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Abstract 

 The research presented herein explores three aspects of asymmetric catalysis: (1) 

the development of new catalytic enantioselective reactions, (2) the application of 

stereoselective catalysis to natural product total synthesis, and (3) the design and 

synthesis of new chiral catalysts.  

 In Chapter 1, an asymmetric transannular ene reaction of electronically 

unactivated ketones is reported.  The transformation is catalyzed by a new chromium(III) 

tridentate Schiff-base catalyst and provides access to trans-decalinol frameworks in high 

diastereo- and enantioselectivity.  

 A convergent total synthesis of indole alkaloid (+)-reserpine is presented in 

Chapter 2.  The synthesis uses two key catalytic asymmetric methods: an enantioselective 

kinetic resolution of terminal epoxides catalyzed by an oligomeric Co(salen) complex 

and a catalyst-controlled diastereoselective formal aza-Diels–Alder reaction catalyzed by 

a primary aminothiourea. These methods enabled an enantioselective synthesis of the 

classic target and addressed the historically problematic C3 stereocenter of the molecule. 



 

iv 
 

Through the investigation of various synthetic routes we were able to access two 

unnatural diastereomers of methyl reserpate: 16-epi-(+)-methyl reserpate and 15,16-di-

epi-(+)-methyl reserpate. 

 Chapter 3 describes the syntheses of rationally designed bisthioureas for anion-

abstraction catalysis.  Recent mechanistic investigations have led to the identification of 

productive and nonproductive thiourea dimerization modes in the context of an 

asymmetric alkylation of α-chloroethers. Based on this work, we synthesized covalently 

tethered thioureas that enforce proximity of the hydrogen bond donor moieties for 

cooperative electrophile activation while disfavoring nonproductive self-aggregation.  

Significant enhancements in reactivity are obtained with the bisthioureas relative to 

analogous monomeric thioureas in the model reaction.   
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Chapter 1 

Enantioselective Catalytic Transannular Ketone-Ene Reactions1 

 

 

 

 

 

 

 

 

 

 

                                                            
1 Portions of this chapter have been published: Rajapaksa, N. S.; Jacobsen, E. N. Org. Lett. 2013, 15, 4238. 
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1.1. Introduction 

Transannular chemical reactions are noteworthy for generating structurally and 

stereochemically rich products from relatively simple precursors in a single 

transformation. 2  The first applications of chiral catalysts to promote transannular 

reactions were recently identified, and these methods will be discussed in the following 

section.  Motivated by the power of ene-type reactions in organic synthesis, we became 

interested in extending the asymmetric catalytic transannular reaction concept to this 

important class of C–C bond-forming reactions. 3   In this chapter, we present the 

development of an enantioselective catalytic transannular ketone-ene reaction. 

 

1.2. Catalytic Enantioselective Transannular Reactions 

 The use of chiral catalysts to achieve absolute stereocontrol in transannular 

reactions is an area of chemistry that has only recently received attention.  As the 

following examples demonstrate, this powerful strategy provides access to challenging 

molecular architectures.  Two of the examples further illustrate the elegance of the 

approach through the application of an asymmetric transannular reaction to a natural 

product total synthesis. 

 

 

                                                            
2 For reviews on the application of transannular reactions to the synthesis of natural products, see: a) 
Marsault, E.; Toró, A.; Nowak, P.; Deslongchamps, P. Tetrahedron 57, 2001, 4243. b) Clarke, P. A.; 
Reeder, A. T.; Winn, J. Synthesis 2009, 5, 691. 
 
3 For a general review of asymmetric ene reactions, see: a) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 
1021.  
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1.2.1. Enantioselective Desymmetrization of Meso Epoxides4 

 During their investigations of base-promoted isomerizations of epoxides derived 

from medium-sized cyclic cis-olefins, Hodgson and coworkers identified a transannular 

bond forming process that proceeds with good enantioselectivity and high yields with a 

catalytic amount of chiral amine 5 (Scheme 1.1).  In these transformations, a chiral 

lithium base effects an enantioselective α-deprotonation of meso epoxides 1 and 3, which 

is followed by a diastereoselective bond insertion across the ring to generate fused 

polycyclic products 2 and 4 in good yield and enantioselectivity. Although Hodgson only 

demonstrated the catalytic desymmetrization with two epoxides, it is noteworthy that 

similar levels of product enantioenrichment were obtained for 2 and 4 despite differences 

in substrate ring-size (8 vs. 9) and the bond participating in the insertion reaction (C–H 

vs. N–C). 

 

 

 

 

                                                            
4 a) Hodgson, D. M.; Lee, G. P.; Marriott, R. E.; Thompson, A. J.; Wisedale, R.; Witheringon, J. Chem. Soc. 
Perkin Trans. 1, 1998, 2151. b) Hodgson, D. M.; Robinson, L. A. Chem Commun. 1999, 309. c) Hodgson, 
D. M.; Cameron, I. D.; Christlieb, M.; Green, R.; Lee, G. P.; Robinson, L. A. J. Chem. Soc. Perkin Trans. 1, 
2001, 2161. 
 

BocN O

N

t -BuO2C

N

N
H

H

-isosparteine (5)

24 mol% 5
2.4 equiv i-PrLi

–98 oC
54% NMR yield, 89% ee

OH

20 mol% 5
1.4 equiv i-PrLi

–98 oC
71%, 84% ee

O

OHH

H
1 2

3 4  

Scheme 1.1. Enantioselective Desymmetrization of meso Epoxides 
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1.2.2. Enantioselective Transannular Diels–Alder Reactions5 

 In 2007, Jacobsen and coworkers reported a highly enantioselective catalytic 

transannular Diels–Alder (TADA) reaction of macrocycles containing dienophiles and 

(E,E)-dienes.  Oxazaboroldine Lewis acid 6 catalyzes this transformation and is 

remarkably tolerant to substrate modifications to the dienophile identity (enoate vs. 

enone) and ring-size (14–16) (Scheme 1.2).  A range of macrocyclic substrates were 

found to undergo asymmetric TADA reactions to provide tricyclic products in good 

diastereo- and enantioselectivity.   

 

 The authors took advantage of the predictable selectivity of the oxazaborolidine-

catalyzed TADA reaction in a total synthesis of bicyclic sesquiterpene natural product 

11,12-diacetoxydrimane 10 (Scheme 1.3).  The TADA reaction of 15-membered cyclic 

silyl ether 7 afforded tricycle 8 in high efficiency and selectivity, and this single 

operation installed all four contiguous stereocenters of natural product.  Importantly, 

executing the Diels–Alder reaction in a transannular context was found to be essential, as 

an analogous acyclic substrate did not undergo the corresponding intramolecular Diels–

                                                            
5 Balskus, E. P.; Jacobsen, E. N. Science 2007, 317, 1736. 

O

O

H

H

H
H

N B
O

H

H

NTf2

Ph
Ph

toluene, 20 h, rt F

20 mol% 6

O

O
80%

>19:1 dr, 92% ee

H

H

H
O

H

O

69%
>19:1 dr, 90% ee

H

H

H

O

83%
4.2:1 dr, 88% ee

H

H

H

78%
5.9:1 dr, 90% ee

H
O

O

H H

H

15%
5.0:1 dr, 85% ee

H
O

H

6

 

Scheme 1.2. Catalytic Asymmetric Transannular Diels–Alder (TADA) Reactions 
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Alder with catalyst 6, under thermal conditions, or even in the presence of a stronger 

Lewis acid.6 

 

1.2.3. Asymmetric Transannular Aldol Reactions7 

List and coworkers reported an asymmetric transannular aldol reaction of 

medium-sized cyclic diketones that is catalyzed by 4-fluoro-proline derivative 11 

(Scheme 1.4).8  Several 1,4-cyclooctanediones were found to undergo aldol cyclizations 

to provide cis-fused bicyclic alcohols in good yields and excellent enantioselectivities 

(94–96% ee).  The synthetic utility of the method was illustrated through an 

enantioselective total synthesis of (+)-hirsutene (13), which uses an efficient and highly 

selective transannular aldolization of 12 as a key step. 

                                                            
6 Balskus, E. P. Ph.D. Dissertation, Harvard University, 2007. 
 
7 Chandler, C. L.; List, B. J. Am. Chem. Soc. 2008, 130, 6737.  
 
8 For related examples of enantioselective transannular aldol reactions that utilize stoichiometric or super-
stoichiometric chiral reagents, see: a) Inoue, M.; Sato, T.; Hirama; M. Angew. Chem., Int. Ed. 2006, 45, 
4848. b) Inoue, M.; Lee, N.; Kasuya, S.; Sato, T.; Hirama; M, J. Org. Chem. 2007, 72, 3065. c) Knopff, O.; 
Kuhne, J.; Fehr, C. Angew. Chem., Int. Ed. 2007, 46, 1307. 

CH3 O

O

Si
CH3

CH3H3C

CH3
Si

O

H3C

H3C CH3

H

O
CH3

CH3

H

H

20 mol% 6

H3C

H3C CH3

H

H

O
O

H

52%, 3 steps
>19:1 dr, 83% ee

H3C

H3C CH3

H

H

H
OAc

OAc

2 steps

3 steps

7 8

911,12-diacetoxydrimane: 10

 

Scheme 1.3. Application of the Catalytic Asymmetric TADA to a Total Synthesis 
of 11,12-diacetoydrimane
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A striking feature of this chemistry is its sensitivity to deviations from the 1,4-

cyclooctanedione substrate framework (Figure 1.1).  For example, products 14 and 15, 

which are obtained through transannular aldolizations of cyclononanediones have 

substantially diminished levels of enantioenrichment.  Similarly, 16 and 17, derived from 

10-membered cyclic diketones are obtained in low selectivities, with 17 being formed as 

a racemate.  Finally, 1,4-cyclononanedione and 1,4-cyclodecanedione undergo 

transannular aldol condensations to afford achiral products 18 and 19. 

 

1.2.4. Enantioselective Transannular Claisen Rearrangements9 

 Hiersemann and coworkers reported an asymmetric Claisen rearrangement of 

macrocyclic O-allyl-α-ketoesters (21a–c) that is catalyzed by chiral copper salt 20 

(Scheme 1.5).  Unlike the previous examples, this transformation does not afford 

                                                            
9 Jaschinski, T.; Hiersemann, M. Org. Lett. 2012, 14, 4114. 

H

OH

O

57%
82% ee

H

OH

22%
64% ee

O

97%

OH

OH

67%
0% ee

O O

32%

H

OH

82%
32% ee

O

1514 16 18 1917

 

Figure 1.1. Transannular Aldolizations of 9- and 10-Membered Cyclic Diketones

O

O OH

H O

N
H

CO2H

F10–20 mol% 11

R

11

O

O
H

H

DMSO, rt

OH

H O

H

H

84%
>20:1 dr, 96% ee

H
H

H

(+)-hirsutene (13)

6 examples
42–84%

>20:1 dr, 90–96% ee

R

10 mol% 11 3 steps

12  

Scheme 1.4. Enantioselective Transannular Aldol Reactions 
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polycyclic products but results in the synthesis of medium-sized cycloalkanes with vinyl 

and α-ketoester substituents.  The highly Lewis acidic copper bis(oxazoline) complex 20 

promotes the arrangement of a series of (E,E)-macrocyclic allyl vinyl ethers to afford 

trans-substituted cycloalkanes in excellent enantioselectivity but with low to moderate 

diastereoselectivity. 

 

1.3. The Ketone-Ene Reaction 

These four examples demonstrate the efficiency of catalytic enantioselective 

transannular reactions in accessing challenging scaffolds. Inspired by this precedent, we 

became interested in developing a chiral catalyst for enantioselective transannular ketone-

ene reactions.  The carbonyl-ene reaction is a valuable C–C bond forming process that 

occurs between an enophile (a carbonyl) and an ene component (an olefin possessing an 

allylic hydrogen) to afford homoallylic alcohols and generate up to two new stereocenters 

(Scheme 1.6).10,11 

                                                            
10 For reviews on the carbonyl-ene reaction, see: a) Oppolzer, W.; Snieckus, V. Angew. Chem., Int. Ed. 
1978, 17, 476. b) Snider, B. B. Acc. Chem. Res. 1980, 13, 426. 
 
11 For reviews on enantioselective, catalytic carbonyl-ene reactions, see: a) Ref. 3. b) Mikami, K.; Terada, 
M. in Comprehensive Asymmetric Catalysis, Vol. 3 (Eds. Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.) 
Springer, Berlin, 1999, 1143. c) Clarke, M. L.; France, M. B., Tetrahedron 2008, 64, 9003. 
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 This pericyclic reaction can be promoted under thermal or Lewis acidic 

conditions.  Although a number of Lewis acid-catalyzed aldehyde-ene reactions have 

been reported,11 ketones are generally very poor reacting partners in Lewis acid-catalyzed 

processes.  To date, enantioselective catalytic ketone-ene reactions have only been 

achieved with highly electrophilic ketones bearing strongly electron-withdrawing 

substituents. 12 , 13   In 2000, Evans and coworkers reported the first catalytic 

enantioselective ketone-ene reaction. They demonstrated that C2-symmetric copper 

bis(oxazoline) complex 23 catalyzes ketone-ene reactions between 1,1-disubstituted 

olefins (used in 5–10-fold excess) and methyl pyruvate (24) in high yield and 

enantioselectivity (Scheme 1.7).12a  

                                                            
12 For selected examples of metal-catalyzed enantioselective carbonyl-ene reactions of α-ketoester and 
diketones, see: a) Evans, D. A.; Tregay, S. W.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T. J. Am. Chem. 
Soc. 2000, 122, 7936. b) Yang, D.; Yang, M.; Zhu, N.–Y. Org. Lett. 2003, 5, 3749. c) Mikami, K.; Aikawa, 
K.; Kainuma, S.; Kawakami, Y.; Saito, T.; Sayo, N.; Kumobayashi, H. Tetrahedron: Asymmetr. 2004, 15, 
3885. d) Doherty, S.; Knight, J. G.; Smyth, C. H.; Harrington, R. W.; Clegg, W. J. Org. Chem. 2006, 71, 
9751. e) Mikami, K.; Kawakami, Y.; Akiyama, K.; Aikawa, K. J. Am. Chem. Soc. 2007, 129, 12950. f) 
Zhao, J.–F.; Tsui, H. –Y.; Wu, P. –J.; Lu, J.; Loh, T. –P. J. Am. Chem. Soc. 2008, 130, 16492. g) Luo, H.–
K.; Woo, Y. –L.; Schumann, H.; Jacob, C.; van Meurs, M.; Yang, H.–Y.; Tan, Y.–T. Adv. Synth. Catal. 
2010, 352, 1356. h) Zheng, K.; Yang, Y.; Zhao, J.; Yin, C.; Lin, L.; Liu, X.; Feng, X. Chem. Eur. J. 2010, 
16, 9969. i) Zhao, Y.–J.; Li, B.; Tan, L.–J. S.; Shen, Z.–L.; Loh, T.–P. J. Am. Chem. Soc. 2010, 132, 10242. 
 
13 Examples of Brønsted acid catalyzed ketone-ene reaction of α,α,α-trifluoropyruvates: a) Clarke, M. L.; 
Jones, C. E. S.; France, M. B. Beilstein J. Org. Chem. 2007, 3, 24. b) Rueping, M.; Thiessmann, T.; 
Kuenkel, A.; Koenigs, R. M. Angew. Chem., Int. Ed. 2008, 47, 6798. 
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Scheme 1.6. The Carbonyl-Ene Reaction 
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 Since this pioneering report, all subsequently reported enantioselective ketone-ene 

reactions have also employed α-keto-carbonyl compounds, either due to the necessity for 

two-point binding of the substrate to the catalyst, or because of the enhanced 

electrophilicity of the ketone.  Yang demonstrated that intramolecular ene reactions of α-

keto-esters with internal olefins were catalyzed in high yield and selectivity by a related 

copper bis(oxazoline) complex (Scheme 1.8A).12b  Strategies to expand the scope of 

either the ene or enophile component in asymmetric intermolecular ketone-ene reactions 

have centered on electronic activation. Mikami showed that a dicationic palladium 

complex prepared through an in situ counterion exchange of 26 catalyzes the 

intermolecular ene reaction of α-ketoesters.12c With the introduction of the highly 

electron-withdrawing trifluoromethyl group, pyruvate 27 undergoes selective ene 

reactions with typically unreactive monosubstituted olefins (Scheme 1.8B).  In a 

subsequent report, the same group demonstrated that the use of silyl enol ethers allowed 

the enophile scope to be expanded to α-diketones.12e In a particularly impressive example, 

OCH3
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H3C OH
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H3C OH
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O
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84%, 98% ee 95%, >98% ee76%, 98% ee
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isobutylene)

94%, 98% ee
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23 (5–20 mol%)

CH2Cl2, 40 oC N
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2324

 

Scheme 1.7. Evans’s Enantioselective Copper Bis(oxazoline)-Catalyzed Ene 
Reactions of Methyl Pyruvate  
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unsymmetrical diketone 28 is converted to 29 as a single regioisomer and in excellent 

enantioselectivity (Scheme 1.8C).  

 

 Recently, Brønsted acid catalysts 30 and 31 have also been shown to catalyze 

enantioselective ketone-ene reactions (Scheme 1.9). However, both of these methods are 

limited to the highly reactive trifluoromethyl pyruvate 27.13 
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O
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Scheme 1.8. Lewis Acid-Catalyzed Enantioselective Ketone-Ene Reactions 
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 The Jacobsen group’s work in the area of enantioselective hetero-ene reactions 

has involved the development of chiral Cr(III) tridentate Schiff-base complexes for inter- 

and intramolecular aldehyde-ene reactions (Scheme 1.10).14 , 15   The Cr(III)-catalyzed 

intermolecular aldehyde-ene reaction occurs only with electron-rich olefins, and the 

intramolecular variant readily takes place with unactivated olefins. However, attempted 

extension of the developed aldehyde-ene methodologies to asymmetric inter- or 

intramolecular ketone-ene reactions of even highly activated trifluoromethyl ketones 

yielded unsatisfactory results (Scheme 1.11).14c,15b 

                                                            
14 a) Ruck, R.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 2882. b) Ruck, R. T.; Jacobsen, E. N. Angew. 
Chem., Int. Ed. 2003, 39, 4771. c) Ruck, R. T. Ph.D. Dissertation, Harvard University, 2003. 
 
15 a) Grachan, M. L.; Tudge, M. T.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2008, 47, 1469. b) Grachan, M. 
L. Ph.D. Dissertation, Harvard University, 2008. 
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Although the scope of reported ketone-ene methodologies remains limited by the 

apparent necessity for an activated α-dicarbonyl functionality, we envisioned that a 

transannular ketone-ene reaction may not require this feature.  Given that the transannular 

disposition of reacting partners can confer a significant entropic advantage and 

corresponding reactivity enhancements, we considered the possibility of effecting 
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Scheme 1.11. Ketone-Ene Reactions with Cr(III) Tridentate Schiff-Base Catalysts 
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enantioselective transannular ene reactions of electronically unactivated ketones using 

chiral Schiff-base chromium(III) catalysts.  

 

1.4. Substrate Choice 

 We were particularly interested in studying the transannular ketone-ene reaction 

of (E)-cyclodecenones, as the resulting products contain a decalinol framework that is 

prevalent in terpene natural products (Scheme 1.12).16  Furthermore, diastereoselective 

ketone-ene reactions of this substrate framework have been demonstrated. Yamamura 

reported thermal and Lewis acid-promoted transannular ketone-ene reactions of natural 

product preisocalamendiol 35 to afford dienol 36 in good yield (Scheme 1.13).17  The 

successful cyclization in the presence of AlCl3 under mild conditions suggested that 

chiral Lewis acid catalysts may be able to induce enantioselective transannular ketone-

ene reactions of cyclodecenone substrates.  Additionally, the use of elevated temperatures 

(180 oC) to effect the thermal ketone-ene reaction of preisocalamendiol is an indication 

that background cyclization of related substrates would likely not compete with a Lewis 

acid-catalyzed pathway. 

                                                            
16 For a recent review of natural sesquiterpenoids, see: Fraga, B. M. Nat. Prod. Rep., 2011, 28, 1580. 
 
17 Niwa, M.; Iguchi, M.; Yamamura, S. Bull. Chem. Soc. Jpn. 1976, 49, 3148. 
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 We recognized that our efforts would need take into consideration the known 

temperature-dependent planar chirality of medium-sized cyclic (E)-olefin substrates.18  

For efficient, enantioselective transannular ene reactions to be possible, the reaction must 

necessarily occur under conditions where interconversion of the enantiomeric conformers 

of the substrate takes place. In that context, Barriault has studied diastereoselective ene 

reactions of (E)-cyclodecenones in cascade oxy-Cope-ene transformations and has shown 

that those cyclic structures are configurationally flexible under the elevated temperatures 

of the thermal reaction (140–220 oC) (Scheme 1.14).19 Additionally, the configurational 

                                                            
18 Nakazaki, M.; Yamamoto, K.; Naemura, K. in Stereochemistry, Topics in Current Chemistry, vol. 125 
(Eds. Vogtle, F.; Weber, E.) Springer, Berlin, 1984, 1. 
 
19 a) Warrington, J. M.; Yap, G. P. A.; Barriault, L. Org. Lett. 2000, 2, 663. Sauer, E. L. O.; Hooper, J.; 
Woo, T.; Barriault, L. J. Am. Chem. Soc. 2007, 129, 2112. b) Sauer, E. L. O.; Barriault, L. J. Am. Chem. 
Soc. 2004, 126, 8670. 
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instability of some cyclic (E)-olefins, determined through racemization half-life 

measurements, suggests that elevated temperatures will not be required for conformer 

interconversion of cyclodecenones containing trisubstituted olefins (Figure 1.2).20  

 

 

1.5. Results and Discussion 

1.5.1. Substrate Synthesis 

 Based on the prior studies on this substrate framework, we chose to study the 

transannular ketone-ene reaction of (E)-5-methyl-cyclodec-5-enone 39a, which was 

readily synthesized from cyclohexene oxide in four steps (Scheme 1.15).19a  A copper-

catalyzed epoxide opening with isopropenyl magnesium bromide provided secondary 

alcohol 37 in quantitative yield. Under Swern oxidation conditions, the alcohol was 

converted to a β,γ-unsaturated ketone, which was reacted with vinylmagnsium bromide to 

                                                            
20 a) Cope, A. C.; Banholzer, K.; Keller, H.; Pawson, B. A.; Whang, J. J.; Winkler, H. J. S. J. Am. Chem. 
Soc. 1965, 87, 3644. b) Westen, H. H. Helv. Chim. Acta 1964, 47, 575. c) Binsch, G.; Roberts, J. D. J. Am. 
Chem. Soc. 1965, 87, 5158. d) Tomooka, K.; Ezawa, T.; Inoue, H.; Uehara, K.; Igawa, K. J. Am. Chem. Soc. 
2011, 133, 1754. 
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CH3

CH3

O

O
CH3

H3C

CH3

CH3

OH

oxy-Cope

H3C

HO

220 oC, toluene

ketone-ene

63%
single diastereomer
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provide divinyl alcohol 38 in good yield and in >19:1 diastereomeric ratio. Treatment of 

38 with potassium hydride and 18-crown-6 ether effected an anionic oxy-Cope 

rearrangement to provide 39a as a single olefin isomer.21  Cyclodecenone 39a can be 

stored neat at –30 oC for at least three months without decomposition or isomerization.22 

 

1.5.2. Catalyst Screen 

 With the model substrate in hand, an evaluation of chiral metal(salen) and metal 

tridentate Schiff-base complexes, was conducted under conditions that afforded no 

observable background conversion of cyclodecenone 39a (Scheme 1.16). Of the Lewis 

acids evaluated, the chromium(III) tridentate Schiff-base complex 33,14b, 23 was uniquely 

effective in promoting the desired transformation. The ketone-ene reaction catalyzed by 

33 provided trans-decalinol 40a as a single regioisomer in 62% yield, >19:1 dr, and 79% 

ee.  The high substrate conversion along with high product enantioenrichment confirmed 

that cyclodecenone 39a is configurationally dynamic under the reaction conditions. 

                                                            
21 Evans, D. A.; Golob, A. M. J. Am. Chem. Soc. 1975, 97, 4765.  
 
22 Many of the cyclodecenones studied, including 39a, undergo ene reactions in the presence of acid. As 
such, NMR samples were only taken in CDCl3 that was pre-treated with K2CO3, and cyclodecenones were 
purified on DavisilTM or neutral alumina instead of silica gel. 
 
23 The (R,S)- or (S,R)- designation preceding catalyst numbers refers to the stereochemistry of the cis-1,2-
aminoindanol portion of the ligand. 
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Scheme 1.15. Synthesis of Model Substrate (E)-5-methyl-cyclodec-5-enone 39a 
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1.5.3. Chromium(III) Tridentate Schiff-Base Catalysts 

 Chromium(III) tridentate Schiff-base complexes were first developed for 

enantioselective hetero-Diels–Alder (HDA) reactions of aldehydes and monooxygenated 

dienes (Scheme 1.17A).24  Related complexes were subsequently shown to be effective 

for a number of other asymmetric pericyclic transformations involving aldehyde and 

                                                            
24 a) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int. Ed. 1999, 38, 2398. b) Gademann, 
K.; Chavez, D. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2002, 41, 3059. c) Chavez, D. E.; Jacobsen, E. N. 
Org. Synth. 2005, 82, 34. 
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quinone substrates, including variants of the HDA reaction,25  aldehyde-ene reactions 

(Scheme 1.10), and quinone-Diels-Alder (QDA) cycloadditions (Scheme 1.17B). 26 

Mechanistic investigations have indicated that the catalysts activate carbonyl groups 

through single-point binding.14c 

 

The depictions of complexes 32–34 and 41–42 used in Schemes 1.10 and 1.17 

summarize key structural data that has been gained about these catalysts (Scheme 1.18).  

X-ray crystallography data indicate that complex 34, derived from ortho-t-Bu-substituted 

salicylaldimine 43, is a dimer in the solid state with the two Cr(III) centers bridged by 

oxygen atoms of the aminoindanol ligand.  This class of dimeric catalysts will be referred 

to as Type II dimers for the remainder of the chapter.27 The optimal HDA catalyst (42) 

                                                            
25 a) Joly, G. D.; Jacobsen, E. N. Org. Lett. 2002, 4, 1795. b) Chavez, D. E.; Jacobsen, E. N. Org. Lett. 
2003, 5, 2563. 
 
26 Jarvo, E. R.; Lawrence. B. M.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 6043 
 
27 This notation was used by Rebecca Ruck (Ref. 14c). 
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displays an alternate dimerization mode (Type I), wherein a water molecule bridges the 

two Cr(III) centers. This complex is derived from ortho-(1-adamantyl)-substituted Schiff-

base ligand 44.  The bulky adamantyl group is thought to preclude formation of an 

aminoindanol bridged Type II dimer. Mechanistic studies carried out by former graduate 

student, Rebecca Ruck, provided evidence that the dimeric structures of 34 and 42 are 

maintained in solution and are relevant for catalysis of the aldehyde-ene and HDA 

reactions.28 Complex 41, which is also derived from tridentate Schiff base 44, is prepared 

under identical conditions to complex 42 except for an acidic workup.  This catalyst was 

found to crystallize as a monomer.  Evidence that solid structure data for 41 and 42 have 

reactivity implications is shown in Scheme 1.17B. Monomer 41 affords faster and more 

selective QDA reactions than dimeric catalyst 42 (entries 1–2).  The Cr(III) centers of all 

three of these complexes have octahedral geometry with water molecules occupying 

available coordination sites. A feature common to all methods that employ Cr(III) 

tridentate Schiff-base complexes is the requirement for desiccant (molecular sieves or 

BaO). It is proposed that this additive sequesters a coordinated water molecule from the 

highly Lewis acidic Cr(III) center to provide a free coordination site for carbonyl 

activation. 

                                                                                                                                                                                 
 
28 A lack of a nonlinear effect (NLE) upon varying the ee of catalyst 34 in the aldehyde-ene reaction, in 
combination with a positive NLE upon varying the ee of ligand 43, provide strong evidence that the 
catalyst is dimeric in solution and does not undergo ligand exchange. Molecular weight osmometry studies 
and a first order kinetic dependence on the catalyst indicate that catalyst 42 is dimeric in the solution state. 
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1.5.4. Catalyst Optimization Studies 

 Based on the results of our initial catalyst screen, we evaluated complexes 34, 41, 

and 42 as representative members of each Cr(III) tridentate Schiff-base crystal-type 

(Type II dimer, monomer, and Type I dimer, respectively) for the transannular ketone-

ene reaction of 39a (Table 1.1). In the presence of activated 4Å molecular sieves, all 

three catalyzed the desired reaction providing nearly complete conversion after 48 h. 

These catalysts afforded trans-decalinol 40a in moderate to good enantioselectivity and 
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i) CrCl3(THF)3;
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i) CrCl3(THF)3;
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Scheme 1.18. Different Classes of Cr(III) Tridentate Schiff-Base Complexes 
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all provided the same sense of enantioinduction.  Unlike the QDA reaction, the 

transannular ketone-ene reaction does not show a pronounced selectivity difference with 

monomeric and dimeric catalysts 41 and 42 (entries 2 and 3).29 

 

 Further optimization studies were carried out on the two dimeric catalyst 

scaffolds. 30  A series of catalysts containing variation at the para-position of the 

salicylaldehyde portion of the Schiff-base ligands was evaluated (Table 1.2). However, 

the effect of modifying this substituent on product enantioselectivity was minimal for 

both types of dimers.  

                                                            
29 In general, the Cr(III)-catalyzed ketone-ene reactions of 39a afforded 40a as a single regioisomer and in 
>19:1 dr; exceptions will be noted.  The volatility of product 40a caused significant errors in isolated yield 
measurements during early optimization studies.  For this reason, conversion data will be presented. 
 
30 These designations are based on the assumption that chloride complexes containing an ortho-Ad group 
and prepared with a neutral aqueous work up are Type I dimers and catalysts containing an ortho-t-Bu are 
Type II dimers. 

Table 1.1. Evaluation of Structurally Different Cr(III) Tridentate Schiff-Base 
Complexes 

entry catalyst conversiona eeb

1 (S,R)-34 100 –83

2 (S,R)-41 96 –60

3 (S,R)-42 98 –60

OH

H

O

CH3

10 mol% [Cr]

4 Å MS, toluene (4 M)
rt, 48 h

a Conversion was approximated as 100*(40a–39a)/(40a+39a), based on 1H NMR integration of the
crude reaction mixture. Product diastereomeric ratio was determined to be >19:1 based on 1H NMR
analysis of the crude reaction mixture. bDetermined by GC analysis using commercial chiral columns.

(S,R)-34, R1=t-Bu, R2=Br, n=2
(S,R)-41, R1=Ad, R2=CH3, n=1
(S,R)-42, R1=Ad, R2=CH3, n=2

ON

R1

R2

O

Cr

Cl
n

39a 40a
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The HDA reaction shows reactivity and selectivity dependence on the identity of 

the catalyst counterion.24a,c  A counterion exchange on complex 42 from chloride to the 

noncoordinating SbF6
– counterion induced rate accelerations and selectivity 

enhancements for some substrates.  Hence, we broadly investigated the impact of 

modifying the counterion associated with catalyst 42 on the ketone-ene reaction. 

Pronounced effects were observed, with reactivity increasing steadily as the coordinating 

ability of the counterion decreased (Table 1.3).  Catalysts 52 and 53, bearing PF6
– and 

SbF6
– counterions, respectively, promoted complete conversion within 24 h, albeit with 

diminished enantioselectivities as compared to the chloride complex (entries 6–7 vs. 

entry 1).31 Complexes bearing sulfonate counterions were somewhat less reactive, but 

induced significantly improved enantioselectivities (entries 3 and 4), with triflate 

complex 50 identified as the optimal catalyst of the series. 

                                                            
31 The transannular ketone-ene reaction conducted with complex 53 afforded minor olefin byproducts 
(<10%), an indication of diminished regioselectivity with this more Lewis acidic catalyst. 

Table 1.2 Variation of the Schiff-base para-Substituent 

entry catalyst R1 R2 conversiona eeb

1 (S,R)-45 Ad Br 100 –67

2 (S,R)-42 Ad CH3 96 –60

3 (S,R)-46 Ad OAc 100 –46

4 (S,R)-34 t -Bu Br 100 –83

5 (S,R)-47 t -Bu CH3 100 –87

6 (S,R)-48 t -Bu OAc 100 –83

ON

R1

R2

O

Cr

Cl
2

OH

H

O

CH3

5 mol% catalyst

4 Å MS, toluene (4 M)
rt, 48 h

39a 40a

a Conversion was approximated as 100*(40a–39a)/(40a+39a), based on 1H NMR
integration of the crude reaction mixture. Product diastereomeric ratio was determined
to be >19:1 based on 1H NMR analysis of the crude reaction mixture.bDetermined by
GC analysis using commercial chiral columns.  
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Analogous counterion exchanges were carried out on the optimal Type I and II 

chloride complexes 45 and 47 (identified from the experiments in Table 1.2) and 

monomer 41.  Triflate 54 catalyzed a more selective ketone-ene reaction than the 

corresponding chloride complex, providing decalinol 40a in 87% ee. This enhancement 

in selectivity is in accord with the counterion effect observed between Type I chloride 

complex 42 and triflate 50.  Enantioselectivity induced by triflate 55 was fairly similar to 

that of the corresponding Type II chloride complex (85% vs. 87% ee).  In contrast, the 

triflate complex 56 provided the ketone-ene product with significantly lower 

enantioenrichment than the corresponding monomeric chloride complex (1% ee vs. 60% 

ee).  Although these data are not conclusive about the structure of optimal catalyst 50, 

they empirically indicate that the catalyst preparation procedure is important.32 

                                                            
32 CD spectroscopy, which has previously been used to characterize all three structural types of Cr(III) 
complexes, could not distinguish triflate catalysts 50 and 56. 
 

Table 1.3. Counterion Effects on Reactivity and Selectivity 

entry catalyst conv. (%)a drb ee (%)c

1 (R,S)-42 (X = Cl) 50 >19:1 60

2 (S,R)-49 (X = OTs) 67 >19:1 –84

3 (R,S)-50 (X = OTf) 76 >19:1 93

4 (R,S)-51 (X = NTf2) 98 >19:1 46

5 (R,S)-52 (X = PF6) 100 >19:1 50

6 (R,S)-53 (X = SbF6) 100 >19:1 56

OH

H

O

CH3

5 mol% catalyst

4 Å MS, toluene (4 M)
rt, 24 h

ON

CH3

O

Cr
X

2

(R,S)-catalyst

39a 40a

aDetermined by GC analysis of the crude reaction mixtures using dodecane
as an internal standard. bDetermined by 1H NMR analysis of the crude reaction
mixtures. cDetermined by GC analysis using commercial chiral columns.  
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1.55. Substrate Scope33  

With complex 50 identified as the optimal catalyst, the substrate scope of the 

enantioselective transannular ketone-ene reaction was evaluated (Table 1.4). Full 

conversion of cyclodecenone 39a was achieved by extending the reaction time to 48 h, 

and product 40a was obtained in 81% yield and 93% ee (entry 1). The absolute 

stereochemistry of 40a was determined by X-ray crystallographic analysis of the 

corresponding para-Br-benzoate, and the assignments for the other products were made 

by analogy (Figure 1.3). 

                                                            
33  Cyclodecenones were synthesized via anionic or palladium-catalyzed oxy-Cope rearrangements of 
divinyl alcohols: a) Ref 21. b) Bluthe, N.; Malacria, M.; Gore, J. Tetrahedron Lett. 1983, 24, 1157. 
 

OH

H

O

CH3

10 mol% [Cr]

4 Å MS, toluene (4 M)
rt

ON

Br

O

Cr
X

2

ON

CH3

O

Cr
X

1

ON

CH3

O

Cr

t -Bu

X
2

(S,R)-45 (X=Cl): 100% conv, –67% ee
(S,R)-54 (X=OTf): 100% conv, –87% ee

(S,R)-47 (X=Cl): 100% conv, –87% ee
(S,R)-55 (X=OTf): 100% conv, –85% ee

(S,R)-41 (X=Cl): 100% conv, –60% ee
(R,S)-56 (X=OTf): 100% conv, 1% ee

39a 40a

 

Scheme 1.19. Counterion Effects Based on the Chloride Complex Structure Type 
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Gem-dimethyl-substituted trans-decalinols 40b and 40c, were accessed in high 

yield and enantioselectivity (entries 2 and 3), but the closely analogous product 40d was 

obtained in low yield and as a racemate (entry 4). Analysis of the chair-chair 

conformations of these substrates provides a plausible explanation (Figure 1.4).34 Only 

cyclodecenone 40d possesses a syn-pentane relationship between its methyl substituents, 

and the pseudo-axial methyl substituent at C3 is also likely to interfere with complexation 

of the Lewis acidic catalyst.  With these substitution effects in mind, we probed more 

highly functionalized substrates (Table 1.4, entries 5 and 6).  The acid-sensitive acetal 

40e and unconjugated diene 40f both proved to be effective substrates, affording the 

corresponding ene products in high enantioselectivities and good yields. Additionally, 

ether 57 and cyclononenone 59 underwent enantioselective ketone-ene reactions to afford 

the corresponding bicyclic alcohol products, although in diminished yields and 

enantioselectivities.   

                                                            
34  Chair-like transition structures that are consistent with reaction outcomes have been determined 
computationally for diastereoselective thermal ketone-ene reactions of (E)-cyclodecenones: Terada, Y.; 
Yamamura, S. Tetrahedron Lett. 1979, 20, 1623. 

O

H

O

Br  

Figure 1.3. ORTEP Diagram of the para-Br-benzoate of 40a Showing 50% 
Probability Displacement 
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Table 1.4. Substrate Scope of the Cr(III)-Catalyzed Ketone-Ene 

entry substrate product yield (%)a,b drc ee (%)d

1

O

CH339a

OH

H

40a

81 >19:1 93

2

O

CH3
39b

OH

H

40b

96 >19:1 94

3

O

CH339c

OH

H

40c

84 >19:1 94

4

O

CH339d

OH

H

40d

32e >19:1 0

5

O

CH3

O

O

39e

OH

H

O

O

39e

87 >19:1 96

6

O

CH339f

OH

H

40f

62 >19:1 94

7f O

O

CH357

O

OH

58

H
13 >19:1 49

8f

O

CH359

OH

60

H
18 >19:1 68

X

OH

H

X

O

CH3

5 mol% (R,S)-50

4Å MS, toluene, rt, 48 h

3

8 4

R R

n n

aReactions were performed on a 0.2 mmol scale with 5 mol% catalyst 50 (10 mol% based
on Cr) and in the presence of powdered 4 Å molecular sieves at rt in anhydrous toluene
([substrate] = 4 M). Unless otherwise noted, reactions showed complete conversion after
48 h and the bicyclic alcohol product was obtained as a single regioisomer. bIsolated yield
of the ketone-ene products following purification by flash chromatography. cDetermined by
1H NMR analysis of the crude reaction mixtures. dDetermined by GC analysis using
commercial chiral columns. eCombined yield of 40d and an inseparable regioisomeric
product. fReaction time was 24 h.  
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Tetrasubstituted alkene 61 proved much less reactive than trisubstituted olefins 

39a-f under the catalytic conditions, undergoing only 19% conversion after 24 h at 50 oC.  

The transannular ketone-ene reaction afforded trans-decalinol 62, bearing a quaternary 

stereocenter, in 12% yield and 73% ee (Scheme 1.20).  Cyclodecenone (+)-61 was 

recovered in 69% yield and in 10% ee, confirming that this substrate undergoes 

racemization slowly under the catalytic conditions, and that complex 50 induced a 

measurable kinetic resolution.35 

 

1.56. Limitations 

 Acyclic ketones 63 and 64 did not undergo intramolecular ene reactions under the 

optimized conditions or at 50 oC (Scheme 1.21). These results may be an indication that 

the reactivity enhancements conferred to transannular substrates are essential for Cr(III)-

catalyzed ketone-ene reaction.  However, attempted ketone-ene reactions of a number of 

                                                            
35  A kinetic resolution of planar chiral cyclic ethers has been achieved through an enantioselective 
transannular [2,3]-Wittig rearrangement: Tomooka, K.; Komine, N.; Fujiki, D.; Nakai, T.; Yanagitsuru, S. J. 
Am. Chem. Soc. 2005, 127, 12182. 

O

CH3

CH3

OH

CH3

5 mol% 50

O

CH3

CH3

62
12% yield

> 19:1 dr, 73% ee

+
4Å MS

toluene, 50 oC, 24 h
19% conversion

()-61 recovered substrate: (+)-61
69% yield
10% ee  

Scheme 1.20. Kinetic Resolution of Planar Chiral Cyclodecenone 61 

CH3

O

[Cr]

Me

CH3
CH3

O

CH3

CH3

[Cr]

CH3

O

[Cr]

CH3

CH3
8 4

3
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39b 39c 39d  

Figure 1.4. Rationale for the Low Observed Reactivity of 39d Relative to 39b and 
39c 
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other cyclic substrates were unsuccessful as well.  For example, (Z)-5-methyl-cyclodec-

enone (65), the olefin isomer of model substrate 39a did not afford any of the predicted 

cis-fused decalinol.  (E)-Cyclodecenones 66 and 67, which differ from 39a in the relative 

positions of the ene and enophile components in the ring, and were predicted to afford 

[3.5.0]-bicyclic alcohols, were also unreactive.  Finally, 11-membered cyclic keto-olefin 

68 did not afford the corresponding ketone-ene product.  The sensitivity of the reaction to 

perturbations in ring-size is similar to that of List’s transannular aldol reaction.7 These 

data suggest that the transannular strategy, which properly aligned the two reactive 

components of model substrate 39a for the ene reaction, might have the opposite effect 

with many of these other medium-sized cyclic substrates, prohibiting the desired reaction 

from taking place. 

 

1.6. Conclusions 

In conclusion, we have demonstrated that chiral chromium(III) tridentate Schiff-

base complex 50 catalyzes transannular ketone-ene reactions of (E)-cyclodecenones in 

OH

H

OH

H

H3C
OH

H3C
OHH3C

O
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H3C
O

CH3
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HCH3

O
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CH3

O
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CH3

O

CH3
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Scheme 1.21. Unsuccessful Substrates 
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high diastereo- and enantioselectivity to access trans-decalinols. The dramatic counterion 

effects observed in the ketone-ene reaction are intriguing and are not well understood at 

this time.  Structural elucidation of complex 50 may provide an understanding of the role 

the triflate counterion has in defining the chiral environment of the catalyst.  

Significantly, the transannular strategy provides entropic activation for the 

ketone-ene reaction and allows electronically unactivated ketones to be engaged as 

substrates in a chiral Lewis acid-catalyzed process.  This finding is in line with previous 

observations regarding the Cr(III)-catalyzed aldehyde-ene reactions: intermolecular 

reactions occurs only with activated electron-rich olefins whereas the entropically 

activated intramolecular variant tolerates unactivated olefins. This trend suggests that 

other typically inert functional groups may undergo transannular reactions with 

appropriate electronic tuning of the reaction partner.  
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1.7. Experimental Section 

A. General Information 

 Unless otherwise noted, all reactions were performed under a positive pressure of 

anhydrous nitrogen or argon in flame- or oven-dried glassware. Moisture- and air-

sensitive reagents were dispensed using oven-dried stainless steel syringes or cannulae 

and were introduced to reaction flasks through rubber septa. Reactions conducted below 

ambient temperature were cooled by external baths (dry ice/acetone for –78 oC and 

ice/water for 0 oC).  Reactions conducted above ambient temperature were heated by an 

oil bath. 

 Analytical thin layer chromatography (TLC) was performed on glass plates pre-

coated with silica 60 F254 (0.25 mm) or on aluminum sheets pre-coated with neutral 

aluminum oxide 60 F254 (0.2 mm). Visualization was carried out by exposure to a UV-

lamp (short wave 254 nm, long wave 365 nm), and by heating after staining the plate 

with a ceric ammonium molybdate, potassium permanganate, or phosphomolybdic acid 

solution. Extraction and chromatography solvents were reagent or HPLC grade and were 

used without further purification. Flash column chromatography was carried out over 

silica gel (60 Å, 230–400 mesh) from EM Science, DavisilTM
 (Grade 643, 150 Å, 200–

425 mesh) from Aldrich, or activated neutral aluminum oxide (Brockman I standard 

grade, 58 Å, 150 mesh) from Aldrich. Flash column chromatography was conducted on a 

Biotage Isolera automated chromatography system.  
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 Materials. Commercial reagents and solvents were used with the following 

exceptions: tetrahydrofuran, diethyl ether, toluene, and dichloromethane employed as 

reaction solvents were dried by passage through columns of activated alumina. 

Triethylamine was distilled from calcium hydride at 760 torr prior to use. Chloroform-d 

was treated with and stored over anhydrous potassium carbonate prior to use.  Powdered 

4Å MS were purchased from Sigma-Aldrich, activated by heating in a commercial 

microwave oven, and stored in a vial sealed with parafilm in a desiccator.  4,4-dimethyl-

cyclohexanone was prepared according to the reported procedure.36 Intermediates S10, 

S11 and S12 were prepared according to reported procedures.37,38,39  

 Instrumentation. Proton nuclear magnetic resonance (1H NMR) spectra and 

carbon nuclear magnetic resonance (13C NMR) spectra were recorded on a Varian 

Mercury-400 (400MHz), Inova-500 (500MHz), or an Inova-600 (600MHz) spectrometer 

at 23 oC, unless otherwise noted. Chemical shifts for protons are reported in parts per 

million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual 

protium in the NMR solvent (CHCl3: 7.26 ppm).  Chemical shifts for carbons are 

reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are 

referenced to the NMR solvent (CDCl3: 77.16 ppm). Data are represented as follows: 

chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, 

br = broad), integration, and coupling constant (J) in Hertz (Hz).  Infrared (IR) 

spectroscopy was performed on the neat compounds on a Brucker Tensor 27 FT-IR 

                                                            
36 Meyer, W. L.; Brannon, M. J.; Burgos, C. d. G.; Goodwin, T. E.; Howard, R. W. J. Org. Chem. 1985, 50, 
438. 
 
37 Reetz, M. T.; Kindler, A. J. Organomet. Chem. 1995, 502, C5. 
 
38 Grisé, C. M.; Rodrigue, E. M.; Barriault, L. Tetrahedron 2008, 64, 797. 
 
39 Clément, R.; Grisé, C. M.; Barriault, L. Chem. Commun. 2008, 3004. 
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Spectrometer using OPUS software.  Data are represented as follows: frequency of 

absorption (cm-1), intensity of absorption (s = strong, m = medium, w = weak).  Mass 

spectra were obtained on an Agilent 1200 series 6120 Quadrupole LC/MS.  Optical 

rotation data were collected using a 1-mL cell using a 0.5 dm path length on a Jasco P-

2000 polarimeter and are reported as [α]D
23 (concentration in grams/100 mL solvent).  

Reported rotations are the average of 3–5 measurements per sample.  

B. Catalyst Preparation and Characterization 

Chromium(III) Chloride Complex (R,S)-42 

Catalyst (R,S)-42 was prepared according to the published 

procedure.24c 

 

Chromium(III) Chloride Complex (S,R)-42 

Catalyst (S,R)-42 was prepared according to the published 

procedure.24c 

 

General Procedure A – Counteranion Exchange 

A flame-dried 50 mL round-bottom flask equipped with a stir bar and septum was 

wrapped with aluminum foil and charged with a silver salt bearing the desired counterion 

(0.0924 mmol, 0.95 equiv). To this flask was added complex 42 (50 mg, 0.097 mmol, 1 

equiv).  To the flask, under an atmosphere of argon, was added TBME (16.2 mL).  The 

reaction mixture was stirred at room temperature for 3 h, after which the contents were 

filtered through Celite®.  The pad of Celite® was rinsed with an additional portion of 

ON

CH3

O

Cr
Cl

2
(R,S)-42

ON

CH3

O

Cr
Cl

2
(S,R)-42
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TBME (16.2 mL).  The filtrate was concentrated to afford the desired complex, which 

was used without further purification. 

 

Chromium(III) Tosylate Complex (S,R)-49 

Following General procedure A, the counterion exchange 

was performed with (S,R)-42 (100 mg, 0.19 mmol, 1 equiv) 

and AgOTs (50.5 mg, 0.18 mmol, 0.95 equiv) to provide 

catalyst (S,R)-49 as a brown powder (84%). FTIR (neat, cm-1) 3198 (br m) 2902 (m) 

1616 (s) 1538 (m) 1434 (m) 1307 (w) 1229 (s) 1169 (m) 1078 (m) 1010 (m) 945 (w) 812 

(m) 744 (s). 

Chromium(III) Triflate Complex (R,S)-50 

Following General Procedure A, the counterion exchange 

was performed with (R,S)-42 (200 mg, 0.39 mmol, 1 equiv) 

and AgOTf (95 mg, 0.37 mmol, 0.95 equiv) to provide 

catalyst (R,S)-50 as a brown powder (244 mg, 98%). FTIR (neat, cm-1) 3271 (br w) 2902 

(m) 2845 (w) 1614 (m) 1538 (m) 1453 (w) 1294 (m) 1227 (s) 1170 (s) 1026 (s) 980 (w) 

811 (w) 746 (s). 

Chromium(III) Triflimide Complex (R,S)-51 

Following General Procedure A, the counterion exchange 

was performed with (R,S)-42 (50 mg, 0.097 mmol, 1 equiv) 

and AgNTf2 (35.9 mg, 0.0924 mmol, 0.95 equiv) to provide 

ON

CH3

O

Cr
OTs

2
(S,R)-49

ON

CH3

O

Cr
NTf2

2
(R,S)-51

ON

CH3

O

Cr
OTf

2
(R,S)-50
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catalyst (R,S)-51 as a brown powder (62.3 mg, 83%). FTIR (neat, cm-1) 3538 (br w) 2905 

(w) 2850 (w) 1614 (m) 1541 (m) 1431 (w) 1349 (m) 1298 (m) 1227 (m) 1188 (s) 1135 

(m) 1057 (s) 981 (m) 748 (m). 

 

Chromium(III) Hexafluorophosphate Complex (R,S)-52  

Following General Procedure A, the counterion exchange 

was performed with (R,S)-42 (50 mg, 0.097 mmol, 1 equiv) 

and AgPF6 (23.4 mg, 0.0924 mmol, 0.95 equiv) to provide 

catalyst (R,S)-52 as a brown powder (50.3 mg, 82%). FTIR (neat, cm-1) 3532 (br w) 2901 

(m) 2848 (w) 1614 (m) 1538 (m) 1431 (w) 1300 (w) 1228 (m) 1151 (m) 1054 (m) 839 (s) 

749 (m). 

Chromium(III) Hexafluoroantimonate Complex (R,S)-53 

Following General Procedure A, the counterion exchange 

was performed with (R,S)-42 (50 mg, 0.097 mmol, 1 equiv) 

and AgSbF6 (31.8 mg, 0.0924 mmol, 0.95 equiv) to provide 

catalyst 53 as a brown powder (67.4 mg, 96%).  This complex has previously been 

characterized.24c 
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C. Substrate Syntheses 

General Synthetic Scheme for Transannular Ketone-Ene Substrates 39a, 39c, 39d, and 59 

CH3

O

n

CH3

OH

n

HCH3

O
oxidation. vinylation

anionic
oxy-Cope

On

CH3

OH

H

n

Epoxide
opening n

R
R

R
R

R
R

R'
R'

R'
R'

R

R

37: R=H, n=1
S1c: R=CH3, n=1
S8: R=H, n=0

S2a: R=H, n=1
S2c: R=CH3, n=1

38: R=R'=H, n=1
S3c: R=CH3,R'=H, n=1
S3d: R=H, R'=CH3, n=1
S9: R=H, n=0

39a: R=R'=H, n=1
39c: R=CH3,R'=H, n=1
39d: R=H, R'=CH3, n=1
59: R=H, n=0  

General Procedure B – Cu-catalyzed addition of Grignard reagents to meso epoxides40 

A flame-dried 3 L round-bottom flask under N2 was charged with CuI (2.9g, 15.3 mmol, 

0.15 equiv) and THF (1 L) and cooled to –30 oC (dry ice/acetone).  To this suspension 

was added a solution of Grignard in THF (150 mmol, 1.5 equiv) over a period of 30 m. 

After another 10 m at –30 oC, meso epoxide (100 mmol, 1 equiv) was added dropwise, 

neat, over 10 m, and the reaction mixture was allowed to gradually warm to room 

temperature overnight.  The dark reaction mixture was cooled to 0 oC and quenched by 

slow addition of saturated aqueous NH4Cl (200 mL).  The contents were diluted with DI 

H2O (200 mL) and extracted with Et2O (3 x 500 mL).  The combined organics were dried 

over Na2SO4, filtered, and concentrated in vacuo.  The residue was re-dissolved in 

CH2Cl2, dried over Na2SO4, filtered, and concentrated to afford crude alcohol that, unless 

otherwise noted, was carried on to the next reaction without further purification. 

 

 (±)-(1S,2R)-2-(prop-1-en-2-yl)cyclohexanol (37)41 

                                                            
40 This procedure is adapted from Huynh, C.; Derguini-Boumechal, F.; Linstrumelle, G. Tetrahedron Lett. 
1979, 17, 1503. 
 
41 Warrington, J. M.; Yap, G. P. A.; Barriault, L. Org. Lett. 2000, 2, 663. 

H
CH3

OH

37
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This compound was prepared according to General Procedure B, with cyclohexene oxide 

(9.8 g, 100 mmol, 1 equiv) and isopropenylmagnesium bromide (0.5 M in THF, 300mL, 

150 mmol, 1.5 equiv). The known alcohol 37 was obtained as a yellow oil (12.7 g) that 

was carried forward to the following reactions without further purification.  

 (±)-(1S,2R)-2-(3-methylbut-2-en-2-yl)cyclohexanol (S1c)  

This compound was synthesized according to General Procedure B, with 

cyclohexene oxide (600 mg, 6.11 mmol, 1 equiv) and (3-methylbut-2-en-2-

yl)magnesium bromide (0.25 M, 30mL, 1.5 equiv). The crude product was purified by 

flash column chromatography (SiO2, Biotage, 0 to 50% Et2O/hexanes) to afford S1c 

(698mg, 4.15 mmol, 68%) as a clear oil. Rf=0.2 (50% Et2O/hexanes); 1H NMR (500 

MHz, CDCl3) δ ppm 3.43 (td, J=9.84, 4.58 Hz, 1 H) 2.45 (ddd, J=11.79, 9.96, 3.89 Hz, 1 

H) 2.02 - 2.09 (m, 1 H) 1.75 - 1.82 (m, 1 H) 1.73 (s, 3 H) 1.71 (s, 3 H) 1.64 - 1.70 (m, 2 

H) 1.58 (s, 3 H) 1.44 - 1.52 (m, 1 H) 1.18 - 1.39 (m, 4 H); 13C NMR (126 MHz, CDCl3) δ 

ppm 128.7, 127.6, 71.2, 49.1, 34.3, 29.3, 26.0, 25.1, 21.4, 20.4, 13.1; FTIR (neat, cm-1) 

3417 (br m) 2929 (s) 2857 (m) 1449 (m) 1375 (w) 1272 (w) 1162 (w) 1146 (w) 1060 (s) 

1010 (m) 962 (m) 852 (m). MS (APCI) m/z calc’d for C11H19 [M–H2O+H]+: 151.1; 

found: 151.1. 

 

(±)-(1S,2R)-2-(prop-1-en-2-yl)cyclopentanol (S8) 

This compound was prepared according to General Procedure B with 

cyclopentene oxide (8.4 g, 100 mmol, 1 equiv) and isopropenylmagnesium bromide 

(0.5M in THF, 300 mL, 1.5 equiv). The crude product was obtained as a yellow oil (8.6 

g) and was carried forward to the following reaction without further purification. 

S1c

H
CH3

OH

CH3

OH

H
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General Procedure C – Swern oxidation to generate β-γ unsaturated ketone 

intermediates 

An oven-dried 250 mL round-bottom flask under argon was charged with a stir bar, 

CH2Cl2 (39 mL), and oxalyl chloride (3.5 mL, 40.9 mmol, 1.2 equiv) and cooled to –78 

oC.  To this solution was added dropwise a solution of DMSO (6.0 mL, 85.2 mmol, 2.5 

equiv) in CH2Cl2 (39 mL). After the mixture was stirred for 5 m, a solution of alcohol 

(34.1 mmol, 1.0 equiv) in CH2Cl2 (30 + 2 x 5 mL rinses) was added dropwise.  The 

reaction mixture was stirred 1 h at –78 oC, at which point it was quenched by addition of 

NEt3 (23.8 mL, 170 mmol, 5.0 equiv) and immediately warmed to room temperature.  

The contents were diluted with DI H2O (50 mL) and extracted with CH2Cl2 (3 x 50 mL).  

The combined organics were dried over Na2SO4, filtered, and concentrated.  To remove 

amine salts, the crude residue was twice suspended in 5% Et2O/hexanes, filtered, and 

concentrated to isolate the β-γ unsaturated ketone.  This product was carried forward 

without further purification.42 

 

General Procedure D – Grignard addition to β-γ enone intermediates 

A flame-dried 500 mL round-bottom flask was charged with a stir bar, β-γ unsaturated 

ketone (14.5 mmol, 1 equiv) and THF (145 mL) and cooled to 0 oC. A solution of 

Grignard reagent in THF (17.4 mmol, 1.2 equiv) was added dropwise under argon.  The 

reaction was allowed to warm to room temperature overnight and was then quenched by 

slow addition of saturated aqueous NH4Cl (50 mL).  The crude mixture was diluted with 

                                                            
42 Attempted purification of some β-γ unsaturated ketone intermediates resulted in partial isomerization to 
the conjugated enone.  
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DI H2O (50 mL) and extracted with Et2O (3 x 100 mL).  The combined organics were 

diluted with CH2Cl2, dried over Na2SO4, filtered, and concentrated.  The crude residue 

was purified by flash column chromatography to afford the divinyl alcohol. 

 

General Procedure E – Cerium trichloride mediated Grignard addition to β-γ enones43 

A flame-dried 100 mL round-bottom flask was charged with anhydrous cerium 

trichloride (2.1 g, 8.5 mmol, 2.5 equiv) and THF (17 mL), and the resultant suspension 

was stirred for 2 h at room temperature. The flask was cooled to –78 oC, and t-

butyllithium (1.7 M in pentane) was added dropwise until the suspension took on a 

persistent faint pink color (~5 drops).  The flask was brought to room temperature, and β-

γ unsaturated ketone (3.4 mmol, 1.0 equiv) was added as a solution in THF (10 mL + 2 x 

3.5 mL rinses).  The suspension was stirred under N2 at room temperature for an 

additional 2 h.  The flask was cooled to –78 oC and the reaction mixture was stirred at 

this temperature for 8 h, at which point saturated aqueous NH4Cl was added (20 mL) and 

the flask was brought to room temperature.  The resultant emulsion was treated with 1 N 

HCl (10 mL) and was extracted with Et2O (3 x 20 mL).  The combined organics were 

diluted with CH2Cl2, dried over Na2SO4, filtered, and concentrated to afford the crude 

product which was purified by flash column chromatography to afford the desired divinyl 

alcohol.  

 

2-(prop-1-en-2-yl)cyclohexanone (S2a)41 

Alcohol 37 (4.78g, 34.1 mmol, 1 equiv) was oxidized according to General 

                                                            
43 Martin, C. L.; Overman, L. E.; Rohde, J. M. J. Am. Chem. Soc. 2008, 130, 7568. 

CH3
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Procedure C to afford known ketone 2a as a dark orange oil (4.2 g).  This product was 

carried forward without further purification. 

 

 (±)-(1S,2R)-2-(prop-1-en-2-yl)-1-vinylcyclohexanol (38)19 

According to General Procedure D, crude ketone S2a (2.0 g, 14.5 mmol) was 

reacted with vinylmagnesium bromide (1.0 M in THF, 17.4 mL, 17.4 mmol, 

1.2 equiv) to afford the crude addition product in 20:1 dr in favor of the title compound. 

The crude residue was purified by flash column chromatography (SiO2, Biotage, 0 to 6% 

Et2O/hexanes) to afford the divinyl alcohol 38 (1.32 g, 7.9 mmol, 55% yield) as a pale 

yellow oil. Rf=0.34 (10% Et2O/hexanes, KMnO4);
 1H NMR (500 MHz, CDCl3) δ ppm 

5.87 (ddd, J=17.17, 10.76, 1.37 Hz, 1 H) 5.11 - 5.23 (m, 1 H) 4.92 - 5.02 (m, 1 H) 4.81 - 

4.89 (m, 1 H) 4.73 (d, J=0.92 Hz, 1 H) 2.04 (dd, J=12.59, 3.43 Hz, 1 H) 1.74 (s, 3 H) 

1.71 - 1.80 (m, 2 H) 1.58 - 1.71 (m, 2 H) 1.49 - 1.57 (m, 1 H) 1.39 - 1.49 (m, 2 H) 1.21 - 

1.30 (m, 1 H); 13C NMR (126 MHz, CDCl3) δ ppm  148.4, 146.5, 111.8, 110.7, 72.8, 52.5, 

38.1, 27.4, 26.2, 25.7, 21.3; FTIR (neat, cm-1) 3551 (m), 3482 (br m), 3082 (w), 2933 (s), 

2856 (m), 2671 (w), 1638 (m), 1447 (m), 1373 (m), 1285 (m), 1197 (w), 1077 (m), 997 

(m), 971 (s), 916 (s), 856 (m), 838 (m), 666 (m), 611 (m). MS (APCI) m/z calc’d for 

C11H17 [M–H2O+H]+: 149.1; found: 149.1. 

 

(±)-(1S,2R)-2-(3-methylbut-2-en-2-yl)-1-vinylcyclohexanol (S3c) 

Alcohol S1c (650 mg, 3.9 mmol, 1 equiv) was oxidized according to General 

Procedure C to afford ketone S2c, which was carried forward without 

purification.  According to General Procedure E, ketone S2c was reacted with 

OH

H
CH3

38

OH

H
CH3
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vinylmagnesium bromide (1.0 M in THF, 9.6 mL, 9.6 mmol, 2.5 equiv) to afford the 

crude addition product in >19:1 dr in favor of the title compound. The crude residue was 

purified by flash column chromatography (SiO2, Biotage, 0 to 25% Et2O/hexanes) to 

afford S3c as a clear oil (518 mg, 2.7 mmol, 68% yield over 2 steps). Rf = 0.37 (10% 

Et2O/hexanes) 1H NMR (500 MHz, CDCl3) δ ppm 5.86 (dd, J=17.40, 10.99 Hz, 1 H) 

5.12 (dd, J=16.94, 1.37 Hz, 1 H) 4.91 (dd, J=10.99, 1.37 Hz, 1 H) 2.55 (dd, J=12.59, 2.98 

Hz, 1 H) 1.84 - 1.97 (m, 1 H) 1.75 - 1.83 (m, 1 H) 1.66 - 1.74 (m, 1 H) 1.64 (br. s., 3 H) 

1.62 (s, 6 H) 1.51 - 1.61 (m, 3 H) 1.18 - 1.39 (m, 3 H); 13C NMR (126 MHz, CDCl3) δ 

ppm  148.4, 146.5, 111.8, 110.7, 72.8, 52.5, 38.1, 27.4, 26.2, 25.7, 21.3; FTIR (neat, cm-

1) 3491 (br m) 3084 (w) 2929 (s) 2959 (m) 1640 (w) 1447 (s) 1413 (m) (1375 (m) 1268 

(m) 1244 (m) 1164 (m) 1150 (m) 1056 (w) 992 (m) 963 (s) 916 (s) 859 (w) 816 (m) 668 

(m). MS (APCI) m/z calc’d for C13H21 [M–H2O+H]+: 177.2; found: 177.2. 

 

(±)-(1S,2R)-1-(2-methylprop-1-enyl)-2-(prop-1-en-2-yl)cyclohexanol (S3d) 

According to General Procedure D, crude ketone S2a (1.0 g, 7.2 mmol, 1 

equiv) was reacted with 2-methyl-1-propenylmagnesium bromide (0.5 M in 

THF, 17.4 mL, 17.4 mmol, 1.2 equiv) to afford the crude addition product in 6:1 dr in 

favor of the title compound.  The crude product was purified by flash column 

chromatography (Davisil®, Biotage, 0 to 25% Et2O/hexanes) to afford S3d (452 mg, 2.3 

mmol, 32% yield) as a pale yellow oil. Rf=0.75 (10% Et2O/hexanes, KMnO4); 
1H NMR 

(500 MHz, CDCl3) δ ppm 5.19 (s, 1 H) 4.88 (s, 1 H) 4.78 (s, 1 H) 2.06 (dd, J=12.36, 2.75 

Hz, 1 H) 1.88 (d, J=14.19 Hz, 1 H) 1.83 (s, 3 H) 1.81 (s, 3 H) 1.69 - 1.78 (m, 3 H) 1.67 (s, 

3 H) 1.35 - 1.63 (m, 4 H) 1.23 (qt, J=13.58, 3.20 Hz, 1 H); 13C NMR (126 MHz, CDCl3) 

OH

H
CH3

S3d
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δ ppm 149.2, 132.49, 132.46, 112.2, 73.5, 53.5, 38.5, 27.8 (2 C) 26.3, 25.7, 21.6, 18.8; 

FTIR (neat, cm-1) 3559 (m) 3502 (br m) 2078 (w) 2930 (s) 2855 (s) 1667 (m) 1637 (m) 

1447 (s) 1375 (m) 1323 (w) 1286 (m) 1212 (w) 1179 (w) 1069 (m) 978 (s) 949 (m) 895 

(s) 863 (m) 734 (m). MS (ESI) m/z calc’d for C13H21 [M–H2O+H]+: 177.1638; found: 

177.1637. 

 (±)-(1S,2R)-2-(prop-1-en-2-yl)-1-vinylcyclopentanol (S9) 

Alcohol S8 (1.0g, 7.9 mmol, 1 equiv) was dissolved in CH2Cl2 (80 mL) in a 

200 mL round-bottom flask.  Dess–Martin periodinane (4.0 g, 9.4 mmol, 1.2 

equiv) was added as a solid in one portion.  The reaction was stirred at room temperature 

under N2 for 1 h, at which point the contents of the flask were poured into a 1 L 

Erlenmeyer flask containing a large stir bar and Et2O (80 mL).  A 10% aqueous sodium 

thiosulfate solution (80 mL) and saturated aqueous NaHCO3 (80 mL) were added to the 

flask, and the contents were vigorously stirred for 1 h. The organic layer was separated 

and the aqueous layer was extracted with CH2Cl2 (3 x 50 mL).  The combined organics 

were dried over Na2SO4, filtered, and concentrated.  The crude ketone was taken forward 

without purification. 

 According to General Procedure D, the intermediate ketone was reacted with 

vinylmagnesium bromide (1.0 M in THF, 9.5 mL, 9.5 mmol, 1.2 equiv) to afford the 

crude addition product in 9:1 dr in favor of the title compound.  The crude product was 

purified by flash column chromatography (SiO2, Biotage, 0 to 25% Et2O/hexanes) to 

afford divinyl alcohol S9 as a yellow oil (497 mg, 3.2 mmol, 41% over 2 steps). 

Characterization data match reported values.20d 
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General Procedure F – Anionic oxy-Cope rearrangement 

A flame-dried 250 mL round-bottom flask was charged with KH (866 mg, 21.7 mmol, 

2.4 equiv), 18-crown-6 (6.8 g, 25.7 mmol, 2.8 equiv), and THF (150 mL) and cooled to 0 

oC under an atmosphere of argon.  A solution of divinyl alcohol (9.0 mmol, 1 equiv) in 

THF (30 mL + 10 mL rinse) was added dropwise via cannula.  The reaction was stirred at 

0 oC for 30 m, after which it was warmed to room temperature.  Once the reaction was 

determined to be complete by TLC analysis, the flask was cooled to 0 oC and quenched 

by slow addition of saturated aqueous NH4Cl (10 mL).  The reaction was further diluted 

with 100 mL DI H2O and extracted with Et2O (3 x 100 mL).  The combined organics 

were diluted with CH2Cl2, dried over Na2SO4, filtered, and concentrated. The crude 

residue was purified by flash column chromatography to afford the keto-olefin.  

 (E)-5-methylcyclodec-5-enone (39a)33b 

According to General Procedure F, divinyl alcohol 38 (1.5g, 9.0 mmol, 1 

equiv) underwent an anionic oxy-Cope rearrangement.  The crude product was 

purified by flash column chromatography (neutral Al2O3, Biotage, 0 to 10% 

Et2O/hexanes) to afford cyclodecenone 39a (978 mg, 5.9 mmol, 65% yield). The product 

is a clear oil at room temperature and freezes to a white solid upon storage at 5 oC. 

Rf=0.26 (10% Et2O/hexanes, CAM); 1H NMR (500 MHz, 23 oC,CDCl3) δ ppm 5.17 (t, 

J=7.10 Hz, 1 H) 1.47 (s, 3 H) 1.12 - 2.81 (m, 14 H); 1H NMR (500 MHz, –20 oC, CDCl3) 

δ ppm 5.18 (dd, J=10.07, 3.20 Hz, 1 H) 2.64 (dd, J=16.25, 9.84 Hz, 1 H) 2.25 - 2.47 (m, 

3 H) 2.17 (dd, J=12.36, 5.95 Hz, 1 H) 1.97 - 2.12 (m, 3 H) 1.52 - 1.89 (m, 5 H) 1.46 (s, 3 

H) 1.20 - 1.40 (m, 1 H); 13C NMR (126 MHz, CDCl3) δ ppm 209.6, 137.9, 126.8, 45.3, 

43.4, 41.4, 29.0, 28.6, 26.0, 22.5, 16.0; FTIR (neat, cm-1) 3392 (w), 2922 (s), 2852 (m), 

O

CH3

39a
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2678 (w), 1703 (s), 1443 (s), 1425 (s), 1359 (m), 1181 (w), 1096 (s), 1017 (w), 924 (m), 

859 (m), 809 (m), 774 (m), 733 (w). MS (ESI) m/z calc’d for C11H19O [M+H]+: 

167.1430; found: 167.1425. 

(E)-4,4,5-trimethylcyclodec-5-enone (39c) 

According to General Procedure F, divinyl alcohol S3c (388 mg, 2.0 mmol, 

1 equiv) underwent an anionic oxy-Cope rearrangement.  The crude product 

was purified by flash column chromatography (neutral Al2O3, Biotage, 0 to 50% 

Et2O/hexanes and SiO2, Biotage, 0 to 10% Et2O/hexanes) to afford cyclodecenone 39c 

(294 mg, 0.1.5 mmol, 76% yield) as a pale yellow oil. 1H NMR (500 MHz, 23oC, CDCl3) 

δ ppm 5.24 (td, J=7.33, 0.92 Hz, 1 H) 2.18 - 2.81 (m, 4 H) 2.09 (br. s., 3 H) 1.48 - 1.97 

(m, 5 H) 1.45 (s, 3 H) 1.07 (s, 6 H); 1H NMR (500 MHz, –40 oC, CDCl3) δ ppm 5.19 (d, 

J=10.74 Hz, 1 H) 2.57 (dd, J=16.36, 10.01 Hz, 1 H) 2.49 (t, J=13.70 Hz, 1 H) 2.26 - 2.38 

(m, 2 H) 2.06 - 2.17 (m, 1 H) 1.95 - 2.05 (m, 1 H) 1.90 (dd, J=14.89, 4.64 Hz, 1 H) 1.66 - 

1.82 (m, 2 H) 1.51 - 1.63 (m, 1 H) 1.39 (s, 3 H) 1.23 - 1.35 (m, 2 H) 1.06 (s, 3 H) 0.97 (s, 

3 H); 13C NMR (126 MHz, –40 oC, CDCl3) δ ppm 210.2, 143.0, 124.4, 45.8, 39.3, 39.1, 

39.0, 29.3, 28.6, 28.0, 24.8, 22.1, 13.6; FTIR (neat, cm-1) 2921 (m) 1705 (s) 1446 (m) 

1370 (m) 1355 (m) 1179 (w) 1132 (s) 1080 (w) 1064 (w) 1040 (m) 1000 (w) 910 (m) 853 

(m) 807 (m) 733 (m); MS (ESI) m/z calc’d for C13H21 [M–H2O+H]+: 177.1638; found: 

177.1642. 

(E)-3,3,5-trimethylcyclodec-5-enone (39d) 

According to General Procedure F, divinyl alcohol S3d (200 mg, 1.03 mmol, 

1 equiv) underwent an anionic oxy-Cope rearrangement.  The crude product 

was purified by flash column chromatography (neutral Al2O3, Biotage, 0 to 5% 

O

CH3

39d

O
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Et2O/hexanes) to afford cyclodecenone 39d (120 mg, 0.61 mmol, 61% yield) as a white 

crystalline solid. Rf=0.4 (10% Et2O/hexanes); 1H NMR (500 MHz, –40 oC, CDCl3) δ 

ppm 5.20 (t, J=6.80 Hz, 1 H) 2.60 (dd, J=16.36, 10.50 Hz, 1 H) 2.40 (d, J=14.65 Hz, 1 H) 

2.27 (dd, J=16.36, 9.03 Hz, 1 H) 1.95 - 2.03 (m, 3 H) 1.92 (d, J=14.65 Hz, 1 H) 1.85 (d, 

J=12.21 Hz, 1 H) 1.68 - 1.78 (m, 2 H) 1.55 (s, 3 H) 1.45 - 1.57 (m, 1 H) 1.36 (s, 3 H) 

1.24 - 1.33 (m, 1 H) 0.91 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ ppm 209.9, 138.6, 

129.0, 54.1, 53.0, 46.4, 43.3, 34.8, 28.5 (2C), 27.1, 22.2, 18.8; FTIR (neat, cm-1) 2952 (s) 

2925 (m) 1703 (s) 1447 (m) 1365 (m) 1286 (w) 1152 (m) 1109 (m) 1057 (m) 979 (m) 

890 (w) 793 (m) 735 (m). MS (APCI) m/z calc’d for C13H23O [M +H]+: 195.2; found: 

195.2. 

 (E)-5-methylcyclonon-5-enone (59) 

According to General Procedure F, divinyl alcohol S9 (200 mg, 1.32 mmol, 1 

equiv) underwent an anionic oxy-Cope rearrangement.  The crude product was 

purified by flash column chromatography (neutral Al2O3, Biotage, 0 to 5% Et2O/hexanes) 

to afford cyclononenone 59 (83 mg, 0.54 mmol, 42% yield) as a pale yellow solid. 

Characterization data match reported values.20d 

Scheme for the Synthesis of Transannular Ketone-Ene Substrate 39b 
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4,4-dimethyl-2-(prop-1-en-2-yl)cyclohexanone (S2b)44 

                                                            
44 This procedure was adapted from: Huang, J.; Bunel, E. Faul, M. M. Org. Lett. 2007, 9, 4343. 
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A thick-walled vial was charged with a stir bar, 4,4-dimethyl cyclohexanone (252 mg, 2.0 

mmol, 1 equiv), and [(t-Bu3P)PdBr]2 (19 mg, 0.025 mmol, 1.25 mol%) and sealed with a 

pressure septum cap. Under a positive pressure of N2, toluene (4 mL) was added followed 

by a solution of LHMDS (1.0 M in toluene, 5 mL, 5 mmol, 2.5 equiv).  The resultant 

suspension was stirred for 5 m at room temperature, after which 2-bromopropene (262 μL, 

3.0 mmol, 1.5 equiv) was added in a single portion.  The N2 inlet was removed, and the 

vial was immersed in a 80 oC oil bath and stirred at this temperature for 24 h.  The vial 

was cooled to room temperature and the contents were poured into Et2O (10 mL) and 

washed with saturated aqueous NH4Cl (5 mL) and DI water (5mL).  The organic layer 

was diluted with CH2Cl2, dried over Na2SO4, filtered, and concentrated. The crude 

residue was purified by flash column chromatography (SiO2, Biotage, 0 to 40% 

Et2O/hexanes) to afford S2b (146 mg, 0.88 mmol, 44% yield) as a clear oil. Rf=0.45 

(20% Et2O/hexanes); 1H NMR (600 MHz, CDCl3) δ ppm 4.90 - 4.97 (m, 1 H) 4.72 (dt, 

J=1.76, 0.88 Hz, 1 H) 3.15 (dd, J=13.33, 5.42 Hz, 1 H) 2.44 - 2.55 (m, 1 H) 2.29 (ddd, 

J=14.64, 4.69, 2.90 Hz, 1 H) 1.79 (t, J=13.47, 1H) 1.61 - 1.76 (m, 3 H) 1.72 (s, 3 H) 1.23 

(s, 3 H) 1.05 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ ppm 211.3, 143.5, 113.1, 54.1, 44.8, 

39.7, 38.5, 31.6, 30.7, 24.4, 21.2; FTIR (neat, cm-1) 2955 (m), 2925 (m), 2865 (m), 1712 

(s), 1649 (w), 1462 (m), 1446 (m), 1308 (w), 1153 (m), 1099 (m), 1009 (w), 890 (s), 828 

(w), 732 (w); MS (ESI) m/z calc’d for C11H19O [M+H]+: 167.1430; found: 167.1422. 

(±)-(1S,2R)-4,4-dimethyl-2-(prop-1-en-2-yl)-1-vinylcyclohexanol (S3b) 

According to General Procedure E, ketone S2b (267.3 mg, 1.6 mmol, 1.0 

equiv) was reacted with vinylmagnesium bromide (1.0 M in THF, 4.0 mL, 4.0 mmol, 2.5 

equiv) to afford the crude addition product in 4.6:1 dr in favor of the title compound. The 

CH3
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H
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crude residue was purified by flash column chromatography (SiO2, Biotage, 0 to 5% 

Et2O/hexanes) to afford S3b (114 mg, 0.58 mmol, 36% yield) as a pale yellow oil. 

Rf=0.59 (5% Et2O/hexanes, KMnO4);
 1H NMR (500 MHz, CDCl3) δ ppm 5.90 (dd, 

J=17.09, 10.74 Hz, 1 H) 5.19 (dd, J=17.09, 0.98 Hz, 1 H) 4.99 (dd, J=10.74, 0.98 Hz, 1 

H) 4.90 (t, J=1.47 Hz, 1 H) 4.75 (s, 1 H) 2.23 (dd, J=13.67, 3.42 Hz, 1 H) 1.75 (s, 3 H) 

1.58 - 1.72 (m, 4 H) 1.48 (dt, J=12.94, 3.05 Hz, 1 H) 1.19 (ddd, J=12.21, 5.37, 2.44 Hz, 1 

H) 1.12 (dt, J=13.18, 2.93 Hz, 1 H) 0.96 (s, 3 H) 0.94 (s, 3 H); 13C NMR (100 MHz, 

CDCl3) δ ppm 147.9, 146.2, 111.8, 110.9, 72.3, 47.8, 40.0, 34.1, 33.7, 33.0, 30.2, 25.7, 

23.9; FTIR (neat, cm-1) 3553 (m), 3482 (br m), 3083 (m), 2951 (s), 2865 (m), 1638 (m), 

1449 (m), 1365 (m), 1283 (m), 1099 (m), 992 (m), 962 (s), 917 (s), 897 (s), 668 (m); MS 

(ESI) m/z calc’d for C13H21 [M–H2O+H]+: 177.1638; found: 177.1639. 

 (E)-5,8,8-trimethylcyclodec-5-enone (39b) 

According to General Procedure F, divinyl alcohol S3b (110 mg, 0.57 mmol, 

1 equiv) underwent an anionic oxy-Cope rearrangement.  The crude product 

was purified by flash column chromatography (Davisil®, Biotage, 0 to 7% Et2O/hexanes) 

to afford cyclodecenone 39b (55 mg, 0.28 mmol, 50% yield) as a white crystalline solid. 

Rf=0.24 (10% Et2O/hexanes, KMnO4); 
1H NMR (500 MHz, 23 oC,CDCl3) δ ppm 5.30 (t, 

J=7.33 Hz, 1 H) 1.51 - 3.09 (m, 12 H) 1.41 (s, 3 H) 0.97 (br. s., 6 H); 1H NMR (500 MHz, 

–40 oC, CDCl3) δ ppm 5.30 (d, J=11.87 Hz, 1 H) 2.85 (dd, J=16.65, 10.20 Hz, 1 H) 2.23 - 

2.35 (m, 2 H) 2.16 (dd, J=12.13, 6.20 Hz, 1 H) 2.03 - 2.13 (m, 2 H) 1.99 (dd, J=14.07, 

12.26 Hz, 1 H) 1.76 - 1.90 (m, 2 H) 1.60 - 1.72 (m, 2 H) 1.41 (s, 3 H) 1.19 (t, J=12.39 Hz, 

1 H) 1.00 (s, 3 H) 0.91 (s, 3 H);  13C NMR (126 MHz, –40 oC, CDCl3) δ ppm 210.0, 

138.6, 123.4, 43.4, 41.5, 40.7, 40.0, 34.3, 34.2, 33.1, 26.4, 24.3, 16.0; FTIR (neat, cm-1) 

CH3

O

39b
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2951 (m) 2928 (m) 2868 (w) 1707 (s) 1472 (w) 1443 (m) 1426 (m) 1386 (m) 1363 (m) 

1173 (w) 1108 (s) 910 (w) 839 (w) 740 (w). MS (ESI) m/z calc’d for C13H23O [M +H]+: 

195.1743; found: 195.1739. 

 

Schemes for the Synthesis of Transannular Ketone-Ene Substrates 39e and 39f 
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S3e: R,R = –OCH2CH2O–
S3f: R,R = CH2

39e: R,R = –OCH2CH2O–
39f: R,R = CH2

 

(±)(7R,8S)-7-(prop-1-en-2-yl)-1,4-dioxaspiro[4.5]decan-8-ol (S1e) 

An oven-dried 50 mL round-bottom flask fitted with a Dean-Stark trap and 

reflux condenser was charged with S10 (1.4 g, 5.2 mmol, 1 equiv), ethylene glycol (294 

μL, 5.2 mmol, 1 equiv), benzene (10.4 mL) and pTsOH•H2O (15 mg, cat.).  The side arm 

of the Dean-Stark trap was filled with benzene (10 mL), and the flask was immersed in a 

80oC oil bath under N2 overnight.  The contents of the flask were concentrated to afford 

the crude acetal an orange oil that was carried forward without purification.  

 An oven-dried 50 mL round-bottom flask was charged with the intermediate silyl 

ether and THF (5 mL) and cooled to 0 oC.  To this was added a solution of TBAF (1.0M 

CH3

OH

O

O H

S1e
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in THF, 10.4 mL, 10.4 mmol, 2 equiv). The ice bath was removed and the reaction was 

stirred at room temperature for 48 h.  The reaction was quenched with DI water and 

extracted with Et2O (3 x 5 mL).  The combined organics were diluted with CH2Cl2, dried 

over Na2SO4, filtered, and concentrated.  The crude residue was purified by flash column 

chromatography (SiO2, Biotage, 20 to 100% Et2O/hexanes) to afford S1e (681mg, 3.44 

mmol, 66% yield, 2 steps) as a pale yellow oil. Rf=0.28 (50% Et2O/hexanes, CAM); 1H 

NMR (500 MHz, CDCl3) δ ppm 4.93 (s, 1 H) 4.91 (s, 1 H) 3.90 - 4.00 (m, 4 H) 3.44 - 

3.55 (m, 1 H) 2.33 (ddd, J=13.18, 9.77, 3.91 Hz, 1 H) 1.98 - 2.09 (m, 1 H) 1.83 (d, 

J=1.95 Hz, 1 H) 1.78 (dt, J=9.40, 2.87 Hz, 1 H) 1.71 (s, 3 H) 1.67 - 1.73 (m, 1 H) 1.58 - 

1.67 (m, 3 H); 13C NMR (126 MHz, CDCl3) δ ppm 145.32, 113.97, 108.42, 69.90, 64.59, 

64.55, 51.26, 37.98, 33.23, 31.03, 18.93; FTIR (neat, cm-1) 3454 (br m), 3073 (w), 2946 

(m), 2881 (m), 1646 (w), 1361 (m), 1142 (m), 1142 (m), 1088 (s), 1022 (s), 947 (m), 924 

(s); MS (ESI) m/z calc’d for C11H19O3 [M +H]+: 199.1329, found: 199.1338. 

 

 (±)-(7R,8S)-7-(prop-1-en-2-yl)-8-vinyl-1,4-dioxaspiro[4.5]decan-8-ol 

(S3e) 

Alcohol S1e (681 mg, 3.4 mmol, 1.0 equiv) was oxidized according to 

General Procedure C to afford the corresponding β,γ-unsaturated ketone S2e that was 

carried forward without further purification.  

 According to General Procedure E, crude ketone S2e (267.3 mg, 1.6 mmol, 1.0 

equiv) was reacted with vinylmagnesium bromide (1.0 M in THF, 8.4 mL, 8.4 mmol, 2.5 

equiv) to afford the crude addition product as a yellow oil and in 9.7:1 dr in favor of the 

title compound. The crude residue was purified by flash column chromatography (SiO2, 

CH3

OH

H

O

O

S3e
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Biotage, 0 to 40% Et2O/hexanes) to afford S3e (441 mg, 2.0 mmol, 57% yield over 2 

steps) as a clear oil. Rf=0.54 (50% Et2O/hexanes, CAM); 1H NMR (500 MHz, CDCl3) δ 

ppm 5.88 (dd, J=17.17, 10.76 Hz, 1 H) 5.20 (d, J=17.40 Hz, 1 H) 5.01 (d, J=10.53 Hz, 1 

H) 4.91 (d, J=1.37 Hz, 1 H) 4.74 (s, 1 H) 3.80 - 4.11 (m, 4 H) 2.44 (dd, J=13.74, 3.66 Hz, 

1 H) 2.06 (t, J=13.28 Hz, 1 H) 1.96 (td, J=13.39, 4.35 Hz, 1 H) 1.70 - 1.85 (m, 2 H) 1.74 

(s, 3 H) 1.61 - 1.68 (m, 1H) 1.55 - 1.60 (m, 1 H) 1.51 (dt, J=12.82, 2.98 Hz, 1 H); 13C 

NMR (126 MHz, CDCl3) δ ppm 146.81, 145.41, 112.44, 111.50, 109.08, 72.03, 64.39, 

49.60, 35.80, 35.60, 30.03, 25.58, 25.55; FTIR (neat, cm-1) 3483 (br w), 2965 (m), 2883 

(w), 1683 (w), 1438 (w), 1343 (m), 1272 (m), 1211 (w), 1180 (m), 1101 (s), 1037 (m), 

992 (s), 953 (s), 917 (s), 733 (s). MS (ESI) m/z calc’d for C13H19O2 [M–H2O+H]+: 

207.1380, found: 207.1377; calc’d for C13H20NaO3 [M+Na]+ 247.1305, found 247.1313. 

 

General Procedure G – Palladium-Catalyzed oxy-Cope Rearrangement 

A flame-dried 50 mL round-bottom flask was charged with a stir bar, divinyl alcohol 

(1.79 mmol, 1 equiv), and THF (17.9 mL).  To the resultant solution was added 

(C6H5CN)2PdCl2 (69 mg, 0.18 mmol, 0.1 equiv) as a solid.  The flask was capped with a 

plastic stopper and was stirred at room temperature overnight.  The reaction mixture was 

concentrated to afford the crude product, which was purified by flash column 

chromatography. 

 (E)-12-methyl-1,4-dioxaspiro[4.9]tetradec-12-en-8-one (39e) 

According to General Procedure G, divinyl alcohol S3e (401 mg, 1.79 

mmol, 1 equiv), underwent the palladium-catalyzed oxy-Cope 

CH3

O

O

O

39e
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rearrangement. The crude product, an orange solid, was purified by flash column 

chromatography (SiO2, Biotage, 0 to 50% EtOAc/hexanes) to afford 39e (234 mg, 1.04 

mmol, 58% yield) as a white crystalline solid. Rf=0.24 (20% EtOAc/hexanes, CAM); 1H 

NMR (500 MHz, CDCl3, 23 oC) δ ppm 5.29 (t, J=6.87 Hz, 2 H) 3.84 - 4.02 (m, 4 H) 3.04 

(br. s., 1 H) 1.49 - 2.55 (m, 11 H) 1.44 (s, 3 H); 1H NMR (500 MHz, CDCl3, –40 oC) δ 

ppm 5.26 (d, J=11.23 Hz, 1 H) 3.84 - 4.05 (m, 4 H) 3.03 (dd, J=17.09, 10.25 Hz, 1 H) 

1.97 - 2.47 (m, 8 H) 1.81 (td, J=12.21, 3.40 Hz, 1 H) 1.65 (d, J=10.25 Hz, 1 H) 1.51 - 

1.61 (m, 1 H) 1.41 (s, 3 H); 13C NMR (126 MHz, CDCl3, 23 oC) δ ppm 208.66, 139.99, 

121.42, 109.78, 64.33, 42.86, 40.97, 39.00, 37.84, 31.10, 25.17, 15.79; FTIR (neat, cm-1) 

2936 (M), 2904 (m) 2882 (m), 1696 (s), 1428 (m), 1363 (m), 1261 (m), 1173 (w), 1107 

(s), 1033 (s), 983 (m), 915 (s), 888 (s), 673 (w). MS (ESI) m/z calc’d for C13H21O3 

[M+H]+: 225.1485, found: 225.1499; calc’d for C13H20NaO3 [M+Na]+ 247.1305, found 

247.1319. 

 

 (±)-tert-butyldimethyl((1R,2S)-4-methylene-2-(prop-1-en-2-

yl)cyclohexyloxy)silane (S4f) 

To an oven-dried 25 mL round-bottom flask containing a stir bar and 

methyltriphenylphosphonium bromide (845 mg, 2.25 mmol, 1.5 equiv) was added Et2O 

(10 mL) under nitrogen. The white suspension was cooled to 0 ºC, and after 5 m at this 

temperature, KOt-Bu (236 mg, 2.1 mmol, 1.4 equiv) was added as a solid, portion-wise 

(roughly thirds) over 10 m, resulting in the formation of a bright yellow suspension. After 

stirring the reaction mixture at 0 oC for an additional 30 m, a solution of ketone S10 (402 

mg, 1.5 mmol, 1 equiv) in Et2O (2 mL + 2 x 1 mL rinses to complete the transfer) was 

CH3
S4f

H

OTBS



51 
 

added dropwise. The reaction mixture was stirred under nitrogen allowing the 

temperature to gradually reach room temperature. After 16 h, the pale orange reaction 

mixture was quenched by addition of saturated aqueous NH4Cl (5 mL). The reaction 

mixture was diluted with H2O (15 mL) and extracted with Et2O (3 x 10 mL).  The 

combined organics were diluted with CH2Cl2, dried over Na2SO4, filtered, and 

concentrated to provide a yellow solid which was purified by flash column 

chromatography (silica gel, Biotage, 0 to 4% Et2O in hexanes) to provide the desired silyl 

ether S4f as a clear oil (385 mg, 1.44 mmol, 96% yield). Rf = 0.9 (5% Et2O in hexanes) 

1H NMR (500 MHz, CDCl3) δ ppm 4.78 (d, J=5.37 Hz, 1 H), 4.78 (d, J=5.37 Hz, 1 H), 

4.64 (d, J=6.35 Hz, 1 H), 4.64 (d, J=6.35 Hz, 1 H), 3.63 (td, J=9.16, 4.15 Hz, 1 H) 2.29 

(dt, J=14.16, 3.90 Hz, 1 H) 2.22 (dd, J=8.79, 1.95 Hz, 1 H) 2.00 - 2.14 (m, 3 H) 1.95 (dq, 

J=12.57, 3.95 Hz, 1 H) 1.71 (s, 3 H) 1.33 - 1.45 (m, 1 H) 0.85 (s, 9 H) 0.03 (s, 3 H) 0.01 

(s, 3 H); 13C NMR (126 MHz, CDCl3) δ ppm 147.72, 147.22, 111.69, 108.05, 72.98, 

54.23, 38.44, 36.33, 32.76, 25.96 (3 C), 20.98, 18.23, -3.85, -4.70;  FTIR (neat, cm–1) 

2937 (m), 2857 (m), 1650 (w), 1462 (w), 1362 (w), 1255 (m), 1101 (s), 1055 (w), 1006 

(w), 886 (s), 834 (s), 773 (s), 670 (m); MS (ESI) m/z calc’d for C16H31OSi [M+H]+: 

267.2139, found: 267.2140; calc’d for C16H30KO [M+K]+ 305.1698, found 305.1699.  

 

 (±)-(1S,2R)-4-methylene-2-(prop-1-en-2-yl)cyclohexanol (S1f) 

An oven-dried 25 mL round-bottom flask under nitrogen was charged with a 

stir bar, S4f (755.1 mg, 2.83 mmol, 1 equiv), and Et2O (2.8 mL), in that order. The 

resultant solution was cooled to 0 oC, and after stirring for 5 m at this temperature, TBAF 

(5.7 mL, 1 M solution in THF, 5.7 mmol, 2.0 equiv) was added dropwise.  The flask was 

CH3
S1f

H
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brought to room temperature and the reaction mixture was stirred for 48 h, at which point 

it was returned to 0 oC and quenched by the addition of DI H2O (5 mL). The mixture was 

diluted with H2O (5 mL) and extracted with Et2O (3 x 10 mL).  The combined organics 

were diluted with CH2Cl2, dried over Na2SO4, filtered, and concentrated to provide the 

crude product as an orange oil, which was purified by flash column chromatography 

(silica, Biotage, 0 to 40% Et2O/hexanes) to provide S1f as a clear oil (412 mg, 2.7 mmol, 

96% yield) Rf = 0.12 (20% Et2O in hexanes, KMnO4); 
1H NMR (500 MHz, CDCl3) δ 

ppm 4.89 (quin, J=1.60 Hz, 1 H) 4.84 (s, 1 H) 4.64 - 4.67 (m, 1 H) 4.63 (d, J=1.37 Hz, 1 

H) 3.55 (td, J=10.07, 4.12 Hz, 1 H) 2.26 - 2.33 (m, 1 H) 2.19 - 2.24 (m, 1 H) 1.97 - 2.14 

(m, 5 H) 1.70 (s, 3 H) 1.27 - 1.37 (m, 1 H); 13C NMR (126 MHz, CDCl3) δ ppm 146.82, 

145.86, 113.40, 108.66, 70.37, 55.03, 37.93, 34.63, 32.73, 18.99; FTIR (neat, cm-1) 3404 

(br, m), 3073 (w), 2938 (m), 1647 (m), 1439 (m), 1253 (w), 1067 (s), 1043 (m), 1021 (m), 

888 (s), 834 (w), 654 (s). MS (ESI) m/z calc’d for C10H17O [M+H]+: 153.1274, found: 

153.1273; calc’d for C10H16NaO [M+Na]+ 175.1093, found 175.1101. 

 

 (±)-(1S,2R)-4-methylene-2-(prop-1-en-2-yl)-1-vinylcyclohexanol (S3f) 

Alcohol S1f (400 mg, 2.63 mmol, 1.0 equiv) was oxidized according to 

General Procedure C to afford the corresponding β,γ-unsaturated ketone S2f 

that was carried forward without further purification.  

 According to General Procedure E, ketone S2f was reacted with vinylmagnesium 

bromide (1.0 M in THF, 6.5 mL, 6.5 mmol, 2.5 equiv) to afford the crude addition 

product as a yellow oil and in >19:1 dr in favor of the title compound. The crude material 

was purified by flash column chromatography (SiO2, Biotage, 0 to 10% Et2O/hexanes) to 

CH3

OH

H
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provide S3f as a pale yellow oil (246 mg, 1.4 mmol, 52% yield, 2 steps). Rf = 0.43 (10% 

Et2O in hexanes, KMnO4); 
1H NMR (500 MHz, CDCl3) δ ppm 5.85 (dd, J=17.17, 10.76 

Hz, 1 H) 5.20 (dd, J=17.40, 1.37 Hz, 1 H) 5.00 (dd, J=10.53, 1.37 Hz, 1 H) 4.89 - 4.94 

(m, 1 H) 4.77 (s, 1 H) 4.65 - 4.68 (m, 1 H) 4.62 - 4.65 (m, 1 H) 2.54 (td, J=13.05, 1.37 Hz, 

1 H) 2.38 - 2.50 (m, 1 H) 2.17 (dd, J=13.28, 3.66 Hz, 1 H) 2.13 (dquin, J=13.28, 1.83 Hz, 

1 H) 2.05 (ddd, J=13.30, 3.66, 1.83 Hz, 1 H) 1.82 (d, J=1.83 Hz, 1 H) 1.75 (s, 3 H) 1.72 

(dd, J=4.81, 2.52 Hz, 1 H) 1.56 (tdd, J=13.74, 4.58, 1.83 Hz, 1 H); 13C NMR (126 MHz, 

CDCl3) δ ppm 148.70, 147.41, 145.50, 112.07, 111.33, 107.32, 72.68, 53.60, 39.12, 36.12, 

30.05, 25.54; FTIR (neat, cm-1) 3547 (br, m), 3072 (m), 2981 (m), 2938 (m), 2918 (m), 

2849 (w), 1843 (w), 1786 (w), 1650 (m), 1639 (m), 1438 (m), 1374 (m), 1281 (m), 1135 

(m), 997 (m), 950 (s), 888 (s). MS (APCI) m/z calc’d for C12H16 [M–H2O+H]+: 161.1; 

found: 161.1. 

 

(E)-5-methyl-8-methylenecyclodec-5-enone (39f) 

According to General Procedure F, divinyl alcohol S3f (200 mg, 1.12 mmol, 

1 equiv) underwent an anionic oxy-Cope rearrangement.  The crude material 

was purified by flash column chromatography (DavisilTM, Biotage, 0 to 5% 

Et2O/hexanes) to provide cyclodecenone 39f as a clear oil (95 mg, 0.53 mmol, 47 yield). 

Rf = 0.31 (5% Et2O/hexanes, KMnO4); 
1H NMR (500 MHz, 23 oC, CDCl3) δ ppm 5.09 (t, 

J=7.33 Hz, 1 H) 4.73 - 4.76 (m, 1 H) 4.72 (s, 1 H) 1.54 - 3.14 (m, 12 H) 1.46 (s, 3 H); 1H 

NMR (399 MHz, –20 oC, CDCl3) δ ppm 5.08 (d, J=10.53 Hz, 1 H) 4.73 (s, 1 H) 4.70 (s, 1 

H) 2.71 - 2.86 (m, 1 H) 2.51 - 2.71 (m, 2 H) 2.41 (dd, J=14.43, 9.75 Hz, 2 H) 2.10 - 2.34 

(m, 4 H) 2.04 (d, J=12.48 Hz, 1 H) 1.77 (td, J=12.48, 3.51 Hz, 1 H) 1.57 - 1.70 (m, 1 H) 

CH3

O

39f



54 
 

1.44 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ ppm 209.2, 149.2, 138.8, 124.9, 113.0, 45.2, 

43.0, 41.0, 37.8, 30.9, 25.0, 15.8; FTIR (neat, cm-1) 3071 (w), 2924 (m), 2856 (m), 1703 

(s), 1638 (m), 1443 (m), 1426 (m), 1381 (w), 1351 (m), 1260 (w), 1175 (w), 1103 (s), 

1081 (m), 1020 (w), 907 (s), 846 (m), 804 (m), 633 (m). MS (ESI) m/z calc’d for 

C12H18ONa [M+Na]+ 201.1250, found 201.1259. 

 

Scheme for the Synthesis of Transannular Ketone-Ene Substrate 57 
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 (±)-(3S,4S)-3-(prop-1-en-2-yl)-4-vinyltetrahydro-2H-pyran-4-ol (S6)45 

A 200 mL round-bottom flask was charged with a stir bar and powdered 4Å 

MS.  The sieves were activated by flame-drying under reduced pressure (1 

torr) and cooled under argon.  CH2Cl2 (86 mL) was added by syringe, followed by 

aldehyde S11 (6.1 g, 43 mmol, 1 equiv).  The resultant suspension was cooled to –78 oC, 

and SnCl4 (4.4 mL, 38 mmol, 0.90 equiv) was added neat, dropwise.  The flask was 

transferred to a –60 oC cryocool and the mixture was stirred at this temperature overnight.  

The flask was transferred to a 0 oC bath, and the reaction was quenched by slow addition 

of saturated aqueous NaHCO3 (50 mL).  The contents were diluted with an additional 50 

mL DI H2O, and extracted with CH2Cl2 (3 x 50 mL).  The combined organics were dried 

over Na2SO4, filtered, and concentrated to afford the crude product as a yellow oil and a 

1.8:1.0 mixture of diastereomeric alcohols (S5, 2.8 g).  This crude product was taken on 

to the next step without further purification. 
                                                            
45 The first two steps of this sequence are modified versions of the procedure reported in ref. 37 
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 The crude product S5 was oxidized according to General Procedure C to afford 

S6, which was carried forward without further purification. 

 According to General Procedure D, the intermediate ketone S6 was reacted with 

vinylmagnesium bromide (1.0 M in THF, 23.6 mL, 23.6 mmol, 1.2 equiv) to afford the 

crude addition product in 3.9:1 dr in favor of the title compound.  The crude product was 

purified by flash column chromatography (SiO2, Biotage, 0 to 50% EtOAc/hexanes) to 

afford divinyl alcohol S6 as a clear oil (1.2 g, 7.1 mmol, 17% over 3 steps). Rf=0.32 

(20% EtOAc/hexanes); 1H NMR (600 MHz, CDCl3) δ ppm 5.89 (dd, J=17.13, 10.69 Hz, 

1 H) 5.25 (dd, J=17.13, 1.03 Hz, 1 H) 5.07 (dd, J=10.69, 1.03 Hz, 2 H) 4.97 (d, J=1.17 

Hz, 1 H) 4.69 (s, 1 H) 3.74 - 3.86 (m, 2 H) 3.61 - 3.72 (m, 2 H) 2.37 (dd, J=11.42, 4.69 

Hz, 1 H) 1.89 (d, J=2.34 Hz, 1 H) 1.83 (dddd, J=13.95, 11.31, 6.66, 2.34 Hz, 1 H) 1.77 (s, 

3 H) 1.52 (d, J=13.77 Hz, 1 H); 13C NMR (126 MHz, CDCl3) δ ppm 144.8, 143.9, 113.0, 

112.1, 70.6, 66.8, 63.5, 50.9, 37.0, 26.6; FTIR (neat, cm-1) 3436 (br m) 3085 (w) 2954 

(m) 2869 (m) 1639 (m) 1374 (m) 1289 (w) 1215 (w) 1114 (s) 968 (s) 917 (s) 867 (s) 815 

(m) 734 (m); MS (APCI) m/z calc’d for C10H15O [M–H2O+H]+ 151.1; found 151.2. 

 

 (E)-8-methyl-5,6,7,10-tetrahydro-2H-oxecin-4(3H)-one (57) 

According to General Procedure G, divinyl alcohol S6 (1.1 g, 6.5 mmol, 1.0 

equiv) underwent the palladium-catalyzed oxy-Cope rearrangement. The crude product 

was purified by flash column chromatography (neutral Al2O3, 0 to 40% EtOAc/hexanes) 

to afford keto-olefin 57 (528 mg, 3.14 mmol, 48%) as a white solid. Rf=0.56 (25% 

EtOAc/hexanes, Al2O3); 
1H NMR (500 MHz, CDCl3) δ ppm 5.22 - 5.40 (m, 1 H) 4.13 (d, 

J=12.70 Hz, 1 H) 3.86 - 3.98 (m, 2 H) 3.59 - 3.77 (m, 1 H) 2.94 (dd, J=15.38, 8.55 Hz, 1 

57
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H) 2.36 - 2.50 (m, 2 H) 2.31 (dd, J=15.14, 7.81 Hz, 1 H) 2.16 - 2.26 (m, 1 H) 2.10 (d, 

J=11.23 Hz, 1 H) 1.83 - 1.99 (m, 1 H) 1.78 (d, J=11.72 Hz, 1 H) 1.51 (s, 3 H); 13C NMR 

(126 MHz, CDCl3) δ ppm 208.6, 143.1, 123.9, 68.6, 66.8, 47.4, 43.5,  41.1, 26.3, 16.3; 

FTIR (neat, cm-1) 2931 (m) 2868 (m) 1692 (s) 1422 (w) 1354 (m) 1297 (m) 1259 (m) 

1241 (m) 1103 (s) 1071 (s) 1044 (s) 859 (m) 808 (m) 791 (m); MS (ESI) m/z calc’d for 

C10H17O2 [M +H]+ 169.1223, found 169.1227; calc’d for C10H15O [M–H2O+H]+
 

151.1117, found 151.1114. 

Scheme for the Synthesis of Planar Chiral Transannular Ketone-Ene Substrate 61 
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 (±)-(1S,2R)-2-methyl-2-(prop-1-en-2-yl)-1-vinylcyclohexanol (S13) 

According to General Procedure F, ketone S12 (1.16 g, 7.62 mmol, 1 equiv) 

was reacted with vinylmagnesium bromide (1.0 M in THF, 18.8 mL, 18.8 mmol, 2.5 

equiv) to afford the desired divinyl alcohol in >19:1 dr. The crude product was purified 

(neutral Al2O3, Biotage, 0 to 10% Et2O/hexanes) to afford divinyl alcohol S13 (476 mg, 

2.64 mmol, 35%) as a yellow oil. Rf=0.34 (10% Et2O/hexanes, Al2O3); 
1H NMR (500 

MHz, CDCl3) δ ppm 6.10 (dd, J=17.09, 10.74 Hz, 1 H) 5.19 (dd, J=17.09, 1.46 Hz, 1 H) 

5.07 (t, J=1.50 Hz, 1 H) 5.00 (dd, J=10.74, 1.47 Hz, 1 H) 4.96 (s, 1 H) 2.18 (td, J=12.45, 

5.37 Hz, 1 H) 2.07 (d, J=2.44 Hz, 1 H) 1.79 (s, 3 H) 1.72 - 1.78 (m, 1 H) 1.65 - 1.71 (m, 

1 H) 1.53 - 1.59 (m, 2 H) 1.47 - 1.53 (m, 1 H) 1.39 - 1.46 (m, 1 H) 1.22 (s, 3 H) 1.13 - 

1.20 (m, 1 H); 13C NMR (126 MHz, CDCl3) δ ppm  151.0, 144.4, 114.1, 112.0, 74.2, 46.4, 

33.2, 32.9, 23.9, 21.5, 20.9, 19.3; FTIR (neat, cm-1) 3540 (br m) 2088 (w) 2929 (s) 2966 

S13
CH3

OH

H3C
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(m) 1623 (m) 1447 (m) 1379 (m) 1315 (m) 1195 (w) 1088 (m) 1040 (m) 1000 (m) 975 (s) 

917 (s) 901 (s) 888 (s) 684 (m). MS (APCI) m/z calc’d for C12H19 [M–H2O+H]+: 163.1; 

found: 163.2.  

(±)-(E)-5,6-dimethylcyclodec-5-enone (61) 

According to General Procedure F, divinyl alcohol S13 (243 mg, 1.34 mmol, 1 

equiv) underwent an anionic oxy-Cope rearrangement.  The crude residue was 

purified by flash column chromatography (neutral Al2O3, 0 to 10% Et2O/hexanes) to 

afford planar chiral cyclodecenone 61 (124 mg, 0.69 mmol, 51%) as a clear oil. 1H NMR 

(500 MHz, CDCl3) δ ppm 2.52 (ddt, J=16.03, 8.70, 0.90, 0.90 Hz, 1 H) 2.33 - 2.48 (m, 3 

H) 2.22 - 2.30 (m, 2 H) 2.00 (dd, J=14.65, 6.41 Hz, 1 H) 1.82 (s, 3 H) 1.50 - 1.86 (m, 7 

H) 1.48 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ ppm 208.5; 132.0, 129.1, 43.1, 41.5, 

34.4, 34.2, 26.5, 26.0, 22.4, 19.1, 18.8; FTIR (neat, cm-1) 3382 (br m) 2958 (m) 2952 (s) 

2861 (s) 1701 (s) 1445 (m) 1428 (m) 1372 (m) 1353 (m) 1199 (w) 1126 (s) 1061 (m) 893 

(w) 788 (w). MS (ESI) m/z calc’d for C12H19 [M–H2O+H]+ 163.1481; found 163.1484; 

calc’d for C12H20NaO [M+Na]+ 203.1406; found 203.1418. 

 

D. Enantioselective Transannular Ketone-Ene Reactions 

General Procedure H – Enantioselective Cr(III)-Catalyzed Transannular Ketone-Ene 

Reaction 

An oven-dried 0.5 dram screw-top vial was charged with a stir bar, activated 4Å MS (10 

mg) and was sealed with a cap containing a Teflon-lined septum.  The sieves were flame-

dried under vacuum (1 torr) and allowed to cool to room temperature under N2. To the 

cooled vial was added catalyst 50 (12.7 mg, 0.02 mmol, 5 mol%, which is 10 mol% 

61 CH3

O

CH3
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based on Cr).  The keto-olefin substrate (either 39b, 39d, 39e, 57, and 59) (0.2 mmol) 

was added as a solid to the vial, followed by toluene (50 μL) by microliter syringe.  For 

keto-olefin substrates 39a, 39c, and 39f: toluene (50 μL) was first added, followed by the 

substrate, which was added neat by microliter syringe. The N2 line was removed, the cap 

was wrapped with parafilm, and the reaction mixture was stirred at room temperature for 

48 h.  At this point, an aliquot (~2 μL) was removed from the vial and diluted into an 

NMR tube with CDCl3 to determine the product diastereomeric ratio. The NMR sample 

along with the remainder of the crude reaction mixture was directly loaded onto a column 

(SiO2, neutral Al2O3, or DavisilTM) and eluted to isolate the bicyclic alcohol product. 

(4aR,8aS)-1-methylenedecahydronaphthalen-4a-ol (40a) 

Following General Procedure H, cyclodecenone 39a (33.3 mg, 0.2 mmol, 1 

equiv) underwent a transannular ketone-ene rearrangement to afford 40a as a 

single diastereomer.  The crude product was purified by flash column chromatography 

(neutral Al2O3, Biotage, 0 to 10% Et2O/hexanes, followed by 10% to 50% 

EtOAc/hexanes) to afford 40a (27.1 mg, 0.163 mmol, 81% yield) as a pale yellow oil. 

Rf=0.16 (10% Et2O/hexanes, SiO2, KMnO4). [α]D
23= +33.2o (c=0.82, CHCl3). 

1H NMR 

(500 MHz, CDCl3) δ ppm 4.86 - 4.92 (m, 1 H) 4.63 (d, J=0.98 Hz, 1 H) 2.33 (dquin, 

J=12.70, 2.40, 1 H) 1.92 - 2.06 (m, 2 H) 1.80 (dquin, J=13.18, 3.40 Hz, 1 H) 1.66 - 1.75 

(m, 2 H) 1.54 - 1.66 (m, 3 H) 1.38 - 1.54 (m, 4 H) 1.33 (td, J=13.31, 4.15 Hz, 1 H) 1.21 - 

1.37 (m, 1 H) 13C NMR (126 MHz, CDCl3) δ ppm  150.4, 108.6, 72.0, 49.5, 40.0, 38.7, 

36.7, 26.1, 24.0, 23.9, 21.4; FTIR (neat, cm-1) 3474 (br m), 2930 (s) 2853 (m) 1643 (w) 

1446 (m) 1251 (w) 1186 (w) 1089 (m) 949 (s) 893 (m) 756 (m) 700 (m). MS (APCI) m/z 

calc’d for C11H19O [M+H]+: 167.2; found: 167.1. The enantiomeric excess was 

OH

H

40a
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determined to be 93% by chiral GC analysis (CHIRALDEX β-PH, 100 oC, 14 psi, 20:1 

split) tR(minor) = 21.47 min, tR(major) = 22.60 min.   

 

 (4aS,8aS)-7,7-dimethyl-1-methylenedecahydronaphthalen-4a-ol (40b) 

Following General Procedure H, cyclodecenone 39b (38.9 mg, 0.2 mmol, 1 

equiv) underwent a transannular ketone-ene rearrangement to afford 40b as a 

single diastereomer.  The crude product was purified by flash column chromatography 

(SiO2, Biotage, 0 to 10% Et2O/hexanes) to afford 40b as a clear oil (37.7 mg, 0.19 mmol, 

97% yield). Rf=0.34 (10% Et2O/hexanes, KMnO4). [α]D
23 = +17.4 (c=0.43, CHCl3). 

1H 

NMR (500 MHz, CDCl3) δ ppm 4.90 (q, J=1.53 Hz, 1 H) 4.65 (d, J=0.92 Hz, 1 H) 2.36 

(ddt, J=12.93, 4.01, 2.06, 2.06 Hz, 1 H) 2.18 (d, J=14.19 Hz, 1 H) 2.04 (td, J=13.16, 4.81 

Hz, 1 H) 1.53 - 1.78 (m, 7 H) 1.41 - 1.50 (m, 2 H) 1.15 - 1.21 (m, 2 H) 0.99 (s, 3 H) 0.94 

(s, 3 H); 13C NMR (126 MHz, CDCl3) δ ppm  150.3, 108.5, 71.6, 45.1, 39.6, 36.83, 36.75, 

34.9, 34.0, 33.4, 30.6, 24.3, 24.0; FTIR (neat, cm-1) 3471 (br m), 3083 (w), 2931 (s), 

1644 (m), 1441 (m), 1364 (m), 1252 (w), 1194 (w), 1093 (m), 1039 (w), 970 (m), 948 

(m), 923 (m), 893 (s), 758 (w). MS (ESI) m/z calc’d for C13H23O [M +H]+: 195.1743; 

found: 195.1736; calc’d for C13H26NO [M+NH4]
+ 212.2009; found 212.2007. The 

enantiomeric excess was determined to be 94% by chiral GC analysis (CHIRALDEX β-

PH, 100 oC, 14 psi, 20:1 split) tR(minor) = 28.24 min, tR(major) = 30.18 min.   

 

(4aR,8aS)-2,2-dimethyl-1-methylenedecahydronaphthalen-4a-ol (40c) 

Following General Procedure H, cyclodecenone 39c (38.9 mg, 0.2 mmol, 1 

OH

H

40b

OH

H

40c
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equiv) underwent a transannular ketone-ene rearrangement to afford 40c as a single 

diastereomer.  The crude product was purified by flash column chromatography (neutral 

Al2O3, Biotage, 0 to 10% Et2O/hexanes, followed by 10% to 50% EtOAc/hexanes) to 

afford 40c (32.8 mg, 0.169 mmol, 84% yield) as a pale yellow oil. [α]D
24= +16.2o (c=1.0, 

CHCl3). 
1H NMR (500 MHz, CDCl3) δ ppm 4.91 - 4.98 (m, 1 H) 4.70 (s, 1 H) 2.19 - 2.29 

(m, 1 H) 1.78 - 1.87 (m, 1 H) 1.72 (dquin, J=13.74, 2.30 Hz, 1 H) 1.54 - 1.69 (m, 2 H) 

1.42 - 1.54 (m, 4 H) 1.33 - 1.40 (m, 2 H) 1.22 - 1.33 (m, 2 H) 1.12 (s, 3 H) 1.08 (s, 3 H); 

13C NMR (126 MHz, CDCl3) δ ppm 156.8, 106.9, 72.1, 45.3, 38.9, 36.99, 36.93, 36.4,  

29.7, 26.3,  26.0, 24.7, 21.5; FTIR (neat, cm-1) 3474 (br m) 3096 (w) 2930 (s) 2854 (m) 

1707 (w) 1632 (m) 1449 (m) 1364 (m) 1179 (w) 1081 (m) 990 (m) 955 (s) 915 (m) 898 

(s) 857 (m); MS (ESI) m/z calc’d for C13H21 [M–H2O+H]+: 177.1638; found: 177.1639; 

calc’d for C13H22NaO [M+Na]+ 217.1563; found 217.1567. The enantiomeric excess was 

determined to be 94% by chiral GC analysis (CHIRALDEX β-PH, 100 oC, 14 psi, 20:1 

split) tR(minor) = 40.28 min, tR(major) = 41.89 min.   

 

(4aR,8aS)-3,3-dimethyl-1-methylenedecahydronaphthalen-4a-ol (40d) 

Following General Procedure H, cyclodecenone 39d (38.9 mg, 0.2 mmol, 1 

equiv) underwent a transannular ketone-ene rearrangement to afford 40d, as 

a single diastereomer but as a mixture of regioisomers. The crude product was purified by 

flash column chromatography (neutral Al2O3, Biotage, 0 to 10% Et2O/hexanes, followed 

by 10% to 50% EtOAc/hexanes). The product was isolated as a mixture with an 

inseparable olefin isomer in a combined yield of 32% and was formed as a racemate.  

The characterization data provided here were measured on a racemic sample. 1H NMR 

OH

H

40d
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(500 MHz, CDCl3) δ ppm 4.85 (d, J=1.83 Hz, 1 H) 4.71 (s, 1 H) 2.04 (dd, J=12.82, 2.29 

Hz, 1 H) 1.99 (d, J=12.82 Hz, 0 H) 1.90 (dd, J=10.99, 4.58 Hz, 1 H) 1.74 - 1.86 (m, 1 H) 

1.64 - 1.72 (m, 1 H) 1.41 - 1.64 (m, 5 H) 1.36 (d, J=14.19 Hz, 1 H) 1.15 - 1.33 (m, 3 H) 

1.01 (s, 3 H) 0.95 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ ppm  148.4, 109.3, 73.0, 52.2, 

50.4, 49.4, 39.7, 34.0, 33.4, 27.4, 26.1, 23.7, 21.1; FTIR (neat, cm-1) 3491 (br m) 2081 

(w) 2927 (s) 2861 (m) 1648 (m) 1450 (m) 1365 (m) 1162 (m) 1073 (m) 972 (s) 156 (m) 

889 (s) 812 (m) 697 (w). MS (ESI) m/z calc’d for C13H21 [M–H2O+H]+: 177.2, found: 

177.1. 

 

(4a'S,8a'S)-8'-methyleneoctahydro-1'H-spiro[[1,3]dioxolane-2,2'-

naphthalen]-4a'-ol (40e) 

Following General Procedure H, cyclodecenone 39e (44.9 mg, 0.2 mmol, 1 equiv) 

underwent a transannular ketone-ene rearrangement to afford 40e as a single 

diastereomer.  The crude product was purified by flash column chromatography (SiO2, 

Biotage, 0 to 25% EtOAc/hexanes) to afford 40e (38.9 mg, 0.173 mmol, 87% yield) as a 

clear oil.; [α]D
23= +58.3o (c=0.107, CHCl3). 

1H NMR (500 MHz, CDCl3) δ ppm 4.89 (d, 

J=1.37 Hz, 1 H) 4.59 (s, 1 H) 3.84 - 4.06 (m, 3 H) 2.32 (dd, J=13.05, 1.60 Hz, 2 H) 1.86 - 

2.06 (m, 2 H) 1.81 (t, J=12.82 Hz, 1 H) 1.63 - 1.76 (m, 3 H) 1.50 - 1.63 (m, 3 H) 1.44 (td, 

J=13.30, 4.12 Hz, 1 H) 1.47 (br. s., 1 H); 13C NMR (126 MHz, CDCl3) δ ppm 149.2, 

109.7, 108.8, 71.1, 64.4, 46.9, 38.9, 36.1, 36.0, 32.9, 30.2, 23.8; FTIR (neat, cm-1) 3491 

(br w), 2932 (s) 2879 (m) 1646 (w) 1441 (w) 1358 (m) 1296 (m) 1270 (m) 1153 (m) 

1091 (s) 1031 (m) 988 (m) 965 (m) 950 (m) 932 (m) 898 (m) 836 (m) 757 (m); MS (ESI) 

m/z calc’d for C13H19O2 [M–H2O+H]+: 207.1380; found: 207.1370; calc’d for 

OH

H

O

O
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C13H20NaO3 [M+Na]+ 247.1305; found 247.1297. The enantiomeric excess was 

determined to be 96% by chiral GC analysis (CHIRALDEX β-Cyclodex, 140 oC, 14 psi, 

20:1 split) tR(minor) = 38.63 min, tR(major) = 40.96 min.   

 

(4aS,8aS)-1,7-dimethylenedecahydronaphthalen-4a-ol (40f) 

Following General Procedure H, cyclodecenone 39f (35.7 mg, 0.2 mmol, 1 

equiv) underwent a transannular ketone-ene rearrangement to afford 40f as a 

single diastereomer.  The crude product was purified by flash column chromatography 

(SiO2, Biotage, 0 to 5% Et2O/hexanes) to afford 40f (22.2 mg, 0.124 mmol, 62% yield) as 

a clear oil.; [α]D
24= +107.8o (c=0.66, CHCl3). 

1H NMR (500 MHz, CDCl3) δ ppm 4.93 (d, 

J=1.46 Hz, 1 H) 4.66 - 4.69 (m, 2 H) 4.64 - 4.66 (m, 1 H) 2.42 (tdd, J=13.70, 13.70, 4.88, 

1.95 Hz, 1 H) 2.35 (dquin, J=13.18, 2.00 Hz, 1 H) 2.26 - 2.38 (m, 1 H) 2.04 - 2.17 (m, 3 

H) 1.98 (td, J=13.18, 4.39 Hz, 1 H) 1.85 (ddd, J=13.43, 4.88, 2.20 Hz, 1 H) 1.65 - 1.78 

(m, 2 H) 1.49 - 1.65 (m, 2 H) 1.43 (tdd, J=13.49, 13.49, 9.16, 4.39 Hz, 2 H)13C NMR 

(126 MHz, CDCl3) δ ppm 149.7, 148.9, 108.9, 107.5, 71.8, 50.6, 39.8, 39.4, 36.3, 32.9, 

30.2, 23.7; FTIR (neat, cm-1) 3471 (br m) 3071 (w) 2932 (s) 2850 (m) 1724 (w) 1648 (m) 

1441 (m) 1270 (m) 1095 (m) 937 (s) 887 (s) 838 (w) 655 (m). MS (ESI) m/z calc’d for 

C12H17 [M–H2O+H]+: 161.1325; found: 161.1325. The enantiomeric excess was 

determined to be 94% by chiral GC analysis (CHIRALDEX β-Cyclodex, 100 oC, 14 psi, 

20:1 split) tR(minor) = 44.84 min, tR(major) = 48.31 min.   

 

 

OH

H

40f



63 
 

(4aS,8aR)-8-methyleneoctahydro-1H-isochromen-4a-ol (58) 

Following General Procedure H, with the exception of a 24 h reaction time, 

ether 57 (33.6 mg, 0.2 mmol, 1 equiv) underwent a transannular ketone-ene 

rearrangement to afford 58 as a single diastereomer.  The crude product was purified by 

flash column chromatography (SiO2, Biotage, 0 to 40% EtOAc/hexanes) to afford 58 (4.4 

mg, 0.026 mmol, 13% yield) as a clear oil. Rf=0.40 (25% EtOAc/hexanes, CAM); 

[α]D
23= +15.3o (c=0.36, CHCl3). 

1H NMR (500 MHz, CDCl3) δ ppm 4.90 (s, 1 H) 4.40 (s, 

1 H) 3.71 - 3.85 (m, 3 H) 3.66 (t, J=11.20 Hz, 1 H) 2.26 - 2.36 (m, 2 H) 2.06 (td, J=13.18, 

4.88 Hz, 1 H) 1.54 - 1.80 (m, 6 H) 1.42 - 1.54 (m, 1 H); 13C NMR (126 MHz, CDCl3) δ 

ppm 146.5, 108.9, 69.9, 65.0, 64.0, 48.6, 38.9, 38.2, 36.3, 23.5; FTIR (neat, cm-1) 3448 

(br m) 2934 (m) 2867 (m) 1647 (m) 1439 (w) 1391 (w) 1250 (w) 1170 (m) 1120 (m) 

1081 (s) 1025 (m) 967 (s) 945 (m) 888 (s) 854 (s) 832 (w). MS (APCI) m/z calc’d for 

C10H15O [M–H2O+H]+: 151.1; found: 151.1. The enantiomeric excess was determined to 

be 49% by chiral GC analysis (CHIRALDEX γ-TA, 100 oC, 14 psi, 20:1 split) tR(major) 

= 26.30 min, tR(minor) = 29.25 min.   

 

(3aR,7aS)-7-methyleneoctahydro-1H-inden-3a-ol (60) 

Following General Procedure H, with the exception of a 24 h reaction time, 

cyclononenone 59 (30.4 mg, 0.2 mmol, 1 equiv) underwent a transannular ketone-ene 

rearrangement to afford 60 as a single diastereomer.  The crude product was purified by 

flash column chromatography (SiO2, Biotage, 0 to 10% Et2O/hexanes) to afford 60 (5.6 

mg, 0.037 mmol, 18% yield) as a clear oil. Rf=0.42 (10%Et2O/hexanes); [α]D
23= +6.1o 

(c=0.17, CHCl3). 
1H NMR (600 MHz, CDCl3) δ ppm 4.93 (q, J=1.76 Hz, 1 H) 4.69 (q, 

O

OH
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J=1.76 Hz, 1 H) 2.32 (ddd, J=15.55, 3.81, 1.76 Hz, 1 H) 2.13 (dd, J=12.03, 6.16 Hz, 1 H) 

1.90 - 2.01 (m, 2 H) 1.72 - 1.87 (m, 4 H) 1.63 - 1.71 (m, 2 H) 1.60 (dt, J=13.50, 4.40 Hz, 

1 H) 1.52 - 1.57 (m, 1 H) 1.43 (td, J=13.21, 4.70 Hz, 1 H) 1.34 (br. s., 1 H); 13C NMR 

(126 MHz, CDCl3) δ ppm 148.5, 108.5, 80.5, 53.9, 38.0, 36.3, 35.2, 24.0, 23.7, 20.3. 

FTIR (neat, cm-1) 3476 (br m), 2930 (s) 1650 (m) 1439 (m) 1287 (w) 1246 (m) 1188 (w) 

1056 (m) 964 (s) 893 (s) 873 (s) 756 (s). MS (APCI) m/z calc’d for C10H15 [M–H2O+H]+: 

135.1; found: 135.1. The enantiomeric excess was determined to be 68% by chiral GC 

analysis (CHIRALDEX β-Cyclosil, 90 oC, 14 psi, 100:1 split) tR(minor) = 29.16 min, 

tR(major) = 29.62 min.   

 

 (4aR,8aS)-8a-methyl-1-methylenedecahydronaphthalen-4a-ol (62) 

An oven-dried 0.5 dram screw-top vial was charged with a stir bar, activated 4 

Å MS (10 mg) and was sealed with a cap containing a Teflon-lined septum.  

The sieves were flame-dried under vacuum (1 torr) and allowed to cool to room 

temperature under N2. To the cooled vial was added catalyst 50 (12.7 mg, 0.02 mmol, 5 

mol %, which is 10 mol % based on Cr).  Toluene (50 μL) was first added, followed by 

the cyclodecenone 61 (36.0 mg, 0.2 mmol, 1 equiv), which was added neat by microliter 

syringe. The N2 line was removed, the cap was wrapped with electrical tape, and the vial 

was immersed in an oil bath at 50 oC and stirred at this temperature for 24 h.  1,3,5-

trimethoxybenzene (3.4 mg, 0.02 mmol, 0.1 equiv) was added as a solid followed by 

CDCl3 (~1 mL).  The conversion was determined to be 19%, based on integration of the 

1H NMR spectrum.  The crude product was purified by flash column chromatography 

(neutral Al2O3, Biotage, 0 to 10% Et2O/hexanes).  Recovered 61 eluted first and was 

OH

H3C
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isolated as a clear oil (24.6 mg, 0.137 mmol, 69%), and decalinol 62 was isolated as a 

clear oil (4.3 mg, 0.024 mmol, 12% yield). Rf=0.3 (10% Et2O/hexanes). 1H NMR (600 

MHz, CDCl3) δ ppm 4.90 (t, J=1.76 Hz, 1 H) 4.72 (s, 1 H) 2.40 - 2.54 (m, 1 H) 2.10 - 

2.17 (m, 1 H) 1.82 - 1.93 (m, 1 H) 1.64 - 1.80 (m, 3 H) 1.53 - 1.63 (m, 3 H) 1.44 - 1.52 

(m, 1 H) 1.40 (m, J=13.50 Hz, 1 H) 1.23 - 1.32 (m, 3 H) 1.19 (s, 3 H); 13C NMR (126 

MHz, CDCl3) δ ppm 154.9, 109.3, 74.1, 44.0, 34.2, 33.2, 31.8, 30.8, 29.8, 23.3, 22.7, 

21.4; FTIR (neat, cm-1) 3433 (br w) 2922 (s) 2852 (m) 1718 (w) 1642 (w) 1462 (m) 1377 

(w) 1260 (w) 1103 (m) 803 (w). MS (APCI) m/z calc’d for C12H19 [M–H2O+H]+ 163.1; 

found 163.2. The enantiomeric excess was determined to be 73% by chiral GC analysis 

(CHIRALDEX γ-TA, 90 oC, 14 psi, 20:1 split) tR(minor) = 33.28 min, tR(major) = 34.94 

min.   

 

Characterization for recovered 61: [α]D
23= +2.4o (c=0.68, CHCl3), The 

enantiomeric excess was determined to be 10% by chiral HPLC analysis 

(CHIRALCEL OD-H, 2% IPA/hexanes, 1 mL/min, 210 nm) tR(major) = 5.89 

min, tR(minor) = 6.32 min.   

 

E. Determination of Absolute Configuration 

A solution of KHMDS in THF (1.0 M, 0.36 mL, 0.36 mmol, 5 equiv) was 

added dropwise to a stirred solution of enantioenriched (+)-40a (93% ee, 12 

mg, 0.072 mmol, 1 equiv) in THF at 0 oC and under a positive pressure of N2. 

The resultant solution was stirred at 0 oC for 30 m, at which point a solution of p-bromo-
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benzoyl chloride in THF (0.86 M, 0.5 mL, 0.43 mmol, 6 equiv) was added in one portion.  

The reaction vial was sealed with parafilm and stirred at 4 oC for 16 h, after which it was 

quenched by slow addition of DI H2O (1 mL) and extracted with Et2O (3 x 0.5 mL).  The 

combined organics were diluted with dichloromethane (1 mL), dried with Na2SO4, 

filtered, and concentrated to afford a white solid. The crude product was purified by 

column chromatography (Biotage, SiO2, 0 to 5% Et2O/hexanes) to afford a clear oil, 

which was re-evaporated from hexanes twice to afford the desired benzoate S14 as a 

white solid (13.3 mg, 0.038 mmol, 53% yield). Rf=0.53 (5% Et2O/hexanes); 1H NMR 

(500 MHz, CDCl3) δ ppm 7.87 (d, J=8.30 Hz, 2 H) 7.55 (d, J=8.79 Hz, 2 H) 4.87 (d, 

J=1.46 Hz, 1 H) 4.76 (d, J=1.46 Hz, 1 H) 2.82 - 2.98 (m, 2 H) 2.33 - 2.45 (m, 1 H) 2.11 

(td, J=12.70, 4.88 Hz, 1 H) 1.96 (t, J=7.81 Hz, 1 H) 1.82 (dd, J=12.21, 3.42 Hz, 1 H) 1.71 

- 1.79 (m, 2 H) 1.62 - 1.70 (m, 1 H) 1.52 - 1.60 (m, 1 H) 1.27 - 1.51 (m, 5 H); 13C NMR 

(126 MHz, CDCl3) δ ppm 164.5, 149.4, 131.7 (2 C), 131.3 (2 C), 127.7, 107.5, 85.5, 50.1, 

36.5, 34.5, 34.4, 25.8, 24.4, 23.2, 21.5; FTIR (neat, cm-1) 2932 (s) 2855 (m) 1715 (s) 

1590 (m) 1484 (w) 1446 (m) 1397 (w) 1279 (s) 1259 (s) 1225 (w) 1173 (m) 1070 (m) 

1012 (s) 911 (m) 848 (w) 758 (s). MS (ESI) m/z calc’d for C18H21BrO2 [M+H]+: 

349.0798; found: 349.0803. [α]D
25= –17.1o (c=0.41, CHCl3). Slow evaporation of a 

hexanes solution of S14 at room temperature afforded single crystals (white needles) 

suitable for X-ray analysis. 
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1.8. X-Ray Crystallographic Analysis of para-Br-Benzoate S14   

Acknowledgment 

We thank Dr. Shao-Liang Zheng at the Center for Crystallographic Studies at Harvard 

University for X-ray data collection and structure determination. 

Procedure 

A crystal mounted on a diffractometer was collected data at 100 K.  The intensities of the 

reflections were collected by means of a Bruker APEX II DUO CCD diffractometer 

(CuK radiation, =1.54178 Å), and equipped with an Oxford Cryosystems nitrogen flow 

apparatus.  The collection method involved 1.0 scans in  at 30, 55, 80 and 115 in 

2.  Data integration down to 0.84 Å resolution was carried out using SAINT V8.30 A 

(Bruker diffractometer, 2013) with reflection spot size optimisation.  Absorption 

corrections were made with the program SADABS (Bruker diffractometer, 2013).  The 

structure was solved by the direct methods procedure and refined by least-squares 

methods again F2 using SHELXS-2013 and SHELXL-2013 (Sheldrick, 2008).  Non-

hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride 

on the respective atoms. Crystal data as well as details of data collection and refinement 

are summarized in Table 1.5, and geometric parameters are shown in Table 1.6. The 

Ortep plots produced with SHELXL-2013 program, and the other drawings were 

produced with Accelrys DS Visualizer 2.0 (Accelrys, 2007). 
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Table 1.5. Experimental details 

 NSR-9-086 

Crystal data 

Chemical formula C72H84Br4O8 

Mr 1397.03 

Crystal system, space group Monoclinic, C2 

Temperature (K) 100 

a, b, c (Å) 34.7369 (6), 7.4593 (1), 30.4529 (5) 

  (°) 124.346 (1) 

V (Å3) 6514.95 (19) 

Z 4 

Radiation type Cu Kα 

 (mm-1) 3.45 

Crystal size (mm) 0.01 × 0.01 × 0.01 

Data collection 

Diffractometer Bruker D8 goniometer with CCD area detector diffractometer 

Absorption correction Multi-scan  
SADABS 

 Tmin, Tmax 0.672, 0.806 

No. of measured, independent and 

observed [I > 2 (I)] reflections 

68346, 10935, 10256   

Rint 0.060 

(sin /)max (Å
-1) 0.596 

Refinement 

R[F2 > 2 (F2)], wR(F2), S 0.051,  0.104,  1.14 

No. of reflections 10935 

No. of parameters 791 

No. of restraints 78 

H-atom treatment H-atom parameters constrained 

max, min (e Å-3) 0.59, -0.60 

Absolute structure Flack x determined using 4289 quotients [(I+)-(I-)]/[(I+)+(I-)]  
(Parsons and Flack (2004), Acta Cryst. A60, s61). 

Flack parameter -0.007 (10) 
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Computer programs: APEX2 v2013.4.1 (Bruker-AXS, 2013), SAINT 8.30A (Bruker-AXS, 2012), 

SHELXS2013 (Sheldrick, 2013), SHELXL2013 (Sheldrick, 2013), Bruker SHELXTL (Sheldrick, 2013). 

Table 1.6. Geometric parameters (Å, º) 

C1—C2 1.383 (11) C48—C49 1.519 (10) 

C1—C6 1.395 (11) C48—C57 1.527 (11) 

C1—H1 0.9500 C48—C53 1.536 (11) 

C2—C3 1.364 (11) C49—C50 1.533 (11) 

C2—H2 0.9500 C49—H49A 0.9900 

C3—C4 1.393 (12) C49—H49B 0.9900 

C3—Br1 1.915 (8) C50—C51 1.509 (12) 

C4—C5 1.377 (12) C50—H50A 0.9900 

C4—H4 0.9500 C50—H50B 0.9900 

C5—C6 1.387 (10) C51—C52 1.497 (11) 

C5—H5 0.9500 C51—H51A 0.9900 

C6—C7 1.500 (11) C51—H51B 0.9900 

C7—O2 1.218 (10) C52—C58 1.322 (11) 

C7—O1 1.321 (9) C52—C53 1.528 (10) 

C8—O1 1.472 (9) C53—C54 1.521 (10) 

C8—C9 1.518 (10) C53—H53 1.0000 

C8—C17 1.519 (10) C54—C55 1.533 (12) 

C8—C13 1.549 (10) C54—H54A 0.9900 

C9—C10 1.526 (10) C54—H54B 0.9900 

C9—H9A 0.9900 C55—C56 1.534 (13) 

C9—H9B 0.9900 C55—H55A 0.9900 

C10—C11 1.513 (12) C55—H55B 0.9900 

C10—H10A 0.9900 C56—C57 1.522 (12) 

C10—H10B 0.9900 C56—H56A 0.9900 

C11—C12 1.512 (11) C56—H56B 0.9900 

C11—H11A 0.9900 C57—H57A 0.9900 

C11—H11B 0.9900 C57—H57B 0.9900 

C12—C18 1.321 (12) C58—H58A 0.9500 

C12—C13 1.530 (10) C58—H58B 0.9500 
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Table 1.6. (Continued) 

C13—C14 1.521 (10) C61—C66 1.387 (10) 

C13—H13 1.0000 C61—C62 1.395 (10) 

C14—C15 1.517 (11) C61—H61 0.9500 

C14—H14A 0.9900 C62—C63 1.378 (10) 

C14—H14B 0.9900 C62—H62 0.9500 

C15—C16 1.519 (10) C63—C64 1.377 (10) 

C15—H15A 0.9900 C63—Br4 1.898 (7) 

C15—H15B 0.9900 C64—C65 1.387 (11) 

C16—C17 1.520 (10) C64—H64 0.9500 

C16—H16A 0.9900 C65—C66 1.380 (10) 

C16—H16B 0.9900 C65—H65 0.9500 

C17—H17A 0.9900 C66—C67 1.512 (11) 

C17—H17B 0.9900 C67—O8 1.204 (11) 

C18—H18A 0.9500 C67—O7 1.336 (11) 

C18—H18B 0.9500 O7—C68A 1.520 (17) 

C21—C26 1.391 (11) O7—C68 1.525 (15) 

C21—C22 1.391 (11) C68—C69 1.511 (17) 

C21—H21 0.9500 C68—C77 1.513 (16) 

C22—C23 1.364 (12) C68—C73 1.526 (17) 

C22—H22 0.9500 C69—C70 1.518 (18) 

C23—C24 1.382 (11) C69—H69A 0.9900 

C23—Br2 1.903 (8) C69—H69B 0.9900 

C24—C25 1.380 (12) C70—C71 1.522 (17) 

C24—H24 0.9500 C70—H70A 0.9900 

C25—C26 1.391 (12) C70—H70B 0.9900 

C25—H25 0.9500 C71—C72 1.520 (18) 

C26—C27 1.509 (11) C71—H71A 0.9900 

C27—O4 1.209 (10) C71—H71B 0.9900 

C27—O3 1.331 (10) C72—C78 1.29 (2) 

C28—O3 1.474 (9) C72—C73 1.510 (18) 

C28—C37 1.521 (12) C73—C74 1.531 (15) 
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Table 1.6. (Continued) 

C28—C29 1.531 (10) C73—H73 1.0000 

C28—C33 1.556 (11) C74—C75 1.496 (19) 

C29—C30 1.509 (10) C74—H74A 0.9900 

C29—H29A 0.9900 C74—H74B 0.9900 

C29—H29B 0.9900 C75—C76 1.49 (2) 

C30—C31 1.532 (11) C75—H75A 0.9900 

C30—H30A 0.9900 C75—H75B 0.9900 

C30—H30B 0.9900 C76—C77 1.529 (17) 

C31—C32 1.511 (12) C76—H76A 0.9900 

C31—H31A 0.9900 C76—H76B 0.9900 

C31—H31B 0.9900 C77—H77A 0.9900 

C32—C38 1.293 (11) C77—H77B 0.9900 

C32—C33 1.500 (12) C78—H78A 0.9500 

C33—C34 1.536 (12) C78—H78B 0.9500 

C33—H33 1.0000 C68A—C69A 1.509 (18) 

C34—C35 1.522 (15) C68A—C77A 1.523 (17) 

C34—H34A 0.9900 C68A—C73A 1.532 (18) 

C34—H34B 0.9900 C69A—C70A 1.517 (19) 

C35—C36 1.517 (17) C69A—H69C 0.9900 

C35—H35A 0.9900 C69A—H69D 0.9900 

C35—H35B 0.9900 C70A—C71A 1.51 (2) 

C36—C37 1.525 (14) C70A—H70C 0.9900 

C36—H36A 0.9900 C70A—H70D 0.9900 

C36—H36B 0.9900 C71A—C72A 1.52 (2) 

C37—H37A 0.9900 C71A—H71C 0.9900 

C37—H37B 0.9900 C71A—H71D 0.9900 

C38—H38A 0.9500 C72A—C78A 1.33 (2) 

C38—H38B 0.9500 C72A—C73A 1.499 (18) 

C41—C46 1.380 (11) C73A—C74A 1.535 (18) 

C41—C42 1.382 (12) C73A—H73A 1.0000 

C41—H41 0.9500 C74A—C75A 1.50 (2) 
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Table 1.6. (Continued) 

C42—C43 1.365 (12) C74A—H74C 0.9900 

C42—H42 0.9500 C74A—H74D 0.9900 

C43—C44 1.400 (11) C75A—C76A 1.50 (2) 

C43—Br3 1.896 (8) C75A—H75C 0.9900 

C44—C45 1.389 (12) C75A—H75D 0.9900 

C44—H44 0.9500 C76A—C77A 1.523 (18) 

C45—C46 1.388 (11) C76A—H76C 0.9900 

C45—H45 0.9500 C76A—H76D 0.9900 

C46—C47 1.512 (11) C77A—H77C 0.9900 

C47—O6 1.213 (10) C77A—H77D 0.9900 

C47—O5 1.318 (10) C78A—H78C 0.9500 

C48—O5 1.475 (10) C78A—H78D 0.9500 

C2—C1—C6 121.0 (7) C50—C49—H49B 109.3 

C2—C1—H1 119.5 H49A—C49—H49B 108.0 

C6—C1—H1 119.5 C51—C50—C49 111.0 (7) 

C3—C2—C1 118.0 (7) C51—C50—H50A 109.4 

C3—C2—H2 121.0 C49—C50—H50A 109.4 

C1—C2—H2 121.0 C51—C50—H50B 109.4 

C2—C3—C4 122.9 (8) C49—C50—H50B 109.4 

C2—C3—Br1 119.5 (6) H50A—C50—H50B 108.0 

C4—C3—Br1 117.6 (7) C52—C51—C50 112.3 (7) 

C5—C4—C3 118.0 (8) C52—C51—H51A 109.1 

C5—C4—H4 121.0 C50—C51—H51A 109.1 

C3—C4—H4 121.0 C52—C51—H51B 109.1 

C4—C5—C6 120.8 (8) C50—C51—H51B 109.1 

C4—C5—H5 119.6 H51A—C51—H51B 107.9 

C6—C5—H5 119.6 C58—C52—C51 122.9 (8) 

C5—C6—C1 119.2 (8) C58—C52—C53 123.1 (8) 

C5—C6—C7 119.1 (7) C51—C52—C53 113.9 (7) 

C1—C6—C7 121.7 (7) C54—C53—C52 115.1 (7) 
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Table 1.6. (Continued) 

O2—C7—O1 126.6 (8) C54—C53—C48 111.6 (6) 

O2—C7—C6 122.5 (7) C52—C53—C48 109.5 (6) 

O1—C7—C6 110.9 (6) C54—C53—H53 106.7 

O1—C8—C9 111.6 (6) C52—C53—H53 106.7 

O1—C8—C17 109.7 (6) C48—C53—H53 106.7 

C9—C8—C17 111.5 (6) C53—C54—C55 111.6 (7) 

O1—C8—C13 101.6 (6) C53—C54—H54A 109.3 

C9—C8—C13 111.5 (7) C55—C54—H54A 109.3 

C17—C8—C13 110.5 (6) C53—C54—H54B 109.3 

C8—C9—C10 112.9 (6) C55—C54—H54B 109.3 

C8—C9—H9A 109.0 H54A—C54—H54B 108.0 

C10—C9—H9A 109.0 C54—C55—C56 110.7 (7) 

C8—C9—H9B 109.0 C54—C55—H55A 109.5 

C10—C9—H9B 109.0 C56—C55—H55A 109.5 

H9A—C9—H9B 107.8 C54—C55—H55B 109.5 

C11—C10—C9 109.6 (7) C56—C55—H55B 109.5 

C11—C10—H10A 109.8 H55A—C55—H55B 108.1 

C9—C10—H10A 109.8 C57—C56—C55 110.4 (8) 

C11—C10—H10B 109.8 C57—C56—H56A 109.6 

C9—C10—H10B 109.8 C55—C56—H56A 109.6 

H10A—C10—H10B 108.2 C57—C56—H56B 109.6 

C12—C11—C10 112.1 (7) C55—C56—H56B 109.6 

C12—C11—H11A 109.2 H56A—C56—H56B 108.1 

C10—C11—H11A 109.2 C56—C57—C48 112.9 (7) 

C12—C11—H11B 109.2 C56—C57—H57A 109.0 

C10—C11—H11B 109.2 C48—C57—H57A 109.0 

H11A—C11—H11B 107.9 C56—C57—H57B 109.0 

C18—C12—C11 122.4 (8) C48—C57—H57B 109.0 

C18—C12—C13 123.5 (8) H57A—C57—H57B 107.8 

C11—C12—C13 114.1 (7) C52—C58—H58A 120.0 

C14—C13—C12 115.1 (7) C52—C58—H58B 120.0 
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Table 1.6. (Continued) 

C14—C13—C8 111.3 (6) H58A—C58—H58B 120.0 

C12—C13—C8 108.4 (6) C47—O5—C48 123.5 (6) 

C14—C13—H13 107.2 C66—C61—C62 120.2 (6) 

C12—C13—H13 107.2 C66—C61—H61 119.9 

C8—C13—H13 107.2 C62—C61—H61 119.9 

C15—C14—C13 110.9 (6) C63—C62—C61 117.8 (7) 

C15—C14—H14A 109.5 C63—C62—H62 121.1 

C13—C14—H14A 109.5 C61—C62—H62 121.1 

C15—C14—H14B 109.5 C64—C63—C62 122.8 (7) 

C13—C14—H14B 109.5 C64—C63—Br4 118.3 (5) 

H14A—C14—H14B 108.0 C62—C63—Br4 118.8 (5) 

C14—C15—C16 112.1 (6) C63—C64—C65 118.6 (7) 

C14—C15—H15A 109.2 C63—C64—H64 120.7 

C16—C15—H15A 109.2 C65—C64—H64 120.7 

C14—C15—H15B 109.2 C66—C65—C64 120.0 (7) 

C16—C15—H15B 109.2 C66—C65—H65 120.0 

H15A—C15—H15B 107.9 C64—C65—H65 120.0 

C15—C16—C17 111.0 (6) C65—C66—C61 120.5 (7) 

C15—C16—H16A 109.4 C65—C66—C67 117.9 (7) 

C17—C16—H16A 109.4 C61—C66—C67 121.6 (7) 

C15—C16—H16B 109.4 O8—C67—O7 126.4 (8) 

C17—C16—H16B 109.4 O8—C67—C66 122.9 (9) 

H16A—C16—H16B 108.0 O7—C67—C66 110.7 (7) 

C8—C17—C16 113.1 (6) C67—O7—C68A 110.9 (9) 

C8—C17—H17A 109.0 C67—O7—C68 130.9 (8) 

C16—C17—H17A 109.0 C69—C68—C77 113.6 (12) 

C8—C17—H17B 109.0 C69—C68—O7 107.5 (17) 

C16—C17—H17B 109.0 C77—C68—O7 105.3 (11) 

H17A—C17—H17B 107.8 C69—C68—C73 111.7 (14) 

C12—C18—H18A 120.0 C77—C68—C73 111.9 (12) 

C12—C18—H18B 120.0 O7—C68—C73 106.3 (11) 
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Table 1.6. (Continued) 

H18A—C18—H18B 120.0 C68—C69—C70 113.1 (17) 

C7—O1—C8 123.5 (6) C68—C69—H69A 109.0 

C26—C21—C22 119.6 (8) C70—C69—H69A 109.0 

C26—C21—H21 120.2 C68—C69—H69B 109.0 

C22—C21—H21 120.2 C70—C69—H69B 109.0 

C23—C22—C21 118.8 (8) H69A—C69—H69B 107.8 

C23—C22—H22 120.6 C69—C70—C71 109.9 (16) 

C21—C22—H22 120.6 C69—C70—H70A 109.7 

C22—C23—C24 122.7 (8) C71—C70—H70A 109.7 

C22—C23—Br2 118.6 (6) C69—C70—H70B 109.7 

C24—C23—Br2 118.7 (7) C71—C70—H70B 109.7 

C25—C24—C23 118.6 (8) H70A—C70—H70B 108.2 

C25—C24—H24 120.7 C72—C71—C70 110.9 (14) 

C23—C24—H24 120.7 C72—C71—H71A 109.5 

C24—C25—C26 120.0 (8) C70—C71—H71A 109.5 

C24—C25—H25 120.0 C72—C71—H71B 109.5 

C26—C25—H25 120.0 C70—C71—H71B 109.5 

C25—C26—C21 120.3 (8) H71A—C71—H71B 108.1 

C25—C26—C27 119.1 (7) C78—C72—C73 122.4 (17) 

C21—C26—C27 120.7 (8) C78—C72—C71 123.0 (17) 

O4—C27—O3 126.1 (8) C73—C72—C71 114.5 (13) 

O4—C27—C26 123.3 (8) C72—C73—C68 111.4 (11) 

O3—C27—C26 110.6 (7) C72—C73—C74 116.8 (13) 

O3—C28—C37 110.7 (7) C68—C73—C74 111.2 (12) 

O3—C28—C29 110.4 (6) C72—C73—H73 105.5 

C37—C28—C29 112.8 (7) C68—C73—H73 105.5 

O3—C28—C33 100.9 (6) C74—C73—H73 105.5 

C37—C28—C33 112.0 (7) C75—C74—C73 113.3 (13) 

C29—C28—C33 109.4 (7) C75—C74—H74A 108.9 

C30—C29—C28 113.3 (6) C73—C74—H74A 108.9 

C30—C29—H29A 108.9 C75—C74—H74B 108.9 
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Table 1.6. (Continued) 

C28—C29—H29A 108.9 C73—C74—H74B 108.9 

C30—C29—H29B 108.9 H74A—C74—H74B 107.7 

C28—C29—H29B 108.9 C76—C75—C74 114.1 (14) 

H29A—C29—H29B 107.7 C76—C75—H75A 108.7 

C29—C30—C31 110.5 (6) C74—C75—H75A 108.7 

C29—C30—H30A 109.6 C76—C75—H75B 108.7 

C31—C30—H30A 109.6 C74—C75—H75B 108.7 

C29—C30—H30B 109.6 H75A—C75—H75B 107.6 

C31—C30—H30B 109.6 C75—C76—C77 109.2 (12) 

H30A—C30—H30B 108.1 C75—C76—H76A 109.8 

C32—C31—C30 110.2 (7) C77—C76—H76A 109.8 

C32—C31—H31A 109.6 C75—C76—H76B 109.8 

C30—C31—H31A 109.6 C77—C76—H76B 109.8 

C32—C31—H31B 109.6 H76A—C76—H76B 108.3 

C30—C31—H31B 109.6 C68—C77—C76 114.4 (12) 

H31A—C31—H31B 108.1 C68—C77—H77A 108.7 

C38—C32—C33 124.7 (10) C76—C77—H77A 108.7 

C38—C32—C31 120.7 (10) C68—C77—H77B 108.7 

C33—C32—C31 114.6 (7) C76—C77—H77B 108.7 

C32—C33—C34 116.2 (8) H77A—C77—H77B 107.6 

C32—C33—C28 110.9 (6) C72—C78—H78A 120.0 

C34—C33—C28 110.4 (7) C72—C78—H78B 120.0 

C32—C33—H33 106.2 H78A—C78—H78B 120.0 

C34—C33—H33 106.2 C69A—C68A—O7 105 (2) 

C28—C33—H33 106.2 C69A—C68A—C77A 113.2 (14) 

C35—C34—C33 112.2 (9) O7—C68A—C77A 119.5 (13) 

C35—C34—H34A 109.2 C69A—C68A—C73A 112.5 (17) 

C33—C34—H34A 109.2 O7—C68A—C73A 94.2 (12) 

C35—C34—H34B 109.2 C77A—C68A—C73A 110.6 (14) 

C33—C34—H34B 109.2 C68A—C69A—C70A 116.0 (19) 

H34A—C34—H34B 107.9 C68A—C69A—H69C 108.3 
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Table 1.6. (Continued) 

C36—C35—C34 112.3 (9) C70A—C69A—H69C 108.3 

C36—C35—H35A 109.1 C68A—C69A—H69D 108.3 

C34—C35—H35A 109.1 C70A—C69A—H69D 108.3 

C36—C35—H35B 109.1 H69C—C69A—H69D 107.4 

C34—C35—H35B 109.1 C71A—C70A—C69A 111.1 (18) 

H35A—C35—H35B 107.9 C71A—C70A—H70C 109.4 

C35—C36—C37 109.6 (10) C69A—C70A—H70C 109.4 

C35—C36—H36A 109.8 C71A—C70A—H70D 109.4 

C37—C36—H36A 109.8 C69A—C70A—H70D 109.4 

C35—C36—H36B 109.8 H70C—C70A—H70D 108.0 

C37—C36—H36B 109.8 C70A—C71A—C72A 114.7 (16) 

H36A—C36—H36B 108.2 C70A—C71A—H71C 108.6 

C28—C37—C36 112.8 (9) C72A—C71A—H71C 108.6 

C28—C37—H37A 109.0 C70A—C71A—H71D 108.6 

C36—C37—H37A 109.0 C72A—C71A—H71D 108.6 

C28—C37—H37B 109.0 H71C—C71A—H71D 107.6 

C36—C37—H37B 109.0 C78A—C72A—C73A 121 (2) 

H37A—C37—H37B 107.8 C78A—C72A—C71A 123 (2) 

C32—C38—H38A 120.0 C73A—C72A—C71A 116.4 (15) 

C32—C38—H38B 120.0 C72A—C73A—C68A 112.0 (15) 

H38A—C38—H38B 120.0 C72A—C73A—C74A 117.8 (15) 

C27—O3—C28 122.5 (6) C68A—C73A—C74A 112.7 (14) 

C46—C41—C42 120.1 (8) C72A—C73A—H73A 104.2 

C46—C41—H41 120.0 C68A—C73A—H73A 104.2 

C42—C41—H41 120.0 C74A—C73A—H73A 104.2 

C43—C42—C41 119.4 (7) C75A—C74A—C73A 112.1 (14) 

C43—C42—H42 120.3 C75A—C74A—H74C 109.2 

C41—C42—H42 120.3 C73A—C74A—H74C 109.2 

C42—C43—C44 122.4 (8) C75A—C74A—H74D 109.2 

C42—C43—Br3 119.5 (6) C73A—C74A—H74D 109.2 

C44—C43—Br3 118.1 (7) H74C—C74A—H74D 107.9 
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Table 1.6. (Continued) 

C45—C44—C43 117.1 (8) C74A—C75A—C76A 112.5 (17) 

C45—C44—H44 121.5 C74A—C75A—H75C 109.1 

C43—C44—H44 121.5 C76A—C75A—H75C 109.1 

C46—C45—C44 121.1 (9) C74A—C75A—H75D 109.1 

C46—C45—H45 119.4 C76A—C75A—H75D 109.1 

C44—C45—H45 119.4 H75C—C75A—H75D 107.8 

C41—C46—C45 119.9 (8) C75A—C76A—C77A 109.0 (14) 

C41—C46—C47 120.7 (8) C75A—C76A—H76C 109.9 

C45—C46—C47 119.3 (7) C77A—C76A—H76C 109.9 

O6—C47—O5 126.6 (8) C75A—C76A—H76D 109.9 

O6—C47—C46 122.5 (8) C77A—C76A—H76D 109.9 

O5—C47—C46 110.9 (7) H76C—C76A—H76D 108.3 

O5—C48—C49 111.0 (7) C76A—C77A—C68A 113.3 (14) 

O5—C48—C57 109.7 (7) C76A—C77A—H77C 108.9 

C49—C48—C57 111.0 (6) C68A—C77A—H77C 108.9 

O5—C48—C53 102.0 (6) C76A—C77A—H77D 108.9 

C49—C48—C53 112.2 (6) C68A—C77A—H77D 108.9 

C57—C48—C53 110.7 (7) H77C—C77A—H77D 107.7 

C48—C49—C50 111.6 (6) C72A—C78A—H78C 120.0 

C48—C49—H49A 109.3 C72A—C78A—H78D 120.0 

C50—C49—H49A 109.3 H78C—C78A—H78D 120.0 

C48—C49—H49B 109.3   

C6—C1—C2—C3 1.5 (12) C49—C50—C51—C52 53.5 (10) 

C1—C2—C3—C4 -2.2 (13) C50—C51—C52—C58 123.5 (9) 

C1—C2—C3—Br1 177.5 (6) C50—C51—C52—C53 -54.1 (10) 

C2—C3—C4—C5 1.5 (14) C58—C52—C53—C54 1.9 (12) 

Br1—C3—C4—C5 -178.3 (6) C51—C52—C53—C54 179.5 (7) 

C3—C4—C5—C6 0.0 (13) C58—C52—C53—C48 -124.8 (9) 

C4—C5—C6—C1 -0.7 (12) C51—C52—C53—C48 52.8 (9) 

C4—C5—C6—C7 179.4 (7) O5—C48—C53—C54 -63.1 (8) 

C2—C1—C6—C5 -0.1 (11) C49—C48—C53—C54 178.1 (7) 
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Table 1.6. (Continued) 

C2—C1—C6—C7 179.8 (7) C57—C48—C53—C54 53.5 (9) 

C5—C6—C7—O2 8.7 (11) O5—C48—C53—C52 65.5 (7) 

C1—C6—C7—O2 -171.2 (7) C49—C48—C53—C52 -53.3 (9) 

C5—C6—C7—O1 -172.5 (7) C57—C48—C53—C52 -177.9 (7) 

C1—C6—C7—O1 7.7 (10) C52—C53—C54—C55 178.9 (7) 

O1—C8—C9—C10 -56.0 (9) C48—C53—C54—C55 -55.5 (10) 

C17—C8—C9—C10 -179.1 (7) C53—C54—C55—C56 56.6 (11) 

C13—C8—C9—C10 56.8 (9) C54—C55—C56—C57 -55.9 (11) 

C8—C9—C10—C11 -55.5 (10) C55—C56—C57—C48 55.7 (11) 

C9—C10—C11—C12 53.8 (9) O5—C48—C57—C56 57.6 (10) 

C10—C11—C12—C18 125.1 (10) C49—C48—C57—C56 -179.5 (8) 

C10—C11—C12—C13 -55.6 (10) C53—C48—C57—C56 -54.2 (10) 

C18—C12—C13—C14 -1.5 (12) O6—C47—O5—C48 8.0 (12) 

C11—C12—C13—C14 179.3 (7) C46—C47—O5—C48 -171.5 (6) 

C18—C12—C13—C8 -126.9 (9) C49—C48—O5—C47 -63.8 (9) 

C11—C12—C13—C8 53.9 (9) C57—C48—O5—C47 59.2 (9) 

O1—C8—C13—C14 -62.3 (7) C53—C48—O5—C47 176.5 (6) 

C9—C8—C13—C14 178.7 (6) C66—C61—C62—C63 0.2 (12) 

C17—C8—C13—C14 54.1 (9) C61—C62—C63—C64 -0.2 (12) 

O1—C8—C13—C12 65.3 (7) C61—C62—C63—Br4 -178.4 (6) 

C9—C8—C13—C12 -53.7 (8) C62—C63—C64—C65 1.1 (13) 

C17—C8—C13—C12 -178.3 (7) Br4—C63—C64—C65 179.4 (6) 

C12—C13—C14—C15 -179.7 (6) C63—C64—C65—C66 -2.0 (12) 

C8—C13—C14—C15 -55.8 (9) C64—C65—C66—C61 2.0 (12) 

C13—C14—C15—C16 56.3 (9) C64—C65—C66—C67 -178.9 (7) 

C14—C15—C16—C17 -54.6 (9) C62—C61—C66—C65 -1.1 (12) 

O1—C8—C17—C16 57.9 (8) C62—C61—C66—C67 179.9 (7) 

C9—C8—C17—C16 -178.0 (7) C65—C66—C67—O8 -9.5 (12) 

C13—C8—C17—C16 -53.4 (9) C61—C66—C67—O8 169.5 (8) 

C15—C16—C17—C8 53.7 (9) C65—C66—C67—O7 172.9 (7) 

O2—C7—O1—C8 4.2 (12) C61—C66—C67—O7 -8.0 (11) 
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Table 1.6. (Continued) 

C6—C7—O1—C8 -174.7 (6) O8—C67—O7—C68A -2.9 (14) 

C9—C8—O1—C7 -61.2 (9) C66—C67—O7—C68A 174.6 (9) 

C17—C8—O1—C7 62.9 (8) O8—C67—O7—C68 -3.9 (16) 

C13—C8—O1—C7 179.9 (6) C66—C67—O7—C68 173.6 (10) 

C26—C21—C22—C23 0.3 (12) C67—O7—C68—C69 -50.2 (15) 

C21—C22—C23—C24 0.6 (13) C68A—O7—C68—C69 -53 (3) 

C21—C22—C23—Br2 179.6 (6) C67—O7—C68—C77 71.2 (14) 

C22—C23—C24—C25 -1.6 (14) C68A—O7—C68—C77 68 (3) 

Br2—C23—C24—C25 179.4 (6) C67—O7—C68—C73 -170.0 (9) 

C23—C24—C25—C26 1.6 (13) C68A—O7—C68—C73 -173 (4) 

C24—C25—C26—C21 -0.7 (12) C77—C68—C69—C70 -177.6 (18) 

C24—C25—C26—C27 178.4 (8) O7—C68—C69—C70 -61 (2) 

C22—C21—C26—C25 -0.2 (12) C73—C68—C69—C70 55 (3) 

C22—C21—C26—C27 -179.4 (7) C68—C69—C70—C71 -57 (3) 

C25—C26—C27—O4 -1.1 (12) C69—C70—C71—C72 55 (2) 

C21—C26—C27—O4 178.0 (8) C70—C71—C72—C78 125.0 (19) 

C25—C26—C27—O3 178.8 (7) C70—C71—C72—C73 -53 (2) 

C21—C26—C27—O3 -2.1 (10) C78—C72—C73—C68 -127.7 (16) 

O3—C28—C29—C30 -54.7 (9) C71—C72—C73—C68 50.6 (17) 

C37—C28—C29—C30 -179.2 (7) C78—C72—C73—C74 2 (2) 

C33—C28—C29—C30 55.5 (8) C71—C72—C73—C74 179.9 (13) 

C28—C29—C30—C31 -57.0 (8) C69—C68—C73—C72 -50.1 (19) 

C29—C30—C31—C32 54.3 (8) C77—C68—C73—C72 -178.7 (12) 

C30—C31—C32—C38 123.3 (10) O7—C68—C73—C72 66.9 (14) 

C30—C31—C32—C33 -54.8 (9) C69—C68—C73—C74 177.7 (16) 

C38—C32—C33—C34 3.3 (14) C77—C68—C73—C74 49.2 (16) 

C31—C32—C33—C34 -178.6 (8) O7—C68—C73—C74 -65.3 (14) 

C38—C32—C33—C28 -123.8 (10) C72—C73—C74—C75 -179.5 (13) 

C31—C32—C33—C28 54.3 (9) C68—C73—C74—C75 -50.1 (17) 

O3—C28—C33—C32 63.9 (8) C73—C74—C75—C76 54.0 (19) 

C37—C28—C33—C32 -178.2 (7) C74—C75—C76—C77 -53.7 (19) 
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Table 1.6. (Continued) 

C29—C28—C33—C32 -52.4 (8) C69—C68—C77—C76 179.8 (18) 

O3—C28—C33—C34 -66.3 (8) O7—C68—C77—C76 62.4 (14) 

C37—C28—C33—C34 51.5 (9) C73—C68—C77—C76 -52.7 (16) 

C29—C28—C33—C34 177.3 (7) C75—C76—C77—C68 53.6 (18) 

C32—C33—C34—C35 -179.8 (8) C67—O7—C68A—C69A -78.2 (16) 

C28—C33—C34—C35 -52.4 (11) C68—O7—C68A—C69A 100 (3) 

C33—C34—C35—C36 56.4 (13) C67—O7—C68A—C77A 50.4 (17) 

C34—C35—C36—C37 -56.6 (13) C68—O7—C68A—C77A -132 (4) 

O3—C28—C37—C36 57.4 (10) C67—O7—C68A—C73A 167.1 (9) 

C29—C28—C37—C36 -178.3 (8) C68—O7—C68A—C73A -15 (3) 

C33—C28—C37—C36 -54.4 (11) O7—C68A—C69A—C70A -50 (3) 

C35—C36—C37—C28 56.0 (12) C77A—C68A—C69A—C70A 177 (3) 

O4—C27—O3—C28 -1.0 (12) C73A—C68A—C69A—C70A 51 (4) 

C26—C27—O3—C28 179.1 (6) C68A—C69A—C70A—C71A -49 (4) 

C37—C28—O3—C27 64.6 (9) C69A—C70A—C71A—C72A 45 (3) 

C29—C28—O3—C27 -61.0 (9) C70A—C71A—C72A—C78A 132 (2) 

C33—C28—O3—C27 -176.6 (6) C70A—C71A—C72A—C73A -46 (3) 

C46—C41—C42—C43 0.5 (11) C78A—C72A—C73A—C68A -131.9 (19) 

C41—C42—C43—C44 0.1 (12) C71A—C72A—C73A—C68A 46 (2) 

C41—C42—C43—Br3 -179.4 (6) C78A—C72A—C73A—C74A 1 (3) 

C42—C43—C44—C45 -0.5 (12) C71A—C72A—C73A—C74A 179.3 (17) 

Br3—C43—C44—C45 179.0 (6) C69A—C68A—C73A—C72A -48 (2) 

C43—C44—C45—C46 0.3 (12) O7—C68A—C73A—C72A 61.0 (16) 

C42—C41—C46—C45 -0.7 (11) C77A—C68A—C73A—C72A -175.3 (15) 

C42—C41—C46—C47 177.1 (7) C69A—C68A—C73A—C74A 177 (2) 

C44—C45—C46—C41 0.3 (11) O7—C68A—C73A—C74A -74.6 (15) 

C44—C45—C46—C47 -177.5 (7) C77A—C68A—C73A—C74A 49.2 (19) 

C41—C46—C47—O6 -170.2 (8) C72A—C73A—C74A—C75A 176.6 (17) 

C45—C46—C47—O6 7.6 (11) C68A—C73A—C74A—C75A -51 (2) 

C41—C46—C47—O5 9.4 (10) C73A—C74A—C75A—C76A 55 (2) 

C45—C46—C47—O5 -172.8 (7) C74A—C75A—C76A—C77A -58 (2) 
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Table 1.6. (Continued) 

O5—C48—C49—C50 -57.9 (9) C75A—C76A—C77A—C68A 57 (2) 

C57—C48—C49—C50 179.8 (7) C69A—C68A—C77A—C76A 179 (2) 

C53—C48—C49—C50 55.4 (9) O7—C68A—C77A—C76A 54 (2) 

C48—C49—C50—C51 -54.5 (10) C73A—C68A—C77A—C76A -53.5 (18) 

 

       

Figure 1.5. Perspective views showing 50% probability displacement. 

 

Figure 1.6. Three-dimensional supramolecular architecture viewed along the b-axis 

direction. 

a

c
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Chapter 2 

Enantioselective Total Synthesis of (+)-Reserpine1 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            
1 Portions of this chapter have been published: Rajapaksa, N. S.; McGowan, M. A.; Rienzo, M.; Jacobsen, 
E. N. Org. Lett. 2013, 15, 706.   
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2.1. Introduction  

Reserpine (1, Figure 2.1) is a biologically active indole alkaloid natural product 

that has, since its isolation six decades ago, 

represented an iconic target for organic synthesis.2 

Its stereochemically complex pentacyclic structure 

has inspired some of the most important work in 

the history of stereoselective synthesis, and it 

continues to inspire new synthetic methodologies today.3,4 Woodward and coworkers 

disclosed the first total synthesis of reserpine in 1956,5a and since then a number of 

synthetic studies have been published.  At the outset of this project there were ten 

reported total syntheses along with numerous partial synthetic studies.5 Despite the scope 

of this effort, each successful approach to this molecule has relied on the same 

fundamental strategy, namely a late-stage generation of the C-ring and its embedded C3 

                                                            
2 Müller, J.; Schlittler, E.; Bein, H. Experientia 1952, 8, 338. 
 
3 Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; VCH: New York, 1996. 
 
4 For reviews of synthetic efforts directed toward reserpine, see: a) McGowan, M. A. Ph.D. dissertation, 
Harvard University, 2010. b) Chen, F-E.; Huang, J. Chem. Rev. 2005, 105, 4671. 
 
5 (a) Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. J. Am. Chem. Soc. 1956, 78, 
2023. (b) Woodward, R. B.; Bader, F. E.; Bickel, H.; Kierstead, R. W. Tetrahedron 1958, 2, 1. (c) 
Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. J. Am. Chem. Soc. 1956, 78, 2657. 
(d) Pearlman, B. A. J. Am. Chem. Soc. 1979, 101, 6398. (e) Wender, P. A.; Schaus, J. M.; White, A. W. J. 
Am. Chem. Soc. 1980, 102, 6157. (f) Wender, P. A.; Schaus, J. M.; White, A. W. Heterocycles 1987, 25, 
263. (g) Martin, S. F.; Grzejszczak, S.; Rueger, H.; Williamson, S. A. J. Am. Chem. Soc. 1985, 107, 4072. 
(h) Martin, S. F.; Rueger, H.; Williamson, S. A.; Grzejszczak, S. J. Am. Chem. Soc. 1987, 109, 6124. (i) 
Stork, G. Pure & Appl. Chem. 1989, 61, 439. (j) Gomez, A. M.; Lopez, J. C.; Fraser-Reid, B. J. Org. Chem. 
1994, 59, 4048. (k) Gomez, A. M.; Lopez, J. C.; Fraser-Reid, B. J. Org. Chem. 1995, 60, 3859. (l) Chu, C.-
S.; Liao, C.-C.; Rao, P. D. Chem. Commun. 1996, 1537. (m) Hanessian, S.; Pan, J. W.; Carnell, A.; 
Bouchard, H.; Lesage, L. J. Org. Chem. 1997, 62, 465. (n) Mehta, G.; Reddy, D. S. J. Chem. Soc., Perkin 
Trans. 1 2000, 1399. (o) Sparks, S. M.; Shea, K. J. Org. Lett. 2001, 3, 2265. (p) Sparks, S. M.; Gutierrez, A. 
J.; Shea, K. J. J. Org. Chem. 2003, 68, 5274. (q) Stork, G.; Tang, P. C.; Casey, M.; Goodman, B.; Toyota, 
M. J. Am. Chem. Soc. 2005, 127, 16255. 
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stereocenter from a 2,3-seco-derivative (2, Scheme 2.1).6  These approaches target five of 

the molecule’s six stereogenic centers through the formation of an appropriately 

functionalized E-ring or cis-fused D/E-ring fragment.  However, the late-stage C-ring 

installation is generally complicated by preferential formation of the final C3 stereocenter 

with the undesired, thermodynamically favored relative stereochemistry. 7   As an 

introduction to this chapter, key strategies that have been employed to address this 

undesired outcome are reviewed, and a recently reported alternative approach to the 

reserpine framework is presented. 

 

2.2. Previous Strategies to Obtain the Desired C3 Configuration of Reserpine 

2.2.1. The Woodward Approach: Conformational Biasing and C3 Epimerization 

                                                            
6 The numbering scheme presented in Figure 2.1 is used for various intermediates throughout this chapter. 
 
7 Epimerization of reserpine (1) to 3-epi-reserpine (isoreserpine) occurs under acidic or basic conditions 
and is driven by the removal of unfavorable streic interactions between the axial C3 indole group and the 
D-ring. Subjecting 1 to AcOH under reflux affords an equilibrium mixture of 1.0:3.5 
(reserpine:isoresrepine). For details, see: a) Gaskell, A. J.; Joule, J. A. Tetrahedron 1967, 23, 4053. b) 
Zhang, L.-H.; Gupta, A. K.; Cook, J. M. J. Org. Chem. 1989, 54, 4708. c) Sakai, S.; Ogawa, M. Chem. 
Pharm. Bull. 1978, 26, 678. d) Lounasmaa, M.; Berner, M.; Tolvanen, A. Heterocycles 1998, 48, 1275. 
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Woodward’s landmark synthesis of reserpine involved a Bischler–Napieralski cyclization 

of lactam 3 and reduction of the resultant iminium ion with sodium borohydride (Scheme 

2.2).5a  However, nucleophilic addition selectively produced pentacycle 4, which contains 

the undesired configuration at C3.  Woodward reasoned that the C3 center could be 

epimerized after fixing the molecule in an unstable conformation. To this end, 

intermediate 4 was converted into rigid lactone 5, and an equilibration of the C3 center 

under acidic conditions provided the correct relative stereochemistry of reserpine.   

 

2.2.2. The Stork Approach: Kinetic Cyclization of an Amino-Nitrile 

The challenge posed by the C3 stereocenter of reserpine was overcome in a 

notable and most elegant manner by Stork and coworkers (Scheme 2.3).5i,q They 

predicted that cyclization of amino-nitrile 6 would generate a dialkyl iminium ion that 

could be trapped through a kinetic nucleophilic attack by the pendant indole to access 

methyl reserpate (10).  However, in refluxing acetonitrile, 6 underwent a C2-C3 bond 

formation to furnish pentacycle 8, which contains the undesired C3 stereochemistry. This 
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unexpected outcome was rationalized as occurring through a tight ion pair (7), in which 

the cyanide counterion blocks the desired trajectory of nucleophilic addition.  Based on 

this hypothesis, amino-nitrile 6 was treated with either dilute HCl or silver 

tetrafluoroborate to generate a loose ion pair (9), which underwent a kinetically 

controlled cyclization to afford methyl reserpate (10).8 

 

2.2.3. The Kwon Approach: C3 Stereochemical Relay via a 6π-Electrocyclization 

 The complex architecture of reserpine continues to serve as a forum for exploring 

the frontiers of stereoselective synthesis.  In 2012, Kwon and coworkers reported 

progress towards the synthesis of (±)-reserpine (1) through the application of a 

diastereoselective 6π-electrocyclization. 9   Kwon’s strategy is relevant to the work 

presented in this chapter as it also represents a fundamental departure from the previous 

syntheses of reserpine in that the C3 stereocenter is generated at an early stage in the 

route.  Racemic bromides (Z/E)-12 were generated in a 1:2 ratio of olefin isomers in 11 
                                                            
8 A related cyclization of amino-nitriles was recently employed in the syntheses of C3-epimeric natural 
products venenatine and alstovenine: Lebold, T. P.; Wood, J. L.; Deitch, J.; Lodewyk, M. W.; Tantillo, D. 
J.; Sarpong, R. Nat. Chem. 2013, 5, 126. 
 
9 a) Barcan, G. A.; Patel, A.; Houk, K. N.; Kwon, O. Org. Lett. 2012, 14, 5388. b) Patel, A.; Barcan, G. A.; 
Kwon, O.; Houk, K. N. J. Am. Chem. Soc. 2013, 135, 4878. 
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steps from methyl ester 11.  A Negishi cross-coupling of vinyl zinc species 13 with 

bromide (Z/E)-12 afforded triene 14 which underwent an in situ 6π-electrocyclization to 

directly afford acetonide 15 in good yield and as a single diastereomer (Scheme 2.4).  

Pentacycle 15 was advanced to olefin 16 through hydrolysis of the acetonide followed by 

a PtO2-catalyzed hydrogenation of the resultant α-keto-ester.  Through the cascade 

Negishi/6π-electrocyclization, the authors demonstrated an efficient and unprecedented 

relay of stereochemical information from the C3 stereocenter of triene 14 to the remote 

C18 center of a highly functionalized pentacycle (15).  However, the product was 

selectively generated with the undesired relative stereochemistry, and this outcome may 

present challenges for advancing 16 to reserpine (1). 
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2.3. Previous Work towards the Synthesis of (+)-Reserpine in the Jacobsen Group 

Meredeth McGowan, a former graduate student in the Jacobsen group, became 

interested in investigating a new approach to reserpine based on a recently developed 

asymmetric formal aza-Diels–Alder (FADA) method.  The motivations for pursuing the 

synthesis were to demonstrate the synthetic utility of the transformation and to address 

the historically problematic C3 stereocenter by using the newly developed method to 

install the problematic stereocenter with catalyst control.  Together with Mathieu Lalonde, 

another former graduate student, she developed a highly diastereo- and enantioselective 

synthesis of chiral benzo- and indoloquinolizidine frameworks via FADA reactions of 

enones and cyclic imines (Scheme 2.5).10 This transformation is catalyzed by bifunctional 

primary aminothiourea 17 that is proposed to activate the enone as its corresponding 

dienamine and simultaneously associate with the imine as a thiourea-bound iminium ion. 

 

                                                            
10 a) Lalonde, M. P.; McGowan, M. A.; Rajapaksa, N. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 
1891. b) For further details regarding the developing and scope of this transformation, see: Lalonde, M. P. 
Ph.D. Dissertation, Harvard University, 2008. 
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 Meredeth devised an alternative approach to the reserpine framework that 

proposed a catalyst-controlled diastereoselective FADA reaction between two 

components of comparable size, imine 18 and chiral enone 19 (Scheme 2.6).11  Her 

progress is summarized in this section.  

 

The synthetic efforts toward requisite enone component 19 began with a highly 

selective alcoholic kinetic resolution of racemic terminal epoxide 20. Differentially 

protected 4-carbon triol 21 was obtained in 96% ee through the use of oligomeric cobalt 

salen catalyst 23, 12  employing benzyl alcohol as the nucleophile (Scheme 2.7).  

Elaboration of protected alcohol 21 to aldehyde 22 was accomplished in a 3-step 

sequence consisting of methylation of the secondary alcohol, subsequent hydrogenolysis 

of the benzyl ether, and Swern oxidation of the resulting primary alcohol. The α-methoxy 

group of aldehyde 22 then served to direct a chelation-controlled diastereoselective 

allylation, thereby installing the adjacent C18 stereogenic center and providing vinyl 

bromide 24 as a single diastereomer.13  Following protection of the C18 alcohol, lithium-

                                                            
11 Meredeth McGowan also applied an enantioselective FADA reaction of dihydroisoquinone and enone 
fragments to an asymmetric total synthesis of (–)-tubulosine.  See reference 3a. 
 
12 White, D. E.; Jacobsen, E.N. Tetrahedron: Asymmetry 2003, 14, 3633. 
 
13 The sequence of allylsilane addition and subsequent PMB protection was adapted from: Evans, D. A.; 
Rajapakse, H. A.; Stenkemp, D. Angew. Chem., Int. Ed. 2002, 41, 4569. 
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halogen exchange and subsequent addition to acetaldehyde afforded an inconsequential 

mixture of diastereomeric alcohols (25/26) which was oxidized with the Dess–Martin 

periodinane to afford enone 19.   Efforts to directly access enone 19 through addition of 

the vinyllithium species derived from 24 to N-methoxy-N-methylacetamide proved less 

efficient due to competitive formation of the terminal olefin via protonolysis. 

 

 The key coupling of enone 19 and 6-methoxytryptamine-derived dihydro-β-

carboline 1814 to generate the D-ring of reserpine was then examined under a series of 

conditions (Scheme 2.8).  The FADA reaction employing just a slight excess of complex 

enone 19 (1.2 equivalents) relative to imine 18 was only successful  under the influence 

                                                            
14  Imine 18 was synthesized from 6-methoxy-tryptamine through a formylation, Bischler–Napieralski 
cyclization, and tosylation with TsF.  See refs. 10a,b for details. 
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of primary amine catalysts, consistent with previous observations employing simple, 

hindered enone derivatives and with the mechanistic hypothesis of enamine formation.15 

The degree of intrinsic substrate-induced diastereocontrol was evaluated using achiral 

amine promoters. With stoichiometric n-hexylamine,16 ketones 27 and 28, which contain 

a trans-relationship between the newly formed C3 and C20 stereocenters, were generated 

in a 1:1 diastereomeric ratio (entry 1).  In contrast, high levels of chiral catalyst-

controlled diastereoselectivity were observed in the presence of 20 mol% aminothiourea 

17, providing the desired diastereomer 27 in 76% isolated yield.  Notably, the 

enantiomeric primary aminothiourea ent-17 induced a reversal of diastereoselectivity in 

the FADA reaction to afford ketone 28 selectively (entry 3). 

                                                            
15 No catalysis was observed with proline or related secondary amine catalysts. The proline-catalyzed 
formal aza-Diels–Alder reaction between dihydro-β-carboline and enones has been shown to require a large 
excess of enone (30 equivalents) relative to imine in those cases where catalysis is observed, see: Itoh, T.; 
Yokoya, M.; Miyauchi, K.; Nagata, K.; Ohsawa, A. Org. Lett. 2006, 8, 1533. 
 
16 Very low conversions (< 10% after 6 d) were obtained using 20 mol% n-hexylamine and 20 mol% acetic 
acid. 
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Closure of the E-ring to complete the carbon skeleton of reserpine could be 

accomplished by an intramolecular aldol reaction of keto-aldehyde 31 (Scheme 2.9). 

Intermediate 31 was obtained in two steps from FADA adduct 27 through cleavage of the 

primary TBS ether with pyridine-buffered HF and oxidation of the resulting primary 

alcohol with the Dess–Martin periodinane. Treatment of crude aldehyde 31 with 

piperidine and catalytic TsOH resulted in an intramolecular enamine aldol reaction to 

afford C15 tertiary alcohol 32 as a single diastereomer that contains trans-fused D- and 

E-rings.  

entry amine (mol %) AcOH (mol %) time (d) conv (%) dr (27:28:29:30)

1 n-hexylamine (100) 100 9 90 1.0:1.0:0:0

2 17 (20) 20 6 >99 11.5:1.0:1.8:0

3 ent-17 (20) 20 6 >99 1.0:11.9:0:2.1
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The most fruitful strategy evaluated for obtaining the correct oxidation state at 

C15 was an elimination-hydrogenation sequence (Scheme 2.10). Upon treatment of 

alcohol 32 with mesyl chloride and triethylamine, an in situ regioselective, albeit low-

yielding, elimination took place to afford conjugated enal 33.  The C15-C16 olefin could 

be hydrogenated with PtO2 in the presence of a mesyl chloride-derived additive. 17  

Ultimately, however, compound 34 was not obtained in sufficient quantities to determine 

the stereochemical outcome of the hydrogenation. 

 

2.4. Remaining Challenges 

The previous synthetic work on this project established a route for generating four 

of the six stereocenters present in reserpine.  The desired C18 and C17 stereocenters were 

installed by means of an enantioselective epoxide-opening reaction and a chelation-

                                                            
17  The beneficial additive was generated during the mesylation/elimination, and its identity was not 
conclusively determined. In the absence of the additive, enal decomposition was observed, and with excess 
(3 equiv) of the additive, lower conversion was obtained. 
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controlled allylation. Additionally, the primary aminothiourea-catalyzed FADA reaction 

of enone 19 and imine 18 introduced the desired stereochemistry at C3 and C20 to 

provide ketone 27 with a high degree of catalyst-induced diastereoselectivity.  The 

primary goal of the work described herein was to develop a successful route for 

elaborating this key tetracyclic intermediate to (+)-reserpine. The remaining challenges 

included formation of the E-ring of the molecule and installation of the final two 

stereocenters at C15 and C16.  As our overall synthetic strategy is a clear departure from 

previously published routes to reserpine, we anticipated completion of the synthesis 

would require developing an understanding of factors that influence the 

diastereoselectivity of transformations performed in such a complex setting.  Additionally, 

while generating material to explore strategies to complete the synthesis, a secondary 

goal was to improve upon the synthesis of enone 19.  In particular, we investigated the 

direct conversion of vinyl bromide 24 to enone 19.  

 

2.5. Improved Synthesis of Enone 1918 

 As previously mentioned, attempts to form enone 19 directly from bromide 24 

through a lithium-halogen exchange and subsequent addition to N-methoxy-N-

methylacetamide (35a) 19  were unsatisfactory.  This reaction formed a roughly 1:1 

mixture of the desired enone and terminal olefin byproduct 36, which is generated via 

protonolysis of the vinyllithium species (Table 2.1).  This outcome contrasts with the 

analogous addition into acetaldehyde, which generates a diastereomeric mixture of 

secondary alcohols (25/26) in good yield and without formation of 36 (Scheme 2.7).   

                                                            
18 This work was done in collaboration with Matthew Rienzo. 
 
19 Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815. 
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We speculated that formation of 36 directly involved electrophile 35a, since 

efforts to rigorously exclude water did not suppress terminal olefin formation.  We 

considered two possible scenarios for the formation of 36: 1) incomplete consumption of 

the vinyllithium during the reaction, perhaps due to the formation of aggregates,20 or 2) 

protonation of the vinyllithium species by amide 35a.  We ruled out the former 

possibility by quenching the reaction with D2O (entry 2).  The absence of deuterated 

olefin 37 and the observation that protonated olefin 36 was still formed indicated that the 

vinyllithium species was completely consumed during the reaction. Evidence against the 

latter possibility was provided through analogous reactions performed with deuterated 

                                                            
20 In a related addition of an alkynyllithium species to a Weinreb amide, Collum and coworkers identified 
1:1 aggregates that form between the tetrahedral adduct and unreacted organolithium reagent: Qu, B.; 
Collum, D. B. J. Org. Chem. 2006, 71, 7117. 
 

Table 2.1. Optimization of the Synthesis of Enone 19 

entry electrophile solvent [24] (M) 19 : 36 : 37

1 35a THF 0.1 1 : 1.0–1.4 : 0

2 35a THF + D2O quench 0.1 1 : 1.2 : 0

3 35a THF 0.05 2.9 : 1 : 0

4 35b THF 0.05 1.7 : 1 : 0

5 35c THF 0.05 2.3 : 1 : 0

6 35a Et2O 0.05 5.3 : 1 : 0

7 35a THF/toluene (1:1) 0.05 3.7 : 1 : 0

8 35a Et2O/pentane (1:1) 0.05 3.2 : 1 : 0
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amide 35b and N-tert-butoxy-N-methylacetamide 35c. Both reactions still afforded 

terminal olefin 36, and without formation of 37.  These results suggested that electrophile 

35a was not undergoing deprotonation at the acetyl or alkoxy positions.21  Although the 

proton source could not be determined, byproduct formation was suppressed through 

optimization of the reaction solvent (Table 2.1, entries 1, 6–8) and vinyl bromide 

concentration (entries 1 vs. 3).  The reaction conducted in ether and at an initial vinyl 

bromide concentration of 0.05 M formed the enone in a ratio of 5.3:1 with olefin 36. 

When the addition was performed on a preparative scale, the ratio improved to 6.7:1 and 

enone 19 was isolated in 76% yield. With this procedure, the synthesis of FADA 

coupling partner 19 could be accomplished in seven steps and in 33% overall yield from 

racemic epoxide 20 (Scheme 2.7). 

 

2.6. Strategies for the Completion of the Reserpine Synthesis 

 We evaluated alternative strategies to an aldol cyclization for advancing FADA 

adduct 27 to the pentacyclic core of reserpine.  Although the aldol cyclization was 

efficient and diastereoselective, the poor efficiency of the mesyl chloride-induced 

elimination and the capricious nature of the enal hydrogenation prompted us to consider 

an alternative intramolecular enamine-alkylation route. 

2.6.1. Attempted Closure of the E-Ring Via Enamine Alkylation22 

 An alkylation strategy was particularly attractive as cyclization of an 

appropriately functionalized aldehyde (38) would afford a pentacycle with the C15 center 
                                                            
21 Similar Weinreb amide deprotonation pathways have been identified: a) Mentzel, M.; Hoffman, H. M. R. 
J. Prakt. Chem. 1997, 339, 517. b) Sibi, M. P. Org. Prep. Proced. Int. 1993, 25, 15. 
 
22 This work was done in collaboration with Meredeth McGowan. 
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at the desired oxidation state (Scheme 2.11). Additionally, the stereospecificity of the 

transformation ensures that the C15 center would be formed with the desired 

stereochemistry.   

 

Secondary mesylate 40 was synthesized from FADA adduct 27 through reduction 

of the ketone to afford a separable 3.4:1 mixture of alcohol diastereomers favoring the 

desired equatorial alcohol, and a subsequent mesylation.  The proposed alkylation 

precursor 41 was obtained by removal of the silyl protecting group with TBAF, and 

oxidation of the resultant primary alcohol with the Dess–Martin Periodinane.  However, 

treatment of aldehyde 41 with a variety of secondary amines only resulted in elimination 

of the C17 methoxy group to form (E)-olefin 43, which still contains the C15 mesylate 

(Scheme 2.12). 
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  Although aldol precursor 31 and aldehyde 41 presumably access similar enamine 

intermediates upon exposure to a secondary amine and acid, the reaction outcomes are 

very different.  Whereas the aldol cyclization afforded pentacycle 32 in high yield, the 

attempted alkylation did not afford any of the desired cyclization product (39, Scheme 

2.13A).   

An analysis of these results provided information about the reactivity of these 

intermediates and helped inform future routes.  Aldol cyclization of keto-aldehyde 31 

afforded trans-fused 32 as a single diastereomer, and without any elimination of the C17 

methoxy group. This outcome corresponded to nucleophilic attack of the enamine 

occurring exclusively from the top face of the C15 ketone.23  In contrast, the proposed 

                                                            
23 The enamine aldol reaction installs the C16 center of 32 via protonation of an enamine intermediate, also 
from the top face. 1H NMR and NOESY analysis of this intermediate (see the experimental section and ref. 
3b) indicates that the E-ring is in a chair conformation, with all substituents in equatorial positions. 
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alkylation route would require the enamine derived from 41 to displace the C15 mesylate 

from the bottom face of the intermediate.  Additionally, the enamine intermediate would 

need to access an unfavorable conformation (corresponding to 43b) that places the C15 

mesylate in an axial orientation.  Unfavorable steric interactions between the C-ring and 

the C15 substituent may have rendered this pathway energetically inaccessible.  Without 

a productive cyclization pathway available, the intermediate underwent an elimination of 

the C17 methoxy group to provide the only observed product, 42. Together, these data 

strongly suggest that the top face of these tetracyclic intermediates is more accessible for 

nucleophilic attack.  Based on this analysis, we moved forward with the aldol product 32 

and investigated radical-based methods of obtaining the desired C15 oxidation state, 

since this same strong facial preference might render the mechanistically unselective 

radical pathway highly selective. 
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2.6.2. Radical Deoxygenation Attempts for Installing the C15 Stereocenter 

The insight that these polycyclic intermediates may selectively undergo reactions 

on the top face encouraged us to pursue a radical deoxygenation approach to install the 

C15 center from aldol adduct 32.  In particular, we envisioned that if a C15 tertiary 

radical could be generated, it would likely react with a hydrogen radical from the top face 

of the intermediate, thereby affording the corresponding product that contains the correct 

oxidation state and configuration at C15.  Because previous attempts to derivatize the 

C15 alcohol of 32 were met with limited success, an intramolecular activation strategy 

was employed (Scheme 2.14).  Cyclic thiocarbonate 45 was identified as an appropriate 
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radical precursor, and literature precedent suggested that deoxygenation should occur via 

the more stable C15 tertiary radical instead of the C22 primary radical. 24 , 25  

Thiocarbonate 45 was obtained in two steps from aldehyde 32 through a sodium 

borohydride reduction and cyclization of the resultant diol with thiocarbonyl diimidazole.  

 

However, upon subjecting 45 to radical deoxygenation conditions (AIBN and 

tributyltin hydride) and then hydrolysis conditions, C15 tertiary alcohol 46 was obtained 

exclusively.  We reasoned that the radical process may be under Curtin–Hammett control 

(Scheme 2.15), wherein 48, the less-hindered of the two equilibrating radical species 

preferentially reacts with a hydrogen radical.26 

                                                            
24 For a review of thiocarbonyl radical chemistry, see: Crich, D.; Quintero, L. Chem. Rev. 1989, 89, 1413. 
 
25 Radical deoxygenation of cyclic thiocarbonyl derivatives typically occurs through the more stable of the 
two possible radicals. For relevant examples, see: a) Barton, D. H. R.; Subramanian, R. J. Chem. Soc. 
Perkin I, 1977, 1718. b) Liang, D.; Paula, H. W.; Fraser-Reid, B. J. Chem. Soc.; Chem. Commun. 1984, 
1123. c) Kangani, C. O.; Brückner, A. N.; Curran, D. P. Org. Lett. 2005, 7, 379. 
 
26 A similar radical equilibration mechanism was proposed to account for the significant selectivity for 
radical deoxygenation at the secondary center from a cyclic thiocarbamate derived from a secondary/ 
tertiary diol: Redlich, H.; Sudau, W.; Paulsen, H. Tetrahedron 1985, 41, 4253. 
 

 

Scheme 2.14. Synthesis of Cyclic Thiocarbonate 45 

15

N N

Ts

MeO

H H

HO

OH OMe

OPMB
16

NaBH4

MeOH, 0 oC

64%

22

N N

S

N N

DMAP

DCE, reflux
73%

32

N N

Ts

MeO

H H

O

O OMe

OPMB
S 22

15

44 45



102 
 

 

 Fortunately, we were successful in obtaining the C15 trifluoroacetate 49 as 

another possible precursor for radical deoxygenation (Scheme 2.16).27  Trifluoroacetic 

anhydride, in contrast to several other derivatizing reagents, cleanly and quantitatively 

reacted with aldol adduct 32.  However, attempted purification of intermediate 49 

revealed that it readily underwent hydrolysis back to alcohol 32 and elimination to yield 

conjugated enal 33.  This fortuitous discovery along with the prediction that enal 33 

should selectively undergo reactions from the top face of the intermediate encouraged us 

to re-visit the hydrogenation strategy for setting the C15 and C16 stereocenters of 

reserpine. 

                                                            
27 a) Kim, J.-G.; Cho, D. H.; Jang, D. O. Tetrahedron Lett. 2004, 45, 3031. b) Jang, D. O.; Kim, J.; Cho, D. 
H.; Chung, C.-M. Tetrahedron Lett. 2001, 42, 1073. c) Flyer, A. N.; Si, C.; Myers, A. G. Nat. Chem. 2010, 
2, 886. 
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Scheme 2.15. Possible Curtin–Hammett Control in Radical Deoxygenation of 45 
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2.6.3. Re-evaluation of an Enal Hydrogenation 

Through optimization studies, it was found that treatment of crude C15 

trifluoroacetate 49 with diisopropylamine induced a regioselective elimination to afford 

enal 33 in 63% yield from aldol adduct 32 (Scheme 2.17).28 

 

 Hydrogenation of enal 33 with PtO2 occurred only at high hydrogen pressures 

(14-48 atm) and afforded products 34 and 50–52, corresponding to reduction of the C15-

C16 olefin, the carbonyl group, and the aromatic ring of the PMB ether (Scheme 2.18).  

After subjecting the crude hydrogenation product mixture to Dess–Martin oxidation 

                                                            
28 The elimination of the C15 trifluoroacetate 49 was faster with secondary amines than with tertiary amine 
bases, suggesting that enamine intermediates may be involved.  Based on this possibility, we attempted a 
cascade aldol-elimination sequence from keto-aldehyde 31. However, enal 33 was formed as a minor 
product and in a 1:14 ratio with the aldol adduct 32, so we moved forward with the two-step sequence. 
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Scheme 2.17. Optimized Synthesis of Conjugated Enal 33 
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Scheme 2.16. Synthesis of C15 Trifluoroacetate and a SiO2-Promoted Elimination 
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conditions, saturated aldehyde 34 was obtained as a single diastereomer and in 40% yield 

over the two steps.29 

 

The stereochemical outcome of olefin hydrogenation was determined by analysis 

of the corresponding methyl ester (53), obtained by subjecting aldehyde 34 to Pinnick 

oxidation conditions followed by treatment of the crude acid with diazomethane (Scheme 

2.19).  NMR studies performed on this intermediate led to the determination that it had 

the desired C15 configuration but the incorrect C16 configuration.  The relevant nOe data 

from the proton at C16 of methyl ester 53 are summarized in Scheme 2.19.  PMB- and 

Ts-protecting group removals were carried out with DDQ and magnesium in MeOH, 

respectively, to access 16-epi-methyl reserpate (54). 

                                                            
29 Hydrogenation product 34 was equivalent to the one Meredeth McGowan had previously obtained 
(Scheme 2.10).   
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Scheme 2.18. PtO2-Catalyzed Hydrogenation of Conjugated Enal 33 
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A plausible explanation for this outcome is that hydrogen delivery occurred from 

the top face of the olefin, as predicted, to generate saturated aldehyde 55 but that 

unfavorable steric interactions between the C16 substituent and the tosyl protecting group 

drove epimerization at C16 (Scheme 2.20). 

 

Based on this hypothesis, we proposed two strategies to prevent epimerization 

during hydrogenation of a C15-C16 olefin (Scheme 2.21).  The first strategy involved the 

removal of the tosyl protecting group.  It was proposed that if unfavorable steric 

interactions between the tosyl group and the C16 aldehyde substituent were responsible 
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for epimerization, then hydrogenation of the free indole substrate may proceed without 

epimerization (Scheme 2.22A). The second strategy involved modification of the C16 

substituent to either an ester or primary alcohol, such that hydrogenation would generate 

a product that was less prone to epimerization at C16.   

 

2.6.4. Hydrogenation of an Unprotected Indole Intermediate 

Through experimentation, we found that the unprotected methoxy indole of 

related intermediates was unstable to even mildly oxidative conditions.  This observation 

suggested that oxidative manipulations, such as installation of the C16 ester and removal 

of the PMB protecting group should take place prior to removal of the tosyl group.  Thus, 

we targeted unsaturated ester 58 as a hydrogenation substrate to evaluate our first strategy.  

Pinnick oxidation of aldehyde 32 to the corresponding carboxylic acid, followed by 

esterification with diazomethane provided methyl ester 56 (Scheme 2.22). The C15 
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alcohol of intermediate 56 proved very resistant to derivatization, and as with aldol 

adduct 32, trifluoroacetylation was found to be the most effective strategy.  

Derivatization of 56 to a C15 tertiary trifluoroacetate was accomplished with n-BuLi and 

trifluoroacetic anhydride, and the crude product was subjected to DBU in refluxing 

toluene to effect a regioselective elimination forming enoate 57.30  The PMB protecting 

group was cleaved using DDQ, and the tosyl protecting group was removed using a 5% 

sodium/mercury amalgam to provide the free indole 58.   

 

C15-C16 olefin 58 underwent hydrogenation with PtO2 at 1 atm of hydrogen 

pressure to afford saturated ester 59 (Scheme 2.23).31 The stereochemical outcome of the 

hydrogenation was determined through NMR analysis of free indole 59, and by 

comparing its spectrum to those of saturated ester 54 (obtained through the enal 

                                                            
30  Attempted radical deoxygenation of the tertiary trifluoroacetate under conditions reported by Jang 
(Refs.25a,b ) or Myers (Ref.25c ) resulted in decomposition, hydrolysis, and elimination products. 
 
31 Although a diastereomeric ratio was not measured on the crude hydrogenation product, the high yield of 
hydrogenation product indicates that the dr must at least be 4:1 in favor of the observed product 59. 
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Scheme 2.22. Synthesis of Enoate 58 
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hydrogenation, Scheme 2.19), and methyl reserpate (10), obtained through saponification 

of a commercially available sample of (–)-reserpine.  Through this analysis we 

determined that hydrogenation occurred with undesired selectivity from the bottom face 

of intermediate 58, providing the incorrect configurations at both C15 and C16.  

 

 In comparing the two hydrogenation approaches and the outcomes, we 

determined that the facial selectivity of hydrogen delivery was influenced by the 

conformation of the intermediate, and this in turn was dependent on the presence or 

absence of an indole protecting group (Scheme 2.24). Substrate 33 containing a protected 

indole underwent hydrogenation exclusively from its top face, as the bottom face appears 

to be shielded by the bulky tosyl protecting group.  In contrast, unprotected substrate 58, 

which lacks this directing effect, underwent hydrogenation primarily from the bottom 

face of the olefin. These observations are in agreement with a series of hydrogenation 

studies done by Lounasmaa on tetracyclic indole-containing substrates.32  Taking these 

results into consideration, we decided to move on to our second proposed endgame 

strategy and to carry out a hydrogenation in the presence of an indole protecting group 

and a C16 substituent that is unlikely to be susceptible to epimerization (Scheme 2.21B). 

                                                            
32 a) Lounasmaa, M. Tetrahedron 1995, 51, 11892. b) Lounasmaa, M.; Jokela, R. Tetrahedron 1990, 46, 
615. 
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We predicted that this strategy would allow for hydrogenation to occur with the desired 

facial selectivity and without C16 epimerization. 

 

 

2.7. Completion of the Synthesis of (+)-Reserpine 

 We anticipated that allylic alcohol 52, obtained through reduction of enal 33, 

might be capable of coordinating to a homogeneous hydrogenation catalyst and thereby 

enable hydrogenation of the hindered C15-C16 olefin.  Unfortunately, an evaluation of 

both homogeneous and heterogeneous hydrogenation catalysts was unfruitful, either 

returning unreacted alcohol 52 or resulting in reduction of the aromatic ring of the PMB 

ether (Scheme 2.25). 
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 We therefore instead focused on hydrogenation of unsaturated ester 57, obtained 

via elimination of a tertiary trifluoroacetate (Scheme 2.23), which maintains the PMB and 

Ts protecting groups. This olefin proved to be a particularly challenging hydrogenation 

substrate as it is hindered, tetrasubstituted, and electron-deficient.  After an extensive 

evaluation of both homogeneous and heterogeneous catalytic systems under a range of 

conditions, cationic iridium complex 64, bearing the noncoordinating BArF counteranion, 

was identified as uniquely effective in the reduction of the C15-C16 olefin of enoate 57 

(Table 2.2).33 

                                                            
33 a) Vazquez-Serrano, L. D.; Owens, B. T.; Buriak, J. M. Inorg. Chim. Acta 2006, 359, 2786. b) 
Wüstenberg, B.; Pfaltz, A. Adv. Synth. Catal. 2008, 350, 174.�
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Scheme 2.25. Unsuccessful Attempts at Reducing Allylic Alcohol 52 
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 Variation of the stoichiometry of enoate 57 to iridium complex 64 indicated that 

the catalytic use of 64 provided low amounts of conversion to the reduction product 

(Scheme Table 2.3, entries 1–2). However, hydrogenation with one full equivalent of 

complex 64 resulted in 54% conversion of 57 and proceeded with a significant degree of 

facial selectivity (6:1 dr), ultimately affording saturated ester 60 in 44% isolated yield 

(81% based on recovered olefin 57) (entry 3).34  The use of super stoichiometric amounts 

of iridium complex 64 offered a slight increase in yield but at the expense of recovered 

enoate (entry 4).  The stereochemical outcome of the hydrogenation was determined by 

1H NMR analysis and indicated that the C15 and C16 stereogenic centers had been 

obtained in the correct configuration.  The identity of saturated ester 60 was further 

confirmed by X-ray crystallographic analysis (Figure 2.2).   

                                                            
34 Although improvements in the turnover of iridium hydrogenation catalysts have been accomplished 
through the formation of substrate amine salts or by the use of borate additives, these strategies were 
ineffective for the hydrogenation of 57 with 64. For precedents, see: a) Trost, B. M.; Rudd, M. T. Org. Lett. 
2003, 5, 1467. b) Maimone, T. J.; Shi, J.; Ashida, S. Baran, P. S. J. Am. Chem. Soc. 2009, 131, 17066. 

Table 2.2. Catalyst Screen for Hydrogenation of Enoate 57 

entry catalyst results

1 PtO2 recovered starting material

2 Pd/C recovered starting material

3 Raney Ni recovered starting material

4 [Rh(DuPHOS)(COD)]BF4 (62) hydrogenation of the PMB ring

5 [Ir(PCy3)(COD)]PF6 (63) recovered starting material

6 [Ir(PCy3)(COD)]BArF (64) trace hydrogenation
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With the fully elaborated pentacycle in hand, completion of the synthesis required 

only a global deprotection and installation of the trimethoxybenzoyl ester on the E-ring. 

Thus, treatment of 60 sequentially with TfOH and sodium/mercury amalgam resulted in 

cleavage of the PMB ether and tosyl protecting groups, respectively (Scheme 2.26). 
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Figure 2.2. ORTEP Diagram of 60 Showing 50% Probability Displacement 

Table 2.3. Loading Studies of Complex 64 
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Resulting C18 secondary alcohol 10 was esterified using conditions reported by Stork to 

deliver reserpine ((+)-1).5q   

 

2.8. Conclusions 

 The enantioselective total synthesis of reserpine was accomplished in 19 steps in 

the longest linear sequence from racemic epoxide 20 (Scheme 2.27).  The convergent 

approach relied on chiral catalysis to provide access to coupling component 19 and to 

address the historically problematic installation of the C3 stereogenic center.  The 

insights we gained about substrate-controlled diastereoselectivity in reactions performed 

on highly functionalized tetracyclic and pentacyclic intermediates guided us to pursue a 

diastereoselective hydrogenation that enabled completion of the synthesis.  Furthermore, 

through this process, we were able to identify synthetic routes to access intermediates 

corresponding to two unnatural diastereomers of (+)-methyl reserpate: 16-epi-(+)-methyl 

reserpate (54) and 15,16-di-epi-(+)-methyl reserpate (59). 
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2.9. Experimental Section 

A.  General Information. 

 Unless otherwise noted, all reactions were performed under a positive pressure of 

anhydrous nitrogen or argon in flame- or oven-dried glassware. Moisture- and air-

sensitive reagents were dispensed using oven-dried stainless steel syringes or cannulae 

and were introduced to reaction flasks through rubber septa. Reactions conducted below 

ambient temperature were cooled by external baths (dry ice/acetone for –78 oC and 

ice/water for 0 oC).  Reactions conducted above ambient temperature were heated by a 

silicone oil bath.  

 Analytical thin layer chromatography (TLC) was performed on glass plates pre-

coated with silica 60 F254 plates, 0.25 mm). Visualization was carried out by exposure to 

a UV-lamp (short wave 254 nm, long wave 365 nm), and by heating after staining the 

plate with a ceric ammonium molybdate or a potassium permanganate solution. 

Extraction and chromatography solvents were reagent or HPLC grade and were used 

without further purification. Flash chromatography was carried out over silica gel (60 Å, 

230–400 mesh) from EM Science or DavisilTM. Where indicated, chromatography was 

conducted on a Biotage Isolera automated chromatography system.  

 

Materials. Commercial reagents and solvents were used with the following exceptions: 

tetrahydrofuran, diethyl ether, toluene, dichloromethane, acetonitrile, and methanol 

employed as reaction solvents were dried by passage through columns of activated 

alumina. Pyridine and triethylamine were distilled from calcium hydride at 760 torr prior 
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to use. The Dess–Martin Periodinane was prepared according to known procedures.35 

Diazomethane was prepared as a 0.5 M solution in ether according to the known 

procedure. 36   2-bromoallyltrimethylsilane was prepared according to the reported 

procedure.37 Epoxide (±)-20 was prepared according to the reported procedure and was 

distilled from calcium hydride prior to use.38  Oligomeric cobalt salen catalyst (R, R)-23 

was prepared according to the reported procedure and stored over calcium sulfate in a     

–78 oC freezer.12 Imine 18, catalyst 17, and catalyst ent-17, were prepared according to 

the reported procedures.10a  Chloroform-d was dried over 3Å MS prior to use. Iridium 

complex 64 was prepared according to the reported procedure and was stored in a glove 

box under a N2 atmosphere.33a 

 

Instrumentation. Proton nuclear magnetic resonance (1H NMR) spectra and carbon 

nuclear magnetic resonance (13C NMR) spectra were recorded on a Varian Mercury-400 

(400MHz), Inova-500 (500MHz), or an Inova-600 (600MHz) spectrometer at 23 oC. 

Chemical shifts for protons are reported in parts per million (ppm, δ scale) downfield 

from tetramethylsilane and are referenced to residual protium in the NMR solvent 

(CHCl3: 7.26 ppm; C6H6: 7.16 ppm).  Chemical shifts for carbons are reported in parts 

per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the 

NMR solvent (CDCl3: 77.16 ppm). Data are represented as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, 

                                                            
35 Boeckman, R. K., Jr.; Shao, P.; Mullins, J. J. Org. Synth. 2000, 77, 141. 
 
36  Sigma Aldrich, 2003, “AL-180: Diazald, MNNG and Diazomethane Generators.” 
http://www.sigmaaldrich.com/aldrich/bulletin/AL-180.pdf 
 
37 Trost, B. M.; Grese, T. A.; Chan, D. M. T. J. Am. Chem. Soc. 1991, 113, 7350. 
 
38 Ficini, J.; Barbara, C.; Desmaële, D.; Ourfelli, O. Heterocycles 1987, 25, 329. 
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app = apparent), integration, and coupling constant (J) in Hertz (Hz).  Infrared (IR) 

spectroscopy was performed on the neat compounds on a Brucker Tensor 27 FT-IR 

Spectrometer using OPUS software.  Data are represented as follows: frequency of 

absorption (cm-1), intensity of absorption (s = strong, m = medium, w = weak).  Mass 

spectra were obtained on an Agilent 1200 series 6120 Quadrupole LC/MS.  Optical 

rotation data were collected using either a 2-mL cell with a 1 dm path length or a 1-mL 

cell using a 0.5 dm path length on a Jasco P-2000 polarimeter and are reported as [α]D
23 

(concentration in grams/100 mL solvent).  Reported rotations are the average of 3–5 

measurements per sample.  

 

B. Experimental procedures and characterization data. 

 

(±)-20

TBSO

O

21

96% ee

TBSO
OBn

OH

 

(S)-1-(benzyloxy)-4-(tert-butyldimethylsilyloxy)butan-2-ol (21) 

A 50-mL round-bottom flask was charged with a stir bar, epoxide (±)-20 (10.0 g, 49.7 

mmol, 1 equiv.), CH3CN (2.4 mL), and anhydrous BnOH (2.32 mL, 22.4 mmol, 0.45 

equiv.).  The flask was cooled to 0 ºC, and (R,R)-23 (185 mg, 0.227 mmol, 0.45 mol % 

based on Co) was added in one portion.  The flask was sealed with a plastic cap and 

allowed to stir at 4 ºC for 96 h, at which point pyridinium para-toluenesulfonate (PPTS) 

(60 mg, 0.240 mmol) was added in one portion.  The reaction mixture was filtered 

through a silica gel plug, eluting with Et2O (400 mL).  The filtrate was concentrated in 

vacuo to provide a dark orange oil which was purified immediately via flash 
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chromatography (silica gel, Biotage, 10% Et2O in hexanes) to provide the desired 

secondary alcohol 21 as a clear oil (6.28 g, 20.2 mmol, 41% yield).   Rf = 0.44 (25% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ: 7.24 – 7.42 (m, 5 H) 4.58 (d, J=12.4 

Hz, 1 H) 4.55 (d, J=11.9 Hz, 1 H) 4.03 (ddd, J=11.40, 6.90, 4.60  Hz, 1 H) 3.86 (m, 1 H) 

3.79 (m, 1 H) 3.48 (dd, J=9.77, 4.39 Hz, 1 H) 3.43 (dd, J=8.79, 6.84 Hz, 1 H) 3.17 (br. s., 

1 H) 1.70 (m, 2 H) 0.90 (s, 9 H) 0.06 (s, 6 H);  13C NMR (126 MHz, CDCl3) δ: 138.13, 

128.36 (2C), 127.69 (2C), 127.64, 74.36, 73.32, 69.63, 61.32, 35.42, 25.85 (3C), 18.14, –

5.52, –5.55; FTIR (neat, cm–1); 3400(br m), 2953(m), 2928(m), 2857(m), 1497(w), 

1471(w), 1463(w), 1389(w), 1362(w), 1253(m), 1205(w), 1090(s), 1005(m), 908(m), 

833(s), 775(s), 733(s), 697(s), 663(m); LRMS (APCI) 311.2 [M + H]+; [α]23
D

 –1.2 (c 

1.77, CHCl3). 

To assess the enantiomeric purity, the epoxide-opened product was elaborated to 

the corresponding diol in the following manner:  Silyl ether 21 (22.7 mg, 0.073 mmol, 1 

equiv.) was dissolved in THF (0.47 mL) and TBAF (1 M in THF, 0.152 mL, 2.1 equiv.) 

was added at 0 ºC.  The solution was allowed to come to rt and stir 1 h.  The reaction was 

then diluted with CH2Cl2 (5 mL) and the organic layer was washed with H2O (3 x 5 mL), 

dried over Na2SO4, filtered, and concentrated in vacuo.  The residue was purified by flash 

chromatography to provide the diol as a clear oil.  The enantiomeric excess was 

determined to be 96% by chiral SFC analysis (OD-H, 5% MeOH, 4.0 ml/min) tR(minor) 

= 6.88 min, tR(major) = 7.52 min.   
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(5S,6S)-8-(tert-butyldimethylsilyloxy)-6-methoxy-5-(4-methoxybenzyloxy)-3-

methyleneoctan-2-one (19) 

Vinyl bromide 24 (286 mg, 0.60 mmol, 1 equiv.) was azeotroped from benzene twice and 

placed on high vacuum 2 h in a 50-mL round-bottomed flask.  Et2O (12 mL) was then 

added under N2, and the flask was cooled to –78 ºC.  Tert-butyllithium (741 μL of a 1.7 

M solution in pentane, 1.26 mmol, 2.1 equiv.) was added dropwise over 5 min.  The 

yellow solution was stirred for 30 min, after which N-methoxy-N-methylacetamide (138 

μL, 0.90 mmol, 1.5 equiv.) was added.  The reaction was stirred for an additional 1.5 h at 

–78 ºC, and was then quenched by addition of H2O (5 mL) and immediately warmed to 

rt.  The reaction mixture was diluted with H2O (10 mL), and the aqueous layer was 

extracted with EtOAc (2 x 15 mL).  The combined organics were dried over Na2SO4, 

filtered, and concentrated in vacuo.  The resultant oil was purified by flash 

chromatography (silica gel, 0 to 15% EtOAc in hexanes) to provide 19 as a clear oil (199 

mg, 0.46 mmol, 76% yield). Rf = 0.19 (15% EtOAc in hexanes); 1H NMR (600 MHz, 

CDCl3) δ: 7.21 (d, J=8.49 Hz, 2 H) 6.84 (d, J=8.49 Hz, 2 H) 6.03 (s, 1 H) 5.87 (s, 1 H) 

4.48 (d, J=11.42 Hz, 1 H) 4.40 (d, J=11.42 Hz, 1 H) 3.79 (s, 3 H) 3.52 – 3.69 (m, 3 H) 

3.43 (dt, J=8.42, 4.14 Hz, 1 H) 3.39 (s, 3 H) 2.64 (ddd, J=13.55, 4.61, 0.88 Hz, 1 H) 2.37 

(dd, J=13.62, 8.35 Hz, 1 H) 2.28 (s, 3 H) 1.78 (dddd, J=14.06, 8.20, 5.86, 4.10 Hz, 1 H) 

1.61 (ddt, J=13.79, 8.67, 5.13, 5.13 Hz, 1 H) 0.85 – 0.90 (m, 9 H) 0.03 (s, 3 H) 0.02 (s, 3 

H); 13C NMR (126 MHz, CDCl3) δ: 199.65, 159.10, 146.09, 130.72, 129.71 (2C) 127.52, 

113.59 (2C) 77.89, 76.81, 71.90, 59.46, 58.17, 55.22, 32.66, 31.89, 25.91 (3C), 25.85, 
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18.21, –5.35, –5.41; IR 2949(m), 2929(s), 2856(m), 1678(s), 1613(m), 1586(w), 

1464(m), 1441(w), 1362(m), 1324(w), 1032(w), 1247(s), 1090(s), 1036(m), 938(m), 

833(s), 775(s), 662(m); LRMS (ESI) 459.2 [M + Na]+; [α]23
D

 –16.1 (c 3.03, CHCl3). 
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(3S,12bS)-3-((2S,3S)-5-(tert-butyldimethylsilyloxy)-3-methoxy-2-(4-

methoxybenzyloxy)pentyl)-10-methoxy-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-2(12H)-one (27) 

An oven-dried 25-mL round-bottom flask with stir-bar was charged with enone 19 (788 

mg, 1.80 mmol, 1.2 equiv.), imine 18 (533 mg, 1.50 mmol, 1 equiv.), and aminothiourea 

17 (140 mg, 0.30 mmol, 20 mol %).  The flask was placed under N2 and toluene (4.5 mL) 

was added, followed by AcOH (17.2 μl, 0.30 mmol, 20 mol %) in one portion.  The 

reaction was allowed to stir at rt 4.5 d, and then at 45 oC for 2 h. Analysis of the crude 

reaction mixture by 1H NMR (comparison of a combination of C3 and PMB Bn signals) 

showed a 11.5:1.0:1.8:0 diastereomeric ratio of 27:28:29:30.  The crude reaction mixture 

was directly purified by flash chromatography (silica gel, Biotage, 0 – 50% EtOAc in 

hexanes gradient) to provide the desired diastereomer as a pale yellow solid (909 mg, 

1.15 mmol, 76% yield). Rf = 0.19 (50% EtOAc in hexanes); 1H NMR (399 MHz, CDCl3) 

δ 7.65 (d, J=2.20 Hz, 1 H, C12) 7.47 (d, J=8.42 Hz, 2 H, Ts) 7.17 – 7.25 (m, 3 H, PMB, 

C10) 7.10 (d, J=7.68 Hz, 2 H, Ts) 6.77 – 6.91 (m, 3 H, PMB, C9) 4.61 (d, J=11.34 Hz, 1 

H, PMB Bn) 4.51 (dd, J=11.34, 2.20 Hz, 1 H, C3) 4.31 (d, J=11.34 Hz, 1 H, PMB Bn) 
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3.87 (s, 3 H, PMB OMe) 3.85 (ddd, J=10.61, 4.76, 2.56 Hz, 1 H, C18) 3.75 (dd, J=7.87, 

4.57 Hz, 2 H, CH2OTBS) 3.70 (s, 3 H, MeO) 3.54 (ddd, J=9.51, 4.57, 2.38 Hz, 1 H, C17) 

3.50 (s, 3 H, C17 MeO) 3.31 (dd, J=13.17, 5.86 Hz, 1 H, C21) 3.10 – 3.20 (m, 2 H, C14, 

C5) 2.94 (t, J=12.44 Hz, 1 H, C21) 2.78 – 2.86 (m, 1 H, C5) 2.68 – 2.78 (m, 3 H, C6(2), 

C20) 2.39 (t, J=12.26 Hz, 1 H, C14) 2.28 (s, 3 H, Ts) 2.05 (ddd, J=13.80, 9.15, 2.38 Hz, 

1 H, C19) 1.85 (dtd, J=14.00, 7.70, 7.70, 2.60 Hz, 1 H, C16) 1.58 (ddt, J=14.00, 9.38, 

4.62, 4.62 Hz, 1 H, C16) 1.04 (ddd, J=13.80, 10.30, 3.40 Hz, 1 H, C19) 0.90 - 0.93 (m, 9 

H, TBS) 0.08 (s, 3 H, TBS) 0.08 (s, 3 H, TBS); 13C NMR (100 MHz, CDCl3) δ 208.55, 

159.21, 158.02, 144.63, 138.37, 134.52, 134.41, 130.76, 129.83 (2C), 129.61 (2C), 

126.29 (2C), 123.97, 118.92, 118.81, 113.78 (2C), 112.73, 100.33, 78.22, 76.77, 72.43, 

61.10, 59.59, 58.95, 58.37, 55.79, 55.17, 45.17, 44.56, 43.00, 32.82, 26.86, 25.94 (3C), 

22.25, 21.49, 18.25, –5.29, –5.37; IR 2592(m), 2927(m), 2856(m), 1706(s), 1612(m), 

1582(w), 1513(m), 1493(m), 1463(m), 1440(w), 1364(s), 1304(w), 1248(s), 1172(s), 

1145(m), 1088(s), 1035(m), 975(m), 834(s), 775(m), 674(s), 626(m);  LRMS (APCI) 

791.4 [M + H]+; [α]24
D

 +65.8 º (c 1.11, CHCl3). 

 

The 1-D NOESY spectrum (500 MHz, CDCl3) displayed the following nOe transfers: 

Irradiation of C14 (δ 2.39): 0.3% C3 (δ 4.51),  

1.2% C20 (δ 2.75)  

Irradiation of C3 (δ 4.51): 0.9% Ts (δ 7.47), 1.7% C14 (δ 3.15), 

 1.9% C21 (δ 2.94) 

Irradiation of C21 (δ 2.94): 1.2% C3 (δ 4.51) 

Irradiation of C21 (δ 3.31): 2.6% C5 (δ 2.81), 4.5% C20 (δ 2.74)  
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 (3R,12bR)-3-((2S,3S)-5-(tert-butyldimethylsilyloxy)-3-methoxy-2-(4-

methoxybenzyloxy)pentyl)-10-methoxy-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-2(12H)-one (28) 

Rf = 0.28 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ: 7.65 (d, J=2.29 Hz, 1 

H) 7.48 (d, J=8.24 Hz, 2 H) 7.30 (d, J=8.24 Hz, 2 H) 7.20 (d, J=8.24 Hz, 1 H) 7.10 (d, 

J=8.24 Hz, 2 H) 6.88 (d, J=8.24 Hz, 2 H) 6.85 (dd, J=8.47, 2.06 Hz, 1 H) 4.63 (d, 

J=11.90 Hz, 1 H) 4.49 (m, 2 H) 3.87 (s, 3 H) 3.80 (s, 3 H) 3.69 (td, J=9.27, 5.27 Hz, 1 H) 

3.62 – 3.66 (m, 1 H) 3.60 (dt, J=8.59, 4.64 Hz, 1H) 3.54 (dt, J=8.47, 4.01 Hz, 1 H) 3.39 

(s, 3 H) 3.21 – 3.34 (m, 2 H) 3.06 – 3.16 (m, 1 H) 2.89 (t, J=12.36 Hz, 1 H) 2.65 – 2.83 

(m, 4 H) 2.46 – 2.58 (dd, J=12.4, 11.8 Hz, 1 H) 2.29 (s, 3 H) 2.17 (ddd, J=14.19, 8.70, 

5.04 Hz, 1 H) 1.74 – 1.88 (m, 1 H) 1.55 – 1.69 (m, 1 H) 1.32 – 1.46 (m, 1 H) 0.90 (s, 9 H) 

0.05 (s, 3 H) 0.04 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ ppm 208.31, 159.39, 158.22, 

144.78, 138.68, 134.81, 134.53, 130.98, 129.95 (2C), 129.75 (2C), 126.53 (2C), 124.21, 

119.37, 119.08, 113.92 (2C), 112.98, 100.62, 78.22, 74.89, 71.33, 60.14, 59.61, 59.00, 

58.55, 56.00, 55.41, 45.45, 45.25, 43.22, 32.95, 26.31, 26.10 (3C), 22.49, 21.68, 18.41, –

5.15, –5.21; IR 3008 (w), 2928 (m), 2856 (m), 1708 (m), 1613 (m), 1513 (m), 1494 (w), 

1367 (s), 1250 (s), 1216 (w), 1173 (s), 1147 (m), 1090 (s), 1037 (m), 836 (s), 759 (s); 

LRMS (APCI) 791.4 [M + H]+; [α]24
D

 +16.9 º (c 0.29, CHCl3). 
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(3R,12bS)-3-((2S,3S)-5-(tert-butyldimethylsilyloxy)-3-methoxy-2-(4-

methoxybenzyloxy)pentyl)-10-methoxy-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-2(12H)-one (29) 

Rf = 0.36 (50% EtOAc in hexanes); 1H NMR (600 MHz, CDCl3) δ:7.60 (d, J=2.20 Hz, 1 

H, C12) 7.44 (d, J=8.49 Hz, 2 H, Ts) 7.25 (d, J=8.49 Hz, 2 H, PMB) 7.12 (d, J=8.49 Hz, 

1 H, C10) 7.08 (d, J=8.35 Hz, 2 H, Ts) 6.86 (d, J=8.64 Hz, 2 H, PMB) 6.81 (dd, J=8.49, 

2.34 Hz, 1 H, C9) 4.43 (d, J=10.84 Hz, 1 H, PMB Bn) 4.32 (d, J=10.69 Hz, 1 H, PMB 

Bn) 4.04 (dd, J=11.10, 2.40 Hz, 1 H, C3) 3.86 (s, 3 H, PMB MeO) 3.78 (s, 3 H, MeO) 

3.62 – 3.73 (m, 2 H, C18, CHHOTBS) 3.51 – 3.59 (m, 2 H, CHHOTBS, C17) 3.40 (s, 3 

H, C17 MeO) 3.36 (ddd, J=14.57, 2.78, 1.40 Hz, 1 H, C14) 2.98 (m, 2 H, C5, C21) 2.91 

(dd, J=11.57, 2.78 Hz, 1 H, C5) 2.75 (m, 1 H, C6) 2.54 – 2.64 (m, 3 H, C14, C20, C21) 

2.47 (dd, J=15.96, 2.30 Hz, 1 H, C6) 2.28 (s, 3 H, Ts) 2.07 (dt, J=14.31, 8.80 Hz, 1 H, 

C19) 1.76 – 1.85 (m, 2 H, C16, C19) 1.56 – 1.44 (m, 1 H, C16) 0.87 – 0.91 (m, 9 H, 

TBS) 0.04 (s, 3 H, TBS) 0.04 (s, 3 H, TBS); 13C NMR (126 MHz, CDCl3) δ: 210.75, 

159.13, 157.97, 144.48, 139.42, 134.90, 133.39, 130.48, 129.97 (2C) 129.23 (2C) 126.59 

(2C) 124.57, 122.59, 118.83, 113.69 (2C) 112.92, 101.18, 77.17, 75.89, 71.30, 59.53, 

59.33, 58.54, 58.32, 55.81, 55.24, 49.90, 48.26, 46.43, 32.51, 32.03, 25.93 (3C) 22.90, 

21.52, 18.25, –5.31, –5.41; IR 2929 (m), 2857 (m), 1709 (m), 1613 (m), 1514 (m), 1368 

(s), 1305 (w), 1249 (s), 1216 (s), 1090 (s), 1038 (m), 971 (w), 836 (m), 759 (s); LRMS 

(APCI) 791.4 [M + H]+; [α]24
D

 +38.6 º (c 1.72, CHCl3). 
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The 1-D NOESY spectrum (500 MHz, CDCl3) displayed the following nOe transfers: 

Irradiation of C19 (δ 2.07): 3.0% C14 (δ 2.57), 

 2.3% C17 (δ 2.57)  

Irradiation of C3 (δ 4.04): 3.7% C14 (δ 3.36), 4.7% C5 (δ 2.98), 

 5.4% C21 (δ 2.58) 

 

30

N N

Ts

MeO

OMe

OPMB
O

TBSO

H H

3

20

 

 (3S,12bR)-3-((2S,3S)-5-(tert-butyldimethylsilyloxy)-3-methoxy-2-(4-

methoxybenzyloxy)pentyl)-10-methoxy-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-2(12H)-one (30) 

Rf = 0.61 (50% EtOAc in hexanes); 1H NMR (600 MHz, CDCl3) δ 7.63 (d, J=2.05 Hz, 1 

H) 7.45 (d, J=8.49 Hz, 2 H) 7.32 (d, J=8.79 Hz, 2 H) 7.14 (d, J=8.49 Hz, 1 H) 7.08 (d, 

J=8.20 Hz, 2 H) 6.89 (d, J=8.49 Hz, 2 H) 6.82 (dd, J=8.35, 2.20 Hz, 1 H) 4.58 (d, 

J=10.84 Hz, 1 H) 4.48 (d, J=10.54 Hz, 1 H) 4.14 (dd, J=10.69, 2.49 Hz, 1 H) 3.87 (s, 3 

H) 3.80 (s, 3 H) 3.69 (dd, J=7.76, 4.54 Hz, 2 H) 3.60 (ddd, J=10.40, 4.25, 2.34 Hz, 1 H) 

3.48 – 3.52 (m, 1 H) 3.42 (dd, J=15.08, 3.08 Hz, 1 H) 3.33 (s, 3 H) 3.17 (dd, J=11.42, 

5.86 Hz, 1 H) 3.02 (ddd, J=11.00, 4.69, 2.05 Hz, 1 H) 2.96 (dd, J=11.42, 3.22 Hz, 1 H) 

2.74 – 2.85 (m, 2 H) 2.60 (td, J=10.54, 3.51 Hz, 1 H) 2.46 – 2.53 (m, 2 H) 2.29 (s, 3 H) 

2.12 – 2.18 (m, 1 H) 1.79 – 1.84 (m, 1 H) 1.47 – 1.58 (m, 2H) 0.90 (s, 9 H) 0.05 (s, 3 H) 

0.05 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ: 210.99, 159.42, 158.24, 144.72, 139.62, 
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135.01, 133.61, 130.87, 130.04 (2C) 129.44 (2C) 126.75 (2C) 124.75, 122.80, 119.08, 

114.00 (2C) 113.18, 101.40, 77.51, 76.45, 72.61, 59.76, 59.54, 59.00, 58.47, 56.01, 

55.44, 49.97, 46.52, 32.71, 32.13, 29.86, 26.12, 22.95, 21.69, 18.44, –5.13, –5.22; IR 

2929 (m), 2856 (m), 1711 (m), 1613 (m), 1514 (m), 1465 (w), 1369 (m), 1249 (s), 1173 

(s), 1144 (m), 1090 (s), 1036 (m), 970 (w), 836 (s), 760 (s). LRMS (APCI) 791.4 [M + 

H]+; [α]23
D

 –2.46 º (c 0.69, CHCl3). 
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(3S,4S)-3-methoxy-5-((3S,12bS)-10-methoxy-2-oxo-12-tosyl-1,2,3,4,6,7,12,12b-

octahydroindolo[2,3-a]quinolizin-3-yl)-4-(4-methoxybenzyloxy)pentanal (31) 

Alcohol S1 (442 mg, 0.653 mmol, 1 equiv.) was dissolved in CH2Cl2 (65 mL) in a 300-

mL round-bottom flask at rt.  To this was added the Dess–Martin periodinane (305 mg, 

0.72 mmol, 1.1 equiv.) in one portion, and the solution was stirred 1 h, after which the 

reaction solution was diluted with Et2O (60 mL).  The reaction mixture was poured into a 

500-mL Erlenmeyer flask containing 120 mL of a 1:1 aqueous solution of sat. 

NaHCO3:10% Na2S2O3.  The biphasic mixture was stirred vigorously 1 h, after which 

additional CH2Cl2 was added (50 mL) and the layers were separated.  The aqueous was 

extracted with CH2Cl2 (2 x 50 mL), and the combined organics were dried over Na2SO4, 

filtered and concentrated in vacuo to provide the crude aldehyde (31), which was carried 

forward without further purification. 1H NMR (500 MHz, CDCl3) δ: 9.81 (t, J=1.71 Hz, 1 
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H) 7.65 (d, J=1.95 Hz, 1 H) 7.47 (d, J=8.30 Hz, 2 H) 7.16 – 7.23 (m, 3 H) 7.10 (d, J=7.81 

Hz, 2 H) 6.80 – 6.89 (m, 3 H) 4.54 (d, J=11.23 Hz, 1 H) 4.50 (dd, J=11.23, 2.44 Hz, 1 H) 

4.31 (d, J=11.23 Hz, 1 H) 3.90 – 3.98 (m, 2 H) 3.87 (s, 3 H) 3.70 (s, 3 H) 3.48 – 3.50 (m, 

3 H) 3.29 (dd, J=13.18, 6.35 Hz, 1 H) 3.15 (m, 2 H) 2.94 (t, J=12.45 Hz, 1 H) 2.83 (dt, 

J=10.74, 4.64 Hz, 1 H) 2.64 – 2.77 (m, 4 H) 2.59 (ddd, J=16.60, 7.81, 1.95 Hz, 1 H) 2.37 

(t, J=12.20 Hz, 1 H) 2.28 (s, 3 H) 2.04 (ddd, J=14.16, 9.28, 2.20 Hz, 1 H) 1.01 (ddd, 

J=13.18, 9.77, 2.93 Hz, 1 H); 13C NMR (126 MHz, CDCl3) δ: 208.50, 201.11, 159.38, 

158.04, 144.68, 138.37, 134.36, 134.31, 129.95 (2C), 129.62 (2C), 126.28 (2C), 123.94, 

118.94, 118.87, 113.87 (2C), 112.75, 100.31, 76.45, 75.92, 72.59, 60.94, 58.93, 57.99, 

55.80, 55.18, 45.18, 44.62, 43.92, 42.77, 29.66, 26.64, 22.24, 21.50; LRMS (APCI) 675.3 

[M + H]+ 
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Pentacyclic aldehyde (32) 

A flame-dried, 100-mL round-bottom flask was charged with crude aldehyde 31 (0.653 

mmol, 1 equiv.), which was azeotroped twice from benzene and placed on high vacuum 

30 min.  A stir bar was then added under a positive pressure of nitrogen, followed by 

toluene (21 mL).  To a separate 10-mL flask was charged with toluene (2 mL), piperidine 

(129 μL) and p-toluenesulfonic acid (24.8 mg), and 1 mL of this solution was transferred 

to the first flask (piperidine addition: 65.7 μL, 0.65 mmol, 1 equiv).  The reaction was 
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allowed to stir overnight, after which it was quenched by the addition of saturated 

aqueous NaHCO3 (10 mL).  The reaction mixture was extracted with CH2Cl2 (3 x 15 

mL), and the combined organics were dried over Na2SO4, filtered, and concentrated in 

vacuo. 39  The residue was azeotroped twice from benzene to aid in the removal of 

residual piperidine, after which the residue was dissolved in a 1:1 solution of 

hexanes:EtOAc.  The solution was filtered to remove any precipitate, and the filtrate was 

concentrated in vacuo to provide 32 as a single diastereomer (382 mg, 0.56 mmol, 86% 

yield).  1H NMR (600 MHz, C6D6) δ: 9.83 (d, J=2.44 Hz, 1 H) 8.16 (d, J=2.44 Hz, 1 H) 

7.59 (d, J=8.30 Hz, 2 H) 7.33 (d, J=8.80 Hz, 2 H) 6.99 (d, J=8.30 Hz, 1 H) 6.88 (d, 

J=8.80 Hz, 1 H) 6.88 (d, J=8.30 Hz, 2 H) 6.38 (d, J=7.81, 2 H) 4.83 (dd, J=11.5, 1.5 Hz, 

1 H) 4.59 (d, J=11.72 Hz, 1 H) 4.51 (d, J=11.72 Hz, 1 H) 4.07 (dd, J=10.99, 9.03 Hz, 1 

H) 3.45 (s, 3H) 3.45 (s, 3 H) 3.38 – 3.51 (m, 1 H) 3.33 (s, 3 H) 3.25 (t, J=11.96, 1 H) 3.12 

(br. s, 1 H), 2.91 (dd, J=13.18, 1.95 Hz, 1 H) 2.69 – 2.81 (m, 1 H) 2.41 – 2.57 (m, 2 H) 

2.34 – 2.41 (m, 1 H) 2.29 (dd, J=10.99, 2.20, 1 H) 1.83 (ddd, J=12.30, 12.30, 12.30, 1 H) 

1.53 (s, 3 H) 1.47 – 1.52 (m, 1 H) 1.42 (dd, J=13.18, 11.23 Hz, 1 H) 1.33 (m, 1 H); 13C 

NMR (126 MHz, CDCl3) δ: 206.34, 159.39, 158.08, 144.80, 139.10, 135.86, 134.26, 

130.97, 129.71 (2C), 129.44 (2C), 126.70 (2C), 124.83, 120.42, 118.89, 114.05 (2C), 

112.94, 101.09, 82.33, 82.13, 72.51, 71.67, 62.61, 61.21, 56.08, 55.52, 55.39, 53.68, 

46.76, 40.03, 38.24, 28.99, 22.68, 21.76; IR 3500 (br m), 2956(m), 2926(s), 2853(m), 

1721(m), 1612(m), 1583(w), 1513(m), 1492(m), 1462(m), 1441(w), 1363(s), 1278(m), 

1247(s), 1170(s), 1144(m), 1102(s), 1087(s), 1033(s), 973(m), 909(w), 846(w), 810(s), 

                                                            
39 The product can be chromatographed on DavisilTM, but small amounts of decomposition are observed, 
and thus the reported workup procedure was devised to provide the pure product without need for flash 
chromatography. 
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731(m), 703(w), 657(m), 627(w); LRMS (APCI) 675.3 [M + H]+; [α]24
D

 +70.8º (c 1.00, 

CHCl3). 

 

The 1-D NOESY spectra (600 MHz, C6D6) displayed the following nOe transfers:  

Irradiation of C17 (δ 4.07): 1.79% 19α (δ 1.83)  

Irradiation of C16 (δ 2.29): 1.69% CHO (δ 9.83),  

3.34% C20 (δ 1.33)  

Irradiation of C3 (δ 4.83): 3.31% o-CH(Ts) (δ 7.59),  

3.63% C21α (δ 3.25), 2.55% C14α (δ 2.91)  

Irradiation of C20 (δ 1.33): 2.00% C18 (δ 3.41),  

0.75% C5β (δ 2.72). 1.94% C21β (δ 2.44) 
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Enal (33) 

A flame-dried 50-mL round-bottom flask was charged with aldol adduct 32 (208 mg, 

0.31 mmol, 1 equiv) and azeotroped twice with benzene and placed on high vacuum for 

15 min.  A stir bar and and CH2Cl2 (7 mL) were added and the flask was cooled to 0 oC.  

To the stirred solution under nitrogen at 0 oC was added 7 mL of the following stock 

solution: (39 mg DMAP, 520 μL NEt3, and 14 mL CH2Cl2).  The amounts added were: 

DMAP (19.5 mg, 0.16 mmol, 0.5 equiv) and NEt3 (260 μL, 3.5 mmol, 11.4 equiv).  
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TFAA was added to the cooled solution, neat via microliter syringe (236 μL, 0.75 mmol, 

2.4 equiv) which caused an immediate color change from pale yellow to dark orange-red. 

After addition was complete, the ice bath was removed and the reaction was stirred at rt 

for 30 m. The stir bar was removed and the contents of the flask were concentrated in 

vacuo.  The flask containing the crude product was charged with CH2Cl2 (20 mL) and 

diisopropyl amine (135 μL, 1.85 mmol, 6.0 equiv), and the contents were stirred at room 

temperature overnight.  The contents were washed twice with DI H2O (10 mL), and the 

aqueous layer was re-extracted twice with CH2Cl2 (2 x 10 mL).  The combined organics 

were dried over Na2SO4, filtered, and concentrated.  The residue was purified by flash 

chromatography (Biotage, 20-50% EtOAc/hexanes) to afford enal 33 as an orange solid 

(131 mg, 0.19 mmol, 63% yield). Rf = 0.54 (100% EtOAc); 1H NMR (600 MHz, CDCl3) 

δ: 10.46 (s, 1 H, CHO) 7.67 (d, J=2.34 Hz, 1 H, C12) 7.46 (d, J=8.49 Hz, 2 H, Ts) 7.26 

(d, J=8.79 Hz, 2 H, PMB) 7.19 (d, J=8.49 Hz, 1 H, C10) 7.08 (d, J=8.49 Hz, 2 H, Ts) 

6.86 - 6.89 (m, 2 H, PMB) 6.85 (dd, J=8.49, 2.34 Hz, 1 H, C9) 4.53 (sk d, J=11.42 Hz, 1 

H, PMB Bn) 4.51 (sk d, J=11.72 Hz, 1 H, PMB Bn) 4.39 (dd, J=3.22, 0.88 Hz, 1 H, C17) 

4.36 (br. d, J=10.54 Hz, 1 H, C3) 4.23 (dd, J=12.89, 2.34 Hz, 1 H, C14) 3.87 (s, 3 H, 

PMB) 3.84 (q, J=3.22 Hz, 1 H, C18) 3.78 (s, 3 H, MeOAr) 3.43 - 3.51 (m, 1 H, C21) 

3.45 (s, 3 H, C17 OMe) 3.27 (ddd, J=11.50, 8.57, 5.42 Hz, 1 H, C5) 3.14 (dd, J=12.89, 

4.98 Hz, 1 H, C21) 2.84 (ddd, J=11.42, 5.56, 3.80 Hz, 1 H, C5) 2.65 - 2.75 (m, 3 H, 

C6(2), C20) 2.32 (dd, J=12.89, 10.84 Hz, 1 H, C14) 2.28 (s, 3 H, Ts) 2.14 (ddd, J=14.64, 

7.61, 2.93 Hz, 1 H, C19) 1.57 - 1.60 (m, 1 H, C19).  13C NMR (126 MHz, CDCl3) δ: 

190.23, 161.72, 159.01, 158.03, 144.64, 138.32, 134.58, 134.29, 130.53, 130.50, 129.63 

(2C), 128.96 (2C), 126.27 (2C), 123.97, 119.15, 118.91, 113.73 (2C), 112.70, 100.33, 
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72.27, 70.38, 70.29, 62.87, 59.67, 58.38, 55.79, 55.17, 44.81, 33.95, 32.24, 25.39, 22.23, 

21.45; FTIR (neat, cm–1) 2924 (m), 2874(m), 2835(m), 1726(w), 1663(s), 1612(s), 

1581(w), 1512(m), 1493(m), 1453(m), 1440(m), 1361(s), 1304(w), 1245(s), 1170(s), 

1103(s), 1080(s), 1034(s), 983(m), 946(w), 924(m), 845(w), 811(m), 731(m), 674(s), 

657(s), 617(w); LRMS (APCI) 657.3 [M + H]+; [α]23
D

 224.8º (c 0.83, CHCl3). 
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Saturated Aldehyde (34) 

A 20-mL vial equipped with a stir bar was charged sequentially with enal 33 (10 mg, 

0.015 mmol, 1 equiv), EtOH (2.5 mL), and PtO2 (9 mg, 0.040 mmol, 2.6 equiv). The 

uncapped vial was placed in a Paar hydrogenation bomb over a stir place, and the bomb 

was charged with H2 gas (48 atm).  The solution was stirred at room temperature at this 

pressure for 65 h, after which point the bomb was carefully vented.  The contents of the 

vial were filtered through a short plug of Celite® into a 10-mL round-bottom flask and 

concentrated in vacuo to afford an orange solid that was carried on to the next step 

without purification. [The 1H NMR spectrum of one of the products, saturated alcohol 50, 

is: 1H NMR (600 MHz, CDCl3)  ppm 7.58 (d, J=2.34 Hz, 1 H) 7.46 (d, J=8.20 Hz, 2 H) 

7.30 (d, J=8.49 Hz, 2 H) 7.12 (d, J=8.49 Hz, 1 H) 7.07 (d, J=7.91 Hz, 2 H) 6.87 - 6.94 (m, 

2 H) 6.79 (dd, J=8.49, 2.05 Hz, 1 H) 4.58 (d, J=11.42 Hz, 1 H, PMB Bn) 4.44 (d, 

J=11.72 Hz, 1 H, PMB Bn) 4.35 (d, J=11.42 Hz, 1 H, C3) 4.30 (br. s., 1 H, CHHOH) 
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4.03 (d, J=10.54 Hz, 1 H, CHHOH) 3.84 (s, 3 H, MeO) 3.82 (s, 3 H, MeO) 3.78 (t, 

J=13.03 Hz, 1 H, C21) 3.72 - 3.75 (m, 1 H, C18) 3.71 (br. s., 1 H, C17) 3.39 (s, 3 H, 

MeO) 3.23 - 3.30 (m, 1 H) 2.81 (dd, J=13.18, 3.81 Hz, 1 H) 2.57 - 2.77 (m, 4 H) 2.53 (d, 

J=14.35 Hz, 1 H, C14) 2.40 - 2.47 (m, 1 H, C16) 2.33 - 2.40 (m, 1 H, C15) 2.21 - 2.30 (m, 

1 H, C20) 2.27 (s, 3 H, Ts) 1.86 (ddd, J=14.86, 6.08, 3.37 Hz, 1 H, C19) 1.76 (ddd, 

J=14.13, 11.79, 4.83 Hz, 1 H, C14) 1.68 (d, J=14.94 Hz, 1 H, C19)]. 

 The flask containing the crude hydrogenation product was charged with a stir bar 

and CH2Cl2 (3 mL) and cooled to 0 oC. To this solution was added the Dess–Martin 

periodinane (19.3 mg, 0.046 mmol, 3.0 equiv).  The reaction mixture was stirred for 2 h, 

at which point it was first diluted with Et2O (3 mL) and then quenched by pouring the 

solution into 6 mL of a 1:1 mixture of saturated aqueous NaHCO3 and 10% aqueous 

sodium thiosulfate.  The contents were stirred vigorously for 1 h and extracted with 

CH2Cl2 (3 x 5mL). The organics were dried over Na2SO4, filtered, and concentrated.  The 

crude residue was purified by flash chromatography (DavisilTM, 20-50% EtOAc/hexanes) 

to afford saturated aldehyde 34 (4.0 mg, 0.0061 mmol, 40 % yield). 
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Saturated Ester (53) 

A 1-dram vial containing aldehyde 34 (4.0 mg, 0.0061 mmol, 1 equiv) was charged with 

a stir bar, t-BuOH (300 μL), H2O (200 μL) and 2-methyl-2-butene (91 μL, 0.86 mmol, 
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140 equiv).  To this mixture, cooled to 0 oC, were added NaH2PO4 (3.8 mg, 0.027 mmol, 

4.5 equiv) followed by NaClO2 (80% technical grade, 3.1 mg, 0.027 mmol, 4.5 equiv) as 

solids. After 2 h, the reaction was determined to be complete (based on consumption of 

starting material by LC/MS). The reaction was diluted with DI H2O and extracted with 

CH2Cl2 (4 x 1 mL).  The combined organics were dried over Na2SO4, filtered, and 

concentrated in vacuo to afford the crude carboxylic acid as a pale yellow solid.  The 

crude product, in an uncapped vial, was dissolved in EtOAc (~3 mL) and treated with a 

solution of CH2N2 (1 M in Et2O) dropwise (8 drops) until a bright yellow color persisted.  

The solution was stirred for 2 min, after which excess CH2N2 and the solvent were 

removed by a positive pressure of N2. The resultant residue was purified by flash column 

chromatography (DavisilTM, 20-50% EtOAc/hexanes) to afford saturated ester 53 as a 

yellow-orange solid (3.6 mg, 0.005 mmol, 86% yield). 1H NMR (500 MHz, CDCl3)  

ppm 7.58 (d, J=1.95 Hz, 1 H, C12) 7.45 (d, J=8.79 Hz, 2 H) 7.31 (d, J=8.30 Hz, 2 H) 

7.12 (d, J=8.30 Hz, 1 H, C9) 7.07 (d, J=8.30 Hz, 2 H) 6.86 - 6.96 (m, 2 H) 6.79 (dd, 

J=8.55, 2.20 Hz, 1 H, C10) 4.56 (d, J=11.72 Hz, 1 H, PMB Bn) 4.50 (d, J=11.72 Hz, 1 H, 

PMB Bn) 4.14 (d, J=11.23 Hz, 1 H, C3) 3.84 (s, 3 H, MeO) 3.83 (s, 3 H, MeO) 3.80 (s, 3 

H, MeO) 3.78 - 3.80 (m, 1 H, C17) 3.72 (d, J=2.90 Hz, 1 H, C18) 3.63 (t, J=12.94 Hz, 1 

H, C21) 3.40 (dd, J=12.70, 2.93 Hz, 1 H, C16) 3.30 (s, 3 H, MeO) 3.14 - 3.23 (m, 1 H, 

C5) 2.76 (dd, J=13.43, 4.15 Hz, 1 H, C21) 2.63 - 2.72 (m, 2 H, C6, C5) 2.50 - 2.63 (m, 3 

H, C6, C15, C14) 2.20 - 2.31 (m, 1 H, C20) 2.27 (s, 3 H, Ts-Me) 1.84 - 1.94 (m, 1 H, 

C19) 1.73 - 1.84 (m, 1 H, C14) 1.64 (d, J=15.14 Hz, 1 H, C19). 

The 1-D NOESY spectra (500 MHz, CDCl3) displayed the following nOe transfers:  

Irradiation of C21 (δ 3.63): 5.2% C3 (δ 4.14),  
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0.94% C16 (δ 2.25) 

Irradiation of C3 (δ 4.50): 2.1% C16 (δ 2.25),  

1.4%  o-CHTs (δ 7.45)  

Irradiation of C16 (δ 3.40): 2.3% C3 (4.14), 3.4% C21α (3.63), 3.0% C17 (3.80) 
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Pentacyclic methyl ester (56) 

Aldol adduct 32 (100 mg, 0.148 mmol, 1 equiv.) was dissolved in t-BuOH (2.5 mL), H2O 

(2.5 mL) and acetone (1.4 mL) in a 25-mL round-bottom flask.  2-methyl-2-butene (58 

μL, 0.55 mmol, 3.7 equiv.) was then added via microliter syringe, followed by NaH2PO4 

(92 mg, 0.67 mmol, 4.5 equiv.) and NaClO2 (80% technical grade, 75 mg, 0.67 mmol, 4.5 

equiv.) as solids. The biphasic reaction was stirred vigorously 1.5 h, after which saturated 

aqueous NH4Cl (5 mL) was added.  The reaction mixture was extracted with CH2Cl2 (3 x 

10 mL) and the combined organics were dried over Na2SO4, filtered, and concentrated in 

vacuo.  The resultant yellow solid was suspended in EtOAc (10 mL), to which EtOH was 

added dropwise until the reaction mixture was homogenous (~ 4 mL).  To this was added 

a solution of CH2N2 (1 M in Et2O) dropwise until a bright yellow color persisted (~200 

μL).  Excess CH2N2 and solvent were removed by evaporation under a steady stream of 

nitrogen, followed by high vacuum (~5 min).  The residue was purified by flash 

chromatography (silica gel, 20 – 100% EtOAc in hexanes) to provide the ester 56 (74.9 
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mg, 0.11 mmol, 72% yield).  Rf = 0.44 (100% EtOAc); 1H NMR (500 MHz, CDCl3) δ 

7.66 (d, J=2.29 Hz, 1 H) 7.48 (d, J=8.24 Hz, 2 H) 7.29 (d, J=8.70 Hz, 2 H) 7.12 (d, 

J=8.24 Hz, 1 H) 7.08 (d, J=8.24 Hz, 2 H) 6.88 (d, J=8.70 Hz, 2 H) 6.81 (dd, J=8.70, 2.29 

Hz, 1 H) 4.63 (d, J=11 Hz, 1 H) 4.60 (d, J=11.45 Hz, 1 H) 4.54 (d, J=10.53 Hz, 1 H) 3.84 

– 3.89 (m, 1 H), 3.85 (s, 3 H), 3.81 (s, 3 H) 3.80 (s, 3 H) 3.54 (s, 3 H) 3.39 – 3.48 (m, 1 

H) 3.22 (s, 1 H) 3.16 (t, J=11.68 Hz, 1 H) 3.02 – 3.11 (m, 1 H) 2.62 – 2.75 (m, 3 H) 2.52 

– 2.62 (m, 1 H) 2.37 (dd, J=12.36, 1.83 Hz, 1 H) 2.34 (d, J=10.99 Hz, 1 H) 2.27 (s, 3 H) 

1.61 - 1.76 (m, 3 H) 1.57 (dd, J=13.05, 11.22 Hz, 1 H); 13C NMR (126 MHz, CDCl3) δ: 

174.09, 159.23, 157.91, 144.66, 138.86, 134.30, 130.98, 129.63 (2C), 129.32 (2C), 

126.57 (2C), 124.71, 119.92, 118.75, 113.91 (2C), 112.77, 100.89, 83.52, 81.57, 71.72, 

70.98, 61.12, 57.76, 55.95, 55.41, 55.35, 53.54, 52.34, 46.30, 39.62, 37.76, 31.71, 29.23, 

22.54, 21.65; IR 3004 (w), 2929 (m), 1717 (m), 1613 (m), 1514 (m), 1493 (m), 1439 (m), 

1365 (s), 1280 (m), 1211 (m), 1172 (s), 1147 (m), 1108 (m), 1036 (m), 992 (w), 848 (m), 

757 (s), 667 (s) LRMS (APCI) 705.3 [M + H]+; [α]23
D

 +142.7º (c 1.04, CHCl3). 
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Unsaturated methyl ester (57) 

A 25-mL round-bottom flask with stir bar was charged with tertiary alcohol 56 (50.9 mg, 

0.072 mmol, 1 equiv.), which had been azeotroped from benzene twice and placed under 

high vacuum for 30 min.  The alcohol was dissolved in THF (3.6 mL), and the flask was 
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cooled to –78 oC under a positive pressure of argon.  A 1.3 M n-butyllithium solution in 

hexanes (110 μL, 0.144 mmol, 2 equiv.) was added dropwise, and the solution was stirred 

10 min, after which trifluoroacetic anhydride (50.9 μL, 0.36 mmol, 5 equiv.) was added.  

The reaction mixture was allowed to come to rt over 3 h and was then quenched at 0 oC 

by slow addition of H2O.  The crude reaction mixture was extracted with CH2Cl2 (3 x 5 

mL), and the combined organics were washed with a saturated aqueous NaHCO3 solution 

(1 x 5 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford 60.4 mg of 

an orange solid.  This material consisted of a 3:1 mixture of the tertiary trifluoroacetate to 

alcohol starting material and was carried forward without further purification. The crude 

trifluoroacetate, which was azeotroped twice from benzene and placed under high 

vacuum for 30 min, was transferred to a 25-mL sealed tube and dissolved in 11.5 mL 

toluene.  To this solution was added a stir bar and freshly distilled DBU (86 μL, 10 

equiv.) at rt. The flask was then sealed and immersed in a 110 oC oil bath, and the 

solution was stirred at this temperature for 15 h.  The reaction was removed from the oil 

bath and the solution was concentrated in vacuo.  The residue was purified by flash 

chromatography (silica gel, 1% EtOH/CH2Cl2) to provide the unsaturated methyl ester 57 

as a pale yellow solid (18.0 mg, 0.026 mmol, 36% yield).  1H NMR (400 MHz, CDCl3) δ 

7.64 (d, J=1.83 Hz, 1 H) 7.47 (d, J=8.42 Hz, 2 H) 7.31 (d, J=8.42 Hz, 2 H) 7.16 (d, 

J=8.78 Hz, 1 H) 7.07 (d, J=8.05 Hz, 2 H) 6.88 (d, J=8.78 Hz, 2 H) 6.82 (dd, J=8.42, 2.20 

Hz, 1 H) 4.61 (s, 2 H) 4.27 (d, J=6.59 Hz, 1 H) 4.08 (d, J=11.34 Hz, 1 H) 3.88 (s, 3 H) 

3.86 (s, 3 H) 3.80 (s, 3 H) 3.63 – 3.75 (m, 2 H) 3.54 (s, 3 H) 3.06 – 3.25 (m, 1 H) 3.12 (dd, 

J=12.81, 5.12 Hz, 1 H) 2.88 (t, J=12.08 Hz, 1 H) 2.67 – 2.79 (m, 2 H) 2.54 – 2.67 (m, 2 

H) 2.27 (s, 3 H) 2.16 – 2.25 (m, 1 H) 1.94 – 2.07 (m, 1 H) 1.27 – 1.41 (m, 1 H); 13C NMR 
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(126 MHz, CDCl3) δ 168.60, 159.12, 157.87, 144.43, 143.76, 138.52, 135.39, 134.38, 

130.71, 129.47, 129.24, 126.60, 126.43, 124.24, 119.22, 118.79, 113.79, 112.59, 100.54, 

80.01, 71.10, 61.99, 59.89, 58.96, 55.82, 55.25, 51.72, 45.59, 34.25, 33.71, 29.68, 29.12, 

22.31, 21.49; IR 2925(m), 1720 (m), 1613 (w), 1513 (m), 1366 (m), 1248 (m), 1172 (m), 

1115 (m), 911 (s), 813 (m), 734 (s), 669 (m); LRMS (APCI) 687.4 [M + H]+; [α]24
D

 

+162.4 (c 1.01, CHCl3). 
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N-tosyl, 18-(4-methoxybenzyloxy)-methyl reserpate (60) 

A 2-mL Biotage microwave vial was brought into a glove box and charged with a stir bar 

and unsaturated ester 57 (5.0 mg, 7.3 μmol, 1 equiv.) which had been azeotroped from 

benzene (3x) and placed under high vacuum for 30 min.  Iridium complex 64 (11.0 mg, 

7.3 μmol, 1 equiv.) was added to the vial followed by CH2Cl2 (360 μL), which had been 

degassed through three freeze-pump-thaw cycles. The vial was sealed with a Teflon-lined 

pressure seal cap and transferred out of the glove box.  The vial was evacuated and back-

filled with H2 (4x), after which it was stirred 16 h at rt under a balloon of H2. The 

reaction mixture was then concentrated in vacuo. Analysis of the crude reaction mixture 

by 1H NMR (comparison of the PMB Bn signals) showed a 6:1 diastereomeric ratio of 

olefin hydrogenation products.  The mixture was purified by preparatory thin layer 

chromatography to provide recovered unsaturated ester 57 (2.3 mg, 3.3 μmol, 46% 
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recovered starting material) and the desired saturated ester 60 as a white solid (2.2 mg, 

3.2 μmol, 44% yield, 81% based on recovered starting material).  Rf = 0.51 (EtOAc); 1H 

NMR (500 MHz, CDCl3) δ: 7.61 (d, J=2.29 Hz, 1 H) 7.32 (d, J=8.24 Hz, 2 H), 7.32 (m, 2 

H), 7.05 (d, J=8.70 Hz, 1 H) 7.02 (d, J=8.24 Hz, 2 H) 6.90 (d, J=8.70 Hz, 2 H) 6.80 (dd, 

J=8.24, 2.29 Hz, 1 H) 4.64 (d, J=10.99 Hz, 1 H) 4.58 (d, J=10.99 Hz, 1 H) 4.40 (dd, 

J=5.27, 2.52 Hz, 1 H) 3.89 (s, 3 H) 3.88 (s, 3 H) 3.83 (s, 3 H) 3.72 (dd, J=10.99, 9.16 Hz, 

1 H) 3.67 (s, 3 H) 3.33 – 3.42 (m, 1 H) 3.12 (dd, J=13.28, 5.49 Hz, 1 H) 2.93 – 3.03 (m, 1 

H) 2.79 (dd, J=11.45, 4.58 Hz, 1 H) 2.85 (ddt, J=17.06, 5.72, 2.80, 2.80 Hz, 1 H) 2.64 (dt, 

J=14.54, 3.03 Hz, 1 H) 2.52 (dd, J=10.99, 5.04 Hz, 1 H) 2.34 (dd, J=11.68, 1.60 Hz, 1 H) 

2.27 (s, 3 H) 2.15 – 2.26 (m, 2 H) 2.09 (td, J=13.28, 11.90 Hz, 1 H) 1.92 – 2.01 (m, 1 H) 

1.87 (dt, J=13.16, 3.95 Hz, 1 H) 1.72 (d, J=12.36 Hz, 1 H); 13C NMR (126 MHz, CDCl3) 

δ: 172.51, 159.01, 157.97, 144.23, 140.33, 135.72, 132.38, 131.12, 129.12 (2C), 128.82 

(2C), 126.74, 125.65, 123.95, 118.49, 113.72, 113.06, 102.50, 82.88, 79.37, 71.19, 61.13, 

56.27, 55.89, 55.26, 52.06, 51.89, 50.66, 50.08, 33.63, 32.33, 30.36, 26.27, 21.49, 18.15.; 

FTIR (neat, cm–1); 2930 (br m), 1737 (m), 1614 (m), 1514 (m), 1364 (m), 1278 (m), 1171 

(s), 1093 (m), 911 (w), 814 (w), 735 (s); LRMS (APCI) 689.3 [M + H]+; [α]23
D

 + 166.0 (c 

1.35, CHCl3). 

 

N

H
N

MeO

H

OMe

OH

Ts

MeO

O

S2

H

H

N

H
N

MeO

H

OMe

OPMB

Ts

MeO

O

60

H

H
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A 2-dram vial with a septum cap and stir bar was charged with PMB ether 60 (11.4 mg, 

16.5 μmol, 1 equiv.), followed by CH2Cl2 (1.1 mL) and 1,3-dimethoxybenzene (6.5 μL, 

49.5 μmol, 3 equiv.). The vial was cooled to 0 oC, and a TfOH solution in CH2Cl2 (44 μL 

of a 50 μL TfOH/1 mL CH2Cl2, 24.7 μmol, 1.5 equiv.) was added dropwise via microliter 

syringe. Consumption of the starting material was monitored using LC/MS (APCI).  

Upon completion (~30 min after addition of TfOH), the reaction was quenched with a 

half-saturated aqueous solution of NaHCO3 (1 mL) and diluted with CH2Cl2 (0.5 mL).  

The layers were separated and the aqueous layer was extracted with CH2Cl2 (3 x 1 mL). 

The combined organic layers were dried over Na2SO4, filtered, and concentrated in 

vacuo.  The resultant residue was purified (silica gel, 5-10% MeOH/CH2Cl2, followed by 

an eluent of 10:1:1:1 EtOAc: H2O: MeOH: acetone), to afford alcohol S2 as a pale yellow 

solid (8.1 mg, 14.2 μmol, 86% yield). Rf = 0.28 (10:1:1:1 EtOAc: H2O: MeOH: acetone); 

1H NMR (500 MHz, CDCl3) δ: 7.60 (d, J=1.95 Hz, 1 H) 7.31 (d, J=8.30 Hz, 2 H) 7.04 (d, 

J=8.30 Hz, 1 H) 7.01 (d, J=7.81 Hz, 2 H) 6.78 (dd, J=8.30, 2.44 Hz, 1 H) 4.39 (br. s., 1 

H) 3.88 (s, 3 H) 3.87 (s, 3 H) 3.65 (s, 3 H) 3.58 (td, J=10.74, 8.79 Hz, 1 H) 3.52 (m, 1 H) 

3.11 (dd, J=12.94, 5.62 Hz, 1 H) 2.96 (td, J=12.33, 4.64 Hz, 1 H) 2.76 – 2.87 (m, 1 H) 

2.79 (dd, J=11.23, 4.88 Hz, 1 H) 2.64 (dt, J=14.41, 3.30 Hz, 1 H) 2.50 (dd, J=10.74, 4.88 

Hz, 1 H) 2.35 (d, J=11.72 Hz, 1 H) 2.26 (s, 3 H) 2.07 – 2.23 (m, 3 H) 1.93 - 2.03 (m, 1 H) 

1.71 – 1.84 (m, 2 H); 13C NMR (126 MHz, CDCl3) δ: 172.57, 157.99, 144.29, 140.33, 

135.65, 132.38, 128.86 (2C), 126.74 (2C), 125.64, 123.97, 118.54, 113.07, 102.51, 81.35, 

75.30, 61.18, 56.27, 55.90, 51.98, 51.44, 50.65, 50.05, 33.79, 32.79, 32.52, 26.43, 21.50, 

18.21; FTIR (neat, cm–1); 1737 (m), 1614 (m), 1493 (w), 1365 (m), 1278 (w), 1254 (w), 
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1172 (s), 1089 (m), 909 (m), 812 (w), 735 (s); LRMS (APCI) 569.2 [M + H]+; [α]23
D

 + 

211.3 (c 0.81, CHCl3). 
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(+)-Methyl reserpate (10) 

A 20-mL vial was charged with a stir bar, S2 (10.0 mg, 0.018 mmol, 1 equiv.), and 

MeOH (3.2 mL) under a positive pressure of N2. To this was added Na2HPO4 (75.1 mg, 

0.51 mmol, 30 equiv.) as a solid in one portion, followed by 5%-sodium/mercury 

amalgam (32 mg, 0.070 mmol, 4 equiv.). The heterogeneous mixture was stirred 

vigorously at rt and consumption of the S2 was monitored using LC/MS (APCI).  After 4 

h, a second portion of Na2HPO4 (38 mg, 0.26 mmol, 15 equiv.) was added, followed by 

5%-sodium/mercury amalgam (20 mg, 0.043 mmol, 2.7 equiv.). Upon completion (1 h 

after second addition of reagents), the reaction mixture was transferred away from the 

bead of mercury that had formed, using CH2Cl2 (10 mL) to complete the transfer.  The 

solution was washed with H2O (2 x 5 mL) and brine (5 mL), dried over Na2SO4, filtered, 

and concentrated in vacuo.  The resultant residue was purified by flash chromatography 

(10% MeOH/CH2Cl2) to afford, as a white solid, 10 (5.0 mg, 0.012 mmol, 69%). Rf = 

0.19 (10:1:1:1 EtOAc:H2O:MeOH:acetone); 1H NMR data were in agreement with 

literature values.40  13C NMR (126 MHz, CDCl3) δ: 173.17, 156.38, 136.78, 128.84, 

                                                            
40 Lounasmaa, M.; Tolvanen, A.; Kan, S.-K. Heterocycles 1985, 23, 371–375. 
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121.63, 118.51, 109.31, 107.13, 95.24, 80.95, 75.00, 60.93, 55.79, 54.20, 51.97, 51.15, 

51.04, 49.00, 33.97, 32.40, 32.12, 23.97, 16.48; FTIR (neat, cm–1); 3372 (m), 2929 (m), 

2852 (w), 1723 (m), 1629 (w), 1463 (m), 1279 (w), 910 (s), 732 (s); LRMS (APCI) 415.1 

[M + H]+; [α]22
D

 +96.8  (c 0.23, CHCl3). 
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Reserpine (+)-(1)41 

A 1-dram vial with a screw-top septum cap was charged with a stir bar, secondary 

alcohol (+)-10 (5.0 mg, 0.012 mmol, 1 equiv.) and 3,4,5-trimethoxybenzoyl chloride 

(16.7 mg, 0.072 mmol, 5 equiv).  Freshly distilled pyridine (300 μL) was added under 

argon, the vial was wrapped in aluminum foil, and the reaction mixture was allowed to 

stir at rt 4 d under argon. Upon completion of the reaction, the pyridine was removed in 

vacuo.  The crude residue was cooled to 0 oC, dissolved in CH2Cl2 (2 mL) and treated 

dropwise with a saturated aqueous solution of Na2CO3 (2 mL).  The layers were 

separated, and the aqueous layer was extracted twice with CH2Cl2.  The combined 

organics were washed once with deionized water, dried over Na2SO4, filtered, and 

concentrated in vacuo.  The resultant solid was purified by flash chromatography (silica 

gel, 70% EtOAc in hexanes) to provide (+)-reserpine (6.6 mg, 0.011 mmol, 90% yield) as 

an off-white solid. The synthetic sample of (+)-reserpine gave identical TLC Rf, 1H 

                                                            
41 This procedure was adapted the Stork synthesis of reserpine: See ref. 5q 
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NMR, and 13C NMR data to a commercial sample of (–)-reserpine from Aldrich, and 

were in agreement with literature values (1H NMR, 13C NMR).40,42 Rf = 0.21 (EtOAc) 1H 

NMR (600 MHz, CDCl3) δ: 7.48 (br. s, 1 H) 7.34 (d, J=8.79 Hz, 1 H) 7.32 (s, 2 H) 6.85 

(d, J=2.05 Hz, 1 H) 6.78 (dd, J=8.64, 2.20 Hz, 1 H) 5.06 (ddd, J=11.64, 9.45, 4.98 Hz, 1 

H) 4.48 (br. s., 1 H) 3.92 (s, 9 H) 3.91 (m, 1 H) 3.85 (s, 3 H) 3.82 (m, 3 H) 3.51 (s, 3 H) 

3.12 – 3.25 (m, 2 H) 3.06 (dd, J=12.15, 2.78 Hz, 1 H) 2.96 (m, 1 H) 2.70 (dd, J=11.13, 

4.69 Hz, 1 H) 2.44 – 2.54 (m, 2 H) 2.28 – 2.41 (m, 2 H) 2.04 – 2.12 (m, 1 H) 2.00 (ddd, 

J=12.67, 4.17, 0.73 Hz, 1 H) 1.92 (d, J=11.72 Hz, 1 H) 1.80 (d, J=14.64 Hz, 1 H); 13C 

NMR (126 MHz, CDCl3) δ: 172.79, 165.39, 156.28, 152.98, 142.28, 136.31, 130.36, 

125.39, 122.20, 118.59, 109.09, 108.23, 106.78, 95.19, 77.98, 77.82, 60.93, 60.77, 56.27, 

55.83, 53.72, 51.84, 51.77, 51.23, 49.06, 34.04, 32.31, 29.75, 24.35, 16.81; IR 3433 (w), 

2987 (w), 1730 (m), 1711 (m), 1587 (m), 1499 (m), 1456 (m), 1412 (m), 1331 (s), 1273 

(s), 1249 (m), 1225 (s), 1186 (w), 1120 (s), 1062 (m), 1002 (m), 976 (m), 763 (m). LRMS 

(APCI) 609.2 [M + H]+; [α]22
D

 +114.6  (c 0.20, CHCl3). 

 

 

 

 

 

 

 

 

 
                                                            
42 Martin, S. F.; Rüeger, H.; Williamson, S. A.; Grzejszczak, S. J. Am. Chem. Soc. 1987, 109, 6124. 
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2.10. Spectroscopic Comparisons of Synthetic (+)- and Commercial (-)-Reserpine 

1H NMR Spectra (CDCl3, 600 MHz) 
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13C NMR Spectra (CDCl3, 126 MHz) 
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Circular Dichroism Spectra (CH2Cl2) 

 

 

 

2.11. X-Ray Crystallographic Analysis of 60   
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Procedure 

A crystal mounted on a diffractometer was collected data at 100 K. The intensities of the 

reflections were collected by means of a Bruker APEX II CCD along with the D8 

Diffractometer (30 KeV, = 0.413280 Å), and equipped with an Oxford Cryosystems 
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nitrogen open flow apparatus.  The collection method involved 0.5 scans in Phi at -5 in 

2.  Data integration down to 0.82 Å resolution was carried out using SAINT V7.46 A 

(Bruker diffractometer, 2009) with reflection spot size optimisation.  Absorption 

corrections were made with the program SADABS (Bruker diffractometer, 2009).  The 

structure was solved by the direct methods procedure and refined by least-squares 

methods again F2 using SHELXS-97 and SHELXL-97 (Sheldrick, 2008).  Non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the 

respective atoms.  Crystal data as well as details of data collection and refinement are 

summarized in Table 1, while geometric parameters are shown in Tables 2.  The Ortep 

plots produced with SHELXL-97 program, and the other drawings were produced with 

Accelrys DS Visualizer 2.0 (Accelrys, 2007). 

 

Table 2.4. Experimental details 

 naomi1101_APS 

Crystal data 

Chemical formula C38H44N2O8S 

Mr 688.81 

Crystal system, space group Triclinic, P1 

Temperature (K) 15 

a, b, c (Å) 10.5400 (9), 13.2962 (12), 13.7619 (13) 

, ,  (°) 71.577 (2), 89.697 (2), 69.957 (2) 

V (Å3) 1707.4 (3) 

Z 2 

Radiation type Synchrotron,  = 0.41328 Å 

 (mm-1) 0.09 

Crystal size (mm) 0.02 × 0.01 × 0.01 

Data collection 

Diffractometer Bruker D8 goniometer with CCD area detector diffractometer 

Absorption correction Multi-scan  
SADABS 

 Tmin, Tmax 0.998, 0.999 
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Table 2.4. (Continued). 

No. of measured, independent 

and observed [I > 2 (I)] 
reflections 

35992, 11719, 10083   

Rint 0.075 

Refinement 

R[F2 > 2 (F2)], wR(F2), S 0.045,  0.102,  1.02 

No. of reflections 11719 

No. of parameters 887 

No. of restraints 3 

H-atom treatment H-atom parameters constrained 

max, min (e Å-3) 0.28, -0.34 

Absolute structure Flack H D (1983), Acta Cryst. A39, 876-881 

Flack parameter -0.28 (16) 

 

Computer programs: APEX2 v2009.3.0 (Bruker-AXS, 2009), SAINT 7.46A (Bruker-AXS, 2009), 

SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Bruker SHELXTL. 

 

Table 2.5. Geometric parameters (Å, º) 

S1—O1 1.424 (2) S2—O12 1.424 (2) 

S1—O2 1.429 (2) S2—O11 1.426 (2) 

S1—N1 1.679 (2) S2—N3 1.694 (3) 

S1—C20 1.757 (3) S2—C60 1.766 (3) 

O3—C13 1.433 (4) O13—C43 1.376 (4) 

O3—C28 1.433 (4) O13—C67 1.432 (4) 

O4—C32 1.360 (4) O14—C68 1.415 (4) 

O4—C35 1.435 (4) O14—C53 1.438 (4) 

O5—C36 1.409 (4) O15—C72 1.371 (4) 

O5—C14 1.441 (4) O15—C75 1.433 (4) 

O6—C37 1.354 (4) O16—C76 1.402 (4) 

O6—C38 1.450 (4) O16—C54 1.429 (4) 

O7—C37 1.193 (4) O17—C77 1.349 (4) 
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Table 2.5. (Continued). 

O8—C3 1.365 (4) O17—C78 1.438 (3) 

O8—C27 1.414 (4) O18—C77 1.202 (4) 

N1—C1 1.438 (4) N3—C41 1.431 (4) 

N1—C19 1.446 (4) N3—C59 1.447 (4) 

N2—C9 1.465 (4) N4—C49 1.463 (4) 

N2—C10 1.474 (4) N4—C50 1.480 (4) 

N2—C18 1.479 (4) N4—C58 1.483 (4) 

C1—C6 1.388 (4) C41—C42 1.390 (4) 

C1—C2 1.394 (4) C41—C46 1.394 (4) 

C2—C3 1.396 (4) C42—C43 1.385 (4) 

C2—H2 0.9500 C42—H42 0.9500 

C3—C4 1.390 (5) C43—C44 1.403 (4) 

C4—C5 1.377 (5) C44—C45 1.387 (4) 

C4—H4 0.9500 C44—H44 0.9500 

C5—C6 1.398 (4) C45—C46 1.396 (4) 

C5—H5 0.9500 C45—H45 0.9500 

C6—C7 1.448 (4) C46—C47 1.440 (4) 

C7—C19 1.349 (4) C47—C59 1.346 (4) 

C7—C8 1.498 (4) C47—C48 1.496 (4) 

C8—C9 1.539 (4) C48—C49 1.534 (4) 

C8—H8A 0.9900 C48—H48A 0.9900 

C8—H8B 0.9900 C48—H48B 0.9900 

C9—H9A 0.9900 C49—H49A 0.9900 

C9—H9B 0.9900 C49—H49B 0.9900 

C10—C11 1.518 (4) C50—C51 1.516 (4) 

C10—H10A 0.9900 C50—H50A 0.9900 

C10—H10B 0.9900 C50—H50B 0.9900 

C11—C16 1.526 (4) C51—C52 1.520 (4) 

C11—C12 1.527 (4) C51—C56 1.540 (4) 

C11—H11 1.0000 C51—H51 1.0000 

C12—C13 1.525 (4) C52—C53 1.515 (4) 
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Table 2.5. (Continued). 

C12—H12A 0.9900 C52—H52A 0.9900 

C12—H12B 0.9900 C52—H52B 0.9900 

C13—C14 1.518 (4) C53—C54 1.533 (4) 

C13—H13 1.0000 C53—H53 1.0000 

C14—C15 1.523 (4) C54—C55 1.524 (4) 

C14—H14 1.0000 C54—H54 1.0000 

C15—C37 1.514 (4) C55—C77 1.521 (4) 

C15—C16 1.535 (4) C55—C56 1.545 (4) 

C15—H15 1.0000 C55—H55 1.0000 

C16—C17 1.537 (4) C56—C57 1.535 (4) 

C16—H16 1.0000 C56—H56 1.0000 

C17—C18 1.522 (4) C57—C58 1.529 (4) 

C17—H17A 0.9900 C57—H57A 0.9900 

C17—H17B 0.9900 C57—H57B 0.9900 

C18—C19 1.518 (4) C58—C59 1.517 (4) 

C18—H18 1.0000 C58—H58 1.0000 

C20—C21 1.389 (4) C60—C65 1.388 (4) 

C20—C25 1.396 (4) C60—C61 1.391 (4) 

C21—C22 1.394 (4) C61—C62 1.384 (4) 

C21—H21 0.9500 C61—H61 0.9500 

C22—C23 1.384 (5) C62—C63 1.392 (4) 

C22—H22 0.9500 C62—H62 0.9500 

C23—C24 1.391 (5) C63—C64 1.390 (4) 

C23—C26 1.514 (4) C63—C66 1.509 (4) 

C24—C25 1.383 (4) C64—C65 1.397 (4) 

C24—H24 0.9500 C64—H64 0.9500 

C25—H25 0.9500 C65—H65 0.9500 

C26—H26A 0.9800 C66—H66A 0.9800 

C26—H26B 0.9800 C66—H66B 0.9800 

C26—H26C 0.9800 C66—H66C 0.9800 

C27—H27A 0.9800 C67—H67A 0.9800 
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Table 2.5. (Continued). 

C27—H27B 0.9800 C67—H67B 0.9800 

C27—H27C 0.9800 C67—H67C 0.9800 

C28—C29 1.505 (4) C68—C69 1.511 (4) 

C28—H28A 0.9900 C68—H68A 0.9900 

C28—H28B 0.9900 C68—H68B 0.9900 

C29—C30 1.377 (5) C69—C70 1.382 (5) 

C29—C34 1.396 (4) C69—C74 1.388 (4) 

C30—C31 1.394 (4) C70—C71 1.379 (5) 

C30—H30 0.9500 C70—H70 0.9500 

C31—C32 1.383 (4) C71—C72 1.393 (4) 

C31—H31 0.9500 C71—H71 0.9500 

C32—C33 1.395 (4) C72—C73 1.401 (4) 

C33—C34 1.365 (4) C73—C74 1.382 (5) 

C33—H33 0.9500 C73—H73 0.9500 

C34—H34 0.9500 C74—H74 0.9500 

C35—H35A 0.9800 C75—H75A 0.9800 

C35—H35B 0.9800 C75—H75B 0.9800 

C35—H35C 0.9800 C75—H75C 0.9800 

C36—H36A 0.9800 C76—H76A 0.9800 

C36—H36B 0.9800 C76—H76B 0.9800 

C36—H36C 0.9800 C76—H76C 0.9800 

C38—H38A 0.9800 C78—H78A 0.9800 

C38—H38B 0.9800 C78—H78B 0.9800 

C38—H38C 0.9800 C78—H78C 0.9800 

O1—S1—O2 120.14 (13) O12—S2—O11 119.84 (13) 

O1—S1—N1 105.64 (13) O12—S2—N3 106.48 (12) 

O2—S1—N1 107.84 (12) O11—S2—N3 106.65 (12) 

O1—S1—C20 108.92 (14) O12—S2—C60 109.36 (13) 

O2—S1—C20 107.56 (14) O11—S2—C60 108.82 (14) 

N1—S1—C20 105.88 (13) N3—S2—C60 104.61 (13) 

C13—O3—C28 116.6 (2) C43—O13—C67 116.4 (3) 
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Table 2.5. (Continued). 

C32—O4—C35 118.1 (2) C68—O14—C53 113.9 (2) 

C36—O5—C14 115.5 (3) C72—O15—C75 116.5 (2) 

C37—O6—C38 115.2 (2) C76—O16—C54 114.8 (2) 

C3—O8—C27 117.4 (3) C77—O17—C78 115.9 (2) 

C1—N1—C19 106.1 (2) C41—N3—C59 105.1 (2) 

C1—N1—S1 114.53 (19) C41—N3—S2 113.43 (19) 

C19—N1—S1 122.8 (2) C59—N3—S2 116.58 (19) 

C9—N2—C10 109.9 (2) C49—N4—C50 109.3 (2) 

C9—N2—C18 111.1 (2) C49—N4—C58 109.9 (2) 

C10—N2—C18 113.0 (2) C50—N4—C58 112.9 (2) 

C6—C1—C2 122.9 (3) C42—C41—C46 123.1 (3) 

C6—C1—N1 108.4 (3) C42—C41—N3 128.2 (3) 

C2—C1—N1 128.7 (3) C46—C41—N3 108.6 (3) 

C1—C2—C3 116.3 (3) C43—C42—C41 116.9 (3) 

C1—C2—H2 121.8 C43—C42—H42 121.6 

C3—C2—H2 121.8 C41—C42—H42 121.6 

O8—C3—C4 115.9 (3) O13—C43—C42 123.2 (3) 

O8—C3—C2 122.9 (3) O13—C43—C44 115.2 (3) 

C4—C3—C2 121.2 (3) C42—C43—C44 121.6 (3) 

C5—C4—C3 121.7 (3) C45—C44—C43 120.1 (3) 

C5—C4—H4 119.2 C45—C44—H44 119.9 

C3—C4—H4 119.2 C43—C44—H44 119.9 

C4—C5—C6 118.2 (3) C44—C45—C46 119.5 (3) 

C4—C5—H5 120.9 C44—C45—H45 120.2 

C6—C5—H5 120.9 C46—C45—H45 120.2 

C1—C6—C5 119.6 (3) C41—C46—C45 118.7 (3) 

C1—C6—C7 107.4 (3) C41—C46—C47 107.9 (3) 

C5—C6—C7 133.0 (3) C45—C46—C47 133.4 (3) 

C19—C7—C6 109.1 (3) C59—C47—C46 108.0 (3) 

C19—C7—C8 123.7 (3) C59—C47—C48 123.0 (3) 

C6—C7—C8 127.2 (3) C46—C47—C48 128.9 (3) 
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Table 2.5. (Continued). 

C7—C8—C9 108.8 (3) C47—C48—C49 108.7 (2) 

C7—C8—H8A 109.9 C47—C48—H48A 109.9 

C9—C8—H8A 109.9 C49—C48—H48A 109.9 

C7—C8—H8B 109.9 C47—C48—H48B 109.9 

C9—C8—H8B 109.9 C49—C48—H48B 109.9 

H8A—C8—H8B 108.3 H48A—C48—H48B 108.3 

N2—C9—C8 113.3 (3) N4—C49—C48 114.6 (3) 

N2—C9—H9A 108.9 N4—C49—H49A 108.6 

C8—C9—H9A 108.9 C48—C49—H49A 108.6 

N2—C9—H9B 108.9 N4—C49—H49B 108.6 

C8—C9—H9B 108.9 C48—C49—H49B 108.6 

H9A—C9—H9B 107.7 H49A—C49—H49B 107.6 

N2—C10—C11 112.7 (2) N4—C50—C51 114.1 (2) 

N2—C10—H10A 109.1 N4—C50—H50A 108.7 

C11—C10—H10A 109.1 C51—C50—H50A 108.7 

N2—C10—H10B 109.1 N4—C50—H50B 108.7 

C11—C10—H10B 109.1 C51—C50—H50B 108.7 

H10A—C10—H10B 107.8 H50A—C50—H50B 107.6 

C10—C11—C16 109.9 (2) C50—C51—C52 114.0 (3) 

C10—C11—C12 113.2 (3) C50—C51—C56 109.0 (2) 

C16—C11—C12 111.3 (2) C52—C51—C56 111.7 (3) 

C10—C11—H11 107.4 C50—C51—H51 107.3 

C16—C11—H11 107.4 C52—C51—H51 107.3 

C12—C11—H11 107.4 C56—C51—H51 107.3 

C13—C12—C11 110.1 (3) C53—C52—C51 109.9 (2) 

C13—C12—H12A 109.6 C53—C52—H52A 109.7 

C11—C12—H12A 109.6 C51—C52—H52A 109.7 

C13—C12—H12B 109.6 C53—C52—H52B 109.7 

C11—C12—H12B 109.6 C51—C52—H52B 109.7 

H12A—C12—H12B 108.2 H52A—C52—H52B 108.2 

O3—C13—C14 113.1 (2) O14—C53—C52 114.6 (2) 
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Table 2.5. (Continued). 

O3—C13—C12 113.8 (3) O14—C53—C54 111.6 (3) 

C14—C13—C12 111.1 (2) C52—C53—C54 111.0 (2) 

O3—C13—H13 106.0 O14—C53—H53 106.3 

C14—C13—H13 106.0 C52—C53—H53 106.3 

C12—C13—H13 106.0 C54—C53—H53 106.3 

O5—C14—C13 109.1 (2) O16—C54—C55 105.7 (2) 

O5—C14—C15 106.1 (3) O16—C54—C53 110.8 (2) 

C13—C14—C15 111.5 (2) C55—C54—C53 111.2 (3) 

O5—C14—H14 110.0 O16—C54—H54 109.7 

C13—C14—H14 110.0 C55—C54—H54 109.7 

C15—C14—H14 110.0 C53—C54—H54 109.7 

C37—C15—C14 114.4 (3) C77—C55—C54 110.3 (3) 

C37—C15—C16 108.6 (2) C77—C55—C56 109.3 (2) 

C14—C15—C16 115.3 (3) C54—C55—C56 114.5 (2) 

C37—C15—H15 105.9 C77—C55—H55 107.5 

C14—C15—H15 105.9 C54—C55—H55 107.5 

C16—C15—H15 105.9 C56—C55—H55 107.5 

C11—C16—C15 111.6 (2) C57—C56—C51 110.6 (2) 

C11—C16—C17 109.7 (2) C57—C56—C55 112.7 (2) 

C15—C16—C17 112.6 (2) C51—C56—C55 110.9 (2) 

C11—C16—H16 107.6 C57—C56—H56 107.5 

C15—C16—H16 107.6 C51—C56—H56 107.5 

C17—C16—H16 107.6 C55—C56—H56 107.5 

C18—C17—C16 113.3 (2) C58—C57—C56 111.7 (2) 

C18—C17—H17A 108.9 C58—C57—H57A 109.3 

C16—C17—H17A 108.9 C56—C57—H57A 109.3 

C18—C17—H17B 108.9 C58—C57—H57B 109.3 

C16—C17—H17B 108.9 C56—C57—H57B 109.3 

H17A—C17—H17B 107.7 H57A—C57—H57B 107.9 

N2—C18—C19 109.0 (2) N4—C58—C59 109.1 (2) 

N2—C18—C17 108.0 (2) N4—C58—C57 109.5 (2) 
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Table 2.5. (Continued). 

C19—C18—C17 118.9 (3) C59—C58—C57 116.0 (2) 

N2—C18—H18 106.8 N4—C58—H58 107.3 

C19—C18—H18 106.8 C59—C58—H58 107.3 

C17—C18—H18 106.8 C57—C58—H58 107.3 

C7—C19—N1 109.0 (3) C47—C59—N3 110.3 (3) 

C7—C19—C18 123.5 (3) C47—C59—C58 124.2 (3) 

N1—C19—C18 127.3 (3) N3—C59—C58 125.1 (3) 

C21—C20—C25 121.4 (3) C65—C60—C61 121.3 (3) 

C21—C20—S1 119.9 (2) C65—C60—S2 119.4 (2) 

C25—C20—S1 118.6 (2) C61—C60—S2 119.3 (2) 

C20—C21—C22 118.7 (3) C62—C61—C60 118.2 (3) 

C20—C21—H21 120.6 C62—C61—H61 120.9 

C22—C21—H21 120.6 C60—C61—H61 120.9 

C23—C22—C21 120.9 (3) C61—C62—C63 122.3 (3) 

C23—C22—H22 119.5 C61—C62—H62 118.8 

C21—C22—H22 119.5 C63—C62—H62 118.8 

C22—C23—C24 119.0 (3) C64—C63—C62 118.2 (3) 

C22—C23—C26 120.4 (3) C64—C63—C66 121.5 (3) 

C24—C23—C26 120.6 (3) C62—C63—C66 120.2 (3) 

C25—C24—C23 121.5 (3) C63—C64—C65 120.9 (3) 

C25—C24—H24 119.2 C63—C64—H64 119.6 

C23—C24—H24 119.2 C65—C64—H64 119.6 

C24—C25—C20 118.4 (3) C60—C65—C64 119.0 (3) 

C24—C25—H25 120.8 C60—C65—H65 120.5 

C20—C25—H25 120.8 C64—C65—H65 120.5 

C23—C26—H26A 109.5 C63—C66—H66A 109.5 

C23—C26—H26B 109.5 C63—C66—H66B 109.5 

H26A—C26—H26B 109.5 H66A—C66—H66B 109.5 

C23—C26—H26C 109.5 C63—C66—H66C 109.5 

H26A—C26—H26C 109.5 H66A—C66—H66C 109.5 

H26B—C26—H26C 109.5 H66B—C66—H66C 109.5 
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Table 2.5. (Continued). 

O8—C27—H27A 109.5 O13—C67—H67A 109.5 

O8—C27—H27B 109.5 O13—C67—H67B 109.5 

H27A—C27—H27B 109.5 H67A—C67—H67B 109.5 

O8—C27—H27C 109.5 O13—C67—H67C 109.5 

H27A—C27—H27C 109.5 H67A—C67—H67C 109.5 

H27B—C27—H27C 109.5 H67B—C67—H67C 109.5 

O3—C28—C29 107.0 (2) O14—C68—C69 110.3 (3) 

O3—C28—H28A 110.3 O14—C68—H68A 109.6 

C29—C28—H28A 110.3 C69—C68—H68A 109.6 

O3—C28—H28B 110.3 O14—C68—H68B 109.6 

C29—C28—H28B 110.3 C69—C68—H68B 109.6 

H28A—C28—H28B 108.6 H68A—C68—H68B 108.1 

C30—C29—C34 117.4 (3) C70—C69—C74 117.9 (3) 

C30—C29—C28 122.2 (3) C70—C69—C68 118.4 (3) 

C34—C29—C28 120.4 (3) C74—C69—C68 123.6 (3) 

C29—C30—C31 122.0 (3) C71—C70—C69 122.2 (3) 

C29—C30—H30 119.0 C71—C70—H70 118.9 

C31—C30—H30 119.0 C69—C70—H70 118.9 

C32—C31—C30 119.7 (3) C70—C71—C72 119.7 (3) 

C32—C31—H31 120.2 C70—C71—H71 120.2 

C30—C31—H31 120.2 C72—C71—H71 120.2 

O4—C32—C31 125.3 (3) O15—C72—C71 124.3 (3) 

O4—C32—C33 116.1 (3) O15—C72—C73 116.8 (3) 

C31—C32—C33 118.6 (3) C71—C72—C73 118.9 (3) 

C34—C33—C32 121.0 (3) C74—C73—C72 120.0 (3) 

C34—C33—H33 119.5 C74—C73—H73 120.0 

C32—C33—H33 119.5 C72—C73—H73 120.0 

C33—C34—C29 121.4 (3) C73—C74—C69 121.3 (3) 

C33—C34—H34 119.3 C73—C74—H74 119.3 

C29—C34—H34 119.3 C69—C74—H74 119.3 

O4—C35—H35A 109.5 O15—C75—H75A 109.5 



154 
 

Table 2.5. (Continued). 

O4—C35—H35B 109.5 O15—C75—H75B 109.5 

H35A—C35—H35B 109.5 H75A—C75—H75B 109.5 

O4—C35—H35C 109.5 O15—C75—H75C 109.5 

H35A—C35—H35C 109.5 H75A—C75—H75C 109.5 

H35B—C35—H35C 109.5 H75B—C75—H75C 109.5 

O5—C36—H36A 109.5 O16—C76—H76A 109.5 

O5—C36—H36B 109.5 O16—C76—H76B 109.5 

H36A—C36—H36B 109.5 H76A—C76—H76B 109.5 

O5—C36—H36C 109.5 O16—C76—H76C 109.5 

H36A—C36—H36C 109.5 H76A—C76—H76C 109.5 

H36B—C36—H36C 109.5 H76B—C76—H76C 109.5 

O7—C37—O6 123.6 (3) O18—C77—O17 123.6 (3) 

O7—C37—C15 124.6 (3) O18—C77—C55 127.2 (3) 

O6—C37—C15 111.7 (3) O17—C77—C55 109.2 (3) 

O6—C38—H38A 109.5 O17—C78—H78A 109.5 

O6—C38—H38B 109.5 O17—C78—H78B 109.5 

H38A—C38—H38B 109.5 H78A—C78—H78B 109.5 

O6—C38—H38C 109.5 O17—C78—H78C 109.5 

H38A—C38—H38C 109.5 H78A—C78—H78C 109.5 

H38B—C38—H38C 109.5 H78B—C78—H78C 109.5 

O1—S1—N1—C1 -62.8 (2) O12—S2—N3—C41 -58.6 (2) 

O2—S1—N1—C1 167.6 (2) O11—S2—N3—C41 172.4 (2) 

C20—S1—N1—C1 52.7 (2) C60—S2—N3—C41 57.2 (2) 

O1—S1—N1—C19 166.1 (2) O12—S2—N3—C59 179.1 (2) 

O2—S1—N1—C19 36.5 (3) O11—S2—N3—C59 50.0 (2) 

C20—S1—N1—C19 -78.4 (2) C60—S2—N3—C59 -65.2 (2) 

C19—N1—C1—C6 0.8 (3) C59—N3—C41—C42 -175.2 (3) 

S1—N1—C1—C6 -137.9 (2) S2—N3—C41—C42 56.4 (4) 

C19—N1—C1—C2 -178.0 (3) C59—N3—C41—C46 2.7 (3) 

S1—N1—C1—C2 43.3 (4) S2—N3—C41—C46 -125.8 (2) 

C6—C1—C2—C3 1.2 (5) C46—C41—C42—C43 0.8 (4) 
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Table 2.5. (Continued). 

N1—C1—C2—C3 179.8 (3) N3—C41—C42—C43 178.4 (3) 

C27—O8—C3—C4 -176.5 (3) C67—O13—C43—C42 0.5 (4) 

C27—O8—C3—C2 3.5 (4) C67—O13—C43—C44 -179.2 (3) 

C1—C2—C3—O8 -179.6 (3) C41—C42—C43—O13 -179.5 (3) 

C1—C2—C3—C4 0.3 (5) C41—C42—C43—C44 0.1 (4) 

O8—C3—C4—C5 178.1 (3) O13—C43—C44—C45 179.1 (3) 

C2—C3—C4—C5 -1.9 (5) C42—C43—C44—C45 -0.5 (5) 

C3—C4—C5—C6 1.8 (5) C43—C44—C45—C46 0.0 (4) 

C2—C1—C6—C5 -1.2 (5) C42—C41—C46—C45 -1.3 (4) 

N1—C1—C6—C5 179.9 (3) N3—C41—C46—C45 -179.3 (2) 

C2—C1—C6—C7 177.5 (3) C42—C41—C46—C47 176.4 (3) 

N1—C1—C6—C7 -1.4 (3) N3—C41—C46—C47 -1.6 (3) 

C4—C5—C6—C1 -0.3 (5) C44—C45—C46—C41 0.8 (4) 

C4—C5—C6—C7 -178.6 (3) C44—C45—C46—C47 -176.2 (3) 

C1—C6—C7—C19 1.5 (4) C41—C46—C47—C59 -0.3 (3) 

C5—C6—C7—C19 179.9 (3) C45—C46—C47—C59 177.0 (3) 

C1—C6—C7—C8 -175.3 (3) C41—C46—C47—C48 -177.6 (3) 

C5—C6—C7—C8 3.1 (6) C45—C46—C47—C48 -0.3 (5) 

C19—C7—C8—C9 10.2 (4) C59—C47—C48—C49 4.9 (4) 

C6—C7—C8—C9 -173.4 (3) C46—C47—C48—C49 -178.1 (3) 

C10—N2—C9—C8 -59.8 (3) C50—N4—C49—C48 -58.4 (3) 

C18—N2—C9—C8 65.9 (3) C58—N4—C49—C48 66.1 (3) 

C7—C8—C9—N2 -42.4 (4) C47—C48—C49—N4 -41.0 (3) 

C9—N2—C10—C11 -176.7 (2) C49—N4—C50—C51 178.6 (2) 

C18—N2—C10—C11 58.6 (3) C58—N4—C50—C51 55.9 (3) 

N2—C10—C11—C16 -55.0 (3) N4—C50—C51—C52 71.8 (3) 

N2—C10—C11—C12 70.1 (3) N4—C50—C51—C56 -53.8 (3) 

C10—C11—C12—C13 176.5 (2) C50—C51—C52—C53 176.3 (2) 

C16—C11—C12—C13 -59.2 (3) C56—C51—C52—C53 -59.5 (3) 

C28—O3—C13—C14 78.6 (3) C68—O14—C53—C52 -53.0 (3) 

C28—O3—C13—C12 -49.5 (3) C68—O14—C53—C54 74.4 (3) 
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Table 2.5. (Continued). 

C11—C12—C13—O3 -170.6 (2) C51—C52—C53—O14 -171.9 (3) 

C11—C12—C13—C14 60.3 (3) C51—C52—C53—C54 60.5 (3) 

C36—O5—C14—C13 -110.9 (3) C76—O16—C54—C55 146.1 (3) 

C36—O5—C14—C15 128.9 (3) C76—O16—C54—C53 -93.3 (3) 

O3—C13—C14—O5 59.8 (3) O14—C53—C54—O16 58.5 (3) 

C12—C13—C14—O5 -170.8 (3) C52—C53—C54—O16 -172.3 (2) 

O3—C13—C14—C15 176.6 (3) O14—C53—C54—C55 175.7 (2) 

C12—C13—C14—C15 -53.9 (3) C52—C53—C54—C55 -55.1 (3) 

O5—C14—C15—C37 -66.5 (3) O16—C54—C55—C77 -66.5 (3) 

C13—C14—C15—C37 174.8 (3) C53—C54—C55—C77 173.1 (2) 

O5—C14—C15—C16 166.5 (2) O16—C54—C55—C56 169.6 (2) 

C13—C14—C15—C16 47.8 (4) C53—C54—C55—C56 49.3 (3) 

C10—C11—C16—C15 178.0 (3) C50—C51—C56—C57 53.6 (3) 

C12—C11—C16—C15 51.7 (3) C52—C51—C56—C57 -73.3 (3) 

C10—C11—C16—C17 52.5 (3) C50—C51—C56—C55 179.4 (2) 

C12—C11—C16—C17 -73.7 (3) C52—C51—C56—C55 52.4 (3) 

C37—C15—C16—C11 -176.7 (2) C77—C55—C56—C57 -47.7 (3) 

C14—C15—C16—C11 -46.8 (4) C54—C55—C56—C57 76.7 (3) 

C37—C15—C16—C17 -52.8 (3) C77—C55—C56—C51 -172.2 (3) 

C14—C15—C16—C17 77.1 (3) C54—C55—C56—C51 -47.9 (3) 

C11—C16—C17—C18 -55.5 (3) C51—C56—C57—C58 -56.7 (3) 

C15—C16—C17—C18 179.6 (2) C55—C56—C57—C58 178.6 (2) 

C9—N2—C18—C19 -50.6 (3) C49—N4—C58—C59 -49.5 (3) 

C10—N2—C18—C19 73.4 (3) C50—N4—C58—C59 72.9 (3) 

C9—N2—C18—C17 179.0 (3) C49—N4—C58—C57 -177.4 (2) 

C10—N2—C18—C17 -57.0 (3) C50—N4—C58—C57 -55.0 (3) 

C16—C17—C18—N2 56.3 (3) C56—C57—C58—N4 56.2 (3) 

C16—C17—C18—C19 -68.4 (3) C56—C57—C58—C59 -67.9 (3) 

C6—C7—C19—N1 -0.9 (3) C46—C47—C59—N3 2.1 (3) 

C8—C7—C19—N1 176.0 (3) C48—C47—C59—N3 179.6 (3) 

C6—C7—C19—C18 -176.5 (3) C46—C47—C59—C58 -170.6 (3) 
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Table 2.5. (Continued). 

C8—C7—C19—C18 0.5 (5) C48—C47—C59—C58 6.9 (5) 

C1—N1—C19—C7 0.1 (3) C41—N3—C59—C47 -3.0 (3) 

S1—N1—C19—C7 134.5 (2) S2—N3—C59—C47 123.6 (2) 

C1—N1—C19—C18 175.4 (3) C41—N3—C59—C58 169.6 (3) 

S1—N1—C19—C18 -50.2 (4) S2—N3—C59—C58 -63.8 (3) 

N2—C18—C19—C7 19.2 (4) N4—C58—C59—C47 15.7 (4) 

C17—C18—C19—C7 143.5 (3) C57—C58—C59—C47 140.0 (3) 

N2—C18—C19—N1 -155.4 (3) N4—C58—C59—N3 -155.9 (2) 

C17—C18—C19—N1 -31.2 (4) C57—C58—C59—N3 -31.6 (4) 

O1—S1—C20—C21 4.9 (3) O12—S2—C60—C65 27.4 (3) 

O2—S1—C20—C21 136.6 (2) O11—S2—C60—C65 160.0 (2) 

N1—S1—C20—C21 -108.3 (2) N3—S2—C60—C65 -86.3 (3) 

O1—S1—C20—C25 -171.7 (2) O12—S2—C60—C61 -154.1 (2) 

O2—S1—C20—C25 -40.0 (3) O11—S2—C60—C61 -21.5 (3) 

N1—S1—C20—C25 75.1 (3) N3—S2—C60—C61 92.2 (3) 

C25—C20—C21—C22 0.5 (4) C65—C60—C61—C62 -0.8 (5) 

S1—C20—C21—C22 -176.0 (2) S2—C60—C61—C62 -179.2 (2) 

C20—C21—C22—C23 -0.5 (5) C60—C61—C62—C63 0.9 (5) 

C21—C22—C23—C24 0.1 (5) C61—C62—C63—C64 0.2 (5) 

C21—C22—C23—C26 179.1 (3) C61—C62—C63—C66 -178.2 (3) 

C22—C23—C24—C25 0.5 (5) C62—C63—C64—C65 -1.4 (5) 

C26—C23—C24—C25 -178.6 (3) C66—C63—C64—C65 177.0 (3) 

C23—C24—C25—C20 -0.5 (5) C61—C60—C65—C64 -0.4 (5) 

C21—C20—C25—C24 0.0 (4) S2—C60—C65—C64 178.0 (2) 

S1—C20—C25—C24 176.6 (2) C63—C64—C65—C60 1.5 (5) 

C13—O3—C28—C29 -175.4 (2) C53—O14—C68—C69 -163.1 (2) 

O3—C28—C29—C30 -119.7 (3) O14—C68—C69—C70 166.7 (3) 

O3—C28—C29—C34 59.5 (4) O14—C68—C69—C74 -17.5 (4) 

C34—C29—C30—C31 -0.4 (5) C74—C69—C70—C71 -2.1 (5) 

C28—C29—C30—C31 178.8 (3) C68—C69—C70—C71 173.9 (3) 

C29—C30—C31—C32 0.3 (5) C69—C70—C71—C72 -0.3 (5) 
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Table 2.5. (Continued). 

C35—O4—C32—C31 2.1 (4) C75—O15—C72—C71 -1.7 (4) 

C35—O4—C32—C33 -178.5 (3) C75—O15—C72—C73 177.4 (3) 

C30—C31—C32—O4 179.9 (3) C70—C71—C72—O15 -179.1 (3) 

C30—C31—C32—C33 0.6 (5) C70—C71—C72—C73 1.9 (5) 

O4—C32—C33—C34 179.2 (3) O15—C72—C73—C74 179.9 (3) 

C31—C32—C33—C34 -1.4 (5) C71—C72—C73—C74 -1.0 (4) 

C32—C33—C34—C29 1.3 (5) C72—C73—C74—C69 -1.5 (5) 

C30—C29—C34—C33 -0.4 (5) C70—C69—C74—C73 3.0 (5) 

C28—C29—C34—C33 -179.6 (3) C68—C69—C74—C73 -172.8 (3) 

C38—O6—C37—O7 1.6 (4) C78—O17—C77—O18 -2.4 (4) 

C38—O6—C37—C15 -174.3 (2) C78—O17—C77—C55 174.3 (2) 

C14—C15—C37—O7 159.7 (3) C54—C55—C77—O18 -11.8 (4) 

C16—C15—C37—O7 -69.9 (4) C56—C55—C77—O18 115.0 (3) 

C14—C15—C37—O6 -24.4 (4) C54—C55—C77—O17 171.6 (2) 

C16—C15—C37—O6 106.0 (3) C56—C55—C77—O17 -61.6 (3) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Perspective views showing 50% probability displacement. 
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Figure 2.4. Three-dimensional supramolecular architecture viewed along the a-axis 

direction. 
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Chapter 3 

Synthesis of Chiral Bisthiourea Catalysts 
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3.1. Introduction 

Recent mechanistic investigations of a thiourea-catalyzed asymmetric alkylation 

of α-chloroethers with silyl ketene acetals have led to the hypothesis that two molecules 

of catalyst are involved in both productive electrophile activation and in nonproductive 

ground state aggregation. This chapter describes our efforts to synthesize chiral 

bisthioureas that can activate electrophiles but cannot self-aggregate.  Ongoing efforts are 

presented and future directions are suggested. 

 

3.2. Hydrogen Bond Donor-Assisted Anion-Abstraction 

Chiral dual hydrogen bond donors have been shown to catalyze a number of 

enantioselective transformations of cationic electrophiles through mechanisms involving 

catalyst-bound ion pairs. 1 , 2  A particularly effective strategy for generating such 

electrophiles is through hydrogen bond donor-assisted abstraction of anions from neutral 

precursors. This mechanism was first investigated in the context of a thiourea-catalyzed 

Pictet–Spengler-type reaction of in situ generated α-chlorolactams (Scheme 3.1A),3 and 

since then has been used as a guiding principle to develop asymmetric transformations 

involving carbenium ions (Scheme 3.1B)4 and oxocarbenium ions (Scheme 3.1C).5 

                                                            
1 a) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. b) Brak, K.; Jacobsen, E. N. Angew. Chem., 
Int. Ed. 2013, 52, 534. c) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013, 52, 518. d) Phipps, R. J.; 
Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. 
 
2 For a review on catalysis via thiourea-bound ion pairs, see: Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 
2009, 38, 1187. 
 
3 Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404 . 
 
4 Brown, A. R.; Kuo, W.-H.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 9286. 
 
5 Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N.; J. Am. Chem. Soc. 2008, 130, 7198. 
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With the goal of gaining insight into the anion-abstraction process, David Ford 

and Dr. Dan Lehnherr, current Jacobsen group members, have undertaken mechanistic 

studies on the enantioselective thiourea-catalyzed addition of silyl ketene acetal 1 to pre-

formed α-chloroether 2 (Scheme 3.2).6  This transformation is conducted with 10 mol% 

of arylpyrrolidino-thiourea 3 and provides isochroman 4 in 85% ee. 

                                                            
6 Ford, D. D.; Lehnherr, D.; Jacobsen, E. N. Manuscript in preparation. 

N
H

N

HO
Me

O thiourea
(10 mol%)

TMSCl

t -BME
–78 oC N

H

N
O

Me

N
H

N

Me

O

N

S

N

HH

t-Bu

O

N

Me

n-C5H11

Cl

N
Ph

Me

94% conv., 96% ee

thiourea
(20 mol%)

H2O, NEt3
AcOH

(10 mol%)
toluene, rt

N

S

N

HH

Br
H

O

Ph

Ph

Me Ph

70%, 91% ee

HN

Ph Me

CF3

F3C
H

O

Ph

Me

Ph

Br

Ph

+

O

OMe
+

OTMS

OMe

Me

Me

thiourea
(10 mol%)

t-BME
–78 oC

N

S

N

HH

Cl

92%, 92% ee

1. BCl3
2.

O

CO2Me
Me

Me

O

CF3

CF3

t-Bu

N

O

F

(A) Thiourea-Catalyzed Enantioselective Pictet–Spengler -type Cyclization

(B) Primary Aminothiourea-Catalyzed Enantioselective -Alkylat ion of Aldehydes

(C) Thiourea-Catalyzed Asymmetr ic Alky lation of -Chloroethers

 

Scheme 3.1. Anion-Abstraction in Thiourea-Catalyzed Transformations 
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3.3. Proposed Mechanistic Scenario 

Through these investigations it was determined that the reaction has a first order 

kinetic dependence on thiourea at high catalyst concentrations and a second order kinetic 

dependence at low concentrations.  These results are consistent with the involvement of 

two thiourea molecules in the rate-determining transition state along with a dimeric 

catalyst resting state at high concentrations and a monomeric catalyst resting state at low 

concentrations. X-ray crystallographic data, in combination with NMR data, have been 

used to characterize the dimeric resting state (5) in which the hydrogen bond donor 

functionality of each thiourea is bound to the amide of the other (Figure 3.1).  A second 

thiourea dimerization mode became apparent through analysis of an X-ray crystal 

structure of the thiourea co-crystallized with tetramethylammonium chloride in a 2:1 

stoichiometry (6) (Figure 3.2).   
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Scheme 3.2.  Model Reaction for Mechanistic Investigations 



164 
 

 

 

Together, these data suggest that the ground state dimer must dissociate and 

recombine in a productive geometry to allow for dual electrophile activation of α-

chloroether substrates via anion-abstraction (Scheme 3.3).  Furthermore, this mechanistic 

scenario raised the possibility that covalently linking two thiourea moieties could prevent 

inactive dimer formation while allowing for cooperative electrophile activation.  Such a 
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Figure 3.2. Crystal Structure of a 2:1 ent-3:NMe4Cl Complex 
([NMe4]

+ has been omitted from the left structure for clarity) 

          

N

S

N
HH

t-Bu

CF3

CF3

O

N

F
N

S

N
H H

t -Bu

CF3

F3C
O

N

F

inactive dimer (5),
consisting of two molecules of ent-3  

Figure 3.1.  Crystal Structure Depicting the Dimeric Resting State of ent-3 



165 
 

dimer would effectively increase the concentration of active catalyst, potentially allowing 

for the use of a lower catalyst loading and more efficient catalysis. 

 

With this goal in mind, Dan Lehnherr has investigated various symmetrical 

tethering strategies (represented as S1–S3, Figure 3.3) and has identified dimeric 

catalysts that afford higher reactivity than monomer 3 while maintaining comparable 

selectivity.  An examination of crystal structures 5 and 6 suggests that an unsymmetrical 

linking strategy may better accomplish the goal of selectively disfavoring thiourea-

thiourea interactions while enhancing cooperative electrophile activation. The proximity 

of the amino acid t-Bu group of one molecule of catalyst to the aniline-derived portion of 
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the second catalyst in crystal structure 6, and the relatively far distance between them in 

the unproductive aggregate 5, led to the proposal that tethering these two portions would 

be beneficial (Figure 3.4). We targeted the synthesis of bisthioureas 7 and 8.7  The ester 

functionality was introduced to aid in the synthetic accessibility of the bisthioureas while 

maintaining the electron-deficient nature of the parent 3,5-bis(trifluoromethyl)phenyl 

group. Computational modeling studies using DFT calculations indicated that a 1–2 atom 

linker (n = 1–2, Figure 3.4) would be optimal to achieve cooperative electrophile 

activation and conformationally restrict access to the geometry of the unproductive 

aggregate.  For the remainder of the chapter, the top portion of the bisthioureas, as drawn 

in Figure 3.4, will be referred to as “thiourea A” and the bottom as “thiourea B”. 

 

 

                                                            
7 Bisthioureas 7 and 8 were proposed by Dan Lehnherr. 
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3.4. Synthetic Strategies 

 Three potential synthetic routes to access 7 were identified: (1) esterification of 

two monomeric thioureas, (2) late-stage installation of thiourea B, and (3) late-stage 

installation of thiourea A (Figure 3.5).  Ultimately, the third strategy proved successful. 

In this section, the problems encountered with the first two routes are described and a 

successful final route is presented.  

 

3.4.1. Strategy 1: Esterification of Two Functionalized Thiourea Monomers 

The most attractive strategy in terms of convergency is an esterification of two 

functionalized analogs of 3, carboxylic acid 9 and neopentyl alcohol 10 (Scheme 3.4).8 

 

                                                            
8 Another possible coupling strategy is a Mitsunobu reaction of 9 and 10; however, the conditions would 
likely result in cyclization of thiourea 10: Lee, G.-J.; Kim, J. N.; Kim, T. H. Bull Korean Chem. Soc. 2002, 
23, 19. 
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 Carboxylic acid 9 was readily obtained through saponification of methyl ester 11 

with LiOH (Scheme 3.5);9 however, alcohol 10 proved more challenging to access.  Dan 

Lehnherr identified a route to the required amide fragment 14 from (R)-pantolactone (12) 

that employs a trimethylaluminum-mediated lactone opening with arylpyrrolidine 13 

(Scheme 3.6).10 , 11 , 12   Attempted elaboration of Boc-protected amine 14 to 10 under 

conditions used for synthesis of monomer 3 furnished undesired thioureas 18 and 19.  

Lactone 18 was obtained in 70% yield and was characterized by 1H NMR and LRMS. 

The outcome indicates that amine deprotection using acidic conditions also effected 

amide bond cleavage to afford 16 and 17, which subsequently react with isothiocyanate 

15. These results were unexpected because acidic conditions have been used to effect the 

deprotection of Boc-amines on related primary alcohol intermediates without amide 

hydrolysis.13,14  

 

                                                            
9 Hydrolysis of symmetrical thiourea dimers linked through the aniline-derived portion also provided a 
route to carboxylic acid 9.  The analogous hydrolysis of dimers linked through the hydroxy-tert-leucine 
amino acid residues did not afford alcohol 10. 
 
10 Freskos, J. N. Synth. Commun. 1994, 24, 557. 
 
11 Marshall, J. A.; Piettre, A.; Paige, M. A.; Valeriote, F. J. Org. Chem. 2003, 68, 1771. 
 
12 Arylpyrrolidine 13 was synthesized according to the reported procedure: Reddy, L. R.; Das, S. G.; Liu, 
Y.; Prashad, M. J. Org. Chem. 2010, 75, 2236. 
 
13 Augeri, D. J. et al. J. Med. Chem. 2005, 48, 5025. 
 
14 We also attempted a ring-opening of lactone 18 with arylpyrrolidine 13 in the presence of AlMe3; 
however, the desired amide was not formed. 
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 Based on these results, we protected primary alcohol 14 as the corresponding 

benzyl ether 20 to access thiourea 21 (Scheme 3.7).  However, attempted hydrogenolysis 

of the benzyl ether to obtain primary alcohol 10 was unsuccessful.15 Because we were 

encountering problems obtaining alcohol 10, we chose to focus on two alternative routes 

to bisthiourea 7: a late-stage installation of thiourea B and a late-stage installation of 

thiourea A. 

   
                                                            
15 Recent results obtained by Dr. Kaid Harper, a postdoctoral fellow in the group, indicate that cleavage of 
a silyl ether related to 21 is also problematic. 
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3.4.2. Strategy 2: Late-Stage Installation of Thiourea B 

 Our second strategy, late-stage installation of thiourea B (Scheme 3.8), also 

presented a problematic amine deprotection.   

 

 Alcohol 14 was elaborated to isothiocyanate 24 through a three-step sequence 

consisting of esterification, transfer hydrogenation of the aromatic nitro group, and a 

subsequent reaction with thiophosgene (Scheme 3.9). The crude isothiocyanate 24 was 

treated with amine 25 to complete installation of thiourea A.  Unfortunately, deprotection 

of intermediate 26 was accompanied by undesired reactions, resulting in a complex 

mixture of products (Scheme 3.10). Although the byproducts were not rigorously 

characterized, mass spectrometric analysis of the crude reaction mixture indicated that 

loss of an arylpyrrolidine fragment occurred during removal of the Boc group.16  We did 

not determine which of the two amide bonds of 26 was cleaved, but based on literature 

precedent we hypothesize that it was the amide of thiourea A.17  In analogy to the 

outcome of the attempted deprotection of Boc-amine 14 in the presence of a free primary 

                                                            
16 When the reaction was monitored by LC/MS, the peaks corresponding to the masses of [26 – Boc ]+, [26 
– arylpyrrolidine]+, and [26 – Boc – arylpyrrolidine]+ were all present, suggesting that amide bond cleavage 
occurs competitively with removal of the Boc group. 
 
17 Analogous acid-promoted cyclizations have been reported: a) Lehmann, J.; Linden, A.; Heimgartner, H. 
Tetrahedron 1998, 54, 8721. b) Breitenmoser, R. A.; Linden, A.; Heimgartner, H. Helv. Chim. Acta 2002, 
85,  990. 
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alcohol (Scheme 3.6), it is likely that the thiourea functionality serves as an internal 

nucleophile under the deprotection conditions to generate 5-membered cyclic product 28 

(or a related tautomeric structure).  With a different protecting group choice, this route 

may be viable. Ultimately, with the success of the third route, we did not investigate this 

strategy any further. 
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3.4.3. Strategy 3: Late-Stage Installation of Thiourea A 

 The route that proved to be most fruitful was a late-stage installation of thiourea A 

(Scheme 3.11).   

 

 From intermediate 23, removal of the Boc group followed by a subsequent 

reaction with isothiocyanate 15 installed thiourea B (Scheme 3.12).  The success of the 

amine deprotection in this context lends support to the hypothesis that amide bond 
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cleavage only occurs under acidic conditions when the intermediate contains an internal 

nucleophile.  Hydrogenation of the nitro group of 29 could be accomplished with 

palladium on carbon at 50 oC. 18   Aniline 30 was treated with 1,1’-

thiocarbonyldiimidazole to access an isothiocyanate that was reacted with amine 25 to 

furnish desired bisthiourea 7. 

 

3.4.4. Synthesis of Bisthiourea 8 

 We used the same strategy to access bisthiourea 8, which contains a 2-carbon 

linker between the two thiourea moieties.  We obtained the necessary primary alcohol 35 

                                                            
18 Hydrogenation of 29 with Pd/C at room temperature and 20 atm H2 resulted in over reduction to the 
corresponding cyclohexylamine. Other reductions evaluated (e.g. NH2HCO2 transfer hydrogenation, SnCl2, 
room temperature hydrogenation) stalled at the hydroxylamine stage (determined by LRMS).  The 
difficulty of this reduction is in contrast to the straightforward reduction of 23 (Scheme 3.9) and suggests 
that thiourea B may be poisoning the reagents or interacting with the nitro group. 
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through the sequence presented in Scheme 3.13. Amino acid 32 was obtained in 93% ee 

and was synthesized according to the procedure reported by Rossi.19 This route uses an 

Ireland-Claisen rearrangement of Boc-glycine ester 31 and a classical resolution of the 

resultant racemic amino acid with (S)-phenylglycinol 33.  Amide 34 was formed using 

EDC and HOBt, and a subsequent hydroboration-oxidation sequence afforded primary 

alcohol 35. The completion of the synthesis of bisthiourea 8 is shown in Scheme 3.14. 

 

                                                            
19 Rossi, F. et al. Org. Process Res. Dev. 2008, 12, 322. 
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 This sequence was first used to generate approximately 90 mg of bisthiourea 8.  

After we obtained encouraging preliminary data on the reactivity of this catalyst (see 

Section 3.4), Dr. Masayuki Wasa, a postdoctoral fellow in the group, investigated the 

scalability of this route.  Through this effort, he was able to synthesize 1.3 g of 

bisthiourea 8, and he also used isothiocyanate 39 as a diversification point to prepare 

bisthioureas 40 and 41 (Scheme 3.15). 
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Scheme 3.14. Synthesis of Bisthiourea 8 
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3.5. Comparison of Bisthioureas 7 and 8 with Monomer 3 

The thiourea-catalyzed asymmetric alkylation of α-chloroether 1 with silyl ketene 

acetal 2 was evaluated with the standard monomeric catalyst (3) and bisthioureas 7 and 8 

(Scheme 3.16).20  In order to determine the relative reactivity of the three thioureas, a low 

catalyst loading (1 mol%, based on thiourea moiety) and a short reaction time (1 hour) 

were used in this assay.  Under these conditions, thiourea 3 afforded isochroman 4 in 6% 

yield and 81% ee. Bisthioureas 7 and 8 afforded significantly higher conversions, albeit 
                                                            
20 These results were obtained by Dan Lehnherr. 
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Scheme 3.15. Gram-scale Preparation of Bisthiourea 8 
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with slightly diminished selectivity.  Bisthiourea 8, with a 2-atom linker, was more 

reactive and marginally more selective than 7, providing 95% conversion and 77% ee. 

 

 

3.6. Conclusions and Outlook 

 The syntheses of bisthioureas 7 and 8 were accomplished through sequential 

installations of thiourea B and thiourea A.  The final route is scalable and has been used 

to access 1.3 grams of bisthiourea 8.  Most importantly, these covalently tethered 

thioureas demonstrate substantially higher reactivity than analogous monomeric thioureas 

in the asymmetric alkylation of α-chloroethers.  Current efforts in the Jacobsen group are 

focused on probing the generality of these observations.  Dr. Kaid Harper, a postdoctoral 

fellow in the group, has recently made a comparison of monomer 3 and bisthiourea 8 in a 

catalyst-controlled diastereoselective glycosylation of propargyl alcohol with α-

chloroether 42 (Scheme 3.17). The background reaction of chloroether 42 (9:1 α:β) with 
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propargyl alcohol provides the corresponding product 43 in a 3:1 diastereomeric ratio in 

favor of the α-anomer.  The product ratio is unchanged in the presence of monomeric 

thiourea 3, but it is reversed to 1:5.7 in the presence of bisthiourea 8.  Although the basis 

for this reversal of diastereoselectivity is not well understood at this time, it is clear that 

there is a benefit to using bisthiourea 8. 

 
 

 Ongoing work in the group involves the modification of various portions of 

bisthiourea 8 to enhance reactivity and selectivity.  Because an esterification of two 

thiourea monomers (Strategy 1, section 3.3.1) is potentially the most convergent route to 

bisthioureas, this strategy should be revisited. It is possible that the problems encountered 

in the synthesis of 7 will be alleviated with the longer tether length of 8.   

 Additionally, the symmetrical orientation of the two monomeric catalysts in the 

2:1 complex with tetramethylammonium chloride (6, Figure 3.2) suggests that a cyclic 

dimer scaffold may provide an optimal geometry for productive electrophile activation 
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179 
 

(Scheme 3.18).  Although macrocyclization to obtain large cyclic structures is often 

challenging, we envision that chloride-binding properties of thioureas can be exploited in 

a templated macrolactonization to provide access to 22-membered cyclic dimer 44.21,22  

 

 Our progress towards this dimer, a cyclic analog of bisthiourea 7, is summarized 

in Scheme 3.19. Isothiocyanate 47 was prepared from ester 23 according to the developed 

route.  The remaining steps, installation of thiourea A and macrocyclization, will likely 

be challenging and may require protecting group manipulations. As such, it will be best 

to pursue a cyclic dimerization once an optimal bisthiourea is identified. 

                                                            
21 For a general review of templated macrocylizations, see: Laughrey, Z. R.; Gibb, B. C. in Top. Curr. 
Chem. Vol. 249 (Eds. Schalley, C. A.; Vögtle, F.; Dötz, K. H.) Springer-Verlag, Heidelberg, 2005, 67. 
 
22 For a recent example of a chloride-templated macrolactamization, see: Kataev, E. A.; Kolesinkov, G. V.; 
Arnold, R.; Lavrov, H. V.; Khrustalev, V. N. Chem. Eur. J. 2013, 19, 3710. 
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3.7. Experimental Section 

A.  General Information. 

 Unless otherwise noted, all reactions were performed under a positive pressure of 

anhydrous nitrogen or argon in flame- or oven-dried glassware. Moisture- and air-

sensitive reagents were dispensed using oven-dried stainless steel syringes or cannulae 

and were introduced to reaction flasks through rubber septa. Reactions conducted below 

ambient temperature were cooled by external baths (dry ice/acetone for –78 oC and 

ice/water for 0 oC).  Reactions conducted above ambient temperature were heated by an 

oil bath. 

 Analytical thin layer chromatography (TLC) was performed on glass plates pre-

coated with silica 60 F254 plates, 0.25 mm). Visualization was carried out by exposure to 

a UV-lamp (short wave 254 nm, long wave 365 nm), and by heating after staining the 

plate with a ceric ammonium molybdate or a potassium permanganate solution. 

Extraction and chromatography solvents were reagent or HPLC grade and were used 

without further purification. Flash chromatography was carried out over silica gel (60 Å, 

230–400 mesh) from EM Science. Where indicated, chromatography was conducted on a 

Biotage Isolera automated chromatography system.  

 

Materials. Commercial reagents and solvents were used with the following exceptions: 

tetrahydrofuran, dichloromethane, and 1,4-dioxane employed as reaction solvents were 

dried by passage through columns of activated alumina. Triethylamine was distilled from 

calcium hydride at 760 torr prior to use. Chloroform-d was dried over 3Å MS prior to use.  
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Instrumentation. Proton nuclear magnetic resonance (1H NMR) spectra and carbon 

nuclear magnetic resonance (13C NMR) spectra were recorded on a Varian Mercury-400 

(400MHz), Inova-500 (500MHz), or an Inova-600 (600MHz) spectrometer at 23 oC. 

Chemical shifts for protons are reported in parts per million (ppm, δ scale) downfield 

from tetramethylsilane and are referenced to residual protium in the NMR solvent 

(CHCl3: 7.26 ppm). 

 

B. Preparation and Characterization of Selected Intermediates 

H
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Boc
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2 h, rt

2. CH2Cl2, rt, 1 h
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NCS
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15
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(S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(4,4-dimethyl-2-oxotetrahydrofuran-3-

yl)thiourea (18) 

A flame-dried 10-mL round-bottom flask was charged with alcohol 14 (50 mg, 0.127 

mmol, 1.0 equiv) and dioxane (1.27 mL).  The flask was cooled to 0 oC and a solution of 

HCl in dioxane (127 μL, 0.508 mmol, 4.0 equiv) was added dropwise under an 

atmosphere of N2. The reaction mixture was allowed to gradually warm to room 

temperature over a period of 2 h.  At this point, the reaction mixture was concentrated in 

vacuo to provide a sticky oil.  The crude product was dissolved in CH2Cl2 (650 μL). NEt3 

(53 μL, 3.0 equiv) and isothiocyanate 15 (26 μL, 0.143 mmol, 1.1 equiv) were added 

sequentially and the reaction mixture was stirred at room temperature overnight.  The 
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contents were concentrated in vacuo and purified via flash column chromatography 

(Biotage, SiO2, 0-50% EtOAc/hexanes) to afford 18 as a pale yellow solid (35.2 mg, 

0.088 mmol, 70% yield).  Rf=0.47 (50% EtOAc/hexanes). 1H NMR (500 MHz, CDCl3)  

ppm 7.76 - 7.98 (m, 5 H) 4.24 (s, 1 H) 3.73 (d, J=10.74 Hz, 1 H) 3.56 (d, J=10.74 Hz, 1 

H) 1.18 (s, 3 H) 1.11 - 1.14 (m, 3 H). 
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Aniline (30) 

A flame-dried 50-mL round-bottom flask was charged with a stir bar and 10% Pd/C (44 

mg, 0.4 equiv).  The flask was fitted with a septum, evacuated, and refilled with argon.  

MeOH (4.0 mL) was added to the flask under an atmosphere of argon, followed by a 

solution of nitro aromatic 29 (152 mg, 0.19 mmol, 1 equiv) in MeOH (4.1 mL).  The 

flask was evacuated and refilled with H2 gas (3x) and then maintained under an 

atmosphere of H2.  The flask was immersed in an oil bath set at 50 oC and stirred at this 

temperature overnight.  The hydrogen balloon was removed and the contents of the flask 

were filtered through a short pad of Celite®.  The filtrate was concentrated in vacuo to 

provide a dark brown product, which was carried forward without further purification. In 

CDCl3 the compound exists as a 1.7:1 mixture of rotamers. One of the resonances in the 

1H NMR spectrum corresponding to a proton of the minor rotamer was integrated to 1, 

and all other integration data are reported relative to it. 1H NMR (500 MHz, CDCl3  
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ppm 9.24 (s, 1.4 H) 8.92 (br. s., 2.1 H) 7.94 (s, 2 H) 7.80 (s, 3.7 H) 7.51 - 7.70 (m, 9.7 H) 

7.42 (m, 1.1 H) 7.23 (m, 1.8 H) 7.05 (s, 1.7 H) 6.92 - 7.01 (m, 6 H) 6.66 - 6.74 (m, 3.6 H) 

5.93 (d, J=9.62 Hz, 1.7 H) 5.89 (d, J=7.78 Hz, 1 H) 5.61 (d, J=10.07 Hz, 1 H) 5.05 - 5.10 

(m, 1.9 H) 4.47 - 4.55 (m, 2 H) 4.28 - 4.33 (m, 1.8 H) 4.22 - 4.28 (m, 1.9 H) 4.07 (s, 3.1 

H) 3.98 - 4.03 (m, 1.7 H) 3.79 - 3.89 (m, 2.9 H) 3.51 - 3.66 (m, 2.4 H) 2.26 - 2.38 (m, 1.6 

H) 2.14 - 2.24 (m, 2.4 H) 1.91 - 2.01 (m, 4.0 H) 1.75 - 1.89 (m, 5 H) 1.28 (s, 4.3 H) 1.26 

(s, 4.3 H) 0.96 - 1.00 (m, 3 H) 0.70 (s, 3 H). 

BocHN
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OH

HN

F

N

NO

F

Boc

EDC, HOBt, DMF

64%

15

3432

H

 

tert-butyl (S)-1-((R)-2-(4-fluorophenyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxopent-4-en-2-

ylcarbamate (34) 

A flame-dried 100-mL round-bottom flask was charged with arylpyrrolidine 15 (3.46 

mmol, 1.0 equiv), amino acid 32 (884 mg, 3.63 mmol, 1.05 equiv), HOBt (583 mg, 3.80 

mmol, 1.1 equiv), and EDC (728 mg, 3.80 mmol, 1.1 equiv) and DMF (17.3 mL).  The 

reaction mixture was stirred overnight, after which it was diluted with DI H2O (20 mL) 

and extracted with EtOAc (3x).  The combined organics were washed with saturated 

aqueous NH4Cl (1x) and brine (1x), dried over Na2SO4, filtered, and concentrated in 

vacuo. The crude residue was purified by flash chromatography (Biotage®, 0-50% 

EtOAc/hexanes) to afford amide 34 as a white solid (859 mg, 2.20 mmol, 64% yield). In 

CDCl3 the compound exists as a 4.0:1 mixture of rotamers. One of the resonances in the 

1H NMR spectrum corresponding to a proton of the minor rotamer (C(Me)2CHCH2) was 

integrated to 1, and all other integration data are reported relative to it. 1H NMR (600 
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MHz, CDCl3)  ppm 7.28 - 7.35 (m, 3 H) 7.04 - 7.16 (m, 11 H) 6.95 (t, J=8.79 Hz, 8 H) 

6.08 (dd, J=17.28, 10.84 Hz, 4 H) 5.89 (dd, J=17.57, 10.84 Hz, 1 H) 5.48 (dd, J=8.05, 

2.20 Hz, 1 H) 5.19 (dd, J=7.91, 2.34 Hz, 5 H) 5.08 - 5.15 (m, 13 H) 5.05 (s, 1 H) 4.98 (dd, 

J=10.84, 1.17 Hz, 1 H) 4.89 (dd, J=17.57, 1.17 Hz, 1 H) 4.39 (d, J=9.96 Hz, 4 H) 4.20 - 

4.27 (m, 4 H) 4.12 - 4.20 (m, 1 H) 3.64 - 3.83 (m, 7 H) 2.37 (s, 1 H) 2.21 - 2.32 (m, 4 H) 

1.90 - 2.06 (m, 13 H) 1.79 - 1.90 (m, 5 H) 1.45 - 1.55 (m, 52 H) 1.14 - 1.21 (m, 27 H) 

0.81 (s, 3 H) 0.67 (s, 3 H). 
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tert-butyl (S)-1-((R)-2-(4-fluorophenyl)pyrrolidin-1-yl)-5-hydroxy-3,3-dimethyl-1-

oxopentan-2-ylcarbamate (35) 

An oven-dried 200-mL round-bottom flask was charged with alkene 34 (802 mg, 2.05 

mmol, 1 equiv) and THF (20.5 mL).  The flask was cooled to 0 oC and stirred at that 

temperature for 5 min, after which 9-BBN (0.4M hexanes, 15.4 mL, 6.16 mmol, 3.0 

equiv) was added dropwise over 10 min.  The reaction was allowed to warm to room 

temperature overnight.  The flask was returned to 0 oC and 2N NaOH (4 drops) was 

cautiously added, resulting in vigorous bubbling.  Another 9.25 mL 2N NaOH were 

slowly added followed by 30% H2O2 (8.2 mL).  The ice bath was removed and the 

contents were stirred rapidly at room temperature for 4 h. The contents were diluted with 

H2O and extracted with EtOAc (3x). The combined organics were washed sequentially 

with DI H2O, 10% aqueous sodium thiosulfate, and brine, dried over Na2SO4, filtered, 
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and concentrated. The crude residue was purified by flash chromatography (Biotage®, 

SiO2, 20-80% EtOAc/hexanes) to afford primary alcohol 35 as a white foamy solid (757 

mg, 90% yield). Rf=0.19 (50% EtOAc/hexanes, CAM). In CDCl3 the compound exists as 

a 2.3:1 mixture of rotamers. One of the resonances in the 1H NMR spectrum 

corresponding to a proton of the minor rotamer was integrated to 1, and all other 

integration data are reported relative to it. 1H NMR (500 MHz, CDCl3)  ppm 7.29 (m, 

1.9 H) 7.00 - 7.14 (m, 5.6 H) 6.93 (t, J=8.47 Hz, 4.3 H) 6.34 - 6.50 (m, 3.2 H) 5.47 (d, 

J=7.33 Hz, 1 H) 5.19 (d, J=7.33 Hz, 2.3 H) 4.53 (d, J=10.07 Hz, 2.3 H) 4.25 - 4.35 (m, 

2.3 H) 4.22 (d, J=10.53 Hz, 1.1 H) 4.04 (br s., 2.3 H) 3.70 - 3.80 (m, 4.9 H) 3.58 - 3.70 

(m, 3.8 H) 3.45 - 3.58 (m, 1.5 H) 2.29 - 2.40 (m, 1.3 H) 2.29 (s, 2.6 H) 1.76 - 2.01 (m, 

10.8 H) 1.44 - 1.51 (m, 21.9 H) 1.1 (s, 4.9 H) 1.08 (s, 4.9 H) 0.68 (s, 2.2 H) 0.49 (s, 2.2 

H); 13C NMR (126 MHz, CDCl3) All observed resonances are reported:  ppm 172.7, 

171.4, 171.2, 163.1, 162.6, 161.2, 160.7, 156.8, 156.1, 139.8 (d, J=3.66 Hz), 138.1 (d, 

J=3.66 Hz), 128.3 (d, J=8.24 Hz), 126.8 (d, J=7.32 Hz) 115.6 (d, J=22.0 Hz), 115.3 (d, 

J=21.1 Hz), 79.62, 79.57, 61.0, 60.4, 60.1, 58.6, 58.5, 58.3, 57.3, 48.3, 47.3, 41.64, 41.60, 

36.2, 36.1, 35.8, 34.3, 28.43, 28.40, 26.9, 26.6, 25.0, 24.6, 23.1, 21.7, 21.0, 14.2. 
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(S)-4-(tert-butoxycarbonylamino)-5-((R)-2-(4-fluorophenyl)pyrrolidin-1-yl)-3,3-

dimethyl-5-oxopentyl 3-nitro-5-(trifluoromethyl)benzoate (36) 

An oven-dried 2-dram vial was charged with a stir bar, alcohol 35 (195mg, 0.478 mmol, 

1.0 equiv), and acid 22 (135 mg, 0.573 mmol, 1.2 equiv). CH2Cl2 (1.5 mL) and DMF (1 

mL) were added, followed by EDC (275 mg, 1.4 mmol, 3.0 equiv) and DMAP (175 mg, 

1.4 mmol, 3.0 equiv).  The reaction mixture was stirred at room temperature overnight.  It 

was then diluted with DI H2O and extracted with EtOAc (3x).  The combined organics 

were dried over Na2SO4, filtered, and concentrated in vacuo.  The crude product was 

purified by flash chromatography to afford ester 36 as a white foamy solid (248 mg, 83% 

yield). In CDCl3 the compound exists as a 1.7:1 mixture of rotamers. One of the 

resonances in the 1H NMR spectrum corresponding to a proton of the minor rotamer was 

integrated to 1, and all other integration data are reported relative to it. 1H NMR (500 

MHz, CDCl3)  ppm 9.01 (d, J=1.83 Hz, 1.7 H) 8.88 - 8.96 (m, 1 H) 8.66 (d, J=1.83 Hz, 

2.3 H) 8.60 (s, 1.6 H) 8.53 (s, 1.1 H) 7.26 - 7.36 (m, 2 H) 6.96 - 7.08 (m, 4.5 H) 6.91 (t, 

J=8.70 Hz, 3.2 H) 5.34 (d, J=5.95 Hz, 1 H) 5.06 - 5.20 (m, 3.9 H) 4.53 (t, J=7.33 Hz, 3 

H) 4.49 (br. s., 1.7 H) 4.15 - 4.30 (m, 3.6 H) 3.60 - 3.81 (m, 3.6 H) 2.20 - 2.44 (m, 3 H) 

1.77 - 2.10 (m, 11.5 H) 1.50 - 1.60 (m, 2 H) 1.40 - 1.50 (m, 17.4 H) 1.09 - 1.18 (m, 7.8 H) 

0.88 (s, 2 H) 0.68 (s, 2 H). 13C NMR (126 MHz, CDCl3) All observed resonances are 

reported:  ppm 171.6, 171.2, 170.2, 163.3, 163.0, 162.7, 161.2, 160.7, 156.4, 155.8, 

148.6, 140.10, 140.08, 138.51, 138.48, 133.6, 133.5, 133.1, 132.8, 131.99, 131.96, 131.9, 

128.5, 128.4, 127.6, 127.5, 126.8, 126.7, 124.54, 124.51, 123.61, 115.8, 115.6, 115.4, 

115.2, 80.16, 63.6, 63.4, 61.1, 60.5, 60.4, 58.2, 56.8, 48.5, 47.2, 37.1, 37.0, 36.7, 36.5, 

36.0, 34.3, 28.40, 28.37, 23.8, 23.4, 23.3, 23.2, 22.1, 21.1, 14.3. 
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Thiourea (37) 

A 50-mL round-bottom flask was charged with Boc-protected amine 36 (248 mg, 0.40 

mmol, 1.0 equiv) and CH2Cl2 (10 mL).  The flask was cooled to 0 oC and TFA (3.3 mL) 

was added dropwise under an atmosphere of N2.  The reaction mixture was stirred at this 

temperature for 2 h, at which point the contents were concentrated in vacuo.  The crude 

amine salt was dissolved in CH2Cl2 (4 mL), and 1.3 mL of this solution was removed (for 

use in a different reaction). The solution was cooled to 0 oC, and NEt3 (110 μL, 3.0 equiv) 

and isothiocyanate 15 (97 μL, 2.0 equiv) were sequentially added to the flask dropwise. 

The reaction mixture was stirred and allowed to warm to room temperature over a period 

of 4h, at which point the contents were concentrated in vacuo.  The crude reside was 

purified by flash chromatography (Biotage®, 15-70% EtOAc/hexanes) to afford thiourea 

37 as a white foam (204 mg, 97%, 2 steps). In CDCl3 the compound exists as a 1.3:1 

mixture of rotamers. One of the resonances in the 1H NMR spectrum corresponding to a 

proton of the minor rotamer was integrated to 1, and all other integration data are 

reported relative to it. 1H NMR (500 MHz, CDCl3)  ppm 9.51 (br. s., 1 H) 9.42 (br. s., 

1.3 H) 8.94 - 9.08 (m, 1.4 H) 8.88 - 8.94 (m, 1 H) 8.65 - 8.74 (m, 1.97 H) 8.61 (s, 1.3 H) 
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8.52 (s, 1.1 H) 8.06 (s, 1.87 H) 7.92 (s, 2.3 H) 7.69 (s, 0.9 H) 7.64 (s, 1.3 H) 7.42 - 7.58 

(m, 2.2 H) 7.31 - 7.40 (m, 1.8 H) 7.04 (t, J=8.70 Hz, 1.9 H) 6.89 (dd, J=8.01, 5.27 Hz, 

2.3 H) 6.70 (t, J=8.47 Hz, 2.4 H) 5.84 (d, J=7.78 Hz, 1 H) 5.69 (d, J=9.62 Hz, 1.3 H) 

5.47 (d, J=9.62 Hz, 1 H) 5.09 (d, J=6.87 Hz, 1.3 H) 4.58 - 4.70 (m, 2.3 H) 4.47 - 4.58 (m, 

1.4 H) 4.35 (ddd, J=11.22, 8.01, 5.95 Hz, 1.3 H) 3.78 - 3.91 (m, 1.4 H) 3.50 - 3.66 (m, 2 

H) 2.20 - 2.47 (m, 2.7 H) 2.09 - 2.18 (m, 1 H) 1.73 - 2.02 (m, 6.3 H) 1.57 - 1.71 (m, 1.5 

H) 1.34 - 1.49 (m, 1.5 H) 1.28 (d, J=2.29 Hz, 6 H) 1.00 - 1.10 (m, 2.4 H) 0.68 (s, 2.3 H). 

13C NMR (126 MHz, CDCl3) All observed resonances are reported:  ppm 182.0, 181.6, 

172.3, 171.5, 170.3, 163.3, 163.0, 162.5, 160.5, 148.62, 148.59, 140.4, 139.8, 139.15, 

139.13, 137.07, 137.05, 133.4, 133.3, 133.2, 132.9, 132.4, 132.2, 132.15, 132.0, 131.95, 

131.9, 131.87, 128.5, 128.4, 127.5, 127.4, 124.7, 124.6, 124.1, 124.0, 122.1, 122.0, 121.4, 

118.9, 118.8, 116.1, 115.9, 115.2, 115.0, 63.3, 62.2, 62.0, 60.9, 60.6, 60.4, 49.1, 48.0, 

38.1, 37.8, 37.7, 37.4, 35.4, 34.3, 24.4, 24.2, 24.1, 23.5, 23.1, 21.6, 21.2, 14.3. 

 

 
 

 


