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Anterograde Interference Results from Interactions
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Abstract

Prior experiences can influence future actions. These experiences can not only drive adaptive changes in motor output, but
they can also modulate the rate at which these adaptive changes occur. Here we studied anterograde interference in motor
adaptation – the ability of a previously learned motor task (Task A) to reduce the rate of subsequently learning a different
(and usually opposite) motor task (Task B). We examined the formation of the motor system’s capacity for anterograde
interference in the adaptive control of human reaching-arm movements by determining the amount of interference after
varying durations of exposure to Task A (13, 41, 112, 230, and 369 trials). We found that the amount of anterograde
interference observed in the learning of Task B increased with the duration of Task A. However, this increase did not
continue indefinitely; instead, the interference reached asymptote after 15–40 trials of Task A. Interestingly, we found that a
recently proposed multi-rate model of motor adaptation, composed of two distinct but interacting adaptive processes,
predicts several key features of the interference patterns we observed. Specifically, this computational model (without any
free parameters) predicts the initial growth and leveling off of anterograde interference that we describe, as well as the
asymptotic amount of interference that we observe experimentally (R2 = 0.91). Understanding the mechanisms underlying
anterograde interference in motor adaptation may enable the development of improved training and rehabilitation
paradigms that mitigate unwanted interference.
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Introduction

The history of prior action in the human motor system is known

to influence not only future performance through memory, but

also the capacity for future learning. Interference and savings are

two oppositely-directed phenomena that produce this effect.

Interference describes the ability of one task to impair the learning

of another, while savings describes the ability of previous learning

to enhance future learning. For example, previous work has shown

that after initial learning and subsequent washout of a visuomotor

rotation task, relearning is faster than the initial learning, even if

the performance levels of the learner (i.e. the motor output) at the

onset of learning and relearning are identical [1–2]. Similarly, in a

saccadic gain adaptation task, after learning and subsequent

opposite-learning such that the motor output returns to pre-

learning levels, relearning is also observed to be consistently faster

than initial learning [3].

Other studies have demonstrated that previous learning can

hinder or interfere with future learning [4–10]. An experimental

paradigm commonly used to study interference is the A1BA2

paradigm, where a subject is instructed to serially learn Task A,

Task B, and then Task A again - often with various time delays

inserted between tasks. In this paradigm, Task B is usually made to

be the opposite of Task A (e.g. a clockwise vs. counterclockwise

force-field or visuomotor rotation). Two types of interference can

be studied with this paradigm – (1) retrograde interference: how

Task B interferes with the memory of Task A1, and (2) anterograde

interference: how the memory of Task A1 interferes with the

subsequent learning of Task B (or how B interferes with A2). Note

that both retrograde and anterograde interference can affect

performance in Task A2.

Although anterograde interference can often have quite

substantial effects [4–7], it has not received as much attention as

retrograde interference in the motor adaptation literature. This is

surprising because retrograde interference tends to have a

relatively small (10–20%) effect on performance in the studies

where it is reported [2,11–13], whereas anterograde interference

often has substantially larger effects [4–5]. In fact, several

interference studies have been specifically designed to minimize

the effects of anterograde interference because they recognized the

potential it has for masking retrograde interference [2,5].

Acquiring a better understanding of the mechanisms underlying

anterograde interference is important not merely to provide

greater insight into retrograde interference effects, but because the

learning phenomenon is significant in and of itself as the primary

cause of interference during motor adaptation.
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Anterograde interference has been observed in force-field

adaptation studies [4–5,7] and visuomotor rotation studies [6],

and has been shown to weaken as the time between tasks is

increased [4]. A recently-proposed computational model for motor

adaptation has suggested a possible mechanism for anterograde

interference [14]. In this model, one internal adaptive process

responds quickly to motor error, but rapidly forgets, while another

adaptive process learns slowly from motor error, but has good

retention. The contributions of these two processes are combined

to generate the net motor output. In the transition from Task A to

Task B, the ‘‘fast’’ process will quickly learn the new task, while the

‘‘slow’’ process will be reluctant to follow because of its good

retention of the previous task. The multi-rate model predicts that

the residual contribution of the slow process would hinder

adaptation to Task B, resulting in anterograde interference. The

model also predicts that as training in Task A is extended, the

amount of interference will also increase, but then level off beyond

15–40 training trials in Task A. Here, using a simple AB paradigm

to avoid retrograde interference effects, we examine for the first

time how the duration of exposure to Task A influences the

amount of anterograde interference observed in Task B in order to

determine how the capacity for interference is built up with

practice. We then use the predictions of the multi-rate model to

determine whether anterograde interference stems from interac-

tions between the different timescales of motor learning.

Results

Anterograde interference expressed as reduced force
output

We studied how exposure to one motor adaptation task (Task A)

influences the ability to learn a second task (Task B). It has

previously been shown that prior exposure to Task A can induce

anterograde interference in the learning of Task B when these tasks

are opposite [4–7]. However, how the capacity for this interference

builds up is unclear. Here we focused on how the duration of an

initial motor adaptation to velocity-dependent dynamics (Task A)

influences the amount of interference conferred onto subsequent

adaptation to oppositely-directed velocity-dependent dynamics

(Task B) during reaching arm movements (Figure 1A). We

instructed different groups of subjects to learn clockwise [CW]

(Figure 1C) or counter-clockwise [CCW] velocity-dependent force-

fields for varying numbers of trials – either 13, 41, 112, 230, or 369

trials. After this initial exposure, subjects were switched to the

opposite force-field (Task B) for about 115 trials (see Methods).

Error-clamp trials were interspersed throughout the experiment

(approximately 1 out of every 7 trials) to probe how the level of

adaptation evolved during learning (Figure 1D; see Methods).

Baseline-subtracted force patterns measured during these error-

clamp trials at various points in training are displayed in Figure 2.

Specifically, this figure shows the data averaged across subjects from

the 369-trial group early and late in the training of Task A (early:

red trace, average of first 25 trials; late: green trace, average of trials

259–369), and early in the training of Task B (blue trace, average of

the first 25 trials after force output returned to baseline levels). Note

that the force pattern produced during late learning of Task A

closely matches both the magnitude and shape of the ideal force

pattern, which would fully compensate the robot-imposed dynam-

ics. The force pattern produced during early learning is, as might be

expected, smaller in magnitude and less specific in shape. Early in

training, the force pattern shows an appropriate transient

component, but an inappropriate static component at the end of

the movement. It has recently been shown that this static

component arises because of a pervasive cross-adaptation between

position-dependent and velocity-dependent dynamics [15]. Apro-

pos to the current study, the force pattern produced early in Task B

appears even smaller, suggesting the presence of anterograde

interference from Task A onto Task B.

Anterograde interference defined as a slower rate of
learning

In this study, we define anterograde interference as the

reduction in the learning rate for Task B due to previous learning

of Task A. This definition is not entirely consistent with all

previous work. Numerous studies have characterized anterograde

interference by higher initial errors during the learning of Task B

when compared to Task A [2,6–7,11–12,16–18]. However, other

work has defined anterograde interference in terms of slower

learning of Task B instead [14,19]. While these two definitions can

sometimes be compatible, recent work has shown that this is not

necessarily the case – higher initial errors (often associated with

greater interference) can be coupled with faster learning rates,

which indicates reduced interference [15]. Note that the sizes of

initial errors have nothing directly to do with the ability to perform

subsequent learning, as such. Initial errors in Task B (especially if

these errors are in the feedforward component of motor

performance) should instead reflect the continuity of performance

from the end of Task A, in particular when Task B immediately

follows Task A [4–7]. When a time delay is inserted between these

two tasks [4], initial errors for Task B reflect the retention of Task

A. Thus, interference defined this way may say more about

performance levels achieved in Task A than the extent to which

Task A interferes with the ability to learn Task B.

In order to dissociate the interference conferred from Task A

onto Task B from the performance level achieved in Task A, we

focus on the learning rate observed in Task B once baseline

performance has been achieved. Specifically, we compare the

opposite-learning curve for Task B (i.e. the rectified response to

Task B starting from when the net adaptation crosses zero;

Figure 3B, dashed red line) to the initial learning of Task A

(Figure 3B, solid red line), and use the percent reduction in the

Task B learning curve as a metric of interference (see Methods and

Figure 3). If the opposite-learning curves are aligned at the zero-

crossing, as illustrated in Figure 4C, then the initial learning and

Author Summary

The act of learning one task can not only have direct
effects on the performance of other tasks, but it can also
affect the ability to learn other tasks. One example of the
latter is the phenomenon of anterograde interference in
motor adaptation, in which the learning of one adaptation
can substantially reduce the rate at which the opposite
adaptation can be learned. Here we show that the amount
of anterograde interference depends systematically on the
strength of a particular component of the initial adapta-
tion rather than on the total amount of adaptation that is
achieved. This component of the motor memory evolves
more slowly than the overall learning and acts in
combination with a quickly evolving component of
memory to produce the observed improvement in task
performance. We proceed to show that a simple compu-
tational model of the interactions between these adaptive
processes predicts greater than 90% of the variance in the
observed interference patterns, suggesting that this
quantitative model may enable the development of
improved training and rehabilitation paradigms that
mitigate unwanted interference.

Anterograde Interference
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opposite-learning curves will start from the same performance

level (i.e. zero learning), and the Task B learning rate can then be

directly compared to the Task A learning rate. If the learning

curves are compared from task onset rather than zero-crossing, the

patterns of performance are similar, regardless of whether

anterograde interference occurs (see Text S1, Figure S5 and

Figure S6). Note that this comparison between initial and

subsequent learning curves proceeding from the same perfor-

mance level is analogous to the comparison between initial

learning and relearning rates in the analysis of savings. In the

analysis of data from savings experiments, if the unlearning is not

complete, initial performance during the second learning period

reflects retention of the first adaptation, which is difficult to

disambiguate from faster relearning [1,3,19].

Learning curves for Task A-Task B paradigm
We quantified adaptation levels by regressing the actual force

patterns like those displayed in Figure 2 onto the ideal force patterns

for each task (see Methods) [20]. We refer to the slope of this

regression as the adaptation index for a particular trial. Perfect

compensation for the force-field would yield an adaptation index of 1,

while no learning would yield an index of 0. Group-averaged learning

curves based on these adaptation indices are shown in Figure 4A (see

Text S1 for an analysis of the R2’s for these regressions (Figure S1), as

well as for alternative methods for estimating the regression slopes

(Figure S2 and Figure S3)). Adaptation can also be assessed by

quantifying the amount of force associated with learning-related

changes used to counteract the force-field. Since the lateral force

required to oppose the force-field is greatest at the peak speed point,

which is near the middle of the movement, we used the average mid-

movement force as a secondary measure of the progression of

adaptation. Here we define mid-movement force as the average force

produced during a 250ms window centered at the movement’s peak

speed. These data are displayed in Figure S4A. We found that both

the regression coefficients and mid-movement force metrics revealed

learning curves which were essentially identical in shape to one

another. In agreement with previous studies [5,12,14–15,20–25], we

found that the adaptation to the initial velocity-dependent force-field

(Task A) is at first rapid, and then more gradual. However, upon

exposure to Task B, we consistently observed alterations in learning

curves that indicated the presence of anterograde interference: after

the initial unlearning of Task A brings the learning curves back to

zero (the baseline adaptation level), the opposite-learning (learning of

Figure 1. Illustration of experimental paradigm. A: Subjects grasped the handle of a robotic manipulandum while making 10 cm, point-to-
point reaching motions in the 90u and 270u directions. Over the course of the experiment, subjects made three types of movements: (B) null field
movements, where the robot motors were turned off, (C) force-field movements, where the robot applied a force pattern to the subjects’ hands that
was proportional to the reach velocity and perpendicular to the reach direction, and (D) error-clamp movements, where the robot acted like a spring/
damper system in the direction perpendicular to movement(K = 6 kN/m, B = 250 Ns/m) such that 99% of lateral errors were clamped to 1.2 mm or
less.
doi:10.1371/journal.pcbi.1000893.g001

Figure 2. Force patterns at various points in training for the
369-trial group. The traces displayed here are the subject-averaged
(n = 9 subjects) lateral force patterns produced during error-clamp trials
at various points in training. All force patterns are baseline-subtracted.
Gray dotted lines indicate ideal forces for Tasks A and B. Early learning
force patterns (red) are taken from the first 25 trials of learning Task A.
Late learning force patterns (green) are taken from the last 30% of trials
while exposed to Task A (for the 369-Trial group, this corresponded to
error-clamp trials interspersed throughout the last 95 force-field trials).
Early opposite-learning force patterns (blue) are taken during exposure
to Task B, and specifically are taken during the first 25 trials after
subjects produced force patterns that most closely approximate
baseline force production.
doi:10.1371/journal.pcbi.1000893.g002

Anterograde Interference
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Task B) appears to proceed more slowly than the initial learning.

Figure 4B shows a more direct comparison of Task A and Task B

learning curves for the 13-trial and 230-trial groups. The portions of

the opposite-learning curves proceeding from the zero-crossings are

highlighted with a gray background. Note that this portion of the

opposite-learning curve is slower for the 230-trial group than the 13-

trial group, consistent with the presence of increased anterograde

interference.

Relationship between interference and duration of Task
A

Analysis of the opposite-learning curves displayed in Figure 4C

clearly illustrates the presence of anterograde interference. All of

the opposite-learning curves are slower than the initial learning

curve, illustrated as the nominal 0-trial group. The opposite-

learning curves based on the mid-movement force data also show

this effect (Figure S4B). We created a best overall estimate of the

initial learning curve by aggregating the data from the initial

learning curves from all five groups. The learning curves presented

in Figure 4C are smoothed with a three-point moving average (for

non-smoothed versions of these curves based on regression

coefficients, see Figure S8). We defined a metric for the amount

of anterograde interference caused by initial adaptation to Task A

by computing the percent reduction in the opposite-learning

curves (with respect to initial learning) over the first 25 trials

(Figure 3B).

We found that the duration of exposure to Task A had a

significant effect on the amount of interference (one-way ANOVA,

F(5,76) = 14.87, p = 2.7610210), indicating that as exposure to

Task A is increased from 0 trials, the amount of interference

significantly increases. All of the groups experienced significant

interference when compared to the aggregated initial-learning

curve (Figure 4B; one-tailed, unpaired student t-tests, p-values

between 2.861029 and 1.461023). Direct comparison of each

group’s initial-learning and opposite-learning curves reveals that

this significant interference is present for all groups, and not just in

the comparison with the aggregated initial-learning curve (i.e.

opposite-learning curves are significantly slower than the initial-

learning curves within each group; one-sample, one-sided student

t-tests, p-values between 2.861026 and 0.02; because the 13-trial

group did not complete 25 trials in Task A, we compared initial

and opposite-learning over the first 13 trials in that case).

However, we found no significant differences between the

interference metrics observed for the 41-trial, 112-trial, 230-trial,

and 369-trial groups (one-way ANOVA, F(3,32) = 0.38, p = 0.77),

but did find a difference when we included the 13-trial group (one-

way ANOVA, F(4,45) = 2.71, p = 0.042), indicating that the

increase in interference levels off after 15–40 trials (Figure 4D)

at a value of about 0.53. Interference metrics calculated using the

mid-movement force data follow the same pattern as those

calculated using the regression coefficients (Figure S4C).

The pattern of anterograde interference is explained by a
multi-rate learning model

What can explain the observation that increasing exposure to

Task A leads to greater interference when adapting to Task B, but

that this increase in interference then eventually asymptotes? One

possibility is that this pattern of interference results from

interactions between different components of the adaptive process.

A recent study has suggested that a simple two-process, multi-rate

learning model might explain several key features of motor

adaptation as a consequence of predictable interactions between

these two processes [14]. This learning model is composed of a

‘‘fast process,’’ which learns very quickly but forgets quickly, and a

‘‘slow process,’’ which learns slowly but has good retention. The

contributions of these two processes are combined to generate the

net motor output. The learning curves predicted by this model for

the AB adaptation paradigm studied in the current work are

displayed in Figure 5A. Note that none of the parameter values we

used for this model (see Methods) were fit to the current data set;

rather, all parameter values were taken from a data set in a

previous study (which looked at spontaneous recovery rather than

anterograde interference) [14]. Ideal performance for Task A is

represented as an adaptation index of +1, while Task B is

represented as 21.

Initially, the overall learning (red curve) is rapid because the fast

process (green curve) quickly responds to the motor error.

However, this rapid learning results in a quick decrease in the

Figure 3. Schematic of anterograde interference metric. A: A cartoon example of a learning curve in an AB learning paradigm, where Task A
(green background) is learned prior to Task B (yellow background). The dashed line represents the portion of the learning curve during Task B after
the baseline performance level is achieved. Note that in this cartoon example, opposite-learning proceeds more slowly than the initial learning
because of the previous exposure to Task A. We define this slowing as anterograde interference. B: To quantify the extent to which anterograde
interference slows adaptation to Task B, we compute the percent reduction between the initial learning curve for Task A (solid red line) and the
rectified (flipped) opposite-learning curve for Task B starting from when the adaptation achieves baseline levels (dashed red line) over the first 25
trials of these learning curves. This analysis specifically evaluates the reduction in learning rate rather than higher initial errors, because in the
comparison both learning curves start from the same overall performance level.
doi:10.1371/journal.pcbi.1000893.g003

Anterograde Interference
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amount of error driving the learning. As a result, the amount of

learning decreases and the fast process begins to forget more than

it learns, leading to a decline in its level beginning around 10–20

trials after the onset of learning. In parallel, the slow process (blue

curve) gradually increases in level, and eventually becomes the

main contributor to overall learning around 25 trials after

exposure to Task A begins. When Task B is presented, the fast

process quickly responds because of the increase in error

magnitude. However, the slow process follows much more

gradually. The external state (overall learning) returns to baseline

levels (an adaptation index of zero) when the fast and slow

processes are equal in magnitude but opposite in sign. Note that at

this point, although the external state is at baseline levels, the

internal states do not match their baseline levels. The residual

positive bias of the slow process (see blue curve in Figure 5A at task

transition) acts to retard the opposite-learning of Task B (ideal

performance = 21). The longer that Task A is learned, the greater

the level the slow process achieves, leading to greater anterograde

interference, as illustrated in Figure 5B. However, note that if Task

A is learned for longer than is required to achieve asymptotic

adaptation in the slow process, increasing exposure to Task A

should not lead to a corresponding increase in interference.

We simulated the multi-rate model’s response to an AB learning

paradigm for Task A durations of 13, 41, 112, 230, and 369 trials

and a Task B duration of 115 trials (i.e. the task durations used in the

experiment). By comparing the predicted opposite-learning curves

for these different groups (Figure 5B), it becomes apparent that

increasing the duration of Task A exposure leads to slower opposite-

learning curves – all of the opposite-learning curves are slower than

the 0-trial group, which is identical to the initial-learning curve for

Task A. However, the predicted opposite-learning curves for the 41-

trial, 112-trial, 230-trial, and 369-trial groups are extremely similar,

Figure 4. Experimental data from anterograde interference learning paradigm. A: All subjects performed 160 null baseline trials, and then
learned Task A (either a CW or CCW velocity-dependent force-field) for varying durations, followed by Task B (a CCW or CW velocity-dependent force-
field, respectively). Learning curves are averaged across subjects. B: Learning curves for the 13-trial (red curve) and 230-trial groups (cyan curve)
aligned to task onset. The portions of the opposite-learning curves displayed in C and analyzed in D are represented by the gray-highlighted regions.
C: Opposite-learning curves proceeding from the zero-crossing point for all groups, smoothed with a 3-pt moving average. See FIG. S8A for the raw
opposite-learning curves. D: The anterograde interference metric, calculated as shown in FIG. 3B, increases as the duration of the initial learning
period (Task A) increases; however, after 15–40 learning trials, interference asymptotes. In all panels, errorbars represent SEM.
doi:10.1371/journal.pcbi.1000893.g004

Anterograde Interference
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resulting from similar levels of the slow process during Task A

between trials 41 to 369. When we quantify the amount of

interference predicted for each group (Figure 5C, gray dotted line),

we found a close match to the experimental data (Figure 5C, colored

squares). Note that this match is not the result of model fitting

because the parameters of the multi-rate model used to generate

these predictions were taken from previous work in which

anterograde interference did not occur [14].

The degree to which a model accounts for data is often

characterized by a correlation coefficient or, equivalently, the

corresponding R2 value derived from a two degrees-of-freedom

(DOF) linear regression (slope and offset) of the relationship between

the model output and the data. This regression yields an R2 value of

0.93 (regression slope = 0.89, offset = 0.05). However, the idea of an

offset parameter implies that anterograde interference will exist even

if Task A is not trained. As this is an unreasonable implication, we

could restrict the linear regression to just one DOF (the slope). In so

doing, we find that the multi-rate model is able to characterize the

measured pattern of interference with an R2 value of 0.91

(regression slope = 0.992). Note, however, that the multi-rate model

should not merely predict the shape of the interference pattern, but

the actual levels of interference. Thus, when we abandon the

regression altogether and directly compare the model predictions

and experimental data, we find that our ability to explain the data

remains essentially the same, with an R2 value of 0.91. This suggests

that anterograde interference results from interactions between the

different timescales of motor learning.

Final learning level hypothesis cannot explain
anterograde interference

Although the data presented so far appear to be consistent with

the predictions of the multi-rate learning model, they are also

consistent with the idea that the level of motor output at the end of

Task A is what actually dictates the amount of anterograde

interference. For example, in Figure 4B, the final level of motor

output for the 230-trial group is higher than that for the 13-trial

group (one-tailed unpaired student t-test, p,3.261026): note that

adaptation coefficients of 0.8660.03 and 0.4760.05 observed in

these two groups correspond to lateral force production levels of

3.860.1N and 2.260.3N (mean6SEM), respectively (see

Figures 4A, 4B, and Figure S4A; we operationally define final

learning as the last 30% of Task A exposure, see Methods). The

Figure 5. Response of multi-rate model to anterograde interference learning paradigm. A: In response to Task A (disturbance = +1), the
fast process quickly learns, leading to rapid initial net adaptation. As the error in the system decreases, the fast process begins to forget more than it
gains, leading to the non-monotonic shape of the fast process over the course of Task A. At the same time, the slow process gradually increases in
strength and eventually becomes the main contributor to the net adaptation. This leads to the more gradual rise in adaptation level observed later in
Task A. At the transition to Task B (disturbance = 21), the fast process quickly responds to the sudden change in error by diving below zero. However,
the slow process is initially biased against learning Task B. The combination of this initial bias and the perseveration of this process results in slower
net adaptation to Task B - i.e. anterograde interference. B: Comparison of the predicted, rectified opposite-learning curves for the different groups
aligned at the zero-crossing point, consistent with the data analysis shown in Figure 4. Note that the amount of anterograde interference increases
substantially over the first 41 trials, but that the opposite-learning curves for the 112-trial, 230-trial, and 369-trial groups are very similar to each other
- the inset shows a zoomed-in version of these curves. C: Comparison of experimentally-observed and model-predicted levels of anterograde
interference for all groups. Note that the experimental data displayed here is identical to that shown in Figure 4D. The parameters used to generate
the model predictions for anterograde interference (dark gray dashed line) were not found by fitting the parameters to the current data set - instead
they were taken from a previous study [14]. The 95% confidence intervals (light gray shaded region) for the simulation predictions were determined
from 1000 different fits to bootstrapped versions of this previous data set (see Methods). Errorbars represent SEM.
doi:10.1371/journal.pcbi.1000893.g005

Anterograde Interference
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1.6N increase in motor output displayed by the 230-trial group

might explain why this group experiences more interference than

the 13-trial group. To evaluate this hypothesis, we instructed an

additional group of subjects to learn a 50% reduced Task A (i.e.

the force-field strength was halved to 7.5 Ns/m) for 230 trials,

followed by a switch to a full-strength Task B. Given that perfect

performance during this reduced Task A would correspond to an

adaptation index of 0.5 and a mid-movement force level of less

than 2.5N (see Methods), and that subjects achieve about 85% of

perfect learning (Figure 4A), corresponding to an adaptation index

of 0.43 based on the full-strength force-field, the final learning level

would be expected to be less than the final adaptation level of the

13-trial group (0.4760.05, mean6SEM).

The learning curves for the full 13-trial, full 230-trial, and

reduced 230-trial groups are shown in Figure 6A. As expected

from the experimental design, the final learning level for the

reduced 230-trial group (0.4160.02, mean6SEM) is nominally

less than the final learning level of the 13-trial group (Figure 6C;

two-tailed unpaired student t-test, p = 0.18). Correspondingly,

when comparing the mid-movement force levels, we see that the

reduced 230-trial group produces significantly less force than the

13-trial group (1.560.1 N vs. 2.260.3 N, respectively; p,0.04,

two-sided unpaired student t-test; Figure S4D). The lateral force

patterns observed at the end of Task A for these two groups reflect

this difference (Figure 6B). Therefore, if the final learning level

hypothesis were true, it would predict that this reduced 230-trial

group would experience less interference than the 13-trial group,

corresponding to faster opposite-learning. However, as shown in

Figure 6A, the shaded portion of the opposite-learning curve for

the reduced 230-trial group is slower than its 13-trial group

counterpart. Accordingly, the reduced 230-trial group experiences

significantly more interference than the full 13-trial group

(Figure 6C: p,0.007, one-tailed unpaired student t-test on

regression data; Figure S4D: p,0.007, one-tailed unpaired

student t-test on mid-movement force data) despite smaller

learned changes in motor output at the end of Task A (p,0.04,

as mentioned above). This finding is not consistent with the final

learning level hypothesis. Figure 6D, which displays the interfer-

ence metric plotted against the final learning for all of the groups,

highlights this inconsistency. Therefore, while the amount of

anterograde interference displayed by the full strength force-field

groups could be interpreted as being dependent on final learning

levels because they all lie along the same line, the reduced 230-trial

group cannot because it is separated from this line. This is not to

say, however, that the final learning level is completely

independent of the amount of AI expressed. According to the

multi-rate model, both Task A duration and Task A strength

influence the level of the slow process, which according to the multi-

rate model is the ultimate determinant of AI (see Figure S11).

Discussion

We examined how the motor system’s capacity for anterograde

interference builds up with practice by studying how the amount

of interference from Task A onto Task B varied with the amount of

training on Task A. We found a gradual build up in the amount

Figure 6. Evaluation of the final learning level hypothesis. A: Learning curves for the 13-trial (red curve), 230-trial (cyan curve), and reduced
230-trial (orange curve) groups. The reduced 230-trial group were exposed to a half-strength (B = 7.5 Ns/m) Task A, and then a full-strength
(B = 215 Ns/m) Task B. B: Subject-averaged force patterns during final learning (last 30% of Task A trials) for the 13-trial (red) and reduced 230-trial
(orange) groups. C: The reduced 230-trial group displays significantly higher levels of anterograde interference than the 13-trial group (*p,0.03),
despite nominally lower levels of final learning. This finding is inconsistent with the hypothesis that the amount of interference depends on the level
of final learning. D: Relationship between final learning and anterograde interference for all groups. Errorbars and confidence ellipses represent SEM
in panels A, C, and D.
doi:10.1371/journal.pcbi.1000893.g006
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of interference that reached asymptote after about 15–40 trials.

Interestingly, we found that the amount of anterograde interference

is not directly related to the performance level achieved in Task A

(see Figure 6). Specifically, we found that the reduced 230-trial

group expressed significantly more interference than the 13-trial

group, even though this reduced group displayed lower levels of

final learning. However, we found that the relationship between the

amounts of interference we observed and the duration of the Task A

training period is accurately predicted by a model of the interactions

between two adaptive processes with different learning rates, as is

the asymptotic level of anterograde interference. This suggests that

anterograde interference results from interactions between the

different timescales of motor learning. This model had been

previously applied to explain experimental data for the shapes of

initial learning curves [14,20,25], adaptation deficits in patients with

cerebellar damage [26], different patterns of memory consolidation

[24], patterns of spontaneous recovery [14,25], and levels of 24-

hour retention in motor adaptation [20]. Here we used parameters

that were taken from previous work in order to avoid the issues

associated with curve-fitting so that this model’s predictions were

not constrained by the current data set in any way. We found that

this model accurately predicted both the shape (R2 = 0.93) and the

actual levels (R2 = 0.91) of interference observed in the relationship

between the amount of training in Task A and the level of

interference onto Task B.

Alternative explanations for anterograde interference
We showed that the observed pattern of anterograde interference

cannot be explained by a model relating anterograde interference to

the level of motor output at the end of Task A (see Figure 6).

However, anterograde interference has also been proposed to arise

from a delay in switching between different internal models [4,12].

This explanation could be interpreted in two different (and opposite)

ways. On one hand, a delay in switching could be a qualitative

description of the residual positive bias of the slow learning process

once it slowly begins to adapt to Task B. In this case, our findings

would not only support this delayed switching explanation, but

provide a quantitative mechanism for it. On the other hand, if we

interpreted the delayed switching explanation as meaning a delay in

switching between any internal models, then such a mechanism

would appear to be at odds with the rapid improvement in

performance that can occur under conditions that produce savings.

For example, a saccadic gain experiment using an A1BA2 learning

paradigm found faster relearning of Task A during the second

exposure, even though this second instance of Task A immediately

followed exposure to Task B [3], and thus would require a switch

between different internal models. If delays did exist when switching

between different internal models, then one would expect slower

relearning of Task A. While this second interpretation cannot

account for the previous work on savings in the A1BA2 paradigm,

our multi-rate model can [14]. Furthermore, it can explain the

measured pattern of anterograde interference reported in the

current work, rapid downscaling and unlearning of a learned motor

task [27], 24-hr retention of a motor task [20], the shapes of initial

learning curves, adaptation deficits in patients with cerebellar

damage [26], patterns of memory consolidation [24], and

spontaneous recovery in force-field [14] and saccadic gain

adaptation [25]. See Text S1 and Figure S9 and Figure S10 for a

discussion of other possible alternative explanations for anterograde

interference.

Saturation of learning
Interestingly, the amount of anterograde interference we

observed in the reduced-230 group (0.6260.11, mean6SEM)

was significantly higher than what was predicted by the multi-rate

model (0.33, p = 0.03, one-sample, two-sided student t-test; Figure

S11). Perhaps this discrepancy can be explained by the observation

that the motor system may process larger errors differently from

smaller errors [28]. For example, in a force-field adaptation task,

retention is better when the force-field is gradually introduced (i.e.

small errors) than if it is abruptly introduced with larger errors

[29]. This finding suggests that the level of the slow process is

elevated when adapting to small errors, yielding better retention

(which is equivalent to reduced decay) because the slow process

would decay more slowly than the fast process. In keeping with this

idea, it would be likely that adaptation to the reduced-strength

Task A is composed of a greater-than-expected contribution from

the slow process because of the smaller errors during training, thus

leading to greater-than-expected interference.

How might this be achieved mechanistically? Greater-than-

expected levels of the slow process when adapting to smaller errors

could be achieved if learning in the two internal processes (i.e.

Bfast
:e nð Þ, Bslow

:e nð Þ) saturates as errors increase in size, and if the

slow process saturates earlier than the fast process. Stated in another

way, elevated levels of the slow process would manifest if the ratio

Bslow

�
Bfastwere higher for smaller errors in the linear region than

for large errors in the saturated region. This occurs only if

Bfast
:e nð Þ is still rising as error increases when Bslow

:e nð Þ has

already saturated, resulting in an increased gap between the

learning rates in favor of the fast process.

This is in contrast to our current model, which assumes a fully

linear relationship between learning and error (i.e. Bfast and Bslow

are constant over the space of all possible errors). However, it is

important to note that no biological system remains linear over all

space, and evidence suggests that, in fact, motor adaptation

saturates as errors get larger. For example, when subjects are

exposed to increasingly strong force pulses during reaching arm

movements, single-trial adaptation levels saturate even though the

kinematic errors induced by these transient force perturbations

steadily increase [30]. This indicates that as errors increase beyond

a certain point, single-trial learning levels saturate, and learning

rate decreases. Similarly, when subjects are exposed to visual

feedback shifts during arm reaches, small errors induce essentially

linear adaptation, but larger errors lead to saturation of single-trial

learning, or even a decrease in learning for extremely large errors

[31]. An even more striking example of the nonlinearity of

learning with respect to error can be found in saccadic gain

adaptation [32]. When monkeys are exposed to small visual errors

while making eye saccades, adaptation is linear. Over an

intermediate range of errors, adaptation saturates, as previously

discussed. However, when errors are increased past this interme-

diate range, motor output actually falls back to near baseline

levels, indicating that the decrease in learning rate associated with

these very large errors is more than enough to counteract the

benefit of a larger learning signal. While saturation clearly occurs

in the learning process as errors get larger, further work is required

to confirm whether the slow process does indeed saturate earlier

than the fast process. If this occurs, it may simultaneously explain

why gradual adaptation to a force-field with small errors leads to

better retention than abrupt adaptation with large errors [29], and

why we see greater-than-expected interference in our reduced-

strength 230-trial group.

The multi-rate model is sufficient to explain anterograde
interference, but not savings

A recent visuomotor rotation study showed that savings occurs

in an A1-washout-A2 relearning paradigm, although the amount of

savings observed is less than in an A1BA2 relearning paradigm [1].
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In this paper, the authors use a superposition argument to show

that a linear multi-rate model cannot yield savings in the A1-

washout-A2 paradigm, suggesting that the savings observed in the

A1BA2 paradigm cannot be fully explained by interactions

between internal adaptive processes. They suggest that some

(nonlinear) memory of Task A or a meta-learning process may also

contribute to savings. In contrast, in the current work, we show

that interactions between adaptive processes appear to fully

account for the observed pattern of anterograde interference

(R2 = 0.91). The multi-rate model predicts a near-asymptotic

interference level of 0.54 for the four longest duration full-strength

groups on average, which closely matched the average interference

level we observed for these groups (0.53).

Neural correlates of adaptive processes
It has been shown that patients with cerebellar deficits are

significantly impaired in their ability to learn new motor skills

[26,33–35]. Since a reduction in adaptation is evident after just a

few trials, these findings suggest that the cerebellum might be a

neural substrate for the fast process. However, even if the fast

process were more affected than the slow, the dramatic reductions

in motor adaptation observed in these studies suggest that both

processes are likely to be affected by cerebellar damage [26,35].

Recent work has shown that while application of transcranial

magnetic stimulation (TMS) to the posterior parietal cortex (PPC)

does not impair the rapid initial learning of a viscous force-field, it

does eliminate the gradual increase in learning that the multi-rate

model attributes to the slow process [23], suggesting that the slow

process might depend on the PPC. Findings from several other

studies indicate that primary motor cortex may also serve as a

neural substrate for the slow process. These studies have shown

that stimulation of primary motor cortex may cause a partial

reduction in the retention factor of the slow process. For example,

in a visuomotor rotation task, when TMS is applied to primary

motor cortex immediately after movement offset, adaptation to the

rotation is unaffected, but this adaptation washes out more rapidly

when the visuomotor rotation is withdrawn [36]. Interestingly, the

more rapid washout only emerges after the third or fourth trial,

suggesting that the retention of the slow, but not the fast, process

might be preferentially impaired by this TMS. Another study

found that 24-hour retention of adaptation to a viscous curl force-

field is reduced by about 15% if a 15-minute block of repetitive

(1Hz) TMS is applied to primary motor cortex prior to the onset of

training [37]. Since 24-hour retention is specifically determined by

the level of the slow (and not fast) process at the end of training

[20], this finding also suggests that stimulation of primary motor

cortex can result in a partial reduction of the retention factor of the

slow process.

Consistent with these results, neurophysiologic data recorded

from primary motor cortex during force-field adaptation reveal the

existence of ‘‘memory cells’’ that retain adaptive shifts in preferred

direction, even after the behavioral signs of adaptation have been

washed out [38]. The activity of these memory cells is consistent

with what would be expected from the output of the slow process,

which is responsible for anterograde interference. This interpre-

tation should be taken with some degree of caution, however,

because reanalysis of the same data suggested that the tuning

curves of neurons in primary motor cortex may drift spontane-

ously [39].

The ABA paradigm and retrograde interference
In an A1A2 learning paradigm, a reduced initial error and a

faster learning rate can be observed in adaptation to Task A2

compared to A1, even when prolonged time periods (such as a day

or week) separate A2 from A1 [2,5,11,20]. When a second task

(Task B, which is often taken to be the opposite of Task A) is

inserted between A1 and A2 in the A1BA2 paradigm, improvement

on Task A2 can be reduced. This reduction has been attributed to

the ability of Task B to erase, in whole or in part, the memory of

A1 [2,5,11–12]. This effect is known as retrograde interference

because Task B interferes with a previously-stored memory.

Complete retrograde interference from Task B onto the retention

of Task A1 has been reported when only 5 minutes separate the

two tasks [2,5,11–12,22,40–42]. However, if 4 to 24 hrs separate

A1 and B, then retrograde interference can be reduced, reflecting

the consolidation of the initially fragile memory of Task A1 into a

more stable form [2,11–12].

Intriguingly, one recent study found complete interference of

Task B onto A2 for both 5 min and 24 hr intervals between A1

and B in visuomotor rotation and force-field adaptation paradigms

[5], in contrast with the finding that a 24 hr interval after Task A1

is sufficient for either partial or full consolidation [2,12]. A series of

studies have attempted to reconcile the differences between these

findings by suggesting that the inclusion of ‘‘catch trials’’

(occasional movements during which the learned environment

was unexpectedly removed) [13], or washout trials before Task A2

(null-field trials to wash out contributions from anterograde

interference which could mask retrograde interference effects in

Task A2) [2] are necessary for consolidation to be observed.

However, even these proposals do not provide a fully harmonious

explanation for all of the available data: consolidation has been

observed even when catch trials are not included [2], and two

experimental conditions with the null-field movements to washout

anterograde interference failed to show evidence for consolidation,

even with a 24hr interval between Tasks A1 and B [5].

Although the weight of the evidence suggests that consolidation

can occur during motor adaptation, the somewhat fragmented

nature of these results indicates that the mechanisms governing

this resistance to retrograde interference are not yet fully

understood. This may be substantially due to the fact that

retrograde interference has a relatively small (10–20%) effect on

performance in all of these studies [11–13], making resistance to

retrograde interference somewhat challenging to study. In

contrast, the effects of anterograde interference can be substan-

tially larger [4–5]. In the current study, we found that

anterograde interference reached levels of 50–60%, suggesting

that anterograde interference can play a substantially greater role

in modulating the rate of motor learning than retrograde

interference.

It is interesting to note that when washout trials are not included

before Task A2 to prevent anterograde interference, performance

on Task A2 has been reported to be similar to naı̈ve performance

on Task A1 in studies of visuomotor rotation [2,6]. It has been

suggested that this occurs because anterograde interference from B

onto A2 effectively cancels the performance improvement

conferred by the memory of A1 [6]. An alternative hypothesis is

that Task B interferes with the ability to retrieve the memory of A1

[2,19]. This idea is consistent with the observation that the

performance on Task A2 and A1 are similar, even when one week

separates B and A2 – a time period long enough for aftereffects of

B to have minimal influence on performance of Task A2 [2,5], and

consistent with a mechanism for interference with retrieval posited

for declarative memories [43–44] . This mechanism can be viewed

as a type of hybrid between anterograde and retrograde

interference because it describes a forward (anterograde) effect of

Task B, but the effect impairs retrieval of the memory for the

previously-learned (retrograde) Task A1. Note that our multi-rate

model would not, by itself, be able to explain such a mechanism.
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Multiple timescales
Intriguingly, as exposure to Task B progresses, we find that the

opposite-learning curves for the different groups (Figure 4C) do

not converge to the degree predicted by our two-rate model

(Figure 5B). This discrepancy could potentially be explained by the

existence of slower learning processes with even more protracted

timescales than the ‘‘slow’’ learning process in the model we

applied. The residual contributions from these slower processes

could hold back adaptation to Task B for even longer, leading to

even slower convergence. While it is likely that more than two

timescales are present in motor adaptation [45], it is remarkable

that interactions between just two adaptive processes are able to

predict the shapes of initial learning curves, anterograde

interference, savings, rapid downscaling and unlearning of a

learned motor task, 24-hr retention of a motor task, and

spontaneous recovery of learning [3,14,20,25,27].

Methods

Participants and ethics statement
Fifty-eight healthy individuals (34 women, median age: 24 yrs

old, age range: 18–64, 52 right-handed) participated in this study.

Each of the subjects had no prior knowledge of the experiment’s

purpose and provided informed consent. All experiment protocols

were approved by the Harvard University Committee on the Use

of Human Subjects in Research.

Task
Participants were given a dynamic force-field adaptation task

to learn [46]. They were asked to sit in front of a vertically-

mounted computer screen while grasping the handle of a two-

joint robot arm manipulandum (Interactive Motion Technolo-

gies, Inc.) that allowed motion in the xy-plane (Figure 1A). The

xy-position of the handle was indicated by the xz-position of a

cursor (3 mm in diameter) on the computer screen. Subjects were

instructed to make 500 ms, 10 cm reaching arm movements in

the y-direction (in the midline, toward or away from the chest)

from one circular target (10 mm in diameter) to another in as

straight a line as possible. Although subjects made movements in

both the 90u and 270u directions, only movements in the 270u
direction were analyzed; all 90u movements were ‘‘error-

clamped’’ by using the robot arm as a virtual spring (6 kN/m)

and damper (250 Ns/m) [14–15,20–21,47] such that the

maximum lateral deviation from a straight line connecting the

start and end targets during the longitudinal reach motion was

1.2 mm (Figure 1D).

Initially, subjects were asked to make 160 reaching move-

ments in the 270u direction during a baseline training period.

Approximately 90% of these baseline trials were made while the

manipulandum’s motors were turned off (Figure 1B). The other

10% of trials were error-clamp trials, during which lateral errors

were restricted to no more than 1.2 mm. With maximal lateral

kinematic errors about 1% of the reach length of 10 cm, online

kinematic error feedback contributions to motor output are

mostly eliminated, such that the measured force production is

composed of predominantly feedforward contributions [14–

15,20–21,24,29,48]. Following this baseline period, subjects

were then exposed to a velocity-dependent force-field environ-

ment (Task A) for a variable number of trials in the 270u
direction (13-trial group: 14 subjects; 41-trial group: 9 subjects;

112-trial group: 9 subjects; 230-trial group: 9 subjects; 369-trial

group: 9 subjects). In this viscous force-field, the manipulandum

imposed forces onto the hand that were perpendicular to the

reach direction and proportional to the reach velocity

(Figure 1C):
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In order to move in a perfectly straight line while being

perturbed by the force-field, subjects would need to produce a

compensatory force pattern that exactly counteracts the robot-

produced force. Half of each experiment group experienced a

clockwise force-field during Task A. The other half experienced

an equal magnitude counter-clockwise force-field. Following the

completion of Task A, subjects were then exposed to the

opposite force-field (i.e. if Task A was a clockwise force-field,

Task B was a counter-clockwise force-field) for about 115 trials

(116, 114, 113, 112, 120 trials for the 13-trial, 41-trial, 112-trial,

230-trial, and 369-trial groups, respectively). Interspersed

throughout Tasks A and B were occasional error-clamp trials

(approximately 1 out of every 7 trials) in order to assess the

learning curve associated with learned feedforward force output

produced by subjects.

By measuring lateral forces during error-clamp trials during this

force-field adaptation task, we can assess how well the magnitude

and shape of subjects’ force outputs compare to the ideal velocity-

dependent force pattern, which is the opposite of the robot-

produced force (Figure 1C). We regress the subject-produced force

pattern onto the ideal force pattern in order to quantify the learning

– an absence of any learning would yield a regression coefficient (or

adaptation index) of 0, while perfect learning would yield an

adaptation index of 1. Note that an index of 1 does not necessarily

mean that subjects produced perfect compensatory forces. The

actual force pattern can be decomposed into a component that is

aligned with the ideal force pattern, and a component that is

orthogonal to it. The regression coefficient indicates the size of the

aligned component and is independent of the orthogonal compo-

nent. If the regression coefficient is 1, this indicates that the

magnitude of the aligned component is exactly the ideal force

profile, regardless of the size of the orthogonal component. We use

these adaptation indices to generate the learning curves displayed in

Figures 4, 6, and Figure S8. These adaptation indices are then

averaged across subjects to obtain group-averaged data. Note that at

the onset of Task B, the ideal force pattern becomes opposite of that

required in Task A, whereas the force patterns being produced are

still appropriate for the Task A ideal force. Therefore, at the

transition from Task A to Task B, the regression coefficients jump

from one value to the negative of that value (e.g. for the 369-trial

group, the coefficients jump from the adaptation level at the end of

Task A (0.85) to 20.85, Figure 4A). To maintain continuity in the

adaptation curves plotted in Figures 4A, 4B, and 6A, we multiply

the regression coefficients calculated during Task B by 21, which is

equivalent to maintaining a consistent ideal force pattern through-

out the duration of the plot. Therefore, the negative values observed

in these adaptation curves late in exposure to Task B reflect the fact

that subjects are producing motor output that is nearly equal to the

ideal output for Task B, and nearly opposite the ideal output for

Task A. Also note that the ‘‘rectified’’ opposite-learning curves

shown in Figure 4C actually represent the ‘‘original’’ regression

coefficients, equivalent to multiplying by 21 twice (once in the

manipulation just described, and once in the rectification).

It is possible that the two-rate behavior we observe in the

current paper is a result of averaging together two sub-populations

of subjects with different single-rate behaviors. However, we

observed interference even when comparing individual initial and

opposite-learning curves to each other (i.e. opposite-learning

curves are significantly slower than the initial-learning curves
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within each group; one-sample, one-sided student t-tests, p-values

between 2.861026 and 0.02; because the 13-trial group did not

complete 25 trials in Task A, we compared initial and opposite-

learning over the first 13 trials in that case).

Note that the subject-produced force patterns we present are

baseline-subtracted, where the baseline is the average force pattern

measured during the last 5 error-clamp trials before the onset of

Task A. Subjects who first learned a CCW force-field and then a

CW force-field had their force patterns multiplied by negative one

so that their data could be aligned with the subjects who first

learned the CW and then CCW force-field. All force and velocity

profiles used in the analysis were 2.25 seconds long and centered

at the peak longitudinal velocity point (where longitudinal velocity

refers to the component of the velocity vector in the target

direction). We also used a mid-movement force metric defined as

the average force produced during a 250ms time window centered

at the peak velocity point. The data for this force metric can be

found in Figure S4. Note that the force levels associated with this

metric would be expected to be somewhat smaller on average than

the force levels observed right at the peak velocity point.

An additional group (8 subjects) learned the same Tasks A and

B as the 230-trial group, except that the force-field in Task A was

halved in magnitude:
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See the Results section for the reason why this additional group

was studied. The adaptation indices for this reduced-strength

group were calculated by comparing the subject-produced force

patterns to the full-strength ideal patterns for Tasks A and B in

order to allow for comparison with the full-strength groups.

Two-process, multi-rate learning model
We recently proposed a two-process, multi-rate learning model

that provides a potential explanation for anterograde interference,

along with several other motor learning phenomena [14]. The

model states that a force disturbance of the motor system introduces

a motor error that drives the evolution of two constituent learning

processes that have different rates of learning and retention. This

motor error is the difference between the overall motor output (i.e.

the combined contributions of the two processes) and the desired

output necessary to compensate for the force disturbance.

e nð Þ~F nð Þ{x nð Þ

x nð Þ~xfast nð Þzxslow nð Þ

xfast nz1ð Þ~Afast
:xfast nð ÞzBfast

:e nð Þ

xslow nz1ð Þ~Aslow
:xslow nð ÞzBslow

:e nð Þ

AfastvAslow; BfastwBslow

e nð Þ?Error on trial n

F nð Þ?Force disturbance of system on trial n

x nð Þ?Net motor output on trial n

xfast,xslow?Internal states (fast,slow) that contribute

to the net motor output

A?Retention Factor

B?Learning Factor

One of these processes, xfast, learns quickly from error, but

rapidly forgets the previous learning. The other process, xslow,

learns slowly from the error, but retains what it previously learned

very well. This occurs because, Bfast is greater than Bslow, and Afast

is less than Aslow, leading to multiple timescales in the learning

process. The values for these parameters, Afast~0:6, Bfast~0:2,

Aslow~0:9924, and Bslow~0:02, were taken from a previous study

[14] in which anterograde interference did not occur rather than

being fit to the current data set. See Text S1 for model parameters

fit to the current data set.

Anterograde interference metric
We calculate the percent reduction in the opposite-learning

curves for Task B with respect to the initial-learning curve for Task

A in order to quantify the level of anterograde interference.

Specifically, we use the portions of the opposite-learning curves

beginning from the zero-crossing point (i.e. when the performance

level has returned to baseline levels) in this analysis and rectify

them such that comparisons with the initial learning curve can be

made directly. This percent reduction, or anterograde interference

metric, is measured over the first 25 trials because the difference

between the curves is greatest early on (Figure 3). A metric value of

0 corresponds to no interference, and a metric value of 1

corresponds to a complete lack of opposite learning, or 100%

interference.

AIk~
~LLIL{~LLOL,k

~LLIL

~

P25

n~1

LIL nð Þ

25
{

P25

n~1

LOL,k nð Þ

25P25

n~1

LIL nð Þ

25

k~0, 13, 41, 112, 230, 369

ð3Þ

LIL represents the average initial learning between trials 1 and 25,

and ~LLOL,k represents the average opposite learning within the

same boundaries, and k indicates the subject group. Note that we

interpolate between trials 1 and 25 for the initial-learning and

opposite-learning curves to find the average learning. In addition,

note that because this average learning is proportional to the area

under the curves over that same trial span, a normalized AI metric

based on average learning (Equation 3) is identical to a normalized

AI metric based on area under the curve which is illustrated in

Figure 3B. LIL was found by combining the initial-learning curves

for all subjects exposed to a full-strength force-field in Task A. If

after task transition the learning curve crossed zero, went back

above zero, and then crossed zero again (as in the 230-trial and

369-trial groups), we used the last zero-crossing as the beginning of

the opposite-learning curve. See Text S1 and Figure S7 for a

discussion of our rationale for choosing to use this particular AI

metric, as opposed to the time constant of the opposite-learning

curves.

To compare the experimentally-obtained interference metrics

with simulation predictions, we found 1000 different sets of model

parameters by bootstrapping previously-obtained data [14] and

calculating the associated interference metrics predicted by the

multi-rate model. We then found the 95% confidence interval for

the simulation predictions by selecting the metrics representing the

2.5% and 97.5% percentiles as the interval boundaries.

Data analysis
We use one-tailed, paired t-tests to compare the initial-learning

and opposite-learning between groups, using the average interpo-
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lated learning between trials 1–25, with the exception of the 13-

trial group. Because the initial-learning period for this group only

spans 16 trials (13 force-field trials, 3 error-clamp trials), we

compare the learning between trials 1–16.

The Average Final Learning metric (Figure 6) is obtained by

averaging together the force patterns measured during the error-

clamp trials in the last 30% of trials during initial learning,

corresponding to trials 9–13, 28–41, 78–112, 161–230, and 259–

369 for the 13-trial, 41-trial, 112-trial, 230-trial, and 369-trial

groups, respectively.

Supporting Information

Figure S1 R2 values associated with regressions.A: Learning

curves of regression coefficients. These curves are averaged across

subjects. B: R2 values associated with the regression coefficients in

panel A. These curves are also averaged across subjects. In both

panels, errorbars represent SEM.

Found at: doi:10.1371/journal.pcbi.1000893.s001 (0.45 MB EPS)

Figure S2 Different methods for estimating regression slope.

Displayed are learning curves for the 369-trial group using

different methods of regression. These regressions are: (1) the

standard y-onto-x regression which we use in the main text (blue

curve), (2) the reciprocal of the slope found by the x-onto-y

regression (red curve), (3) the Deming regression (black), and (4) a

y-onto-x regression, where y is the first principal component of the

actual force pattern, and x is the first principal component of the

ideal force pattern (green). Note that the plot window limits are

restricted because the x-onto-y regression leads to occasional

instabilities associated with dividing by the near-zero values of

force present in the baseline and early training data.

Found at: doi:10.1371/journal.pcbi.1000893.s002 (0.29 MB EPS)

Figure S3 Different methods for estimating regression slope for

averaged force patterns. The solid-line curves displayed here are

the slopes calculated from regressions of force patterns averaged

across subjects for individual trials, whereas the dashed blue line is

calculated from regressions of force patterns on individual trials for

individual subjects, and then averaged across subjects. These

curves are for the 369-trial group using different methods of

regression. These regressions are: (1) the standard y-onto-x

regression which we use in the main text (blue curves), (2) the

reciprocal of the slope found by the x-onto-y regression (red curve),

(3) the Deming regression (black), and (4) a y-onto-x regression,

where y is the first principal component of the actual force pattern,

and x is the first principal component of the ideal force pattern

(green). Note that the plot window limits are restricted in order to

facilitate distinguishing between the different traces.

Found at: doi:10.1371/journal.pcbi.1000893.s003 (0.30 MB EPS)

Figure S4 Mid-movement force duplicates regression analysis.

A: Instead of using regression coefficients as adaptation indices for

our learning tasks, we used the mid-movement force as a proxy for

learning. We define mid-movement force as the average force

produced during a 250ms window centered on the peak speed

point of a movement (i.e. the average force produced from

2125ms to +125ms; see FIG. 2 for examples of these force

patterns). Learning curves here are averaged across subjects. B:

Opposite-learning curves proceeding from the zero-crossing point

for all full-strength groups, smoothed with a 3-pt moving average.

C: Comparison of experimentally-observed and model-predicted

levels of anterograde interference for all full-strength groups. The

anterograde interference metrics are calculated using either the

regression coefficients (solid squares, black line) or mid-movement

force (empty squares, maroon dotted line, shifted 10 trials to the

right to facilitate viewing). Both patterns are very similar to each

other. Note that the data corresponding to ‘‘Exp AI (reg)’’ is

identical to that shown in Figures 4D and 5C. The parameters

used to generate the model predictions for anterograde interfer-

ence (dark gray dashed line) were not found by fitting the

parameters to the current data set - instead they were taken from a

previous study (Smith et al. 2006). The 95% confidence intervals

(light gray shaded region) for the simulation predictions were

determined from 1000 different fits to bootstrapped versions of this

previous data set (see Methods). D: The reduced 230-trial group

displays significantly higher levels of anterograde interference than

the 13-trial group (p,0.02, one-tailed unpaired student T-test),

despite significantly lower levels of final force production (p,0.02,

one-tailed unpaired student T-test). This finding is inconsistent

with the hypothesis that the amount of interference depends on the

level of final learning or force production. Errorbars in all panels

represent SEM.

Found at: doi:10.1371/journal.pcbi.1000893.s004 (0.55 MB EPS)

Figure S5 A single-process model does not predict interference.

A single-process learning model with learning coefficient B = 0.03

and retention coefficient A = 0.9923 does not predict any

anterograde interference. A: Red trace is learning during Task A

and the portion of Task B training prior to the zero-crossing. The

black dashed trace is the opposite-learning following the zero-

crossing point. B: Red trace is initial learning of Task A. Black

dashed trace is the rectified opposite-learning curve starting from

the zero-crossing point.

Found at: doi:10.1371/journal.pcbi.1000893.s005 (0.32 MB EPS)

Figure S6 Comparison of AI metrics starting from Task B onset

and zero-crossing point. A: The raw adaptation level after 50

trials of exposure to Task B. Colored squares are data, dotted line

is the single-process prediction, dashed line is the two-process

prediction, and the gray shaded region is the 95% confidence

interval for the two-process prediction. B: The change in

adaptation between the beginning of Task B and after 50 trials

of exposure to Task B. Gray lines and regions are the same as in

panel A. C: The average-learning based interference metric used

in the main text.

Found at: doi:10.1371/journal.pcbi.1000893.s006 (0.33 MB EPS)

Figure S7 Time constant as an interference metric. A: Time

constants of the opposite-learning curves for each group, averaged

across subjects. Linear y-scale. B: Time constants of the opposite-

learning curves for each group. Log y-scale. C: AI metric used in

main text (FIG. 4D, 5C). D: Coefficient of variations for the time

constant metric and the average-learning metric. Dotted gray line

is the average coefficient of variation for the time constants, and

the dashed gray line is the average coefficient of variation for the

average-learning metric. All error bars are SEM.

Found at: doi:10.1371/journal.pcbi.1000893.s007 (0.36 MB EPS)

Figure S8 Possible choices for zero-crossing point. A: If, after

task transition, the net learning curve went below zero, rose above

it, and went below zero again, we chose to use the last zero-

crossing point as the beginning of the opposite-learning curves.

Only the 230-trial and 369-trial groups were affected by this

choice. The simulated pattern of anterograde interference

explained the experimental pattern of anterograde interference

well (R2 = 0.91). B: Using the average of the first and last zero-

crossings (when the learning curve is positive before the zero-

crossing and negative afterwards) as the zero-crossing also yields a

close correspondence between the experimental and simulated

patterns of anterograde interference (R2 = 0.86).

Found at: doi:10.1371/journal.pcbi.1000893.s008 (0.38 MB EPS)
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Figure S9 Memory trace framework simulation. A: Simulation

of the memory trace framework learning an AB learning

paradigm. Solid red curve is from Task A onset to the zero-

crossing point after Task B onset. The dashed red curve is the

opposite-learning curve starting from the zero-crossing point. B:

Comparison of the initial-learning curve (solid red curve) to the

rectified opposite-learning curve (dashed red curve).

Found at: doi:10.1371/journal.pcbi.1000893.s009 (0.32 MB EPS)

Figure S10 Exponential vs. power law decay. Decay as a

function of trial number. The red curve is the decay predicted by

the two-exponential, multi-rate model, while the blue curve is the

power law decay predicted by the memory trace framework

model.

Found at: doi:10.1371/journal.pcbi.1000893.s010 (0.28 MB EPS)

Figure S11 Effect of Task A duration and the magnitude of

Task A perturbation on AI metric. Magnitude of Task A

perturbation is given in terms of percentage of full-strength

perturbation of 100%, or a force-field strength of 15 N-s/m. Color

mapping indicates level of AI metric, and is proportional to z-level

value.

Found at: doi:10.1371/journal.pcbi.1000893.s011 (0.51 MB EPS)

Text S1 Supporting information. Contains further discussion

about R2 values of the regressions for adaptation indices,

alternative methods for estimating regression slope, mid-move-

ment force as an adaptation index, alternative anterograde

interference metrics, possible choices for the zero-crossing point,

alternative explanations for anterograde interference, the effect of

Task A duration and magnitude of Task A perturbation on the AI

metric, and the multi-rate model parameters fit to the current data

set.

Found at: doi:10.1371/journal.pcbi.1000893.s012 (0.18 MB PDF)
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