m, 1 H) 4.62 - 4.65 (m, 1 H) 2.54 (td, *J*=13.05, 1.37 Hz, 1 H) 2.38 - 2.50 (m, 1 H) 2.17 (dd, *J*=13.28, 3.66 Hz, 1 H) 2.13 (dquin, *J*=13.28, 1.83 Hz, 1 H) 2.05 (ddd, *J*=13.30, 3.66, 1.83 Hz, 1 H) 1.82 (d, *J*=1.83 Hz, 1 H) 1.75 (s, 3 H) 1.72 (dd, *J*=4.81, 2.52 Hz, 1 H) 1.56 (tdd, *J*=13.74, 4.58, 1.83 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 148.70, 147.41, 145.50, 112.07, 111.33, 107.32, 72.68, 53.60, 39.12, 36.12, 30.05, 25.54; FTIR (neat, cm⁻¹) 3547 (br, m), 3072 (m), 2981 (m), 2938 (m), 2918 (m), 2849 (w), 1843 (w), 1786 (w), 1650 (m), 1639 (m), 1438 (m), 1374 (m), 1281 (m), 1135 (m), 997 (m), 950 (s), 888 (s). MS (APCI) *m*/z calc'd for C₁₂H₁₆ [M–H₂O+H]⁺: 161.1; found: 161.1. # CHo #### (E)-5-methyl-8-methylenecyclodec-5-enone (**39f**) According to General Procedure F, divinyl alcohol **S3f** (200 mg, 1.12 mmol, 1 equiv) underwent an anionic oxy-Cope rearrangement. The crude material was purified by flash column chromatography (DavisilTM, Biotage, 0 to 5% Et₂O/hexanes) to provide cyclodecenone **39f** as a clear oil (95 mg, 0.53 mmol, 47 yield). R*f* = 0.31 (5% Et₂O/hexanes, KMnO₄); ¹H NMR (500 MHz, 23 °C, CDCl₃) δ ppm 5.09 (t, *J*=7.33 Hz, 1 H) 4.73 - 4.76 (m, 1 H) 4.72 (s, 1 H) 1.54 - 3.14 (m, 12 H) 1.46 (s, 3 H); ¹H NMR (399 MHz, -20 °C, CDCl₃) δ ppm 5.08 (d, *J*=10.53 Hz, 1 H) 4.73 (s, 1 H) 4.70 (s, 1 H) 2.71 - 2.86 (m, 1 H) 2.51 - 2.71 (m, 2 H) 2.41 (dd, *J*=14.43, 9.75 Hz, 2 H) 2.10 - 2.34 (m, 4 H) 2.04 (d, *J*=12.48 Hz, 1 H) 1.77 (td, *J*=12.48, 3.51 Hz, 1 H) 1.57 - 1.70 (m, 1 H) 1.44 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 209.2, 149.2, 138.8, 124.9, 113.0, 45.2, 43.0, 41.0, 37.8, 30.9, 25.0, 15.8; FTIR (neat, cm⁻¹) 3071 (w), 2924 (m), 2856 (m), 1703 (s), 1638 (m), 1443 (m), 1426 (m), 1381 (w), 1351 (m), 1260 (w), 1175 (w), 1103 (s), 1081 (m), 1020 (w), 907 (s), 846 (m), 804 (m), 633 (m). MS (ESI) *m/z* calc'd for C₁₂H₁₈ONa [M+Na]⁺ 201.1250, found 201.1259. Scheme for the Synthesis of Transannular Ketone-Ene Substrate 57 $(\pm)-(3S,4S)-3-(prop-1-en-2-yl)-4-vinyltetrahydro-2H-pyran-4-ol (S6)^{45}$ A 200 mL round-bottom flask was charged with a stir bar and powdered 4Å MS. The sieves were activated by flame-drying under reduced pressure (1 torr) and cooled under argon. CH₂Cl₂ (86 mL) was added by syringe, followed by aldehyde **S11** (6.1 g, 43 mmol, 1 equiv). The resultant suspension was cooled to –78 °C, and SnCl₄ (4.4 mL, 38 mmol, 0.90 equiv) was added neat, dropwise. The flask was transferred to a –60 °C cryocool and the mixture was stirred at this temperature overnight. The flask was transferred to a 0 °C bath, and the reaction was quenched by slow addition of saturated aqueous NaHCO₃ (50 mL). The contents were diluted with an additional 50 mL DI H₂O, and extracted with CH₂Cl₂ (3 x 50 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated to afford the crude product as a yellow oil and a 1.8:1.0 mixture of diastereomeric alcohols (**S5**, 2.8 g). This crude product was taken on to the next step without further purification. 54 4 ⁴⁵ The first two steps of this sequence are modified versions of the procedure reported in ref. 37 The crude product **S5** was oxidized according to General Procedure C to afford **S6**, which was carried forward without further purification. According to General Procedure D, the intermediate ketone **S6** was reacted with vinylmagnesium bromide (1.0 M in THF, 23.6 mL, 23.6 mmol, 1.2 equiv) to afford the crude addition product in 3.9:1 dr in favor of the title compound. The crude product was purified by flash column chromatography (SiO₂, Biotage, 0 to 50% EtOAc/hexanes) to afford divinyl alcohol **S6** as a clear oil (1.2 g, 7.1 mmol, 17% over 3 steps). R*f*=0.32 (20% EtOAc/hexanes); ¹H NMR (600 MHz, CDCl₃) δ ppm 5.89 (dd, *J*=17.13, 10.69 Hz, 1 H) 5.25 (dd, *J*=17.13, 1.03 Hz, 1 H) 5.07 (dd, *J*=10.69, 1.03 Hz, 2 H) 4.97 (d, *J*=1.17 Hz, 1 H) 4.69 (s, 1 H) 3.74 - 3.86 (m, 2 H) 3.61 - 3.72 (m, 2 H) 2.37 (dd, *J*=11.42, 4.69 Hz, 1 H) 1.89 (d, *J*=2.34 Hz, 1 H) 1.83 (dddd, *J*=13.95, 11.31, 6.66, 2.34 Hz, 1 H) 1.77 (s, 3 H) 1.52 (d, *J*=13.77 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 144.8, 143.9, 113.0, 112.1, 70.6, 66.8, 63.5, 50.9, 37.0, 26.6; FTIR (neat, cm⁻¹) 3436 (br m) 3085 (w) 2954 (m) 2869 (m) 1639 (m) 1374 (m) 1289 (w) 1215 (w) 1114 (s) 968 (s) 917 (s) 867 (s) 815 (m) 734 (m); MS (APCI) *m/z* calc'd for C₁₀H₁₅O [M–H₂O+H]⁺ 151.1; found 151.2. # (E)-8-methyl-5,6,7,10-tetrahydro-2H-oxecin-4(3H)-one (57) According to General Procedure G, divinyl alcohol **S6** (1.1 g, 6.5 mmol, 1.0 equiv) underwent the palladium-catalyzed oxy-Cope rearrangement. The crude product was purified by flash column chromatography (neutral Al₂O₃, 0 to 40% EtOAc/hexanes) to afford keto-olefin **57** (528 mg, 3.14 mmol, 48%) as a white solid. Rf=0.56 (25% EtOAc/hexanes, Al₂O₃); ¹H NMR (500 MHz, CDCl₃) δ ppm 5.22 - 5.40 (m, 1 H) 4.13 (d, J=12.70 Hz, 1 H) 3.86 - 3.98 (m, 2 H) 3.59 - 3.77 (m, 1 H) 2.94 (dd, J=15.38, 8.55 Hz, 1 H) 2.36 - 2.50 (m, 2 H) 2.31 (dd, J=15.14, 7.81 Hz, 1 H) 2.16 - 2.26 (m, 1 H) 2.10 (d, J=11.23 Hz, 1 H) 1.83 - 1.99 (m, 1 H) 1.78 (d, J=11.72 Hz, 1 H) 1.51 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 208.6, 143.1, 123.9, 68.6, 66.8, 47.4, 43.5, 41.1, 26.3, 16.3; FTIR (neat, cm⁻¹) 2931 (m) 2868 (m) 1692 (s) 1422 (w) 1354 (m) 1297 (m) 1259 (m) 1241 (m) 1103 (s) 1071 (s) 1044 (s) 859 (m) 808 (m) 791 (m); MS (ESI) m/z calc'd for $C_{10}H_{17}O_2$ [M +H]⁺ 169.1223, found 169.1227; calc'd for $C_{10}H_{15}O$ [M-H₂O+H]⁺ 151.1117, found 151.1114. Scheme for the Synthesis of Planar Chiral Transannular Ketone-Ene Substrate 61 $$\begin{array}{c|ccccc} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &
& \\ & & &$$ (±)-(1S,2R)-2-methyl-2-(prop-1-en-2-yl)-1-vinylcyclohexanol (S13) According to General Procedure F, ketone S12 (1.16 g, 7.62 mmol, 1 equiv) was reacted with vinylmagnesium bromide (1.0 M in THF, 18.8 mL, 18.8 mmol, 2.5 equiv) to afford the desired divinyl alcohol in >19:1 dr. The crude product was purified (neutral Al₂O₃, Biotage, 0 to 10% Et₂O/hexanes) to afford divinyl alcohol S13 (476 mg, 2.64 mmol, 35%) as a yellow oil. Rf=0.34 (10% Et₂O/hexanes, Al₂O₃); ¹H NMR (500 MHz, CDCl₃) δ ppm 6.10 (dd, *J*=17.09, 10.74 Hz, 1 H) 5.19 (dd, *J*=17.09, 1.46 Hz, 1 H) 5.07 (t, *J*=1.50 Hz, 1 H) 5.00 (dd, *J*=10.74, 1.47 Hz, 1 H) 4.96 (s, 1 H) 2.18 (td, *J*=12.45, 5.37 Hz, 1 H) 2.07 (d, *J*=2.44 Hz, 1 H) 1.79 (s, 3 H) 1.72 - 1.78 (m, 1 H) 1.65 - 1.71 (m, 1 H) 1.53 - 1.59 (m, 2 H) 1.47 - 1.53 (m, 1 H) 1.39 - 1.46 (m, 1 H) 1.22 (s, 3 H) 1.13 - 1.20 (m, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 151.0, 144.4, 114.1, 112.0, 74.2, 46.4, 33.2, 32.9, 23.9, 21.5, 20.9, 19.3; FTIR (neat, cm⁻¹) 3540 (br m) 2088 (w) 2929 (s) 2966 (m) 1623 (m) 1447 (m) 1379 (m) 1315 (m) 1195 (w) 1088 (m) 1040 (m) 1000 (m) 975 (s) 917 (s) 901 (s) 888 (s) 684 (m). MS (APCI) m/z calc'd for $C_{12}H_{19}$ [M– H_2O+H]⁺: 163.1; found: 163.2. # CH₃ # (\pm) -(E)-5,6-dimethylcyclodec-5-enone (61) According to General Procedure F, divinyl alcohol **S13** (243 mg, 1.34 mmol, 1 equiv) underwent an anionic oxy-Cope rearrangement. The crude residue was purified by flash column chromatography (neutral Al₂O₃, 0 to 10% Et₂O/hexanes) to afford planar chiral cyclodecenone **61** (124 mg, 0.69 mmol, 51%) as a clear oil. ¹H NMR (500 MHz, CDCl₃) δ ppm 2.52 (ddt, *J*=16.03, 8.70, 0.90, 0.90 Hz, 1 H) 2.33 - 2.48 (m, 3 H) 2.22 - 2.30 (m, 2 H) 2.00 (dd, *J*=14.65, 6.41 Hz, 1 H) 1.82 (s, 3 H) 1.50 - 1.86 (m, 7 H) 1.48 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 208.5; 132.0, 129.1, 43.1, 41.5, 34.4, 34.2, 26.5, 26.0, 22.4, 19.1, 18.8; FTIR (neat, cm⁻¹) 3382 (br m) 2958 (m) 2952 (s) 2861 (s) 1701 (s) 1445 (m) 1428 (m) 1372 (m) 1353 (m) 1199 (w) 1126 (s) 1061 (m) 893 (w) 788 (w). MS (ESI) *m/z* calc'd for C₁₂H₁₉ [M–H₂O+H]⁺ 163.1481; found 163.1484; calc'd for C₁₂H₂₀NaO [M+Na]⁺ 203.1406; found 203.1418. #### **D.** Enantioselective Transannular Ketone-Ene Reactions **General Procedure H** – Enantioselective Cr(III)-Catalyzed Transannular Ketone-Ene Reaction An oven-dried 0.5 dram screw-top vial was charged with a stir bar, activated 4Å MS (10 mg) and was sealed with a cap containing a Teflon-lined septum. The sieves were flame-dried under vacuum (1 torr) and allowed to cool to room temperature under N₂. To the cooled vial was added catalyst **50** (12.7 mg, 0.02 mmol, 5 mol%, which is 10 mol% based on Cr). The keto-olefin substrate (either **39b**, **39d**, **39e**, **57**, and **59**) (0.2 mmol) was added as a solid to the vial, followed by toluene (50 μ L) by microliter syringe. For keto-olefin substrates **39a**, **39c**, and **39f**: toluene (50 μ L) was first added, followed by the substrate, which was added neat by microliter syringe. The N₂ line was removed, the cap was wrapped with parafilm, and the reaction mixture was stirred at room temperature for 48 h. At this point, an aliquot (~2 μ L) was removed from the vial and diluted into an NMR tube with CDCl₃ to determine the product diastereomeric ratio. The NMR sample along with the remainder of the crude reaction mixture was directly loaded onto a column (SiO₂, neutral Al₂O₃, or DavisilTM) and eluted to isolate the bicyclic alcohol product. # (4aR,8aS)-1-methylenedecahydronaphthalen-4a-ol (40a) Following General Procedure H, cyclodecenone **39a** (33.3 mg, 0.2 mmol, 1 equiv) underwent a transannular ketone-ene rearrangement to afford **40a** as a single diastereomer. The crude product was purified by flash column chromatography (neutral Al₂O₃, Biotage, 0 to 10% Et₂O/hexanes, followed by 10% to 50% EtOAc/hexanes) to afford **40a** (27.1 mg, 0.163 mmol, 81% yield) as a pale yellow oil. Rf=0.16 (10% Et₂O/hexanes, SiO₂, KMnO₄). [α]_D²³= +33.2° (c=0.82, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ ppm 4.86 - 4.92 (m, 1 H) 4.63 (d, *J*=0.98 Hz, 1 H) 2.33 (dquin, *J*=12.70, 2.40, 1 H) 1.92 - 2.06 (m, 2 H) 1.80 (dquin, *J*=13.18, 3.40 Hz, 1 H) 1.66 - 1.75 (m, 2 H) 1.54 - 1.66 (m, 3 H) 1.38 - 1.54 (m, 4 H) 1.33 (td, *J*=13.31, 4.15 Hz, 1 H) 1.21 - 1.37 (m, 1 H) ¹³C NMR (126 MHz, CDCl₃) δ ppm 150.4, 108.6, 72.0, 49.5, 40.0, 38.7, 36.7, 26.1, 24.0, 23.9, 21.4; FTIR (neat, cm⁻¹) 3474 (br m), 2930 (s) 2853 (m) 1643 (w) 1446 (m) 1251 (w) 1186 (w) 1089 (m) 949 (s) 893 (m) 756 (m) 700 (m). MS (APCI) *m/z* calc'd for C₁₁H₁₉O [M+H]⁺: 167.2; found: 167.1. The enantiomeric excess was determined to be 93% by chiral GC analysis (CHIRALDEX β-PH, 100 °C, 14 psi, 20:1 split) $t_R(minor) = 21.47 \text{ min}, t_R(major) = 22.60 \text{ min}.$ # (4aS,8aS)-7,7-dimethyl-1-methylenedecahydronaphthalen-4a-ol (40b) Following General Procedure H, cyclodecenone 39b (38.9 mg, 0.2 mmol, 1 40b equiv) underwent a transannular ketone-ene rearrangement to afford 40b as a single diastereomer. The crude product was purified by flash column chromatography (SiO₂, Biotage, 0 to 10% Et₂O/hexanes) to afford **40b** as a clear oil (37.7 mg, 0.19 mmol, 97% yield). Rf=0.34 (10% Et₂O/hexanes, KMnO₄). $[\alpha]_D^{23} = +17.4$ (c=0.43, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ ppm 4.90 (q, J=1.53 Hz, 1 H) 4.65 (d, J=0.92 Hz, 1 H) 2.36 (ddt, J=12.93, 4.01, 2.06, 2.06 Hz, 1 H) 2.18 (d, J=14.19 Hz, 1 H) 2.04 (td, J=13.16, 4.81 Hz, 1 H) 1.53 - 1.78 (m, 7 H) 1.41 - 1.50 (m, 2 H) 1.15 - 1.21 (m, 2 H) 0.99 (s, 3 H) 0.94 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 150.3, 108.5, 71.6, 45.1, 39.6, 36.83, 36.75, 34.9, 34.0, 33.4, 30.6, 24.3, 24.0; FTIR (neat, cm⁻¹) 3471 (br m), 3083 (w), 2931 (s), 1644 (m), 1441 (m), 1364 (m), 1252 (w), 1194 (w), 1093 (m), 1039 (w), 970 (m), 948 (m), 923 (m), 893 (s), 758 (w). MS (ESI) m/z calc'd for $C_{13}H_{23}O$ [M +H]⁺: 195.1743; found: 195.1736; calc'd for $C_{13}H_{26}NO$ [M+NH₄]⁺ 212.2009; found 212.2007. The enantiomeric excess was determined to be 94% by chiral GC analysis (CHIRALDEX β-PH, $100 \, ^{\circ}$ C, $14 \, \text{psi}$, $20:1 \, \text{split}$) $t_{R}(\text{minor}) = 28.24 \, \text{min}$, $t_{R}(\text{major}) = 30.18 \, \text{min}$. # (4aR,8aS)-2,2-dimethyl-1-methylenedecahydronaphthalen-4a-ol (40c) Following General Procedure H, cyclodecenone 39c (38.9 mg, 0.2 mmol, 1 equiv) underwent a transannular ketone-ene rearrangement to afford **40c** as a single diastereomer. The crude product was purified by flash column chromatography (neutral Al₂O₃, Biotage, 0 to 10% Et₂O/hexanes, followed by 10% to 50% EtOAc/hexanes) to afford **40c** (32.8 mg, 0.169 mmol, 84% yield) as a pale yellow oil. [α] $_{D}^{24}$ = +16.2° (c=1.0, CHCl₃). 1 H NMR (500 MHz, CDCl₃) δ ppm 4.91 - 4.98 (m, 1 H) 4.70 (s, 1 H) 2.19 - 2.29 (m, 1 H) 1.78 - 1.87 (m, 1 H) 1.72 (dquin, J=13.74, 2.30 Hz, 1 H) 1.54 - 1.69 (m, 2 H) 1.42 - 1.54 (m, 4 H) 1.33 - 1.40 (m, 2 H) 1.22 - 1.33 (m, 2 H) 1.12 (s, 3 H) 1.08 (s, 3 H); 13 C NMR (126 MHz, CDCl₃) δ ppm 156.8, 106.9, 72.1, 45.3, 38.9, 36.99, 36.93, 36.4, 29.7, 26.3, 26.0, 24.7, 21.5; FTIR (neat, cm⁻¹) 3474 (br m) 3096 (w) 2930 (s) 2854 (m) 1707 (w) 1632 (m) 1449 (m) 1364 (m) 1179 (w) 1081 (m) 990 (m) 955 (s) 915 (m) 898 (s) 857 (m); MS (ESI) m/z calc'd for C₁₃H₂₁ [M–H₂O+H]⁺: 177.1638; found: 177.1639; calc'd for C₁₃H₂₂NaO [M+Na]⁺ 217.1563; found 217.1567. The enantiomeric excess was determined to be 94% by chiral GC analysis (CHIRALDEX β-PH, 100 °C, 14 psi, 20:1 split) t_R(minor) = 40.28 min, t_R(major) = 41.89 min. # (4aR,8aS)-3,3-dimethyl-1-methylenedecahydronaphthalen-4a-ol (40d) Following General Procedure H, cyclodecenone **39d** (38.9 mg, 0.2 mmol, 1 equiv) underwent a transannular ketone-ene rearrangement to afford **40d**, as a single diastereomer but as a mixture of regioisomers. The crude product was purified by flash column chromatography (neutral Al₂O₃, Biotage, 0 to 10% Et₂O/hexanes, followed by 10% to 50% EtOAc/hexanes). The product was isolated as a mixture with an inseparable olefin isomer in a combined yield of 32% and was formed as a racemate. The characterization data provided here were measured on a racemic sample. ¹H NMR (500 MHz, CDCl₃) δ ppm 4.85 (d, *J*=1.83 Hz, 1 H) 4.71 (s, 1 H) 2.04 (dd, *J*=12.82, 2.29 Hz, 1 H) 1.99 (d, *J*=12.82 Hz, 0 H) 1.90 (dd, *J*=10.99, 4.58 Hz, 1 H) 1.74 - 1.86 (m, 1 H) 1.64 - 1.72 (m, 1 H) 1.41 - 1.64 (m, 5 H) 1.36 (d, *J*=14.19 Hz, 1 H) 1.15 - 1.33 (m, 3 H) 1.01 (s, 3 H) 0.95 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 148.4, 109.3, 73.0, 52.2, 50.4,
49.4, 39.7, 34.0, 33.4, 27.4, 26.1, 23.7, 21.1; FTIR (neat, cm⁻¹) 3491 (br m) 2081 (w) 2927 (s) 2861 (m) 1648 (m) 1450 (m) 1365 (m) 1162 (m) 1073 (m) 972 (s) 156 (m) 889 (s) 812 (m) 697 (w). MS (ESI) *m/z* calc'd for C₁₃H₂₁ [M–H₂O+H]⁺: 177.2, found: 177.1. Following General Procedure H, cyclodecenone **39e** (44.9 mg, 0.2 mmol, 1 equiv) underwent a transannular ketone-ene rearrangement to afford **40e** as a single diastereomer. The crude product was purified by flash column chromatography (SiO₂, Biotage, 0 to 25% EtOAc/hexanes) to afford **40e** (38.9 mg, 0.173 mmol, 87% yield) as a clear oil.; $[\alpha]_D^{23} = +58.3^{\circ}$ (c=0.107, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ ppm 4.89 (d, J=1.37 Hz, 1 H) 4.59 (s, 1 H) 3.84 - 4.06 (m, 3 H) 2.32 (dd, J=13.05, 1.60 Hz, 2 H) 1.86 - 2.06 (m, 2 H) 1.81 (t, J=12.82 Hz, 1 H) 1.63 - 1.76 (m, 3 H) 1.50 - 1.63 (m, 3 H) 1.44 (td, J=13.30, 4.12 Hz, 1 H) 1.47 (br. s., 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 149.2, 109.7, 108.8, 71.1, 64.4, 46.9, 38.9, 36.1, 36.0, 32.9, 30.2, 23.8; FTIR (neat, cm⁻¹) 3491 (br w), 2932 (s) 2879 (m) 1646 (w) 1441 (w) 1358 (m) 1296 (m) 1270 (m) 1153 (m) 1091 (s) 1031 (m) 988 (m) 965 (m) 950 (m) 932 (m) 898 (m) 836 (m) 757 (m); MS (ESI) m/z calc'd for $C_{13}H_{19}O_2$ [M-H₂O+H]⁺: 207.1380; found: 207.1370; calc'd for $C_{13}H_{20}NaO_3$ [M+Na]⁺ 247.1305; found 247.1297. The enantiomeric excess was determined to be 96% by chiral GC analysis (CHIRALDEX β -Cyclodex, 140 °C, 14 psi, 20:1 split) $t_R(minor) = 38.63 \text{ min}$, $t_R(major) = 40.96 \text{ min}$. # (4aS,8aS)-1,7-dimethylenedecahydronaphthalen-4a-ol (40f) Following General Procedure H, cyclodecenone **39f** (35.7 mg, 0.2 mmol, 1 equiv) underwent a transannular ketone-ene rearrangement to afford **40f** as a single diastereomer. The crude product was purified by flash column chromatography (SiO₂, Biotage, 0 to 5% Et₂O/hexanes) to afford **40f** (22.2 mg, 0.124 mmol, 62% yield) as a clear oil.; $[\alpha]_D^{24} = +107.8^{\circ}$ (c=0.66, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ ppm 4.93 (d, J=1.46 Hz, 1 H) 4.66 - 4.69 (m, 2 H) 4.64 - 4.66 (m, 1 H) 2.42 (tdd, J=13.70, 13.70, 4.88, 1.95 Hz, 1 H) 2.35 (dquin, J=13.18, 2.00 Hz, 1 H) 2.26 - 2.38 (m, 1 H) 2.04 - 2.17 (m, 3 H) 1.98 (td, J=13.18, 4.39 Hz, 1 H) 1.85 (ddd, J=13.43, 4.88, 2.20 Hz, 1 H) 1.65 - 1.78 (m, 2 H) 1.49 - 1.65 (m, 2 H) 1.43 (tdd, J=13.49, 13.49, 9.16, 4.39 Hz, 2 H)¹³C NMR (126 MHz, CDCl₃) δ ppm 149.7, 148.9, 108.9, 107.5, 71.8, 50.6, 39.8, 39.4, 36.3, 32.9, 30.2, 23.7; FTIR (neat, cm⁻¹) 3471 (br m) 3071 (w) 2932 (s) 2850 (m) 1724 (w) 1648 (m) 1441 (m) 1270 (m) 1095 (m) 937 (s) 887 (s) 838 (w) 655 (m). MS (ESI) m/z calc'd for $C_{12}H_{17}$ [M-H₂O+H]⁺: 161.1325; found: 161.1325. The enantiomeric excess was determined to be 94% by chiral GC analysis (CHIRALDEX β -Cyclodex, 100 °C, 14 psi, 20:1 split) t_R (minor) = 44.84 min, t_R (major) = 48.31 min. # (4aS,8aR)-8-methyleneoctahydro-1H-isochromen-4a-ol (58) Following General Procedure H, with the exception of a 24 h reaction time, ether 57 (33.6 mg, 0.2 mmol, 1 equiv) underwent a transannular ketone-ene rearrangement to afford 58 as a single diastereomer. The crude product was purified by flash column chromatography (SiO₂, Biotage, 0 to 40% EtOAc/hexanes) to afford 58 (4.4) mg, 0.026 mmol, 13% yield) as a clear oil. Rf=0.40 (25% EtOAc/hexanes, CAM); $[\alpha]_D^{23}$ = +15.3° (c=0.36, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ ppm 4.90 (s, 1 H) 4.40 (s, 1 H) 3.71 - 3.85 (m, 3 H) 3.66 (t, J=11.20 Hz, 1 H) 2.26 - 2.36 (m, 2 H) 2.06 (td, J=13.18, 4.88 Hz, 1 H) 1.54 - 1.80 (m, 6 H) 1.42 - 1.54 (m, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 146.5, 108.9, 69.9, 65.0, 64.0, 48.6, 38.9, 38.2, 36.3, 23.5; FTIR (neat, cm⁻¹) 3448 (br m) 2934 (m) 2867 (m) 1647 (m) 1439 (w) 1391 (w) 1250 (w) 1170 (m) 1120 (m) 1081 (s) 1025 (m) 967 (s) 945 (m) 888 (s) 854 (s) 832 (w). MS (APCI) m/z calc'd for C₁₀H₁₅O [M-H₂O+H]⁺: 151.1; found: 151.1. The enantiomeric excess was determined to be 49% by chiral GC analysis (CHIRALDEX γ-TA, 100 °C, 14 psi, 20:1 split) t_R(major) $= 26.30 \text{ min}, t_R(\text{minor}) = 29.25 \text{ min}.$ # (3aR,7aS)-7-methyleneoctahydro-1H-inden-3a-ol (60) Following General Procedure H, with the exception of a 24 h reaction time, cyclononenone **59** (30.4 mg, 0.2 mmol, 1 equiv) underwent a transannular ketone-ene rearrangement to afford 60 as a single diastereomer. The crude product was purified by flash column chromatography (SiO₂, Biotage, 0 to 10% Et₂O/hexanes) to afford 60 (5.6 mg, 0.037 mmol, 18% yield) as a clear oil. Rf=0.42 (10%Et₂O/hexanes); $[\alpha]_D^{23}$ = +6.1° $(c=0.17, CHCl_3)$. ¹H NMR (600 MHz, CDCl₃) δ ppm 4.93 (q, J=1.76 Hz, 1 H) 4.69 (q, J=1.76 Hz, 1 H) 2.32 (ddd, J=15.55, 3.81, 1.76 Hz, 1 H) 2.13 (dd, J=12.03, 6.16 Hz, 1 H) 1.90 - 2.01 (m, 2 H) 1.72 - 1.87 (m, 4 H) 1.63 - 1.71 (m, 2 H) 1.60 (dt, J=13.50, 4.40 Hz, 1 H) 1.52 - 1.57 (m, 1 H) 1.43 (td, J=13.21, 4.70 Hz, 1 H) 1.34 (br. s., 1 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 148.5, 108.5, 80.5, 53.9, 38.0, 36.3, 35.2, 24.0, 23.7, 20.3. FTIR (neat, cm⁻¹) 3476 (br m), 2930 (s) 1650 (m) 1439 (m) 1287 (w) 1246 (m) 1188 (w) 1056 (m) 964 (s) 893 (s) 873 (s) 756 (s). MS (APCI) m/z calc'd for C₁₀H₁₅ [M–H₂O+H]⁺: 135.1; found: 135.1. The enantiomeric excess was determined to be 68% by chiral GC analysis (CHIRALDEX β-Cyclosil, 90 °C, 14 psi, 100:1 split) t_R (minor) = 29.16 min, t_R (major) = 29.62 min. # (4aR,8aS)-8a-methyl-1-methylenedecahydronaphthalen-4a-ol (62) An oven-dried 0.5 dram screw-top vial was charged with a stir bar, activated 4 Å MS (10 mg) and was sealed with a cap containing a Teflon-lined septum. The sieves were flame-dried under vacuum (1 torr) and allowed to cool to room temperature under N₂. To the cooled vial was added catalyst **50** (12.7 mg, 0.02 mmol, 5 mol %, which is 10 mol % based on Cr). Toluene (50 μL) was first added, followed by the cyclodecenone **61** (36.0 mg, 0.2 mmol, 1 equiv), which was added neat by microliter syringe. The N₂ line was removed, the cap was wrapped with electrical tape, and the vial was immersed in an oil bath at 50 °C and stirred at this temperature for 24 h. 1,3,5-trimethoxybenzene (3.4 mg, 0.02 mmol, 0.1 equiv) was added as a solid followed by CDCl₃ (~1 mL). The conversion was determined to be 19%, based on integration of the ¹H NMR spectrum. The crude product was purified by flash column chromatography (neutral Al₂O₃, Biotage, 0 to 10% Et₂O/hexanes). Recovered **61** eluted first and was isolated as a clear oil (24.6 mg, 0.137 mmol, 69%), and decalinol 62 was isolated as a clear oil (4.3 mg, 0.024 mmol, 12% yield). Rf=0.3 (10% Et₂O/hexanes). ¹H NMR (600 MHz, CDCl₃) δ ppm 4.90 (t, J=1.76 Hz, 1 H) 4.72 (s, 1 H) 2.40 - 2.54 (m, 1 H) 2.10 -2.17 (m, 1 H) 1.82 - 1.93 (m, 1 H) 1.64 - 1.80 (m, 3 H) 1.53 - 1.63 (m, 3 H) 1.44 - 1.52 (m, 1 H) 1.40 (m, J=13.50 Hz, 1 H) 1.23 - 1.32 (m, 3 H) 1.19 (s, 3 H); 13 C NMR (126 MHz, CDCl₃) δ ppm 154.9, 109.3, 74.1, 44.0, 34.2, 33.2, 31.8, 30.8, 29.8, 23.3, 22.7, 21.4; FTIR (neat, cm⁻¹) 3433 (br w) 2922 (s) 2852 (m) 1718 (w) 1642 (w) 1462 (m) 1377 (w) 1260 (w) 1103 (m) 803 (w). MS (APCI) m/z calc'd for $C_{12}H_{19}$ $[M-H_2O+H]^+$ 163.1; found 163.2. The enantiomeric excess was determined to be 73% by chiral GC analysis (CHIRALDEX γ -TA, 90 °C, 14 psi, 20:1 split) $t_R(minor) = 33.28 \text{ min}, t_R(major) = 34.94$ min. recovered 61 Characterization for recovered **61**: $[\alpha]_D^{23} = +2.4^{\circ}$ (c=0.68, CHCl₃), The enantiomeric excess was determined to be 10% by chiral HPLC analysis (CHIRALCEL OD-H, 2% IPA/hexanes, 1 mL/min, 210 nm) t_R(major) = 5.89 min, $t_R(minor) = 6.32 min$. # **E. Determination of Absolute Configuration** A solution of KHMDS in THF (1.0 M, 0.36 mL, 0.36 mmol, 5 equiv) was added dropwise to a stirred solution of enantioenriched (+)-40a (93% ee, 12 mg, 0.072 mmol, 1 equiv) in THF at 0 °C and under a positive pressure of N₂. The resultant solution was stirred at 0 °C for 30 m, at which point a solution of p-bromo- benzoyl chloride in THF (0.86 M, 0.5 mL, 0.43 mmol, 6 equiv) was added in one portion. The reaction vial was sealed with parafilm and stirred at 4 °C for 16 h, after which it was quenched by slow addition of DI H₂O (1 mL) and extracted with Et₂O (3 x 0.5 mL). The combined organics were diluted with dichloromethane (1 mL), dried with Na₂SO₄, filtered, and concentrated to afford a white solid. The crude product was purified by column chromatography (Biotage, SiO₂, 0 to 5% Et₂O/hexanes) to afford a clear oil, which was re-evaporated from hexanes twice to afford the desired benzoate S14 as a white solid (13.3 mg, 0.038 mmol, 53% yield). Rf=0.53 (5% Et₂O/hexanes); ¹H NMR (500 MHz, CDCl₃) δ ppm 7.87 (d, J=8.30 Hz, 2 H) 7.55 (d, J=8.79 Hz, 2 H) 4.87 (d, J=1.46 Hz, 1 H) 4.76 (d, J=1.46 Hz, 1 H) 2.82 - 2.98 (m, 2 H) 2.33 - 2.45 (m, 1 H) 2.11 (td, J=12.70, 4.88 Hz, 1 H) 1.96 (t, J=7.81 Hz, 1 H) 1.82 (dd, J=12.21, 3.42 Hz, 1 H) 1.71 - 1.79 (m, 2 H) 1.62 - 1.70 (m, 1 H) 1.52 - 1.60 (m, 1 H) 1.27 - 1.51 (m, 5 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 164.5, 149.4, 131.7 (2 C), 131.3 (2 C), 127.7, 107.5, 85.5, 50.1, 36.5, 34.5, 34.4, 25.8, 24.4, 23.2, 21.5; FTIR (neat, cm⁻¹) 2932 (s) 2855 (m) 1715 (s) 1590 (m) 1484 (w) 1446 (m) 1397 (w) 1279 (s) 1259 (s) 1225 (w) 1173 (m) 1070 (m) 1012 (s) 911 (m) 848 (w) 758 (s). MS (ESI) m/z calc'd for $C_{18}H_{21}BrO_2$ $[M+H]^+$: 349.0798; found: 349.0803. $\left[\alpha\right]_{D}^{25} = -17.1^{\circ}$ (c=0.41, CHCl₃). Slow evaporation of a hexanes solution of **S14** at room temperature afforded single crystals (white needles) suitable for X-ray analysis. # 1.8. X-Ray Crystallographic Analysis of para-Br-Benzoate S14 #### Acknowledgment We thank Dr. Shao-Liang Zheng at the Center for Crystallographic Studies at Harvard University for X-ray data collection and structure determination. #### Procedure A crystal mounted on a diffractometer was collected data at 100 K. The intensities of the reflections were collected
by means of a Bruker APEX II DUO CCD diffractometer ($Cu_{K\alpha}$ radiation, λ =1.54178 Å), and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at 30°, 55°, 80° and 115° in 2 θ . Data integration down to 0.84 Å resolution was carried out using SAINT V8.30 A (Bruker diffractometer, 2013) with reflection spot size optimisation. Absorption corrections were made with the program SADABS (Bruker diffractometer, 2013). The structure was solved by the direct methods procedure and refined by least-squares methods again F^2 using SHELXS-2013 and SHELXL-2013 (Sheldrick, 2008). Nonhydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table 1.5, and geometric parameters are shown in Table 1.6. The Ortep plots produced with SHELXL-2013 program, and the other drawings were produced with Accelrys DS Visualizer 2.0 (Accelrys, 2007). **Table 1.5.** Experimental details | | NSR-9-086 | |--|---| | Crystal data | , | | Chemical formula | $C_{72}H_{84}Br_4O_8$ | | $M_{\rm r}$ | 1397.03 | | Crystal system, space group | Monoclinic, C2 | | Temperature (K) | 100 | | a, b, c (Å) | 34.7369 (6), 7.4593 (1), 30.4529 (5) | | β (°) | 124.346 (1) | | $V(\mathring{A}^3)$ | 6514.95 (19) | | Z | 4 | | Radiation type | Cu <i>K</i> α | | $\mu (\text{mm}^{-1})$ | 3.45 | | Crystal size (mm) | $0.01 \times 0.01 \times 0.01$ | | Data collection | | | Diffractometer | Bruker D8 goniometer with CCD area detector diffractometer | | Absorption correction | Multi-scan SADABS | | T_{\min}, T_{\max} | 0.672, 0.806 | | No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 68346, 10935, 10256 | | R _{int} | 0.060 | | $(\sin \theta/\lambda)_{max} (\mathring{A}^{-1})$ | 0.596 | | Refinement | , | | $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ | 0.051, 0.104, 1.14 | | No. of reflections | 10935 | | No. of parameters | 791 | | No. of restraints | 78 | | H-atom treatment | H-atom parameters constrained | | $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ | 0.59, -0.60 | | Absolute structure | Flack x determined using 4289 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61). | | Flack parameter | -0.007 (10) | | | · | Computer programs: *APEX2* v2013.4.1 (Bruker-AXS, 2013), *SAINT* 8.30A (Bruker-AXS, 2012), *SHELXS2013* (Sheldrick, 2013), *SHELXL2013* (Sheldrick, 2013), Bruker *SHELXTL* (Sheldrick, 2013). **Table 1.6.** Geometric parameters (Å, °) | C1—C2
C1—C6 | 1.383 (11) | C48—C49 | 1.519 (10) | |----------------|------------|----------|------------| | C1—C6 | | • | ` ′ | | 61 60 | 1.395 (11) | C48—C57 | 1.527 (11) | | C1—H1 | 0.9500 | C48—C53 | 1.536 (11) | | C2—C3 | 1.364 (11) | C49—C50 | 1.533 (11) | | C2—H2 | 0.9500 | C49—H49A | 0.9900 | | C3—C4 | 1.393 (12) | C49—H49B | 0.9900 | | C3—Br1 | 1.915 (8) | C50—C51 | 1.509 (12) | | C4—C5 | 1.377 (12) | C50—H50A | 0.9900 | | C4—H4 | 0.9500 | C50—H50B | 0.9900 | | C5—C6 | 1.387 (10) | C51—C52 | 1.497 (11) | | C5—H5 | 0.9500 | C51—H51A | 0.9900 | | C6—C7 | 1.500 (11) | C51—H51B | 0.9900 | | C7—O2 | 1.218 (10) | C52—C58 | 1.322 (11) | | C7—O1 | 1.321 (9) | C52—C53 | 1.528 (10) | | C8—O1 | 1.472 (9) | C53—C54 | 1.521 (10) | | C8—C9 | 1.518 (10) | С53—Н53 | 1.0000 | | C8—C17 | 1.519 (10) | C54—C55 | 1.533 (12) | | C8—C13 | 1.549 (10) | C54—H54A | 0.9900 | | C9—C10 | 1.526 (10) | C54—H54B | 0.9900 | | С9—Н9А | 0.9900 | C55—C56 | 1.534 (13) | | С9—Н9В | 0.9900 | C55—H55A | 0.9900 | | C10—C11 | 1.513 (12) | C55—H55B | 0.9900 | | C10—H10A | 0.9900 | C56—C57 | 1.522 (12) | | C10—H10B | 0.9900 | C56—H56A | 0.9900 | | C11—C12 | 1.512 (11) | С56—Н56В | 0.9900 | | C11—H11A | 0.9900 | C57—H57A | 0.9900 | | C11—H11B | 0.9900 | С57—Н57В | 0.9900 | | C12—C18 | 1.321 (12) | C58—H58A | 0.9500 | | C12—C13 | 1.530 (10) | C58—H58B | 0.9500 | Table 1.6. (Continued) | C13—C14 | 1.521 (10) | C61—C66 | 1.387 (10) | |----------|------------|----------|------------| | C13—H13 | 1.0000 | C61—C62 | 1.395 (10) | | C14—C15 | 1.517 (11) | C61—H61 | 0.9500 | | C14—H14A | 0.9900 | C62—C63 | 1.378 (10) | | C14—H14B | 0.9900 | C62—H62 | 0.9500 | | C15—C16 | 1.519 (10) | C63—C64 | 1.377 (10) | | C15—H15A | 0.9900 | C63—Br4 | 1.898 (7) | | C15—H15B | 0.9900 | C64—C65 | 1.387 (11) | | C16—C17 | 1.520 (10) | C64—H64 | 0.9500 | | C16—H16A | 0.9900 | C65—C66 | 1.380 (10) | | C16—H16B | 0.9900 | C65—H65 | 0.9500 | | C17—H17A | 0.9900 | C66—C67 | 1.512 (11) | | C17—H17B | 0.9900 | C67—O8 | 1.204 (11) | | C18—H18A | 0.9500 | C67—O7 | 1.336 (11) | | C18—H18B | 0.9500 | O7—C68A | 1.520 (17) | | C21—C26 | 1.391 (11) | O7—C68 | 1.525 (15) | | C21—C22 | 1.391 (11) | C68—C69 | 1.511 (17) | | C21—H21 | 0.9500 | C68—C77 | 1.513 (16) | | C22—C23 | 1.364 (12) | C68—C73 | 1.526 (17) | | C22—H22 | 0.9500 | C69—C70 | 1.518 (18) | | C23—C24 | 1.382 (11) | C69—H69A | 0.9900 | | C23—Br2 | 1.903 (8) | С69—Н69В | 0.9900 | | C24—C25 | 1.380 (12) | C70—C71 | 1.522 (17) | | C24—H24 | 0.9500 | C70—H70A | 0.9900 | | C25—C26 | 1.391 (12) | С70—Н70В | 0.9900 | | C25—H25 | 0.9500 | C71—C72 | 1.520 (18) | | C26—C27 | 1.509 (11) | C71—H71A | 0.9900 | | C27—O4 | 1.209 (10) | C71—H71B | 0.9900 | | C27—O3 | 1.331 (10) | C72—C78 | 1.29 (2) | | C28—O3 | 1.474 (9) | C72—C73 | 1.510 (18) | | C28—C37 | 1.521 (12) | C73—C74 | 1.531 (15) | Table 1.6. (Continued) | C28—C29 | 1.531 (10) | С73—Н73 | 1.0000 | |----------|------------|-----------|------------| | C28—C33 | 1.556 (11) | C74—C75 | 1.496 (19) | | C29—C30 | 1.509 (10) | C74—H74A | 0.9900 | | C29—H29A | 0.9900 | C74—H74B | 0.9900 | | C29—H29B | 0.9900 | C75—C76 | 1.49 (2) | | C30—C31 | 1.532 (11) | C75—H75A | 0.9900 | | C30—H30A | 0.9900 | С75—Н75В | 0.9900 | | С30—Н30В | 0.9900 | C76—C77 | 1.529 (17) | | C31—C32 | 1.511 (12) | C76—H76A | 0.9900 | | C31—H31A | 0.9900 | С76—Н76В | 0.9900 | | С31—Н31В | 0.9900 | С77—Н77А | 0.9900 | | C32—C38 | 1.293 (11) | С77—Н77В | 0.9900 | | C32—C33 | 1.500 (12) | C78—H78A | 0.9500 | | C33—C34 | 1.536 (12) | C78—H78B | 0.9500 | | С33—Н33 | 1.0000 | C68A—C69A | 1.509 (18) | | C34—C35 | 1.522 (15) | C68A—C77A | 1.523 (17) | | C34—H34A | 0.9900 | C68A—C73A | 1.532 (18) | | С34—Н34В | 0.9900 | C69A—C70A | 1.517 (19) | | C35—C36 | 1.517 (17) | C69A—H69C | 0.9900 | | C35—H35A | 0.9900 | C69A—H69D | 0.9900 | | С35—Н35В | 0.9900 | C70A—C71A | 1.51 (2) | | C36—C37 | 1.525 (14) | C70A—H70C | 0.9900 | | С36—Н36А | 0.9900 | C70A—H70D | 0.9900 | | С36—Н36В | 0.9900 | C71A—C72A | 1.52 (2) | | С37—Н37А | 0.9900 | C71A—H71C | 0.9900 | | С37—Н37В | 0.9900 | C71A—H71D | 0.9900 | | C38—H38A | 0.9500 | C72A—C78A | 1.33 (2) | | C38—H38B | 0.9500 | C72A—C73A | 1.499 (18) | | C41—C46 | 1.380 (11) | C73A—C74A | 1.535 (18) | | C41—C42 | 1.382 (12) | C73A—H73A | 1.0000 | | C41—H41 | 0.9500 | C74A—C75A | 1.50 (2) | Table 1.6. (Continued) | C42—C43 | 1.365 (12) | C74A—H74C | 0.9900 | |-----------|------------|---------------|------------| | C42—H42 | 0.9500 | C74A—H74D | 0.9900 | | C43—C44 | 1.400 (11) | C75A—C76A | 1.50 (2) | | C43—Br3 | 1.896 (8) | C75A—H75C | 0.9900 | | C44—C45 | 1.389 (12) | C75A—H75D | 0.9900 | | C44—H44 | 0.9500 | C76A—C77A | 1.523 (18) | | C45—C46 | 1.388 (11) | C76A—H76C | 0.9900 | | C45—H45 | 0.9500 | C76A—H76D | 0.9900 | | C46—C47 | 1.512 (11) | C77A—H77C | 0.9900 | | C47—O6 | 1.213 (10) | C77A—H77D | 0.9900 | | C47—O5 | 1.318 (10) | C78A—H78C | 0.9500 | | C48—O5 | 1.475 (10) | C78A—H78D | 0.9500 | | C2—C1—C6 | 121.0 (7) | С50—С49—Н49В | 109.3 | | C2—C1—H1 | 119.5 | H49A—C49—H49B | 108.0 | | C6—C1—H1 | 119.5 | C51—C50—C49 | 111.0 (7) | | C3—C2—C1 | 118.0 (7) | C51—C50—H50A | 109.4 | | С3—С2—Н2 | 121.0 | C49—C50—H50A | 109.4 | | C1—C2—H2 | 121.0 | C51—C50—H50B | 109.4 | | C2—C3—C4 | 122.9 (8) | C49—C50—H50B | 109.4 | | C2—C3—Br1 | 119.5 (6) | H50A—C50—H50B | 108.0 | | C4—C3—Br1 | 117.6 (7) | C52—C51—C50 | 112.3 (7) | | C5—C4—C3 | 118.0 (8) | C52—C51—H51A | 109.1 | | C5—C4—H4 | 121.0 | C50—C51—H51A | 109.1 | | C3—C4—H4 | 121.0 | C52—C51—H51B | 109.1 | | C4—C5—C6 | 120.8 (8) | C50—C51—H51B | 109.1 | | C4—C5—H5 | 119.6 | H51A—C51—H51B | 107.9 | | С6—С5—Н5 | 119.6 | C58—C52—C51 | 122.9 (8) | | C5—C6—C1 | 119.2 (8) | C58—C52—C53 | 123.1 (8) | | C5—C6—C7 | 119.1 (7) | C51—C52—C53 | 113.9 (7) | | C1—C6—C7 | 121.7 (7) | C54—C53—C52 | 115.1 (7) | Table 1.6. (Continued) | O2—C7—O1 | 126.6 (8) | C54—C53—C48 | 111.6 (6) | |---------------|-----------|---------------|-----------| | O2—C7—C6 | 122.5 (7) | C52—C53—C48 | 109.5 (6) | | O1—C7—C6 | 110.9 (6) | C54—C53—H53 | 106.7 | | O1—C8—C9 | 111.6 (6) | C52—C53—H53 | 106.7 | | O1—C8—C17 | 109.7 (6) | C48—C53—H53 | 106.7 | | C9—C8—C17 | 111.5 (6) | C53—C54—C55 | 111.6 (7) | | O1—C8—C13 | 101.6 (6) | C53—C54—H54A | 109.3 | | C9—C8—C13 | 111.5 (7) | C55—C54—H54A | 109.3 | | C17—C8—C13 | 110.5 (6) | C53—C54—H54B | 109.3 | | C8—C9—C10 | 112.9 (6) | C55—C54—H54B | 109.3 | | С8—С9—Н9А | 109.0 | H54A—C54—H54B | 108.0 | | С10—С9—Н9А | 109.0 | C54—C55—C56 | 110.7 (7) | | С8—С9—Н9В | 109.0 | C54—C55—H55A | 109.5 | | С10—С9—Н9В | 109.0 | C56—C55—H55A | 109.5 | | Н9А—С9—Н9В | 107.8 | C54—C55—H55B | 109.5 | | C11—C10—C9 | 109.6 (7) | C56—C55—H55B | 109.5 | | C11—C10—H10A | 109.8 | H55A—C55—H55B | 108.1 | | C9—C10—H10A | 109.8 | C57—C56—C55 | 110.4 (8) | | C11—C10—H10B | 109.8 | C57—C56—H56A | 109.6 | | С9—С10—Н10В | 109.8 | C55—C56—H56A | 109.6 | | H10A—C10—H10B | 108.2 | C57—C56—H56B | 109.6 | | C12—C11—C10 | 112.1 (7) | C55—C56—H56B | 109.6 | | C12—C11—H11A | 109.2 | H56A—C56—H56B | 108.1 | | C10—C11—H11A | 109.2 | C56—C57—C48 | 112.9 (7) | | C12—C11—H11B | 109.2 | C56—C57—H57A | 109.0 | | C10—C11—H11B | 109.2 | C48—C57—H57A | 109.0 | | H11A—C11—H11B | 107.9 | С56—С57—Н57В | 109.0 | | C18—C12—C11 | 122.4 (8) |
C48—C57—H57B | 109.0 | | C18—C12—C13 | 123.5 (8) | H57A—C57—H57B | 107.8 | | C11—C12—C13 | 114.1 (7) | C52—C58—H58A | 120.0 | | C14—C13—C12 | 115.1 (7) | C52—C58—H58B | 120.0 | Table 1.6. (Continued) | C14—C13—C8 | 111.3 (6) | H58A—C58—H58B | 120.0 | |---------------|-----------|---------------|------------| | C12—C13—C8 | 108.4 (6) | C47—O5—C48 | 123.5 (6) | | C14—C13—H13 | 107.2 | C66—C61—C62 | 120.2 (6) | | C12—C13—H13 | 107.2 | C66—C61—H61 | 119.9 | | C8—C13—H13 | 107.2 | C62—C61—H61 | 119.9 | | C15—C14—C13 | 110.9 (6) | C63—C62—C61 | 117.8 (7) | | C15—C14—H14A | 109.5 | C63—C62—H62 | 121.1 | | C13—C14—H14A | 109.5 | C61—C62—H62 | 121.1 | | C15—C14—H14B | 109.5 | C64—C63—C62 | 122.8 (7) | | C13—C14—H14B | 109.5 | C64—C63—Br4 | 118.3 (5) | | H14A—C14—H14B | 108.0 | C62—C63—Br4 | 118.8 (5) | | C14—C15—C16 | 112.1 (6) | C63—C64—C65 | 118.6 (7) | | C14—C15—H15A | 109.2 | C63—C64—H64 | 120.7 | | C16—C15—H15A | 109.2 | C65—C64—H64 | 120.7 | | C14—C15—H15B | 109.2 | C66—C65—C64 | 120.0 (7) | | C16—C15—H15B | 109.2 | C66—C65—H65 | 120.0 | | H15A—C15—H15B | 107.9 | C64—C65—H65 | 120.0 | | C15—C16—C17 | 111.0 (6) | C65—C66—C61 | 120.5 (7) | | C15—C16—H16A | 109.4 | C65—C66—C67 | 117.9 (7) | | C17—C16—H16A | 109.4 | C61—C66—C67 | 121.6 (7) | | C15—C16—H16B | 109.4 | O8—C67—O7 | 126.4 (8) | | C17—C16—H16B | 109.4 | O8—C67—C66 | 122.9 (9) | | H16A—C16—H16B | 108.0 | O7—C67—C66 | 110.7 (7) | | C8—C17—C16 | 113.1 (6) | C67—O7—C68A | 110.9 (9) | | C8—C17—H17A | 109.0 | C67—O7—C68 | 130.9 (8) | | C16—C17—H17A | 109.0 | C69—C68—C77 | 113.6 (12) | | С8—С17—Н17В | 109.0 | C69—C68—O7 | 107.5 (17) | | C16—C17—H17B | 109.0 | C77—C68—O7 | 105.3 (11) | | H17A—C17—H17B | 107.8 | C69—C68—C73 | 111.7 (14) | | C12—C18—H18A | 120.0 | C77—C68—C73 | 111.9 (12) | | C12—C18—H18B | 120.0 | O7—C68—C73 | 106.3 (11) | Table 1.6. (Continued) | H18A—C18—H18B | 120.0 | C68—C69—C70 | 113.1 (17) | |---------------|-----------|---------------|------------| | C7—O1—C8 | 123.5 (6) | С68—С69—Н69А | 109.0 | | C26—C21—C22 | 119.6 (8) | С70—С69—Н69А | 109.0 | | C26—C21—H21 | 120.2 | С68—С69—Н69В | 109.0 | | C22—C21—H21 | 120.2 | С70—С69—Н69В | 109.0 | | C23—C22—C21 | 118.8 (8) | Н69А—С69—Н69В | 107.8 | | C23—C22—H22 | 120.6 | C69—C70—C71 | 109.9 (16) | | C21—C22—H22 | 120.6 | C69—C70—H70A | 109.7 | | C22—C23—C24 | 122.7 (8) | C71—C70—H70A | 109.7 | | C22—C23—Br2 | 118.6 (6) | С69—С70—Н70В | 109.7 | | C24—C23—Br2 | 118.7 (7) | С71—С70—Н70В | 109.7 | | C25—C24—C23 | 118.6 (8) | H70A—C70—H70B | 108.2 | | C25—C24—H24 | 120.7 | C72—C71—C70 | 110.9 (14) | | C23—C24—H24 | 120.7 | C72—C71—H71A | 109.5 | | C24—C25—C26 | 120.0 (8) | C70—C71—H71A | 109.5 | | C24—C25—H25 | 120.0 | C72—C71—H71B | 109.5 | | C26—C25—H25 | 120.0 | C70—C71—H71B | 109.5 | | C25—C26—C21 | 120.3 (8) | H71A—C71—H71B | 108.1 | | C25—C26—C27 | 119.1 (7) | C78—C72—C73 | 122.4 (17) | | C21—C26—C27 | 120.7 (8) | C78—C72—C71 | 123.0 (17) | | O4—C27—O3 | 126.1 (8) | C73—C72—C71 | 114.5 (13) | | O4—C27—C26 | 123.3 (8) | C72—C73—C68 | 111.4 (11) | | O3—C27—C26 | 110.6 (7) | C72—C73—C74 | 116.8 (13) | | O3—C28—C37 | 110.7 (7) | C68—C73—C74 | 111.2 (12) | | O3—C28—C29 | 110.4 (6) | С72—С73—Н73 | 105.5 | | C37—C28—C29 | 112.8 (7) | C68—C73—H73 | 105.5 | | O3—C28—C33 | 100.9 (6) | C74—C73—H73 | 105.5 | | C37—C28—C33 | 112.0 (7) | C75—C74—C73 | 113.3 (13) | | C29—C28—C33 | 109.4 (7) | C75—C74—H74A | 108.9 | | C30—C29—C28 | 113.3 (6) | C73—C74—H74A | 108.9 | | C30—C29—H29A | 108.9 | C75—C74—H74B | 108.9 | Table 1.6. (Continued) | C28—C29—H29A | 108.9 | С73—С74—Н74В | 108.9 | |---------------|--------------|----------------|------------| | С30—С29—Н29В | 108.9 | H74A—C74—H74B | 107.7 | | С28—С29—Н29В | 108.9 | C76—C75—C74 | 114.1 (14) | | H29A—C29—H29B | 107.7 | C76—C75—H75A | 108.7 | | C29—C30—C31 | 110.5 (6) | C74—C75—H75A | 108.7 | | C29—C30—H30A | 109.6 | C76—C75—H75B | 108.7 | | C31—C30—H30A | 109.6 | C74—C75—H75B | 108.7 | | С29—С30—Н30В | 109.6 | H75A—C75—H75B | 107.6 | | С31—С30—Н30В | 109.6 | C75—C76—C77 | 109.2 (12) | | H30A—C30—H30B | 108.1 | C75—C76—H76A | 109.8 | | C32—C31—C30 | 110.2 (7) | C77—C76—H76A | 109.8 | | C32—C31—H31A | 109.6 | С75—С76—Н76В | 109.8 | | C30—C31—H31A | 109.6 | С77—С76—Н76В | 109.8 | | C32—C31—H31B | 109.6 | H76A—C76—H76B | 108.3 | | С30—С31—Н31В | 109.6 | C68—C77—C76 | 114.4 (12) | | H31A—C31—H31B | 108.1 | C68—C77—H77A | 108.7 | | C38—C32—C33 | 124.7 (10) | C76—C77—H77A | 108.7 | | C38—C32—C31 | 120.7 (10) | С68—С77—Н77В | 108.7 | | C33—C32—C31 | 114.6 (7) | С76—С77—Н77В | 108.7 | | C32—C33—C34 | 116.2 (8) | Н77А—С77—Н77В | 107.6 | | C32—C33—C28 | 110.9 (6) | C72—C78—H78A | 120.0 | | C34—C33—C28 | 110.4 (7) | C72—C78—H78B | 120.0 | | С32—С33—Н33 | 106.2 | H78A—C78—H78B | 120.0 | | С34—С33—Н33 | 106.2 | C69A—C68A—O7 | 105 (2) | | С28—С33—Н33 | 106.2 | C69A—C68A—C77A | 113.2 (14) | | C35—C34—C33 | 112.2 (9) | O7—C68A—C77A | 119.5 (13) | | C35—C34—H34A | 109.2 | C69A—C68A—C73A | 112.5 (17) | | C33—C34—H34A | 109.2 | O7—C68A—C73A | 94.2 (12) | | С35—С34—Н34В | 109.2 | C77A—C68A—C73A | 110.6 (14) | | С33—С34—Н34В | 109.2 | C68A—C69A—C70A | 116.0 (19) | | H34A—C34—H34B | 107.9 | С68А—С69А—Н69С | 108.3 | | - | . | + | + | Table 1.6. (Continued) | C36—C35—C34 | 112.3 (9) | C70A—C69A—H69C | 108.3 | |---------------|------------|----------------|------------| | C36—C35—H35A | 109.1 | C68A—C69A—H69D | 108.3 | | C34—C35—H35A | 109.1 | C70A—C69A—H69D | 108.3 | | C36—C35—H35B | 109.1 | H69C—C69A—H69D | 107.4 | | С34—С35—Н35В | 109.1 | C71A—C70A—C69A | 111.1 (18) | | H35A—C35—H35B | 107.9 | C71A—C70A—H70C | 109.4 | | C35—C36—C37 | 109.6 (10) | C69A—C70A—H70C | 109.4 | | C35—C36—H36A | 109.8 | C71A—C70A—H70D | 109.4 | | С37—С36—Н36А | 109.8 | C69A—C70A—H70D | 109.4 | | С35—С36—Н36В | 109.8 | H70C—C70A—H70D | 108.0 | | С37—С36—Н36В | 109.8 | C70A—C71A—C72A | 114.7 (16) | | H36A—C36—H36B | 108.2 | C70A—C71A—H71C | 108.6 | | C28—C37—C36 | 112.8 (9) | C72A—C71A—H71C | 108.6 | | C28—C37—H37A | 109.0 | C70A—C71A—H71D | 108.6 | | С36—С37—Н37А | 109.0 | C72A—C71A—H71D | 108.6 | | С28—С37—Н37В | 109.0 | H71C—C71A—H71D | 107.6 | | С36—С37—Н37В | 109.0 | C78A—C72A—C73A | 121 (2) | | Н37А—С37—Н37В | 107.8 | C78A—C72A—C71A | 123 (2) | | С32—С38—Н38А | 120.0 | C73A—C72A—C71A | 116.4 (15) | | С32—С38—Н38В | 120.0 | C72A—C73A—C68A | 112.0 (15) | | H38A—C38—H38B | 120.0 | C72A—C73A—C74A | 117.8 (15) | | C27—O3—C28 | 122.5 (6) | C68A—C73A—C74A | 112.7 (14) | | C46—C41—C42 | 120.1 (8) | C72A—C73A—H73A | 104.2 | | C46—C41—H41 | 120.0 | C68A—C73A—H73A | 104.2 | | C42—C41—H41 | 120.0 | C74A—C73A—H73A | 104.2 | | C43—C42—C41 | 119.4 (7) | C75A—C74A—C73A | 112.1 (14) | | C43—C42—H42 | 120.3 | C75A—C74A—H74C | 109.2 | | C41—C42—H42 | 120.3 | C73A—C74A—H74C | 109.2 | | C42—C43—C44 | 122.4 (8) | C75A—C74A—H74D | 109.2 | | C42—C43—Br3 | 119.5 (6) | C73A—C74A—H74D | 109.2 | | C44—C43—Br3 | 118.1 (7) | H74C—C74A—H74D | 107.9 | Table 1.6. (Continued) | C45—C44—C43 | 117.1 (8) | C74A—C75A—C76A | 112.5 (17) | |--------------|------------|-----------------|------------| | C45—C44—H44 | 121.5 | C74A—C75A—H75C | 109.1 | | C43—C44—H44 | 121.5 | C76A—C75A—H75C | 109.1 | | C46—C45—C44 | 121.1 (9) | C74A—C75A—H75D | 109.1 | | C46—C45—H45 | 119.4 | C76A—C75A—H75D | 109.1 | | C44—C45—H45 | 119.4 | H75C—C75A—H75D | 107.8 | | C41—C46—C45 | 119.9 (8) | C75A—C76A—C77A | 109.0 (14) | | C41—C46—C47 | 120.7 (8) | C75A—C76A—H76C | 109.9 | | C45—C46—C47 | 119.3 (7) | C77A—C76A—H76C | 109.9 | | O6—C47—O5 | 126.6 (8) | C75A—C76A—H76D | 109.9 | | O6—C47—C46 | 122.5 (8) | C77A—C76A—H76D | 109.9 | | O5—C47—C46 | 110.9 (7) | H76C—C76A—H76D | 108.3 | | O5—C48—C49 | 111.0 (7) | C76A—C77A—C68A | 113.3 (14) | | O5—C48—C57 | 109.7 (7) | C76A—C77A—H77C | 108.9 | | C49—C48—C57 | 111.0 (6) | C68A—C77A—H77C | 108.9 | | O5—C48—C53 | 102.0 (6) | C76A—C77A—H77D | 108.9 | | C49—C48—C53 | 112.2 (6) | C68A—C77A—H77D | 108.9 | | C57—C48—C53 | 110.7 (7) | H77C—C77A—H77D | 107.7 | | C48—C49—C50 | 111.6 (6) | C72A—C78A—H78C | 120.0 | | C48—C49—H49A | 109.3 | C72A—C78A—H78D | 120.0 | | C50—C49—H49A | 109.3 | H78C—C78A—H78D | 120.0 | | С48—С49—Н49В | 109.3 | | | | C6—C1—C2—C3 | 1.5 (12) | C49—C50—C51—C52 | 53.5 (10) | | C1—C2—C3—C4 | -2.2 (13) | C50—C51—C52—C58 | 123.5 (9) | | C1—C2—C3—Br1 | 177.5 (6) | C50—C51—C52—C53 | -54.1 (10) | | C2—C3—C4—C5 | 1.5 (14) | C58—C52—C53—C54 | 1.9 (12) | | Br1—C3—C4—C5 | -178.3 (6) | C51—C52—C53—C54 | 179.5 (7) | | C3—C4—C5—C6 | 0.0 (13) | C58—C52—C53—C48 | -124.8 (9) | | C4—C5—C6—C1 | -0.7 (12) | C51—C52—C53—C48 | 52.8 (9) | | C4—C5—C6—C7 | 179.4 (7) | O5—C48—C53—C54 | -63.1 (8) | | C2—C1—C6—C5 | -0.1 (11) | C49—C48—C53—C54 | 178.1 (7) | | μ | | - | | Table 1.6. (Continued) | C2—C1—C6—C7 | 179.8 (7) | C57—C48—C53—C54 | 53.5 (9) | |-----------------|------------|-----------------|------------| | C5—C6—C7—O2 | 8.7 (11) | O5—C48—C53—C52 | 65.5 (7) | | C1—C6—C7—O2 | -171.2 (7) | C49—C48—C53—C52 | -53.3 (9) | | C5—C6—C7—O1 | -172.5 (7) | C57—C48—C53—C52 | -177.9 (7) | | C1—C6—C7—O1 | 7.7 (10) | C52—C53—C54—C55 | 178.9 (7) | | O1—C8—C9—C10 | -56.0 (9) | C48—C53—C54—C55 | -55.5 (10) | | C17—C8—C9—C10 | -179.1 (7) | C53—C54—C55—C56 | 56.6 (11) | | C13—C8—C9—C10 | 56.8 (9) | C54—C55—C56—C57 | -55.9 (11) | | C8—C9—C10—C11 | -55.5 (10) | C55—C56—C57—C48 | 55.7 (11) | | C9—C10—C11—C12 | 53.8 (9) | O5—C48—C57—C56 | 57.6 (10) | | C10—C11—C12—C18 | 125.1 (10) | C49—C48—C57—C56 | -179.5 (8) | | C10—C11—C12—C13 | -55.6 (10) | C53—C48—C57—C56 | -54.2 (10) | | C18—C12—C13—C14 | -1.5 (12) | O6—C47—O5—C48 | 8.0 (12) | | C11—C12—C13—C14 | 179.3 (7) | C46—C47—O5—C48 | -171.5 (6) | | C18—C12—C13—C8 | -126.9 (9) | C49—C48—O5—C47 | -63.8 (9) | | C11—C12—C13—C8 | 53.9 (9) | C57—C48—O5—C47 | 59.2 (9) | | O1—C8—C13—C14 | -62.3 (7) | C53—C48—O5—C47 | 176.5 (6) | | C9—C8—C13—C14 | 178.7 (6) | C66—C61—C62—C63 | 0.2 (12) | | C17—C8—C13—C14 | 54.1 (9) | C61—C62—C63—C64 | -0.2 (12) | | O1—C8—C13—C12 | 65.3 (7) | C61—C62—C63—Br4 | -178.4 (6) | | C9—C8—C13—C12 | -53.7 (8) | C62—C63—C64—C65 | 1.1 (13) | | C17—C8—C13—C12 | -178.3 (7) |
Br4—C63—C64—C65 | 179.4 (6) | | C12—C13—C14—C15 | -179.7 (6) | C63—C64—C65—C66 | -2.0 (12) | | C8—C13—C14—C15 | -55.8 (9) | C64—C65—C66—C61 | 2.0 (12) | | C13—C14—C15—C16 | 56.3 (9) | C64—C65—C66—C67 | -178.9 (7) | | C14—C15—C16—C17 | -54.6 (9) | C62—C61—C66—C65 | -1.1 (12) | | O1—C8—C17—C16 | 57.9 (8) | C62—C61—C66—C67 | 179.9 (7) | | C9—C8—C17—C16 | -178.0 (7) | C65—C66—C67—O8 | -9.5 (12) | | C13—C8—C17—C16 | -53.4 (9) | C61—C66—C67—O8 | 169.5 (8) | | C15—C16—C17—C8 | 53.7 (9) | C65—C66—C67—O7 | 172.9 (7) | | O2—C7—O1—C8 | 4.2 (12) | C61—C66—C67—O7 | -8.0 (11) | Table 1.6. (Continued) | C6—C7—O1—C8 | -174.7 (6) | O8—C67—O7—C68A | -2.9 (14) | |-----------------|-------------|-----------------|-------------| | C9—C8—O1—C7 | -61.2 (9) | C66—C67—O7—C68A | 174.6 (9) | | C17—C8—O1—C7 | 62.9 (8) | O8—C67—O7—C68 | -3.9 (16) | | C13—C8—O1—C7 | 179.9 (6) | C66—C67—O7—C68 | 173.6 (10) | | C26—C21—C22—C23 | 0.3 (12) | C67—O7—C68—C69 | -50.2 (15) | | C21—C22—C23—C24 | 0.6 (13) | C68A—O7—C68—C69 | -53 (3) | | C21—C22—C23—Br2 | 179.6 (6) | C67—O7—C68—C77 | 71.2 (14) | | C22—C23—C24—C25 | -1.6 (14) | C68A—O7—C68—C77 | 68 (3) | | Br2—C23—C24—C25 | 179.4 (6) | C67—O7—C68—C73 | -170.0 (9) | | C23—C24—C25—C26 | 1.6 (13) | C68A—O7—C68—C73 | -173 (4) | | C24—C25—C26—C21 | -0.7 (12) | C77—C68—C69—C70 | -177.6 (18) | | C24—C25—C26—C27 | 178.4 (8) | O7—C68—C69—C70 | -61 (2) | | C22—C21—C26—C25 | -0.2 (12) | C73—C68—C69—C70 | 55 (3) | | C22—C21—C26—C27 | -179.4 (7) | C68—C69—C70—C71 | -57 (3) | | C25—C26—C27—O4 | -1.1 (12) | C69—C70—C71—C72 | 55 (2) | | C21—C26—C27—O4 | 178.0 (8) | C70—C71—C72—C78 | 125.0 (19) | | C25—C26—C27—O3 | 178.8 (7) | C70—C71—C72—C73 | -53 (2) | | C21—C26—C27—O3 | -2.1 (10) | C78—C72—C73—C68 | -127.7 (16) | | O3—C28—C29—C30 | -54.7 (9) | C71—C72—C73—C68 | 50.6 (17) | | C37—C28—C29—C30 | -179.2 (7) | C78—C72—C73—C74 | 2 (2) | | C33—C28—C29—C30 | 55.5 (8) | C71—C72—C73—C74 | 179.9 (13) | | C28—C29—C30—C31 | -57.0 (8) | C69—C68—C73—C72 | -50.1 (19) | | C29—C30—C31—C32 | 54.3 (8) | C77—C68—C73—C72 | -178.7 (12) | | C30—C31—C32—C38 | 123.3 (10) | O7—C68—C73—C72 | 66.9 (14) | | C30—C31—C32—C33 | -54.8 (9) | C69—C68—C73—C74 | 177.7 (16) | | C38—C32—C33—C34 | 3.3 (14) | C77—C68—C73—C74 | 49.2 (16) | | C31—C32—C33—C34 | -178.6 (8) | O7—C68—C73—C74 | -65.3 (14) | | C38—C32—C33—C28 | -123.8 (10) | C72—C73—C74—C75 | -179.5 (13) | | C31—C32—C33—C28 | 54.3 (9) | C68—C73—C74—C75 | -50.1 (17) | | O3—C28—C33—C32 | 63.9 (8) | C73—C74—C75—C76 | 54.0 (19) | | C37—C28—C33—C32 | -178.2 (7) | C74—C75—C76—C77 | -53.7 (19) | Table 1.6. (Continued) | C29—C28—C33—C32 | -52.4 (8) | C69—C68—C77—C76 | 179.8 (18) | |-----------------|------------|---------------------|-------------| | O3—C28—C33—C34 | -66.3 (8) | O7—C68—C77—C76 | 62.4 (14) | | C37—C28—C33—C34 | 51.5 (9) | C73—C68—C77—C76 | -52.7 (16) | | C29—C28—C33—C34 | 177.3 (7) | C75—C76—C77—C68 | 53.6 (18) | | C32—C33—C34—C35 | -179.8 (8) | C67—O7—C68A—C69A | -78.2 (16) | | C28—C33—C34—C35 | -52.4 (11) | C68—O7—C68A—C69A | 100 (3) | | C33—C34—C35—C36 | 56.4 (13) | C67—O7—C68A—C77A | 50.4 (17) | | C34—C35—C36—C37 | -56.6 (13) | C68—O7—C68A—C77A | -132 (4) | | O3—C28—C37—C36 | 57.4 (10) | C67—O7—C68A—C73A | 167.1 (9) | | C29—C28—C37—C36 | -178.3 (8) | C68—O7—C68A—C73A | -15 (3) | | C33—C28—C37—C36 | -54.4 (11) | O7—C68A—C69A—C70A | -50 (3) | | C35—C36—C37—C28 | 56.0 (12) | C77A—C68A—C69A—C70A | 177 (3) | | O4—C27—O3—C28 | -1.0 (12) | C73A—C68A—C69A—C70A | 51 (4) | | C26—C27—O3—C28 | 179.1 (6) | C68A—C69A—C70A—C71A | -49 (4) | | C37—C28—O3—C27 | 64.6 (9) | C69A—C70A—C71A—C72A | 45 (3) | | C29—C28—O3—C27 | -61.0 (9) | C70A—C71A—C72A—C78A | 132 (2) | | C33—C28—O3—C27 | -176.6 (6) | C70A—C71A—C72A—C73A | -46 (3) | | C46—C41—C42—C43 | 0.5 (11) | C78A—C72A—C73A—C68A | -131.9 (19) | | C41—C42—C43—C44 | 0.1 (12) | C71A—C72A—C73A—C68A | 46 (2) | | C41—C42—C43—Br3 | -179.4 (6) | C78A—C72A—C73A—C74A | 1 (3) | | C42—C43—C44—C45 | -0.5 (12) | C71A—C72A—C73A—C74A | 179.3 (17) | | Br3—C43—C44—C45 | 179.0 (6) | C69A—C68A—C73A—C72A | -48 (2) | | C43—C44—C45—C46 | 0.3 (12) | O7—C68A—C73A—C72A | 61.0 (16) | | C42—C41—C46—C45 | -0.7 (11) | C77A—C68A—C73A—C72A | -175.3 (15) | | C42—C41—C46—C47 | 177.1 (7) | C69A—C68A—C73A—C74A | 177 (2) | | C44—C45—C46—C41 | 0.3 (11) | O7—C68A—C73A—C74A | -74.6 (15) | | C44—C45—C46—C47 | -177.5 (7) | C77A—C68A—C73A—C74A | 49.2 (19) | | C41—C46—C47—O6 | -170.2 (8) | C72A—C73A—C74A—C75A | 176.6 (17) | | C45—C46—C47—O6 | 7.6 (11) | C68A—C73A—C74A—C75A | -51 (2) | | C41—C46—C47—O5 | 9.4 (10) | C73A—C74A—C75A—C76A | 55 (2) | | C45—C46—C47—O5 | -172.8 (7) | C74A—C75A—C76A—C77A | -58 (2) | Table 1.6. (Continued) | O5—C48—C49—C50 | -57.9 (9) | C75A—C76A—C77A—C68A | 57 (2) | |-----------------|------------|---------------------|------------| | C57—C48—C49—C50 | 179.8 (7) | C69A—C68A—C77A—C76A | 179 (2) | | C53—C48—C49—C50 | 55.4 (9) | O7—C68A—C77A—C76A | 54 (2) | | C48—C49—C50—C51 | -54.5 (10) | C73A—C68A—C77A—C76A | -53.5 (18) | **Figure 1.5.** Perspective views showing 50% probability displacement. **Figure 1.6.** Three-dimensional supramolecular architecture viewed along the b-axis direction. # Chapter 2 ${\bf Enantios elective\ Total\ Synthesis\ of\ (+)-Reserpine}^{\bf 1}$ Portions of this chapter have been published: Rajapaksa, N. S.; McGowan, M. A.; Rienzo, M.; Jacobsen, E. N. *Org. Lett.* **2013**, *15*, 706. #### 2.1. Introduction Reserpine (1, Figure 2.1) is a biologically active indole alkaloid natural product represented an iconic target for organic synthesis.² Its stereochemically complex pentacyclic structure has inspired some of the most important work in that has, since its isolation six decades ago, the history of stereoselective synthesis, and it Figure 2.1. Reserpine (-)-1 continues to inspire new synthetic methodologies today.^{3,4} Woodward and coworkers disclosed the first total synthesis of reserpine in 1956,^{5a} and since then a number of synthetic studies have been published. At the outset of this project there were ten reported total syntheses along with numerous partial synthetic studies.⁵ Despite the scope of this effort, each successful approach to this molecule has relied on the same fundamental strategy, namely a late-stage generation of the C-ring and its embedded C3 _ ² Müller, J.; Schlittler, E.; Bein, H. Experientia 1952, 8, 338. ³ Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; VCH: New York, **1996**. ⁴ For reviews of synthetic efforts directed toward reserpine, see: a) McGowan, M. A. Ph.D. dissertation, Harvard University, **2010**. b) Chen, F-E.; Huang, J. *Chem. Rev.* **2005**, *105*, 4671. ⁵ (a) Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. J. Am. Chem. Soc. 1956, 78, 2023. (b) Woodward, R. B.; Bader, F. E.; Bickel, H.; Kierstead, R. W. Tetrahedron 1958, 2, 1. (c) Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. J. Am. Chem. Soc. 1956, 78, 2657. (d) Pearlman, B. A. J. Am. Chem. Soc. 1979, 101, 6398. (e) Wender, P. A.; Schaus, J. M.; White, A. W. J. Am. Chem. Soc. 1980, 102, 6157. (f) Wender, P. A.; Schaus, J. M.; White, A. W. Heterocycles 1987, 25, 263. (g) Martin, S. F.; Grzejszczak, S.; Rueger, H.; Williamson, S. A. J. Am. Chem. Soc. 1985, 107, 4072. (h) Martin, S. F.; Rueger, H.; Williamson, S. A.; Grzejszczak, S. J. Am. Chem. Soc. 1987, 109, 6124. (i) Stork, G. Pure & Appl. Chem. 1989, 61, 439. (j) Gomez, A. M.; Lopez, J. C.; Fraser-Reid, B. J. Org. Chem. 1994, 59, 4048. (k) Gomez, A. M.; Lopez, J. C.; Fraser-Reid, B. J. Org. Chem. 1995, 60, 3859. (l) Chu, C.-S.; Liao, C.-C.; Rao, P. D. Chem. Commun. 1996, 1537. (m) Hanessian, S.; Pan, J. W.; Carnell, A.; Bouchard, H.; Lesage, L. J. Org. Chem. 1997, 62, 465. (n) Mehta, G.; Reddy, D. S. J. Chem. Soc., Perkin Trans. 1 2000, 1399. (o) Sparks, S. M.; Shea, K. J. Org. Lett. 2001, 3, 2265. (p) Sparks, S. M.; Gutierrez, A. J.; Shea, K. J. J. Org. Chem. 2003, 68, 5274. (q) Stork, G.; Tang, P. C.; Casey, M.; Goodman, B.; Toyota, M. J. Am. Chem. Soc. 2005, 127, 16255. stereocenter from a 2,3-seco-derivative (2, Scheme 2.1).⁶ These approaches target five of the molecule's six stereogenic centers through the formation of an appropriately functionalized E-ring or *cis*-fused D/E-ring fragment. However, the late-stage C-ring installation is generally complicated by preferential formation of the final C3 stereocenter with the undesired, thermodynamically favored relative stereochemistry. ⁷ As an introduction to this chapter, key strategies that have been employed to address this undesired outcome are reviewed, and a recently reported alternative approach to the reserpine framework is presented. **Scheme 2.1.** Synthetic Strategies Common to All Previous Successful Approaches to Reserpine #### 2.2. Previous Strategies to Obtain the Desired C3 Configuration of Reserpine # 2.2.1. The Woodward Approach: Conformational Biasing and C3 Epimerization _ ⁶ The numbering scheme presented in Figure 2.1 is used for various intermediates throughout this chapter. ⁷ Epimerization of reserpine (1) to 3-epi-reserpine (isoreserpine) occurs under acidic or basic conditions and is driven by the removal of unfavorable streic interactions between the axial C3 indole group and the D-ring. Subjecting 1 to AcOH under reflux affords an equilibrium mixture of 1.0:3.5 (reserpine:isoresrepine). For details, see: a) Gaskell, A. J.; Joule, J. A. *Tetrahedron* 1967, 23, 4053. b) Zhang, L.-H.; Gupta, A. K.; Cook, J. M. *J. Org. Chem.* 1989, 54, 4708. c) Sakai, S.; Ogawa, M. *Chem. Pharm. Bull.* 1978, 26, 678. d) Lounasmaa, M.; Berner, M.; Tolvanen, A. *Heterocycles* 1998, 48, 1275. Woodward's landmark synthesis of reserpine involved a Bischler–Napieralski cyclization of lactam **3** and reduction of the resultant iminium ion with sodium borohydride (Scheme 2.2).^{5a} However, nucleophilic addition selectively produced pentacycle **4**, which contains the undesired configuration at C3. Woodward reasoned that the C3 center could be epimerized after fixing the molecule in
an unstable conformation. To this end, intermediate **4** was converted into rigid lactone **5**, and an equilibration of the C3 center under acidic conditions provided the correct relative stereochemistry of reserpine. Scheme 2.2. Woodward's Synthesis of the C-ring and C3 Epimerization # 2.2.2. The Stork Approach: Kinetic Cyclization of an Amino-Nitrile The challenge posed by the C3 stereocenter of reserpine was overcome in a notable and most elegant manner by Stork and coworkers (Scheme 2.3).^{5i,q} They predicted that cyclization of amino-nitrile **6** would generate a dialkyl iminium ion that could be trapped through a kinetic nucleophilic attack by the pendant indole to access methyl reserpate (**10**). However, in refluxing acetonitrile, **6** underwent a C2-C3 bond formation to furnish pentacycle **8**, which contains the undesired C3 stereochemistry. This unexpected outcome was rationalized as occurring through a tight ion pair (7), in which the cyanide counterion blocks the desired trajectory of nucleophilic addition. Based on this hypothesis, amino-nitrile 6 was treated with either dilute HCl or silver tetrafluoroborate to generate a loose ion pair (9), which underwent a kinetically controlled cyclization to afford methyl reserpate (10). Scheme 2.3. Cyclizations of Amino-Nitrile 6 in the Stork Synthesis of Reserpine #### 2.2.3. The Kwon Approach: C3 Stereochemical Relay via a 6π -Electrocyclization The complex architecture of reserpine continues to serve as a forum for exploring the frontiers of stereoselective synthesis. In 2012, Kwon and coworkers reported progress towards the synthesis of (\pm)-reserpine (1) through the application of a diastereoselective 6π -electrocyclization. ⁹ Kwon's strategy is relevant to the work presented in this chapter as it also represents a fundamental departure from the previous syntheses of reserpine in that the C3 stereocenter is generated at an early stage in the route. Racemic bromides (\mathbf{Z}/\mathbf{E})-12 were generated in a 1:2 ratio of olefin isomers in 11 ⁹ a) Barcan, G. A.; Patel, A.; Houk, K. N.; Kwon, O. *Org. Lett.* **2012**, *14*, 5388. b) Patel, A.; Barcan, G. A.; Kwon, O.; Houk, K. N. *J. Am. Chem. Soc.* **2013**, *135*, 4878. ⁸ A related cyclization of amino-nitriles was recently employed in the syntheses of C3-epimeric natural products venenatine and alstovenine: Lebold, T. P.; Wood, J. L.; Deitch, J.; Lodewyk, M. W.; Tantillo, D. J.; Sarpong, R. *Nat. Chem.* **2013**, *5*, 126. steps from methyl ester 11. A Negishi cross-coupling of vinyl zinc species 13 with bromide (Z/E)-12 afforded triene 14 which underwent an *in situ* 6π -electrocyclization to directly afford acetonide 15 in good yield and as a single diastereomer (Scheme 2.4). Pentacycle 15 was advanced to olefin 16 through hydrolysis of the acetonide followed by a PtO₂-catalyzed hydrogenation of the resultant α -keto-ester. Through the cascade Negishi/ 6π -electrocyclization, the authors demonstrated an efficient and unprecedented relay of stereochemical information from the C3 stereocenter of triene 14 to the remote C18 center of a highly functionalized pentacycle (15). However, the product was selectively generated with the undesired relative stereochemistry, and this outcome may present challenges for advancing 16 to reserpine (1). **Scheme 2.4.** Kwon's Diastereoselective 6π -Electrocyclization # 2.3. Previous Work towards the Synthesis of (+)-Reserpine in the Jacobsen Group Meredeth McGowan, a former graduate student in the Jacobsen group, became interested in investigating a new approach to reserpine based on a recently developed asymmetric formal aza-Diels-Alder (FADA) method. The motivations for pursuing the synthesis were to demonstrate the synthetic utility of the transformation and to address the historically problematic C3 stereocenter by using the newly developed method to install the problematic stereocenter with catalyst control. Together with Mathieu Lalonde, another former graduate student, she developed a highly diastereo- and enantioselective synthesis of chiral benzo- and indoloquinolizidine frameworks via FADA reactions of enones and cyclic imines (Scheme 2.5). This transformation is catalyzed by bifunctional primary aminothiourea 17 that is proposed to activate the enone as its corresponding dienamine and simultaneously associate with the imine as a thiourea-bound iminium ion. **Scheme 2.5.** Enantioselective Primary Aminothiourea-Catalyzed FADA Reactions of Enones and Cyclic Imines _ ¹⁰ a) Lalonde, M. P.; McGowan, M. A.; Rajapaksa, N. S.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2013**, *135*, 1891. b) For further details regarding the developing and scope of this transformation, see: Lalonde, M. P. Ph.D. Dissertation, Harvard University, **2008**. Meredeth devised an alternative approach to the reserpine framework that proposed a catalyst-controlled diastereoselective FADA reaction between two components of comparable size, imine **18** and chiral enone **19** (Scheme 2.6). Her progress is summarized in this section. **Scheme 2.6.** Retrosynthetic Analysis of Reserpine The synthetic efforts toward requisite enone component **19** began with a highly selective alcoholic kinetic resolution of racemic terminal epoxide **20**. Differentially protected 4-carbon triol **21** was obtained in 96% ee through the use of oligomeric cobalt salen catalyst **23**, 12 employing benzyl alcohol as the nucleophile (Scheme 2.7). Elaboration of protected alcohol **21** to aldehyde **22** was accomplished in a 3-step sequence consisting of methylation of the secondary alcohol, subsequent hydrogenolysis of the benzyl ether, and Swern oxidation of the resulting primary alcohol. The α -methoxy group of aldehyde **22** then served to direct a chelation-controlled diastereoselective allylation, thereby installing the adjacent C18 stereogenic center and providing vinyl bromide **24** as a single diastereomer. ¹³ Following protection of the C18 alcohol, lithium- ¹¹ Meredeth McGowan also applied an enantioselective FADA reaction of dihydroisoquinone and enone fragments to an asymmetric total synthesis of (–)-tubulosine. See reference 3a. ¹² White, D. E.; Jacobsen, E.N. Tetrahedron: Asymmetry 2003, 14, 3633. ¹³ The sequence of allylsilane addition and subsequent PMB protection was adapted from: Evans, D. A.; Rajapakse, H. A.; Stenkemp, D. *Angew. Chem., Int. Ed.* **2002**, *41*, 4569. halogen exchange and subsequent addition to acetaldehyde afforded an inconsequential mixture of diastereomeric alcohols (25/26) which was oxidized with the Dess–Martin periodinane to afford enone 19. Efforts to directly access enone 19 through addition of the vinyllithium species derived from 24 to *N*-methoxy-*N*-methylacetamide proved less efficient due to competitive formation of the terminal olefin via protonolysis. Scheme 2.7. Synthesis of Enantioenriched Enone 19 The key coupling of enone **19** and 6-methoxytryptamine-derived dihydro-β-carboline **18**¹⁴ to generate the D-ring of reserpine was then examined under a series of conditions (Scheme 2.8). The FADA reaction employing just a slight excess of complex enone **19** (1.2 equivalents) relative to imine **18** was only successful under the influence 90 ¹⁴ Imine **18** was synthesized from 6-methoxy-tryptamine through a formylation, Bischler–Napieralski cyclization, and tosylation with TsF. See refs. 10a,b for details. of primary amine catalysts, consistent with previous observations employing simple, hindered enone derivatives and with the mechanistic hypothesis of enamine formation.¹⁵ The degree of intrinsic substrate-induced diastereocontrol was evaluated using achiral amine promoters. With stoichiometric *n*-hexylamine,¹⁶ ketones **27** and **28**, which contain a *trans*-relationship between the newly formed C3 and C20 stereocenters, were generated in a 1:1 diastereometric ratio (entry 1). In contrast, high levels of chiral catalyst-controlled diastereoselectivity were observed in the presence of 20 mol% aminothiourea **17**, providing the desired diastereomer **27** in 76% isolated yield. Notably, the enantiometric primary aminothiourea *ent*-**17** induced a reversal of diastereoselectivity in the FADA reaction to afford ketone **28** selectively (entry 3). _ ¹⁵ No catalysis was observed with proline or related secondary amine catalysts. The proline-catalyzed formal aza-Diels—Alder reaction between dihydro-β-carboline and enones has been shown to require a large excess of enone (30 equivalents) relative to imine in those cases where catalysis is observed, see: Itoh, T.; Yokoya, M.; Miyauchi, K.; Nagata, K.; Ohsawa, A. *Org. Lett.* **2006**, *8*, 1533. $^{^{16}}$ Very low conversions (< 10% after 6 d) were obtained using 20 mol% *n*-hexylamine and 20 mol% acetic acid. | entry | amine (mol %) | AcOH (mol %) | time (d) | conv (%) | dr (27:28:29:30) | |-------|---------------------|--------------|----------|----------|------------------| | 1 | n-hexylamine (100) | 100 | 9 | 90 | 1.0:1.0:0:0 | | 2 | 17 (20) | 20 | 6 | >99 | 11.5:1.0:1.8:0 | | 3 | ent- 17 (20) | 20 | 6 | >99 | 1.0:11.9:0:2.1 | Scheme 2.8. Diastereoselective FADA Reactions of Imine 18 and Enone 19 Closure of the E-ring to complete the carbon skeleton of reserpine could be accomplished by an intramolecular aldol reaction of keto-aldehyde **31** (Scheme 2.9). Intermediate **31** was obtained in two steps from FADA adduct **27** through cleavage of the primary TBS ether with pyridine-buffered HF and oxidation of the resulting primary alcohol with the Dess–Martin periodinane. Treatment of crude aldehyde **31** with piperidine and catalytic TsOH resulted in an intramolecular enamine aldol reaction to afford C15 tertiary alcohol **32** as a single diastereomer that contains *trans*-fused D- and E-rings. **Scheme 2.9.** Elaboration of the FADA Adduct to a Pentacyclic Framework Through an Aldol Cyclization The most fruitful strategy
evaluated for obtaining the correct oxidation state at C15 was an elimination-hydrogenation sequence (Scheme 2.10). Upon treatment of alcohol **32** with mesyl chloride and triethylamine, an *in situ* regioselective, albeit low-yielding, elimination took place to afford conjugated enal **33**. The C15-C16 olefin could be hydrogenated with PtO₂ in the presence of a mesyl chloride-derived additive. ¹⁷ Ultimately, however, compound **34** was not obtained in sufficient quantities to determine the stereochemical outcome of the hydrogenation. Scheme 2.10. Deoxygenation of 32 via an Elimination-Hydrogenation Sequence #### 2.4. Remaining Challenges The previous synthetic work on this project established a route for generating four of the six stereocenters present in reserpine. The desired C18 and C17 stereocenters were installed by means of an enantioselective epoxide-opening reaction and a chelation- ¹⁷ The beneficial additive was generated during the mesylation/elimination, and its identity was not conclusively determined. In the absence of the additive, enal decomposition was observed, and with excess (3 equiv) of the additive, lower conversion was obtained. 93 controlled allylation. Additionally, the primary aminothiourea-catalyzed FADA reaction of enone 19 and imine 18 introduced the desired stereochemistry at C3 and C20 to provide ketone 27 with a high degree of catalyst-induced diastereoselectivity. The primary goal of the work described herein was to develop a successful route for elaborating this key tetracyclic intermediate to (+)-reserpine. The remaining challenges included formation of the E-ring of the molecule and installation of the final two stereocenters at C15 and C16. As our overall synthetic strategy is a clear departure from previously published routes to reserpine, we anticipated completion of the synthesis would require developing an understanding of factors that influence the diastereoselectivity of transformations performed in such a complex setting. Additionally, while generating material to explore strategies to complete the synthesis, a secondary goal was to improve upon the synthesis of enone 19. In particular, we investigated the direct conversion of vinyl bromide 24 to enone 19. # 2.5. Improved Synthesis of Enone 19¹⁸ As previously mentioned, attempts to form enone **19** directly from bromide **24** through a lithium-halogen exchange and subsequent addition to *N*-methoxy-*N*-methylacetamide (**35a**) ¹⁹ were unsatisfactory. This reaction formed a roughly 1:1 mixture of the desired enone and terminal olefin byproduct **36**, which is generated via protonolysis of the vinyllithium species (Table 2.1). This outcome contrasts with the analogous addition into acetaldehyde, which generates a diastereomeric mixture of secondary alcohols (**25/26**) in good yield and without formation of **36** (Scheme 2.7). ¹⁸ This work was done in collaboration with Matthew Rienzo. ¹⁹ Nahm, S.; Weinreb, S. M. Tetrahedron Lett. **1981**, 22, 3815. **Table 2.1.** Optimization of the Synthesis of Enone 19 Et₂O/pentane (1:1) 8 35a 3.2:1:0 0.05 We speculated that formation of **36** directly involved electrophile **35a**, since efforts to rigorously exclude water did not suppress terminal olefin formation. We considered two possible scenarios for the formation of **36**: 1) incomplete consumption of the vinyllithium during the reaction, perhaps due to the formation of aggregates, ²⁰ or 2) protonation of the vinyllithium species by amide **35a**. We ruled out the former possibility by quenching the reaction with D₂O (entry 2). The absence of deuterated olefin **37** and the observation that protonated olefin **36** was still formed indicated that the vinyllithium species was completely consumed during the reaction. Evidence against the latter possibility was provided through analogous reactions performed with deuterated 95 ²⁰ In a related addition of an alkynyllithium species to a Weinreb amide, Collum and coworkers identified 1:1 aggregates that form between the tetrahedral adduct and unreacted organolithium reagent: Qu, B.; Collum, D. B. *J. Org. Chem.* **2006**, *71*, 7117. amide **35b** and *N-tert*-butoxy-*N*-methylacetamide **35c**. Both reactions still afforded terminal olefin **36**, and without formation of **37**. These results suggested that electrophile **35a** was not undergoing deprotonation at the acetyl or alkoxy positions.²¹ Although the proton source could not be determined, byproduct formation was suppressed through optimization of the reaction solvent (Table 2.1, entries 1, 6–8) and vinyl bromide concentration (entries 1 vs. 3). The reaction conducted in ether and at an initial vinyl bromide concentration of 0.05 M formed the enone in a ratio of 5.3:1 with olefin **36**. When the addition was performed on a preparative scale, the ratio improved to 6.7:1 and enone **19** was isolated in 76% yield. With this procedure, the synthesis of FADA coupling partner **19** could be accomplished in seven steps and in 33% overall yield from racemic epoxide **20** (Scheme 2.7). #### 2.6. Strategies for the Completion of the Reserpine Synthesis We evaluated alternative strategies to an aldol cyclization for advancing FADA adduct **27** to the pentacyclic core of reserpine. Although the aldol cyclization was efficient and diastereoselective, the poor efficiency of the mesyl chloride-induced elimination and the capricious nature of the enal hydrogenation prompted us to consider an alternative intramolecular enamine-alkylation route. # 2.6.1. Attempted Closure of the E-Ring Via Enamine Alkylation²² An alkylation strategy was particularly attractive as cyclization of an appropriately functionalized aldehyde (38) would afford a pentacycle with the C15 center 96 ²¹ Similar Weinreb amide deprotonation pathways have been identified: a) Mentzel, M.; Hoffman, H. M. R. *J. Prakt. Chem.* **1997**, *339*, 517. b) Sibi, M. P. *Org. Prep. Proced. Int.* **1993**, *25*, 15. ²² This work was done in collaboration with Meredeth McGowan. at the desired oxidation state (Scheme 2.11). Additionally, the stereospecificity of the transformation ensures that the C15 center would be formed with the desired stereochemistry. **Scheme 2.11.** Intramolecular Alkylation Strategy to Effect E-Ring Formation Secondary mesylate 40 was synthesized from FADA adduct 27 through reduction of the ketone to afford a separable 3.4:1 mixture of alcohol diastereomers favoring the desired equatorial alcohol, and a subsequent mesylation. The proposed alkylation precursor 41 was obtained by removal of the silyl protecting group with TBAF, and oxidation of the resultant primary alcohol with the Dess–Martin Periodinane. However, treatment of aldehyde 41 with a variety of secondary amines only resulted in elimination of the C17 methoxy group to form (E)-olefin 43, which still contains the C15 mesylate (Scheme 2.12). **Scheme 2.12.** Synthesis of Mesylate **41** and Attempted Enamine Alkylation Although aldol precursor **31** and aldehyde **41** presumably access similar enamine intermediates upon exposure to a secondary amine and acid, the reaction outcomes are very different. Whereas the aldol cyclization afforded pentacycle **32** in high yield, the attempted alkylation did not afford any of the desired cyclization product (**39**, Scheme 2.13A). An analysis of these results provided information about the reactivity of these intermediates and helped inform future routes. Aldol cyclization of keto-aldehyde **31** afforded *trans*-fused **32** as a single diastereomer, and without any elimination of the C17 methoxy group. This outcome corresponded to nucleophilic attack of the enamine occurring exclusively from the top face of the C15 ketone.²³ In contrast, the proposed - ²³ The enamine aldol reaction installs the C16 center of **32** via protonation of an enamine intermediate, also from the top face. ¹H NMR and NOESY analysis of this intermediate (see the experimental section and ref. 3b) indicates that the E-ring is in a chair conformation, with all substituents in equatorial positions. alkylation route would require the enamine derived from **41** to displace the C15 mesylate from the bottom face of the intermediate. Additionally, the enamine intermediate would need to access an unfavorable conformation (corresponding to **43b**) that places the C15 mesylate in an axial orientation. Unfavorable steric interactions between the C-ring and the C15 substituent may have rendered this pathway energetically inaccessible. Without a productive cyclization pathway available, the intermediate underwent an elimination of the C17 methoxy group to provide the only observed product, **42**. Together, these data strongly suggest that the top face of these tetracyclic intermediates is more accessible for nucleophilic attack. Based on this analysis, we moved forward with the aldol product **32** and investigated radical-based methods of obtaining the desired C15 oxidation state, since this same strong facial preference might render the mechanistically unselective radical pathway highly selective. (A) Successful Enamine Aldol Cyclization Scheme 2.13. Comparison of Aldol and Alkylation Routes # 2.6.2. Radical Deoxygenation Attempts for Installing the C15 Stereocenter The insight that these polycyclic intermediates may selectively undergo reactions on the top face encouraged us to pursue a radical deoxygenation approach to install the C15 center from aldol adduct 32. In particular, we envisioned that if a C15 tertiary radical could be generated, it would likely react with a hydrogen radical from the top face of the intermediate, thereby affording the corresponding product that contains the correct oxidation state and configuration at C15. Because previous attempts to derivatize the C15 alcohol of 32 were met with limited success, an intramolecular activation strategy was employed (Scheme 2.14). Cyclic thiocarbonate 45 was identified as an appropriate radical precursor, and
literature precedent suggested that deoxygenation should occur via the more stable C15 tertiary radical instead of the C22 primary radical. ²⁴, ²⁵ Thiocarbonate **45** was obtained in two steps from aldehyde **32** through a sodium borohydride reduction and cyclization of the resultant diol with thiocarbonyl diimidazole. Scheme 2.14. Synthesis of Cyclic Thiocarbonate 45 However, upon subjecting **45** to radical deoxygenation conditions (AIBN and tributyltin hydride) and then hydrolysis conditions, C15 tertiary alcohol **46** was obtained exclusively. We reasoned that the radical process may be under Curtin–Hammett control (Scheme 2.15), wherein **48**, the less-hindered of the two equilibrating radical species preferentially reacts with a hydrogen radical.²⁶ _ ²⁴ For a review of thiocarbonyl radical chemistry, see: Crich, D.; Quintero, L. Chem. Rev. **1989**, 89, 1413. ²⁵ Radical deoxygenation of cyclic thiocarbonyl derivatives typically occurs through the more stable of the two possible radicals. For relevant examples, see: a) Barton, D. H. R.; Subramanian, R. *J. Chem. Soc. Perkin I*, **1977**, 1718. b) Liang, D.; Paula, H. W.; Fraser-Reid, B. *J. Chem. Soc.; Chem. Commun.* **1984**, 1123. c) Kangani, C. O.; Brückner, A. N.; Curran, D. P. *Org. Lett.* **2005**, 7, 379. ²⁶ A similar radical equilibration mechanism was proposed to account for the significant selectivity for radical deoxygenation at the secondary center from a cyclic thiocarbamate derived from a secondary/tertiary diol: Redlich, H.; Sudau, W.; Paulsen, H. *Tetrahedron* **1985**, *41*, 4253. Scheme 2.15. Possible Curtin–Hammett Control in Radical Deoxygenation of 45 Fortunately, we were successful in obtaining the C15 trifluoroacetate **49** as another possible precursor for radical deoxygenation (Scheme 2.16).²⁷ Trifluoroacetic anhydride, in contrast to several other derivatizing reagents, cleanly and quantitatively reacted with aldol adduct **32**. However, attempted purification of intermediate **49** revealed that it readily underwent hydrolysis back to alcohol **32** and elimination to yield conjugated enal **33**. This fortuitous discovery along with the prediction that enal **33** should selectively undergo reactions from the top face of the intermediate encouraged us to re-visit the hydrogenation strategy for setting the C15 and C16 stereocenters of reserpine. _ ²⁷ a) Kim, J.-G.; Cho, D. H.; Jang, D. O. *Tetrahedron Lett.* **2004**, *45*, 3031. b) Jang, D. O.; Kim, J.; Cho, D. H.; Chung, C.-M. *Tetrahedron Lett.* **2001**, *42*, 1073. c) Flyer, A. N.; Si, C.; Myers, A. G. *Nat. Chem.* **2010**, *2*, 886. Scheme 2.16. Synthesis of C15 Trifluoroacetate and a SiO₂-Promoted Elimination # 2.6.3. Re-evaluation of an Enal Hydrogenation Through optimization studies, it was found that treatment of crude C15 trifluoroacetate **49** with diisopropylamine induced a regioselective elimination to afford enal **33** in 63% yield from aldol adduct **32** (Scheme 2.17).²⁸ Scheme 2.17. Optimized Synthesis of Conjugated Enal 33 Hydrogenation of enal **33** with PtO₂ occurred only at high hydrogen pressures (14-48 atm) and afforded products **34** and **50–52**, corresponding to reduction of the C15-C16 olefin, the carbonyl group, and the aromatic ring of the PMB ether (Scheme 2.18). After subjecting the crude hydrogenation product mixture to Dess–Martin oxidation ²⁸ The elimination of the C15 trifluoroacetate **49** was faster with secondary amines than with tertiary amine bases, suggesting that enamine intermediates may be involved. Based on this possibility, we attempted a cascade aldol-elimination sequence from keto-aldehyde **31**. However, enal **33** was formed as a minor product and in a 1:14 ratio with the aldol adduct **32**, so we moved forward with the two-step sequence. conditions, saturated aldehyde **34** was obtained as a single diastereomer and in 40% yield over the two steps.²⁹ Scheme 2.18. PtO₂-Catalyzed Hydrogenation of Conjugated Enal 33 The stereochemical outcome of olefin hydrogenation was determined by analysis of the corresponding methyl ester (53), obtained by subjecting aldehyde 34 to Pinnick oxidation conditions followed by treatment of the crude acid with diazomethane (Scheme 2.19). NMR studies performed on this intermediate led to the determination that it had the desired C15 configuration but the incorrect C16 configuration. The relevant nOe data from the proton at C16 of methyl ester 53 are summarized in Scheme 2.19. PMB- and Ts-protecting group removals were carried out with DDQ and magnesium in MeOH, respectively, to access 16-*epi*-methyl reserpate (54). - ²⁹ Hydrogenation product **34** was equivalent to the one Meredeth McGowan had previously obtained (Scheme 2.10). Scheme 2.19. Stereochemical Determination of the Enal Hydrogenation A plausible explanation for this outcome is that hydrogen delivery occurred from the top face of the olefin, as predicted, to generate saturated aldehyde **55** but that unfavorable steric interactions between the C16 substituent and the tosyl protecting group drove epimerization at C16 (Scheme 2.20). Scheme 2.20 Potential Explanation for the Hydrogenation Outcome Based on this hypothesis, we proposed two strategies to prevent epimerization during hydrogenation of a C15-C16 olefin (Scheme 2.21). The first strategy involved the removal of the tosyl protecting group. It was proposed that if unfavorable steric interactions between the tosyl group and the C16 aldehyde substituent were responsible for epimerization, then hydrogenation of the free indole substrate may proceed without epimerization (Scheme 2.22A). The second strategy involved modification of the C16 substituent to either an ester or primary alcohol, such that hydrogenation would generate a product that was less prone to epimerization at C16. (A) Remove unfavorable steric interactions: Hydrogenation of an intermediate containing an unprotected indole $$\begin{array}{c} \text{MeO} \\ \\ \text{N} \\ \text{H} \\ \text{H} \\ \text{15} \\ \text{O} \\ \text{OMe} \\ \end{array}$$ (B) Generate a less epimerizable product: Hydrogenation of an allylic alcohol or unsaturated ester MeO $$H_2$$ Ts H^{1} 15 H R^{1} 16 OR^2 OMe Scheme 2.21. Strategies for Preventing C16 Epimerization #### 2.6.4. Hydrogenation of an Unprotected Indole Intermediate Through experimentation, we found that the unprotected methoxy indole of related intermediates was unstable to even mildly oxidative conditions. This observation suggested that oxidative manipulations, such as installation of the C16 ester and removal of the PMB protecting group should take place prior to removal of the tosyl group. Thus, we targeted unsaturated ester **58** as a hydrogenation substrate to evaluate our first strategy. Pinnick oxidation of aldehyde **32** to the corresponding carboxylic acid, followed by esterification with diazomethane provided methyl ester **56** (Scheme 2.22). The C15 alcohol of intermediate **56** proved very resistant to derivatization, and as with aldol adduct **32**, trifluoroacetylation was found to be the most effective strategy. Derivatization of **56** to a C15 tertiary trifluoroacetate was accomplished with *n*-BuLi and trifluoroacetic anhydride, and the crude product was subjected to DBU in refluxing toluene to effect a regioselective elimination forming enoate **57**. The PMB protecting group was cleaved using DDQ, and the tosyl protecting group was removed using a 5% sodium/mercury amalgam to provide the free indole **58**. Scheme 2.22. Synthesis of Enoate 58 C15-C16 olefin **58** underwent hydrogenation with PtO₂ at 1 atm of hydrogen pressure to afford saturated ester **59** (Scheme 2.23).³¹ The stereochemical outcome of the hydrogenation was determined through NMR analysis of free indole **59**, and by comparing its spectrum to those of saturated ester **54** (obtained through the enal ³⁰ Attempted radical deoxygenation of the tertiary trifluoroacetate under conditions reported by Jang (Refs.25a,b) or Myers (Ref.25c) resulted in decomposition, hydrolysis, and elimination products. ³¹ Although a diastereomeric ratio was not measured on the crude hydrogenation product, the high yield of hydrogenation product indicates that the dr must at least be 4:1 in favor of the observed product **59**. 107 hydrogenation, Scheme 2.19), and methyl reserpate (**10**), obtained through saponification of a commercially available sample of (–)-reserpine. Through this analysis we determined that hydrogenation occurred with undesired selectivity from the bottom face of intermediate **58**, providing the incorrect configurations at both C15 and C16. MeO $$H_2$$ (1 atm = 14.7 psi), PtO₂ H_2 (1 atm = 14.7 psi), MeO H_3 (1 atm = 14.7 psi), MeO H_4 (1 atm = 14.7 psi), MeO H_5 (1 atm = 14.7 psi), MeO H_7 ps Scheme 2.23. Hydrogenation of 58 Occurs with Undesired Facial Selectivity In comparing the two hydrogenation approaches and the outcomes, we determined that the facial selectivity of hydrogen delivery was influenced by the conformation of the intermediate, and this in turn was dependent on the presence or absence of an indole protecting group (Scheme 2.24). Substrate 33 containing a protected indole underwent hydrogenation exclusively from its top face, as the bottom face appears to be shielded by the bulky tosyl protecting group. In contrast, unprotected substrate 58, which lacks this directing effect, underwent hydrogenation primarily from the bottom face of the olefin. These observations are in agreement with a series of hydrogenation studies done by Lounasmaa on tetracyclic indole-containing substrates.³² Taking these results into consideration, we decided to move on to our second proposed endgame strategy and to carry out a hydrogenation in the presence of an indole protecting group and a C16 substituent that is unlikely to be susceptible to epimerization (Scheme 2.21B). _ ³² a) Lounasmaa, M. *Tetrahedron* **1995**, *51*, 11892. b) Lounasmaa, M.;
Jokela, R. *Tetrahedron* **1990**, *46*, 615. We predicted that this strategy would allow for hydrogenation to occur with the desired facial selectivity and without C16 epimerization. Scheme 2.24. Protecting-Group Dependent Hydrogenation Facial Selectivities ## 2.7. Completion of the Synthesis of (+)-Reserpine We anticipated that allylic alcohol **52**, obtained through reduction of enal **33**, might be capable of coordinating to a homogeneous hydrogenation catalyst and thereby enable hydrogenation of the hindered C15-C16 olefin. Unfortunately, an evaluation of both homogeneous and heterogeneous hydrogenation catalysts was unfruitful, either returning unreacted alcohol **52** or resulting in reduction of the aromatic ring of the PMB ether (Scheme 2.25). Scheme 2.25. Unsuccessful Attempts at Reducing Allylic Alcohol 52 We therefore instead focused on hydrogenation of unsaturated ester **57**, obtained via elimination of a tertiary trifluoroacetate (Scheme 2.23), which maintains the PMB and Ts protecting groups. This olefin proved to be a particularly challenging hydrogenation substrate as it is hindered, tetrasubstituted, and electron-deficient. After an extensive evaluation of both homogeneous and heterogeneous catalytic systems under a range of conditions, cationic iridium complex **64**, bearing the noncoordinating BArF counteranion, was identified as uniquely effective in the reduction of the C15-C16 olefin of enoate **57** (Table 2.2).³³ _ ³³ a) Vazquez-Serrano, L. D.; Owens, B. T.; Buriak, J. M. *Inorg. Chim. Acta* **2006**, *359*, 2786. b) Wüstenberg, B.; Pfaltz, A. *Adv. Synth. Catal.* **2008**, *350*, 174.# **Table 2.2.** Catalyst Screen for Hydrogenation of Enoate 57 Variation of the stoichiometry of enoate **57** to iridium complex **64** indicated that the catalytic use of **64** provided low amounts of conversion to the reduction product (Scheme Table 2.3, entries 1–2). However, hydrogenation with one full equivalent of complex **64** resulted in 54% conversion of **57** and proceeded with a significant degree of facial selectivity (6:1 dr), ultimately affording saturated ester **60** in 44% isolated yield (81% based on recovered olefin **57**) (entry 3).³⁴ The use of super stoichiometric amounts of iridium complex **64** offered a slight increase in yield but at the expense of recovered enoate (entry 4). The stereochemical outcome of the hydrogenation was determined by ¹H NMR analysis and indicated that the C15 and C16 stereogenic centers had been obtained in the correct configuration. The identity of saturated ester **60** was further confirmed by X-ray crystallographic analysis (Figure 2.2). _ Although improvements in the turnover of iridium hydrogenation catalysts have been accomplished through the formation of substrate amine salts or by the use of borate additives, these strategies were ineffective for the hydrogenation of **57** with **64**. For precedents, see: a) Trost, B. M.; Rudd, M. T. *Org. Lett.* **2003**, *5*, 1467. b) Maimone, T. J.; Shi, J.; Ashida, S. Baran, P. S. *J. Am. Chem. Soc.* **2009**, *131*, 17066. Table 2.3. Loading Studies of Complex 64 Figure 2.2. ORTEP Diagram of 60 Showing 50% Probability Displacement With the fully elaborated pentacycle in hand, completion of the synthesis required only a global deprotection and installation of the trimethoxybenzoyl ester on the E-ring. Thus, treatment of **60** sequentially with TfOH and sodium/mercury amalgam resulted in cleavage of the PMB ether and tosyl protecting groups, respectively (Scheme 2.26). Resulting C18 secondary alcohol **10** was esterified using conditions reported by Stork to deliver reserpine ((+)-1).^{5q} **Scheme 2.26.** Completion of the Synthesis of (+)-Reserpine # 2.8. Conclusions The enantioselective total synthesis of reserpine was accomplished in 19 steps in the longest linear sequence from racemic epoxide **20** (Scheme 2.27). The convergent approach relied on chiral catalysis to provide access to coupling component **19** and to address the historically problematic installation of the C3 stereogenic center. The insights we gained about substrate-controlled diastereoselectivity in reactions performed on highly functionalized tetracyclic and pentacyclic intermediates guided us to pursue a diastereoselective hydrogenation that enabled completion of the synthesis. Furthermore, through this process, we were able to identify synthetic routes to access intermediates corresponding to two unnatural diastereomers of (+)-methyl reserpate: 16-epi-(+)-methyl reserpate (**54**) and 15,16-di-epi-(+)-methyl reserpate (**59**). **Scheme 2.27.** Synthetic Route to (+)-Reserpine ## 2.9. Experimental Section #### A. General Information. Unless otherwise noted, all reactions were performed under a positive pressure of anhydrous nitrogen or argon in flame- or oven-dried glassware. Moisture- and airsensitive reagents were dispensed using oven-dried stainless steel syringes or cannulae and were introduced to reaction flasks through rubber septa. Reactions conducted below ambient temperature were cooled by external baths (dry ice/acetone for –78 °C and ice/water for 0 °C). Reactions conducted above ambient temperature were heated by a silicone oil bath. Analytical thin layer chromatography (TLC) was performed on glass plates precoated with silica 60 F₂₅₄ plates, 0.25 mm). Visualization was carried out by exposure to a UV-lamp (short wave 254 nm, long wave 365 nm), and by heating after staining the plate with a ceric ammonium molybdate or a potassium permanganate solution. Extraction and chromatography solvents were reagent or HPLC grade and were used without further purification. Flash chromatography was carried out over silica gel (60 Å, 230–400 mesh) from EM Science or DavisilTM. Where indicated, chromatography was conducted on a Biotage Isolera automated chromatography system. *Materials*. Commercial reagents and solvents were used with the following exceptions: tetrahydrofuran, diethyl ether, toluene, dichloromethane, acetonitrile, and methanol employed as reaction solvents were dried by passage through columns of activated alumina. Pyridine and triethylamine were distilled from calcium hydride at 760 torr prior to use. The Dess–Martin Periodinane was prepared according to known procedures.³⁵ Diazomethane was prepared as a 0.5 M solution in ether according to the known procedure.³⁶ 2-bromoallyltrimethylsilane was prepared according to the reported procedure.³⁷ Epoxide (\pm)-20 was prepared according to the reported procedure and was distilled from calcium hydride prior to use.³⁸ Oligomeric cobalt salen catalyst (R, R)-23 was prepared according to the reported procedure and stored over calcium sulfate in a -78 °C freezer.¹² Imine 18, catalyst 17, and catalyst *ent*-17, were prepared according to the reported procedures.^{10a} Chloroform-d was dried over 3Å MS prior to use. Iridium complex 64 was prepared according to the reported procedure and was stored in a glove box under a N_2 atmosphere.^{33a} *Instrumentation.* Proton nuclear magnetic resonance (1 H NMR) spectra and carbon nuclear magnetic resonance (13 C NMR) spectra were recorded on a Varian Mercury-400 (400MHz), Inova-500 (500MHz), or an Inova-600 (600MHz) spectrometer at 23 $^{\circ}$ C. Chemical shifts for protons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃: 7.26 ppm; C₆H₆: 7.16 ppm). Chemical shifts for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the NMR solvent (CDCl₃: 77.16 ppm). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, 3,4 ³⁵ Boeckman, R. K., Jr.; Shao, P.; Mullins, J. J. Org. Synth. 2000, 77, 141. ³⁶ Sigma Aldrich, 2003, "AL-180: Diazald, MNNG and Diazomethane Generators." http://www.sigmaaldrich.com/aldrich/bulletin/AL-180.pdf ³⁷ Trost, B. M.; Grese, T. A.; Chan, D. M. T. J. Am. Chem. Soc. **1991**, 113, 7350. ³⁸ Ficini, J.; Barbara, C.; Desmaële, D.; Ourfelli, O. Heterocycles 1987, 25, 329. app = apparent), integration, and coupling constant (J) in Hertz (Hz). Infrared (IR) spectroscopy was performed on the neat compounds on a Brucker Tensor 27 FT-IR Spectrometer using OPUS software. Data are represented as follows: frequency of absorption (cm⁻¹), intensity of absorption (s = strong, m = medium, w = weak). Mass spectra were obtained on an Agilent 1200 series 6120 Quadrupole LC/MS. Optical rotation data were collected using either a 2-mL cell with a 1 dm path length or a 1-mL cell using a 0.5 dm path length on a Jasco P-2000 polarimeter and are reported as $[\alpha]_D^{23}$ (concentration in grams/100 mL solvent). Reported rotations are the average of 3–5 measurements per sample. #### B. Experimental procedures and characterization data. # (S)-1-(benzyloxy)-4-(*tert*-butyldimethylsilyloxy)butan-2-ol (21) A 50-mL round-bottom flask was charged with a stir bar, epoxide (\pm)-20 (10.0 g, 49.7 mmol, 1 equiv.), CH₃CN (2.4 mL), and anhydrous BnOH (2.32 mL, 22.4 mmol, 0.45 equiv.). The flask was cooled to 0 °C, and (R,R)-23 (185 mg, 0.227 mmol, 0.45 mol % based on Co) was added in one portion. The flask was sealed with a plastic cap and allowed to stir at 4 °C for 96 h, at which point pyridinium *para*-toluenesulfonate (PPTS) (60 mg, 0.240 mmol) was added in one portion. The reaction mixture was filtered through a silica gel plug, eluting with Et₂O (400 mL). The filtrate was concentrated in vacuo to provide a dark orange oil which was purified immediately via flash chromatography (silica gel, Biotage, 10% Et₂O in hexanes) to provide the desired secondary alcohol **21** as a clear oil (6.28 g, 20.2 mmol, 41% yield). Rf = 0.44 (25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ : 7.24 – 7.42 (m, 5 H) 4.58 (d, J=12.4 Hz, 1 H) 4.55 (d, J=11.9 Hz, 1 H) 4.03 (ddd, J=11.40, 6.90, 4.60
Hz, 1 H) 3.86 (m, 1 H) 3.79 (m, 1 H) 3.48 (dd, J=9.77, 4.39 Hz, 1 H) 3.43 (dd, J=8.79, 6.84 Hz, 1 H) 3.17 (br. s., 1 H) 1.70 (m, 2 H) 0.90 (s, 9 H) 0.06 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ : 138.13, 128.36 (2C), 127.69 (2C), 127.64, 74.36, 73.32, 69.63, 61.32, 35.42, 25.85 (3C), 18.14, – 5.52, –5.55; FTIR (neat, cm⁻¹); 3400(br m), 2953(m), 2928(m), 2857(m), 1497(w), 1471(w), 1463(w), 1389(w), 1362(w), 1253(m), 1205(w), 1090(s), 1005(m), 908(m), 833(s), 775(s), 733(s), 697(s), 663(m); LRMS (APCI) 311.2 [M + H]⁺; [α]²³D –1.2 (c 1.77, CHCl₃). To assess the enantiomeric purity, the epoxide-opened product was elaborated to the corresponding diol in the following manner: Silyl ether **21** (22.7 mg, 0.073 mmol, 1 equiv.) was dissolved in THF (0.47 mL) and TBAF (1 M in THF, 0.152 mL, 2.1 equiv.) was added at 0 °C. The solution was allowed to come to rt and stir 1 h. The reaction was then diluted with CH_2Cl_2 (5 mL) and the organic layer was washed with H_2O (3 x 5 mL), dried over Na_2SO_4 , filtered, and concentrated in vacuo. The residue was purified by flash chromatography to provide the diol as a clear oil. The enantiomeric excess was determined to be 96% by chiral SFC analysis (OD-H, 5% MeOH, 4.0 ml/min) $t_R(minor) = 6.88 \text{ min}$, $t_R(major) = 7.52 \text{ min}$. # (5S,6S)-8-(*tert*-butyldimethylsilyloxy)-6-methoxy-5-(4-methoxybenzyloxy)-3-methyleneoctan-2-one (**19**) Vinyl bromide 24 (286 mg, 0.60 mmol, 1 equiv.) was azeotroped from benzene twice and placed on high vacuum 2 h in a 50-mL round-bottomed flask. Et₂O (12 mL) was then added under N₂, and the flask was cooled to -78 °C. Tert-butyllithium (741 µL of a 1.7 M solution in pentane, 1.26 mmol, 2.1 equiv.) was added dropwise over 5 min. The yellow solution was stirred for 30 min, after which N-methoxy-N-methylacetamide (138 μL, 0.90 mmol, 1.5 equiv.) was added. The reaction was stirred for an additional 1.5 h at -78 °C, and was then quenched by addition of H₂O (5 mL) and immediately warmed to rt. The reaction mixture was diluted with H₂O (10 mL), and the aqueous layer was extracted with EtOAc (2 x 15 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated in vacuo. The resultant oil was purified by flash chromatography (silica gel, 0 to 15% EtOAc in hexanes) to provide **19** as a clear oil (199 mg, 0.46 mmol, 76% yield). Rf = 0.19 (15% EtOAc in hexanes); ¹H NMR (600 MHz, CDCl₃) δ : 7.21 (d, J=8.49 Hz, 2 H) 6.84 (d, J=8.49 Hz, 2 H) 6.03 (s, 1 H) 5.87 (s, 1 H) 4.48 (d, *J*=11.42 Hz, 1 H) 4.40 (d, *J*=11.42 Hz, 1 H) 3.79 (s, 3 H) 3.52 – 3.69 (m, 3 H) 3.43 (dt, J=8.42, 4.14 Hz, 1 H) 3.39 (s, 3 H) 2.64 (ddd, J=13.55, 4.61, 0.88 Hz, 1 H) 2.37 (dd, J=13.62, 8.35 Hz, 1 H) 2.28 (s, 3 H) 1.78 (dddd, J=14.06, 8.20, 5.86, 4.10 Hz, 1 H) 1.61 (ddt, J=13.79, 8.67, 5.13, 5.13 Hz, 1 H) 0.85 – 0.90 (m, 9 H) 0.03 (s, 3 H) 0.02 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ: 199.65, 159.10, 146.09, 130.72, 129.71 (2C) 127.52, 113.59 (2C) 77.89, 76.81, 71.90, 59.46, 58.17, 55.22, 32.66, 31.89, 25.91 (3C), 25.85, 18.21, -5.35, -5.41; IR 2949(m), 2929(s), 2856(m), 1678(s), 1613(m), 1586(w), 1464(m), 1441(w), 1362(m), 1324(w), 1032(w), 1247(s), 1090(s), 1036(m), 938(m), 833(s), 775(s), 662(m); LRMS (ESI) 459.2 [M + Na]⁺; [α]²³_D-16.1 (*c* 3.03, CHCl₃). (3S,12bS)-3-((2S,3S)-5-(tert-butyldimethylsilyloxy)-3-methoxy-2-(4-methoxybenzyloxy)pentyl)-10-methoxy-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (27) An oven-dried 25-mL round-bottom flask with stir-bar was charged with enone **19** (788 mg, 1.80 mmol, 1.2 equiv.), imine **18** (533 mg, 1.50 mmol, 1 equiv.), and aminothiourea **17** (140 mg, 0.30 mmol, 20 mol %). The flask was placed under N₂ and toluene (4.5 mL) was added, followed by AcOH (17.2 μ l, 0.30 mmol, 20 mol %) in one portion. The reaction was allowed to stir at rt 4.5 d, and then at 45 °C for 2 h. Analysis of the crude reaction mixture by ¹H NMR (comparison of a combination of C3 and PMB Bn signals) showed a 11.5:1.0:1.8:0 diastereomeric ratio of **27**:28:29:30. The crude reaction mixture was directly purified by flash chromatography (silica gel, Biotage, 0 – 50% EtOAc in hexanes gradient) to provide the desired diastereomer as a pale yellow solid (909 mg, 1.15 mmol, 76% yield). R*f* = 0.19 (50% EtOAc in hexanes); ¹H NMR (399 MHz, CDCl₃) δ 7.65 (d, J=2.20 Hz, 1 H, C12) 7.47 (d, J=8.42 Hz, 2 H, Ts) 7.17 – 7.25 (m, 3 H, PMB, C10) 7.10 (d, J=7.68 Hz, 2 H, Ts) 6.77 – 6.91 (m, 3 H, PMB, C9) 4.61 (d, J=11.34 Hz, 1 H, PMB Bn) 4.51 (dd, J=11.34, 2.20 Hz, 1 H, C3) 4.31 (d, J=11.34 Hz, 1 H, PMB Bn) 3.87 (s, 3 H, PMB OMe) 3.85 (ddd, J=10.61, 4.76, 2.56 Hz, 1 H, C18) 3.75 (dd, J=7.87, 4.57 Hz, 2 H, CH₂OTBS) 3.70 (s, 3 H, MeO) 3.54 (ddd, *J*=9.51, 4.57, 2.38 Hz, 1 H, C17) 3.50 (s, 3 H, C17 **Me**O) 3.31 (dd, J=13.17, 5.86 Hz, 1 H, C21) 3.10 - 3.20 (m, 2 H, C14, C5) 2.94 (t, *J*=12.44 Hz, 1 H, C21) 2.78 – 2.86 (m, 1 H, C5) 2.68 – 2.78 (m, 3 H, C6(2), C20) 2.39 (t, J=12.26 Hz, 1 H, C14) 2.28 (s, 3 H, Ts) 2.05 (ddd, J=13.80, 9.15, 2.38 Hz, 1 H, C19) 1.85 (dtd, J=14.00, 7.70, 7.70, 2.60 Hz, 1 H, C16) 1.58 (ddt, J=14.00, 9.38, 4.62, 4.62 Hz, 1 H, C16) 1.04 (ddd, *J*=13.80, 10.30, 3.40 Hz, 1 H, C19) 0.90 - 0.93 (m, 9) H, TBS) 0.08 (s, 3 H, TBS) 0.08 (s, 3 H, TBS); ¹³C NMR (100 MHz, CDCl₃) δ 208.55, 159.21, 158.02, 144.63, 138.37, 134.52, 134.41, 130.76, 129.83 (2C), 129.61 (2C), 126.29 (2C), 123.97, 118.92, 118.81, 113.78 (2C), 112.73, 100.33, 78.22, 76.77, 72.43, 61.10, 59.59, 58.95, 58.37, 55.79, 55.17, 45.17, 44.56, 43.00, 32.82, 26.86, 25.94 (3C), 22.25, 21.49, 18.25, -5.29, -5.37; IR 2592(m), 2927(m), 2856(m), 1706(s), 1612(m), 1582(w), 1513(m), 1493(m), 1463(m), 1440(w), 1364(s), 1304(w), 1248(s), 1172(s), 1145(m), 1088(s), 1035(m), 975(m), 834(s), 775(m), 674(s), 626(m); LRMS (APCI) 791.4 $[M + H]^+$; $[\alpha]^{24}_D + 65.8$ ° (c 1.11, CHCl₃). The 1-D NOESY spectrum (500 MHz, CDCl₃) displayed the following nOe transfers: Irradiation of C14 (δ 2.39): 0.3% C3 (δ 4.51), 1.2% C20 (δ 2.75) Irradiation of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), 1.9% C21 (δ 2.94) The large of the control of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of the control of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of the control of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), The large of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% Irradiation of C21 (δ 2.94): 1.2% C3 (δ 4.51) Irradiation of C21 (δ 3.31): 2.6% C5 (δ 2.81), 4.5% C20 (δ 2.74) (3R,12bR)-3-((2S,3S)-5-(*tert*-butyldimethylsilyloxy)-3-methoxy-2-(4- methoxybenzyloxy)pentyl)-10-methoxy-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (28) Rf = 0.28 (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ : 7.65 (d, J=2.29 Hz, 1 H) 7.48 (d, J=8.24 Hz, 2 H) 7.30 (d, J=8.24 Hz, 2 H) 7.20 (d, J=8.24 Hz, 1 H) 7.10 (d, J=8.24 Hz, 2 H) 6.88 (d, J=8.24 Hz, 2 H) 6.85 (dd, J=8.47, 2.06 Hz, 1 H) 4.63 (d, J=11.90 Hz, 1 H) 4.49 (m, 2 H) 3.87 (s, 3 H) 3.80 (s, 3 H) 3.69 (td, J=9.27, 5.27 Hz, 1 H) 3.62 - 3.66 (m, 1 H) 3.60 (dt, J=8.59, 4.64 Hz, 1H) 3.54 (dt, J=8.47, 4.01 Hz, 1 H) 3.39(s, 3 H) 3.21 - 3.34 (m, 2 H) 3.06 - 3.16 (m, 1 H) 2.89 (t, J=12.36 Hz, 1 H) 2.65 - 2.83(m, 4 H) 2.46 - 2.58 (dd, J=12.4, 11.8 Hz, 1 H) 2.29 (s, 3 H) 2.17 (ddd, J=14.19, 8.70,5.04 Hz, 1 H) 1.74 – 1.88 (m, 1 H) 1.55 – 1.69 (m, 1 H) 1.32 – 1.46 (m, 1 H) 0.90 (s, 9 H) 0.05 (s, 3 H) 0.04 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 208.31, 159.39, 158.22, 144.78, 138.68, 134.81, 134.53, 130.98, 129.95 (2C), 129.75 (2C), 126.53 (2C), 124.21, 119.37, 119.08, 113.92 (2C), 112.98, 100.62, 78.22, 74.89, 71.33, 60.14, 59.61, 59.00, 58.55, 56.00, 55.41, 45.45, 45.25, 43.22, 32.95, 26.31, 26.10 (3C), 22.49, 21.68, 18.41, -5.15, -5.21; IR 3008 (w), 2928 (m), 2856 (m), 1708 (m), 1613 (m), 1513 (m), 1494 (w), 1367 (s), 1250 (s), 1216 (w), 1173 (s), 1147 (m), 1090 (s), 1037 (m), 836 (s), 759 (s); LRMS (APCI) 791.4 $[M + H]^+$; $[\alpha]^{24}_D + 16.9 \circ (c \ 0.29, CHCl_3)$. (3R,12bS)-3-((2S,3S)-5-(tert-butyldimethylsilyloxy)-3-methoxy-2-(4- methoxybenzyloxy)pentyl)-10-methoxy-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (**29**) Rf = 0.36 (50% EtOAc in hexanes); H NMR (600 MHz, CDCl₃) δ :7.60 (d, J=2.20 Hz, 1 H, C12) 7.44 (d, *J*=8.49 Hz, 2 H, Ts) 7.25 (d, *J*=8.49 Hz, 2 H, PMB) 7.12 (d, *J*=8.49 Hz, 1 H, C10) 7.08 (d, J=8.35 Hz, 2
H, Ts) 6.86 (d, J=8.64 Hz, 2 H, PMB) 6.81 (dd, J=8.49, 2.34 Hz, 1 H, C9) 4.43 (d, *J*=10.84 Hz, 1 H, PMB Bn) 4.32 (d, *J*=10.69 Hz, 1 H, PMB Bn) 4.04 (dd, *J*=11.10, 2.40 Hz, 1 H, C3) 3.86 (s, 3 H, PMB **Me**O) 3.78 (s, 3 H, **Me**O) 3.62 – 3.73 (m, 2 H, C18, CHHOTBS) 3.51 – 3.59 (m, 2 H, CHHOTBS, C17) 3.40 (s, 3 H, C17 **Me**O) 3.36 (ddd, *J*=14.57, 2.78, 1.40 Hz, 1 H, C14) 2.98 (m, 2 H, C5, C21) 2.91 (dd, J=11.57, 2.78 Hz, 1 H, C5) 2.75 (m, 1 H, C6) 2.54 – 2.64 (m, 3 H, C14, C20, C21) 2.47 (dd, *J*=15.96, 2.30 Hz, 1 H, C6) 2.28 (s, 3 H, Ts) 2.07 (dt, *J*=14.31, 8.80 Hz, 1 H, C19) 1.76 – 1.85 (m, 2 H, C16, C19) 1.56 – 1.44 (m, 1 H, C16) 0.87 – 0.91 (m, 9 H, TBS) 0.04 (s, 3 H, TBS) 0.04 (s, 3 H, TBS); ¹³C NMR (126 MHz, CDCl₃) δ: 210.75, 159.13, 157.97, 144.48, 139.42, 134.90, 133.39, 130.48, 129.97 (2C) 129.23 (2C) 126.59 (2C) 124.57, 122.59, 118.83, 113.69 (2C) 112.92, 101.18, 77.17, 75.89, 71.30, 59.53, 59.33, 58.54, 58.32, 55.81, 55.24, 49.90, 48.26, 46.43, 32.51, 32.03, 25.93 (3C) 22.90, 21.52, 18.25, -5.31, -5.41; IR 2929 (m), 2857 (m), 1709 (m), 1613 (m), 1514 (m), 1368 (s), 1305 (w), 1249 (s), 1216 (s), 1090 (s), 1038 (m), 971 (w), 836 (m), 759 (s); LRMS (APCI) 791.4 $[M + H]^+$; $[\alpha]^{24}_D + 38.6$ ° (c 1.72, CHCl₃). The 1-D NOESY spectrum (500 MHz, CDCl₃) displayed the following nOe transfers: Irradiation of C19 (δ 2.07): 3.0% C14 (δ 2.57), 2.3% C17 (δ 2.57) Irradiation of C3 (δ 4.04): 3.7% C14 (δ 3.36), 4.7% C5 (δ 2.98), 5.4% C21 (δ 2.58) ### (3*S*,12*bR*)-3-((2*S*,3*S*)-5-(*tert*-butyldimethylsilyloxy)-3-methoxy-2-(4- methoxybenzyloxy)pentyl)-10-methoxy-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (**30**) R*f* = 0.61 (50% EtOAc in hexanes); ¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, *J*=2.05 Hz, 1 H) 7.45 (d, *J*=8.49 Hz, 2 H) 7.32 (d, *J*=8.79 Hz, 2 H) 7.14 (d, *J*=8.49 Hz, 1 H) 7.08 (d, *J*=8.20 Hz, 2 H) 6.89 (d, *J*=8.49 Hz, 2 H) 6.82 (dd, *J*=8.35, 2.20 Hz, 1 H) 4.58 (d, *J*=10.84 Hz, 1 H) 4.48 (d, *J*=10.54 Hz, 1 H) 4.14 (dd, *J*=10.69, 2.49 Hz, 1 H) 3.87 (s, 3 H) 3.80 (s, 3 H) 3.69 (dd, *J*=7.76, 4.54 Hz, 2 H) 3.60 (ddd, *J*=10.40, 4.25, 2.34 Hz, 1 H) 3.48 – 3.52 (m, 1 H) 3.42 (dd, *J*=15.08, 3.08 Hz, 1 H) 3.33 (s, 3 H) 3.17 (dd, *J*=11.42, 5.86 Hz, 1 H) 3.02 (ddd, *J*=11.00, 4.69, 2.05 Hz, 1 H) 2.96 (dd, *J*=11.42, 3.22 Hz, 1 H) 2.74 – 2.85 (m, 2 H) 2.60 (td, *J*=10.54, 3.51 Hz, 1 H) 2.46 – 2.53 (m, 2 H) 2.29 (s, 3 H) 2.12 – 2.18 (m, 1 H) 1.79 – 1.84 (m, 1 H) 1.47 – 1.58 (m, 2H) 0.90 (s, 9 H) 0.05 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ: 210.99, 159.42, 158.24, 144.72, 139.62, 135.01, 133.61, 130.87, 130.04 (2C) 129.44 (2C) 126.75 (2C) 124.75, 122.80, 119.08, 114.00 (2C) 113.18, 101.40, 77.51, 76.45, 72.61, 59.76, 59.54, 59.00, 58.47, 56.01, 55.44, 49.97, 46.52, 32.71, 32.13, 29.86, 26.12, 22.95, 21.69, 18.44, -5.13, -5.22; IR 2929 (m), 2856 (m), 1711 (m), 1613 (m), 1514 (m), 1465 (w), 1369 (m), 1249 (s), 1173 (s), 1144 (m), 1090 (s), 1036 (m), 970 (w), 836 (s), 760 (s). LRMS (APCI) 791.4 [M + H]⁺; [α]²³_D -2.46 ° (*c* 0.69, CHCl₃). # (3S,4S)-3-methoxy-5-((3S,12bS)-10-methoxy-2-oxo-12-tosyl-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-3-yl)-4-(4-methoxybenzyloxy)pentanal (31) Alcohol **S1** (442 mg, 0.653 mmol, 1 equiv.) was dissolved in CH₂Cl₂ (65 mL) in a 300-mL round-bottom flask at rt. To this was added the Dess–Martin periodinane (305 mg, 0.72 mmol, 1.1 equiv.) in one portion, and the solution was stirred 1 h, after which the reaction solution was diluted with Et₂O (60 mL). The reaction mixture was poured into a 500-mL Erlenmeyer flask containing 120 mL of a 1:1 aqueous solution of sat. NaHCO₃:10% Na₂S₂O₃. The biphasic mixture was stirred vigorously 1 h, after which additional CH₂Cl₂ was added (50 mL) and the layers were separated. The aqueous was extracted with CH₂Cl₂ (2 x 50 mL), and the combined organics were dried over Na₂SO₄, filtered and concentrated in vacuo to provide the crude aldehyde (**31**), which was carried forward without further purification. ¹H NMR (500 MHz, CDCl₃) δ: 9.81 (t, *J*=1.71 Hz, 1 H) 7.65 (d, *J*=1.95 Hz, 1 H) 7.47 (d, *J*=8.30 Hz, 2 H) 7.16 – 7.23 (m, 3 H) 7.10 (d, *J*=7.81 Hz, 2 H) 6.80 – 6.89 (m, 3 H) 4.54 (d, *J*=11.23 Hz, 1 H) 4.50 (dd, *J*=11.23, 2.44 Hz, 1 H) 4.31 (d, *J*=11.23 Hz, 1 H) 3.90 – 3.98 (m, 2 H) 3.87 (s, 3 H) 3.70 (s, 3 H) 3.48 – 3.50 (m, 3 H) 3.29 (dd, *J*=13.18, 6.35 Hz, 1 H) 3.15 (m, 2 H) 2.94 (t, *J*=12.45 Hz, 1 H) 2.83 (dt, *J*=10.74, 4.64 Hz, 1 H) 2.64 – 2.77 (m, 4 H) 2.59 (ddd, *J*=16.60, 7.81, 1.95 Hz, 1 H) 2.37 (t, *J*=12.20 Hz, 1 H) 2.28 (s, 3 H) 2.04 (ddd, *J*=14.16, 9.28, 2.20 Hz, 1 H) 1.01 (ddd, *J*=13.18, 9.77, 2.93 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ: 208.50, 201.11, 159.38, 158.04, 144.68, 138.37, 134.36, 134.31, 129.95 (2C), 129.62 (2C), 126.28 (2C), 123.94, 118.94, 118.87, 113.87 (2C), 112.75, 100.31, 76.45, 75.92, 72.59, 60.94, 58.93, 57.99, 55.80, 55.18, 45.18, 44.62, 43.92, 42.77, 29.66, 26.64, 22.24, 21.50; LRMS (APCI) 675.3 [M + H]⁺ #### Pentacyclic aldehyde (32) A flame-dried, 100-mL round-bottom flask was charged with crude aldehyde **31** (0.653 mmol, 1 equiv.), which was azeotroped twice from benzene and placed on high vacuum 30 min. A stir bar was then added under a positive pressure of nitrogen, followed by toluene (21 mL). To a separate 10-mL flask was charged with toluene (2 mL), piperidine (129 μL) and *p*-toluenesulfonic acid (24.8 mg), and 1 mL of this solution was transferred to the first flask (piperidine addition: 65.7 μL, 0.65 mmol, 1 equiv). The reaction was allowed to stir overnight, after which it was quenched by the addition of saturated aqueous NaHCO₃ (10 mL). The reaction mixture was extracted with CH₂Cl₂ (3 x 15 mL), and the combined organics were dried over Na₂SO₄, filtered, and concentrated in vacuo. 39 The residue was azeotroped twice from benzene to aid in the removal of residual piperidine, after which the residue was dissolved in a 1:1 solution of hexanes: EtOAc. The solution was filtered to remove any precipitate, and the filtrate was concentrated in vacuo to provide 32 as a single diastereomer (382 mg, 0.56 mmol, 86%) yield). ¹H NMR (600 MHz, C_6D_6) δ : 9.83 (d, J=2.44 Hz, 1 H) 8.16 (d, J=2.44 Hz, 1 H) 7.59 (d, J=8.30 Hz, 2 H) 7.33 (d, J=8.80 Hz, 2 H) 6.99 (d, J=8.30 Hz, 1 H) 6.88 (d, J=8.80 Hz, 1 H) 6.88 (d, J=8.30 Hz, 2 H) 6.38 (d, J=7.81, 2 H) 4.83 (dd, J=11.5, 1.5 Hz, 1 H) 4.59 (d, J=11.72 Hz, 1 H) 4.51 (d, J=11.72 Hz, 1 H) 4.07 (dd, J=10.99, 9.03 Hz, 1 H) 3.45 (s, 3 H) 3.45 (s, 3 H) 3.38 - 3.51 (m, 1 H) 3.33 (s, 3 H) 3.25 (t, J=11.96, 1 H) 3.12(br. s, 1 H), 2.91 (dd, J=13.18, 1.95 Hz, 1 H) 2.69 – 2.81 (m, 1 H) 2.41 – 2.57 (m, 2 H) 2.34 – 2.41 (m, 1 H) 2.29 (dd, *J*=10.99, 2.20, 1 H) 1.83 (ddd, *J*=12.30, 12.30, 12.30, 1 H) 1.53 (s, 3 H) 1.47 – 1.52 (m, 1 H) 1.42 (dd, J=13.18, 11.23 Hz, 1 H) 1.33 (m, 1 H); 13 C NMR (126 MHz, CDCl₃) δ: 206.34, 159.39, 158.08, 144.80, 139.10, 135.86, 134.26, 130.97, 129.71 (2C), 129.44 (2C), 126.70 (2C), 124.83, 120.42, 118.89, 114.05 (2C), 112.94, 101.09, 82.33, 82.13, 72.51, 71.67, 62.61, 61.21, 56.08, 55.52, 55.39, 53.68, 46.76, 40.03, 38.24, 28.99, 22.68, 21.76; IR 3500 (br m), 2956(m), 2926(s), 2853(m), 1721(m), 1612(m), 1583(w), 1513(m), 1492(m), 1462(m), 1441(w), 1363(s), 1278(m), 1247(s), 1170(s), 1144(m), 1102(s), 1087(s), 1033(s), 973(m), 909(w), 846(w), 810(s), ³⁹ The product can be chromatographed on DavisilTM, but small amounts of decomposition are observed, and thus the reported workup procedure was devised to provide the pure product without need for flash chromatography. 731(m), 703(w), 657(m), 627(w); LRMS (APCI) 675.3 [M + H]⁺; $[\alpha]^{24}_D$ +70.8° (c 1.00, CHCl₃). The 1-D NOESY spectra (600 MHz, C_6D_6) displayed the following nOe transfers: Irradiation of C17 (δ 4.07): 1.79% 19 α (δ 1.83) Irradiation of C16 (δ 2.29): 1.69% CHO (δ 9.83), 3.34% C20 (δ 1.33) Irradiation of C3 (δ 4.83): 3.31% *o*-CH(Ts) (δ 7.59), MeO 55 N 21 Ts H 4 H HO 20 19 H 16 18 OPMB O OMe 3.63% C21α (δ 3.25), 2.55% C14α (δ 2.91) Irradiation of C20 (δ 1.33): 2.00% C18 (δ 3.41), $0.75\% \text{ C5}\beta (\delta 2.72). 1.94\% \text{ C21}\beta (\delta 2.44)$ #### Enal (33) A flame-dried 50-mL round-bottom flask was charged with aldol adduct **32** (208 mg, 0.31 mmol, 1 equiv) and azeotroped twice with benzene and placed on high vacuum for 15 min. A stir bar and and CH₂Cl₂ (7 mL) were added and the flask was cooled to 0 °C. To the stirred solution under nitrogen at 0 °C was added 7 mL of the following stock solution: (39 mg DMAP, 520 μL NEt₃, and 14 mL CH₂Cl₂). The amounts added were: DMAP (19.5 mg, 0.16 mmol, 0.5 equiv) and NEt₃ (260 μL, 3.5 mmol, 11.4 equiv). TFAA was added to the cooled solution, neat via microliter syringe (236 µL, 0.75 mmol, 2.4 equiv) which caused an immediate color change from pale yellow to dark orange-red. After addition was complete, the ice bath was removed and the reaction was stirred at rt for 30 m. The stir bar was removed and the contents of the flask were concentrated in vacuo. The flask containing the crude product was charged with CH₂Cl₂ (20 mL) and disopropyl amine (135 µL, 1.85 mmol, 6.0 equiv), and the contents were stirred at room temperature overnight. The contents were washed twice with DI H₂O (10 mL), and the aqueous layer was re-extracted twice with CH₂Cl₂ (2 x 10 mL). The combined organics were dried over Na2SO4, filtered, and concentrated. The residue was purified by flash chromatography (Biotage, 20-50% EtOAc/hexanes) to afford enal 33 as an orange solid (131 mg, 0.19 mmol, 63% yield). Rf = 0.54 (100% EtOAc); ¹H NMR (600 MHz, CDCl₃) δ: 10.46 (s, 1 H, CHO) 7.67 (d, J=2.34 Hz, 1 H, C12) 7.46 (d, J=8.49 Hz, 2 H, Ts) 7.26 (d, J=8.79 Hz, 2 H, PMB) 7.19 (d, J=8.49 Hz, 1 H, C10) 7.08 (d, J=8.49 Hz, 2 H, Ts) 6.86 - 6.89 (m, 2 H, PMB) 6.85 (dd, *J*=8.49, 2.34 Hz, 1 H, C9) 4.53 (sk d, *J*=11.42 Hz, 1 H, PMB Bn) 4.51 (sk d, *J*=11.72 Hz, 1 H, PMB Bn) 4.39 (dd, *J*=3.22, 0.88 Hz, 1
H, C17) 4.36 (br. d, *J*=10.54 Hz, 1 H, C3) 4.23 (dd, *J*=12.89, 2.34 Hz, 1 H, C14) 3.87 (s, 3 H, PMB) 3.84 (q, J=3.22 Hz, 1 H, C18) 3.78 (s, 3 H, **Me**OAr) 3.43 - 3.51 (m, 1 H, C21) 3.45 (s, 3 H, C17 OMe) 3.27 (ddd, *J*=11.50, 8.57, 5.42 Hz, 1 H, C5) 3.14 (dd, *J*=12.89, 4.98 Hz, 1 H, C21) 2.84 (ddd, J=11.42, 5.56, 3.80 Hz, 1 H, C5) 2.65 - 2.75 (m, 3 H, C6(2), C20) 2.32 (dd, *J*=12.89, 10.84 Hz, 1 H, C14) 2.28 (s, 3 H, Ts) 2.14 (ddd, *J*=14.64, 7.61, 2.93 Hz, 1 H, C19) 1.57 - 1.60 (m, 1 H, C19). ¹³C NMR (126 MHz, CDCl₃) δ: 190.23, 161.72, 159.01, 158.03, 144.64, 138.32, 134.58, 134.29, 130.53, 130.50, 129.63 (2C), 128.96 (2C), 126.27 (2C), 123.97, 119.15, 118.91, 113.73 (2C), 112.70, 100.33, 72.27, 70.38, 70.29, 62.87, 59.67, 58.38, 55.79, 55.17, 44.81, 33.95, 32.24, 25.39, 22.23, 21.45; FTIR (neat, cm⁻¹) 2924 (m), 2874(m), 2835(m), 1726(w), 1663(s), 1612(s), 1581(w), 1512(m), 1493(m), 1453(m), 1440(m), 1361(s), 1304(w), 1245(s), 1170(s), 1103(s), 1080(s), 1034(s), 983(m), 946(w), 924(m), 845(w), 811(m), 731(m), 674(s), 657(s), 617(w); LRMS (APCI) 657.3 [M + H]⁺; [\alpha]²³_D 224.8° (c 0.83, CHCl₃). ## Saturated Aldehyde (34) A 20-mL vial equipped with a stir bar was charged sequentially with enal **33** (10 mg, 0.015 mmol, 1 equiv), EtOH (2.5 mL), and PtO₂ (9 mg, 0.040 mmol, 2.6 equiv). The uncapped vial was placed in a Paar hydrogenation bomb over a stir place, and the bomb was charged with H₂ gas (48 atm). The solution was stirred at room temperature at this pressure for 65 h, after which point the bomb was carefully vented. The contents of the vial were filtered through a short plug of Celite® into a 10-mL round-bottom flask and concentrated in vacuo to afford an orange solid that was carried on to the next step without purification. [The ¹H NMR spectrum of one of the products, saturated alcohol **50**, is: ¹H NMR (600 MHz, CDCl₃) δ ppm 7.58 (d, *J*=2.34 Hz, 1 H) 7.46 (d, *J*=8.20 Hz, 2 H) 7.30 (d, *J*=8.49 Hz, 2 H) 7.12 (d, *J*=8.49 Hz, 1 H) 7.07 (d, *J*=7.91 Hz, 2 H) 6.87 - 6.94 (m, 2 H) 6.79 (dd, *J*=8.49, 2.05 Hz, 1 H) 4.58 (d, *J*=11.42 Hz, 1 H, PMB Bn) 4.44 (d, *J*=11.72 Hz, 1 H, PMB Bn) 4.35 (d, *J*=11.42 Hz, 1 H, C3) 4.30 (br. s., 1 H, CH**HO**H) 4.03 (d, *J*=10.54 Hz, 1 H, C**H**HOH) 3.84 (s, 3 H, MeO) 3.82 (s, 3 H, MeO) 3.78 (t, *J*=13.03 Hz, 1 H, C21) 3.72 - 3.75 (m, 1 H, C18) 3.71 (br. s., 1 H, C17) 3.39 (s, 3 H, MeO) 3.23 - 3.30 (m, 1 H) 2.81 (dd, *J*=13.18, 3.81 Hz, 1 H) 2.57 - 2.77 (m, 4 H) 2.53 (d, *J*=14.35 Hz, 1 H, C14) 2.40 - 2.47 (m, 1 H, C16) 2.33 - 2.40 (m, 1 H, C15) 2.21 - 2.30 (m, 1 H, C20) 2.27 (s, 3 H, Ts) 1.86 (ddd, *J*=14.86, 6.08, 3.37 Hz, 1 H, C19) 1.76 (ddd, *J*=14.13, 11.79, 4.83 Hz, 1 H, C14) 1.68 (d, *J*=14.94 Hz, 1 H, C19)]. The flask containing the crude hydrogenation product was charged with a stir bar and CH₂Cl₂ (3 mL) and cooled to 0 °C. To this solution was added the Dess–Martin periodinane (19.3 mg, 0.046 mmol, 3.0 equiv). The reaction mixture was stirred for 2 h, at which point it was first diluted with Et₂O (3 mL) and then quenched by pouring the solution into 6 mL of a 1:1 mixture of saturated aqueous NaHCO₃ and 10% aqueous sodium thiosulfate. The contents were stirred vigorously for 1 h and extracted with CH₂Cl₂ (3 x 5mL). The organics were dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by flash chromatography (DavisilTM, 20-50% EtOAc/hexanes) to afford saturated aldehyde **34** (4.0 mg, 0.0061 mmol, 40 % yield). #### Saturated Ester (53) A 1-dram vial containing aldehyde **34** (4.0 mg, 0.0061 mmol, 1 equiv) was charged with a stir bar, *t*-BuOH (300 μL), H₂O (200 μL) and 2-methyl-2-butene (91 μL, 0.86 mmol, 140 equiv). To this mixture, cooled to 0 °C, were added NaH₂PO₄ (3.8 mg, 0.027 mmol, 4.5 equiv) followed by NaClO₂ (80% technical grade, 3.1 mg, 0.027 mmol, 4.5 equiv) as solids. After 2 h, the reaction was determined to be complete (based on consumption of starting material by LC/MS). The reaction was diluted with DI H₂O and extracted with CH₂Cl₂ (4 x 1 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated in vacuo to afford the crude carboxylic acid as a pale yellow solid. The crude product, in an uncapped vial, was dissolved in EtOAc (~3 mL) and treated with a solution of CH₂N₂ (1 M in Et₂O) dropwise (8 drops) until a bright yellow color persisted. The solution was stirred for 2 min, after which excess CH₂N₂ and the solvent were removed by a positive pressure of N₂. The resultant residue was purified by flash column chromatography (DavisilTM, 20-50% EtOAc/hexanes) to afford saturated ester 53 as a yellow-orange solid (3.6 mg, 0.005 mmol, 86% yield). ¹H NMR (500 MHz, CDCl₃) δ ppm 7.58 (d, *J*=1.95 Hz, 1 H, C12) 7.45 (d, *J*=8.79 Hz, 2 H) 7.31 (d, *J*=8.30 Hz, 2 H) 7.12 (d, J=8.30 Hz, 1 H, C9) 7.07 (d, J=8.30 Hz, 2 H) 6.86 - 6.96 (m, 2 H) 6.79 (dd, J=8.55, 2.20 Hz, 1 H, C10) 4.56 (d, J=11.72 Hz, 1 H, PMB Bn) 4.50 (d, J=11.72 Hz, 1 H, PMB Bn) 4.14 (d, *J*=11.23 Hz, 1 H, C3) 3.84 (s, 3 H, MeO) 3.83 (s, 3 H, MeO) 3.80 (s, 3 H, MeO) 3.78 - 3.80 (m, 1 H, C17) 3.72 (d, J=2.90 Hz, 1 H, C18) 3.63 (t, J=12.94 Hz, 1 H, C21) 3.40 (dd, J=12.70, 2.93 Hz, 1 H, C16) 3.30 (s, 3 H, MeO) 3.14 - 3.23 (m, 1 H, C5) 2.76 (dd, *J*=13.43, 4.15 Hz, 1 H, C21) 2.63 - 2.72 (m, 2 H, C6, C5) 2.50 - 2.63 (m, 3 H, C6, C15, C14) 2.20 - 2.31 (m, 1 H, C20) 2.27 (s, 3 H, Ts-Me) 1.84 - 1.94 (m, 1 H, C19) 1.73 - 1.84 (m, 1 H, C14) 1.64 (d, *J*=15.14 Hz, 1 H, C19). The 1-D NOESY spectra (500 MHz, CDCl₃) displayed the following nOe transfers: Irradiation of C21 (δ 3.63): 5.2% C3 (δ 4.14), $$0.94\% \text{ C}16 (\delta 2.25)$$ Irradiation of C3 (δ 4.50): 2.1% C16 (δ 2.25), 1.4% *o*-CHTs (δ 7.45) Irradiation of C16 (δ 3.40): 2.3% C3 (4.14), 3.4% C21 α (3.63), 3.0% C17 (3.80) ### Pentacyclic methyl ester (56) Aldol adduct **32** (100 mg, 0.148 mmol, 1 equiv.) was dissolved in *t*-BuOH (2.5 mL), H₂O (2.5 mL) and acetone (1.4 mL) in a 25-mL round-bottom flask. 2-methyl-2-butene (58 μL, 0.55 mmol, 3.7 equiv.) was then added via microliter syringe, followed by NaH₂PO₄ (92 mg, 0.67 mmol, 4.5 equiv.) and NaClO₂ (80% technical grade, 75 mg, 0.67 mmol, 4.5 equiv.) as solids. The biphasic reaction was stirred vigorously 1.5 h, after which saturated aqueous NH₄Cl (5 mL) was added. The reaction mixture was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organics were dried over Na₂SO₄, filtered, and concentrated in vacuo. The resultant yellow solid was suspended in EtOAc (10 mL), to which EtOH was added dropwise until the reaction mixture was homogenous (~ 4 mL). To this was added a solution of CH₂N₂ (1 M in Et₂O) dropwise until a bright yellow color persisted (~200 μL). Excess CH₂N₂ and solvent were removed by evaporation under a steady stream of nitrogen, followed by high vacuum (~5 min). The residue was purified by flash chromatography (silica gel, 20 – 100% EtOAc in hexanes) to provide the ester **56** (74.9 mg, 0.11 mmol, 72% yield). R*f* = 0.44 (100% EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J*=2.29 Hz, 1 H) 7.48 (d, *J*=8.24 Hz, 2 H) 7.29 (d, *J*=8.70 Hz, 2 H) 7.12 (d, *J*=8.24 Hz, 1 H) 7.08 (d, *J*=8.24 Hz, 2 H) 6.88 (d, *J*=8.70 Hz, 2 H) 6.81 (dd, *J*=8.70, 2.29 Hz, 1 H) 4.63 (d, *J*=11 Hz, 1 H) 4.60 (d, *J*=11.45 Hz, 1 H) 4.54 (d, *J*=10.53 Hz, 1 H) 3.84 – 3.89 (m, 1 H), 3.85 (s, 3 H), 3.81 (s, 3 H) 3.80 (s, 3 H) 3.54 (s, 3 H) 3.39 – 3.48 (m, 1 H) 3.22 (s, 1 H) 3.16 (t, *J*=11.68 Hz, 1 H) 3.02 – 3.11 (m, 1 H) 2.62 – 2.75 (m, 3 H) 2.52 – 2.62 (m, 1 H) 2.37 (dd, *J*=12.36, 1.83 Hz, 1 H) 2.34 (d, *J*=10.99 Hz, 1 H) 2.27 (s, 3 H) 1.61 - 1.76 (m, 3 H) 1.57 (dd, *J*=13.05, 11.22 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ: 174.09, 159.23, 157.91, 144.66, 138.86, 134.30, 130.98, 129.63 (2C), 129.32 (2C), 126.57 (2C), 124.71, 119.92, 118.75, 113.91 (2C), 112.77, 100.89, 83.52, 81.57, 71.72, 70.98, 61.12, 57.76, 55.95, 55.41, 55.35, 53.54, 52.34, 46.30, 39.62, 37.76, 31.71, 29.23, 22.54, 21.65; IR 3004 (w), 2929 (m), 1717 (m), 1613 (m), 1514 (m), 1493 (m), 1439 (m), 1365 (s), 1280 (m), 1211 (m), 1172 (s), 1147 (m), 1108 (m), 1036 (m), 992 (w), 848 (m), 757 (s), 667 (s) LRMS (APCI) 705.3 [M + H]⁺; [α]²³_D +142.7° (*c* 1.04, CHCl₃). #### Unsaturated methyl ester (57) A 25-mL round-bottom flask with stir bar was charged with tertiary alcohol **56** (50.9 mg, 0.072 mmol, 1 equiv.), which had been azeotroped from benzene twice and placed under high vacuum for 30 min. The alcohol was dissolved in THF (3.6 mL), and the flask was cooled to -78 °C under a positive pressure of argon. A 1.3 M n-butyllithium solution in hexanes (110 µL, 0.144 mmol, 2 equiv.) was added dropwise, and the solution was stirred 10 min, after which trifluoroacetic anhydride (50.9 μL, 0.36 mmol, 5 equiv.) was added. The reaction mixture was allowed to come to rt over 3 h and was then quenched at 0 °C by slow addition of H₂O. The crude reaction mixture was extracted with CH₂Cl₂ (3 x 5 mL), and the combined organics were washed with a saturated aqueous NaHCO₃ solution (1 x 5 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to afford 60.4 mg of an orange solid. This material consisted of a 3:1 mixture of the tertiary trifluoroacetate to alcohol starting material and was carried forward without further purification. The crude trifluoroacetate, which was azeotroped twice from benzene and placed under high vacuum for 30 min, was transferred to a 25-mL sealed tube and dissolved in 11.5 mL toluene. To this solution was added a stir bar and freshly distilled DBU (86 µL, 10 equiv.) at rt. The flask was then sealed and immersed in a 110 °C oil bath, and the solution was stirred at this temperature for 15 h. The reaction was removed from the oil bath and the solution was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, 1% EtOH/CH₂Cl₂) to provide the unsaturated methyl ester 57 as a pale yellow solid (18.0 mg, 0.026 mmol, 36% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J=1.83 Hz, 1 H) 7.47 (d, J=8.42
Hz, 2 H) 7.31 (d, J=8.42 Hz, 2 H) 7.16 (d, J=8.78 Hz, 1 H) 7.07 (d, J=8.05 Hz, 2 H) 6.88 (d, J=8.78 Hz, 2 H) 6.82 (dd, J=8.42, 2.20 Hz, 1 H) 4.61 (s, 2 H) 4.27 (d, *J*=6.59 Hz, 1 H) 4.08 (d, *J*=11.34 Hz, 1 H) 3.88 (s, 3 H) 3.86 (s, 3 H) 3.80 (s, 3 H) 3.63 - 3.75 (m, 2 H) 3.54 (s, 3 H) 3.06 - 3.25 (m, 1 H) 3.12 (dd, 3.86 (s, 3 H) 3.80 (s, 3 H) 3.80 (s, 3 H) 3.63 - 3.75 (m, 2 H) 3.54 (s, 3 H) 3.06 - 3.25 (m, 1 H) 3.12 (dd, 3.86 (s, 3 H) 3.80 (s, 3 H) 3.80 (s, 3 H) 3.63 - 3.75 (m, 2 H) 3.54 (s, 3 H) 3.06 - 3.25 (m, 1 H) 3.12 (dd, 3.86 (s, 3 H) 3.80 (s, 3 H) 3.63 - 3.75 (m, 2 H) 3.54 (s, 3 H) 3.06 - 3.25 (m, 1 H) 3.12 (dd, 3.86 (s, 3 H) 3.80 (s, 3 H) 3.63 - 3.75 (m, 2 H) 3.54 (s, 3 H) 3.06 - 3.25 (m, 1 H) 3.12 (dd, 3.86 (s, 3 H) 3.80 (s, 3 H) 3.64 (J=12.81, 5.12 Hz, 1 H) 2.88 (t, J=12.08 Hz, 1 H) 2.67 - 2.79 (m, 2 H) 2.54 - 2.67 (m, 2 H)H) 2.27 (s, 3 H) 2.16 - 2.25 (m, 1 H) 1.94 - 2.07 (m, 1 H) 1.27 - 1.41 (m, 1 H); 13 C NMR (126 MHz, CDCl₃) δ 168.60, 159.12, 157.87, 144.43, 143.76, 138.52, 135.39, 134.38, 130.71, 129.47, 129.24, 126.60, 126.43, 124.24, 119.22, 118.79, 113.79, 112.59, 100.54, 80.01, 71.10, 61.99, 59.89, 58.96, 55.82, 55.25, 51.72, 45.59, 34.25, 33.71, 29.68, 29.12, 22.31, 21.49; IR 2925(m), 1720 (m), 1613 (w), 1513 (m), 1366 (m), 1248 (m), 1172 (m), 1115 (m), 911 (s), 813 (m), 734 (s), 669 (m); LRMS (APCI) 687.4 [M + H]⁺; $[\alpha]^{24}_{D}$ +162.4 (c 1.01, CHCl₃). ## N-tosyl, 18-(4-methoxybenzyloxy)-methyl reserpate (60) A 2-mL Biotage microwave vial was brought into a glove box and charged with a stir bar and unsaturated ester **57** (5.0 mg, 7.3 μmol, 1 equiv.) which had been azeotroped from benzene (3x) and placed under high vacuum for 30 min. Iridium complex **64** (11.0 mg, 7.3 μmol, 1 equiv.) was added to the vial followed by CH₂Cl₂ (360 μL), which had been degassed through three freeze-pump-thaw cycles. The vial was sealed with a Teflon-lined pressure seal cap and transferred out of the glove box. The vial was evacuated and backfilled with H₂ (4x), after which it was stirred 16 h at rt under a balloon of H₂. The reaction mixture was then concentrated in vacuo. Analysis of the crude reaction mixture by ¹H NMR (comparison of the PMB Bn signals) showed a 6:1 diastereomeric ratio of olefin hydrogenation products. The mixture was purified by preparatory thin layer chromatography to provide recovered unsaturated ester **57** (2.3 mg, 3.3 μmol, 46% recovered starting material) and the desired saturated ester 60 as a white solid (2.2 mg. 3.2 umol, 44% yield, 81% based on recovered starting material). Rf = 0.51 (EtOAc); ¹H NMR (500 MHz, CDCl₃) δ : 7.61 (d, J=2.29 Hz, 1 H) 7.32 (d, J=8.24 Hz, 2 H), 7.32 (m, 2 H), 7.05 (d, J=8.70 Hz, 1 H) 7.02 (d, J=8.24 Hz, 2 H) 6.90 (d, J=8.70 Hz, 2 H) 6.80 (dd, J=8.24, 2.29 Hz, 1 H) 4.64 (d, J=10.99 Hz, 1 H) 4.58 (d, J=10.99 Hz, 1 H) 4.40 (dd, J=5.27, 2.52 Hz, 1 H) 3.89 (s, 3 H) 3.88 (s, 3 H) 3.83 (s, 3 H) 3.72 (dd, J=10.99, 9.16 Hz, 1 H) 3.67 (s, 3 H) 3.33 - 3.42 (m, 1 H) 3.12 (dd, J=13.28, 5.49 Hz, 1 H) 2.93 - 3.03 (m, 1 H) 2.79 (dd, J=11.45, 4.58 Hz, 1 H) 2.85 (ddt, J=17.06, 5.72, 2.80, 2.80 Hz, 1 H) 2.64 (dt, *J*=14.54, 3.03 Hz, 1 H) 2.52 (dd, *J*=10.99, 5.04 Hz, 1 H) 2.34 (dd, *J*=11.68, 1.60 Hz, 1 H) 2.27 (s, 3 H) 2.15 – 2.26 (m, 2 H) 2.09 (td, *J*=13.28, 11.90 Hz, 1 H) 1.92 – 2.01 (m, 1 H) $1.87 \text{ (dt, } J=13.16, 3.95 \text{ Hz, } 1 \text{ H) } 1.72 \text{ (d, } J=12.36 \text{ Hz, } 1 \text{ H); } ^{13}\text{C NMR (} 126 \text{ MHz, CDCl}_3\text{)}$ δ: 172.51, 159.01, 157.97, 144.23, 140.33, 135.72, 132.38, 131.12, 129.12 (2C), 128.82 (2C), 126.74, 125.65, 123.95, 118.49, 113.72, 113.06, 102.50, 82.88, 79.37, 71.19, 61.13, 56.27, 55.89, 55.26, 52.06, 51.89, 50.66, 50.08, 33.63, 32.33, 30.36, 26.27, 21.49, 18.15.; FTIR (neat, cm⁻¹); 2930 (br m), 1737 (m), 1614 (m), 1514 (m), 1364 (m), 1278 (m), 1171 (s), 1093 (m), 911 (w), 814 (w), 735 (s); LRMS (APCI) 689.3 $[M + H]^+$; $[\alpha]^{23}_D + 166.0$ (c) 1.35, CHCl₃). ## N-tosyl-methyl reserpate (S2) A 2-dram vial with a septum cap and stir bar was charged with PMB ether 60 (11.4 mg, 16.5 μmol, 1 equiv.), followed by CH₂Cl₂ (1.1 mL) and 1,3-dimethoxybenzene (6.5 μL, 49.5 μmol, 3 equiv.). The vial was cooled to 0 °C, and a TfOH solution in CH₂Cl₂ (44 μL of a 50 μL TfOH/1 mL CH₂Cl₂, 24.7 μmol, 1.5 equiv.) was added dropwise via microliter syringe. Consumption of the starting material was monitored using LC/MS (APCI). Upon completion (~30 min after addition of TfOH), the reaction was quenched with a half-saturated aqueous solution of NaHCO₃ (1 mL) and diluted with CH₂Cl₂ (0.5 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 1 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The resultant residue was purified (silica gel, 5-10% MeOH/CH₂Cl₂, followed by an eluent of 10:1:1:1 EtOAc: H₂O: MeOH: acetone), to afford alcohol **S2** as a pale yellow solid (8.1 mg, 14.2 μ mol, 86% yield). Rf = 0.28 (10:1:1:1 EtOAc: H₂O: MeOH: acetone); ¹H NMR (500 MHz, CDCl₃) δ : 7.60 (d, J=1.95 Hz, 1 H) 7.31 (d, J=8.30 Hz, 2 H) 7.04 (d, J=8.30 Hz, 1 H) 7.01 (d, J=7.81 Hz, 2 H) 6.78 (dd, J=8.30, 2.44 Hz, 1 H) 4.39 (br. s., 1 H) 3.88 (s, 3 H) 3.87 (s, 3 H) 3.65 (s, 3 H) 3.58 (td, *J*=10.74, 8.79 Hz, 1 H) 3.52 (m, 1 H) 3.11 (dd, J=12.94, 5.62 Hz, 1 H) 2.96 (td, J=12.33, 4.64 Hz, 1 H) 2.76 – 2.87 (m, 1 H) 2.79 (dd, *J*=11.23, 4.88 Hz, 1 H) 2.64 (dt, *J*=14.41, 3.30 Hz, 1 H) 2.50 (dd, *J*=10.74, 4.88 Hz, 1 H) 2.35 (d, *J*=11.72 Hz, 1 H) 2.26 (s, 3 H) 2.07 – 2.23 (m, 3 H) 1.93 - 2.03 (m, 1 H) 1.71 – 1.84 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ: 172.57, 157.99, 144.29, 140.33, 135.65, 132.38, 128.86 (2C), 126.74 (2C), 125.64, 123.97, 118.54, 113.07, 102.51, 81.35, 75.30, 61.18, 56.27, 55.90, 51.98, 51.44, 50.65, 50.05, 33.79, 32.79, 32.52, 26.43, 21.50, 18.21; FTIR (neat, cm⁻¹); 1737 (m), 1614 (m), 1493 (w), 1365 (m), 1278 (w), 1254 (w), 1172 (s), 1089 (m), 909 (m), 812 (w), 735 (s); LRMS (APCI) 569.2 [M + H]⁺; $[\alpha]^{23}_D$ + 211.3 (c 0.81, CHCl₃). ## (+)-Methyl reserpate (10) A 20-mL vial was charged with a stir bar, **S2** (10.0 mg, 0.018 mmol, 1 equiv.), and MeOH (3.2 mL) under a positive pressure of N_2 . To this was added Na_2HPO_4 (75.1 mg, 0.51 mmol, 30 equiv.) as a solid in one portion, followed by 5%-sodium/mercury amalgam (32 mg, 0.070 mmol, 4 equiv.). The heterogeneous mixture was stirred vigorously at rt and consumption of the **S2** was monitored using LC/MS (APCI). After 4 h, a second portion of Na_2HPO_4 (38 mg, 0.26 mmol, 15 equiv.) was added, followed by 5%-sodium/mercury amalgam (20 mg, 0.043 mmol, 2.7 equiv.). Upon completion (1 h after second addition of reagents), the reaction mixture was transferred away from the bead of mercury that had formed, using CH_2CI_2 (10 mL) to complete the transfer. The solution was washed with H_2O (2 x 5 mL) and brine (5 mL), dried over Na_2SO_4 , filtered, and concentrated in vacuo. The resultant residue was purified by flash chromatography (10% MeOH/ CH_2CI_2) to afford, as a white solid, **10** (5.0 mg, 0.012 mmol, 69%). $R_f = 0.19$ (10:1:1:1 EtOAc: H_2O :MeOH:acetone); 1H NMR data were in agreement with literature values. $^{40~13}C$ NMR (126 MHz, $CDCI_3$) δ : 173.17, 156.38, 136.78, 128.84, ⁴⁰ Lounasmaa, M.; Tolvanen, A.; Kan, S.-K. *Heterocycles* **1985**, *23*, 371–375. 121.63, 118.51, 109.31, 107.13, 95.24, 80.95, 75.00, 60.93, 55.79, 54.20, 51.97, 51.15, 51.04, 49.00, 33.97, 32.40, 32.12, 23.97, 16.48; FTIR (neat, cm⁻¹); 3372 (m), 2929 (m), 2852 (w), 1723 (m), 1629 (w), 1463 (m), 1279 (w), 910 (s), 732 (s); LRMS (APCI) 415.1 $[M + H]^+$; $[\alpha]^{22}_D + 96.8$ (c 0.23, CHCl₃). ## Reserpine (+)- $(1)^{41}$ A 1-dram vial with a screw-top septum cap was charged with a stir bar, secondary alcohol (+)-10 (5.0 mg, 0.012 mmol, 1 equiv.) and 3,4,5-trimethoxybenzoyl chloride (16.7 mg, 0.072 mmol, 5 equiv). Freshly distilled pyridine (300 µL) was added under argon, the vial was wrapped in aluminum foil, and the reaction mixture was allowed to stir at rt 4 d under argon. Upon completion of the reaction, the pyridine was removed in vacuo. The crude residue was cooled to 0 °C, dissolved in CH₂Cl₂ (2 mL) and treated dropwise with a saturated aqueous solution of Na₂CO₃ (2 mL). The layers were separated, and the aqueous layer was extracted twice with CH2Cl2. The combined organics were washed once with deionized water, dried over Na₂SO₄, filtered, and concentrated in vacuo. The resultant solid was purified by flash chromatography (silica gel, 70% EtOAc in hexanes) to provide (+)-reserpine (6.6 mg, 0.011 mmol, 90% yield) as an off-white solid. The synthetic sample of (+)-reserpine gave identical TLC Rf, ¹H ⁴¹ This procedure was adapted the Stork synthesis of reserpine: See ref. 5q NMR, and 13 C NMR data to a commercial sample of (–)-reserpine from Aldrich, and were in agreement with literature values (1 H NMR, 13 C NMR). 40,42 R $_f$ = 0.21 (EtOAc) 1 H NMR (600 MHz, CDCl₃) δ : 7.48 (br. s, 1 H) 7.34 (d, $_$ J=8.79 Hz, 1 H) 7.32 (s, 2 H) 6.85 (d, $_$ J=2.05 Hz, 1 H) 6.78 (dd, $_$ J=8.64, 2.20 Hz, 1 H) 5.06 (ddd, $_$ J=11.64, 9.45, 4.98 Hz, 1 H) 4.48 (br. s., 1 H) 3.92 (s, 9 H) 3.91 (m, 1 H) 3.85 (s, 3 H) 3.82 (m, 3 H) 3.51 (s, 3 H) 3.12 – 3.25 (m, 2 H) 3.06 (dd, $_$ J=12.15, 2.78 Hz, 1 H) 2.96 (m, 1 H) 2.70 (dd, $_$ J=11.13, 4.69 Hz, 1 H) 2.44 – 2.54 (m, 2 H) 2.28 – 2.41 (m, 2 H) 2.04 – 2.12 (m, 1 H) 2.00 (ddd, $_$ J=12.67, 4.17, 0.73 Hz, 1 H) 1.92 (d, $_$ J=11.72 Hz, 1 H) 1.80 (d, $_$ J=14.64 Hz, 1 H); $_$ ¹³C NMR (126 MHz, CDCl₃) δ : 172.79, 165.39, 156.28, 152.98, 142.28, 136.31, 130.36, 125.39, 122.20, 118.59, 109.09, 108.23, 106.78, 95.19, 77.98, 77.82, 60.93, 60.77, 56.27, 55.83, 53.72, 51.84, 51.77, 51.23, 49.06, 34.04, 32.31, 29.75, 24.35, 16.81; IR 3433 (w), 2987 (w), 1730 (m), 1711 (m), 1587 (m), 1499 (m), 1456 (m), 1412 (m), 1331 (s), 1273 (s), 1249 (m), 1225 (s), 1186 (w), 1120 (s), 1062 (m), 1002 (m), 976 (m), 763 (m). LRMS (APCI)
609.2 [M + H] $^+$; [α] $^{22}_{\rm D}$ +114.6 ($_$ c 0.20, CHCl₃). - ⁴² Martin, S. F.; Rüeger, H.; Williamson, S. A.; Grzejszczak, S. J. Am. Chem. Soc. 1987, 109, 6124. ## 2.10. Spectroscopic Comparisons of Synthetic (+)- and Commercial (-)-Reserpine ¹H NMR Spectra (CDCl₃, 600 MHz) ¹³C NMR Spectra (CDCl₃, 126 MHz) #### Circular Dichroism Spectra (CH₂Cl₂) #### 2.11. X-Ray Crystallographic Analysis of 60 #### Acknowledgment We thank Dr. Shao-Liang Zheng at the Center for Crystallographic Studies at Harvard University for X-ray data collection and structure determination. We thank Dr. Yu-Sheng Chen at ChemMatCARS, APS, for his assistance with single-crystal data. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357." (See: http://cars9.uchicago.edu/chemmat/pages/acknowledge.html) #### Procedure A crystal mounted on a diffractometer was collected data at 100 K. The intensities of the reflections were collected by means of a Bruker APEX II CCD along with the D8 Diffractometer (30 KeV, $\lambda = 0.413280$ Å), and equipped with an Oxford Cryosystems nitrogen open flow apparatus. The collection method involved 0.5° scans in Phi at -5° in 2θ . Data integration down to 0.82 Å resolution was carried out using SAINT V7.46 A (Bruker diffractometer, 2009) with reflection spot size optimisation. Absorption corrections were made with the program SADABS (Bruker diffractometer, 2009). The structure was solved by the direct methods procedure and refined by least-squares methods again F^2 using SHELXS-97 and SHELXL-97 (Sheldrick, 2008). Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table 1, while geometric parameters are shown in Tables 2. The Ortep plots produced with SHELXL-97 program, and the other drawings were produced with Accelrys DS Visualizer 2.0 (Accelrys, 2007). **Table 2.4.** Experimental details | | naomi1101_APS | |-----------------------------|--| | Crystal data | | | Chemical formula | $C_{38}H_{44}N_2O_8S$ | | $M_{ m r}$ | 688.81 | | Crystal system, space group | Triclinic, P1 | | Temperature (K) | 15 | | a, b, c (Å) | 10.5400 (9), 13.2962 (12), 13.7619 (13) | | α, β, γ (°) | 71.577 (2), 89.697 (2), 69.957 (2) | | $V(\text{Å}^3)$ | 1707.4 (3) | | Z | 2 | | Radiation type | Synchrotron, $\lambda = 0.41328 \text{ Å}$ | | μ (mm ⁻¹) | 0.09 | | Crystal size (mm) | $0.02 \times 0.01 \times 0.01$ | | Data collection | | | Diffractometer | Bruker D8 goniometer with CCD area detector diffractometer | | Absorption correction | Multi-scan SADABS | | T_{\min}, T_{\max} | 0.998, 0.999 | Table 2.4. (Continued). | No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 35992, 11719, 10083 | |--|--| | R _{int} | 0.075 | | Refinement | | | $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ | 0.045, 0.102, 1.02 | | No. of reflections | 11719 | | No. of parameters | 887 | | No. of restraints | 3 | | H-atom treatment | H-atom parameters constrained | | $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ | 0.28, -0.34 | | Absolute structure | Flack H D (1983), Acta Cryst. A39, 876-881 | | Flack parameter | -0.28 (16) | Computer programs: *APEX2* v2009.3.0 (Bruker-AXS, 2009), *SAINT* 7.46A (Bruker-AXS, 2009), *SHELXS97* (Sheldrick, 2008), *SHELXL97* (Sheldrick, 2008), Bruker *SHELXTL*. **Table 2.5.** Geometric parameters (Å, °) | S1—O1 | 1.424 (2) | S2—O12 | 1.424 (2) | |--------|-----------|---------|-----------| | S1—O2 | 1.429 (2) | S2—O11 | 1.426 (2) | | S1—N1 | 1.679 (2) | S2—N3 | 1.694 (3) | | S1—C20 | 1.757 (3) | S2—C60 | 1.766 (3) | | O3—C13 | 1.433 (4) | O13—C43 | 1.376 (4) | | O3—C28 | 1.433 (4) | O13—C67 | 1.432 (4) | | O4—C32 | 1.360 (4) | O14—C68 | 1.415 (4) | | O4—C35 | 1.435 (4) | O14—C53 | 1.438 (4) | | O5—C36 | 1.409 (4) | O15—C72 | 1.371 (4) | | O5—C14 | 1.441 (4) | O15—C75 | 1.433 (4) | | O6—C37 | 1.354 (4) | O16—C76 | 1.402 (4) | | O6—C38 | 1.450 (4) | O16—C54 | 1.429 (4) | | O7—C37 | 1.193 (4) | O17—C77 | 1.349 (4) | Table 2.5. (Continued). | O8—C3 | 1.365 (4) | O17—C78 | 1.438 (3) | |----------|-----------|----------|-----------| | O8—C27 | 1.414 (4) | O18—C77 | 1.202 (4) | | N1—C1 | 1.438 (4) | N3—C41 | 1.431 (4) | | N1—C19 | 1.446 (4) | N3—C59 | 1.447 (4) | | N2—C9 | 1.465 (4) | N4—C49 | 1.463 (4) | | N2—C10 | 1.474 (4) | N4—C50 | 1.480 (4) | | N2—C18 | 1.479 (4) | N4—C58 | 1.483 (4) | | C1—C6 | 1.388 (4) | C41—C42 | 1.390 (4) | | C1—C2 | 1.394 (4) | C41—C46 | 1.394 (4) | | C2—C3 | 1.396 (4) | C42—C43 | 1.385 (4) | | C2—H2 | 0.9500 | C42—H42 | 0.9500 | | C3—C4 | 1.390 (5) | C43—C44 | 1.403 (4) | | C4—C5 | 1.377 (5) | C44—C45 | 1.387 (4) | | C4—H4 | 0.9500 | C44—H44 | 0.9500 | | C5—C6 | 1.398 (4) | C45—C46 | 1.396 (4) | | C5—H5 | 0.9500 | C45—H45 | 0.9500 | | C6—C7 | 1.448 (4) | C46—C47 | 1.440 (4) | | C7—C19 | 1.349 (4) | C47—C59 | 1.346 (4) | | C7—C8 | 1.498 (4) | C47—C48 | 1.496 (4) | | C8—C9 | 1.539 (4) | C48—C49 | 1.534 (4) | | C8—H8A | 0.9900 | C48—H48A | 0.9900 | | C8—H8B | 0.9900 | C48—H48B | 0.9900 | | С9—Н9А | 0.9900 | C49—H49A | 0.9900 | | С9—Н9В | 0.9900 | C49—H49B | 0.9900 | | C10—C11 | 1.518 (4) | C50—C51 | 1.516 (4) | | C10—H10A | 0.9900 | C50—H50A | 0.9900 | | C10—H10B | 0.9900 | C50—H50B | 0.9900 | | C11—C16 | 1.526 (4) | C51—C52 | 1.520 (4) | | C11—C12 | 1.527 (4) | C51—C56 | 1.540 (4) | | C11—H11 | 1.0000 | C51—H51 | 1.0000 | | C12—C13 | 1.525 (4) | C52—C53 | 1.515 (4) | Table 2.5. (Continued). | C12—H12A | 0.9900 | C52—H52A | 0.9900 | |----------|-----------|----------|-----------| | C12—H12B | 0.9900 | C52—H52B | 0.9900 | | C13—C14 | 1.518 (4) | C53—C54 | 1.533 (4) | | C13—H13 | 1.0000 | C53—H53 | 1.0000 | | C14—C15 | 1.523 (4) | C54—C55 | 1.524 (4) | | C14—H14 | 1.0000 | C54—H54 | 1.0000 | | C15—C37 | 1.514 (4) | C55—C77 | 1.521 (4) | | C15—C16 | 1.535 (4) | C55—C56 | 1.545 (4) | | C15—H15 | 1.0000 | C55—H55 | 1.0000 | | C16—C17 | 1.537 (4) | C56—C57 | 1.535 (4) | | C16—H16 | 1.0000 | C56—H56 | 1.0000 | | C17—C18 | 1.522 (4) | C57—C58 | 1.529 (4) | | C17—H17A | 0.9900 | C57—H57A | 0.9900 | | C17—H17B | 0.9900 | С57—Н57В | 0.9900 | | C18—C19 | 1.518 (4) | C58—C59 | 1.517 (4) | | C18—H18 | 1.0000 | C58—H58 | 1.0000 | | C20—C21 | 1.389 (4) | C60—C65 | 1.388 (4) | | C20—C25 | 1.396 (4) | C60—C61 | 1.391 (4) | | C21—C22 | 1.394 (4) | C61—C62 | 1.384 (4) | | C21—H21 | 0.9500 | C61—H61 | 0.9500 | | C22—C23 | 1.384 (5) | C62—C63 | 1.392 (4) | | C22—H22 | 0.9500 | C62—H62 | 0.9500 | | C23—C24 | 1.391 (5) | C63—C64 | 1.390 (4) | | C23—C26 | 1.514 (4) | C63—C66 | 1.509 (4) | | C24—C25 | 1.383 (4) | C64—C65 | 1.397 (4) | | C24—H24 | 0.9500 | С64—Н64 | 0.9500 | | C25—H25 | 0.9500 | C65—H65 | 0.9500 | | C26—H26A | 0.9800 | C66—H66A | 0.9800 | | С26—Н26В | 0.9800 | С66—Н66В | 0.9800 | | C26—H26C | 0.9800 | С66—Н66С | 0.9800 | | C27—H27A | 0.9800 | С67—Н67А | 0.9800 | Table 2.5. (Continued). | С27—Н27В | 0.9800 | С67—Н67В | 0.9800 | |------------|-------------|-------------|-------------| | C27—H27C | 0.9800 | С67—Н67С | 0.9800 | | C28—C29 | 1.505 (4) | C68—C69 | 1.511 (4) | | C28—H28A | 0.9900 | C68—H68A | 0.9900 | | C28—H28B | 0.9900 | C68—H68B | 0.9900 | | C29—C30 | 1.377 (5) | C69—C70 | 1.382 (5) | | C29—C34 | 1.396 (4) | C69—C74 | 1.388 (4) | | C30—C31 | 1.394 (4) | C70—C71 | 1.379 (5) | | С30—Н30 | 0.9500 | C70—H70 | 0.9500 | | C31—C32 | 1.383 (4) | C71—C72 | 1.393 (4) | | C31—H31 | 0.9500 | C71—H71 | 0.9500 | | C32—C33 | 1.395 (4) | C72—C73 | 1.401 (4) | | C33—C34 | 1.365 (4) | C73—C74 | 1.382 (5) | | С33—Н33 | 0.9500 | C73—H73 | 0.9500 | | С34—Н34 | 0.9500 | C74—H74 | 0.9500 | | C35—H35A | 0.9800 | C75—H75A | 0.9800 | | С35—Н35В | 0.9800 | C75—H75B | 0.9800 | | C35—H35C | 0.9800 | C75—H75C | 0.9800 | | С36—Н36А | 0.9800 | C76—H76A | 0.9800 | | С36—Н36В | 0.9800 | С76—Н76В | 0.9800 | | С36—Н36С | 0.9800 | С76—Н76С | 0.9800 | | C38—H38A | 0.9800 | C78—H78A | 0.9800 | | С38—Н38В | 0.9800 | C78—H78B | 0.9800 | | C38—H38C | 0.9800 | C78—H78C | 0.9800 | | O1—S1—O2 | 120.14 (13) | O12—S2—O11 | 119.84 (13) | | O1—S1—N1 | 105.64 (13) | O12—S2—N3 | 106.48 (12) | | O2—S1—N1 | 107.84 (12) | O11—S2—N3 | 106.65 (12) | | O1—S1—C20 | 108.92 (14) | O12—S2—C60 | 109.36 (13) | | O2—S1—C20 | 107.56 (14) | O11—S2—C60 | 108.82 (14) | | N1—S1—C20 | 105.88 (13) | N3—S2—C60 | 104.61 (13) | | C13—O3—C28 | 116.6 (2) | C43—O13—C67 | 116.4 (3) | | • | * | | | Table 2.5. (Continued). | C32—O4—C35 | 118.1 (2) | C68—O14—C53 | 113.9 (2) | |------------|-------------|-------------|-------------| | C36—O5—C14 | 115.5 (3) | C72—O15—C75 | 116.5 (2) | | C37—O6—C38 | 115.2 (2) | C76—O16—C54 | 114.8 (2) | | C3—O8—C27 | 117.4 (3) | C77—O17—C78 | 115.9 (2) | | C1—N1—C19 | 106.1 (2) | C41—N3—C59 | 105.1 (2) | | C1—N1—S1 | 114.53 (19) | C41—N3—S2 | 113.43 (19) | | C19—N1—S1 | 122.8 (2) | C59—N3—S2 | 116.58 (19) | | C9—N2—C10 | 109.9 (2) | C49—N4—C50 | 109.3 (2) | | C9—N2—C18 | 111.1 (2) | C49—N4—C58 | 109.9 (2) | | C10—N2—C18 | 113.0 (2) | C50—N4—C58 | 112.9 (2) | | C6—C1—C2 | 122.9 (3) | C42—C41—C46 | 123.1 (3) | | C6—C1—N1 | 108.4 (3) | C42—C41—N3 | 128.2 (3) | | C2—C1—N1 | 128.7 (3) | C46—C41—N3 | 108.6 (3) | | C1—C2—C3 | 116.3 (3) | C43—C42—C41 | 116.9 (3) | | C1—C2—H2 | 121.8 | C43—C42—H42 | 121.6 | | C3—C2—H2 | 121.8 | C41—C42—H42 | 121.6 | | O8—C3—C4 | 115.9 (3) | O13—C43—C42 | 123.2 (3) | | O8—C3—C2 | 122.9 (3) | O13—C43—C44 | 115.2 (3) | | C4—C3—C2 | 121.2 (3) | C42—C43—C44 | 121.6 (3) | | C5—C4—C3 | 121.7 (3) | C45—C44—C43 | 120.1 (3) | | C5—C4—H4 | 119.2 | C45—C44—H44 | 119.9 | | C3—C4—H4 |
119.2 | C43—C44—H44 | 119.9 | | C4—C5—C6 | 118.2 (3) | C44—C45—C46 | 119.5 (3) | | C4—C5—H5 | 120.9 | C44—C45—H45 | 120.2 | | C6—C5—H5 | 120.9 | C46—C45—H45 | 120.2 | | C1—C6—C5 | 119.6 (3) | C41—C46—C45 | 118.7 (3) | | C1—C6—C7 | 107.4 (3) | C41—C46—C47 | 107.9 (3) | | C5—C6—C7 | 133.0 (3) | C45—C46—C47 | 133.4 (3) | | C19—C7—C6 | 109.1 (3) | C59—C47—C46 | 108.0 (3) | | C19—C7—C8 | 123.7 (3) | C59—C47—C48 | 123.0 (3) | | C6—C7—C8 | 127.2 (3) | C46—C47—C48 | 128.9 (3) | Table 2.5. (Continued). | C7—C8—C9 | 108.8 (3) | C47—C48—C49 | 108.7 (2) | |---------------|-----------|------------------|-----------| | C7—C8—H8A | 109.9 | C47—C48—H48A | 109.9 | | C9—C8—H8A | 109.9 | C49—C48—H48A | 109.9 | | С7—С8—Н8В | 109.9 | C47—C48—H48B | 109.9 | | С9—С8—Н8В | 109.9 | C49—C48—H48B | 109.9 | | Н8А—С8—Н8В | 108.3 | H48A—C48—H48B | 108.3 | | N2—C9—C8 | 113.3 (3) | N4—C49—C48 | 114.6 (3) | | N2—C9—H9A | 108.9 | N4—C49—H49A | 108.6 | | С8—С9—Н9А | 108.9 | C48—C49—H49A | 108.6 | | N2—C9—H9B | 108.9 | N4—C49—H49B | 108.6 | | С8—С9—Н9В | 108.9 | C48—C49—H49B | 108.6 | | Н9А—С9—Н9В | 107.7 | H49A—C49—H49B | 107.6 | | N2—C10—C11 | 112.7 (2) | N4—C50—C51 | 114.1 (2) | | N2—C10—H10A | 109.1 | N4—C50—H50A | 108.7 | | C11—C10—H10A | 109.1 | C51—C50—H50A | 108.7 | | N2—C10—H10B | 109.1 | N4—C50—H50B | 108.7 | | C11—C10—H10B | 109.1 | C51—C50—H50B | 108.7 | | H10A—C10—H10B | 107.8 | H50A—C50—H50B | 107.6 | | C10—C11—C16 | 109.9 (2) | C50—C51—C52 | 114.0 (3) | | C10—C11—C12 | 113.2 (3) | C50—C51—C56 | 109.0 (2) | | C16—C11—C12 | 111.3 (2) | C52—C51—C56 | 111.7 (3) | | C10—C11—H11 | 107.4 | C50—C51—H51 | 107.3 | | C16—C11—H11 | 107.4 | C52—C51—H51 | 107.3 | | C12—C11—H11 | 107.4 | C56—C51—H51 | 107.3 | | C13—C12—C11 | 110.1 (3) | C53—C52—C51 | 109.9 (2) | | C13—C12—H12A | 109.6 | C53—C52—H52A | 109.7 | | C11—C12—H12A | 109.6 | C51—C52—H52A | 109.7 | | C13—C12—H12B | 109.6 | C53—C52—H52B | 109.7 | | C11—C12—H12B | 109.6 | C51—C52—H52B | 109.7 | | | | 1152 A C52 1152D | 108.2 | | H12A—C12—H12B | 108.2 | H52A—C52—H52B | 108.2 | Table 2.5. (Continued). | O3—C13—C12 | 113.8 (3) | O14—C53—C54 | 111.6 (3) | |---------------|-----------|---------------|-----------| | C14—C13—C12 | 111.1 (2) | C52—C53—C54 | 111.0 (2) | | O3—C13—H13 | 106.0 | O14—C53—H53 | 106.3 | | C14—C13—H13 | 106.0 | C52—C53—H53 | 106.3 | | C12—C13—H13 | 106.0 | C54—C53—H53 | 106.3 | | O5—C14—C13 | 109.1 (2) | O16—C54—C55 | 105.7 (2) | | O5—C14—C15 | 106.1 (3) | O16—C54—C53 | 110.8 (2) | | C13—C14—C15 | 111.5 (2) | C55—C54—C53 | 111.2 (3) | | O5—C14—H14 | 110.0 | O16—C54—H54 | 109.7 | | C13—C14—H14 | 110.0 | C55—C54—H54 | 109.7 | | C15—C14—H14 | 110.0 | C53—C54—H54 | 109.7 | | C37—C15—C14 | 114.4 (3) | C77—C55—C54 | 110.3 (3) | | C37—C15—C16 | 108.6 (2) | C77—C55—C56 | 109.3 (2) | | C14—C15—C16 | 115.3 (3) | C54—C55—C56 | 114.5 (2) | | C37—C15—H15 | 105.9 | С77—С55—Н55 | 107.5 | | C14—C15—H15 | 105.9 | C54—C55—H55 | 107.5 | | C16—C15—H15 | 105.9 | C56—C55—H55 | 107.5 | | C11—C16—C15 | 111.6 (2) | C57—C56—C51 | 110.6 (2) | | C11—C16—C17 | 109.7 (2) | C57—C56—C55 | 112.7 (2) | | C15—C16—C17 | 112.6 (2) | C51—C56—C55 | 110.9 (2) | | C11—C16—H16 | 107.6 | С57—С56—Н56 | 107.5 | | C15—C16—H16 | 107.6 | C51—C56—H56 | 107.5 | | C17—C16—H16 | 107.6 | С55—С56—Н56 | 107.5 | | C18—C17—C16 | 113.3 (2) | C58—C57—C56 | 111.7 (2) | | C18—C17—H17A | 108.9 | C58—C57—H57A | 109.3 | | C16—C17—H17A | 108.9 | C56—C57—H57A | 109.3 | | С18—С17—Н17В | 108.9 | C58—C57—H57B | 109.3 | | C16—C17—H17B | 108.9 | С56—С57—Н57В | 109.3 | | H17A—C17—H17B | 107.7 | Н57А—С57—Н57В | 107.9 | | N2—C18—C19 | 109.0 (2) | N4—C58—C59 | 109.1 (2) | | N2—C18—C17 | 108.0 (2) | N4—C58—C57 | 109.5 (2) | Table 2.5. (Continued). | C19—C18—C17 | 118.9 (3) | C59—C58—C57 | 116.0 (2) | |---------------|-----------|---------------|-----------| | N2—C18—H18 | 106.8 | N4—C58—H58 | 107.3 | | C19—C18—H18 | 106.8 | C59—C58—H58 | 107.3 | | C17—C18—H18 | 106.8 | C57—C58—H58 | 107.3 | | C7—C19—N1 | 109.0 (3) | C47—C59—N3 | 110.3 (3) | | C7—C19—C18 | 123.5 (3) | C47—C59—C58 | 124.2 (3) | | N1—C19—C18 | 127.3 (3) | N3—C59—C58 | 125.1 (3) | | C21—C20—C25 | 121.4 (3) | C65—C60—C61 | 121.3 (3) | | C21—C20—S1 | 119.9 (2) | C65—C60—S2 | 119.4 (2) | | C25—C20—S1 | 118.6 (2) | C61—C60—S2 | 119.3 (2) | | C20—C21—C22 | 118.7 (3) | C62—C61—C60 | 118.2 (3) | | C20—C21—H21 | 120.6 | C62—C61—H61 | 120.9 | | C22—C21—H21 | 120.6 | C60—C61—H61 | 120.9 | | C23—C22—C21 | 120.9 (3) | C61—C62—C63 | 122.3 (3) | | C23—C22—H22 | 119.5 | C61—C62—H62 | 118.8 | | C21—C22—H22 | 119.5 | C63—C62—H62 | 118.8 | | C22—C23—C24 | 119.0 (3) | C64—C63—C62 | 118.2 (3) | | C22—C23—C26 | 120.4 (3) | C64—C63—C66 | 121.5 (3) | | C24—C23—C26 | 120.6 (3) | C62—C63—C66 | 120.2 (3) | | C25—C24—C23 | 121.5 (3) | C63—C64—C65 | 120.9 (3) | | C25—C24—H24 | 119.2 | С63—С64—Н64 | 119.6 | | C23—C24—H24 | 119.2 | C65—C64—H64 | 119.6 | | C24—C25—C20 | 118.4 (3) | C60—C65—C64 | 119.0 (3) | | C24—C25—H25 | 120.8 | C60—C65—H65 | 120.5 | | C20—C25—H25 | 120.8 | С64—С65—Н65 | 120.5 | | C23—C26—H26A | 109.5 | С63—С66—Н66А | 109.5 | | С23—С26—Н26В | 109.5 | С63—С66—Н66В | 109.5 | | H26A—C26—H26B | 109.5 | H66A—C66—H66B | 109.5 | | C23—C26—H26C | 109.5 | C63—C66—H66C | 109.5 | | H26A—C26—H26C | 109.5 | H66A—C66—H66C | 109.5 | | H26B—C26—H26C | 109.5 | H66B—C66—H66C | 109.5 | Table 2.5. (Continued). | O8—C27—H27A | 109.5 | О13—С67—Н67А | 109.5 | |---------------|-----------|---------------|-----------| | O8—C27—H27B | 109.5 | О13—С67—Н67В | 109.5 | | H27A—C27—H27B | 109.5 | Н67А—С67—Н67В | 109.5 | | O8—C27—H27C | 109.5 | О13—С67—Н67С | 109.5 | | H27A—C27—H27C | 109.5 | Н67А—С67—Н67С | 109.5 | | H27B—C27—H27C | 109.5 | Н67В—С67—Н67С | 109.5 | | O3—C28—C29 | 107.0 (2) | O14—C68—C69 | 110.3 (3) | | O3—C28—H28A | 110.3 | O14—C68—H68A | 109.6 | | C29—C28—H28A | 110.3 | C69—C68—H68A | 109.6 | | O3—C28—H28B | 110.3 | O14—C68—H68B | 109.6 | | C29—C28—H28B | 110.3 | С69—С68—Н68В | 109.6 | | H28A—C28—H28B | 108.6 | H68A—C68—H68B | 108.1 | | C30—C29—C34 | 117.4 (3) | C70—C69—C74 | 117.9 (3) | | C30—C29—C28 | 122.2 (3) | C70—C69—C68 | 118.4 (3) | | C34—C29—C28 | 120.4 (3) | C74—C69—C68 | 123.6 (3) | | C29—C30—C31 | 122.0 (3) | C71—C70—C69 | 122.2 (3) | | С29—С30—Н30 | 119.0 | С71—С70—Н70 | 118.9 | | С31—С30—Н30 | 119.0 | С69—С70—Н70 | 118.9 | | C32—C31—C30 | 119.7 (3) | C70—C71—C72 | 119.7 (3) | | C32—C31—H31 | 120.2 | C70—C71—H71 | 120.2 | | C30—C31—H31 | 120.2 | C72—C71—H71 | 120.2 | | O4—C32—C31 | 125.3 (3) | O15—C72—C71 | 124.3 (3) | | O4—C32—C33 | 116.1 (3) | O15—C72—C73 | 116.8 (3) | | C31—C32—C33 | 118.6 (3) | C71—C72—C73 | 118.9 (3) | | C34—C33—C32 | 121.0 (3) | C74—C73—C72 | 120.0 (3) | | С34—С33—Н33 | 119.5 | C74—C73—H73 | 120.0 | | С32—С33—Н33 | 119.5 | С72—С73—Н73 | 120.0 | | C33—C34—C29 | 121.4 (3) | C73—C74—C69 | 121.3 (3) | | С33—С34—Н34 | 119.3 | C73—C74—H74 | 119.3 | | С29—С34—Н34 | 119.3 | C69—C74—H74 | 119.3 | | O4—C35—H35A | 109.5 | O15—C75—H75A | 109.5 | Table 2.5. (Continued). | O4—C35—H35B | 109.5 | O15—C75—H75B | 109.5 | |---------------|------------|-----------------|------------| | H35A—C35—H35B | 109.5 | H75A—C75—H75B | 109.5 | | O4—C35—H35C | 109.5 | O15—C75—H75C | 109.5 | | H35A—C35—H35C | 109.5 | H75A—C75—H75C | 109.5 | | H35B—C35—H35C | 109.5 | H75B—C75—H75C | 109.5 | | O5—C36—H36A | 109.5 | O16—C76—H76A | 109.5 | | О5—С36—Н36В | 109.5 | О16—С76—Н76В | 109.5 | | Н36А—С36—Н36В | 109.5 | Н76А—С76—Н76В | 109.5 | | O5—C36—H36C | 109.5 | O16—C76—H76C | 109.5 | | H36A—C36—H36C | 109.5 | H76A—C76—H76C | 109.5 | | H36B—C36—H36C | 109.5 | H76B—C76—H76C | 109.5 | | O7—C37—O6 | 123.6 (3) | O18—C77—O17 | 123.6 (3) | | O7—C37—C15 | 124.6 (3) | O18—C77—C55 | 127.2 (3) | | O6—C37—C15 | 111.7 (3) | O17—C77—C55 | 109.2 (3) | | O6—C38—H38A | 109.5 | O17—C78—H78A | 109.5 | | O6—C38—H38B | 109.5 | O17—C78—H78B | 109.5 | | H38A—C38—H38B | 109.5 | H78A—C78—H78B | 109.5 | | O6—C38—H38C | 109.5 | O17—C78—H78C | 109.5 | | H38A—C38—H38C | 109.5 | H78A—C78—H78C | 109.5 | | H38B—C38—H38C | 109.5 | H78B—C78—H78C | 109.5 | | O1—S1—N1—C1 | -62.8 (2) | O12—S2—N3—C41 | -58.6 (2) | | O2—S1—N1—C1 | 167.6 (2) | O11—S2—N3—C41 | 172.4 (2) | | C20—S1—N1—C1 | 52.7 (2) | C60—S2—N3—C41 | 57.2 (2) | | O1—S1—N1—C19 | 166.1 (2) | O12—S2—N3—C59 | 179.1 (2) | | O2—S1—N1—C19 | 36.5 (3) | O11—S2—N3—C59 | 50.0 (2) | | C20—S1—N1—C19 | -78.4 (2) | C60—S2—N3—C59 | -65.2 (2) | | C19—N1—C1—C6 | 0.8 (3) | C59—N3—C41—C42 | -175.2 (3) | | S1—N1—C1—C6 | -137.9 (2) | S2—N3—C41—C42 | 56.4 (4) | | C19—N1—C1—C2 | -178.0 (3) | C59—N3—C41—C46 | 2.7 (3) | | S1—N1—C1—C2 | 43.3 (4) | S2—N3—C41—C46 | -125.8 (2) | | C6—C1—C2—C3 | 1.2 (5) | C46—C41—C42—C43 | 0.8 (4) | | • | • | • | • | Table 2.5. (Continued). | N1—C1—C2—C3 | 179.8 (3) | N3—C41—C42—C43 | 178.4 (3) | |-----------------|------------|-----------------|------------| | C27—O8—C3—C4 | -176.5 (3) | C67—O13—C43—C42 | 0.5 (4) | | C27—O8—C3—C2 | 3.5 (4) | C67—O13—C43—C44 | -179.2 (3) | | C1—C2—C3—O8 | -179.6 (3) | C41—C42—C43—O13 | -179.5 (3) | | C1—C2—C3—C4 | 0.3 (5) | C41—C42—C43—C44 | 0.1 (4) | | O8—C3—C4—C5 | 178.1 (3) | O13—C43—C44—C45 | 179.1 (3) | | C2—C3—C4—C5 | -1.9 (5) | C42—C43—C44—C45 | -0.5 (5) | | C3—C4—C5—C6 | 1.8 (5) | C43—C44—C45—C46 | 0.0 (4) | | C2—C1—C6—C5 | -1.2 (5) | C42—C41—C46—C45 | -1.3 (4) | | N1—C1—C6—C5 | 179.9 (3) | N3—C41—C46—C45 | -179.3 (2) | | C2—C1—C6—C7 | 177.5 (3) | C42—C41—C46—C47 | 176.4 (3) | | N1—C1—C6—C7 | -1.4 (3) | N3—C41—C46—C47 | -1.6 (3) | | C4—C5—C6—C1 | -0.3 (5) | C44—C45—C46—C41 | 0.8 (4) | | C4—C5—C6—C7 | -178.6 (3) | C44—C45—C46—C47 | -176.2 (3) | | C1—C6—C7—C19 | 1.5 (4) | C41—C46—C47—C59 | -0.3 (3) | | C5—C6—C7—C19 | 179.9 (3) | C45—C46—C47—C59 | 177.0 (3) | | C1—C6—C7—C8 | -175.3 (3) | C41—C46—C47—C48 | -177.6 (3) | | C5—C6—C7—C8 | 3.1 (6) | C45—C46—C47—C48 | -0.3 (5) | | C19—C7—C8—C9 | 10.2 (4) | C59—C47—C48—C49 | 4.9 (4) | | C6—C7—C8—C9 | -173.4 (3) | C46—C47—C48—C49 | -178.1 (3) | | C10—N2—C9—C8 | -59.8 (3) | C50—N4—C49—C48 | -58.4 (3) | | C18—N2—C9—C8 | 65.9 (3) | C58—N4—C49—C48 | 66.1 (3) | | C7—C8—C9—N2 | -42.4 (4) | C47—C48—C49—N4 |
-41.0 (3) | | C9—N2—C10—C11 | -176.7 (2) | C49—N4—C50—C51 | 178.6 (2) | | C18—N2—C10—C11 | 58.6 (3) | C58—N4—C50—C51 | 55.9 (3) | | N2—C10—C11—C16 | -55.0 (3) | N4—C50—C51—C52 | 71.8 (3) | | N2—C10—C11—C12 | 70.1 (3) | N4—C50—C51—C56 | -53.8 (3) | | C10—C11—C12—C13 | 176.5 (2) | C50—C51—C52—C53 | 176.3 (2) | | C16—C11—C12—C13 | -59.2 (3) | C56—C51—C52—C53 | -59.5 (3) | | C28—O3—C13—C14 | 78.6 (3) | C68—O14—C53—C52 | -53.0 (3) | | C28—O3—C13—C12 | -49.5 (3) | C68—O14—C53—C54 | 74.4 (3) | | L | | | + | Table 2.5. (Continued). | C11—C12—C13—O3 | -170.6 (2) | C51—C52—C53—O14 | -171.9 (3) | |-----------------|------------|-----------------|------------| | C11—C12—C13—C14 | 60.3 (3) | C51—C52—C53—C54 | 60.5 (3) | | C36—O5—C14—C13 | -110.9 (3) | C76—O16—C54—C55 | 146.1 (3) | | C36—O5—C14—C15 | 128.9 (3) | C76—O16—C54—C53 | -93.3 (3) | | O3—C13—C14—O5 | 59.8 (3) | O14—C53—C54—O16 | 58.5 (3) | | C12—C13—C14—O5 | -170.8 (3) | C52—C53—C54—O16 | -172.3 (2) | | O3—C13—C14—C15 | 176.6 (3) | O14—C53—C54—C55 | 175.7 (2) | | C12—C13—C14—C15 | -53.9 (3) | C52—C53—C54—C55 | -55.1 (3) | | O5—C14—C15—C37 | -66.5 (3) | O16—C54—C55—C77 | -66.5 (3) | | C13—C14—C15—C37 | 174.8 (3) | C53—C54—C55—C77 | 173.1 (2) | | O5—C14—C15—C16 | 166.5 (2) | O16—C54—C55—C56 | 169.6 (2) | | C13—C14—C15—C16 | 47.8 (4) | C53—C54—C55—C56 | 49.3 (3) | | C10—C11—C16—C15 | 178.0 (3) | C50—C51—C56—C57 | 53.6 (3) | | C12—C11—C16—C15 | 51.7 (3) | C52—C51—C56—C57 | -73.3 (3) | | C10—C11—C16—C17 | 52.5 (3) | C50—C51—C56—C55 | 179.4 (2) | | C12—C11—C16—C17 | -73.7 (3) | C52—C51—C56—C55 | 52.4 (3) | | C37—C15—C16—C11 | -176.7 (2) | C77—C55—C56—C57 | -47.7 (3) | | C14—C15—C16—C11 | -46.8 (4) | C54—C55—C56—C57 | 76.7 (3) | | C37—C15—C16—C17 | -52.8 (3) | C77—C55—C56—C51 | -172.2 (3) | | C14—C15—C16—C17 | 77.1 (3) | C54—C55—C56—C51 | -47.9 (3) | | C11—C16—C17—C18 | -55.5 (3) | C51—C56—C57—C58 | -56.7 (3) | | C15—C16—C17—C18 | 179.6 (2) | C55—C56—C57—C58 | 178.6 (2) | | C9—N2—C18—C19 | -50.6 (3) | C49—N4—C58—C59 | -49.5 (3) | | C10—N2—C18—C19 | 73.4 (3) | C50—N4—C58—C59 | 72.9 (3) | | C9—N2—C18—C17 | 179.0 (3) | C49—N4—C58—C57 | -177.4 (2) | | C10—N2—C18—C17 | -57.0 (3) | C50—N4—C58—C57 | -55.0 (3) | | C16—C17—C18—N2 | 56.3 (3) | C56—C57—C58—N4 | 56.2 (3) | | C16—C17—C18—C19 | -68.4 (3) | C56—C57—C58—C59 | -67.9 (3) | | C6—C7—C19—N1 | -0.9 (3) | C46—C47—C59—N3 | 2.1 (3) | | C8—C7—C19—N1 | 176.0 (3) | C48—C47—C59—N3 | 179.6 (3) | | C6—C7—C19—C18 | -176.5 (3) | C46—C47—C59—C58 | -170.6 (3) | | • | • | • | | Table 2.5. (Continued). | C8—C7—C19—C18 | 0.5 (5) | C48—C47—C59—C58 | 6.9 (5) | |-----------------|------------|-----------------|------------| | C1—N1—C19—C7 | 0.1 (3) | C41—N3—C59—C47 | -3.0 (3) | | S1—N1—C19—C7 | 134.5 (2) | S2—N3—C59—C47 | 123.6 (2) | | C1—N1—C19—C18 | 175.4 (3) | C41—N3—C59—C58 | 169.6 (3) | | S1—N1—C19—C18 | -50.2 (4) | S2—N3—C59—C58 | -63.8 (3) | | N2—C18—C19—C7 | 19.2 (4) | N4—C58—C59—C47 | 15.7 (4) | | C17—C18—C19—C7 | 143.5 (3) | C57—C58—C59—C47 | 140.0 (3) | | N2—C18—C19—N1 | -155.4 (3) | N4—C58—C59—N3 | -155.9 (2) | | C17—C18—C19—N1 | -31.2 (4) | C57—C58—C59—N3 | -31.6 (4) | | O1—S1—C20—C21 | 4.9 (3) | O12—S2—C60—C65 | 27.4 (3) | | O2—S1—C20—C21 | 136.6 (2) | O11—S2—C60—C65 | 160.0 (2) | | N1—S1—C20—C21 | -108.3 (2) | N3—S2—C60—C65 | -86.3 (3) | | O1—S1—C20—C25 | -171.7 (2) | O12—S2—C60—C61 | -154.1 (2) | | O2—S1—C20—C25 | -40.0 (3) | O11—S2—C60—C61 | -21.5 (3) | | N1—S1—C20—C25 | 75.1 (3) | N3—S2—C60—C61 | 92.2 (3) | | C25—C20—C21—C22 | 0.5 (4) | C65—C60—C61—C62 | -0.8 (5) | | S1—C20—C21—C22 | -176.0 (2) | S2—C60—C61—C62 | -179.2 (2) | | C20—C21—C22—C23 | -0.5 (5) | C60—C61—C62—C63 | 0.9 (5) | | C21—C22—C23—C24 | 0.1 (5) | C61—C62—C63—C64 | 0.2 (5) | | C21—C22—C23—C26 | 179.1 (3) | C61—C62—C63—C66 | -178.2 (3) | | C22—C23—C24—C25 | 0.5 (5) | C62—C63—C64—C65 | -1.4 (5) | | C26—C23—C24—C25 | -178.6 (3) | C66—C63—C64—C65 | 177.0 (3) | | C23—C24—C25—C20 | -0.5 (5) | C61—C60—C65—C64 | -0.4 (5) | | C21—C20—C25—C24 | 0.0 (4) | S2—C60—C65—C64 | 178.0 (2) | | S1—C20—C25—C24 | 176.6 (2) | C63—C64—C65—C60 | 1.5 (5) | | C13—O3—C28—C29 | -175.4 (2) | C53—O14—C68—C69 | -163.1 (2) | | O3—C28—C29—C30 | -119.7 (3) | O14—C68—C69—C70 | 166.7 (3) | | O3—C28—C29—C34 | 59.5 (4) | O14—C68—C69—C74 | -17.5 (4) | | C34—C29—C30—C31 | -0.4 (5) | C74—C69—C70—C71 | -2.1 (5) | | C28—C29—C30—C31 | 178.8 (3) | C68—C69—C70—C71 | 173.9 (3) | | C29—C30—C31—C32 | 0.3 (5) | C69—C70—C71—C72 | -0.3 (5) | Table 2.5. (Continued). | C35—O4—C32—C31 | 2.1 (4) | C75—O15—C72—C71 | -1.7 (4) | |-----------------|------------|-----------------|------------| | C35—O4—C32—C33 | -178.5 (3) | C75—O15—C72—C73 | 177.4 (3) | | C30—C31—C32—O4 | 179.9 (3) | C70—C71—C72—O15 | -179.1 (3) | | C30—C31—C32—C33 | 0.6 (5) | C70—C71—C72—C73 | 1.9 (5) | | O4—C32—C33—C34 | 179.2 (3) | O15—C72—C73—C74 | 179.9 (3) | | C31—C32—C33—C34 | -1.4 (5) | C71—C72—C73—C74 | -1.0 (4) | | C32—C33—C34—C29 | 1.3 (5) | C72—C73—C74—C69 | -1.5 (5) | | C30—C29—C34—C33 | -0.4 (5) | C70—C69—C74—C73 | 3.0 (5) | | C28—C29—C34—C33 | -179.6 (3) | C68—C69—C74—C73 | -172.8 (3) | | C38—O6—C37—O7 | 1.6 (4) | C78—O17—C77—O18 | -2.4 (4) | | C38—O6—C37—C15 | -174.3 (2) | C78—O17—C77—C55 | 174.3 (2) | | C14—C15—C37—O7 | 159.7 (3) | C54—C55—C77—O18 | -11.8 (4) | | C16—C15—C37—O7 | -69.9 (4) | C56—C55—C77—O18 | 115.0 (3) | | C14—C15—C37—O6 | -24.4 (4) | C54—C55—C77—O17 | 171.6 (2) | | C16—C15—C37—O6 | 106.0 (3) | C56—C55—C77—O17 | -61.6 (3) | **Figure 2.3.** Perspective views showing 50% probability displacement. **Figure 2.4.** Three-dimensional supramolecular architecture viewed along the *a*-axis direction. # Chapter 3 Synthesis of Chiral Bisthiourea Catalysts #### 3.1. Introduction Recent mechanistic investigations of a thiourea-catalyzed asymmetric alkylation of α -chloroethers with silyl ketene acetals have led to the hypothesis that two molecules of catalyst are involved in both productive electrophile activation and in nonproductive ground state aggregation. This chapter describes our efforts to synthesize chiral bisthioureas that can activate electrophiles but cannot self-aggregate. Ongoing efforts are presented and future directions are suggested. #### 3.2. Hydrogen Bond Donor-Assisted Anion-Abstraction Chiral dual hydrogen bond donors have been shown to catalyze a number of enantioselective transformations of cationic electrophiles through mechanisms involving catalyst-bound ion pairs. 1,2 A particularly effective strategy for generating such electrophiles is through hydrogen bond donor-assisted abstraction of anions from neutral precursors. This mechanism was first investigated in the context of a thiourea-catalyzed Pictet–Spengler-type reaction of *in situ* generated α -chlorolactams (Scheme 3.1A), and since then has been used as a guiding principle to develop asymmetric transformations involving carbenium ions (Scheme 3.1B) and oxocarbenium ions (Scheme 3.1C). _ ¹ a) Doyle, A. G.; Jacobsen, E. N. *Chem. Rev.* **2007**, *107*, 5713. b) Brak, K.; Jacobsen, E. N. *Angew. Chem., Int. Ed.* **2013**, *52*, 534. c) Mahlau, M.; List, B. *Angew. Chem., Int. Ed.* **2013**, *52*, 518. d) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. *Nat. Chem.* **2012**, *4*, 603. ² For a review on catalysis via thiourea-bound ion pairs, see: Zhang, Z.; Schreiner, P. R. *Chem. Soc. Rev.* **2009**, *38*, 1187. ³ Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. **2007**, 129, 13404. ⁴ Brown, A. R.; Kuo, W.-H.; Jacobsen, E. N. J. Am. Chem. Soc. **2010**, 132, 9286. ⁵ Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N.; J. Am. Chem. Soc. 2008, 130, 7198. #### (A) Thiourea-Catalyzed Enantioselective Pictet-Spengler-type Cyclization (B) Primary Aminothiourea-Catalyzed Enantioselective α -Alkylation of Aldehydes (C) Thiourea-Catalyzed Asymmetric Alkylation of α -Chloroethers Scheme 3.1. Anion-Abstraction in Thiourea-Catalyzed Transformations With the goal of gaining insight into the anion-abstraction process, David Ford and Dr. Dan Lehnherr, current Jacobsen group members, have undertaken mechanistic studies on the enantioselective thiourea-catalyzed addition of silyl ketene acetal 1 to preformed α -chloroether 2 (Scheme 3.2).⁶ This transformation is conducted with 10 mol% of arylpyrrolidino-thiourea 3 and provides isochroman 4 in 85% ee. ⁶ Ford, D. D.; Lehnherr, D.; Jacobsen, E. N. Manuscript in preparation. **Scheme 3.2.** Model Reaction for Mechanistic Investigations # 3.3. Proposed Mechanistic Scenario Through these investigations it was determined that the reaction has a first order kinetic dependence on thiourea at high catalyst concentrations and a second order kinetic dependence at low concentrations. These results are consistent with the involvement of two thiourea molecules in the rate-determining transition state along with a dimeric catalyst resting state at high concentrations and a monomeric catalyst resting state at low concentrations. X-ray crystallographic data, in combination with NMR data, have been used to characterize the dimeric resting state (5) in which the hydrogen bond donor functionality of each thiourea is bound to the amide of the other (Figure 3.1). A second thiourea dimerization mode became apparent through analysis of an X-ray crystal structure of the thiourea co-crystallized with tetramethylammonium chloride in a 2:1 stoichiometry (6) (Figure 3.2). inactive dimer (5), consisting of two molecules of *ent-*3 Figure 3.1. Crystal Structure Depicting the Dimeric Resting State of ent-3 **Figure 3.2.** Crystal Structure of a 2:1 *ent-3*:NMe₄Cl Complex ([NMe₄]⁺ has been omitted from the left structure for clarity) Together, these data suggest that the ground state dimer must dissociate and recombine in a productive geometry to allow for dual electrophile activation of α -chloroether substrates via anion-abstraction (Scheme 3.3). Furthermore, this mechanistic scenario raised the possibility that covalently linking two thiourea moieties could prevent inactive
dimer formation while allowing for cooperative electrophile activation. Such a dimer would effectively increase the concentration of active catalyst, potentially allowing for the use of a lower catalyst loading and more efficient catalysis. $$\begin{array}{c} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$ **Scheme 3.3.** Proposed Mechanistic Scenario for the Thiourea-Catalyzed Addition to Oxocarbenium Ions With this goal in mind, Dan Lehnherr has investigated various symmetrical tethering strategies (represented as S1–S3, Figure 3.3) and has identified dimeric catalysts that afford higher reactivity than monomer 3 while maintaining comparable selectivity. An examination of crystal structures 5 and 6 suggests that an unsymmetrical linking strategy may better accomplish the goal of selectively disfavoring thioureathiourea interactions while enhancing cooperative electrophile activation. The proximity of the amino acid *t*-Bu group of one molecule of catalyst to the aniline-derived portion of the second catalyst in crystal structure $\mathbf{6}$, and the relatively far distance between them in the unproductive aggregate $\mathbf{5}$, led to the proposal that tethering these two portions would be beneficial (Figure 3.4). We targeted the synthesis of bisthioureas $\mathbf{7}$ and $\mathbf{8}$. The ester functionality was introduced to aid in the synthetic accessibility of the bisthioureas while maintaining the electron-deficient nature of the parent 3,5-bis(trifluoromethyl)phenyl group. Computational modeling studies using DFT calculations indicated that a 1–2 atom linker (n = 1–2, Figure 3.4) would be optimal to achieve cooperative electrophile activation and conformationally restrict access to the geometry of the unproductive aggregate. For the remainder of the chapter, the top portion of the bisthioureas, as drawn in Figure 3.4, will be referred to as "thiourea A" and the bottom as "thiourea B". Figure 3.3. Symmetrical Linking Strategies Evaluated Figure 3.4. Proposed Tethering Strategy and Target Bisthioureas _ ⁷ Bisthioureas **7** and **8** were proposed by Dan Lehnherr. # 3.4. Synthetic Strategies Three potential synthetic routes to access **7** were identified: (1) esterification of two monomeric thioureas, (2) late-stage installation of thiourea B, and (3) late-stage installation of thiourea A (Figure 3.5). Ultimately, the third strategy proved successful. In this section, the problems encountered with the first two routes are described and a successful final route is presented. **Figure 3.5.** Retrosynthetic Analysis of Bisthiourea 7 ### 3.4.1. Strategy 1: Esterification of Two Functionalized Thiourea Monomers The most attractive strategy in terms of convergency is an esterification of two functionalized analogs of **3**, carboxylic acid **9** and neopentyl alcohol **10** (Scheme 3.4). Scheme 3.4. Proposed Esterification Route to Bisthiourea 7 = ⁸ Another possible coupling strategy is a Mitsunobu reaction of **9** and **10**; however, the conditions would likely result in cyclization of thiourea **10**: Lee, G.-J.; Kim, J. N.; Kim, T. H. *Bull Korean Chem. Soc.* **2002**, 23, 19. Carboxylic acid 9 was readily obtained through saponification of methyl ester 11 with LiOH (Scheme 3.5); however, alcohol 10 proved more challenging to access. Dan Lehnherr identified a route to the required amide fragment 14 from (R)-pantolactone (12) that employs a trimethylaluminum-mediated lactone opening with arylpyrrolidine 13 (Scheme 3.6). 10,11,12 Attempted elaboration of Boc-protected amine 14 to 10 under conditions used for synthesis of monomer 3 furnished undesired thioureas 18 and 19. Lactone 18 was obtained in 70% yield and was characterized by ¹H NMR and LRMS. The outcome indicates that amine deprotection using acidic conditions also effected amide bond cleavage to afford 16 and 17, which subsequently react with isothiocyanate 15. These results were unexpected because acidic conditions have been used to effect the deprotection of Boc-amines on related primary alcohol intermediates without amide hydrolysis. 13,14 Scheme 3.5. Synthesis of Carboxylic Acid 9 ⁹ Hydrolysis of symmetrical thiourea dimers linked through the aniline-derived portion also provided a route to carboxylic acid 9. The analogous hydrolysis of dimers linked through the hydroxy-tert-leucine amino acid residues did not afford alcohol 10. ¹¹ Marshall, J. A.; Piettre, A.; Paige, M. A.; Valeriote, F. J. Org. Chem. **2003**, 68, 1771. ¹⁰ Freskos, J. N. Synth. Commun. 1994, 24, 557. ¹² Arylpyrrolidine **13** was synthesized according to the reported procedure: Reddy, L. R.; Das, S. G.; Liu, Y.; Prashad, M. J. Org. Chem. 2010, 75, 2236. ¹³ Augeri, D. J. et al. *J. Med. Chem.* **2005**, 48, 5025. ¹⁴ We also attempted a ring-opening of lactone **18** with arylpyrrolidine **13** in the presence of AlMe₃; however, the desired amide was not formed. HO $$A ext{ steps}$$ $A ext{IMe}_3$ $A ext{ toluene, } -15 ext{ °C to rt}$ $A ext{ in } A ext{ HO}$ $A ext{ IIII}$ $A ext{IIII}$ $A ext{ IIII}$ IIIII}$ $A ext{ IIII}$ IIIII}$ $A ext{ IIII}$ IIIII}$ $A ext{ IIII}$ IIIII}$ $A ext{ IIII}$ $A ext{ III$ **Scheme 3.6.** Amide Bond Cleavage During Amine Deprotection Based on these results, we protected primary alcohol **14** as the corresponding benzyl ether **20** to access thiourea **21** (Scheme 3.7). However, attempted hydrogenolysis of the benzyl ether to obtain primary alcohol **10** was unsuccessful. Because we were encountering problems obtaining alcohol **10**, we chose to focus on two alternative routes to bisthiourea **7**: a late-stage installation of thiourea B and a late-stage installation of thiourea A. 14 $$\xrightarrow{\text{BnBr}}$$ $\xrightarrow{\text{NaH}}$ $\xrightarrow{\text{NaH}}$ $\xrightarrow{\text{OBn}}$ $\xrightarrow{\text{I. 4N HCl/dioxane}}$ $\xrightarrow{\text{I. 4N HCl/dioxane}}$ $\xrightarrow{\text{I. 4N HCl/dioxane}}$ $\xrightarrow{\text{F}_3C}$ $\xrightarrow{\text{NCS}}$ $\xrightarrow{\text{NCS}}$ $\xrightarrow{\text{F}_3C}$ Scheme 3.7. Synthesis of Benzyl Ether 21 - ¹⁵ Recent results obtained by Dr. Kaid Harper, a postdoctoral fellow in the group, indicate that cleavage of a silyl ether related to **21** is also problematic. #### 3.4.2. Strategy 2: Late-Stage Installation of Thiourea B Our second strategy, late-stage installation of thiourea B (Scheme 3.8), also presented a problematic amine deprotection. **Scheme 3.8.** Proposed Late-Stage Installation of Thiourea B Alcohol 14 was elaborated to isothiocyanate 24 through a three-step sequence consisting of esterification, transfer hydrogenation of the aromatic nitro group, and a subsequent reaction with thiophosgene (Scheme 3.9). The crude isothiocyanate 24 was treated with amine 25 to complete installation of thiourea A. Unfortunately, deprotection of intermediate 26 was accompanied by undesired reactions, resulting in a complex mixture of products (Scheme 3.10). Although the byproducts were not rigorously characterized, mass spectrometric analysis of the crude reaction mixture indicated that loss of an arylpyrrolidine fragment occurred during removal of the Boc group. We did not determine which of the two amide bonds of 26 was cleaved, but based on literature precedent we hypothesize that it was the amide of thiourea A. In analogy to the outcome of the attempted deprotection of Boc-amine 14 in the presence of a free primary ¹⁷ Analogous acid-promoted cyclizations have been reported: a) Lehmann, J.; Linden, A.; Heimgartner, H. *Tetrahedron* **1998**, *54*, 8721. b) Breitenmoser, R. A.; Linden, A.; Heimgartner, H. *Helv. Chim. Acta* **2002**, 85, 990. ¹⁶ When the reaction was monitored by LC/MS, the peaks
corresponding to the masses of [26 – Boc]⁺, [26 – arylpyrrolidine]⁺, and [26 – Boc – arylpyrrolidine]⁺ were all present, suggesting that amide bond cleavage occurs competitively with removal of the Boc group. alcohol (Scheme 3.6), it is likely that the thiourea functionality serves as an internal nucleophile under the deprotection conditions to generate 5-membered cyclic product **28** (or a related tautomeric structure). With a different protecting group choice, this route may be viable. Ultimately, with the success of the third route, we did not investigate this strategy any further. Scheme 3.9. Synthesis of Intermediate 26 Scheme 3.10. Potential Rearrangement during the Deprotection of Intermediate 26 # 3.4.3. Strategy 3: Late-Stage Installation of Thiourea A The route that proved to be most fruitful was a late-stage installation of thiourea A (Scheme 3.11). Strategy 3: Late-Stage Installation of Thiourea A $$CF_3$$ CF_3 Scheme 3.11. Proposed Late-Stage Installation of Thiourea A From intermediate 23, removal of the Boc group followed by a subsequent reaction with isothiocyanate 15 installed thiourea B (Scheme 3.12). The success of the amine deprotection in this context lends support to the hypothesis that amide bond cleavage only occurs under acidic conditions when the intermediate contains an internal nucleophile. Hydrogenation of the nitro group of **29** could be accomplished with palladium on carbon at 50 °C. ¹⁸ Aniline **30** was treated with 1,1'-thiocarbonyldiimidazole to access an isothiocyanate that was reacted with amine **25** to furnish desired bisthiourea **7**. **Scheme 3.12.** Synthetic Route to Bisthiourea **7** # 3.4.4. Synthesis of Bisthiourea 8 We used the same strategy to access bisthiourea **8**, which contains a 2-carbon linker between the two thiourea moieties. We obtained the necessary primary alcohol **35** ¹⁸ Hydrogenation of **29** with Pd/C at room temperature and 20 atm H₂ resulted in over reduction to the corresponding cyclohexylamine. Other reductions evaluated (e.g. NH₂HCO₂ transfer hydrogenation, SnCl₂, room temperature hydrogenation) stalled at the hydroxylamine stage (determined by LRMS). The difficulty of this reduction is in contrast to the straightforward reduction of **23** (Scheme 3.9) and suggests that thiourea B may be poisoning the reagents or interacting with the nitro group. through the sequence presented in Scheme 3.13. Amino acid **32** was obtained in 93% ee and was synthesized according to the procedure reported by Rossi. ¹⁹ This route uses an Ireland-Claisen rearrangement of Boc-glycine ester **31** and a classical resolution of the resultant racemic amino acid with (*S*)-phenylglycinol **33**. Amide **34** was formed using EDC and HOBt, and a subsequent hydroboration-oxidation sequence afforded primary alcohol **35**. The completion of the synthesis of bisthiourea **8** is shown in Scheme 3.14. Scheme 3.13. Synthesis of arylpyrrolidino-amide fragment 35 . ¹⁹ Rossi, F. et al. *Org. Process Res. Dev.* **2008**, *12*, 322. Scheme 3.14. Synthesis of Bisthiourea 8 This sequence was first used to generate approximately 90 mg of bisthiourea 8. After we obtained encouraging preliminary data on the reactivity of this catalyst (see Section 3.4), Dr. Masayuki Wasa, a postdoctoral fellow in the group, investigated the scalability of this route. Through this effort, he was able to synthesize 1.3 g of bisthiourea 8, and he also used isothiocyanate 39 as a diversification point to prepare bisthioureas 40 and 41 (Scheme 3.15). Scheme 3.15. Gram-scale Preparation of Bisthiourea 8 # 3.5. Comparison of Bisthioureas 7 and 8 with Monomer 3 The thiourea-catalyzed asymmetric alkylation of α -chloroether 1 with silyl ketene acetal 2 was evaluated with the standard monomeric catalyst (3) and bisthioureas 7 and 8 (Scheme 3.16).²⁰ In order to determine the relative reactivity of the three thioureas, a low catalyst loading (1 mol%, based on thiourea moiety) and a short reaction time (1 hour) were used in this assay. Under these conditions, thiourea 3 afforded isochroman 4 in 6% yield and 81% ee. Bisthioureas 7 and 8 afforded significantly higher conversions, albeit 176 ²⁰ These results were obtained by Dan Lehnherr. with slightly diminished selectivity. Bisthiourea **8**, with a 2-atom linker, was more reactive and marginally more selective than **7**, providing 95% conversion and 77% ee. **Scheme 3.16.** Comparison of monomer **3** and bisthioureas **7** and **8** ### 3.6. Conclusions and Outlook The syntheses of bisthioureas **7** and **8** were accomplished through sequential installations of thiourea B and thiourea A. The final route is scalable and has been used to access 1.3 grams of bisthiourea **8**. Most importantly, these covalently tethered thioureas demonstrate substantially higher reactivity than analogous monomeric thioureas in the asymmetric alkylation of α -chloroethers. Current efforts in the Jacobsen group are focused on probing the generality of these observations. Dr. Kaid Harper, a postdoctoral fellow in the group, has recently made a comparison of monomer **3** and bisthiourea **8** in a catalyst-controlled diastereoselective glycosylation of propargyl alcohol with α -chloroether **42** (Scheme 3.17). The background reaction of chloroether **42** (9:1 α : β) with propargyl alcohol provides the corresponding product 43 in a 3:1 diastereomeric ratio in favor of the α -anomer. The product ratio is unchanged in the presence of monomeric thiourea 3, but it is reversed to 1:5.7 in the presence of bisthiourea 8. Although the basis for this reversal of diastereoselectivity is not well understood at this time, it is clear that there is a benefit to using bisthiourea 8. **Scheme 3.17.** Preliminary Results in a Thiourea-Catalyzed Glycosylation Ongoing work in the group involves the modification of various portions of bisthiourea 8 to enhance reactivity and selectivity. Because an esterification of two thiourea monomers (Strategy 1, section 3.3.1) is potentially the most convergent route to bisthioureas, this strategy should be revisited. It is possible that the problems encountered in the synthesis of 7 will be alleviated with the longer tether length of 8. Additionally, the symmetrical orientation of the two monomeric catalysts in the 2:1 complex with tetramethylammonium chloride (6, Figure 3.2) suggests that a cyclic dimer scaffold may provide an optimal geometry for productive electrophile activation (Scheme 3.18). Although macrocyclization to obtain large cyclic structures is often challenging, we envision that chloride-binding properties of thioureas can be exploited in a templated macrolactonization to provide access to 22-membered cyclic dimer **44**. ^{21,22} **Scheme 3.18.** Proposed Template-Induced Macrolactonization Our progress towards this dimer, a cyclic analog of bisthiourea **7**, is summarized in Scheme 3.19. Isothiocyanate **47** was prepared from ester **23** according to the developed route. The remaining steps, installation of thiourea A and macrocyclization, will likely be challenging and may require protecting group manipulations. As such, it will be best to pursue a cyclic dimerization once an optimal bisthiourea is identified. ²² For a recent example of a chloride-templated macrolactamization, see: Kataev, E. A.; Kolesinkov, G. V.; Arnold, R.; Lavrov, H. V.; Khrustalev, V. N. *Chem. Eur. J.* **2013**, *19*, 3710. ²¹ For a general review of templated macrocylizations, see: Laughrey, Z. R.; Gibb, B. C. in *Top. Curr. Chem.* Vol. 249 (Eds. Schalley, C. A.; Vögtle, F.; Dötz, K. H.) Springer-Verlag, Heidelberg, **2005**, 67. Scheme 3.19. Progress towards Cyclic Dimer 44 # 3.7. Experimental Section #### A. General Information. Unless otherwise noted, all reactions were performed under a positive pressure of anhydrous nitrogen or argon in flame- or oven-dried glassware. Moisture- and airsensitive reagents were dispensed using oven-dried stainless steel syringes or cannulae and were introduced to reaction flasks through rubber septa. Reactions conducted below ambient temperature were cooled by external baths (dry ice/acetone for –78 °C and ice/water for 0 °C). Reactions conducted above ambient temperature were heated by an oil bath. Analytical thin layer chromatography (TLC) was performed on glass plates precoated with silica 60 F₂₅₄ plates, 0.25 mm). Visualization was carried out by exposure to a UV-lamp (short wave 254 nm, long wave 365 nm), and by heating after staining the plate with a ceric ammonium molybdate or a potassium permanganate solution. Extraction and chromatography solvents were reagent or HPLC grade and were used without further purification. Flash chromatography was carried out over silica gel (60 Å, 230–400 mesh) from EM Science. Where indicated, chromatography was conducted on a Biotage Isolera automated chromatography system. *Materials*. Commercial reagents and solvents were used with the following exceptions: tetrahydrofuran, dichloromethane, and 1,4-dioxane employed as reaction solvents were dried by passage through columns of activated alumina. Triethylamine was distilled from calcium hydride at 760 torr prior to use. Chloroform-d was dried over 3Å MS prior to use. Instrumentation. Proton nuclear magnetic resonance (^{1}H NMR) spectra and carbon nuclear magnetic resonance (^{13}C NMR) spectra were recorded on a Varian Mercury-400 (400MHz), Inova-500 (500MHz), or an Inova-600 (600MHz) spectrometer at 23 $^{\circ}C$. Chemical shifts for protons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃: 7.26 ppm). # B. Preparation and Characterization of Selected Intermediates # (S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(4,4-dimethyl-2-oxotetrahydrofuran-3-yl)thiourea (18) A flame-dried 10-mL round-bottom flask was charged with alcohol **14** (50 mg, 0.127 mmol, 1.0 equiv) and dioxane
(1.27 mL). The flask was cooled to 0 °C and a solution of HCl in dioxane (127 μ L, 0.508 mmol, 4.0 equiv) was added dropwise under an atmosphere of N₂. The reaction mixture was allowed to gradually warm to room temperature over a period of 2 h. At this point, the reaction mixture was concentrated in vacuo to provide a sticky oil. The crude product was dissolved in CH₂Cl₂ (650 μ L). NEt₃ (53 μ L, 3.0 equiv) and isothiocyanate **15** (26 μ L, 0.143 mmol, 1.1 equiv) were added sequentially and the reaction mixture was stirred at room temperature overnight. The contents were concentrated in vacuo and purified via flash column chromatography (Biotage, SiO₂, 0-50% EtOAc/hexanes) to afford **18** as a pale yellow solid (35.2 mg, 0.088 mmol, 70% yield). R*f*=0.47 (50% EtOAc/hexanes). 1 H NMR (500 MHz, CDCl₃) δ ppm 7.76 - 7.98 (m, 5 H) 4.24 (s, 1 H) 3.73 (d, *J*=10.74 Hz, 1 H) 3.56 (d, *J*=10.74 Hz, 1 H) 1.18 (s, 3 H) 1.11 - 1.14 (m, 3 H). # Aniline (30) A flame-dried 50-mL round-bottom flask was charged with a stir bar and 10% Pd/C (44 mg, 0.4 equiv). The flask was fitted with a septum, evacuated, and refilled with argon. MeOH (4.0 mL) was added to the flask under an atmosphere of argon, followed by a solution of nitro aromatic **29** (152 mg, 0.19 mmol, 1 equiv) in MeOH (4.1 mL). The flask was evacuated and refilled with H₂ gas (3x) and then maintained under an atmosphere of H₂. The flask was immersed in an oil bath set at 50 °C and stirred at this temperature overnight. The hydrogen balloon was removed and the contents of the flask were filtered through a short pad of Celite®. The filtrate was concentrated in vacuo to provide a dark brown product, which was carried forward without further purification. In CDCl₃ the compound exists as a 1.7:1 mixture of rotamers. One of the resonances in the ¹H NMR spectrum corresponding to a proton of the minor rotamer was integrated to 1, and all other integration data are reported relative to it. ¹H NMR (500 MHz, CDCl₃ δ ppm 9.24 (s, 1.4 H) 8.92 (br. s., 2.1 H) 7.94 (s, 2 H) 7.80 (s, 3.7 H) 7.51 - 7.70 (m, 9.7 H) 7.42 (m, 1.1 H) 7.23 (m, 1.8 H) 7.05 (s, 1.7 H) 6.92 - 7.01 (m, 6 H) 6.66 - 6.74 (m, 3.6 H) 5.93 (d, *J*=9.62 Hz, 1.7 H) 5.89 (d, *J*=7.78 Hz, 1 H) 5.61 (d, *J*=10.07 Hz, 1 H) 5.05 - 5.10 (m, 1.9 H) 4.47 - 4.55 (m, 2 H) 4.28 - 4.33 (m, 1.8 H) 4.22 - 4.28 (m, 1.9 H) 4.07 (s, 3.1 H) 3.98 - 4.03 (m, 1.7 H) 3.79 - 3.89 (m, 2.9 H) 3.51 - 3.66 (m, 2.4 H) 2.26 - 2.38 (m, 1.6 H) 2.14 - 2.24 (m, 2.4 H) 1.91 - 2.01 (m, 4.0 H) 1.75 - 1.89 (m, 5 H) 1.28 (s, 4.3 H) 1.26 (s, 4.3 H) 0.96 - 1.00 (m, 3 H) 0.70 (s, 3 H). *tert*-butyl (*S*)-1-((*R*)-2-(4-fluorophenyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxopent-4-en-2-ylcarbamate (**34**) A flame-dried 100-mL round-bottom flask was charged with arylpyrrolidine **15** (3.46 mmol, 1.0 equiv), amino acid **32** (884 mg, 3.63 mmol, 1.05 equiv), HOBt (583 mg, 3.80 mmol, 1.1 equiv), and EDC (728 mg, 3.80 mmol, 1.1 equiv) and DMF (17.3 mL). The reaction mixture was stirred overnight, after which it was diluted with DI H₂O (20 mL) and extracted with EtOAc (3x). The combined organics were washed with saturated aqueous NH₄Cl (1x) and brine (1x), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by flash chromatography (Biotage®, 0-50% EtOAc/hexanes) to afford amide **34** as a white solid (859 mg, 2.20 mmol, 64% yield). In CDCl₃ the compound exists as a 4.0:1 mixture of rotamers. One of the resonances in the ¹H NMR spectrum corresponding to a proton of the minor rotamer (C(Me)₂C**H**CH₂) was integrated to 1, and all other integration data are reported relative to it. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.28 - 7.35 (m, 3 H) 7.04 - 7.16 (m, 11 H) 6.95 (t, *J*=8.79 Hz, 8 H) 6.08 (dd, *J*=17.28, 10.84 Hz, 4 H) 5.89 (dd, *J*=17.57, 10.84 Hz, 1 H) 5.48 (dd, *J*=8.05, 2.20 Hz, 1 H) 5.19 (dd, *J*=7.91, 2.34 Hz, 5 H) 5.08 - 5.15 (m, 13 H) 5.05 (s, 1 H) 4.98 (dd, *J*=10.84, 1.17 Hz, 1 H) 4.89 (dd, *J*=17.57, 1.17 Hz, 1 H) 4.39 (d, *J*=9.96 Hz, 4 H) 4.20 - 4.27 (m, 4 H) 4.12 - 4.20 (m, 1 H) 3.64 - 3.83 (m, 7 H) 2.37 (s, 1 H) 2.21 - 2.32 (m, 4 H) 1.90 - 2.06 (m, 13 H) 1.79 - 1.90 (m, 5 H) 1.45 - 1.55 (m, 52 H) 1.14 - 1.21 (m, 27 H) 0.81 (s, 3 H) 0.67 (s, 3 H). tert-butyl (S)-1-((R)-2-(4-fluorophenyl)pyrrolidin-1-yl)-5-hydroxy-3,3-dimethyl-1-oxopentan-2-ylcarbamate (35) An oven-dried 200-mL round-bottom flask was charged with alkene 34 (802 mg, 2.05 mmol, 1 equiv) and THF (20.5 mL). The flask was cooled to 0 oC and stirred at that temperature for 5 min, after which 9-BBN (0.4M hexanes, 15.4 mL, 6.16 mmol, 3.0 equiv) was added dropwise over 10 min. The reaction was allowed to warm to room temperature overnight. The flask was returned to 0 oC and 2N NaOH (4 drops) was cautiously added, resulting in vigorous bubbling. Another 9.25 mL 2N NaOH were slowly added followed by 30% H₂O₂ (8.2 mL). The ice bath was removed and the contents were stirred rapidly at room temperature for 4 h. The contents were diluted with H₂O and extracted with EtOAc (3x). The combined organics were washed sequentially with DI H₂O, 10% aqueous sodium thiosulfate, and brine, dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by flash chromatography (Biotage®, SiO₂, 20-80% EtOAc/hexanes) to afford primary alcohol **35** as a white foamy solid (757) mg, 90% yield). Rf=0.19 (50% EtOAc/hexanes, CAM). In CDCl₃ the compound exists as a 2.3:1 mixture of rotamers. One of the resonances in the ¹H NMR spectrum corresponding to a proton of the minor rotamer was integrated to 1, and all other integration data are reported relative to it. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.29 (m, 1.9 H) 7.00 - 7.14 (m, 5.6 H) 6.93 (t, J=8.47 Hz, 4.3 H) 6.34 - 6.50 (m, 3.2 H) 5.47 (d, J=7.33 Hz, 1 H) 5.19 (d, J=7.33 Hz, 2.3 H) 4.53 (d, J=10.07 Hz, 2.3 H) 4.25 - 4.35 (m, 2.3 H) 4.22 (d, *J*=10.53 Hz, 1.1 H) 4.04 (br s., 2.3 H) 3.70 - 3.80 (m, 4.9 H) 3.58 - 3.70 (m, 3.8 H) 3.45 - 3.58 (m, 1.5 H) 2.29 - 2.40 (m, 1.3 H) 2.29 (s, 2.6 H) 1.76 - 2.01 (m, 10.8 H) 1.44 - 1.51 (m, 21.9 H) 1.1 (s, 4.9 H) 1.08 (s, 4.9 H) 0.68 (s, 2.2 H) 0.49 (s, 2.2 H); ¹³C NMR (126 MHz, CDCl₃) All observed resonances are reported: δ ppm 172.7, 171.4, 171.2, 163.1, 162.6, 161.2, 160.7, 156.8, 156.1, 139.8 (d, J=3.66 Hz), 138.1 (d, J=3.66 Hz), 128.3 (d, J=8.24 Hz), 126.8 (d, J=7.32 Hz) 115.6 (d, J=22.0 Hz), 115.3 (d, J=21.1 Hz), 79.62, 79.57, 61.0, 60.4, 60.1, 58.6, 58.5, 58.3, 57.3, 48.3, 47.3, 41.64, 41.60, 36.2, 36.1, 35.8, 34.3, 28.43, 28.40, 26.9, 26.6, 25.0, 24.6, 23.1, 21.7, 21.0, 14.2. # (S)-4-(tert-butoxycarbonylamino)-5-((R)-2-(4-fluorophenyl)pyrrolidin-1-yl)-3,3-dimethyl-5-oxopentyl 3-nitro-5-(trifluoromethyl)benzoate (36) An oven-dried 2-dram vial was charged with a stir bar, alcohol **35** (195mg, 0.478 mmol, 1.0 equiv), and acid **22** (135 mg, 0.573 mmol, 1.2 equiv). CH2Cl2 (1.5 mL) and DMF (1 mL) were added, followed by EDC (275 mg, 1.4 mmol, 3.0 equiv) and DMAP (175 mg, 1.4 mmol, 3.0 equiv). The reaction mixture was stirred at room temperature overnight. It was then diluted with DI H₂O and extracted with EtOAc (3x). The combined organics were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography to afford ester 36 as a white foamy solid (248 mg, 83%) yield). In CDCl₃ the compound exists as a 1.7:1 mixture of rotamers. One of the resonances in the ¹H NMR spectrum corresponding to a proton of the minor rotamer was integrated to 1, and all other integration data are reported relative to it. ¹H NMR (500 MHz, CDCl₃) δ ppm 9.01 (d, J=1.83 Hz, 1.7 H) 8.88 - 8.96 (m, 1 H) 8.66 (d, J=1.83 Hz, 2.3 H) 8.60 (s, 1.6 H) 8.53 (s, 1.1 H) 7.26 - 7.36 (m, 2 H) 6.96 - 7.08 (m, 4.5 H) 6.91 (t, J=8.70 Hz, 3.2 H) 5.34 (d, J=5.95 Hz, 1 H) 5.06 - 5.20 (m, 3.9 H) 4.53 (t, J=7.33 Hz, 3 H) 4.49 (br. s., 1.7 H) 4.15 - 4.30 (m, 3.6 H) 3.60 - 3.81 (m, 3.6 H) 2.20 - 2.44 (m, 3 H) 1.77 - 2.10 (m, 11.5 H) 1.50 - 1.60 (m, 2 H) 1.40 - 1.50 (m, 17.4 H) 1.09 - 1.18 (m, 7.8 H) 0.88 (s, 2 H) 0.68 (s, 2 H). ¹³C NMR (126 MHz, CDCl₃) All observed resonances are reported: δ ppm 171.6, 171.2, 170.2, 163.3, 163.0, 162.7, 161.2, 160.7, 156.4, 155.8, 148.6, 140.10, 140.08, 138.51, 138.48, 133.6, 133.5, 133.1, 132.8, 131.99, 131.96, 131.9, 128.5, 128.4, 127.6, 127.5, 126.8, 126.7, 124.54, 124.51, 123.61, 115.8, 115.6, 115.4, 115.2, 80.16, 63.6, 63.4, 61.1, 60.5, 60.4, 58.2, 56.8, 48.5, 47.2, 37.1, 37.0, 36.7, 36.5, 36.0, 34.3, 28.40, 28.37, 23.8, 23.4, 23.3, 23.2, 22.1, 21.1, 14.3. # Thiourea (37) A 50-mL round-bottom flask was charged with Boc-protected amine 36 (248 mg, 0.40 mmol, 1.0 equiv) and CH₂Cl₂ (10 mL). The flask was cooled to 0 °C and TFA (3.3 mL) was added dropwise under an atmosphere of N₂. The reaction mixture was stirred at this temperature for 2 h, at which point the contents were concentrated in vacuo. The crude amine salt was dissolved in CH₂Cl₂ (4 mL), and 1.3 mL of this solution was removed (for use in a different reaction). The solution was cooled to 0 °C, and NEt₃ (110 μL, 3.0 equiv) and isothiocyanate 15 (97 µL, 2.0 equiv) were sequentially added to the flask dropwise. The reaction mixture was stirred and allowed to warm to room temperature over a period of 4h, at which point the contents were concentrated in vacuo. The crude reside was purified by flash chromatography (Biotage®, 15-70% EtOAc/hexanes) to afford thiourea 37 as a white foam (204 mg, 97%, 2 steps). In CDCl₃ the compound exists as a 1.3:1 mixture of rotamers. One of the resonances in the ¹H NMR spectrum corresponding to a proton of the minor rotamer was integrated to 1, and all other integration data are reported relative to it. ¹H NMR (500 MHz, CDCl₃) δ ppm 9.51 (br. s., 1 H) 9.42 (br. s., 1.3 H) 8.94 - 9.08 (m, 1.4 H) 8.88 - 8.94 (m, 1 H) 8.65 - 8.74 (m, 1.97 H) 8.61 (s, 1.3 H) 8.52 (s, 1.1 H) 8.06 (s, 1.87 H) 7.92 (s, 2.3 H) 7.69 (s, 0.9 H) 7.64 (s, 1.3 H) 7.42 - 7.58 (m, 2.2 H) 7.31 - 7.40 (m, 1.8 H) 7.04 (t, *J*=8.70 Hz, 1.9 H) 6.89 (dd, *J*=8.01, 5.27 Hz,
2.3 H) 6.70 (t, *J*=8.47 Hz, 2.4 H) 5.84 (d, *J*=7.78 Hz, 1 H) 5.69 (d, *J*=9.62 Hz, 1.3 H) 5.47 (d, *J*=9.62 Hz, 1 H) 5.09 (d, *J*=6.87 Hz, 1.3 H) 4.58 - 4.70 (m, 2.3 H) 4.47 - 4.58 (m, 1.4 H) 4.35 (ddd, *J*=11.22, 8.01, 5.95 Hz, 1.3 H) 3.78 - 3.91 (m, 1.4 H) 3.50 - 3.66 (m, 2 H) 2.20 - 2.47 (m, 2.7 H) 2.09 - 2.18 (m, 1 H) 1.73 - 2.02 (m, 6.3 H) 1.57 - 1.71 (m, 1.5 H) 1.34 - 1.49 (m, 1.5 H) 1.28 (d, *J*=2.29 Hz, 6 H) 1.00 - 1.10 (m, 2.4 H) 0.68 (s, 2.3 H). 13°C NMR (126 MHz, CDCl₃) All observed resonances are reported: δ ppm 182.0, 181.6, 172.3, 171.5, 170.3, 163.3, 163.0, 162.5, 160.5, 148.62, 148.59, 140.4, 139.8, 139.15, 139.13, 137.07, 137.05, 133.4, 133.3, 133.2, 132.9, 132.4, 132.2, 132.15, 132.0, 131.95, 131.9, 131.87, 128.5, 128.4, 127.5, 127.4, 124.7, 124.6, 124.1, 124.0, 122.1, 122.0, 121.4, 118.9, 118.8, 116.1, 115.9, 115.2, 115.0, 63.3, 62.2, 62.0, 60.9, 60.6, 60.4, 49.1, 48.0, 38.1, 37.8, 37.7, 37.4, 35.4, 34.3, 24.4, 24.2, 24.1, 23.5, 23.1, 21.6, 21.2, 14.3.