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Estimating Individual Causal Effects

Abstract

Most empirical work focuses on the estimation of average treatment effects (ATE). In this dissertation, I

argue for a different way of thinking about causal inference by estimating individual causal effects (ICEs). I

argue that focusing on estimating ICEs allows for a more precise and clear understanding of causal inference,

reconciles the difference between what the researcher is interested in and what the researcher estimates, allows

the researcher to explore and discover treatment effect heterogeneity, bridges the quantitative-qualitative

divide, and allows for easy estimation of any other causal estimand.

The framework I develop for estimating ICEs starts from the potential outcomes framework and then

combines existing methods for matching in causal inference with a Bayesian model to impute missing potential

outcomes. Researchers can use the resulting posteriors for the ICEs to derive the posterior for any other

causal estimand by simple aggregation. In my dissertation, I first lay out the basic framework and estimation

strategy. I then compare various models via simulation to test the effectiveness in recovering the true ICEs.

Finally, I apply the model for estimating ICEs to two applications: a randomized field experiment on

monitoring corruption from Olken (2007) and an experiment on the effectiveness of job training programs.

I show the flexibility of the model in estimating ICEs for different types of outcome and treatment variables

as well as with two-stage models using instrumental variables. I also show the various ways one can use the

model to detect treatment heterogeneity and estimate a large number of different causal estimands.
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Chapter 1

A Framework for Estimating

Individual Causal Effects

1.1 Introduction

What is the effect of political institutions on economic growth? Does UN intervention shorten the length

of wars? Do job training programs increase wages and employment prospects? Does aspirin lower blood

pressure? Researchers and scholars in every facet of industry and science grapple with causal questions all

the time, using randomized studies and/or observational data to answer these questions. Almost always,

the answers come in the following form: “there is a positive/negative causal effect1 of the treatment on the

outcome on average.” Almost all research focuses on estimating the average causal effect, which is defined

as the average of all the causal effects for every individual.2 Yet in almost all cases, the average causal

effect is not a specific causal effect for any one individual. Thus, there is a strong disconnect between what

researchers generally measure (the average causal effect) and their actual quantity of interest (the causal

1I use “treatment effect” and “causal effect” interchangeably throughout.

2I use the terms individual, observation, and unit interchangeably throughout.
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effect for person i or country j).

The causal literature is quite clear on the difference between the average and individual-level causal

effects. Under the potential outcomes framework, which dates back to Neyman but was formally defined and

popularized under the “Rubin Causal Model” (Rubin 1974), let W be a binary treatment variable taking on

a value of 1 if a unit receives treatment and 0 if it receives control. The potential outcomes Y (1) and Y (0)

represent the unit’s outcome if it had received either treatment or control. The individual causal effect

(ICE) for individual i is simply the difference between its potential outcomes under treatment and control.

τi = Yi(1)− Yi(0)

Since at most one of the potential outcomes for each unit is observed, one cannot observe the causal effect

of the treatment on the outcome. Rubin (1978) and Holland (1986) refer to this as the fundamental problem

of causal inference.

Almost every causal inference introduction begins with the ICE, yet quickly moves on to ways of identi-

fying the average treatment effect (ATE).

τATE = E[Y (1)− Y (0)]

= E[Y (1)]− E[Y (0)]

The ATE is easier to identify because one only needs to identify the means of the marginal distributions

of the two potential outcomes. Standard regression techniques that are widely used and easy to implement

have made the ATE the default quantity of interest. However, I argue that the focus on the ATE and

various other average effects, while easier to estimate, loses a lot of potential information about treatment

effect heterogeneity and has important implications for both research and policy. In this paper, I present

a unified framework for estimating individual causal effects using many of the same tools already in place

for estimating ATEs. I argue for a reorientation of the causal inference literature back toward estimating

individual causal effects and expound upon the benefits of such an approach.
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1.2 The Case for ICEs

Consider the following two statements:

• The treatment effect of W on Y is τ̂ .

• Our model predicts that an increase of one unit of W increases Y by β̂.

Variations of both statements are standard ways of describing causal effects in studies where a treatment

variable W purportedly affects an outcome of interest Y . Whether the treatment effect is estimated from

a regression model, from an experimental design, or from other forms of estimation, the estimate is usually

some average treatment effect, yet the language is often unclear as to the units of interest. In the two

statements above, τ̂ and β̂ are average treatment effects, but it is important to note what average treatment

effects represent. An ATE is not the effect of treatment on any one individual in the data (in most cases).

An ATE is not the effect of treatment on a hypothetical individual with a given set of covariates. An ATE

is not the effect of treatment for an average individual. Strictly speaking, an ATE is simply the average

of all the individual effects for the individuals in the data. By reframing ATEs and other causal quantities

in terms of aggregations of individual effects, estimating ICEs can allow for a more precise and clear

understanding of causal inference. Possible confusion over what ATEs represent can be cleared up by

referring to them as average effects of certain groups of individuals.

Often times, there is a temptation to apply the ATE to individuals of interest, such as in the case of using

a regression coefficient to predict outcomes for future or counterfactual observations. There is a disconnect

between what researchers are interested in, which is the effect for certain individuals or groups of individuals,

and what researchers estimate, which is an average effect. For example, academics may be interested in

explaining the effect of treatment in certain individuals, while policymakers may be interested in predicting

the treatment effect for certain individuals. Rarely are researchers actually interested in “the average effect”

per se. Estimating ICEs can reconcile the difference between what researchers estimate and what

they are interested in. Average effects only apply to individuals if researchers make the assumption of

a constant treatment effect across individuals, which is a strong and usually unrealistic assumption. This

leads to another point of emphasis between ICE estimation and ATE estimation, which is the ability of the
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former to examine treatment effect heterogeneity.

Consider the following study in Table 1.1 of a binary treatment indicator W on outcome Y with six

observations. In Table 1.1a, the data are presented in a traditional setup where Y denotes the observed

outcomes. In Table 1.1b, the same data are now presented in the form of potential outcomes. The question

Table 1.1: A Study with Six Observations

i Wi Yi
1 1 15
2 0 10
3 0 15
4 1 8
5 1 10
6 0 8

(a) Data

i Wi Yi(1) Yi(0)
1 1 15 ?
2 0 ? 10
3 0 ? 15
4 1 8 ?
5 1 10 ?
6 0 ? 8

(b) Data with Potential Out-
comes

marks represent unobserved data, so one can think about causal inference as simply a missing data problem

where the missing data are the unobserved potential outcomes for each unit i. A standard causal inference

study would proceed to estimate the ATE with mild assumptions simply as

τ̂ATE = Ȳt − Ȳc

= 11− 11

= 0

where Ȳt and Ȳc denote the average observed outcomes for individuals receiving treatment and control

respectively. The researcher would then note that the treatment has no effect. In a completely randomized

experiment, this estimate is an unbiased estimate of the ATE since it is assumed that the observed potential

outcomes are a random sample from the marginal distributions of the potential outcomes.

Now consider the same study in two different hypothesized worlds depicted in Table 1.2. In both scenarios,

the missing potential outcomes are filled in (italicized) by drawing from the observed potential outcomes.

The ATE remains the same as above in both cases. The last column of both tables contain the ICEs

4



Chapter 1. A Framework for Estimating Individual Causal Effects

(bolded). If the researcher proceeded by estimating the ATE, the estimate would be unbiased and equal

Table 1.2: Two Different Scenarios with Identical Average Treatment Effects

i Wi Yi(1) Yi(0) τi
1 1 15 15 0
2 0 10 10 0
3 0 15 15 0
4 1 8 8 0
5 1 10 10 0
6 0 8 8 0

(a) Treatment Has No Effect for Ev-
erybody

i Wi Yi(1) Yi(0) τi
1 1 15 10 5
2 0 15 10 5
3 0 8 15 -7
4 1 8 15 -7
5 1 10 8 2
6 0 10 8 2

(b) Treatment Helps Some and Hurts
Some

to 0 in both cases. However, the two scenarios are dramatically different. In Table 1.2a, the treatment has

no effect for every individual. In Table 1.2b, the treatment has a large positive effect for some and a large

negative effect for others. One may be tempted to conclude that an ATE of 0 implies the first scenario, but

the second scenario is just as likely. With any given ATE value, there are an infinite number of ways in which

the ICEs can aggregate to the same ATE. When estimating an ATE, researchers cannot say anything about

effects for specific individuals or groups of individuals without further assumptions. Often, researchers use

language that implies a constant effect for all individuals when only the ATE is estimated. In the presence

of treatment effect heterogeneity, the ATE is a misleading quantity that hides much of what goes on in the

data. By looking directly at ICEs, researchers can explore and discover treatment effect heterogeneity

in a straightforward manner and explore any potential outliers or different underlying causal mechanisms

amongst individuals or groups of individuals. The heterogeneity of treatment effects across individuals has

important implications for research and policy-making.

Estimating ICEs also allows researchers to bridge the divide between quantitative and qualitative

studies that exists in many areas of social science. As King, Keohane and Verba (1994) note, “the same

logic of inference underlies both good quantitative and good qualitative research designs,” yet there is still

a disconnect between quantitative and qualitative scholars over which type of study is better and which

results are more reliable. Part of the disconnect exists because quantitative studies use large N statistical

analyses to estimate causal effects whereas qualitative studies focus more on causal mechanisms and look

closely at a small number of cases. I argue that another part of the disconnect stems from the different

estimands and claims that each type of study attempts to make. Quantitative studies tend to collect data
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for a large N population, estimate average effects, and then implicitly attempt to apply the average effects to

explain individual cases. Qualitative studies collect data for a small n sample, estimate individual or small n

average effects, and implicitly attempt to generalize to the entire population. Each side estimates a different

estimand, yet both attempt to address general average and specific individual effects. The results can often

be dissatisfying to both sides, which leads to a divide. By estimating ICEs, quantitative researchers can

speak directly to qualitative researchers about treatment effects on individual cases without sacrificing the

ability to estimate average effects.

Although the inability to observe individual causal effects is the “fundamental problem of causal infer-

ence”, one point that is seldom addressed is that the ICEs are fundamental to causal inference. If one can

observe or estimate the ICEs, then any other causal estimand can be observed or estimated with very little

effort. Thus, an additional benefit of focusing on estimating ICEs is that once the ICEs are estimated,

the researcher can estimate any other causal effect by simply aggregating the ICEs. Typically, if

the researcher wants to estimate multiple causal estimands, he would have to develop a new model for each.

By focusing on estimating the fundamental quantity in causal inference, researchers are able to estimate an

unlimited number of other estimands by simple aggregation.

I have argued that there are at least five benefits to focusing on estimating ICEs rather than ATEs.

1. ICEs allow for a more precise and clear understanding of causal inference

2. ICEs reconcile the difference between the quantity in which the researcher is interested and the quantity

the researcher estimates

3. ICEs allow researchers to explore and discover treatment effect heterogeneity

4. ICEs bridge the quantitative-qualitative divide

5. ICEs allow for easy estimation of every other causal estimand

Estimating ICEs, however, entails a cost because they are unidentified and much harder to estimate correctly.

I argue that one can borrow existing techniques and frameworks in the causal inference and missing data

literature to tackle the problem of estimation.
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1.3 Existing Approaches to Causal Inference

Consider the typical situation in data analysis where there is a sample of N units indexed by i sampled

from a large or infinite population.3 Each unit i receives treatment Wi, where Wi = 1 indicates i received

treatment and Wi = 0 indicates i received control. Each unit also has potential outcomes Yi(1) and Yi(0),

where Yi is the observed potential outcome depending on the value of Wi. Each unit also has a set of

pretreatment covariates Xi which are assumed to be exogenous. Two basic assumptions are often needed to

estimate causal effects:

Assumption 1: Ignorability of Treatment Assignment

(Y (1), Y (0)) ⊥W |X

This assumption is satisfied with random assignment of treatment or when X contains all pretreatment

confounders that affect both W and the potential outcomes Y (1), Y (0). Along with the ignorability of

treatment assignment usually comes an assumption that 0 ≤ P (W |X) ≤ 1, namely that there is positive

probability of treatment for any X. The second important assumption is SUTVA.

Assumption 2: Stable Unit Treatment Value Assumption (SUTVA)

1. treatment assignment for one unit does not affect the potential

outcomes of another (no interference or spillover effect):

(Yi(1), Yi(0)) ⊥Wj , ∀i 6= j

2. only one version of each treatment possible for each unit

With this basic setup, I now review the causal inference literature and different approaches used to estimate

different causal estimands.

3The causal inference literature often uses the words sample, population, and superpopulation in different applications.
Generally speaking, the sample is drawn from a population of a given size. Sometimes, the population is the sample, in which
case the population is drawn from a larger superpopulation. For simplicity, I will generally refer to the data as the sample drawn
from a very large or infinite population, but one can also think of the framework as a sample drawn from a superpopulation if
the size of the sample is very close or equal to the size of the population.
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1.3.1 Average Treatment Effects

Imbens (2004) provides an in-depth review of the literature of estimating average treatment effects, which I

briefly review here. The most basic average treatment effect (ATE) that researchers estimate is simply

τpATE = E[Y (1)− Y (0)]

The expectation here is over the population that the sample was drawn from. The more accurate definition

for this estimand is the population average treatment effect (PATE), which differs from the sample treatment

effect (SATE).

τsATE =
1

N

N∑
i=1

[Yi(1)− Yi(0)]

Since all the information known about PATE is captured in SATE, an estimator for SATE is the best and

often a good estimator for PATE. Assuming that the sample is a random or representative sample from

the population, the difference between SATE and PATE is in the variance of the estimates. Even if all the

potential outcomes for the sample were observed, the potential outcomes for units not in the sample are not

observed, so the variance needs to be adjusted upward for PATE. In most cases, researchers are interested in

the population estimands, although the sample estimands can be of interest in situations where the sample

is not representative of the population. In reviewing the causal inference literature, I ignore the differences

between the sample and population versions of the estimands, assuming that researchers are estimating

sample estimands with possible adjustments to estimate population estimands.

If treatment assignment is randomized or plausibly randomized such as in an experiment, then researchers

can estimate the ATE by a simple difference in means,

τ̂ATE = Ȳt − Ȳc

where Yt and Yc denote outcomes for observations that received treatment and control respectively.
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Regression Approaches

Short of treatment assignment randomization, researchers need to condition on the set of confounders X to

estimate the ATE. Perhaps the most common class of methods to condition on X is the class of regression

estimators, which uses some functional form to estimate the average potential outcomes µ(w)(x) given X = x

for w = 1, 0. The general form of the regression estimator averages over the empirical distributions of the

covariates for treatment and control groups:

τ̂ATE,reg =
1

N

N∑
i=1

[µ̂(1)(Xi)− µ̂(0)(Xi)]

Many regression estimators impose a functional form for µ̂w(Xi) and possibly a parametric distribution for

Y . The common linear model imposes a linear relationship between X and µw(X)

µ(w)(Xi) = α+ τWi + β′Xi

Yi = α+ τWi + β′Xi + εi

and estimates the parameters by ordinary least squares. Generalized linear models (McCullagh and Nelder

1989) specify the relationship between X and µ(w)(x) through a linear functional form and a link function

g(·) and also impose a parametric distribution f(·) on Y .

g(µ(w)(Xi)) = α+ τWi + β′Xi

Yi ∼ f(·|µ(w)(Xi))

Other regression models, such as kernel regression, generalized additive models, smoothing splines, local

polynomial regression, are semiparametric or nonparametric and relax the parametric and linearity assump-

tions. The literatures on these models is enormous and I will not review it here (see Hastie, Tibshirani and

Friedman (2009) for a extensive introduction). Although regression is commonly used to reduce bias and

increase precision in estimating ATEs, it can actually lead to more bias when the functional form of the

covariates is specified incorrectly. In the case where there is little covariate overlap between treatment and

control groups, regression results can be very dependent on model specifications.
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Matching Approaches

Another way to condition on X is to use matching methods, which first appeared in the early 20th century

but was not developed theoretically until the 1970s (Rubin 1973a,b). Unlike regression methods, matching

methods rely less on functional form and model assumptions. The goal of matching is to approximate a

randomized experiment by matching individuals from treatment and control groups with similar covariate

profiles. Observations that do not have overlap in covariates are removed from the matched sample to avoid

extrapolation. In the ideal matching scenario, each treatment observation would be matched with one or

more control observations with the same exact values on all the covariates and/or vice versa. The average

treatment effect would then be calculated by differencing the treatment and control outcomes from this

matched sample. This exact matching approach may be feasible in the case of a small number of discrete

covariates. However, if there are continuous covariates and/or as the number of covariates increases, exact

matching is not feasible in a finite sample because of the curse of dimensionality. Numerous matching methods

have been developed to match observations in the hopes of achieving covariate balance across treatment

and control groups. Stuart (2010) provides a comprehensive overview of the current matching methods

developed. One point to note is that when estimating average treatment effects, the only requirement is that

the distributions of the covariates for the treated and control groups be similar in the matched sample, which

is less restrictive than requiring close or exact matches on all the variables for all observations. Researchers

can then combine the matched sample with regression analysis to adjust for remaining imbalance after

matching. Using the two methods in combination also helps to form “doubly robust” estimators which are

less sensitive to misspecifications in either the matching method or regression model (Rubin 1973b, 1979; Ho

et al. 2007).

Researchers who use matching methods to estimate average treatment effects do so by matching each

treatment observation to one or more control observations and each control observation to one or more

treatment observations. Often researchers are interested in another causal estimand, the average treatment

effect for the treated (ATT):

τATT =
1

Nt

∑
i:Wi=1

[Yi(1)− Yi(0)]
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where Nt =
∑N

i=1Wi is the number of treated units. From a computational standpoint, estimating the ATT

is simpler since the researcher only needs to match the treated units with control units and does not have

to match the control units with treated units or worry about whether the best matches for one imply best

matches for the other.. From a policy and academic standpoint, since the treatment effect is of interest,

it may be more appropriate to only look at units that actually received the treatment. Depending on the

nature of treatment assignment, the treated group may be qualitatively different than the control group and

thus important to look at separately. Although less common, the average treatment effect for the controls

(ATC) may also be of interest:

τATC =
1

Nc

∑
i:Wi=0

[Yi(1)− Yi(0)]

where Nc =
∑N

i=1(1 −Wi) is the number of control units. If ATT = ATC, then the ATE = ATT = ATC.

Also note that when using matching, observations which do not have good matches may be discarded, which

changes the quantity of interest being estimated.

When implementing a matching method, the researcher has to make several choices. At each step, there

are many options that the researcher can choose from. The factors to consider in any matching method are:

1. The variables to include in the matching

Since matching is a way of conditioning on confounding variables to satisfy ignorability of treatment

assignment, the researcher should include all pre-treatment variables that affect treatment assignment

and the outcome. However, the curse of dimensionality almost certainly implies that covariate balance

will be harder to achieve as the number of variables to match increases. With many variables to match

on, improving balance on one variable may very well decrease balance on another and increase the

bias of the estimate. Researchers may have to make choices on which variables to prioritize or choose

matching methods that put different weights on different variables (Diamond and Sekhon 2013). One

type of variable that generally should not be included is any variable that is affected by the treatment.

Including these post-treatment variables can result in bias in the estimate (Rosenbaum 1984).
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2. The measure of closeness between observations

When balancing on multiple variables (especially in the presence of continuous variables), the curse

of dimensionality makes it difficult to determine how “close” observations are on the covariates. Re-

searchers need to determine a measure of distance between observations and also decide how to match

observations given their distances. In the ideal case of exact matching, observations are matched if all

their covariate values are the same. Exact matching is rarely feasible, but one strategy is to coarsen

the covariates and match exactly on the coarsened variables (Iacus, King and Porro 2012). Another

strategy is to define distance between observations by a one-dimensional balancing score for each obser-

vation that summarizes the information in the covariates. Some examples of balancing scores include

the Euclidean distance, the Mahalanobis distance, propensity scores (Rosenbaum and Rubin 1983),

and prognostic scores (Hansen 2008).

Once distance is defined, researchers must then choose how to convert the distances into matches.

One option is to do nearest-neighbor matching, where each treated observation is matched with its

closest neighbors. The algorithm for nearest-neighbor matching may be greedy, with each observation

choosing its matches in order, or optimal, taking into account all possible matches and minimizing a

global distance measure. Note that greedy algorithms depend on the order of the observations. An-

other option is to divide the observations into a number of subclasses based on their distance measures,

where each subclass contains at least one treatment and one control observation. Observations in the

same subclass are then matched. Deciding the number and boundaries of the subclasses themselves is

another choice for the researcher. The researchers can define these directly, indirectly as in the case

of coarsened exact matching (Iacus, King and Porro 2012), or through an algorithm as in the case

of full matching (Rosenbaum 1991). A third option is to match using the whole set of observations

but weighting the observations by their distance measure as in Imbens (2000). Hainmueller (2012)

uses entropy balancing to derive weights, optimizing balance on the sample moments of the covariate

distributions. Note that all the options can be considered as weighted matching, where the first two

options put weights of either 0 or 1 on every observation. One can also combine any of these options

with calipers, which place restrictions on the distances for acceptable matches.
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3. The number of observations to serve as the “donor pool”

For each observation, the researcher chooses to match it with one or more “donor” observations that

received the opposite treatment. When matching each treated observation with control observations,

all the control observations represent the donor population from which the researcher chooses M of

them for the donor pool. The size of the donor pool in M -to-1 matching is often an arbitrary choice

by the researcher. The most common choice is 1-to-1 matching where the closest observation on the

distance measured is chosen. The choice of M is often a trade-off between bias and variance. In the case

of an unlimited pool of exact matches, increasing M reduces the variance of the estimate by including

more observations with more information. However, in practice, there are rarely exact matches, so

increasing M results in matching on observations that are farther away on the distance measure. This

decrease in variance by increasing M comes at the cost of increasing bias from matching on less similar

observations (Rosenbaum and Rubin 1985). M is also often chosen indirectly, such as in methods using

strata or subclassification where M is determined by the number of donor observations in the subclass

or in methods using weights where the number of donor observations is determined by the weights. M

can also be allowed to vary, which may reduce bias even further (Ming and Rosenbaum 2000).

4. Whether to match with or without replacement

When the number of possible donor pool observations is relatively small, researchers have an option to

match with replacement. Matching with replacement reuses observations in multiple donor pools such

that certain observations may be matched more than once. Matching with replacement can reduce bias

since it usually results in better quality donor pools. However, the outcome analysis should take into

account the fact that observations are used multiple times. The number of unique donor observations

used should also be monitored so that the results are not dependent on using information from a small

number of the donor population.
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5. How to check covariate balance to determine the success of the matching

The goal of matching is to create a matched dataset with similar distributions in the covariates for the

treated and control groups. Therefore, to verify that the matching worked properly, the researcher must

assess covariate balance in the matched sample such that p̃(X|W = 1) = p̃(X|W = 0) where p̃ is the

empirical distribution. Ideally one would like to examine the multivariate distributions of the covariates

for the treatment and control groups. However, comparing multivariate distributions becomes difficult

as the dimensions increase. Although some have suggested using multivariate imbalance measures (such

as the L1 statistic), most applications look at the marginal empirical distributions of the covariates and

check balance on the moments (such as the standardized means) of the distributions. Others visualize

balance graphically with Q-Q plots or plots of the different moments of the distributions. Other ways

to check balance include running hypothesis tests to test whether the marginal distributions of the

treated and control group are the same, although Imai, King and Stuart (2008) argue rightly that

what matters is the in-sample balance rather than out-of-sample population balance. There are also

certain matching methods that allow the researcher to define the level of imbalance ex-ante, thus

constraining the post-matching imbalance to a certain level.

Matching methods have become increasingly popular in the causal inference literature because of its ability

to mimic randomized experiments and its lesser reliance on parametric modeling assumptions. I revisit

many of these matching methods in more detail and discuss how matching methods can be used to estimate

individual causal effects.

Other Approaches

Besides matching and regression, other approaches exist that try to identify average treatment effects,

usually by leveraging aspects of the data or external circumstances to approximate random assignment

of treatment. For example, one can use natural experiments where a treatment has been pseudo-randomized

by nature. Another approach is to use instrumental variables analysis, where the researcher has a randomized

or plausibly ignorable instrumental variable that is correlated with the treatment variable of interest. Finally,
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regression discontinuity designs attempt to leverage sharp discontinuities in the treatment variable to conduct

analyses as if the treatment has been randomized for units near the discontinuity.

A lesser known but potentially powerful modeling approach to estimate average treatment effects is with

Bayesian methods. Rubin (1978) introduces a general Bayesian framework for estimating treatment effects.

One way to use Bayesian methods is to model the potential outcomes directly. Another way is to estimate

regression models using priors on the regression coefficients to weight the importance of various covariates.

Although very little has been done on integrating matching methods and Bayesian approaches, I argue for

using a Bayesian framework with matching methods to estimate individual causal effects.

1.3.2 Treatment Effect Heterogeneity

Treatment effect heterogeneity exists when there are varying average treatment effects for various subgroups

of the inferential population. Treatment effect heterogeneity is an important topic in many fields, especially in

the medical sciences where a treatment may help some patients but hurt others (Kravitz, Duan and Braslow

2004; Rothwell 2005). Political scientists are also increasingly interested in treatment effect heterogeneity

with substantive implications (Feller and Holmes 2009; Arceneaux and Nickerson 2009; Gaines and Kuklinski

2011; Imai and Strauss 2011). In the presence of treatment effect heterogeneity, estimating a simple average

treatment effect may mask important differences in treatment effects as I demonstrated above. The most

common way to test for treatment effect heterogeneity is to estimate the average treatment effect for different

subgroups of the sample using any of the methods described above. The subgroups are defined by the specific

covariates and the average treatment effect within a subgroup is commonly known as the conditional

average treatment effect (CATE):

τCATE,x = E[Y (1)− Y (0)|X = x]

where x denotes the covariate values of the subgroup. Treatment effect heterogeneity occurs when the

CATEs differ for different subgroups. However, two general sets of complications arise when estimating

multiple CATEs: 1) small sample sizes and limited power and 2) multiple testing problems and arbitrarily

defined subgroups.
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Recall that for any statistical test, the power of the test is inversely related to the sample size. When

testing for effects within subgroups in the same dataset, the sample size is usually significantly smaller than

the size of the original dataset N . This is especially true in clinical trials, where N is usually small to begin

with. Unless the subgroup treatment effects are quite large, standard statistical tests often fail to detect

effects in subgroups (Pocock et al. 2002). One solution to the problem of small sample sizes in subgroup

analyses is to use interaction terms where the variable defining the subgroups is interacted with the treatment

indicator. Although the use of interaction terms better captures the extent of the information in the data

and uses the data more efficiently, the estimators used are still usually limited by the need to appeal to large

sample properties, while the subgroup analyses rely on smaller and smaller samples.

Ironically, many existing subgroup analyses are also susceptible to a second complication of multiple

testing problems and arbitrarily defined subgroups. When looking for treatment effect heterogeneity, the

researcher often tests for significant effects over multiple subgroups defined by the covariates. With multiple

tests, the probability of a false positive is greatly inflated and can lead to misleading results (Lagakos 2006).

Crump et al. (2008) develop nonparametric tests for the null of no treatment effect heterogeneity, which by-

pass the multiple testing problem but fail to specify exactly which subgroups have heterogeneity. In addition

to the multiple testing problem, the choice of subgroups to examine for treatment effect heterogeneity is

often left to the researcher, which creates potential validity and incentive compatibility concerns. Subgroups

can be chosen either arbitrarily or with some substantive theory in mind. They can be prespecified before

the experiment or chosen post-hoc. Recent data mining techniques have been developed to remove the

choice of subgroups from the researcher’s control by using learning algorithms to search through the space

of treatment-covariate interactions to detect statistically significant effects (Green and Kern 2012; Imai and

Ratkovic 2013).

The literature on subgroup analysis and treatment effect heterogeneity is relatively small compared to

the literature on estimating ATEs. When testing for treatment effect heterogeneity, it is sometimes unclear

whether the quantities of interest are the CATEs themselves or the differences in CATEs. Estimating CATEs

often seems to boil down to estimating ATEs on smaller randomly chosen subsets of data. The estimators

themselves often rely on large sample approximations that may not even hold in the larger full dataset.

Matching techniques that often work well in estimating ATEs are seldom used in estimating CATEs. The
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interpretations of the interaction terms in the treatment effect heterogeneity setting may also be tricky,

especially when the covariate that is interacted is more complicated than a binary variable. Other scholars

have approached the topic differently by developing bounds for the proportion of the population that has

treatment effect heterogeneity (Gadbury, Iyer and Albert 2004). I argue that an even easier way to examine

treatment effect heterogeneity is to estimate the individual causal effects themselves, bypassing the need for

complicated interaction models and testing at the subgroup level.

1.3.3 Individual Causal Effects

The literature on estimating individual causal effects is substantially smaller than either the literature on

estimating ATEs or treatment effect heterogeneity, which mirrors the lack of attention scholars have paid to

the topic. The simplest way to estimate an ICE is to estimate a general model for ATEs and predict the

individual effects based on that model. For example, in medicine, researchers suggest calculating the baseline

disease risk for any individual patient based on covariates and an existing model and then calculate the effect

of treatment on that patient using the overall effect from a clinical trial (Dorresteijn et al. 2011). A second

approach to estimate ICEs requires multiple datapoints over time, usually one or more “pre-treatment”

datapoints and one or more “post-treatment” datapoints. The simplest example would be a crossover design,

where individuals are randomized to one treatment at time t and another at time t + 1. In this case, the

individual would act as both treatment and control observations. However, strong assumptions about time-

period effects and treatment carry-over effects across time need to be made. Steyer (2005) proposes a more

general model involving multiple pre-treatment and post-treatment observations to measure the “latent”

true expected outcomes. Abadie, Diamond and Hainmueller (2010) introduce the use of synthetic controls

to estimate the treatment effect for a single unit with time-series data. The synthetic controls are created by

comparing and weighting all the control units with the unit that received treatment and calibrating based

on the outcome variables for the time periods before the unit received the treatment.

Recent work has focused on using both Bayesian methods and matching methods developed for esti-

mating ATEs and adapting them to estimate ICEs. As Abadie and Imbens (2006) put it, any matching

estimator simply “imputes the missing potential outcomes.” Rubin and Waterman (2006) use propensity
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score matching to create “clones” for each treated unit in order to estimate ICEs, although their approach

does not include any uncertainty estimates. An (2010) suggests that using a Bayesian propensity score esti-

mator can incorporate uncertainty over the matching procedure to estimate individual effects. Rubin (2005)

presents a general framework in which missing potential outcomes can be imputed by drawing from the

posterior predictive distribution of potential outcomes in any Bayesian model. Pattanayak, Rubin and Zell

(2012) stratify treatment and control observations using estimated propensity scores and then use a Bayesian

model within each strata to estimate ICEs. Gutman and Rubin (2012) develop imputation methods using

subclassification and splines with knots at the borders of the subclasses to impute the missing potential

outcomes. Finally, Jin and Rubin (2008) assume that the potential outcomes Y (1) and Y (0) are correlated

by the parameter ρ and test the sensitivity of the causal effects to different values of ρ. In the next section,

I introduce a flexible general framework to estimating ICEs that builds on many of these studies, using both

Bayesian methods and a wide variety of matching methods.

1.4 Estimating Individual Causal Effects

One reason why ICEs are not estimated or points of focus is that ICEs are not identified in the data without

further assumptions. Suppose that for an individual i, one posits that the ICE can be -1000, 0, or 9999.8.

Statistical identification requires that the data and our estimation method tell us which of the three values is

more likely to be true. However, since one does not observe the missing potential outcome, the data cannot

give us any more information about the ICE for individual i. Given that identification is impossible, I argue

that one should estimate ICEs by deriving a range of plausible values for the ICEs given information from

other observations in the data. I use a Bayesian framework which gives us a posterior distribution of our

ICEs based on information from the data and our prior beliefs rather than an identified point estimate.

The approach I use builds on a Bayesian framework for imputing missing potential outcomes first intro-

duced by Rubin (1978), with similarities to the approach used in Pattanayak, Rubin and Zell (2012). As

before, let Wi denote a binary treatment assignment indicator for unit i with an observed outcome Yi and
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a vector of pre-treatment covariates Xi. Define Y mis
i to be the unobserved potential outcome for unit i:

Y mis
i =

Yi(1) if Wi = 0

Yi(0) if Wi = 1

Let τi be the individual causal effect for unit i:

τi =

Y
mis
i − Yi if Wi = 0

Yi − Y mis
i if Wi = 1

which I can rewrite simply as

τi = Wi(Yi − Y mis
i ) + (1−Wi)(Y

mis
i − Yi)

Since τi is a deterministic function of Y mis
i and the observed data, I can calculate τi by simply imputing

Y mis
i . Our uncertainty around τi also comes only from our uncertainty around Y mis

i since Yi is observed.

To start, recall the most basic framework found in many regression models used in the social sciences

(e.g. generalized linear models). In a typical regression setup, Y is a random variable that follows some

probability distribution defined by a set of parameters θ conditional on covariates X and treatment W .

Yi ∼ f(·|θi, Xi,Wi)

The parameter vector θi includes the mean of Yi, µi, which is usually parameterized as a function of the

regression coefficients β, and possibly some ancillary parameters φ. I then estimate β in our regression model

and derive average causal effects, since β is not subscripted by i. Note that typical regression models do not

reference the missing potential outcomes, although one could use the regression model to predict the missing

potential outcomes.

In my framework for estimating τi, I take a slightly different approach to modeling the data. Suppose
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instead that our data is a finite sample of size N drawn from the following data generating process:

Yi = h(X
(p)
i )

for Wi = 0
Y mis
i = h(X

(p)
i , τi)

Yi = h(X
(p)
i , τi)

for Wi = 1
Y mis
i = h(X

(p)
i )

where X
(p)
i is the set of all prognostic variables (variables that predict the outcome) including any confound-

ing variables and h(·) is some unknown function. First, note that the framework is restricted to the finite

sample and one can only estimate individual causal effects for units in the data. Looking only at the finite

sample allows us to appeal to a Bayesian setup. Also, the idea of individual causal effects is fundamentally

restricted to the sample since individuals only appear in the data, and not in some superpopulation. I

also assume that if the data generating process repeated multiple times under the same exact conditions, τi

remains constant for i. Second, the potential outcomes are fixed and completely determined by X
(p)
i and

W , which are also fixed. In theory, if every single variable that affects the outcome can be measured, one

could predict the outcome perfectly.4 In practice, only a very small subset of X
(p)
i is observed. Partition

X
(p)
i into a set of observed covariates, Xi, and a set of unobserved covariates, X

(u)
i .

X
(p)
i = {Xi, X

(u)
i }

If Xi contains at least all the variables that makes treatment assignment ignorable, then the ignorability

4The approach I am taking to the data generating process is that any outcome can be predicted perfectly by observing the
complete set of prognostic variables and knowing the functional form. Philosophically, this argument may conflict with the
traditional statistical idea of randomness and unpredictability. In practice, the two approaches are the same since the full set
of prognostic variables is never observed and I proceed by modeling the outcomes as random. However, I take this approach
to make the two points. First, since the quantity of interest is the individual causal effect, I want to stress that the subscript i
takes on a special meaning that is specific to that individual. Therefore, i can be modeled and predicted completely in theory.
Second, I want to make the point that including more prognostic variables can give us more information about the missing
potential outcome.
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assumption gives us

(Y (1), Y (0)) ⊥W |X

τ ⊥W |X

X(u) ⊥W |X

Note that the assumption that τ is independent of treatment assignment conditional on X implies that one

can use information from the opposite treatment group to inform the missing potential outcome for i. In a

simple example, assume that observation i is treated and observation j is control and they have the same

value for Y (0). If, for example, the ICEs were systematically larger for those assigned control, then using

information from j would overestimate τi.

These ignorability statements imply some type of randomness in the data. I assume that conditional on

the observed X, the unobserved X(u) are essentially random across treatment and control observations. The

randomness is then modeled with the following:

Y mis
i ∼ f(·|θmis

i , Xi,Wi)

where θmis
i represents the distributional mean of the outcomes conditional on the observed Xi.

5 Simply

put, observations with the same values of Xi and Wi are randomly drawn from a common distribution,

conditional on Assumptions 1 and 2 being satisfied. Strictly speaking, θmis
i should be denoted as θmis

Xi,Wi
,

which indicates that it is the mean of the missing potential outcome and that observations with the same

observed covariate vector and treatment status as i have the same mean. I use θmis
i to simplify notation.

Consider an observation j where Xj = Xi and Wj = 1 −Wi. Then this implies that Y mis
i and Yj are

5For some distributions, there may be ancillary parameters in addition to the mean. In that case, θmisi would be a vector of
parameters. For the sake of notational convenience and simplicity, I assume that f(·) is parameterized solely by the mean for
now.
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modeled as generated from the same distribution:

Y mis
i ∼ f(·|θmis

i , Xi,Wi)

Yj ∼ f(·|θmis
i , Xj = Xi,Wj = 1−Wi)

This suggests that if i is a treated observation, one can use observed outcomes for control observations

with the same value on X as i to estimate θmis
i . This also implies that one can model the data generating

process for the observed data as

Yi ∼ f(·|θobsi , Xi,Wi)

θobsi = Wi(θ
mis
i + τi) + (1−Wi)(θ

mis
i − τi)

However, because I assume that Yi is fixed and observed, θobsi is not an interesting parameter and is not

estimated. θmis
i , the mean of the distribution for the missing potential outcome, is the key parameter of

interest in this framework. The stochastic nature of the outcomes reflects the contributions of the unmeasured

prognostic variables, which are assumed to be independent of treatment assignment. In other words, each

potential outcome for any individual i is a deterministic function of observed and unobserved prognostic

covariates. Then θmis
i is estimated by matching to create observations that are considered to be similar on

the observed covariates X:

θmis
i = m(Xi,Wi, Y )

where m(·) is a matching estimator. The assumption made with this setup is that the potential outcomes

are independent conditional on Xi. That is, Yi gives no extra information about Y mis
i and vice versa.

There is a slight difference between my framework and other approaches to causal inference as to where

the randomness occurs in the dataset. Most approaches make appeals to superpopulations and estimate

population parameters. Units are assumed to be drawn from these superpopulations. For example, one

common approach is to assume that W , X and Y are all random variables (Rubin 2005, 2008). Abadie and

Imbens (2006) on the other hand assume that the triplet {Y,W,X} is drawn at random. In my approach,
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there is no superpopulation and the only randomness comes from the unknown X(u). I am strictly interested

in estimands in the observed sample. If X(p) was fully observed, there would be no randomness and all the

parameters can be calculated. Although my framework can be adjusted and applied to other approaches

or appeal to superpopulations, I make explicit the notion that randomness in Y mis comes only from not

observing X(u). In practice, there is very little difference between my assumption about the source of

randomness and the typical setup. For example, one can think of X(u) as simply the error term ε in linear

regression models.

This framework involves two steps: a matching step to estimate θmis
i and an imputation step to get an

imputed value of Y mis
i accounting for the unobserved prognostic covariates. Each step is also characterized

by a type of uncertainty that eventually propagates to uncertainty around τi. The matching step has estima-

tion uncertainty and the imputation step has fundamental uncertainty (King, Tomz and Wittenberg 2000).

Estimation uncertainty refers to the uncertainty in estimating θmis
i , which encompasses uncertainty over the

parameters of the matching procedure, uncertainty due to finite sample size, and possibly even uncertainty

over the choice of the matching procedure itself. Estimation uncertainty is a function of the variation in

outcomes and the size of the donor pool. Fundamental uncertainty is usually described as randomness or

chance events that affect the outcome but is not included in the set of conditioning variables. In other

words, fundamental uncertainty reflects the influence of our unmeasured prognostic variables. All things

being equal, conditioning on more variables that affect the outcome should reduce fundamental uncertainty.

I introduce various ways to perform the matching step in the next section, borrowing from many existing

techniques in the causal inference literature. Both matching and imputation steps are then incorporated

into a general Bayesian model. I then test the performance of the various techniques for estimating τi via

simulation.

1.4.1 The Matching Step

To estimate τi, I first need to conduct matching N times to estimate θmis
i for all i in the data. Let D

(i)
j be

a binary variable that denotes whether or not an observation j is in the donor pool for observation i when
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estimating τi:
6

D
(i)
j =

 1 if Wj 6= Wi & j is a match to i

0 otherwise.

The size of the donor pool for observation i is simply
∑N

j=1D
(i)
j . In matching procedures where observations

can be weighted donors, D
(i)
j acts as the donor weight and can take on any value between 0 and 1.7 The

matching step involves defining D
(i)
j by choosing a set of donor observations that are similar to i on the

conditioning variables Xi. I then use the observed outcomes in the donor pool to estimate θmis
i .

In an ideal world, one can expand Xi to include all prognostic covariates measured without error and

the observations in the donor pool would be exact matches to i on all Xi. There would be no estimation

or fundamental uncertainty and Y mis
i can be imputed exactly. However, in practice, finite sample sizes, a

large number of prognostic covariates, many of which are unobserved, and/or the presence of continuous

covariates precludes the possibility of exact matching on all prognostic covariates. Instead, I use matching

procedures to define D
(i)
j and calculate the mean of the donor pool as

ȲD(i) =

∑N
j=1 YjD

(i)
j∑N

j=1D
(i)
j

I then use a Bayesian model (described below) to combine ȲD(i) and a prior to estimate θmis
i .

The decisions made with respect to the selection of the matching procedure mirrors the choices usually

made when using matching to estimate average treatment effects. In this case, since the quantity of interest

is the individual causal effect, the goal is no longer simply distributional balance across treatment and control

observations. Instead, one needs to create a donor pool that is as close to i on Xi as possible.

The following choices must be made with respect to our matching algorithm:

• The set of conditioning variables X: All confounding variables should be conditioned on to satisfy

6In the case of exact matching, D
(i)
j denotes whether j and i are exact matches (Xj = Xi). Since most methods researchers

use are approximate matching methods, D
(i)
j is random even if W and X are fixed. One should conceptually think about D

(i)
j

as an indicator for whether or not Xj ≈ Xi.

7For non-binary donor weights, some of the equations below must be adjusted. For now, I assume that D
(i)
j only takes on a

value of 0 or 1.
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the ignorability of treatment assignment and causal effect independence assumptions. In addition,

other prognostic variables should also be conditioned on to improve the efficiency of the estimates and

possibly reduce bias (Rubin and Thomas 2000; Pocock et al. 2002). However, with limited sample sizes

and small donor pools, there is a tradeoff between finding good matches and conditioning on more

variables, akin to a bias-variance tradeoff. Researchers should prioritize conditioning on confounders

that are also highly predictive of the outcome.

• Size of the donor pool: The size of the donor pool, M =
∑N

j=1D
(i)
j is chosen either directly or

indirectly by the researcher and may vary across i. By definition, increasing the size of the donor pool

results in the inclusion of matches that are either worse or about the same in terms of similarity to i

on Xi. This results in a more efficient estimate of θmis
i , but may also introduce more bias due to the

inclusion of poorer quality matches.

• Matching with or without replacement: Since the quantity of interest is at the individual level,

reusing matches for multiple ICEs does not pose any problems and leverages better information. Match-

ing with replacement is ideal and may be necessary for small sample sizes.

• Weighting donor observations: By default, in most matching applications, donor observations each

receive a weight of 1, implying that all donors are equally good matches. Expanding the size of the

donor pool likely results in matches that are poorer matches, so the researcher can choose to downweight

donors as a way to reduce the influence of poor matches on the estimate. This also reduces the effective

size of the donor pool and incorporates greater uncertainty in the presence of poorer matches.

• Definition of closeness: Since in most cases, exact matching is impossible, choosing the definition of

closeness between matches is probably the most important task. One can choose amongst a myriad of

dimension-reducing balancing scores, although exact matching should be used when possible. A mix

of exact matching and balancing scores is also feasible.

• What to do with unmatched observations: For some observations, it is likely that the predefined

criteria produces no matches for the donor pool. For estimating individual causal effects, discarding

unmatched observations means not estimating a causal effect for that individual. When aggregating

to average effects, discarding observations changes the quantity of interest. The researcher can force

matches by relaxing some of the matching criteria imposed.
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Short of exact matching, it is unclear which matching procedure performs the best a priori in estimating

θmis
i . I consider a few options that are prevalent in the matching literature, adapting and combining some

of them to try to gain efficiency and reduce bias. I then test the performance of each of these options via

simulation. My Bayesian model also includes an option to incorporate uncertainty around any parameters

within a specific matching procedure or uncertainty over the matching procedure itself. The matching

procedures that I consider are:

• nearest neighbor matching on the Mahalanobis distance

• nearest neighbor matching on the predictive mean (often used in the missing data imputation literature)

• nearest neighbor matching on the propensity score

• subclassification on the propensity score

While there are numerous matching procedures to consider, I focus on these four methods because they

are relatively easy to estimate and understand, they allow for all observations to be matched, and they

have been used extensively by researchers. For each matching procedure, I match N times, once for each

observation in the data. I match with replacement in the sense that an observation can be a part of more

than one of the N donor pools, but each observation may only be used once per pool. I also test each

procedure using multiple donor pool sizes, varying the choice of donor pool size.

Although the authors of the various procedures have demonstrated the performance of their procedures

in estimating average treatment effects, none of the procedures attain the ideal of exact matching. The

procedures are simply a means to achieve covariate balance, where the distributions of the covariates are

similar across treatment and control groups. In this case, since the comparison is between a single observation

and a donor pool, the analogue to balance is simply whether the donor pool observations are exact matches

to i. Deviations from exact matches creates bias in what is known as the matching discrepancy. Abadie

and Imbens (2006) argue that the bias from the matching discrepancy may be negligible for ATEs when

matching on a scalar or when the number of observations is large. It is unclear how the bias from the

matching discrepancy affects the estimates of θmis
i and τi. Apart from the matching discrepancy, there may

also be bias because of the estimation uncertainty around θmis
i , for which a Bayesian model accounts, as
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described below.

1.4.2 The Imputation Step

Since estimating τi is essentially a missing data problem where Y mis
i is missing, the methods used are very

similar to multiple imputation to deal with missing data (Rubin 1987; Little and Rubin 1987). Once I get

an estimate of θmis
i , I need to fill in a value for Y mis

i , denoted by Ỹ mis
i to calculate τ̃i.

8 The imputation

step is necessary to account for some fundamental uncertainty associated with X
(u)
i that the matching does

not account for. Y mis
i should be imputed with values consistent with the observed Y values, so Ỹ mis

i should

be binary for binary Y and continuous for continuous Y . Recall that Y mis
i was assumed to be drawn from

some distribution f(·) conditional on observed covariates:

Y mis
i ∼ f(·|θmis

i , Xi,Wi)

For the imputation, I use a parametric approach that follows Rubin (2008) by drawing a value of Ỹ mis
i

from its posterior predictive distribution and repeating the process multiple times for each i. I end up

with many imputed Ỹ mis
i for each i, which forms a posterior predictive distribution that characterizes both

estimation and fundamental uncertainty. I then use that posterior predictive distribution to calculate a

posterior distribution for τi. The performance of parametric imputation likely depends on how accurately

θmis
i is estimated as well as the size of the donor pool.

1.4.3 A Bayesian Model for Estimating τi

The general method I introduce is very simple with the following steps:

1. Choose a matching procedure.

2. For each i, use the matching procedure to create a donor pool.

8The ∼ above a parameter refers to a simulated draw of that parameter from its posterior distribution.
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3. Impute the missing potential outcome Y mis
i using the donor pool and an assumed parametric distri-

bution.

4. Calculate τi from the observed and imputed missing potential outcomes.

5. Repeat 2-4 for all i.

6. Repeat 1-5 many times for uncertainty.

I incorporate these steps into a Bayesian model for a coherent and statistically principled framework.

The Bayesian model also allows for inclusion of priors when qualitative knowledge exists on any specific

observations, although in general, I use uniform priors so that the results approximate those that may be

derived from a non-Bayesian framework. The Bayesian model accounts for both estimation and fundamental

uncertainty using Markov Chain Monte Carlo (MCMC) methods to simulate from the posterior distribution

of the parameters.

Let θ denote the vector of parameters to be estimated. At the most general level, θ includes the vector of

θmis
i , parameters from the matching procedure which are denoted by θM, and possibly the choice of matching

procedure, denoted by M.9 Although M is treated as a parameter, the data tells us nothing about M so

the marginal posterior is equal to the prior for M. M is simply included here as an option to reflect the

researcher’s uncertainty over the best or “correct” matching specification.

The typical Bayesian posterior is expressed as

p(θ|Y,X,W ) ∝ p(Y |θ,X,W )p(θ)

Since W is independent of the potential outcomes through the ignorability assumption and X is independent

of the potential outcomes conditional on θmis
i , I suppress W and X from the conditioning set for notational

simplicity.

9For example, M can be nearest neighbor 3-to-1 propensity score matching, in which case θM are the coefficients in the
propensity score equation. The researcher can varyM by choosing a different number of donor observations, changing how the
distance metric is defined, or changing the set of matching variables.
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The idea behind this model is simple. Because the observed Yi is fixed when i is the individual of interest,

the only randomness comes from Y mis
i . Nature randomly generates observations that come from the same

distribution as Y mis
i . The goal of the matching is to determine which of the observed observations comes

from this distribution parameterized by θmis
i . The posterior is roughly translated into

p(θ|Y,X,W ) ∝
N∏
j=1

{p(Yj |θ,X,W ) given j is a match for i} × priors

The model is composed of two parts. The first part is a matching part to find the posterior for the parameters

θM. The second part finds the posterior for θmis. I consider the matching part to be largely independent of

the second part conditional on finding the observations matched. That is, once one knows which observations

are matches, θmis is independent of θM. Depending on the matching procedure, the matching parameters

may or may not appear in the likelihood.10 For simplicity and generality, I restrict my discussion of the

likelihood term to simply focus on the likelihood for θmis assuming that the matching parameters are given.

Likelihood

The likelihood requires specifying the distribution that generated the data. Recall that our matching pro-

cedure is intended to generate a set of donor observations with “the same” values of X such that the donor

observations are drawn from the same distribution as Y mis. Now suppose one observes N binary variables

D(i) (one variable for each i), which are indicators for whether j is a good match for i. Denote the set of

D(i) variables as D. Then the likelihood11 becomes

Lcomp(θmis|Y,D) = p(Y,D|θ)

= p(Y |D, θmis)p(D|θ)

10For example, in Mahalanobis or propensity score matching, the outcome is not used so the matching parameters do not
appear in the likelihood for Y . For predictive mean matching, the outcome is used. One can choose to model θM separately or
jointly with θmis. The process I describe models them separately by doing the matching independently first.

11Again I assume that the matching parameters are estimated separately and given.
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This likelihood is known as the complete data likelihood as it refers to the likelihood if one were to observe

the complete set of data including D. The distribution in the second term of the complete data likelihood

is determined by matching:

p(D|θ) =

N∏
i=1

N∏
j=1

p(D
(i)
j |θM,M)

The first term in the complete data likelihood specifies the sampling distribution for the donor observa-

tions for each θmis
i :

p(Y |D, θmis) =

N∏
i=1

N∏
j=1

[
p(Yj |θmis

i )
]D(i)

j

=

N∏
i=1

N∏
j=1

[
f(·|θmis

i )
]D(i)

j

Since Yi is assumed fixed and not modeled when estimating τi, this piece of the likelihood implies there is

randomness only when an observation is used as a donor. The complete data likelihood is then rewritten as

Lcomp(θmis|Y,D) =

N∏
i=1

N∏
j=1

[
p(Yj |θmis

i )p(D
(i)
j |θM,M) +

p(Yj |θotherj )
(

1− p(D(i)
j |θM,M)

)]
=

N∏
i=1

N∏
j=1

[
p(Yj |θmis

i )p(D
(i)
j |θM,M)

]D(i)
j

In the first equation, θotherj simply refers to the fact that if j is not a match for i, then it is drawn from some

other distribution that is not of interest. Therefore, the second term of the first equation drops out since

non-matches do not contribute information to θmis. In all the likelihoods, the product over all i’s indicates

the full set of ICEs for every observation in the data.

The observed data likelihood simply integrates over our missing D:

Lobs(θ
mis, Y ) =

∫
p(Y,D|θmis) dD
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The integral is generally mathematically intractable but one can simulate from the posterior via MCMC

methods. The Bayesian model presented here uses the data augmentation algorithm of Tanner and Wong

(1987). The original posterior is augmented with D to make computation more tractable.

Priors

All Bayesian models require specifying a prior distribution over all the parameters in the model. In this case,

a prior is needed for θmis
i , θM, and M. I assume that the parameters are independent a priori.

p(θ) = p(θ(1))p(θ(2)) . . .

= p(θM)p(M)p(θmis
i ) . . . p(θmis

N )

For θM and θmis
i , I generally use uninformative priors although one could incorporate qualitative knowledge

into the priors. The choice of a prior forM boils down to which matching procedures one wants to consider.

Since the data gives no information about the “best” matching procedure, the prior completely dominates

the posterior for M. If the researcher only wants to use one matching procedure as is typical in the causal

inference literature, then the prior over M is essentially a spike prior. More research needs to be done on

the influence of priors in my model on estimating individual causal effects.

Simulating from the Posterior via MCMC

I can simulate from the posterior of τi by using a Gibbs sampler, embedding the matching step within the

sampler, and then drawing from the posterior predictive distribution (PPD) and calculating τi. For the

Gibbs sampler, I draw from the full conditional distributions of the parameters conditional on the other

parameters. The steps to simulate from the posterior of τi are:

1. M refers to any specification within the matching procedure. This can include any specification such

as donor pool size, distance metric, or even the complete matching procedure itself. This leads to

an important flexibility that my model allows, namely that I can simulate over the uncertainty of

31



Chapter 1. A Framework for Estimating Individual Causal Effects

MCMC Algorithm for the Posterior of τi

Repeat the following nsim times:a

Gibbs Sampler:
1. Draw a matching procedure M̃ from p(M).
2. Draw θ̃M from p(θM|Y,X,W,D, θmis,M).

for (i in 1:N){
3. Determine D̃(i) from matching procedure. (matching step)
4. Draw θ̃mis

i to estimate θmis
i .

}

Draw from PPD and Calculate τi:
for (i in 1:N){

5. Draw Ỹ mis
i from f(·|θ̃mis

i ). (imputation step)
6. Calculate τ̃i = Wi(Yi − Ỹ mis

i ) + (1−Wi)(Ỹ
mis
i − Yi).

}

aEach draw of a parameter should be conditional on the current or previous draws
of the other parameters. I have suppressed the iteration notation for aesthetic pur-
poses.

which matching procedure or which specifications within the matching procedure to choose. The data

and other parameters do not generally give any information about model specification, so the full

conditional is

p(M|Y,X,W, θM, D, θmis) = p(M)

which means that uncertainty over M is driven completely by the prior.12 This flexibility is still

useful in the case where the researcher is equally unsure about the various matching procedures and/or

the number of observations in the donor pool, in which case he would put a uniform prior over the

various permutations and incorporate that uncertainty within the simulation. In essence, allowing

for uncertainty over M is similar to Bayesian model averaging approaches prevalent in the literature

(Raftery 1995; Montgomery and Nyhan 2010). One important caveat is that M should produce a set

12The assumption that there is no information inherent in the data to distinguish between matching procedures is a simplifying
assumption. One can imagine that the data provides information on which matching procedures are “better” by evaluating
empirical balance in the covariates under each procedure and sampling the procedures probabilistically depending on the balance
measure. More research into the feasibility of such approaches should be done.
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of matches for the same individuals all the time or else the quantities of interest are unclear. The

researcher may also simply choose to use one matching procedure, in which case p(M) is a spike prior.

2. θM represents possible parameters in the matching procedure. One example would be the coefficients

in a model to estimate a propensity score or prognostic score. Not all matching procedures have

parameters to be estimated, so step 2 may be skipped. The full conditional is

p(θM|Y,X,W,M, D, θmis) = p(θM|Y,X,W,M)

because θM is estimated from the observed data and only depends on the data and the matching

procedure used.

3. D(i) is calculated directly from the first two steps. M and θM determine the rules by which an

observation is considered a match so once M and θM are known, Di is completely determined. The

other parameters do not affect D(i), so the full conditional can be thought of as

p(D(i)|Y,X,W, θM,M, θmis) = p(D(i)|Y,X,W, θM,M)

where the full conditional is a spike. Any uncertainty or randomness over D(i) is simply a function of

uncertainty over M and/or θM. I also consider each D(i) to be independent so that an observation

can be a donor for multiple donor pools.

4. θmis
i is finally estimated from the matched sample. Conditional on Di, estimating θmis

i requires simply

estimating the mean from a sample consisting of the donor pool. In most cases, if conjugate priors are

chosen, then the full conditionals are also conjugates where

p(θmis
i |Y,X,W,D, θM,M) = p(θmis

i |Y,D(i))

What was previously an intractable posterior for θmis
i becomes incredibly easy to simulate from with

the augmentation of D. Once the donor pool is known, it is simply a matter of modeling the donor

pool. The draws of θ̃mis
i form the posterior distribution of θmis

i and capture the estimation uncertainty.

5. After simulating nsim values of θ̃mis
i from the posterior, I impute Y mis

i by drawing one Ỹ mis
i for each
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θ̃mis
i from the posterior predictive distribution

p(Y mis
i |Y ) =

∫
p(Y mis

i |θ)p(θ|Y )dθ

Simply put, the model uses each draw of θ̃mis
i and predicts a value of Y mis

i by drawing from f(·|θ̃mis
i ).

While the estimation uncertainty is captured by the nsim draws of θ̃mis
i , the fundamental uncertainty

is captured by the sampling in this step.

6. Drawing from the posterior of τi is straightforward given that there is a deterministic relationship

between τi, Yi, and Y mis
i . Let the posterior distribution for τi be

p(τi|Y ) =

∫
p(τi|Y mis

i , Y )p(Y mis
i |Y )dY mis

i

where p(τi|Y mis
i , Y ) is a spike distribution. Since I have simulations from p(Y mis

i |Y ), the posterior of

τi can be simulated simply by taking each draw of Ỹ mis
i and calculating

τ̃i = Wi(Yi − Ỹ mis
i ) + (1−Wi)(Ỹ

mis
i − Yi)

Note that in the algorithm, steps 3-6 are conducted separately for each i. Although in practice, the

steps may be done altogether for all i, I choose to characterize the i’s separately for both pedagogical

and substantive purposes. One should consider each τi as a separate estimand estimated separately to

avoid criticisms of multiple testing and cherry-picking specific ICEs. Theoretically, one should think of

this framework as conducting N separate studies to estimate N different causal effects. For each study,

imagine a dataset consisting only of observation i and all observations j where j 6= i and Wj = Wi. In this

framework, each observation may be used as a donor observation for multiple pools. When estimating ATEs,

researchers who match with replacement must reweight the donor observations to reflect the correct number

of observations in the data. In the case of estimating ICEs, no reweighting is necessary from a conceptual

standpoint since the N ICEs are estimated in “separate” studies. However, if certain observations are used

as donors many times, the multiple testing problem may be exacerbated, especially if the repeat donors are

outliers. Overall, it is still unclear how including observations in multiple donor pools affects the estimates

of the variances of the ICEs.
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1.4.4 Comparison to Existing Approaches

I see a few contributions of the framework and model I have proposed. In addition to calling attention to

focusing on ICEs in general, my model combines the ideas of matching and Bayesian analysis to estimate

different causal quantities of interest. My model is flexible in the choice of matching and also allows for

exploration and discovery of different treatment effects and treatment effect heterogeneity.

The approach I use to estimate ICEs bears many similarities to existing frameworks. I now discuss the

similarities between my approach and the approach laid out by Rubin first in Rubin (1978) and then discussed

in Rubin (2008) and most recently extended in Pattanayak, Rubin and Zell (2012), hereafter known as PRZ.13

While none of the papers explicitly discuss individual causal effects as a quantity of interest, they all allow for

the imputation of missing potential outcomes using Bayesian methods, which is also a characteristic of my

approach. I argue that although there are subtle differences between my approach and the Rubin approach,

my framework can be described as a generalization of the Rubin framework.

The first difference between the two approaches is in the data generating process and defining what is

random. The Rubin approach assumes that Y , W , and X are all realizations from random variables whereas

I assume that W and X are fixed and Y is only random because of unmeasured prognostic variables. I see the

distinction between the two approaches on this point to be negligible. The idea of unmeasured prognostic

variables leading to random outcomes is not incompatible with the Rubin approach. Furthermore, both

approaches place great importance on the assumptions of ignorability of treatment assignment and SUTVA.

My approach also allows for conditioning on non-confounding prognostic variables to improve the imputations

of the missing potential outcomes. Since the estimand in the Rubin approach is an average treatment effect,

including non-confounding prognostic variables is less important although in many cases, it can lead to more

efficient estimates.

A second difference between the two approaches is that the Rubin approach models the observed outcomes

whereas I keep the observed outcomes fixed. On the surface, this may seem like a big difference. But in

reality, the difference is mostly in the framing of the problem rather than any substantive differences. The

13The PRZ approach has a very specific model and specific quantities of interest that are applicable to their data and question.
I describe the PRZ approach in very general terms and discuss how the general PRZ setup compares to my framework.
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Rubin approach estimates θT and θC , which are the means of the distributions of treated and control units,

from the observed treated and observed control units respectively. PRZ go one step further by stratifying

observations either by their propensity scores or by existing substantive strata and estimating a separate

pair of θ for each strata. The Rubin approach then draws the missing potential outcomes from distributions

centered at θT and θC . This is exactly the same approach that I use. For a missing Yi(0) outcome, θmis
i is

estimated from a donor pool of control observations deemed to be good matches. Similarly, for a missing

Yi(1) outcome, θmis
i is estimated from a donor pool of treated observations deemed to be good matches.

The difference is that each observation has a separate θmis
i to impute its missing potential outcome. In

the earlier Rubin approaches, there are only two θ’s, a θC to impute for treated units and a θT to impute for

control units. PRZ allows for more flexibility by having strata-specific θ’s. My approach basically generalizes

PRZ by allowing each i to have its own individual strata.

To see this more clearly, suppose that there is a strata consisting of two treatment units, T1 and T2,

and two control units C1 and C2. All four units are deemed to be good matches for each other, so assume

ignorability of treatment assignment. In the PRZ approach, one would impute the missing Y (0) for T1 and

T2 with θ̃C estimated from C1 and C2. Similarly, one would impute the missing Y (1) for C1 and C2 with θ̃T

estimated from T1 and T2. Under my approach, the missing outcome for T1 is imputed from θ̃T1
estimated

from C1 and C2, the missing outcome for T2 is also imputed from the same θ̃T2 estimated from C1 and

C2 where θ̃T1
= θ̃T2

and the missing outcomes for C1 and C2 are imputed from the θ̃C1
and θ̃C2

estimated

from T1 and T2, where θ̃C1
= θ̃C2

. The two approaches are exactly the same assuming that my matching

procedure produces the same strata. However, my approach is more generalizable in that the researcher can

implement a matching procedure that does not restrict the donor pool to be within the same strata. T1 can

have a donor pool of C1 and C2 whereas T2 can have a donor pool of C1, C2, and C3.

This brings us to a third difference between my approach and the existing Rubin approach, namely that

my framework allows for matching and uncertainty in the matching procedure and matching parameters.

In PRZ, the strata are assumed to be exogenously defined or estimated beforehand with propensity score

stratification. Once the strata are defined, they cannot be changed and the donor pool stays constant.

My approach allows for multiple matching procedures and uncertainty within each matching procedure
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to characterize uncertainty about which observations constitute the correct donor pools. In approximate

matching methods, this uncertainty certainly exists amongst researchers.

The Bayesian model I have proposed is unique in a couple ways. First, my model is explicit in that

the quantity of interest is the individual causal effects. Most models estimate average treatment effects

and consider the individual effects only indirectly if at all. Second, the data generating process I propose

is slightly unconventional. Third, it embeds a relatively non-parametric matching step in the imputation

of Y mis. Finally, it allows for uncertainty over parameters within the matching procedure or uncertainty

over which matching procedure to choose itself. As with any Bayesian model, the model is sensitive to

choice of priors and convergence is not guaranteed in finite time. However, the ability to use priors also has

the advantage of incorporating substantive information or restricting the range of possible values to help

overcome sample size issues.

1.5 Other Quantities of Interest

Once the posterior for the individual causal effects is obtained, any sample estimand can be calculated

rather easily by aggregating subsets of individual causal effects. For example, the posterior of the sample

average treatment effect can be obtained by averaging the set of draws of τi for all i at each iteration of the

Markov chain. Similarly, my approach allows for discovery and exploration of treatment effect heterogeneity

by averaging over subsets of τi, such as averaging the draws for the τi for treated individuals to get the

posterior of the sample ATT, averaging over draws for subsets of individuals with certain covariate values

to get the sample CATE, etc. The researcher can graphically visualize heterogeneity by plotting the ICEs

against various covariates. One can also ask questions such as the probability that the sample CATE

is greater for individuals with X = a versus individuals with X = b for any values a and b simply by

differencing the posterior draws. Obtaining posterior draws for τi for every individual in the sample allows

for almost limitless possibilities to examine treatment effect heterogeneity.

Although various sample estimands are easy to calculate with this framework, it is unclear how one would

estimate population or super-population estimands under my framework. Recall that the model assumes
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a finite sample and a Bayesian framework. It imputes the missing potential outcome for each individual

in the sample while allowing the observed outcome to be fixed and unmodeled. The framework does not

extend easily to super-population estimands because both potential outcomes are missing for individuals

not in the sample. One way to get at super-population estimands may be to use bootstrapping. For each

bootstrapped sample, calculate the estimands using the estimated posterior for the bootstrapped individuals

and repeat to obtain a posterior over the super-population estimand. However, this process assumes that our

sample is completely representative of the super-population. More specifically, it assumes that every other

individual not observed in the super-population is exactly the same as an individual in our observed dataset.

Furthermore, the bootstrap process almost certainly underestimates the uncertainty around super-population

estimates because of the fixed and unmodeled potential outcome in the model. Generally speaking, the

idea of estimating individual causal effects and estimating super-population estimands are contradictory

in the sense that a super-population by definition contains nameless and exchangeable individuals whereas

individual causal effects involve specific individuals in the dataset. For these reasons, I restrict the framework

to estimating sample estimands of interest.

Another related issue is whether or not my framework allows for out-of-sample predictions or predictions

for future observations. For reasons similar to those for estimating super-population effects, out-of-sample

predictions are not straightforward. One can reasonably predict the treatment effect for an out-of-sample

observation by finding and using the results for an in-sample observation with a similar covariate profile.

For out-of-sample observations where no in-sample observations match reasonably well, the data does not

give much information and a parametric model is needed. However, I argue that the same issues of model

dependence for prediction occur in any other estimation framework. My model uses all available information

in the data.

1.6 Applications and Extensions

The framework I have introduced is flexible enough to be applied to many situations and can be extended

in various ways. Some applications and extensions to consider include:
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• Binary treatment with any type of outcome variable: The simplest situation that I apply the

model to is a dataset with a binary treatment variable, various covariates, and an outcome variable of

any type. The outcome can be continuous or discrete, and treatment should be ignorable given the

observed covariates.

• Non-binary treatment: The framework can be easily extended to non-binary treatment variables

by retaining a linearity assumption. Instead of two potential outcomes, each individual has possibly

an infinite number of potential outcomes. However, by assuming a linear relationship between the

treatment and the outcome, one only needs to impute one missing potential outcome and extrapolate

the rest by assumption. The linearity assumption also allows researchers to use individuals with

significantly different treatment values to impute the same missing potential outcome.

• Missing data in the covariates: Since the model uses a Bayesian framework, one can easily in-

corporate imputation of missing data in the covariates via any of the existing multiple imputation

techniques prevalent in the missing data literature.

• Two-stage models: The two related topics of treatment non-compliance and instrumental variables

can be incorporated into the model via existing techniques. For example, one can model treatment

non-compliance via principal stratification (Frangakis and Rubin 2002) by applying ICEs into the first

stage of a two-stage model and incorporating existing Bayesian models (Imbens and Rubin 1997) into

the sampler. The researcher can then use the principal stratifications from the first stage to calculate

ICEs in the second stage. The framework can also be used to test the monotonocity assumption in

instrumental variables models by estimating individual causal effects in the first stage.

• Time-series cross-sectional/panel/multiple measurements data: The framework can also han-

dle data where individuals are measured repeatedly over time. Multiple measurements of outcomes

and/or covariates and treatment give the researcher more information to match on and impute with.

One would simply need to model the time component and decide on how to incorporate the extra

information into the framework.

The next chapter tests various aspects of my framework via simulation to see how well various methods

can recover individual causal effects. I then present various applications of my framework to real data and
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questions of interest to academics and policymakers in the general social science world.
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Chapter 2

A Simulation Study

To test the ability of my model and the various matching procedures to recover individual causal effects and

other quantities of interest, I conduct a simulation study to compare multiple methods. The simulation study

generates toy data with the individual causal effects known and I evaluate the ability of the various matching

methods to recover the ICEs on several evaluation criteria. I consider both continuous and binary dependent

variables and evaluate the performance of the different matching methods as well as the different choices

researchers must make with regard to the number of matches and the number of conditioning variables

to include. The simulations suggest that in general, predictive mean matching seems to outperform other

matching methods in recovering the ICEs.

2.1 Methods to be Compared

Recall the MCMC algorithm for the posterior of τi from before restated below. The simulations test various

choices ofM in step 1 of the algorithm. The choice ofM consists of choosing a matching method, the number

of matches used, and the set of variables to match on. To test the performance of different specifications of

M, I hold M constant each time, with the exception of possibly a random choice of the number of matches
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to use. Thus, in the simulation study, step 1 of the sampler is the same for each iteration within a single

specification with the exception of specifications with random number of matches M . In those specifications,

the number of matches varies across iterations but stays constant across i within the same iteration.

MCMC Algorithm for the Posterior of τi

Repeat the following nsim times:

Gibbs Sampler:
1. Draw a matching procedure M̃ from p(M).
2. Draw θ̃M from p(θM|Y,X,W,D, θmis,M).

for (i in 1:N){
3. Determine D̃(i) from matching procedure. (matching step)
4. Draw θ̃mis

i to estimate θmis
i .

}

Draw from PPD and Calculate τi:
for (i in 1:N){

5. Draw Ỹ mis
i from f(·|θ̃mis

i ). (imputation step)
6. Calculate τ̃i = Wi(Yi − Ỹ mis

i ) + (1−Wi)(Ỹ
mis
i − Yi).

}

I define matching method to be the specification of the distance metric used and the method of picking

matches given the distance metric. The four matching methods I consider are

1. Mahalanobis matching: The first distance metric I consider is the (squared) Mahalanobis distance

metric used in Rubin (1980). The Mahalanobis distance between two observations with covariate values

X1 and X2 is

∆M (x1, x2) =
√

(X1 −X2)TS−1(X1 −X2)

where S−1 is the sample covariance matrix of X. For τi, I calculate the squared Mahalanobis distance

between Xi and Xj , ∀Wi 6= Wj and then use the M nearest neighbors as matches. Unlike the remaining

matching methods, Mahalanobis matching is model-free in the sense that it only looks at the in-sample

covariate distances rather than imposing a parametric model.
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2. predictive mean matching: Since the goal of estimating ICEs is to impute the missing potential

outcomes with matching, one way to do this is to first model the means of the observed outcomes in

the treatment and control groups and match based on the model. Let i index any treated observation.

Then the best imputation of Yi(0) is likely to come from control observations with observed outcomes

that are closest to Yi(0). Denote Yc and Xc as the observed outcomes and covariates for the control

group and Yt and Xt as the analogous for the treatment group. Since Yi(0) is unobserved, I first make

a best guess of Yi(0) by modeling the outcomes for the control group with a linear regression of Yc on

Xc.
1 Let θc denote the vector of parameters (βc, σ

2
c ) from this regression. I then calculate a predictive

mean score for all observations as

µ̃(c) = Xβ̃c

Note that µ̃(c) is calculated for all observations and the subscript refers only to the fact that the

predictive mean score is calculated from β̃c. For treated observation i, use the M nearest neighbor

control observations on µ̃(c) as its matches.2 µ̃i,(c) basically serves as our best initial guess of Yi(0)

based on a regression model.

Now let j index any control observation. To estimate τj , I do predictive mean matching with a similar

process. Regress Yt on Xt to get an estimate of θt, which consists of (βt, σ
2
t ). Calculate another

predictive mean score for all observations as

µ̃(t) = Xβ̃t

For control observation j, use the M nearest neighbor treated observations on µ̃(t) as its matches. µ̃i,(t)

serves as the initial guess of the missing Yj(1). In essence, one can think of this process as conducting

predictive mean matching twice with the treatment indicators reversed the second time.

Within the MCMC algorithm, predictive mean matching involves drawing θM = {βt, βc, σ2
t , σ

2
c} in the

1For now, I assume that the covariates enter the regression linearly without any interactions or polynomials.

2One can also match µ̃(c) with the actual observed control outcomes although it will be more difficult to differentiate between
good matches with discrete outcome variables.
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second step with a Gaussian linear regression. For priors, I use

βw ∼ improper uniform

σ2
w ∼ IG

(
0.001

2
,

0.001

2

)

for w = t, c. Since these parameters only depend onM and the observed data, the full conditionals to

draw from are simply the conditional distributions in a Gaussian linear regression.

βw|σ2
w, Yw, Xw,M ∼ N (m∗, V ∗)

V ∗ =
(
X ′w(σ2

wI)−1X
)−1

m∗ = V ∗(X ′w(σ2
wI)−1Yw)

σ2
w|βw, Yw, Xw,M ∼ IG

(
ν∗

2
,
δ∗

2

)
ν∗ = nw + 0.001

δ∗ = (Yw −Xwβw)′(Yw −Xwβw) + 0.001

for w = t, c where nw is the number of observations in treatment group w. Step 3 of the algorithm

uses the draw of θM at each iteration to find matches for each observation through the predictive mean

matching process described. The benefit of predictive mean matching is that the distance measure

is most directly related to the quantity of interest of the missing potential outcomes. With a large

enough sample, predictive mean matching should produce balance between an observation and its

matches since observations with the same observed covariate values should have the same predictive

mean up to some degree of randomness. Predictive mean matching reverses the process by assuming

that observations with similar predictive means should have similar observed covariate values.

3. propensity score matching: The propensity score is defined as the conditional probability of being

assigned to treatment given a vector of covariates X. Under randomized treatment assignment, the

propensity score should be a known function whereas in observational studies, the propensity score

is unknown and must be estimated. The propensity score reduces the dimensions of X down to a

scalar and Rosenbaum and Rubin (1985) show that adjusting for the propensity score is sufficient
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for producing unbiased estimates of treatment effects. Furthermore, they show that adjusting for the

sample estimate of the propensity score can produce balance on the covariates in the sample.

Define the propensity score for observation i as

ei = P (Wi = 1|Xi)

I estimate the propensity scores for all observations using a logistic regression within the MCMC

algorithm. In step 2 of the algorithm, let θM be the coefficients β from a Bayesian logistic regression

of W on X.3 Our estimated propensity scores take the form

ẽi =
1

1 + exp(−Xiβ̃)

Note that the propensity scores are a function of draws from the posterior of the regression. For each

draw of β̃, I calculate a propensity score ẽi(Xi) for each individual. Since the propensity scores are

unknown and estimated, this incorporates uncertainty over the propensity scores, an approach similar

to that in An (2010). For matching, I use nearest neighbor matching on the linear propensity score

ln

(
ẽi

1− ẽi

)
= Xiβ̃

which has been found effective for reducing bias in the matching literature (Rubin 2001). For each

observation i, matches are produced by taking the M observations in the opposite treatment group with

the closest linear propensity score. Observations may be used as donors to multiple other observations,

but can only be used once for any particular observation.

Within the MCMC algorithm, estimating a logistic regression in step 2 requires embedding a Metropolis-

Hastings step. I use an improper uniform prior on β and a random walk Metropolis algorithm.

4. subclassification (on the linear propensity score): In addition to nearest neighbor matching on the

linear propensity score, I also consider subclassification on the linear propensity score. The idea

behind subclassification is to sort the estimated propensity score and then divide the observations

3Again, for now X enters into the propensity score equation linearly.
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into M subclasses based on the ordered propensity scores.4 Rosenbaum and Rubin (1984) show that

subclassification on the propensity score with as few as five subclasses can substantially reduce bias

in estimating treatment effects. Much like choosing the number of matches, choosing the number of

subclasses is part of the choice of M in the algorithm. I consider both fixed and random M in my

simulations. Within the algorithm, the linear propensity scores are estimated exactly as above, and the

subclassification affects the choice of which observations contribute to the donor pool D̃i. Observations

in the same subclass as the observation to be matched are considered to be a part of the donor pool.

I restrict the analyses to contain at least two treated and two control observations in every subclass.

Because the linear propensity scores are estimated stochastically, within any specific iteration, it is

possible to have subclasses that do not contain at least two treated and two control observations. In

those rare instances, I decrease M by one for that iteration of the algorithm only until every subclass

in that iteration meets the criteria.

The simulations presented compare the choice of one of these methods as well as the number of matches/subclasses

and the set of variables to match on. All of these choices are captured in M in step 1 of the algorithm. As

mentioned before, each simulation holds constant the choice of method and number of variables to match

on. The number of matches/subclasses are either held constant or allowed to vary randomly within a range.

Within a single iteration in a simulation, steps 1 and 2 produce a donor pool for every observation i, which

is denoted D̃i in step 3. Using the donor pool, I then draw a value of θ̃mis
i in step 4 by modeling the mean

of the donor pool. For continuous outcome variables, I draw Ỹ mis
i from the posterior predictive distribution

N (θmis
i , σ2mis

i ).5 For binary outcome variables, I draw Ỹ mis
i from a Bern(θmis

i ) distribution.

In addition to the four matching methods, I also consider two methods which do not use a matching

procedure as a baseline.

1. (Bayesian) regression imputation: I take the simplest and most commonly used case where the

imputations of the missing potential outcomes are generated from the coefficients of a Bayesian linear

4In the context of subclassification, I use M to refer to the number of subclasses rather than the number of matches.
Increasing M actually decreases the number of subclasses holding sample size constant.

5σ2mis
i is also estimated from the donor pool with an IG

(
0.001

2
, 0.001

2

)
prior.
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regression model. I fit a regression model of Y on W and X using the priors

β ∼ improper uniform

σ2 ∼ IG
(

0.001

2
,

0.001

2

)

The missing potential outcomes are then imputed from the coefficients β̃ such that

Ỹ mis
i = β̃0 + β̃1(1−Wi) + β̃XXi

where β0 is the intercept, β1 is the coefficient on W , and βX is the set of coefficients on X from the

regression. Since I use fairly uninformative priors, the estimates from this Bayesian regression will be

nearly identical to estimates from a non-Bayesian regression. I use a Bayesian regression simply to

remain consistent with the other approaches I test. I use this model as a baseline since this is probably

the simplest and most common regression model-based way to impute potential outcomes. Note that

the imputations here come solely from an estimate of an average treatment effect.

2. no matching (all): I consider the case where all of the j observations where Wi 6= Wj are used as

matches for i. In this specification, no matching algorithm is used since all observations of the other

treatment group are used as matches. In the case where treatment assignment is randomized, one

would expect that no matching would produce roughly the same quality of matches as other matching

algorithms. The donor pool for this method is simply all observations with a different treatment status

and the estimation of θmis
i and imputation of Y mis

i follows the same process as the matching procedures

above.

Within each method, I also test the sensitivity of the choice of the number of matches to use and the set

of covariates to include where appropriate. Thus, for each specification of M that I test, I vary all three

dimensions that the researcher can choose.
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2.2 Setting Up the Simulations

In general, I will only discuss how I perform the simulations and the results for the case of a continuous

dependent variable. I also repeat some of the simulations for a binary dependent variable, but the results

are similar so I relegate those simulations to the appendix.

Data generating processes

To assess the performance of the different methods, I generate fake data from numerous linear and non-linear

data generating processes to test how well the methods recover various causal estimands of interest. The

data generating processes are borrowed from the ones used by Hainmueller (2012) and Frölich (2007) with a

few changes tailored specifically to the framework used here. The best performing method(s) should ideally

be fairly robust to deviations from non-linearity in the data generating process even though I only use linear

specifications. I also consider three different sample sizes of 100 (small), 1000 (medium), and 5000 (large).

To begin, I generate ten covariates that completely determine the outcomes:

• x1 ∼ N (0, 22)

• x2 ∼ N (0, 1)

• x3 ∼ N (0, 1)

• x4 ∼ U(−3, 3)

• x5 ∼ χ2
1

• x6 ∼ Bernoulli(.5)

• x7 ∼ N (0, 1)

• x8 ∼ N (0, 1)

• x9 ∼ N (0, 1)

• x10 ∼ N (0, 1)

Using these ten covariates, I generate the potential outcome Yi(0), the outcome without treatment, for

each observation i. I consider three different outcome generating equations:

1. Y (0) = x1 + x2 + x3 − x4 + x5 + x6 + x7 − x8 + x9 − x10

2. Y (0) = x1 + x2 + 0.2x3x4 −
√
x5 + x7 + x8 − x9 + x10
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3. Y (0) = (x1 + x2 + x5)2 + x7 − x8 + x9 − x10

The three equations vary in their degree of linearity, starting from a (1) linear relationship between Y and

X and going to (2) a moderately non-linear and (3) very non-linear relationship. For each i, I then assign

treatment in three different ways:

1. p(W = 1) = 0.5

2. η = x1 + 2x2 − 2x3 − x4 − 0.5x5 + x6 + x7

W = 1 if η > 0; otherwise W = 0

3. η = 0.5x1 + 2x1x2 + x23 − x4 − 0.5
√
x5− x5x6 + x7

W = 1 if η > 0; otherwise W = 0

In the first case, treatment assignment is completely random with equal probability of being assigned treat-

ment or control. In the second case, treatment assignment is linearly related to the first seven covariates.

Since in my framework, there exists a set of covariates X(p) that completely explain the outcomes, I also allow

a subset of the covariates (the first seven covariates) to be confounders that perfectly predict treatment as-

signment. In the third case, the first seven covariates are non-linearly related to treatment assignment. Note

that in scenarios 2 and 3, conditioning on x1 through x7 is sufficient to control for confounders. The three

outcome equations and the three treatment assignment scenarios create nine different data combinations

that range from unconfounded and linear in Y to (linear and non-linear) confounded treatment assignment

and very non-linear in Y .

For most specifications, I draw each “true” τi independently from a N (2,
√

3
2
) distribution. Drawing

τi independently gives the most general situation in which each individual’s τi gives no information about

any other τi. If one considers the case where treatment effect heterogeneity is explained by some observed

covariate, then matching on that covariate should improve the ability of the model to capture the different

τi. Thus, drawing the true τi independently serves as a conservative test of the methods’ ability to estimate

the individual causal effects. In a few other specifications, I also vary the distribution from which τi is drawn.

Specifically, I consider cases where the τi are drawn independently from:
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1. N (2,
√

3
2
)

2. N (20,
√

3
2
)

3. N (2,
√

100
2
)

4. N (20,
√

100
2
)

5. mixture of N (2,
√

3
2
) and N (20,

√
3
2
) with equal probability on each

6. mixture of N (2,
√

100
2
) and N (20,

√
100

2
) with equal probability on each

By varying the mean of the τi distribution, I vary the size of the effects to see how well the methods perform

as the effect sizes increase. I vary the standard deviation of the τi distribution to test how well the methods

perform over a changing range of τi. I expect the methods to perform better with greater effect sizes (more

power) and a smaller range over τi (less heterogeneity). I also consider the mixture distributions to simulate

scenarios in which treatment effects are clustered such that treatment has a range of effects for one group

and a different range of effects for another group. For example, treatment may hurt one group of individuals

and help another group.

To complete the data generating processes, I generate Yi(1):

Yi(1) = Yi(0) + τi

I then put together the “observed” dataset that the models use. To mirror the typical data analysis, I run

the different model specifications that I test using the datasets containing the following variables:

• W

• Y = W × Y (1) + (1−W )× Y (0)

• X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}
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Causal estimands of interest to be recovered

Since I generate the individual causal effects τi in the simulations, τi and any other causal estimand is known.

The goal of the simulations is to evaluate how well a method can recover the known true values of these

estimands. I consider how well a method recovers the following causal estimands in the simulations:

• Individual causal effects: The most important estimands to recover are the N τi’s themselves. For

the case of binary dependent variables, τi can only take on values of -1, 0, and 1 so it is more difficult

to actually evaluate how well the methods recover the τi since the posterior distribution is a mixture

of two of the possible three values. Therefore, I only look at the aggregated estimands described below

for the simulations with binary dependent variables.

• Average treatment effect: Another important quantity to recover is the ATE. Any method that

can recover the ICEs should be able to recover the ATE correctly since the ATE is a simple linear

function of the ICEs. Since the ATE is usually the easiest estimand to estimate, any method that

performs poorly on recovering the ATE is probably not a very robust and useful method.

• Average treatment effect on the treated: The ATT is another average effect that calculates the

average effect over a subset of the data. Since recovering the ICEs correctly implies recovering any

aggregation of the ICEs, I should be able to randomly choose any subset and calculate the average

effect and judge a method by its ability to recover this average effect.

• Treatment effect quantiles (0.5, 0.75, 0.95): Since I claim that estimating ICEs allows for un-

paralleled flexibility in recovering any other causal estimand, I put the method to a difficult test by

attempting to recover the treatment effects at different quantiles. To calculate a quantile treatment

effect, I sort the ICEs from lowest to highest and then take the desired quantile of these sorted effects.

Even though my simulations have even numbered sample sizes, I take the quantiles without averaging,

so the 0.75 quantile treatment effect for N = 1000 is the 750th ordered statistic for the sorted τi.

As the quantiles become more extreme, I expect any method to perform worse so my model should

recover the 0.5 quantile with more accuracy and precision than the 0.75 and 0.95 quantiles. The results

available in the appendix confirm this to be true.
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Performance metrics used to evaluate the methods

The typical simulation study uses performance metrics such as bias, mean squared error, confidence interval

coverage, or power to evaluate a statistical method. All of these metrics stem from a frequentist perspective

where the data is assumed to be sampled randomly many times and each time the method calculates a

statistic that characterizes the sampled data. All the metrics used are concerned with how the method

performs on average over repeated samples. These traditional metrics are inappropriate in the current

context for two reasons. First, the method I propose is fundamentally a Bayesian method that does not rely

on a repeated sampling framework. Instead, the data is assumed to be sampled once and a Bayesian method

conditions on the actual observed dataset only, so using traditional metric to test the repeated sampling

properties of a Bayesian method makes little sense. Second, the whole idea of individual causal effects as

I present them here is incompatible with a repeated sampling framework. My framework assumes that the

potential outcomes are fixed. Therefore, the estimand does not change regardless of how many times you

sample. τi remains the same for individual i even if i was sampled repeatedly. Furthermore, since individual

causal effects are specific to individual i, a repeated sampling framework would involve sampling i such that i

appears in the dataset for some samples and not others. For samples that do not include i, τi is unestimable.

Therefore, I cannot use traditional notions of repeated sampling to evaluate the methods proposed.

Instead, I develop and use Bayesian versions of bias, mean squared error, power, and coverage. Under

the Bayesian version, I replace the repeated sampling framework by evaluating the methods over the N

individuals in the dataset. For example, instead of evaluating how a method performs on average over

repeated samples, I evaluate how a method performs by averaging over the N individuals observed. The

Bayesian metrics that I use for ICEs and other causal estimands of interest include posterior mean bias,

expected error loss, the proportion of the credible intervals not including 0, and calibration coverage.6

• Posterior mean bias (“bias”): Let θ be any estimand or parameter of interest. The traditional bias

6For the simulations with binary continuous variables, I only look at posterior mean bias and expected error loss because
the latter two metrics are difficult to calculate when τi only takes on discrete values of -1, 0, and 1.
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of an estimator θ̂ is

bias(θ̂) = E(θ̂)− θ

where the expectation is taken over θ̂ under repeated samples of the data. θ̂ is usually some “best”

estimate of θ. Contrast this with the posterior mean bias metric that I use.

posterior mean bias = E(θ|X)− θ

where X represents the observed data and θ|X is the posterior distribution of θ conditional on the

observed data. The expectation here is the expectation of the posterior distribution, or the posterior

mean. Using decision theory and a quadratic loss function, it can be shown that the posterior mean is

the Bayes estimator in that it minimizes the expected loss given θ.7 Therefore, the posterior mean bias

is a Bayesian analogue of bias in the frequentist sense. It represents a broad notion of how far off from

the truth our “best” estimate is. For the aggregated estimands such as the ATE or ATT, posterior

mean bias is calculated simply as the mean of the MCMC simulations from the posterior distribution

minus the true value of the estimand calculated from the τi, which are generated from a known data

generating process. For the ICEs themselves, I can look at the posterior mean bias for each of N τi’s,

but I choose to summarize them by the average8 and standard deviation of the N posterior mean biases

to make comparing the methods easier.

7In decision theory, one must take an action or make a decision a assuming that the true state of nature is θ. Using a
quadratic loss function L(θ, a) = (θ − a)2, the expected loss given our posterior is

Eθ|X [L(θ, a)] =

∫
(θ − a)2p(θ|X)dθ

=

∫
θ2p(θ|X)dθ − 2a

∫
θp(θ|X)dθ + a2

∫
p(θ|X)dθ

= E(θ2|X)− 2aE(θ|X) + a2

One can minimize the loss by differentiating with respect to a and setting it equal to zero, giving us the posterior mean as the
decision or estimate that minimizes expected loss.

â = E(θ|X)

8Averaging over the N posterior mean biases for the τi is actually equivalent to looking at the posterior mean bias for the
ATE due to the linearity of expectations.
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• Expected error loss (“root mse”): For any parameter θ and estimator θ̂, the typical root mean

squared error calculation is

√
E[(θ̂ − θ)2] =

√
variance + bias2

again with the expectation taken over repeated samples. The root mean squared error gives a rough

estimate of how far off the estimator is from the truth, taking into account both bias and variance.

The Bayesian analogue that I use is the expected error loss, which does not require expectations over

repeated samples. For notational clarity, now let θ denote a random variable for the parameter of

interest and let θ∗ denote the true underlying value of the parameter.9 Then

expected error loss =

√∫
(θ − θ∗)2p(θ|X)dθ

In contrast to the posterior mean bias metric, the expected error loss metric accounts for the deviations

from θ∗ for all possible values of θ rather than just the point estimate at the posterior mean. It is

basically a weighted average of the squared error loss for the entire support of the posterior. In practice,

the expected error loss is calculated by taking each draw θ̃ from the posterior and calculating its squared

error relative to θ∗ and then taking the average across the draws. For aggregate estimands like the

ATE, I look at the expected error loss whereas for the N τi’s, I look at the average of the N expected

error losses.

• Proportion of the credible intervals10 not including 0 (“power”): In hypothesis testing, the

typical definition of the power of a statistical method is the probability of the method rejecting the

null hypothesis given that the null hypothesis is false. In other words, it is the probability of detecting

9The notation used in this section may be confusing because I attempt to compare frequentist and Bayesian methods assuming
a fixed underlying true parameter, which is usually reserved only for frequentists. Bayesians usually describe parameters
probabilistically using random variables even though a true underlying parameter value may exist. Since I am comparing
estimates of θ from Bayesian models to a true value of θ in my simulations, I assume a fixed parameter value. To clarify the
notation, whenever I discuss frequentist methods, θ is the fixed parameter value. When discussing Bayesian methods, θ can
refer to the random variable for the parameter or the true underlying value given by nature. I attempt to be more explicit by
using θ∗ to represent the true underlying value when discussing both the random variable and the true underlying value.

10I use 95% credible intervals here and throughout to refer to the central 95% region of the posterior to be consistent with
the idea of a 95% confidence interval. The interpretation of a 95% credible interval is that the truth lies in the interval with
probability 0.95. In practice, I calculate the 95% credible intervals by simply taking the 0.025 and 0.975 quantiles of the
posterior draws.
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an effect when one exists or the probability of not committing a Type 2 error. The statistical power

of a method depends on the statistical significance criteria used (α level), the magnitude of the effect

or the effect size, and the sample size. Using the typical α = 0.05 criteria, one would usually test the

statistical power with simulation by randomly drawing data with the same sample size and the same

predefined effect size that matches the alternative hypothesis11, calculating the statistic or test for each

sample, and then determining the proportion of samples in which the test rejects the null hypothesis

(e.g. the proportion of times that the test “gets it right”). One direct way is to calculate the proportion

of 95% confidence intervals that do not contain the null hypothesis. This proportion is a calculation

of the statistical power given the specified α, effect size, and sample size.

For the application of my Bayesian model to the estimation of ICEs, I cannot use the typical way to

calculate power because as described earlier, there is no repeated sampling principle on which to rely.

Instead, I rely on the N observations in the simulated dataset with N ICEs as N “repeated samples.”

I then calculate the proportion of 95% credible intervals for the N τi’s that do not include 0 as a rough

estimate of the “power” for a particular method. The estimate is rough and does not exactly satisfy

the definition of power in the typical sense. Assuming that the null hypothesis is τi = 0,12 the data

generating process for the case of continuous outcome variables always generates τi 6= 0 for all i, which

satisfies the condition of the null hypothesis being false.13 However, unlike the case of the typical

power calculation, τi is not constant for all i, so the proportion is calculated over varying effect sizes.

Nevertheless, given my framework and goals, this calculation gives a rough estimate of power which

will approach the more traditional power calculation as the standard deviation on the τi approaches

0.

• Calibration coverage (“coverage”): The way typical simulation studies assess the accuracy of confi-

dence intervals generated by a method is by looking at its coverage probability, which is the proportion

of the time that the interval contains or “covers” the true value of the parameter. Recall the cor-

11If the null hypothesis is that the effect size is zero and the alternative hypothesis is that the effect size is not equal to zero,
then the effect size in the simulations is set to a value that is not equal to zero.

12The language here is not exactly correct since I am using hypothesis testing language in a Bayesian context. Nevertheless,
I use this language of testing for power because I want to compare the performance of different methods in capturing the effects
when they exist.

13This is due to the fact that τi is continuous and the probability of drawing any specific value is 0 for a continuous distribution.

55



Chapter 2. A Simulation Study

rect definition of a confidence interval, say the (nominal) 95% confidence interval, is that in repeated

samples, 95% of the calculated 95% confidence intervals should contain the truth. Ideally then, the

actual coverage probability of the method equals the nominal probability of 0.95. Deviations from 0.95

would suggest that some assumptions of the model are not met. To derive the coverage probability

in a simulation, one would simulate repeated samples from the data generating process, holding the

parameter at a single “true” value, calculate the 95% confidence interval each time, and then calculate

the proportion of the confidence intervals that contain the “true” value.

Under my Bayesian framework for estimating ICEs, repeated sampling once again does not make sense

because of the Bayesian and the ICE aspects. Much like the “power” calculation, I once again leverage

the N τi’s as a substitute for repeated sampling. Here I appeal to the idea of Bayesian calibration

with credible intervals. A Bayesian 95% credible interval has a much more intuitive definition as the

interval in which the true value occurs with 0.95 probability. Probability here is subjective since it is a

function of both the data and the subjective prior probability. However, the idea of calibration is that

the Bayesian model should produce a 95% credible interval that is calibrated such that it can predict

95% of future observations correctly. Applying this logic to the simulation for ICEs, a method that

performs well should have 95% credible intervals that contain the true values 95% of the time. In my

simulations, I calculate the proportion of the N 95% credible intervals that contain the true ICEs. Note

that as in the calculation of the rough “power” statistic above, each τi varies, which differs from the

traditional coverage calculations. However, with Bayesian calibration, each ICE 95% credible interval

should ideally contain its own τi with 0.95 probability, so I can look across all N τi and estimate the

proportion that contain its own true τi as the calibration coverage probability. The best performing

methods are the ones that have coverage probability closest to 0.95 using the 95% credible intervals in

the calculation.

I assess the performance of the different matching methods and specifications using all four of these metrics

when possible. Each metric conveys a different aspect of model performance and the methods that perform

the best ideally perform well on all four metrics.
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Different specifications

As alluded to above, I test the ability of the model and different matching methods in estimating the

causal estimands of interest. For the first set of simulations, I run numerous simulations of the model, each

time varying one aspect of the model specification or one aspect of the data generating process. A model

specification includes

• choice of method: regression, all, mahalanobis, predictive mean, propensity score, or propensity

score subclassification

• number of matches (for mahalanobis, predictive mean, and propensity score) or number of sub-

classes (for propensity score subclassification): small, medium, large, or random14

• number of X variables to condition on: 0 (for the method all only), 5, 7, or 1015

In addition to varying the model specifications, I also vary the data generating process for each specifica-

tion. The data generating process specifications are

• sample size: 100, 1000, or 500016

• outcome generating equation: linear, moderately non-linear, or very non-linear

• treatment assignment: unconfounded, confounded linearly, confounded non-linearly

14For the number of matches, small, medium, large, and random were defined as 2, 10, 25, and an integer uniformly drawn
from the range 2 through 25 respectively. For the number of subclasses, small, medium, large, and random were defined
differently depending on the sample size for each simulation. With sample size of 100, the number of subclasses used was 2,4,5,
and an integer uniformly drawn from the range 2 through 5. With sample size of 1000, the number of subclasses used was
5,10,20, and an integer uniformly drawn from the range 5 through 20. With sample size of 1000, the number of subclasses used
was 5,20,50, and an integer uniformly drawn from the range 5 through 50.

15The variables were conditioned on in order, so 5 X variables conditioned on means conditioning on x1 through x5 and so
forth. Recall that for the confounded treatment assignments, the first 7 X variables were used in the confounding.

16When increasing the sample size, rather than regenerating a new dataset completely, I keep the previous sample and simply
add on extra observations, so a dataset with sample size 1000 contains 100 observations from the previous simulation and adds
900 new observations. By adding on observations instead of regenerating completely new observations, I allow the datasets of
different sizes to be comparable (conditional on the same generating equations) because the first 100 observations in the dataset
are the same across the two sizes. I retain the condition that these “individuals” are the same, which is more coherent given
the ICE framework.
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For this first set of simulations, I hold the distribution of τi constant by generating them all from a N (2,
√

3
2
)

distribution. There are 52 combinations of model specifications and 27 combinations for the data generating

processes, which lead to 52× 27 = 1404 different simulations in the first set.

I then consider a second set of simulations that further tests the optimal number of matches to use. I hold

the data generating sample size to 1000 with the nine different outcome/treatment assignment generating

equations and only condition on 7 covariates. I only consider the case of predictive mean matching. The

specification that varies is the number of matches, which I now specify as a percentage of the smaller

treatment group. Given a simulated dataset, I take smaller of the treated or control groups and calculate

the number of matches M as a percentage of this number (rounded up). The percentages I consider are

• every 1 percentage point between 1% and 9% inclusive

• every 10th percentage percentage point between 10% and 90% inclusive

• the case of 100%, which I then make equivalent to just the “all” matching method (so the 100% here

is actually 100% of both treatment groups)

The different percentages produce 19 different specifications, combined with the 9 different data generating

processes to produce 19× 9 = 171 different simulations in the second set.

Finally I consider a third set of simulations to assess the sensitivity of the results to different ways of

generating the true values of τi as I described above. I hold the sample size to 1000 again with the nine

different outcome/treatment assignment generating equations, condition on only 7 covariates, and restrict

the number of matches or subclasses to 25 (except for the case of the “all” method). For each of the six

different ways of generating τi described previously, I vary the choice of method used. So for each of six

different ways of generating τi, I have six different methods and nine different data generating processes, for

a total of 6× 6× 9 = 324 different simulations.

The three sets of simulations combined result in 1404+171+324=1899 different simulations. I then repeat

for the case with a binary dependent variable. For each of the 1899 simulations, I derive the posterior from

the algorithm described in the beginning. Due to computational and time issues, each MCMC is relatively
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short with a chain length of 2000. For the most part, my parameters are relatively independent so I am

confident that my parameters are mixing well despite such a short chain length and no burn-in period.

2.3 Results from the Simulations

The simulations show that my model in general does a fairly good job at estimating ICEs, although with

very high variance in both the estimates (posterior variance) and the quality of the estimates. Although the

simulations produce many results and insights that are noteworthy, I only present a subset of the results

that can guide researchers on the best practices and methods for estimating ICEs. The rest of the results

from the simulations appear in the appendix. The general insights from the simulations are:

1. The model generally performs well in recovering ICEs and other causal estimands. Predic-

tive mean matching generally outperforms all the other matching methods.

Figure 2.1 shows the results from the first set of simulations comparing the model using the different matching

methods with different specifications and sample sizes. The metric here is the average ICE posterior mean

bias, which is equivalent to the ATE posterior mean bias. A method or specification is judged by how

close its posterior mean bias is to zero. In the top right quadrant with a linear outcome equation and

unconfounded treatment assignment, most of the specifications are spot on in their estimate of the ATE.17

As the outcome equations become more non-linear, the bias gets bigger, but the specifications on average

have very little bias until the outcome equations become very non-linear. Looking across methods, the

propensity score subclassification method is probably the most consistent in the sense that difference in

bias across specifications is the smallest,18 but the subclassification method is also the most easily biased.

The propensity score matching method seems to be the most varied in performance across specifications

and its bias seems to be somewhat larger as well. Although the differences are miniscule, it appears that

17For each method, the different points refer to different specifications of the number of matches, the number of conditioning
variables, or the sample size (denoted by color). In all of these graphs, some points are not shown because they fall outside the
general range of most of the specifications.

18Another way to put it is that the variance of the bias across specifications within the subclassification method is the
smallest.
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Figure 2.1: Comparing Average ICE (or ATE) Posterior Mean Bias for the Different Matching Methods
(continuous outcome)

the predictive mean matching method is the method that is most consistent across specifications and has a

relatively low bias.

Figure 2.2 shows the results using the average ICE expected error loss as the performance metric. Recall

that this metric is analogous to the traditional root mean squared error and gives a sense of both the

“bias” and the (posterior) variance of our estimates. A value closer to zero on this metric indicates a better

performing method. One can see clearly that the mahalanobis and predictive mean matching methods

almost always outperform the other matching methods. Given that the posterior mean bias was similar

across the methods, this suggests that mahalanobis and predictive mean matching generally produce more

precise estimates with smaller posterior variance. As expected, larger sample sizes also produce estimates

with smaller expected error loss.
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Figure 2.2: Comparing Average ICE Expected Error Loss for the Different Matching Methods (continuous
outcome)

With a smaller posterior variance, one should also expect predictive mean matching to perform better on

the “power” metric of the proportion of 95% credible intervals not including zero since the credible intervals

should be smaller. Figure 2.3 confirms this result where values closer to one on this metric indicate better

performance.

In almost all the different data generating processes, the predictive mean matching method performs just

as well or better than the other methods. However, one thing to note is that for almost every method and

specification, the performance on this metric is quite low. The proportion of credible intervals that does

not include zero never exceeds 0.5, despite the fact that all the true τi are not equal to zero. This result,

although undesirable, is expected since the matching methods use a finite and often small number of donor

observations, so the posterior variance on the estimate of τi is quite high and the credible intervals are quite

large. However, the “power” does improve as the actual τi get larger. Recall that in traditional methods, the
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Figure 2.3: Comparing ICE “Power” for the Different Matching Methods (continuous outcome)

power of a method increases as the effect size gets larger. Figure 2.4 shows the proportion of 95% credible

intervals including zero as a function of the different τi distributions.

When the mean of the τi distribution is high (at 20), then the “power” is actually quite high for many of

the matching methods. Even with a low mean and a high standard deviation, some of the τi will be high

and so the “power” increases. Drawing τi from the mixture distribution of both large and small effects can

also increase power relative to only drawing from smaller effects. Thus, although the matching imputation

method that I suggest frequently cannot detect small effects, it can do quite well with larger effects. Also,

although I use “power” as one metric of judging the methods, the typical Bayesian model is not as concerned

with “power” and hypothesis testing, but instead on whether the credible intervals are properly calibrated

and whether the intervals accurately reflect our degree of uncertainty.

Even though my model’s 95% credible intervals are quite large, they have the desirable property of being

62



Chapter 2. A Simulation Study

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DGP 1: linear in Y; unconfounded W DGP 2: linear in Y; linear in W DGP 3: linear in Y; non−linear in W

DGP 4: moderately non−linear in Y; unconfounded W DGP 5: moderately non−linear in Y; linear in W DGP 6: moderately non−linear in Y; non−linear in W

DGP 7: very non−linear in Y; unconfounded W DGP 8: very non−linear in Y; linear in W DGP 9: very non−linear in Y; non−linear in W

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

all mahal. predictive propensity subclass all mahal. predictive propensity subclass all mahal. predictive propensity subclass
Method

P
ro

po
rt

io
n 

of
 9

5%
 C

re
di

bl
e 

In
te

rv
al

s 
N

ot
 In

cl
ud

in
g 

0 
(N

=
10

00
)

Mean of τ Distribution

●

●

●

2

20

Mixture

SD of τ Distribution

● 3

100

Figure 2.4: Comparing ICE “Power” with Different τi Distributions (continuous outcome)

very close to properly calibrated most of the time. Simply put, the large credible intervals have proper

“coverage”. Figure 2.5 shows this result. Since I am using 95% credible intervals, a method or specification

is said to be properly calibrated if the calibration coverage is at 0.95.

Figure 2.5 that most of the specifications are around the 0.95 range. As the data generating process

becomes more non-linear, the calibration coverage becomes worse, but it is still usually greater than 0.8.

The calibration also improves with larger sample sizes. It does not appear that any particular method

performs significantly better or worse on this metric. The results here suggest that the credible intervals

from the matching methods give about the correct amount of estimation uncertainty.

The results from the first set of simulations confirm that my model performs as well as one might expected,

although not perfectly. Predictive mean matching seems to perform as well or better than any other matching

method in recovering the causal estimands of interest. Additional results in the appendix lead to a similar
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Figure 2.5: Comparing ICE Calibration Coverage for the Different Matching Methods (continuous outcome)

conclusion. While more research is needed into assessing why predictive matching performs better, I can

offer at least one possible explanation. Recall that the point of the model and estimating ICEs is to impute

the missing potential outcome for each observation. The basic idea of predictive mean matching is to first

run a regression using all the data for one treatment group to predict the missing potential outcomes for

the other treatment groups. The coefficients from that regression are used to match on the predicted means

to form a donor pool for a missing potential outcome. This iterative process actually imputes twice; once

to get a rough mean to determine the donor pool and again to actually impute from the donor pool. The

objective of predictive mean matching most closely resembles the objective of estimating ICEs in imputing

potential outcomes and the two-step iterative process allows for improvements in the imputations. In a

sense, I propose a causal framework in my model but use a data mining/machine learning type algorithm

in practice. This allows me to achieve optimal results while retaining the principle of modeling the causal

process. This may explain why predictive mean matching in my model performs best in practice.
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2. Regression imputation works well for estimating average effects. It offers more precise

estimates for individual and average effects, but the uncertainty does not accurately reflect the

correct uncertainty in estimating the ICEs. Compared to regression imputation, predictive

mean matching in my model gives estimates that are almost as good and the uncertainty

estimates are correct.

The simplest and most straightforward way to estimate ICEs is by imputing the missing potential outcomes

with a regression model. Regression imputation takes the regression model of Y on W and X and imputes

using the fitted values from the regression coefficients, simply changing the treatment assignment indicator

to the missing one. I compare this simple method of (Bayesian) regression imputation with my Bayesian

imputation model using predictive matching, which I showed was the best performing matching method.

Figure 2.6 shows the posterior mean bias of regression imputation versus predictive mean matching.

Unsurprisingly, regression imputation performs very well in recovering the ATE, a quantity that it was

designed to capture. It consistently gets it right over various specifications. Predictive mean matching

performs almost as well, although it is less consistent across various specifications. As the data generating

process becomes more non-linear, the functional form for both methods is incorrect and the estimates become

less accurate. To confirm that both methods perform about as well in estimating ICEs, I look at “point

estimation” for both methods in Figure 2.7. In Figure 2.7, I use the specification with sample size 100 and 7

conditioning variables for both methods and 25 matches for the predictive mean matching. For each method, I

take the posterior means for each ICE and take the absolute differences between the posterior means and each

true τi. This captures how far off each method is for each ICE. I then difference these differences to capture

the relative performance of each method for each ICE. Each point on the graph represents the difference in

difference for each ICE, so there should be 100 points for each data generating process. A point above the

zero line indicates that the “point estimate” for predictive mean matching is closer to the true ICE for that

specific ICE and a point below the zero line indicates that the “point estimate” for regression imputation is

closer. The red points indicate the median on the difference-in-difference scale. It appears that there is no

specific pattern to the distribution of differences-in-differences. Most of the points seem randomly distributed

around the zero line, which indicates that for some observations, regression imputation does better and for

others, predictive mean matching does better. For the very non-linear generating equations, the differences

65



Chapter 2. A Simulation Study

●● ●●
●
● ●●

●

●●●

●

● ●●

●

●●
●

●

●●● ●●●●

●

● ● ●

●

●●●●
● ●
● ● ●●●●

●●
●●

● ●
● ●●

●
●

●

●

● ●● ●

●●●

●

●●

●

●
● ●●●

●●●

●

●●
●

●

● ●
●

● ●
●

●●
● ●

●●

●
●

●
●

●●
●

●

●● ●

●

●●
●

●

● ●●

●

● ● ●

●

●●●
●

●●●
●

● ●●● ●●●●

●

● ●●

●

●●●
●

● ●

●
●

●●● ● ● ●●

●

●●● ● ●●●
●

● ●● ●● ●●
●●

● ●●● ●●● ●
● ●●

●

●
●

●

●

● ●●

●

●●

●

●● ●●
●

●●●
●

●● ●●
●●

●
●●●●

●

●●
●

●●
●

●●

●

●●●

●

●● ●

●

● ●

●

●

●● ●

●

● ●●

●

● ●●

●

●●
●

●●● ●

●

●●●●
●●

●
●●●

●●

●

●●●

●

● ●

●

●

●●● ●

●●●

●

●● ●

●

●● ●

●

●● ●

●

●●●

●

●●
●

● ●●
●●●● ●●

●

●●
●

●

●● ●●●●

●

●●
●

●

● ●
●

●

●●
●

●

● ●

●

●
●●●

●●●
●

●
●● ●

● ●●
●●

●●●

●

● ●●
●

●● ●

●●

●

● ●●●
●●

●●
● ●●

●

●●●

●

●● ●

●

●
●

● ●●
●● ●

DGP 1: linear in Y; unconfounded W DGP 2: linear in Y; linear in W DGP 3: linear in Y; non−linear in W

DGP 4: moderately non−linear in Y; unconfounded W DGP 5: moderately non−linear in Y; linear in W DGP 6: moderately non−linear in Y; non−linear in W

DGP 7: very non−linear in Y; unconfounded W DGP 8: very non−linear in Y; linear in W DGP 9: very non−linear in Y; non−linear in W

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

regression predictive regression predictive regression predictive
Method

A
ve

ra
ge

 IC
E

 (
or

 A
T

E
) 

P
os

te
rio

r 
M

ea
n 

B
ia

s

Number of Observations

●

●

●

100

1000

5000

Figure 2.6: Comparing Average ICE (or ATE) Posterior Mean Bias for Regression Imputation versus Pre-
dictive Mean Matching Model (continuous outcome)

become more spread out and outliers occur more frequently. Nevertheless, it appears that both regression

imputation and predictive mean matching perform similarly on “point estimation” of ICEs.

Although the performance on point estimation is similar for both regression and matching, regression

imputation gives posteriors that have smaller variances, as shown in Figure 2.8, which plots the results of

average ICE expected error loss. The expected error loss is generally smaller for regression imputation. This

is also unsurprising since regression imputation makes an added assumption of modeling only the average.

This added assumption allows for more precise estimates and subsequently more “power”, as Figure 2.9

demonstrates. Figure 2.9 shows that regression imputation is able to detect τi 6= 0 at a much higher rate

than predictive mean matching. By modeling only the average effect and imputing from the model, regression

imputation results in much smaller posterior variance. Recall that in regression imputation, the model uses

all the observations to model the ATE, which results in a relatively small posterior variance for the ATE.
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Figure 2.7: Comparing the Absolute Differences Between Posterior Means and the True ICE for Regression
Imputation versus Predictive Mean Matching Model (continuous outcome)

This posterior is used directly in the imputation and posterior for each ICE, so the width of the posterior

credible interval for the ICE is the same as the width of the credible interval for the ATE. Contrast this

with my imputation model with predictive mean matching, where the width of the credible interval for an

ICE is derived from matching on a smaller set of donor pool observations. It is straightforward to see that

regression imputation results in smaller credible intervals, which in turn decreases the probability of zero

appearing in the credible interval and thus more “power”.

Given that regression imputation produces estimates that are just as “correct” as my imputation model

with predictive mean matching with smaller credible intervals and more power, why would one not use

regression imputation for estimating ICEs? It turns out that the credible intervals are actually too small,

which is unsurprising since they are credible intervals designed for the ATE rather than ICEs. Regression
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Figure 2.8: Comparing Average ICE Expected Error Loss for Regression Imputation versus Predictive Mean
Matching Model (continuous outcome)

68



Chapter 2. A Simulation Study

●●●

●

●●●

●
●

●●

●

● ●
●

●●●

●●
● ●

●

●
●
●

●

●
●

●

●● ●●
●

●
●

●●
●● ●

●

●
●

●
●●

●
●

●●
●

●

●
●

●

●

●●●

● ●
●●

●

●
●

● ●
●

●

●● ●●

●

●
●

●

●

●
●

●
●

●

● ●
●

●

● ●
●

●
●

● ●

●

●
●

●

●

●●
●

●●
●●

●

●
●

●

●

●
●

●

●● ●●●
●
●

●
●

●● ●
●

● ●
●●

●●

●

●● ●

● ●
●

● ●
●●

●●●

●

●
●
●

●

●
●

●●

●●●

●
●

●

● ●

●●●
●

●

●
●

●
●
●

●

●

●●●

●
●

●

●

●
●

●●

●● ●

●

●
●

●

●

● ●
●●

●●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

● ●

● ●●

●

●
●

●

●

●
●

●●

●● ●

●
●
●

●

●
●
●●

●● ●

●

● ●

●
●

●● ●
●

●●●●
●●● ●●●

●●●● ●
●

●
●●● ●

●●
●● ●

●
●

●●
●

●●

●

●
●

●

●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

● ●●

●

●●

●
● ●

●

●
●

●
●

●

●

●

●
●

●

●
●
●●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
● ●

●
●●

● ●●

DGP 1: linear in Y; unconfounded W DGP 2: linear in Y; linear in W DGP 3: linear in Y; non−linear in W

DGP 4: moderately non−linear in Y; unconfounded W DGP 5: moderately non−linear in Y; linear in W DGP 6: moderately non−linear in Y; non−linear in W

DGP 7: very non−linear in Y; unconfounded W DGP 8: very non−linear in Y; linear in W DGP 9: very non−linear in Y; non−linear in W

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

regression predictive regression predictive regression predictive
Method

P
ro

po
rt

io
n 

of
 9

5%
 C

re
di

bl
e 

In
te

rv
al

s 
N

ot
 In

cl
ud

in
g 

0

Number of Observations

●

●

●

100

1000

5000

Figure 2.9: Comparing ICE “Power” for Regression Imputation versus Predictive Mean Matching Model
(continuous outcome)

imputation is very poorly calibrated, and the uncertainty that is reflected by the posterior variance is

incorrect for ICEs. Figure 2.10 shows the results of the calibration coverage for the 95% credible intervals.

While approximately 95% of the 95% credible intervals cover the true τi for predictive mean matching, most

of the time less than 50% of the 95% credible intervals do so for regression imputation. The smaller credible

intervals lead to incorrect inferences more than half the time.

Figure 2.11 shows the different calibration coverages when drawing τi from different distributions. While

predictive mean matching is accurately calibrated regardless of the distribution of the true τi, regression

imputation is also very poorly calibrated regardless of the distribution of the true τi. There appears to

be a general pattern that the calibration for regression imputation is better when the τi are more spread

out (higher standard deviation of the τi distribution). One possible explanation is that when the τi are

more spread, the posterior variance for the ATE is larger and so the credible intervals for the ICE are also
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Figure 2.10: Comparing ICE Calibration Coverage for Regression Imputation versus Predictive Mean Match-
ing Model (continuous outcome)

larger and thus will include the true τi a greater proportion of the time. Nevertheless, it is clear that while

regression imputation does just as well as my matching imputation model in point estimation of the ICEs, it

is a poor technique for estimating the uncertainty of the ICEs and should be used only for modeling averages

rather than individual effects. The typical method of imputing from a regression model is incorrect when

looking at individuals.

3. There appears to be no discernible difference in the number of X variables to condition on

as long you condition on all (or almost all) confounders.

Although more simulations are needed to fully test the effect of omitting or including conditioning variables,

it appears that as long as one conditions on all or close to all of the confounders, adding extra prognostic
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Figure 2.11: Comparing ICE Calibration Coverage with Different τi Distributions (continuous outcome)

variables to the conditioning set does not result in drastic improvements. Figure 2.12 shows the results

of average ICE expected error loss across all the matching methods with 0, 5, 7, and ten conditioning

variables. Recall that for the specifications with confounded treatment assignment, 7 is the correct number

of confounders. Conditioning on ten X variables means conditioning on all the confounders and all the

prognostic variables. The results suggest that there are no discernible differences in performance when

conditioning on 5, 7, or 10 confounders across all the different data generating processes. This suggests

that as long as one controls for approximately the correct confounders, the results should be quite stable.

However, I do not test the effect of omitting very important versus less important confounders or including

or excluding very important prognostic variables. Future research should look into these questions in more

detail.
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Figure 2.12: Comparing Average ICE Expected Error Loss for Different Conditioning Sets (continuous
outcome)

4. The optimal number of matches to use is dependent on the data generating process,

although one should not use a very small number or a very large number of matches. A

random number of matches does not seem to provide a huge improvement compared to a fixed

number of matches.

In typical matching analyses, there is a bias-variance tradeoff between using too few versus too many matches.

When using a small number of matches, bias is small since only high quality matches are used, but variance

is large with such a small donor pool. When using a large number of matches, variance is smaller but lower

quality matches are included in the donor pool, which may increase bias. There is a slightly different story

when using matching to estimate ICEs in my model. Figure 2.13 shows the posterior mean bias from using
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different sizes of donor pools across the different matching specifications.19 Recall that in my specifications,

●● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●● ● ● ●● ● ● ●

●

● ● ●

●

● ● ●
●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ●
●

●

● ● ●● ● ● ●
● ● ● ●
●

● ● ●

●

● ● ●

●

● ● ●

●

● ●
●

●

● ● ●● ● ● ●

●

● ● ●

●

● ● ●

●
● ●

●

● ● ●

●

● ● ●

●

● ● ●●
● ● ●● ● ● ●● ● ● ●

● ● ● ●●
● ● ●● ● ● ●

●

●
●

●

●

●

● ●●
● ● ●

●

● ● ●

●

●
●

●

●

●

●

●

● ● ●
●

●

●
●

●●
●

●

●

● ●
● ●

● ●
● ●●

●
●

●

●

● ● ●●

● ● ●

●

● ●

●

●
● ● ●●

● ● ●

●

● ●
●

●
●●

●
● ● ●

●
● ● ●

●

● ● ●● ● ● ●
●

● ● ●

●
● ● ●

●
● ● ●● ● ● ●● ● ● ●

●

●
● ●

●
●

●
●

●

●
●

●● ● ●

●

● ●
●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●
● ●

● ●

●
●

●
●

● ●
●

●

● ● ●

●

● ●
●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ●

●
● ●

●

● ● ●● ● ● ●

●

● ● ●

●

● ● ●● ● ● ●

●

● ● ●
●

● ● ●● ● ● ●
●

● ● ●

●

● ●

●

● ● ●

●

●

● ● ●

●

● ● ●● ● ●
●

●

● ● ●● ● ● ●
●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ●

●
●

● ● ●● ● ● ●

●

● ● ●● ● ● ●
●

● ● ●● ● ● ●

●●●

●

● ● ●

●

● ● ●

●

● ● ●
● ● ● ●● ● ● ●

● ● ● ●

●

● ● ●

●

● ● ●●
● ● ●

●

● ● ●

● ●
● ●

●

●
● ●

●

● ● ●

●

● ● ●●
●

●
●

●

● ● ●
●

●
● ●

●

●

● ●●
● ● ●

●

●
●

●

●

● ● ●

●

● ●

●

● ● ● ●
●

● ● ●
●

● ● ●●
● ●

●
● ● ● ●

●●●
●

● ● ●
●

● ● ●

●

● ● ●

●
● ● ●● ● ● ●

●
● ● ●

●

● ● ●
●

● ● ●

●

● ● ●
●

● ● ●●
● ● ●

●
● ● ●

●

● ●
●

●

● ●
●

● ● ● ●

●

● ● ●
●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ●

●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ●
●

● ● ● ●

●

● ● ●

●

●●
● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ●
●● ● ●

●

● ●

●

●

● ● ●

●

● ● ●

●

● ●
●

●

● ● ●● ●
●

●

● ●
●

●

● ● ●

●

● ●

●

●

● ● ●●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ●
●

●

●
●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ●
● ● ● ●● ● ● ●

●

● ● ●● ● ●

●

● ● ●

●

● ● ●
●

●

●
●

●

● ● ●

●
●

●
●

●
●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

● ●
●

●

● ● ●● ● ●

●

● ●
●

●

● ●
●

●

● ●
●

●

● ●

●

●
● ● ●

● ● ● ●

●

● ●

●
● ● ●

●
● ● ●

●

● ●
●●

● ● ●

●

● ● ●

●

● ● ●●
● ● ●● ● ● ●● ● ● ●

●
● ● ●

●

● ● ●

●

● ● ●

● ●
●

●

● ●

●

●

● ●
●

●

● ● ●● ●
●

●

● ● ●
● ● ●

●

● ● ●
●

● ● ●

● ●

●

● ● ● ●
● ●

●●
● ● ●

●

● ● ●

●

● ● ●

DGP 1: linear in Y; unconfounded W DGP 2: linear in Y; linear in W DGP 3: linear in Y; non−linear in W

DGP 4: moderately non−linear in Y; unconfounded W DGP 5: moderately non−linear in Y; linear in W DGP 6: moderately non−linear in Y; non−linear in W

DGP 7: very non−linear in Y; unconfounded W DGP 8: very non−linear in Y; linear in W DGP 9: very non−linear in Y; non−linear in W

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

small (2) medium (10) large (25) random (2−25) small (2) medium (10) large (25) random (2−25) small (2) medium (10) large (25) random (2−25)
Number of Matches

A
ve

ra
ge

 IC
E

 (
or

 A
T

E
) 

P
os

te
rio

r 
M

ea
n 

B
ia

s

Number of Observations

●

●

●

100

1000

5000

Figure 2.13: Comparing Average ICE (or ATE) Posterior Mean Bias for Different Numbers of Matches
(continuous outcome)

a small number of matches is 2, medium is 10, large is 25, and random is a randomly drawn integer between

2 and 25 for each iteration of the algorithm. For a very small number of matches, the posterior mean bias is

quite unstable across various specifications. Using a medium or large number of matches seems to give better

and more consistent results. There seems to be no benefit to using a random versus fixed number of matches.

Figure 2.14 shows the results of average ICE expected error loss, which takes into account posterior variance.

When using only two matches, there is a large error, which represents both poor “point estimates” and large

posterior variance. Using a slightly larger number of matches shrinks the expected error significantly. Also,

using a random number of matches increases the variance of the results without a large increase in posterior

mean bias.

19Each point represents a different specification of matching method and number of conditioning variables. The subclassifi-
cation method is not included in these results.
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Figure 2.14: Comparing Average ICE Expected Error Loss for Different Numbers of Matches (continuous
outcome)

While one can look at the previous results and conclude that larger numbers of matches are better, using

25 matches is large for a sample size of 100 but quite small for a sample size of 5000. I further test the

idea of optimal number of matches by looking at the number of matches as a percentage of the number of

observations in the smaller treatment group. Figure 2.15 shows the posterior mean bias for the different

match percentages using a specification with predictive mean matching on 7 confounders with sample size

of 1000. As the match percentage (or equivalently the number of matches) increases, the posterior mean

bias also tends to increase, which suggests that larger donor pools are incorporating poorer quality matches

and inducing “bias”. There does not appear to be an optimal match percentage for all data generating

processes, although I suggest that 10% of the smaller treatment arm seems to be a good number to use that

consistently gives decent results. The results on other metrics (in the appendix) also confirm that there is

no optimal number and 10% seems to work well.
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Figure 2.15: Comparing Average ICE (or ATE) Posterior Mean Bias for Different Match Percentages (con-
tinuous outcome)

2.4 Conclusion

The simulation results I have presented here and in the appendix are only the tip of the iceberg for testing

my model and the different specifications. I have tried to test my model and compared it to imputation

from regression, which is the simplest and most widely used way to estimate and predict individual effects.

I conclude that predictive mean matching performs the best out of the matching methods I propose. I also

show that both regression imputation and predictive mean matching do fairly well in “point estimation” of

the ICEs, but regression imputation gives uncertainty estimates that are wildly incorrect whereas my model

is properly calibrated. For practical use, I suggest using predictive mean matching with a fixed donor pool

size of approximately 10% of the smaller treatment arm, conditioning on all observed confounders.
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Estimating ICEs in Two Applications

I now apply the estimation framework and estimate ICEs in two applications from political science and

economics. The first application revisits a field experiment from Olken (2007) on the effects of different forms

of corruption monitoring on actual corruption. The second application looks at the effects of a national job

training program known as JobCorps, using data from a randomized study known as the National Job Corps

Study conducted by Mathematica Policy Research, Inc. I follow a similar approach and use the same dataset

found in Frumento et al. (2012). The two applications are interesting for estimating ICEs for various reasons.

Both are very important substantively and address issues of interest to many scholars. The corruption

monitoring study is a unique and interesting field experiment that has made a substantial contribution to

the study of corruption. The question of the effect of job training on employment outcomes is perhaps

the most widely studied area by economists and statisticians interested in causal inference and program

evaluation. In addition, the data available for both applications provide an opportunity to demonstrate

the flexibility of the estimation framework and the different ways in which estimating ICEs can increase

knowledge and discovery. They incorporate ICE estimation with both binary and continuous dependent

variables, binary and continuous treatment variables, single-stage and two-stage estimation, and somewhat

randomized and non-randomized treatment assignment settings.
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3.1 Estimating ICEs: A Review

3.1.1 Framework

Recall that the main idea for estimating the individual causal effects is to estimate or impute the missing

potential outcome for each observation. Knowing the missing potential outcome allows us to directly calculate

the ICE and any other causal estimand. I use the combination of matching and a Bayesian model to get

point estimates and uncertainty intervals for the missing potential outcome.

Under the treatment assignment ignorability and SUTVA assumptions, the distribution of potential out-

comes is identical for observations with the exact same values on the observed covariates. This implies that

the distribution of the missing potential outcome for observation i can be approximated with the observed

potential outcomes for a set of donor observations with the opposite treatment assignment. Since exact

matching is only possible in large samples with discrete covariates, I use predictive mean matching (as de-

scribed previously) to find donor pools of matches that are similar on the covariate values. To derive the

posterior for the ICEs, I incorporate the matching step in a Bayesian model. The Bayesian model captures

the uncertainty in the matching process, the donor pool, the parameters of the distributions of missing

potential outcomes, and the imputations themselves through the joint posterior.

3.1.2 Estimation

The general algorithm for estimating ICEs is as follows:

For a binary treatment and continuous outcome variable, I simulate from the posterior through the follow-

ing steps. Let observation i be a treated (control) observation. Choosing m-to-1 predictive mean matching

with m approximately equal to 10% of the smaller treatment arm, I first estimate the parameters of the

predictive mean matching θM with a draw β̃c (β̃t) from the posterior of a Bayesian linear regression of

Yc on Xc (Yt on Xt). I then calculate a predictive mean score for observation i as Xiβ̃c (Xiβ̃t) and also

calculate a predictive mean score for all control (treated) observations j as Xj β̃c (Xj β̃t). I then find the m

control (treated) observations with the closest predictive mean score to i and designate them as the donor
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MCMC Algorithm for the Posterior of τi

Repeat the following nsim times:

Gibbs Sampler:
1. Draw a matching procedure M̃ from p(M).
2. Draw θ̃M from p(θM|Y,X,W,D, θmis,M).

for (i in 1:N){
3. Determine D̃(i) from matching procedure. (matching step)
4. Draw θ̃mis

i to estimate θmis
i .

}

Draw from PPD and Calculate τi:
for (i in 1:N){

5. Draw Ỹ mis
i from f(·|θ̃mis

i ). (imputation step)
6. Calculate τ̃i = Wi(Yi − Ỹ mis

i ) + (1−Wi)(Ỹ
mis
i − Yi).

}

observations. I then draw θ̃mis
i by modeling the donor pool with a Normal likelihood and Normal prior for a

model with mean and variance unknown. Using θ̃mis
i , I draw an imputation of the missing potential outcome

Ỹ mis
i from a Normal distribution and then calculate τ̃i = Wi(Yi − Ỹ mis

i ) + (1 −Wi)(Ỹ
mis
i − Yi). I repeat

this process for all observations i for nsim = 2000 iterations with a burn-in length of 100.

3.2 Application 1: Monitoring Corruption

3.2.1 The Setup and Data

The first application of estimating ICEs comes from a study conducted in Olken (2007) on the effectiveness

of corruption monitoring.1 Corruption is an important topic in both the economics and political science

literature, and various ways to combat corruption have been suggested. The Olken study is unique in that

it is a randomized field experiment that tested the effectiveness of two types of corruption monitoring in

Indonesian villages: top-down monitoring and grassroots bottom-up monitoring. Olken concluded that top-

1I obtained the data from the study from Olken’s website at http://economics.mit.edu/faculty/bolken/data
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down monitoring is effective in reducing corruption while bottom-up monitoring had little impact. The

study is a good example to demonstrate the use of my model because it is a relatively straightforward study

that may have heterogenous treatment effects and it also collected data on multiple levels, which I use to

demonstrate the flexibility of using the ICE framework.

The setting of the project is 608 villages in the Indonesian provinces of East Java and Central Java be-

tween September 2003 and August 2004.2 Through a national Indonesian government program (Kecamatan

Development Project) funded from the World Bank, each village proposes a usually infrastructure related

project and is usually given some money for it. The most common type of infrastructure project is a project

to surface an existing dirt road with a surface made of sand, rocks, and gravel. The study is limited to

villages with such projects.

In order to ensure the proper use of funds, there are various monitoring mechanisms. Each project is

associated with a series of approximately three village-level accountability meetings. In the beginning, only

40 percent of the funds are released to the implementation team. At the first village accountability meeting,

the implementation team must present an accountability report explaining how the funds were used. Only

after the meeting has approved the report would the other 60 percent of the funds be released. These

meetings are open to the public but are typically attended by only 30-50 people, most of whom are members

of the village elite.

A second accountability mechanism is the threat of an audit by an independent government development

audit agency known as the BPKP. Each project has approximately a 4 percent baseline chance of an audit

from the BPKP. The audit process involves auditors checking all financial records and inspecting physical

infrastructure. Corruption findings from the audit can lead to officials forcibly returning the money publicly

or even criminal action.

In the experimental design for the study, Olken was able to randomize the two types of corruption moni-

toring. Broadly speaking, the experiment consisted of four treatment conditions: audit, participation either

with invitations only or invitations plus comment form, or control. The audit and participation treatments

were randomized independently, so a village can possibly receive both an audit treatment and a participation

2The following description of the study is mostly taken from Olken (2007).
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treatment.

• audit treatment: The audit treatment is a “top-down” mechanism in which an outside entity (in this

case the BPKP) monitors the project for signs of corruption. For the audit treatment, villages were

cluster randomized at the subdistrict level to ameliorate spillover effects (all villages within a subdistrict

either received an audit treatment or not). The randomization was also stratified or blocked by district

and number of years the subdistrict had participated in the program. The audit treatment consisted of

increasing the probability of an audit by BPKP from 4 percent to 100 percent. Villages were informed

before planning for construction that they would be audited with probability 1 either during or after

construction. They were also told that the results of the audit would be presented at a village meeting,

so village officials faced a possibility of punishment by the villagers, possible cutoff of funding from

future KDP projects, or even criminal action. Of the 608 villages in the study, 283 received the audit

treatment and 325 did not.

• participation treatments: The participation treatments are intended to be grassroots mechanisms

in which local villagers themselves are an integral part of the corruption monitoring. The idea of

the participation treatments is to increase village attendance at the village-level accountability meet-

ings, which are open to the public but usually dominated by the village elite. Randomization of the

participation treatments was done at the village level, and each village either got the intervention of

invitations, invitations and comments, or control. In the invitations intervention, either 300 or 500

invitations were distributed throughout the village prior to each of the three accountability meetings.

The invitations were distributed either by sending them home with school children or by asking the

heads of hamlets and neighborhood associations to distribute them. The distribution method and

number of invitations were also randomized by village. In the invitations and comments intervention,

villages received the invitations exactly as the invitations intervention, but in addition to the invita-

tions, there was a comment form asking for villagers’ opinions of the road project. The comment forms

are anonymous and summarized by a project enumerator at each accountability meeting. Thus, the

comment form produced an additional anonymous avenue through which villagers can monitor cor-

ruption without fear of retribution from village leaders. Of the 608 villages in the study, 105 received

the invitations intervention, 106 received the invitations and comments intervention, and 114 did not
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receive a participation intervention.3

The corruption and misuse of funds for the projects usually came in the form of either collusion with

suppliers to inflate prices or quantities of supplies used or inflated labor costs. Olken and his team measured

corruption by doing an independent assessment of the “correct” costs of the project through sampling the

materials used in the roads and surveys with suppliers and workers. The difference between this independent

assessment and the actual costs of the project is an unbiased measure (with high error) of the corruption.

For each village, Olken defined the dependent variable as the log of the reported amount minus the log of

the independent assessment amount, which is approximately the percent expenditure missing.4 He reports

several different measures of the percent missing variable:

• Percent missing for major items in road project: sand, rocks, gravel, and unskilled labor

• Percent missing for major items in roads and ancillary projects

• Percent missing for materials in road project

• Percent missing for unskilled labor in road project

I consider all four of these continuous measures of corruption in my analyses.

Due to circumstances such as missing data, attrition, or audit treatment randomization at the subdistrict

level, the treatment assignment in the complete dataset may not be as clean as one would like. Fortunately,

Olken also collected a few background covariates at the village level to allow for possible covariate adjustment.

The covariates measured include

• Distance to subdistrict

• Education of village head

3From here on out, I refer to the invitations treatment as “invites” and the invitations and comments treatment simply as
“comments”.

4Due to the noisiness of both the reported amount spent and the independent assessments, the estimates of percent missing
are sometimes negative or greater than 1. Such values do not make sense in the context of percent missing so I consider the
variable as simply a continuous measure of corruption.
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• Age of village head

• Salary of village head

• Percent of households that are poor

• Village population

• Mosques per 1,000 population

• Mountainous village dummy

• Total village budget

• Number of subprojects

In addition, Olken also collected data on the village-level accountability meetings including attendance levels.

I first replicate the results from Olken’s initial analyses using ICEs. I then demonstrate the flexibility of the

model in estimating other quantities of interest and with different treatment variables and outcome variables.

3.2.2 The Effect of Monitoring Treatments on Corruption (binary treatments

and continuous outcomes)

Olken’s main result in the paper is that the audit treatments on average reduce corruption by about 8 or 9

percentage points while the two participation treatments have no consistent statistically significant effect on

corruption. The main specification that he uses is a linear regression of the following form:

PercentMissingijk = α1 + α2 I(Audit)jk + α3 I(Invites)ijk

+ α4 I(Comments)ijk + εijk

where i indexes a village, j is a subdistrict, k is a stratum for the audits, and I(·) are indicator variables for

whether a village got a specific treatment. The coefficients α2, α3, and α4 are the average treatment effects

for the three treatments respectively. Due to the form of the linear regression, Olken’s estimated effect for
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Table 3.1: Treatment and Control Groups for Average Treatment Effects using ICEs and the Corresponding
Regression Parameters from Olken

Treatment Group Control Group Olken Parameter
audit; no participation no audit; no participation α2

audit; invites no audit; invites α2

audit; comments no audit; comments α2

invites; no audit no invites; no audit α3

invites; audit no invites; audit α3

comments; no audit no comments; no audit α4

comments; audit no comments; audit α4

one treatment averages over the distribution of the other treatments in the sample. Specifically, α1 assumes

that the treatment effect of getting the audit treatment versus no audit treatment is the same regardless of

whether the village got a participation treatment or not. This assumption may be violated for example, if

the effectiveness of an audit is smaller with the presence of a participation treatment as well.

I first demonstrate the flexibility and comparability of estimating ICEs by comparing aggregated average

effects from ICEs versus the specification found in Olken. Using the same linear specification above, I run

a Bayesian linear regression with improper uniform priors to get the same results as Olken. I then run the

ICE algorithm using predictive mean matching on the 10 covariates to get ICEs. To get the various average

treatment effects, I simply aggregate the ICEs. There are two important differences between my approach

and the original Olken approach. First, I use the covariate adjustment to deal with the less than perfect

randomization, which Olken does not include in his specification. Second, I carefully define treatment and

control groups to estimate the treatment effects and I allow for treatment effects to differ depending on the

presence or absence of other treatment conditions.5

Table 3.1 shows the different treatment and control groups for the seven average treatment effects estimated

using ICEs and the corresponding parameters from the linear regression. The rows represent the seven

possible interactions between the different treatments. Since Olken did not include interaction terms in

his initial model, he constrains the seven possible treatment effect interactions to three treatment effect

parameters.

5This is equivalent to a linear regression specification with interaction terms between the treatments.
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Figure 3.1 compares the results of both the average treatment effects calculated from the estimated ICEs

and the average treatment effects estimated from the regression model for the four different measures of

corruption. The red lines indicate the point estimates and 95% credible intervals from the regression method.

Note that for each graph, the regression method only produces three distinct estimates corresponding to α2,

α3, and α4. The results shown in the graph suggest a few conclusions.
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Figure 3.1: Comparing ICE Average Treatment Effects to Regression

• The treatment effects estimated from the ICEs are relatively close to the ones estimated from the

regression method. This likely suggests that the ICE method of aggregating for average effects can

recover the same estimates as the regression method, which is known to have good properties given

certain assumptions. What this suggests is that the ICE model is giving reasonable answers that are

similar to other tried and true methods. The slight differences between the two models are likely due

to conditioning and matching on covariates and treatment effect heterogeneity given the presence or
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absence of other treatment conditions.

• The magnitude of the interactions between the treatments is relatively small, indicating that the

presence of one treatment does not dramatically affect the effectiveness of another treatment. From

the graphs, it appears that for the same treatment, the red estimates from regression are usually

averages of the different black estimates from the ICE method. For example, the audit treatment

effect from regression looks to be an average of the three different audit treatment effects from the ICE

model. This is not surprising given how the problem was set up. There appears to be weak evidence

that the treatments can crowd out one another. For example, looking at the ICE models (black lines)

for Y 3 in the bottom right panel, it is clear that the significant audit treatment in the first column is

no longer significant when an invites or comments treatment is added, as made clear in the second and

third columns. Although the differences are themselves small and likely insignificant, this does confirm

intuition that multiple monitoring treatments are not necessarily additive.

• The results do also seem to confirm the substantive conclusion that Olken reaches that the audit

treatment leads to an approximately 8-9 percentage point decrease in corruption while the participation

treatments do not have a consistent effect. However, the results also suggest that the “statistical

significance” of the effects from a hypothesis testing standpoint is very tedious, and the presence of

multiple treatments can render the results insignificant.

This first result demonstrates the ability of the ICE estimation method to recover various causal quantities

accurately when benchmarked against more traditional methods. The estimation process also forces the

researcher to think very clearly about what constitutes the treatment and control groups, which leads to

a more clear exposition of what the treatment effect represents. Finally, the results presented also show a

simple example of how the ICE method can estimate treatment effect heterogeneity in a straightforward

manner that mirrors the use of interaction terms in regression. In this case, the treatment effects were

estimated separately in the presence and absence of other treatment effects.
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3.2.3 Audit Treatment Effect Heterogeneity

Since the audit treatment seemingly has a significant positive effect, I explore this effect further by looking

at treatment heterogeneity and other types of treatment effects using ICEs. I condition on the presence of

the other treatments by only comparing observations with the same status on the participation treatments

within the matching step. For example, for observations that received the audit treatment and the invites

treatment, I only match to observations that do not receive the audit treatment but do receive the invites

treatment to estimate the ICEs. I do the same for observations receiving the comments treatment and for

those that do not receive a participation treatment. The estimated ICEs are then used to calculate other

quantities of interest.

One of the main benefits of the ICE approach is the ability to estimate any treatment effect by simple

aggregation. Figure 3.2 shows the results of average treatment effects for the audit treatment within different

subgroups of the data for each of the four measures of corruption.

The first three columns of each panel represent the posterior of the average treatment effect (ATE),

average treatment effect for the treated (ATT), and average treatment effect for the controls (ATC) using

the ICE estimates. The posteriors are derived simply by averaging the posteriors for all observations, treated

observations only, and control observations only respectively. Typically, in observational studies, the ATT

and ATE may be different if treatment assignment depended on some covariate that was also correlated with

the treatment effects. Since treatment assignment was more or less randomized in this case, it is unsurprising

that the ATE, ATT, and ATC are very similar.

The next four columns of each panel show average treatment effects for various subgroups of the data

defined by specific covariate values. “Populous” subsets the ATE to villages with population greater than

the dataset average. One theory may be that larger villages may be prone to more corruption because it

may be harder for citizens to monitor officials due to collective action problems, so an outside audit may be

more helpful. “Poor” indicates the ATE for villages with greater percent of households that are poor than

the dataset average. One might expect that villages with more poor households may be more susceptible to

corruption and thus an outside monitoring mechanism such as an audit may have a greater effect than in

wealthy villages. “Mountainous” denotes the ATE for villages that are located in a mountainous region. One

86



Chapter 3. Estimating ICEs in Two Applications

● ● ●
●

●

●

●

● ● ●
● ●

●
●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

Y1: major items in road project Y2: major items in roads and ancillary project

Y3: materials in road project Y4: unskilled labor in road project
−0.75

−0.50

−0.25

0.00

0.25

−0.75

−0.50

−0.25

0.00

0.25

all (ATE) treated (ATT) control (ATC) populous poor mountainous populous, poor,
and mountainous

all (ATE) treated (ATT) control (ATC) populous poor mountainous populous, poor,
and mountainous

Data Subset

AT
E

 P
os

te
rio

r 
M

ea
n 

an
d 

95
%

 C
re

di
bl

e 
In

te
rv

al

Figure 3.2: Audit Average Treatment Effects within Subgroups

can argue that geographically isolated villages have a stronger social bond, which allows for more monitoring

within the village, so outside audits may be less helpful. And finally, “populous, poor, and mountainous”

denotes villages that are large, poor, and within a mountainous region. The results show that the ATEs

for populous and poor regions is not significantly different from the overall average, but audits seem to

have a smaller and insignificant effect in mountainous villages. Subsetting the dataset by all three criteria

together renders the sample size too small and the uncertainty intervals become quite wide. The results from

Figure 3.2 suggest that treatment heterogeneity by subgroup may not be a huge problem. It also shows the

flexibility of examining treatment effect heterogeneity by simply combining ICEs for various subgroups of

observations.

Detecting treatment effect heterogeneity by finding average treatment effects within subgroups is very

similar to existing methods and practices. However, estimating ICEs also allows researchers to look at the
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individuals themselves and look for treatment effect heterogeneity through various graphical methods. As an

example, suppose the researcher would like to know whether the audit treatment would have a large effect

on specific villages and how that effect differs across villages. One benefit of the Bayesian approach is that

it allows the researcher to make probability statements about parameters in a coherent manner. Suppose

a large effect for the audit treatment is defined as decreasing the percent missing by 20 percentage points.

Then the probability of a large effect for any village is simply the probability of an individual causal effect

of less than or equal to -0.2. With simulations from the posterior, this becomes simply the proportion of

draws less than or equal to -0.2 for a specific τi.
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Figure 3.3: Probability of a Large Audit Treatment Effect by Quantity Overreporting

Figure 3.3 plots the probability of τi ≤ −0.2 on the y-axis and the difference in log of reported versus actual

quantity of materials or labor used on the x-axis with a best-fit line drawn. Each point on the plot is a single

village and each of the four panels on the graph represents one of the four different corruption variables. The

y-axis is simply the probability that the audit treatment has a large effect. The x-axis represents how much

a village over-reports its materials and labor usage. Recall that corruption can occur through over-reporting
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of quantity and/or inflating of prices. The results suggest that there is no relationship between how well the

audit works and how much quantity over-reporting there is.
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Figure 3.4: Probability of a Large Audit Treatment Effect by Price Overreporting

However, Figure 3.4 suggests there may be a relationship between audit treatment effectiveness and price

inflation, which is plotted on the x-axis. It seems there is a slightly positive relationship where the probability

of a strong audit effect increases with an increase in price inflation. The effect may be even stronger after

discarding outliers in the top left of the graphs. The positive relationship suggests that audit treatments

may be more effective in villages that over-report their prices. One explanation may be that prices are

probably easier to check in an audit by comparing various outside sources, while quantity used may be

harder to check in an audit. Therefore, audits work much more effectively in catching price inflation than

quantity inflation. Figures 3.3 and 3.4 demonstrate one simple graphical way of detecting treatment effect

heterogeneity. Given the posteriors of all the individual causal effects, treatment effect heterogeneity is

straightforward to examine and researchers can make simple probability statements about the heterogeneity

without resorting to hypothesis testing and the many issues that associated with it.
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3.2.4 Treatment Effect Quantiles

The ICEs from the entire sample form a distribution of causal effects, which researchers may also be interested

in. As mentioned before, the ICEs are only in-sample quantities, so any extrapolation from sample quantities

to population quantities requires assumptions about how representative the sample is to the population.

Nevertheless, the entire distribution of ICEs allows researchers to see what the entire range of effects are

and to also look at treatment effect quantiles. However, an important distinction must be made between

treatment effect quantiles and quantile treatment effects, the latter of which researchers have tried to develop

methods for. A treatment effect quantile refers to the quantiles of the treatment effects whereas a quantile

treatment effect refers to the difference of potential outcomes at a specific quantile for each of the two

potential outcome distributions. Let q(·) be a quantile function for any quantile. Then

treatment effect quantile = q(Y (1)− Y (0))

quantile treatment effect = q(Y (1))− q(Y (0))

In the case of average effects, the average treatment effect is equal to the difference in the average of the

potential outcome distributions because of the linearity in expectations property. However, in the case of

quantiles, the two quantities are different unless strong assumptions about rank order are made. Existing

methods such as quantile regression try to estimate the quantile treatment effects, but I argue that treatment

effect quantiles are the actual quantities researchers are interested in. Previous methods were unable to

estimate treatment effect quantiles due to identification problems.

Figure 3.5 plots the treatment effect quantiles for the three treatments at the 25th, 50th, and 75th quantiles.

The results suggest that the range of individual treatment is quite large and can vary from -0.5 to 0.5.

Intuitively, this does not make sense as one would not expect corruption monitoring to increase corruption.

There are several possible explanations for this result. The first is that the dependent variables are measured

with such noise, with quite a few observations receiving nonsensical values of greater than 1 or less than -1,

that the treatment effect quantiles results are driven by such measurement errors. The second explanation

may be that quantiles on the extremes of the distribution are estimated with less accuracy as my simulations

showed. Therefore, one should consider the treatment effect median to be more accurate than the other
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quantiles. Finally, one may consider that there may actually be some cases where monitoring inadvertently

leads to more corruption. For example, in the audit treatment, the auditors themselves may be corrupt,

and there exists possible collusion or bribery opportunities between the auditor and the project managers,

especially since the audits were announced ahead of time. This possible collusion may inadvertently lead

to more corruption. Nevertheless, Figure 3.5 shows that it is possible to get estimates of treatment effect

quantiles by looking at the distribution of ICEs.
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Figure 3.5: Three Treatment Effects Quantiles

3.2.5 The Effect of Participation Treatments on Outsider Village Meeting At-

tendance

Despite the results from above suggesting that only the audit treatment has a significant effect on corruption,

I look more closely at the participation treatments and its mechanisms. The participation treatments also
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provide for an opportunity to demonstrate the flexibility of estimating ICEs because they can be thought of

as part of a two-stage data structure. Recall that the participation treatments were theorized to be effective

through the grassroots mechanism of increasing non-elite village turnout at village accountability meetings

(first stage) and the increased attendance of outsiders should decrease the likelihood of corruption (second

state). It is important to note that this is the only channel through which participation should reduce

corruption. Olken was able to record actual attendance data at the three accountability meetings in each

village, so I can use this data to estimate the effect of the first stage of treatment on non-elite (outsider)

village attendance.

Figure 3.6 shows the results of the participation treatments on the raw outsider meeting attendance

numbers and outsider meeting attendance as a percent of total attendance for each village averaged across

three meetings. “Invites” refers to the treatment of sending invitations only, whereas “comments” refers to

both an invitation and anonymous comment form, and “participation” lumps the two treatments together

into a broad category. Recall also that the treatments were distributed randomly either by sending them

home with children at schools or through neighborhood heads. The red and blue lines separate out the two

delivery mechanisms. I use the same method to estimate the ICEs as before and the dependent variable

is treated as a continuous variable. Since there are a variety of treatments and delivery mechanisms, I

focus here only on the average treatment effects for the treated (ATTs) rather than the ATEs. These two

quantities of interest should be equal given random assignment of treatment.

The results from Figure 3.6 lead to several conclusions. First, it appears that the participation treatments

generally do lead to a significant increase in outsider attendance at the accountability meetings. Receiving

a participation treatment in general increases outsider attendance by an average of around 7.5 people or

around a 5 percentage point increase of outsiders as a percentage of the audience. Second, it appears

that the invitations alone are more effective at increasing outsider attendance than an invitation and an

anonymous comment form. This makes sense since the comment forms are a way for villagers to express

opinions about the projects without fear or identification and retribution, so they act as a substitute for

actually attending the meeting. And finally, it appears that the treatments are slightly more effective when

distributed through schools as opposed to through neighborhood heads. This also makes sense since it may

be the case that the neighborhood heads are more likely to be corrupt and less likely to have an incentive to
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Figure 3.6: Participation ATTs on Outsider Meeting Attendance

increase outsider attendance at the meetings. Overall, the results suggest that the participation treatments

actually work as intended in increasing outsider attendance to the accountability meetings.

3.2.6 The Effect of Outsider Village Meeting Attendance on Corruption (con-

tinuous treatments and outcomes)

The previous subsection showed that the participation treatments have a positive and significant average

effect on outsider attendance at the village accountability meetings. In this subsection, I look at whether

increasing outsider village meeting attendance has the effect of reducing corruption. Here I look at this

second stage independently of the first stage. The next subsection will incorporate the two stages together

into one model.
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This second stage also provides an opportunity to demonstrate how the ICE model I use can be adapted to

accommodate non-binary treatments. In this case, both outsider meeting attendance and outsider meeting

attendance percentage are considered continuous “treatment” variables, denoted A.6 The key assumption

required for continuous treatments is a linearity assumption, where the effect of continuous treatment A is

assumed to be linearly related to the outcome Y . The linear ICE is then simply the effect of increasing A

by one unit. The way to conceptualize this is that there are an infinite number of potential outcomes Y (A)

since there are an infinite number of possible values for A. The linearity assumption imposes a structure

where the ICE is

τi = Yi(A+ 1)− Yi(A); ∀A

Note that this is equivalent to the previous definition of τi for binary treatments if A = 0.

To simulate from the posterior for τi with continuous treatments, only a few minor adjustments are

necessary to the original algorithm.

• Previously, the set of possible donor observations for observation i was all observations with the opposite

treatment status. For continuous treatments, the set of possible donor observations for observations i

is any observation with a different value on the treatment variable A. Since A is continuous, the set of

possible donors is likely to be nearly every other observation in the dataset.

• Denote the counterfactual treatment status7 for observation i as Ai + 1. Then Y mis
i = Yi + τi.

• Once the donor pool has been determined from the matching step, to draw the equivalent of θ̃mis
i ,

simply run a linear regression step of Y on A with the donor pool. Let λ̃0i and λ̃1i be the intercept

and slope draws from this regression. Then θ̃mis
i = λ̃0i + λ̃1i(Ai + 1).

• To draw Ỹ mis
i , simply draw from a Normal distribution (for continuous outcome variables) with mean

θ̃mis
i and the standard deviation equal to σ̃ from the regression step above. Then τ̃i = Ỹ mis

i − Yi

6I refer to the attendance variable as treatment variables here when looking at this second stage independently. They are
treatments in the sense that I am interested in their effects on corruption looking only at the second stage. However, in the
overall scheme of the study, the treatments are still the participation and audit interventions. I denote these second stage
“treatments” with A to avoid confusion.

7With the linearity assumption, one can really define any counterfactual to estimate the ICE. I use Ai+1 here for simplicity.
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The main differences between this and the previous algorithm is simply modeling the donor pool with a

linear regression rather than with a Normal model and then specifically defining a counterfactual treatment

status. The counterfactual treatment status in the case of binary treatments is already strictly defined as

the opposite treatment status whereas in this case, there are an infinite number of potential counterfactual

treatment statuses.

Using this algorithm and setup for continuous treatments, Figure 3.7 shows the results of the effects of

outsider attendance and outsider attendance percentage on the four corruption measures.8 Note that since

outsider attendance was not randomly assigned, this second stage analysis resembles an observational study.

I calculate the (linear) ATE, which is simply the average of all the ICEs in the data. In the case of continuous

treatments, the “treatment” and “control” groups are not well defined, so ATT and ATC are also not well-

defined. The black lines represent the ATE using all observations while the red and blue lines indicate the

ATEs for the subgroups of observations that received or did not receive the audit treatment respectively.

The results from Figure 3.7 suggests that increasing outsider attendance by one person or increasing

outsider attendance percentage by one percentage point does not really have a significant effect on decreasing

corruption. In fact, the point estimates seem to suggest that increasing outsider attendance may actually

increase corruption, although the credible intervals often cover zero. With the same caveats about the

corruption variables measured with high error, it seems that the grassroots approach to corruption monitoring

is ineffective. Although the participation treatments do increase participation, this increase does not appear

to lead to a similar increase in accountability.

3.2.7 Two-Stage Analyses of the Effect of Outsider Meeting Attendance on

Corruption

A proper analysis of the effect of increasing outsider meeting attendance should take into account both stages

of data. The previous subsection only looked at the effect in the second stage without taking advantage of

8In the matching specification for these models, I also include the treatment statuses for the invites, comments, and audit
treatments, whether the participation treatments were distributed through schools or neighborhood heads, and total meeting
attendance as control variables in addition to the original ten covariates. None of these are post-treatment since the treatment
in this case is outsider attendance.
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Figure 3.7: Linear ATE of Outsider Meeting Attendance on Corruption

the randomization of the participation treatments. In this subsection, I demonstrate how to estimate ICEs

in a two-stage framework that mirrors existing methods. I consider the participation interventions here to be

one intervention without differentiating between invites and comments. There are two ways to conceptualize

the two-stage analysis, both based on broad sets of existing methods. The first and more common way to

think about the problem is to look at it through the lens of instrumental variables. The second way is to

think about it as a problem of identifying causal mechanisms. I use the instrumental approach here, although

the framework can be used to identify causal mechanisms as well.

The hypothesized causal pathway is as follows. Villages get assigned to either receive a participation

intervention or not. Villages that receive a participation intervention should experience an increase in

outsider meeting attendance because of the treatment. The increase in outsider meeting attendance should

then result in more corruption monitoring, which should then lead to lower levels of corruption. So far, I have
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shown that participation interventions do increase outsider meeting attendance on average, but increasing

outsider meeting attendance on average does not reduce corruption. However, since both estimates were

averages, I have yet to show the effect of outsider meeting attendance on corruption in those villages where

participation increased outsider meeting attendance. The ICE framework allows me to examine this problem

further by specifically linking the two stages together on an individual village level.

In the typical instrumental variables setup, there is a treatment variable of interest where treatment

assignment is not ignorable. However, there exists an instrument that has ignorable assignment and is cor-

related with the treatment variable. The analysis then leverages the ignorable assignment in the instrument

to identify the effect for the treatment variable. In this case, the participation treatment would be the

instrument and the outsider meeting attendance would be the treatment variable of interest.9 Under certain

assumptions, the instrumental variables analysis can estimate and identify a local average treatment effect

(LATE), which is the average treatment effect for compliers. Compliers here are defined as the subgroup of

individuals for whom the instrument affects the treatment variable in the hypothesized direction when given

the instrument and has no effect when not given the instrument. In our example, a village is classified as

a complier if outsider meeting attendance increases when receiving the participation intervention and stays

the same when not receiving the participation intervention. The LATE is then the effect of outsider meeting

attendance on corruption for complier villages.

To identify the LATE in this example (and generally speaking for instrumental variables), the following

assumptions must hold:

• Stable treatment value assumption (SUTVA): assumed to hold, although slightly violated by

the differing treatments of invites and comments.

• Ignorable assignment of the instrument: assumed to hold because of random assignment of

participation.

• Exclusion restriction: assumes that the participation interventions affect corruption only through

the channel of outsider meeting attendance; assumed to hold.

9For this subsection, I only consider the raw outsider meeting attendance number rather than outsider meeting attendance
percentage.
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• Non-zero average causal effect of participation intervention on outsider meeting atten-

dance: shown to hold in previous sections.

• Monotonicity: participation interventions only affect outsider meeting attendance in one direction;

assumed to hold although I relax this assumption later.

The key to identifying LATE is to identify which villages are compliers and which are not. If compliance

status is known, then LATE would be easy to estimate. However, compliance status is not known, but I can

estimate compliance status in the first stage using the ICE framework and then use the ICE framework in

the second stage as well to estimate LATE given compliance status.

Consider the following way to use ICEs in an instrumental framework setting. In the first stage, estimate

the ICEs for all observations to get the individual effects of the participation intervention on outsider meeting

attendance. The posterior of the ICEs represent the uncertainty over compliance status. For each draw from

the posterior, consider a village to be a complier village if the ICE is positive and not a complier if the ICE is

not positive. For each iteration, classify every village as either a complier or non-complier based on the first

stage ICE. The draws from the entire posterior of this first stage characterize the uncertainty over whether

or not a village is a complier. The probability of village i being a complier village is simply the proportion

of posterior draws greater than 0 in this first stage.

Next, denote the missing potential outcomes from the first stage as Amis. Then, in the second stage,

implement the ICE algorithm a second time with the corruption measure as the outcome and outsider

meeting attendance as the treatment. This is the same algorithm as above for continuous outcomes and

continuous treatments. However, one key difference is that the counterfactual treatment here is the Amis

from the first stage, whereas before, the counterfactual was arbitrarily chosen to be A− 1. The idea behind

this is that Amis
i is the imputed outsider meeting attendance for observation i if it had received the opposite

participation intervention. Then Y mis
i is the potential outcome for corruption given a hypothetical outsider

attendance value of Amis
i . A second key difference is that in the potential donor pool at the second stage,

donors must be of the same compliance type. So if observation i is drawn as a complier in the iteration, then

the donor observations must also be drawn as compliers in that iteration. The ICE algorithm simply imputes

two missing potential outcomes for the opposite participation treatment. For each draw of the algorithm, I
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draw a set of compliers and then draw an estimate of LATE.

The specifications of this two-stage model can vary in several ways. For example, one can include control

variables to match either in the first stage or the second stage or both. The assignment for the instrument

must be ignorable, so it must be randomly assigned or ignorable after controlling for covariates. In the second

stage, including control variables in the matching is optional and may or may not increase the precision of

the estimates. One can also choose not to include matching variables, in which case the donor pools in the

first and second stages would simply be all observations with a different instrument and treatment statuses

respectively.

Another way to alter the specification is to impose the monotonicity assumption. In the specification I

initially described, the monotonicity assumption is not strictly necessary and not imposed. It allows the

participation intervention to actually decrease outsider meeting attendance. However, if a monotonicity

assumption makes sense substantively, imposing it in the algorithm will improve estimates and reduce noise.

Let i be an observation that receives the participation intervention. To impose the monotonicity assumption

in this example, I must constrain Amis
i produced from the first stage ICE to be less than or equal to the

observed Ai. If Amis
i > Ai for any draws of Amis

i , then I simply change the imputation of Amis
i such that

Amis
i = Ai

Figure 3.8 presents the results of various specifications of this two-stage model of the raw average outsider

meeting attendance number on corruption using the participation intervention as an instrument. I consider

four different specifications: two models with the monotonicity assumption, with and without second stage

matching, and two models without the monotonicity assumption. I consider two quantities of interest for the

four dependent variables: the LATE and the non-complier average treatment effect (NCATE). The LATE

considers only compliers whereas the NCATE considers only non-compliers.

The results from Figure 3.8 lead to several conclusions. First, consider the NCATE estimates. The

NCATE is a way to test the validity of the exclusion restriction. Recall that the exclusion restriction states

that the instrument only affects the outcome through the treatment. If the exclusion restriction holds, then

the NCATE should be zero since the instrument should not be affecting the outcome for non-compliers. The

blue lines in Figure 3.8 confirm that the NCATE is likely zero, suggesting that the exclusion restriction is
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Figure 3.8: Two-Stage ATEs of Outsider Meeting Attendance on Corruption

a valid assumption. The LATE estimates across the specifications and corruption measures suggest that

outsider meeting attendance does not have a significant effect on corruption. This confirms the result from

before that grassroots monitoring is not very effective in reducing corruption.

3.3 Application 2: The National Job Corps Study

The second application implements the ICE algorithm on a randomized study of a job training program

in the US. The question of whether or not job training programs are effective is one of the most widely

evaluated questions in the fields of economics and causal inference. The specific data used here comes from

the National Job Corps Study conducted by Mathematica Policy Research, Inc. The job training program,

known as Job Corps, offers job training for disadvantaged youths between the ages of 16 and 24. The study
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here involved a random sample of all eligible applicants for the program in late 1994 and 1995. I obtained

the dataset from Frumento et al. (2012) and closely mirrored the analyses in their paper.

In the original study, 15,386 individuals were sampled and assigned either a treatment (9,409) or control

(5,977) intervention. The treatment group was offered the opportunity to enroll in the program while the

control group was denied access to the program for three years. Interviews were then conducted with the

entire experimental population at baseline and then at 52, 130, and 208 weeks after the random assignment.

Due to problems with incomplete baseline interviews, individuals who died during the follow-up, and people

who were admitted to the program even though they were assigned to control, the resulting experimental

population consisted of 13,987 individuals. Of the individuals that were in the treatment group, not all of

them chose to enroll in the program. The treatment group compliance rate (those who were assigned to

treatment and then enrolled) was about 68%. The following background covariates were collected on all

individuals at baseline:

• Gender

• Age

• Has children

• Years of education

• Mother’s years of education

• Father’s years of education

• Has job

• Months employed in previous year

• Had job in previous year

• Earnings in previous year

• White or non-white

• With or without a partner
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• Ever arrested

• Whether household income > $6000

• Whether personal income > $6000

I deal with missingness in the covariates by using only one imputation from a set of multiple imputations,

following the same method as Frumento et al. (2012). They justify using only a single imputation by stating

that there was very small variability in the results across multiple imputations. At the follow-up interviews,

two outcomes are measured: employment and wages. For the purposes of this application, I only look at the

binary employment outcome (employed or not), although future extensions should also look at wages.

Frumento et al. (2012) address three issues with the study in their paper: treatment assignment noncom-

pliance, partially defined wages due to nonemployment, and unintended missing outcomes. Because my focus

is on estimating ICEs and showing the flexibility of the model in examining treatment effect heterogeneity,

I only address the first problem of noncompliance. I exclude the second problem by looking only at employ-

ment rather than wages, and I ignore the third problem by dropping observations with missing outcomes.

The latter may induce bias when looking at population estimands, but theoretically poses no problems when

limiting the analysis to the sample or individual estimands. I deal with the problem of noncompliance by

using principal stratification in a formal two-stage model. The principal strata are defined by estimating

ICEs in the first stage. While the first application of monitoring corruption also included a two-stage model,

I more formally define the model in the second stage. This application is also different from the first in that

all the outcomes and treatments in the two stages are binary variables, which allows for easier notation.

3.3.1 A Two-Stage Model for the Effect of Job Training on Employment with

ICEs

The outcomes I am interested in are the employment statuses of individuals in the experiment at 52 weeks,

130 weeks, and 208 weeks after randomization. Assignment to being offered the choice of enrolling into the

job training program is randomized, but actual enrollment in the program is not. Let Z denote the binary

treatment assignment and let W denote the binary enrollment in the program indicator. Y denotes any one
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of the three binary outcome variables. The two-stage model here incorporates the first stage of the effect of Z

on W and the second stage effect of W on Y . The setup is a typical instrumental variables study where Z is

the instrument. Since W was not randomized, I rely on the randomization of Z to identify treatment effects.

All the typical IV assumptions of SUTVA, monotonicity, exclusion restriction, non-zero average effect of Z

on W , and ignorable assignment of Z are assumed here.

Researchers are generally interested in two types of average treatment effects in this setup: the intention-

to-treat effect (ITT) of Z on Y and the local average treatment effect (LATE), which is the effect of W

on Y for compliers. Compliance here is defined as enrolling in the program if offered and not enrolling

if not offered. Due to the nature of the program, I assume that there is only one-sided noncompliance

in that individuals can choose not to enroll if offered treatment but they cannot choose to enroll if not

offered treatment (monotonicity assumption). Notationally, I define compliance with the potential outcomes

framework where W(Z) is the enrollment status given treatment status Z. Then, for compliers,

W (1) = 1

W (0) = 0

and for non-compliers,

W (1) = 0

W (0) = 0

Let G be a binary indicator for whether an individual is a complier or not and let Y (Z) denote the potential

outcome for Y given treatment assignment Z. Then, the typical treatment effects estimated under this setup

are

ITT = E[Y (1)]− E[Y (0)]

LATE = E[Y (1)|G = 1]− E[Y (0)|G = 1]

The unbiased estimate of the ITT is simply a difference in means of Y given randomization of Z. Estimating
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LATE requires first estimating group membership for each individual.

I use principal stratification (Frangakis and Rubin 2002) and stratify observations given their Z and

W indicators. Let S(Z,W ) denote a strata of observations with observed values of Z and W . Due to

the assumption of only one-sided non-compliance, there are three strata in the data: S(1, 1), S(1, 0), and

S(0, 0). The compliance statuses of individuals in S(1, 1) and S(1, 0) are known. Since individuals not

assigned treatment cannot enroll in the program, it must be the case that everybody in S(1, 1) are compliers

and everybody in S(1, 0) are non-compliers. The only uncertainty in compliance status is with the 5,299

individuals in S(0, 0).

I can estimate group membership status using the ICE algorithm in the first stage. Since estimating group

membership for S(0, 0) is equivalent to estimating W (1), the problem can be considered as one of estimating

the ICEs of Z on “outcome” W . This first stage estimation gives the posterior probability of any individual

belonging to the compliers group. Using the draws from the first stage, I can then implement a second stage

where I estimate the ICEs of W on Y conditional on individuals being drawn as compliers to find complier

treatment effects. Simply put, the algorithm is very similar to before. For each iteration of the MCMC, draw

a value for Wmis
i for i ∈ S(0, 0). Determine compliance status using Wi and Wmis

i . For complier treatment

effects then, take all individuals labeled as compliers and estimate ICEs with W as treatment and Y as the

outcome. In both the first and second stages, matching on covariates is not strictly necessary since Z is

randomized. However, using matching can improve estimates by subsetting the potential donor observations

to a smaller set of more similar observations rather than using the entire set of observations in the other

treatment group. At worst, matching poorly will simply produce a random draw from the potential donor

pools. Given the large number of observations in this study, matching done correctly will almost certainly

reduce the variance of the estimates.

Recall the original setup for estimating ICEs. Let Y mis
i be the missing potential outcome to be imputed

and let θmis
i be the mean of the distribution for Y mis

i . Let D
(i)
j be an indicator for whether the jth observation

is a match for observation i. The random component in the model is the outcome when observation j is a

match to observation i when i is the individual of interest. Yi is fixed and therefore not a quantity of interest
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for modeling. The simplified10 version of the original posterior was

p(θ|Y,X,W ) ∝ p(D|θ)p(Y |D, θ)p(θ)

where the posterior was augmented with D. In the two-stage model here, the posterior is augmented again

with compliance status G.

Let πj denote the probability of observation j being a complier. For the simple case where compliance

status is estimated without matching, the empirical complier proportion can be used:

π̂j =

∑N
i=1 I(i ∈ S(1, 1))∑N

i=1[I(i ∈ S(1, 1)) + I(i ∈ S(1, 0))]

where I(·) is an indicator variable. Recall the previous complete likelihood11 for the one-stage ICE model:

Lcomp(θmis|Y,D) = p(Y,D|θ)

= p(Y |D, θmis)p(D|θ)

=

N∏
i=1

N∏
j=1

[
p(Yj |θmis

i )p(D
(i)
j |θM,M)

]D(i)
j

With the two-stage model, there is a second data augmentation using compliance status G. If D and G were

observed, the complete data likelihood would be

Lcomp = p(Y |D,G, θ)p(D|θ)p(G|θ)

=

N∏
i=1

N∏
j=1

([
p(Yj |θmis

i )p(D
(i)
j |θ

(G)
M ,M)

]D(i)
j

π
Gj

j (1− πj)(1−Gj)

)I(Gj=Gi)

The likelihood here differs from before in that only donor observations within the same compliance status

as i contribute information when i is of interest. The likelihood terms for any observation not in the same

compliance group as i provide no information for θmis
i and are dropped. The matching parameters are also

estimated separately for each compliance group, as denoted by θ
(G)
M . The product over all i’s denotes the

10I suppress the notation for the matching to keep things simple.

11Like before, assume the matching parameters are estimated separately and given.
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complete set of ICEs for all observations in the data. Integrating out G in the likelihood involves piecing

the likelihood together from the three principal strata. However, like before, the researcher can simply

approximate the integrals using Bayesian simulation.

One can complicate the model further by estimating πj using an ICE step in the first stage, matching12

and imputing Wmis.13 Let ωmis denote the mean of the distribution Wmis drawn by modeling the donor

pool in the first stage.14 The full MCMC algorithm for the two-stage ICE model that I implement contains

the following steps.

Two-Stage MCMC Algorithma for the Posterior of τi

Repeat the following nsim times:

1. Draw a matching procedure M̃1 where the subscript denotes the
first stage matching.

2. Draw θ̃M1
.

for (i in 1:N){
3. Determine D̃

(i)
1 from matching procedure.

4. Draw ω̃mis
i to estimate ωmis

i .
5. Draw W̃mis

i from Bern(ω̃mis
i ).

6. Calculate G̃i = ZiWi + (1− Zi)(W
mis
i −Wi)

7. Draw a matching procedure M̃2.

8. Draw θ̃
(G)
M2

separately for the two compliance groups.

9. Determine D̃
(i)
2 from second stage matching conditional on G̃.

10. Draw θ̃mis
i to estimate θmis

i .
11. Draw Ỹ mis

i from Bern(θ̃mis
i ).

12. Calculate τ̃i = Zi(Yi − Ỹ mis
i ) + (1− Zi)(Ỹ

mis
i − Yi).

}

aSteps 3-5 may be skipped for observations in S(1, 1) and S(1, 0) since their com-
pliance status is known. The equation in step 6 accounts for this.

The parameter θi in the two-stage model is the individual intention-to-treat effect. The algorithm also

outputs the draws from the distribution of compliance status G. Using the draws of θi and Gi, the researcher

12If the covariates are uninformative about compliance status, then the first stage ICE would simply be an approximation of
the empirical estimate π̂j from above.

13Note that Wmis is imputed with certainty for individuals in S(1, 1) and S(1, 0).

14The parameters ωmis are the first stage equivalent of θmis in the one-stage ICE algorithm.
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can calculate any causal effect of interest including the ITT, LATE, and NCATE (non-complier average

treatment effect) and explore any treatment heterogeneity. I implement this algorithm on the job training

data with predictive mean matching on the 15 covariates with M = 20 in both the first and second stages

of the algorithm with an MCMC of length 2000.15

3.3.2 Treatment Effects and Treatment Effect Heterogeneity from a Two-Stage

Model

I first estimate three average treatment effects (ITT, LATE, NCATE) across the three survey timepoints of

52, 130, and 208 weeks after randomization. The dependent variable is whether the individual is employed

at each timepoint. The average Job Corps participant stays in the training program for 1-2 years, so some of

the participants in the program may still be enrolled at the first timepoint of 52 weeks. The ITT measures

the average effect of treatment assignment on employment regardless of whether an individual enrolls in

the program. The LATE measures the average effect of treatment assignment amongst compliers and the

NCATE measures the average effect of treatment assignment amongst non-compliers. To calculate the LATE

(NCATE), I take the draws of τi for each iteration of the algorithm and average the ones for individuals

that were drawn as compliers (non-compliers) within that iteration. This vector consists of draws from the

posterior for the LATE (NCATE). I then take the mean and the quantiles of the vector for the point estimate

and credible interval.

Figure 3.9 presents the results from the posteriors using the two-stage ICE algorithm. At 52 weeks, all the

effects are negative, which indicates that job training actually decreases the probability of being employed

at 52 weeks. At 130 and 208 weeks, the average effects become positive, suggesting that job training does

actually increase employment prospects. There are a few things to note from these results. First, the fact

that the effects are negative at 52 weeks is unsurprising. There are at least two possible explanations. The

first is that participants in the Job Corps program are likely to still be enrolled in the program and thus

have not had an opportunity to search for jobs. Their counterparts that did not enroll probably have higher

15The donor pool size M = 20 is significantly lower than the 10% of smallest treatment arm number that I used before.
Because the dataset is quite large, 10% of the smallest treatment arm would result in M > 500. My simulations thus far have
not covered such a large dataset so I chose a much smaller number to allow for sufficient variation in the composition of the
donor pools.
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Figure 3.9: Three Average Treatment Effects at Three Timepoints

employment rates since they have spent the 52 weeks looking for jobs. The second explanation is that even

if participants have already finished the program, the resulting skills they have acquired lead them to search

for higher income jobs, which may take longer to find. The idea is that participants now have a higher

“reservation wage”, the lowest wage at which they are willing to work. Because I only look at employment

outcomes, it can be misleading since those that take job training may demand a higher wage whereas those

that did not take job training may be willing to settle for lower-paying jobs. If one imagines the ease of

finding a job is inversely related to the wage paid by the job, then lower-paying jobs are easier to obtain and

individuals with a higher reservation wage are likely to be unemployed longer. I explore this idea further

through exploring treatment effect heterogeneity.

A second finding to note is that the LATE is always stronger in magnitude than the NCATE. This is

to be expected as the effect of treatment assignment should be much stronger for those that actually take

the treatment than those that do not. However, with the exception of possibly the result in week 130, the
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NCATE effects, though weaker than LATE, do not seem to be zero. It appears that simply being assigned

treatment does actually have an effect on individuals independently of actually enrolling in the job training

program. From a methodological perspective, this seems to call into question the validity of the exclusion

restriction, which requires that treatment assignment only affects the outcome through actually enrolling in

the program. There may be a couple explanations for this. First, it may be the case that individuals who are

assigned treatment are given a boost of confidence from simply being offered acceptance into the program.

The offer itself may spur the individual to think about the future and to look harder for employment even

without enrolling in the program. Second, it may also be the case that individuals who are offered a spot

in the program may decide to decline the invitation in favor of another competing job training program

or opportunity. Being offered the treatment may simply open their eyes to the opportunities available to

them, and they may decide to pursue other opportunities that lead to employment. Nevertheless, a non-zero

NCATE may indicate a violation of the exclusion restriction, which likely causes an upward bias in the

estimate of the LATE.

The LATE results so far suggest that actual enrollment into the job training program decreases the

probability of employment in the beginning and while still in the program, but has a positive effect on

employment after completing the program. I now explore treatment effect heterogeneity further using the

posterior of the ICEs. The first avenue I explore is whether the LATE is stronger for certain types of

individuals characterized by the covariates. I take each of the nine binary covariates in the data and I

estimate the LATE for X = 1 and X = 0.16 I then take the difference in the LATE for X = 1 and X = 0.

Figure 3.10 shows the results for the difference in LATEs between the two binary groups for four of the

binary covariates.

The way to interpret the lines in Figure 3.10 is that a positive value on the y-axis indicates that the LATE

for X = 1 is greater than the LATE for X = 0. For example, in the top left corner, at week 52, the LATE

for individuals with children is about 5 percentage points greater than the LATE for individuals without

children. This suggests that the effect of job training on employment at week 52 is greater on individuals

with children. This result may conflate two mechanisms. First, it may be the case that individuals with

16The process to calculate the LATEs here is similar to before. For each iteration of the MCMC, I identify those individuals
drawn to be compliers with X = 1 and those draw to be compliers with X = 0. I repeat this process for the entire length of
the MCMC to get draws from the posteriors for the LATEs for X = 1 and X = 0.
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Figure 3.10: Difference in LATEs for Four Binary Covariates

children are more likely to finish the job training program sooner and thus be employed sooner due to the

need for a steady job to raise children. Second, it may also be the case that individuals with children have

a lower reservation wage because they cannot afford to hold out for a higher-paying job and may settle for

lower-paying jobs to support their children.

In the top right panel, it appears that the job training works slightly better for whites than for non-

whites. There may be numerous explanations for this. Race may be correlated with a large number of other

factors which may result in the appearance that whites finish the program faster and/or have an easier and

faster time to employment after the program. I control for education and household income in the matching

specification, but that may not account entirely for the heterogeneity in effects across races.

The two bottom panels look at the differences in LATE between individuals who were employed before the

program and individuals who were not. Employment was measured as having a job when the baseline survey
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was taken (left) or having a job within the previous year before the baseline survey (right). The two variables

are undoubtedly quite highly correlated. In both cases, it appears that having a job before the program

significantly decreases the effect of the program on employment at week 52. It may be the case that those

already holding jobs beforehand are opting into training for jobs that require more skills, so they must stay

in the program longer than others. It may also be the case that their reservation wage after the program

is much higher than individuals who had not had a job prior to baseline. Their baseline jobs may have

been of the lower-paying variety, so after the program, they expect an upgrade in their employment whereas

those who had not previously held a job may opt to take lower-paying jobs after the program and become

employed more quickly. Through evaluating treatment effect heterogeneity by aggregating ICEs, I find some

heterogeneity that confirms the two theories of longer duration in the program and higher reservation wages

leading to higher initial unemployment.

In Figure 3.10, I explored treatment effect heterogeneity by looking at LATE for for different groups of

individuals based on covariates. The ICE framework also allows for exploring treatment effect heterogeneity

in the reverse way by first dividing individuals into groups based on their ICEs and then comparing covariate

information for the different groups. The two approaches are slightly different in that the first asks the

question “What is the effect of job training for people that look a certain way (based on covariates)?” This

second approach asks the question “What do people who benefited/were hurt from job training (in terms of

employment) look like?”

In the study, the treatment effects can take on three possible values: 1, 0, and -1.17 I first classify

individuals into one of three effect categories: helped (1), no effect (0), or hurt (-1). I limit the analysis to

compliers so that the effects are from the job training program itself. I also limit the analysis here to look

only at employment in week 52. I then compare the mean value of the covariates for people in each effect

category and see how they differ. To account for the uncertainty in the classifications and in compliance

status, I repeat this process for each iteration of the MCMC. Specifically, for each iteration, τ̃i classifies the

individual i into an effect category. I then subset to compliers given the drawn compliance status G̃ and

17Note that given treatment assignment and the outcomes in the data, the possible values each ICE can take is constrained
to two values out of 1, 0, and -1. For example, an individual that was assigned treatment and is employed can only have an
ICE of either 0 or 1 since treatment assignment could not have hurt employment given that the individual got treatment and
is employed.
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record the mean value of the covariates for each of the three effect categories. I repeat this process for all

iterations and the result is a series of vectors of covariate means, one vector for each covariate-effect category.

The vectors represent the posteriors of the covariate means.
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Figure 3.11: Comparing Covariates by Effect Category for Employment at Week 52

Figure 3.11 displays the the covariate means by effect category for four of the covariates. Recall that

“helped” implies a positive effect of job training on employment at week 52 and “hurt” implies a negative

effect. Around 18 percent of those that were helped by job training had children compared to 15 percent

for those who were hurt. Those that were hurt by job training also were more likely to have held jobs at

baseline and more likely to have had higher earnings in the year before baseline. Finally, those that were

helped by job training were also more likely to be white. These results are all consistent with the previous

hypotheses that individuals with children are more likely to benefit more quickly from job training in terms

of finding employment while those with previous jobs are more likely to take longer to become employed,

possibly due to staying longer in the program or holding a higher reservation wage.
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The results presented here are largely consistent with the idea that the job training program actually works

well in the long run in getting people employed. However, there is a short-term cost in terms of immediate

employment. The ICE framework allows me to explore this result and find evidence that some individuals

are more willing to bear this short-term cost whereas others are more likely to seek immediate employment

after finishing the program. Further work can extend the ICE framework to address the issue of wages in

conjunction with employment outcomes.

3.4 Conclusion

I have presented the results from two separate experimental studies related to monitoring corruption and job

training. In both cases, the studies originally made a huge contribution to their respective fields. I use the

ICE framework that I propose to mostly confirm those results, but I also demonstrate how the framework

allows for a more flexible way to approach the problems. I show how to use ICEs to explore treatment effect

heterogeneity and I contribute some interesting results that were not addressed in the original studies. The

two applications allowed me to show how to adapt the ICE framework to different types of outcome and

treatment variables and to embed it within the framework of instrumental variables and two-stage analyses.

The ICE framework can be extended even further to account for all types of data structures and patterns.

In the final chapter, I address some further extensions using ICEs and discuss some other remaining issues

for future work.
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Chapter 4

Concluding Remarks and Extensions

In the first three chapters, I have argued the case for a new approach to causal inference through the direct

estimation of individual causal effects, laid out a framework to do so, presented a model to estimate the

ICEs through a Bayesian approach with matching, showed that such a model can recover ICEs and other

causal estimands through simulation, and demonstrated how the model works in two different applications.

I now address some pertinent issues relating to the approach and also suggest some extensions and further

applications of the model for future research.

4.1 Issues Relating to Matching

One of the crucial aspects of the model is the matching process, which chooses the donor observations

that ultimately informs the imputation of the missing potential outcomes. The simulations I show suggest

that predictive mean matching seems to generally work well across the simulated datasets. However, in

any specific application, any number of other matching methods may perform even better. There is likely

no single specification that dominates across all datasets. In the causal inference literature, the choice of

matching specifications is often ad-hoc and ultimately can cause problems. Researchers can choose from the
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method to use, the number of matches, the weight of matching variables, etc. The practical solution is often

to use a variety of specifications and to compare them on some balance metric to choose the best method.

However, this process also has its pitfalls. The choice of balance metric is usually another specification itself.

Also, the idea of choosing the best specification may be problematic since it assumes that the specification is

the correct one and all others provide no additional information. Short of exact matching, it is unlikely that

one specification is the correct one to use. In the case of estimating ICEs, the problems are magnified because

it can be the case that one specification works well for certain individuals whereas another specification works

well for other individuals. I have also not presented any methods for checking balance in estimating ICEs.

The framework I have presented allows for averaging of specifications by allowing the researcher to choose

a different specification for each draw of the algorithm and even possibly for each individual within a draw. I

believe this is a more appropriate way to do matching since it does not put all weight on a single specification

and leverages the power of model averaging. However, as of now, the pool of specifications and the relative

likelihood of choosing any one specification is completely up to the researcher. The prior for the matching

specifications completely determines which specifications get used. Ideally, one would be able to calibrate the

probabilities of matching specifications through information from the data. For example, for any individual,

if some balance metric could be derived such that the specifications are used in proportion to how well they

perform on the balance metrics, then the matching specifications would actually be “informed” by the data.

This would likely improve the accuracy of the imputations. However, the process for developing a method

to incorporate balance metrics within the current ICE algorithm is very computationally intensive and left

for future research.

A second way to test the various matching specifications is to see how well they predict observed outcomes.

Instead of using the matching to form donor pools to impute Y mis, one can use the same process to predict

the observed Y instead and see how well each of the specifications perform. This becomes analogous to a

machine learning problem. In fact, the matching method that performs the best does not even have to be a

causal inference matching algorithm at all. One can imagine using a myriad of the existing machine learning

algorithms to estimate θmis using Y as the training and test outcomes.
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4.2 Prediction and Population Extrapolation

Testing the performance of the matching algorithms brings up another point about predicting causal effects

for individuals outside of the data. As I have alluded to before, ICEs are fundamentally in-sample estimands

since there is data only about individuals in our dataset. However, the goal of statistics and causal inference

is almost always to predict and generalize to out-of-sample individuals and datasets. Suppose the researcher

is presented with the covariate vector for an out-of-sample individual and is asked to predict the individual

causal effect of some treatment for this individual. How can the researcher adapt the ICE framework to

make a prediction?

The simplest solution for the researcher is to think about the problem as needing to impute two missing

potential outcomes, one for the hypothetical treatment and one for the hypothetical control. This involves

matching to both in-sample control and treated units, creating two separate donor pools, modeling two

separate means, and then drawing two separate Y mis. The resulting ICE would be a predicted ICE for the

out-of-sample individual based on the two imputed potential outcomes.

Another important issue related to prediction is also the issue of generalizing the results to some larger

population. In most empirical work, the goal is to use the data to make inferences about some population.

Usually, these population inferences rely on some assumptions that may or may not be explicit. For the

purposes of the ICE framework, generalizing to a population would theoretically imply knowing covariate

information for every individual in the population and then predicting each of their ICEs. However, since

the ICE framework allows us to aggregate to calculate average effects in the sample, one can also use these

estimates to generalize to the population given certain assumptions. The major assumption that is needed

to generalize aggregated ICEs is a random sampling assumption. The sample that one estimates the ICEs on

must be a representative sample of the population that one wants to generalize to. One can use population

weights or other corrections in the data to meet these assumptions. Given the correct sampling assumption,

one can say that the individuals in the data are similar to individuals in the population. And while one

cannot say anything about ICEs simply based on this fact, one can say that the aggregated ICE average

effects are good estimates of population average effects.
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The main way in which estimates of population estimands differ from estimates of sample estimands is in

the uncertainty estimates. The variance of population estimates is usually higher to account for the sampling

uncertainty. In the ICE framework, one way to simulate this uncertainty to get more accurate population

uncertainty estimates is through bootstrapping. There are two possible ways to do the bootstrapping. In the

first, one can bootstrap the data first, run the ICE algorithm on the bootstrapped dataset, and then calculate

the aggregated effects and repeat. The second way is to calculate the ICEs in the full dataset first, then

bootstrap the ICEs themselves and aggregate and repeat. The second way uses all of the information in the

dataset to do the matching and imputations while the first way only uses observations in the bootstrapped

datasets for each bootstrap iteration. Future research should consider which of the two ways is a better

choice for getting uncertainty estimates of population estimands.

4.3 Non-parametric Imputation

The Bayesian model for the imputation of the missing potential outcomes requires the researcher to specify

a distribution to draw from. Additionally, modeling the mean and variance of the donor pools in the

matching step requires at least two observations in the donor pool. If either of these requirements are not

met, the researcher can still impute via a non-parametric approach. Instead of modeling the mean of the

donor pool and then drawing from a specified distribution, the researcher can simply impute by drawing

one of the observed outcomes in the donor pool as the imputation. This is analogous to multiple “hot-deck”

imputation (Cranmer and Gill 2013). The assumption is that the empirical distribution of the donor pool

is the discrete distribution that is used in the posterior predictive step. This also allows for 1-to-1 matching

where the imputation is simply the outcome of the donor observation. A non-parametric approach may be

more desirable if the researcher does not want to make any distributional assumptions. However, the tradeoff

is that the researcher assumes the the outcome values of the donor pools are sufficient to characterize the

distributions of the missing potential outcomes. If there are not enough distinct values for the donor pool

outcomes (in the continuous case), then the posterior of the ICEs become very discrete.
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4.4 Convergence

As with any MCMC simulation, convergence to the stationary distribution is necessary and must be checked.

The algorithm I propose really only contains dependence among parameters at the matching step (the im-

putation is only dependent on D, which is dependent on the matching parameters), so non-convergence may

be less of an issue than typical MCMC simulations with high dependence among parameters. Nevertheless,

convergence should be checked. Unfortunately, the number of parameters in the model is greater than or

equal to the number of observations in the data, so checking convergence on each one is tedious at best.

However, it is also necessary to check each parameter as non-convergence on even one parameter may be

problematic for all the results (Gill 2008). Further research should be done on ways to test convergence on

a large number of parameters. I defer to the vast literature on convergence diagnostics for this. However,

one suggestion is that researchers can check convergence on the aggregations of the ICEs. For example, if

checking convergence on all N ICEs proves to be too tedious, one can check convergence on the aggregated

draws of the ATE or the ATT. If the ATE draws do not seem to converge, then this indicates that one or

more of the ICEs have not converged. Unfortunately, the inverse is not true. Convergence on the ATE does

not necessarily imply convergence on all the ICEs.

4.5 Extensions

4.5.1 Incorporating ICEs into (almost) any possible (causal) model

One benefit of the idea of estimating ICEs is that researchers can incorporate ICEs and potential outcome

imputations into nearly any type of causal model that one can run. The potential outcomes framework

is a powerful framework that clearly specifies the research design and the problem at hand. The ICE

framework simply builds off the potential outcomes framework. Then any regression model, no matter

how sophisticated, is really a means to estimate parameters in the potential outcomes framework. Often,

including ICEs in a more sophisticated regression model simply boils down to choosing the right relevant set

of donor observations.
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Consider the fixed effects regression model often used in economics and political science.

Yik = αk +Xikβk + εi

where k denotes a certain cluster (for example, countries). This fixed effects model estimates different

intercept and (possibly) slope terms for each cluster. Another way to conceptualize the goal of fixed effects

models is simply to match observations only within clusters (Imai and Kim 2013). Within the ICE framework,

this simply boils down to limiting the potential donor pool within each iteration to observations in the same

cluster and then aggregating by cluster to get the cluster-specific intercepts and slopes. In more complicated

multilevel models, one can simply impute the missing potential outcomes and then aggregate either on a

first or second level variable to get specific causal effects.

Now consider complicated regression models that attempt to model time components. Often, such models

boil down to including a lagged dependent variable or other terms on the right-hand side of the regression

equation. In the matching framework, this simply means adding a variable to the matching specification. To

be more precise, the researcher can set the matching algorithm to exact match on certain variables, which

is again simply an adjustment on the potential donor pool. More complicated time-dependent models may

include certain parametric specifications, such as a spline to account for time in binary dependent variable

models (Beck, Katz and Tucker 1998). Researchers can include such specifications either during or after

matching to adjust the imputations. One way would be to run a regression within the donor pool using only

the spline variables to estimate θmis.

The general idea is that including matching and reframing causal inference at the level of ICEs is com-

patible with almost any existing method. Furthermore, I argue that it has the added benefit of forcing

researchers to seriously consider the causal quantities they are estimating by being explicit about modeling

individuals. Adding a spline may be simple to implement in any statistical package, but forcing the researcher

to understand that the spline simply models how other observations in different time periods contribute to

the missing potential outcome of a certain observation of interest is valuable in promoting the understanding

of the role of regression models in causal inference.
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4.5.2 ICEs and Causal Inference Assumptions

Another benefit of working with ICEs and a possible avenue for extending the framework is through the

testing and relaxing of typical causal inference assumptions. As I alluded to in the examples using a two-

stage model model with instrumental variables, the typical exclusion restriction can be tested using the

ICE framework by estimating the non-complier average treatment effect (NCATE). If the assumption of

the exclusion restriction were correct, then the NCATE should be zero. In the job training example, using

the ICE framework to estimate NCATE, I found that there may be some reason to doubt the exclusion

restriction that is typically assumed.

Consider also the conventional SUTVA assumption that is required in almost all causal inference studies.

The SUTVA assumption has two parts:

1. Treatment assignment on one observation does not affect the potential outcomes of another observation.

2. No varying treatment intensity.

The second part of the assumption may be violated, for example, if individuals assigned to a drug can take

either a regular strength or extra strength version. In the corruption monitoring example, the participation

treatment actually violated the second part of the assumption since villages received either invitations only

or invitations and comment forms. For some parts of the analyses, I assumed that the two were the same.

However, since the ICE framework results in a Bayesian posterior, I can actually make probability statements

about how true the assumption actually is. Let village i be assigned control (neither invites nor invites and

comments). Suppose I then impute the potential outcome for i being assigned invites (by matching to

villages that received invites only) and then I also impute the potential outcome for i being assigned invites

and comments (by matching to villages that received both invites and comments). Then I would have

two posteriors for the two potential outcomes of receiving the two different versions of the participation

treatment. I can then compare the two posteriors and calculate the probability that τ
(inv)
i = τ

(inv&com)
i .

This would be an estimate of the probability that the second part of SUTVA holds for village i. I can do

the same calculation for all i and have a sense of how likely SUTVA is violated. More research must be

done into how much to trust the results of such an analysis, but it at leasts suggests potential for testing the
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sensitivity of certain studies to certain assumptions.

Another key assumption that is often made in causal inference with instrumental variables is the mono-

tonicity assumption. Let Z be an instrument for W with outcome Y . The monotonicity assumption (also

called the no defiers assumption) states that Wi(1) ≥ Wi(0). In simple terms, the assumption is that there

are no individuals who would take the treatment when assigned control but not take the treatment when

assigned treatment. In many situations, this assumption makes sense. However, for certain studies, this

assumption is very important and may not be fully satisfied. Consider the now famous paper on the effect

of institutions on economic performance by Acemoglu, Johnson and Robinson (2001). In that paper, the

authors use settler mortality as an instrument for extractive institutions. The theory states that in coun-

tries where settler mortality was high, settlers built extractive institutions since they did not settle there

themselves. In countries with low settler mortality, the settlers actually installed less extractive and “bet-

ter” institutions for economic growth. The author use this design to conclude that institutions matter in

economic growth.

To simplify the analysis, let settler mortality (Z) and non-extractive institutions (W) both be measured

with binary variables. The monotonicity assumption states that the relationship between settler mortality

and institutions can only go one way for all countries. No country exists that would establish extractive

institutions with low settler mortality but non-extractive institutions with high settler mortality. However,

this assumption is fundamentally untested and given the myriad of variables that interact with both Z and

W , it is conceivable that the monotonicity assumption could be violated. For example, one can make the

case that the relationship would depend on which groups of settlers were affected the most by mortality.

Suppose the settlers can be partitioned into “royalists” who supported the Crown and “colonialists” who

supported more independent institutions. If mortality affected the royalist camp disproportionately, then it

could be the case that increasing mortality actually increases the odds of less extractive institutions while

absent high mortality, the royalists have enough political power to enact extractive institutions. This is

but one possible scenario in which the monotonicity assumption is violated. Using the ICE framework, one

can actually relax the monotonicity assumption and estimate the probability that a country is a “defier”

country. By allowing for defiers and jointly estimating the compliance group memberships, one can get a

better estimate for LATE and also estimate a defier average treatment effect.
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By thinking about causal inference at the individual level and estimating ICEs, researchers are given tools

to think about the assumptions they make and relax some of the assumptions or test the sensitivity of their

results.

4.6 Final Words

In this dissertation, I have presented an argument for why researchers should shift their focus from estimating

average effects to estimating individual effects. I am in no way arguing that existing methods for average

effects should no longer be used. I believe that estimating ICEs in conjunction with existing methods

can produce great results. The contribution of the dissertation is in opening up new avenues and helping

scholars rethink how existing methods fit into the causal inference framework using potential outcomes. The

algorithm and the models themselves are very much works in progress. There are other areas that my work

touch on, such as the merging of matching and Bayesian methods, the use of model averaging with matching,

or the idea that complicated regression models can be integrated with a matching approach. All of these

areas deserve much more future research. I simply hope that my dissertation will spur more interest in how

to deal with treatment effect heterogeneity and how to reconcile small n research with large n studies as well

as provide a unified and straightforward framework for thinking about causal inference.
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Figure A.1: Comparing Standard Deviations of ICE Posterior Mean Bias for the Different Matching Methods
(continuous outcome)
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Figure A.2: Comparing ATE Expected Error Loss for the Different Matching Methods (continuous outcome)
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Figure A.3: Comparing ATT Posterior Mean Bias for the Different Matching Methods (continuous outcome)
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Figure A.4: Comparing ATT Expected Error Loss for the Different Matching Methods (continuous outcome)
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Figure A.5: Comparing 50th Percentile Treatment Effect Posterior Mean Bias for the Different Matching
Methods (continuous outcome)
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Figure A.6: Comparing 50th Percentile Treatment Effect Expected Error Loss for the Different Matching
Methods (continuous outcome)

133



Appendix A. Extra Simulation Results

●●● ●●●●●●●●●●●●●●● ●●●●●●●●●
● ●●●●●●●●●●●

●
●●●

●
●●●
●

●●●
●

●●●
●
●●●

●
●●●

●
●●●

●
●●●
●

●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●
●●●●● ●● ●● ●●●
●●●●●●●● ●● ●●●●●

●●
●
●●
●

●● ● ●● ●● ●●●● ●● ●●●●● ●●●●●●●●●
●

●●●●●●●●●●●

●
●●●
●

●
●●

●● ●●
●

● ●●
●

●●●

●

●
●●

●
● ●●●
●●●

●
●● ●

●●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●●●●●●
●●
●
●● ●
●

●
● ●●●●●●●●●●●

● ●●● ●●● ●● ●●●
●
●●

●
●

●

●
●

●

●●● ●●●●●●●●●●●●● ●●●●●●●●●● ●
● ●●●●●● ●● ●●●

● ●●●●●
●●●● ●●●●● ●●●●●

●
● ●●
●
●●●●
●● ●
●
●●●

●●●●●● ●●●●●●●●●●●●● ●● ●● ●●●●●● ●●●●●● ●●●●●●●
●●● ●
●●

●●●●●●●●●●●●
● ●●●●●●●●● ●●●●●

●●●
●●
●

●● ●
● ●●●●●●●●●● ●●●●●●●●●● ●● ●

●●●● ●●●●●●●●
●

●● ●●●●●●●●●
●

●●●
●

● ●●
●
●● ●

●
●●●
●

●● ●
●

●●● ● ●●●● ●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●●
●● ●●●●●●●●● ●
●●●●●●●●●●●●

● ●●● ●●●● ●●●●● ●●●●●
● ●
●

●●● ●●●●●● ●●●●●●
●●●●●●●●●●●●

●
●●●●●● ●●●●●

●●● ●
●●
●●●

●●●
●●●●

●

●● ●●●● ●
●●●●

●

●
●●

●

●
●● ●●● ●●● ●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●● ●●●●● ●●●●●●●●

● ●●●●● ●●●●●●

●●●●●● ●●●● ●●
●
●●

●
●

●
●
●
●

●●● ●●●●●●●●●●●●
●

●●●●●●●●● ●●
●

●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●

●● ●●
● ●●

●
●●●●

●●●
●

●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●
●●●●● ●● ●●●●●

●●●●●●●● ●●●●
●●●●●●●●●●●●●●●

●●
●
●●

●

●
●●

●●●●● ●●●●
●
●●●●●●
●

●●●●
●●●
●●●●

●
●●●●● ●●

●
●● ●

●
●●●
●

●● ●●
●●●
●

●●●●●●●
●
●●●
●

●● ●●●●● ●●●●●●●●●●●●●●●●
●●●●● ●●●
●●● ●●● ●●
●●● ●

●
●●●

●
●●●

●
●●●●

●●●
●
●●●

●
●●●

●
●●●
●

●● ●
●

●●●●●●● ●● ●●●

●● ●
●

●●●
●

●●●
●

●●●
●
●●●

●
●●●●●●●

●
● ●●●
●●●

●
● ●●

●
●● ●

●

●
●●

●

●●●

●

● ●
●●
●●

●
●●●

● ●●

●

●●●
●

●
●

●

●●●●●● ●●●●●●
●●● ●
●●●●●●●●

●●●●

●●●●●●● ●
●

●●●
●

●●●

●

●●●●
●●●

●
●● ●

●
● ●●

●
●●●

●
●●●
●

●●●
●

●●●
●● ●●●

●

●● ●● ●●●●●●
●
●●●

●
●●●●

●●●
●

●●●
●

●●●
●

●●● ●
●●●

●
●●●●
●● ●
●
●●●

●●● ●●●●●●●●●
● ●●● ●● ●●●●●●

●●●●●● ●●● ●● ●
●●● ●● ●●●●● ●●
●●●●●●● ●● ●●●

●
●●●
●

●●●
●
●●●

●
● ●●

●
●●●

●
● ●●

●
●● ●

●
●●●
●
●●●

●
●●

●●●●● ●

DGP 1: linear in Y; unconfounded W DGP 2: linear in Y; linear in W DGP 3: linear in Y; non−linear in W

DGP 4: moderately non−linear in Y; unconfounded W DGP 5: moderately non−linear in Y; linear in W DGP 6: moderately non−linear in Y; non−linear in W

DGP 7: very non−linear in Y; unconfounded W DGP 8: very non−linear in Y; linear in W DGP 9: very non−linear in Y; non−linear in W

−20

−10

0

10

20

−20

−10

0

10

20

−20

−10

0

10

20

regression all mahal. predictivepropensitysubclass regression all mahal. predictivepropensitysubclass regression all mahal. predictivepropensitysubclass
Method

75
th

 P
er

ce
nt

ile
 T

re
at

m
en

t E
ffe

ct
 P

os
te

rio
r 

M
ea

n 
B

ia
s

Number of Observations

●

●

●

100

1000

5000

Figure A.7: Comparing 75th Percentile Treatment Effect Posterior Mean Bias for the Different Matching
Methods (continuous outcome)
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Figure A.8: Comparing 75th Percentile Treatment Effect Expected Error Loss for the Different Matching
Methods (continuous outcome)
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Figure A.9: Comparing 95th Percentile Treatment Effect Posterior Mean Bias for the Different Matching
Methods (continuous outcome)
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Figure A.10: Comparing 95th Percentile Treatment Effect Expected Error Loss for the Different Matching
Methods (continuous outcome)
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A.2 Comparing Number of Conditioning Variables for Continuous

Outcomes
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Figure A.11: Comparing Average ICE (or ATE) Posterior Mean Bias for Different Conditioning Sets (con-
tinuous outcome)
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Appendix A. Extra Simulation Results

●● ●

●

●● ●

●

●● ●

●

● ●●

●

●● ●

●

● ●●

●

● ●●

●

●●●

●

● ●
●

●

●●
●

●

●●●

●

● ●●
●

●●●

●

●●
●

●

●●●

●

●●●●●
●

●

●●
●

●

●●●●●● ● ●●●● ●● ●●●●●● ●●●● ●●●●● ●●● ●● ●● ●● ●●

●

●●●
●

●●●

●

●● ●

●

● ●●

●

● ●
●

●

●●●

●

●●
●

●

●●
●

●

● ●● ●●●

●

●●●

●

●●●

●

●●●

●

● ●●

●

● ●●

●

●●●

●

●● ●

●

●●
●

●●●
●

●●●

●

●●● ●●●●

●

●●●

●

●●● ●●
●

●●

●

●

●● ●

●

●●

●

●●●

●

●●●● ●●●●●●●
●

●●●● ●●●●

● ●●

●● ●● ●●● ●
●

● ●●
●

●● ●

●

● ●●

●

● ●●

●

●●●

●

● ●

●
●

●●●

●

●●●

●

●●

●

●● ●

●

●●●

●

●● ●

●

●● ●

●

●●●

●

●●●

●

● ●●

●

●● ●

●

● ●●

●

●● ●

●

●●●

●

● ●●

●

●●●●●●

●

●●
●

●

●●●

●

●●

●

● ●

●

●

●●●●●●● ●●●● ● ●● ●●●●● ● ●
●

● ●● ●●●●●● ●●●● ●●●●

●

●● ●

●

● ●●
●
●●

●

●●●

●

● ●

●

●

●●●

●

● ●●

●

● ●●

●

●● ●

●●●
●

●● ●
●

● ●●
●
●●●

●

●●●

●

●● ●

●

●●●

●

●●●

●

●●●

●

● ●●
●

●●
● ●

●●

●

●
●●●

●

● ●●

●

●●
●

●

●●●

●

● ●●

●

●● ●

●

●●
●

●●● ● ●●●● ● ●●●● ●●● ● ●●● ●●● ●●● ●● ●●● ● ●● ●●

●

●● ●

●

●● ●
●

● ●

●

●

●● ●

●

●●
●

●

● ●●

●

●●
●

●

● ●
●

●

●●
●

●●●

●

●●●

●

●●●

●

● ●●

●

●●●

●

●●●

●

●●●

●

● ●●

●

●●
●

●

●● ●

●

●●● ●● ●●
●

● ●●

●

●● ●

●

●● ●

●

● ●●

●

●●
●

●

● ●●

●

●●

●

● ●●

●

● ●●● ●●●●● ●●● ●●● ● ●● ●●

●● ●

●●●● ●●● ●
●
● ●●

●

●●

●

● ●●●

●

●●

●
●

●●
●

●

● ●●

●

●● ●

●

●●

●

●

●●
●

●●●

●

●● ●

●

● ●●
●

●●●

●

●●●

●

● ●●

●

● ●●

●

●●●

●

● ●
●

●

● ●●

●

●● ●

●

●●●

●

●●●

●

● ●

●

●

●●
●

●

●●●

●

●●
●

●●

●

●

●●●● ●●● ● ● ●● ●●●●●●● ● ●●

●

● ●●
●

●●●●● ●●●● ● ●● ●

●

● ●●

●

●●●
●

● ●
●

●

● ●● ● ●●

●

●● ●

●

●●

●
●

●●
●

●

●● ●

●● ●

●

●●●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●● ●●

●

●●
●

● ●
●

●

● ● ●

●

●●●

●

●●

●

●

●●
●

●

●●● ●●

●

●

●●
●

●●

●

●●

●

●●●● ●●●● ● ●● ●●●●● ●●●● ●●●●●●●● ●●● ● ● ●● ●

●

●●●

●

●●

●

●

●● ●

●

●●●

●

●● ●

●

●● ●

●

●●● ● ●
●

●●

●

● ●●

●

● ●●

●

●●●
●
● ●●

●

●●●

●

●● ●

●

●●●●●● ●●● ●●
●

●

●●●

●

●●●

●

● ●●● ●
●

●●● ●●

●

●●
●

●● ● ● ●

●

●●●
● ●●● ●● ●●

●●●
●

● ●●● ●●●●

●●●

●●●● ●●●●

●

● ●●

●

●● ●

●

●●●

●

●●
●

●

●●
●

●

●●

●

● ●

●

●●
●

●● ● ●●●

●

●●●
●

●●●

●

●●●

●

● ●●

●

●● ●

●

●●●

●

●● ● ●●● ●●●

●

●● ●

●

●● ●

●

●●●●●●

●

●●

●

●

●●

●

●●

●

●●

●

●●
●

● ●●● ●●●● ● ●●●●●● ● ● ●●● ●●● ●● ●●● ●● ●● ●●● ●

●

●●●

●

●● ●

●

● ●●●●

●

●

●●

●

●●

●

●●●

●

●●
●

●●
●

DGP 1: linear in Y; unconfounded W DGP 2: linear in Y; linear in W DGP 3: linear in Y; non−linear in W

DGP 4: moderately non−linear in Y; unconfounded W DGP 5: moderately non−linear in Y; linear in W DGP 6: moderately non−linear in Y; non−linear in W

DGP 7: very non−linear in Y; unconfounded W DGP 8: very non−linear in Y; linear in W DGP 9: very non−linear in Y; non−linear in W

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

0 5 7 10 0 5 7 10 0 5 7 10
Number of Matching Variables

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 IC

E
 P

os
te

rio
r 

M
ea

n 
B

ia
s

Number of Observations

●

●

●

100

1000

5000

Figure A.12: Comparing Standard Deviations of ICE Posterior Mean Bias for Different Conditioning Sets
(continuous outcome)
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Figure A.13: Comparing ICE “Power” for Different Conditioning Sets (continuous outcome)
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Figure A.14: Comparing ICE Calibration Coverage for Different Conditioning Sets (continuous outcome)
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Figure A.15: Comparing ATE Expected Error Loss for Different Conditioning Sets (continuous outcome)
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Figure A.16: Comparing ATT Posterior Mean Bias for Different Conditioning Sets (continuous outcome)
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Figure A.17: Comparing ATT Expected Error Loss for Different Conditioning Sets (continuous outcome)
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Figure A.18: Comparing 50th Percentile Treatment Effect Posterior Mean Bias for Different Conditioning
Sets (continuous outcome)
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Figure A.19: Comparing 50th Percentile Treatment Effect Expected Error Loss for Different Conditioning
Sets (continuous outcome)
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Figure A.20: Comparing 75th Percentile Treatment Effect Posterior Mean Bias for Different Conditioning
Sets (continuous outcome)
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Figure A.21: Comparing 75th Percentile Treatment Effect Expected Error Loss for Different Conditioning
Sets (continuous outcome)
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Figure A.22: Comparing 95th Percentile Treatment Effect Posterior Mean Bias for Different Conditioning
Sets (continuous outcome)
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Figure A.23: Comparing 95th Percentile Treatment Effect Expected Error Loss for Different Conditioning
Sets (continuous outcome)
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A.3 Comparing Number of Matches for Continuous Outcomes
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Figure A.25: Comparing ICE “Power” for Different Numbers of Matches (continuous outcome)
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Figure A.26: Comparing ICE Calibration Coverage for Different Numbers of Matches (continuous outcome)
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Figure A.27: Comparing ATE Expected Error Loss for Different Numbers of Matches (continuous outcome)
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Figure A.28: Comparing ATT Posterior Mean Bias for Different Numbers of Matches (continuous outcome)
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Figure A.29: Comparing ATT Expected Error Loss for Different Numbers of Matches (continuous outcome)
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Figure A.30: Comparing 50th Percentile Treatment Effect Posterior Mean Bias for Different Numbers of
Matches (continuous outcome)
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Figure A.31: Comparing 50th Percentile Treatment Effect Expected Error Loss for Different Numbers of
Matches (continuous outcome)
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Figure A.32: Comparing 75th Percentile Treatment Effect Posterior Mean Bias for Different Numbers of
Matches (continuous outcome)
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Figure A.33: Comparing 75th Percentile Treatment Effect Expected Error Loss for Different Numbers of
Matches (continuous outcome)
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Figure A.34: Comparing 95th Percentile Treatment Effect Posterior Mean Bias for Different Numbers of
Matches (continuous outcome)
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Figure A.35: Comparing 95th Percentile Treatment Effect Expected Error Loss for Different Numbers of
Matches (continuous outcome)
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Figure A.36: Comparing Standard Deviations of ICE Posterior Mean Bias for Different Match Percentages
(continuous outcome)
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Figure A.37: Comparing Average ICE Expected Error Loss for Different Match Percentages (continuous
outcome)
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Figure A.38: Comparing ICE “Power” for Different Match Percentages (continuous outcome)
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Figure A.39: Comparing ICE Calibration Coverage for Different Match Percentages (continuous outcome)
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Figure A.40: Comparing ATE Expected Error Loss for Different Match Percentages (continuous outcome)
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Figure A.41: Comparing ATT Posterior Mean Bias for Different Match Percentages (continuous outcome)
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Figure A.42: Comparing ATT Expected Error Loss for Different Match Percentages (continuous outcome)
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Figure A.43: Comparing 50th Percentile Treatment Effect Posterior Mean Bias for Different Match Percent-
ages (continuous outcome)
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Figure A.44: Comparing 50th Percentile Treatment Effect Expected Error Loss for Different Match Percent-
ages (continuous outcome)
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Figure A.45: Comparing 75th Percentile Treatment Effect Posterior Mean Bias for Different Match Percent-
ages (continuous outcome)
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Figure A.46: Comparing 75th Percentile Treatment Effect Expected Error Loss for Different Match Percent-
ages (continuous outcome)
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Figure A.47: Comparing 95th Percentile Treatment Effect Posterior Mean Bias for Different Match Percent-
ages (continuous outcome)
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Figure A.48: Comparing 95th Percentile Treatment Effect Expected Error Loss for Different Match Percent-
ages (continuous outcome)
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A.4 Comparing Different τi Distributions for Continuous Out-

comes
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Figure A.49: Comparing Average ICE (or ATE) Posterior Mean Bias with Different τi Distributions (con-
tinuous outcome)
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Figure A.50: Comparing Standard Deviations of ICE Posterior Mean Bias with Different τi Distributions
(continuous outcome)
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Figure A.51: Comparing Average ICE Expected Error Loss with Different τi Distributions (continuous
outcome)
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Figure A.52: Comparing ICE “Power” with Different τi Distributions (continuous outcome)
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Figure A.53: Comparing ICE Calibration Coverage with Different τi Distributions (continuous outcome)
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Figure A.54: Comparing ATE Expected Error Loss with Different τi Distributions (continuous outcome)
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Figure A.55: Comparing ATT Posterior Mean Bias with Different τi Distributions (continuous outcome)
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Figure A.56: Comparing ATT Expected Error Loss with Different τi Distributions (continuous outcome)
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Figure A.57: Comparing 50th Percentile Treatment Effect Posterior Mean Bias with Different τi Distributions
(continuous outcome)
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Figure A.58: Comparing 50th Percentile Treatment Effect Expected Error Loss with Different τi Distributions
(continuous outcome)
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Figure A.59: Comparing 75th Percentile Treatment Effect Posterior Mean Bias with Different τi Distributions
(continuous outcome)
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Figure A.60: Comparing 75th Percentile Treatment Effect Expected Error Loss with Different τi Distributions
(continuous outcome)
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Figure A.61: Comparing 95th Percentile Treatment Effect Posterior Mean Bias with Different τi Distributions
(continuous outcome)
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Figure A.62: Comparing 95th Percentile Treatment Effect Expected Error Loss with Different τi Distributions
(continuous outcome)
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A.5 Simulations for Binary Outcomes

The simulations for binary outcomes test the same methods and ideas as the simulations for the continuous

outcomes. Because of the nature of ICEs for binary outcomes with binary treatment, where each τi can only

take on a value of -1, 0, 1, it is tough to develop the ICE proportion of 95% credible intervals including 0

(“power”) or the ICE calibration coverage (“coverage”) metrics. The posterior draws for each ICE consist of

values of 0 and 1 or -1, depending on the treatment assignment and observed outcomes. Since it is unlikely

that 95% or more of the posterior draws are of the same value, the 95% credible intervals almost certainly

contain both possible values, so the two metrics are meaningless. Therefore, I only present the metrics of

posterior mean bias (“bias”) and expected error loss (“root mse”). For similar reasons, I only calculate

and present results for two causal estimands, the ATE and the ATT. The simulation testing capabilities for

binary outcomes are much more limited, so I rely mostly on the simulations for continuous outcomes to reach

my conclusions. However, the results that I do calculate for the simulations for binary outcome variables are

very similar to the results for continuous outcomes.

The data generating process for binary outcomes is also very similar to that of continuous outcomes. I use

the same covariates generated before. Once again, there are nine different data generating processes with

three different sample sizes. I first take the continuous outcomes for Y (0) from before:

1. Y (0) = x1 + x2 + x3 − x4 + x5 + x6 + x7 − x8 + x9 − x10

2. Y (0) = x1 + x2 + 0.2x3x4 −
√
x5 + x7 + x8 − x9 + x10

3. Y (0) = (x1 + x2 + x5)2 + x7 − x8 + x9 − x10

To generate a binary outcome, I simply assign Yi(0) = 1 if the continuous outcome is greater than the mean

of all the Y (0) and Yi(0) = 0 if the continuous outcome is less than the mean. The treatment assignment

generating process stays the same as before.

1. p(W = 1) = 0.5

2. η = x1 + 2x2 − 2x3 − x4 − 0.5x5 + x6 + x7
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W = 1 if η > 0; otherwise W = 0

3. η = 0.5x1 + 2x1x2 + x23 − x4 − 0.5
√
x5− x5x6 + x7

W = 1 if η > 0; otherwise W = 0

To generate τi, I use the following formula:

If Yi(0) = 0,

P (τi = 1) = 0.75

P (τi = 0) = 0.25

If Yi(0) = 1,

P (τi = −1) = 0.4

P (τi = 0) = 0.6

Given Yi(0), Wi, and τi, then

Yi(1) = Yi(0) + τi

Yi = WiYi(1) + (1−Wi)Yi(0)
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A.6 Comparing Methods for Binary Outcomes
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Figure A.63: Comparing ATE Posterior Mean Bias for Different Matching Methods (binary outcome)
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Figure A.64: Comparing ATE Expected Error Loss for Different Matching Methods (binary outcome)
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Figure A.65: Comparing ATT Posterior Mean Bias for Different Matching Methods (binary outcome)
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Figure A.66: Comparing ATT Expected Error Loss for Different Matching Methods (binary outcome)
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Appendix A. Extra Simulation Results

A.7 Comparing Number of Conditioning Variables for Binary Out-
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Figure A.67: Comparing ATE Posterior Mean Bias for Different Conditioning Sets (binary outcome)
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Figure A.68: Comparing ATE Expected Error Loss for Different Conditioning Sets (binary outcome)
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Appendix A. Extra Simulation Results
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Figure A.69: Comparing ATT Posterior Mean Bias for Different Conditioning Sets (binary outcome)
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Appendix A. Extra Simulation Results
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Figure A.70: Comparing ATT Expected Error Loss for Different Conditioning Sets (binary outcome)
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Figure A.71: Comparing ATE Posterior Mean Bias for Different Numbers of Matches (binary outcome)
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Figure A.72: Comparing ATE Expected Error Loss for Different Numbers of Matches (binary outcome)
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Figure A.73: Comparing ATT Posterior Mean Bias for Different Numbers of Matches (binary outcome)
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Figure A.74: Comparing ATT Expected Error Loss for Different Numbers of Matches (binary outcome)
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