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Abstract

Background: Standard epidemiological theory claims that in structured populations competition between multiple
pathogen strains is a deterministic process which is mediated by the basic reproduction number (R0) of the individual
strains. A new theory based on analysis, simulation and empirical study challenges this predictor of success.

Principal Findings: We show that the quantity R0 is a valid predictor in structured populations only when size is infinite. In
this article we show that when population size is finite the dynamics of infection by multi-strain pathogens is a stochastic
process whose outcome can be predicted by evolutionary entropy, S, an information theoretic measure which describes the
uncertainty in the infectious age of an infected parent of a randomly chosen new infective. Evolutionary entropy
characterises the demographic stability or robustness of the population of infectives. This statistical parameter determines
the duration of infection and thus provides a quantitative index of the pathogenicity of a strain. Standard epidemiological
theory based on R0 as a measure of selective advantage is the limit as the population size tends to infinity of the entropic
selection theory. The standard model is an approximation to the entropic selection theory whose validity increases with
population size.

Conclusion: An epidemiological analysis based on entropy is shown to explain empirical observations regarding the
emergence of less pathogenic strains of human influenza during the antigenic drift phase. Furthermore, we exploit the
entropy perspective to discuss certain epidemiological patterns of the current H1N1 swine ’flu outbreak.
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Introduction

Recent years have seen an apparent acceleration in the rate of

emergence of new infectious disease pathogens in the human

population [1]. Some of these have their origins in animal (wild or

domesticated) reservoirs [2–4], and the years since 2003 have

witnessed the appearance of SARS [5,6] and swine flu [7]. The

20th century saw, for example, the emergence of pandemic ’flu in

1918, 1957 and 1968 (with a limited H1N1 re-emergent outbreak

in 1977) [8], avian ’flu [9] and the rise of HIV in the 1980’s

[10,11]. Additionally, antibiotic-resistant pathogens have become

increasingly widespread in the past decade, particularly in

healthcare settings [12]. Antigenically-variable pathogens are

responsible for much of the burden of communicable disease in

the world today. Therefore, developing an understanding of the

factors that lead to the emergence and spread of novel pathogenic

agents and strains is a topic of great interest. In recent months the

emergence of a swine ‘flu (H1N1 2009) with human-to-human

transmission capability has re-focussed attention on this issue

[7,13]. Likewise, studies, such of those of Creanza et al. [14] who

used a computational analysis of viral nucleotide and amino acid

sequence data collected during seasonal ’flu epidemics show how

diversity declines over the course of an epidemic. These

observations underscore the role that ecological constraint play

in the evolution of pathogens.

For antigenically variable pathogens it is competition between

strains that is the fundamental mechanism which determines the

observed patterns of disease spread and prevalence. Diseases in

this category include influenza A virus, meningococcal and

pneumococcal bacterial infection, malaria and dengue fever, to

name but a few. The principal epidemiological characteristics of

such diseases are the absence of life-long protective immunity,

cross-reactive immunity between strains and the potential for

future re-infection. Each strain is in competition with the others for

resources. In this case the resources are susceptible hosts, and

dominance goes to those variants that are able to outpace their

neighbours in their ability to infect susceptibles. From a Darwinian

perspective it is the ‘‘fittest’’ strains that will dominate. Translating

the qualitative notion of fitness into quantitative terms constitutes

one of the fundamental problems in evolutionary epidemiology.

Standard epidemiological theory as largely developed by Dietz

[15] and Anderson and May [10] revolves around the basic

reproduction number, R0, the number of secondary infectives, as

the key parameter [15,16] for analysing disease emergence, spread
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and vaccination strategy. In the case of structured populations, R0

is defined as

R0~

ð?

0

V (x)dx ð1Þ

where the function V (x) is the infectious net-reproductive

function. It is an ‘‘infectious age’’-dependent function that defines

the rate at which an infected host generates secondary infections in

the time interval following its initial infection (File S1 Section i).

This theory has been extended to address competition between

emergent pathogen strains using basic reproduction number as the

metric for competitive dominance [16]. Selective advantage, ~ss, in

the case of competing strains is now given by

~ss~DR0 ð2Þ

where DR0 is the difference in the basic reproduction number

between the incumbent and invading strain [16]. The measure of

selective advantage given by equation 2 implicitly assumes that the

population is infinite – a mathematical idealisation. The fact that

conditions of finite size may have an effect on the outcome of

selection has been recognised in a population genetics context [17]

but has not been explored analytically in multi-strain epidemic

models [16]. These studies, however, assumed that the populations

were unstructured or demographically homogeneous. The effect of

finite size in studies of selection between competing types in

structured populations was first developed in Demetrius [18]. The

analysis focused on demographic structure and rested on the

observation that in view of the heterogeneity in structure and the

finite population size,fluctuations in population numbers will

occur. The ergodic theory of dynamical systems was then

exploited to generate a new family of demographic variables to

describe the population dynamics and its fluctuations. A diffusion

process was then applied to show that the outcome of selection will

now be determined by the robustness or demographic stability of

the population, and regulated by the population size and certain

demographic parameters which characterise the geometric

properties of the infectious net-reproductive function. Robustness,

the rate at which the population returns to the steady state

condition after a perturbation in age-specific fecundity and

mortality variables, can be formalised in terms of the statistical

measure evolutionary entropy. This macroscopic variable de-

scribes the uncertainty in the age of the mother of a randomly

chosen newborn. The change in basic reproduction number, the

classical criterion for selective outcome, was shown to be the limit,

as population size tends to infinity, of the entropic selection

principle. Hence the classical models of selection are limiting cases

of the entropic models. This study of competition in age-structured

populations was extended by Demetrius, Gundlach and Ochs [19]

to the analysis of the dynamics of selection where the heterogeneity

derived from individual variations in size, metabolic condition or

spatial location. The entropy parameter in this general context

describes the uncertainty in the state (size, metabolic condition or

spatial location) of the ancestor of a randomly chosen individual.

The results of this study formed the basis of a general model of the

evolutionary process which is called directionality theory.

We now apply this theory to analyse the effect of finite size in

multi-strain epidemiological models where the heterogeneity

derives from variability in infection age. The quantity V (x) in

this class of model pertains to the product of the survivorship and

infectivity of infectious individuals. We will apply the formalism

described in [19–22] to show that the invasion dynamics of

competing strains in populations of finite size is predicted in terms

of the macroscopic variable evolutionary entropy, S, which is given

by

S~{
X

i

pi log pi ð3Þ

and pi~Vi

�P
i

Vi, where Vi is a discretisation of the function

V (x).

The quantity pi is the probability that the parent of a randomly

chosen infective is in the age class i. The statistical measure, S,

describes the uncertainty in the age of an infected parent of a

randomly chosen infective.

The statistical parameter evolutionary entropy describes the

rate at which the population returns to its steady state condition

after a random perturbation in the age-specific fecundity and

mortality variables. Entropy is analytically related to the

generation time, T (the mean age of infection).We will use this

analytical fact to show that entropy is also analytically related with

the duration that the host organism is infected, and hence it can be

regarded as a basic metric of pathogenicity.

Directionality theory shows that entropy S predicts the outcome

of competition between strains. The selective advantage ~ss in the case

of competing strains involves S and two additional macroscopic

variables (W and c, the first and third moments of a random variable

defined in terms of the net-reproductive function and the probability

distribution pi). The selective advantage is now [20] given by

~ss~{ W{
c

N

� �
DS ð4Þ

Here N denotes the population size of infectives and DS is the

relative evolutionary entropy of the incumbent and the invader. The

quantities W (the reproductive potential) and c (the demographic

index) are statistical parameters, and both are functions of the age-

specific fecundity and survival functions which determine the

infectious net-reproductive function V (x).

The parameters W and c define different scenarios for the

epidemiological population biology that prevail during the

competitive invasion process. These quantities, in contrast to

entropy, can assume positive or negative values contingent on the

geometry of the infectious net-reproductive function. The

demographic index, c, relates to the flatness or peakness of the

infectious net-reproductive function V (x): generally speaking cv0
implies a peaked net-reproductive function, whereas cw0 implies

it is flat. This term is less influential on the dynamics as it is scaled

by 1=N, so when N (the number of infectives) is moderately large

~ss~{WDS;

so competitive advantage is now determined by the relative

entropy and the reproductive potential.

An equivalent formulation of the selective advantage, ~ss, can be

written in terms of the growth rate r and a quantity called the

demographic variance, s2 [19] , which is the second moment of a

random variable defined in terms of the infectious net reproduc-

tive function and the distribution pi,

~ss~Dr{
1

N
s2 ð5Þ
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where Dr is the difference in growth rate between the incumbent

and variant strains. Its equivalence to equation 4 is demonstrated

in File S1, Section ii. It is evident that as N?large we recover

equation 2, since Dr and DR0 are positively correlated.

We exploit this new theory of entropic epidemiology to explain

detailed empirical observations regarding the emergence of less

pathogenic strains of human influenza A virus, an issue that has

remained elusive when viewed through the framework of classical

epidemiological theory. Moreover, we discuss the current on-going

swine ‘flu (H1N1 2009) outbreak from the perspective of

directionality theory, [18–22].

Much recent work on strain dynamics in multi-strain pathogens

has focussed on the adaptations of basic epidemic models to deal

with multiple strains with differing assumptions about host

immune responses [23–26]. This has led to progress in

understanding issues such as strain clustering effects, for example,

but at the price of intractability when large numbers of strains are

considered. By contrast, the model presented here takes a different

approach, as it focuses on the emergent properties of multiple

competing strains without a detailed rendering of all biological

features. The penalty for generating this alternative model is that

the biological detail is presented more crudely than in the more

detailed epidemiological approaches. Strain selection takes place

at a number of levels ranging from within hosts all the way up to

the population level. In such multi-scale systems a variety of

modelling approaches are needed. However, we believe that the

approach presented here complements existing formulations. To

make the presentation concise we will summarise certain general

results of the dynamics of competition in structured populations, as

elaborated in directionality theory [18–22], and apply them in an

epidemiological context. Specifically, our model shows that in the

context of emergence of new human ’flu strains in SE-Asia there

will be a progressive shift to less pathogenic strains. This

empirically observed pattern is consistent with our entropic

perspective.

Results

Evolutionary Entropy and Selective Advantage
Classical epidemiological theory associates increased competi-

tive advantage with increasing basic reproduction number, R0

[27,28]. The argument is that a larger R0 results in a faster rate of

infection of susceptibles (as determined by the growth rate, r)

thereby driving competitor pathogen strains with lower R0 to

extinction. The basic reproduction number varies for different

pathogens (and their strains) and varies according to the

circumstances (geographic location, age structure, population

density, previous exposure etc) of the host population [10].

The claim that the outcome of competition between variant

strains is a deterministic process mediated by R0 is the analogue of

the claim, which goes back to Fisher [29], that the rate of increase

of total population numbers – the Malthusian parameter –

determines the outcome of competition between an incumbent

and a variant type. These studies, in both epidemiology and

population genetics assume that populations have infinite size.

Evolutionary entropy, in the context of epidemiological models,

describes the uncertainty in the age of a parent of a randomly

chosen infectives. This quantity is a demographic parameter that is

positively correlated with the demographic stability.

Directionality theory, a study of the dynamics of competitive

invasion [18–22,30] of structured populations when population

size is finite predicts that the outcome of selection is a stochastic

process determined by evolutionary entropy and contingent on

population size and two other demographic variables which

characterise the geometry of the infectious net-reproductive

function. Evolutionary entropy in this more general context

describes the uncertainty in the state of the ancestor of randomly

chosen infective. (File S1, Section i).

In this paper we exploit this general tenet to show that in finite

populations with heterogeneity in age of infection the outcome of

strain competition is a stochastic event determined by evolutionary

entropy and contingent on the demographic parameters W and c.

Selective advantage in this case is given by equation 4.

Evolutionary Entropy and the Duration of Infection
One of the most significant parameters in epidemiology is the

duration of host infection, D, which is taken to represent the period

of time for which an infective is capable of transmission to

susceptibles. This parameter is related to T, the generation time. D

can be generally expressed in the form D~kT where k is a

parameter dependent on the strain, but the characterisation of D

will depend on the model system under consideration. In a basic S-

I-R model, for example, the fecundity function is a constant

independent of infectious age. Consequently the generation time

will depend uniquely on the mortality rate (i.e. the rate of recovery

from the pathogen). The generation time T will be inversely

related to the rate at which individuals leave the infected class,

denoted by n. Hence for this class of models D~kT~1=n. In the

model described in this paper, survivorship and fecundity are

functions of age, so the generation time involves both survivorship

and fecundity components. The generation time T can be

expressed in terms of the entropy function S. As shown by

Demetrius et al. [31], the evolutionary entropy can be shown to be

analytically related to T by

S~bz log T ,

(where b is a strain dependent parameter) so T~eS{b. In view of

the relation between D and T noted above, we have

D~keS{b:

This equation asserts, therefore, that in systems with demographic

heterogeneity the duration of infection will now be regulated by

the pathogen entropy, S. This important fact underscores the fact

that demographic heterogeneity dictated by V (x) will induce

significant changes in the epidemiological dynamics.

These results have particular significance in understanding the

epidemiology of influenza A virus.

Application to the Epidemiology of Influenza A
Influenza A epidemics in humans are characterised by infrequent

(typically on a decadal timescale), but nevertheless significant,

genetic re-assortments that lead to pandemics of new sub-types

(antigenic shift) as well as within-sub-type evolution (antigenic drift)

on an annual timescale. In the antigenic shift scenario it is assumed

that there is very little or no host cross-immunity with previous virus

types, whereas within-sub-type drift can generate strains with

varying degrees of host immune response. This difference is

important in determining how variants invade host populations.

Antigenic shift and antigenic drift can be characterised in terms

of the demographic parameter W. This variable is analytically

related to the population growth rate, r, and the entropy rate S/T

by the identity

r~S=TzW

Evolutionary Entropy and Flu
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(where T is the generation time - see File S1 section i for parameter

definitions). From this equation it follows that when Wv0, rvS=T .

Wv0[rvS=T i.e. r small – corresponds to a relatively small/

negligible growth rate of incumbents.

But when

Ww0[rwS=T i.e. r large – corresponds to a relatively large

growth rate of incumbents.

We will consider these two notable epidemiological character-

istics in turn:

Antigentic Drift: Ww0. Recent work on the genetic and

antigenic evolution of Influenza A H3N2 in humans has

demonstrated that seasonal ’flu epidemics emerge from seed

strains originating in countries of south-east Asia which

subsequently spread sequentially through the global population

[32–35]. This suggests that novel H3N2 variants compete with

existing strains within the E-SE Asia circulation network with the

dominant strain being responsible for generating the next global

seasonal ’flu strain. Once out of the seeding region there appears

to be little subsequent viral evolution [32], though as pointed out

by Rambaut et al. [36] subsequent changes tend to be deleterious

and so die out. When a new H3N2 variant is generated within the

seeding region it competes for susceptibles with existing variants.

The epidemiological picture in this densely populated SE-Asia

seeding region is one of strong fluctuations of multiple circulating

strains [32]. Much of this fluctuation is driven by the cross-reactive

immunity and heterogeneity of host population immune response

to the different strains and finite size population effects. The

dynamics are characterised by repeated boom-bust cycles in the

strain populations, so competition is taking place between a new

variant and a rapidly growing incumbent pathogen population

that has a large positive growth rate r, implying that the

reproductive potential Ww0. Information on the infectious net-

reproductive function from which we would infer the value of c is

less readily available [33]. It is plausible to assume, however, that

the rate at which secondary infections are produced is broadly

correlated with pathogen burden. This results in a net-

reproductive function for influenza [33, Figure 1] that is slightly

skewed towards the early stages of host infection, implying that c is

small and negative. From Table S1, the constraints Ww0 and cv0

suggest that new variants will enjoy a selective advantage if their

evolutionary entropy is lower than other competing strains

(DSv0) during the competitive growth phase. In this model the

invasion success of the new strain will be dependent on the relative

evolutionary entropy of the variant contingent on the

demographic variables W and c. The information given in Table

S1 can be invoked to determine the selective outcome of

competing strains. This information underscores the difference

between the deterministic process which defines the classical

models and the stochastic process which characterises entropic

epidemiology. A variant strain has epidemic potential and will

dominate existing H3N2 strains providing that DSv0. By

contrast, in a deterministic model (equation 2) the outcome of

competition between strains is a deterministic process predicted

wholly by R0 - the strain with the largest basic reproduction

number will always dominate. In the entropic model there is a

probability of a downward drift in the evolutionary entropy, S, of

the dominant strain. Within the classical framework (infinite

population size) the outcome is deterministically ordained, that

is, we expect that those variants which produce more secondary

infectives to dominate all others. By contrast, in a finite population

(and contingent on the values of W, and to a lesser extent c) the

outcome has an intrinsic stochastic component: it is the

evolutionary entropy that determines success so there may be

dominant variants which produce fewer secondary infectives (i.e.

have a lower growth rate and R0) than their co-circulating

competitors.

The analytic relation between evolutionary entropy and the

duration of infection described above entails that lower entropy

strains have a shorter duration of infection. Consequently, we

expect new annual ’flu strains to have variable R0 and short

infectious duration relative to strains circulating in the SE-Asia

seed network because of their smaller evolutionary entropy, S.

This pattern is also seen in Table 1 where successful emergent

epidemics have variable R0 but short infectious durations.

Additionally, these lower entropy strains will have a greater

resilience in maintaining the chain of infection as the pathogen

spreads because they have a selective advantage with respect to

other strains with which they have to compete for susceptibles.

Figure 1. Simulation showing evolutionary entropy of dominant variant decreasing over time for three realisations of the
simulation (arbitrary units). This corresponds to the scenario of Ww0, i.e. variants are competing against incumbents with positive growth rates
in the host population. Because DHDSw0, a plot of H versus time would yield the same pattern.
doi:10.1371/journal.pone.0012951.g001
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Basic epidemic models [10] correlate the basic reproduction

number R0 with the duration of infection, D which implies that

short duration infections will have smaller basic reproduction

numbers and would be more likely to die out. By contrast, the

analysis here suggests that in the context of emergent epidemics it

is the minimisation of the evolutionary entropy (which is

proportional to D – since S~ log Dz(b{ log k)) that is the

determinant of emergent epidemic success, Figure 1 shows the

change in entropy over time for a simulation of the invasion

process by variants, and it is clear that there is a tendency to

decreasing entropy over time for each run. Classical epidemic

models define the proportion of the population that need to be

vaccinated to eliminate a disease in terms of R0, but the theory

presented here shows that this is only true in the limit of infinite

population which indicates that in future new vaccination criteria

will be required for emergent epidemics which take into account

finite population size, variability in infection profile and stochas-

ticity effects.

Antigenic Shift: Wv0. On longer timescales completely new

influenza A virus sub-types occasionally emerge. These events are

unpredictable and usually result in global pandemics with

significantly elevated levels of ’flu-related mortality. These new

sub-types are thought to arise from hybridisation of human ’flu

viruses with those circulating in pigs and/or poultry [8]. Because

the new virus is generated by a complete change in the HA

antigenic subunit on the surface of the virus the entire global

population is essentially susceptible to the disease thereby

generating a pandemic. The last major antigenic shift event was

in 1968 and it generated the H3N2 (Hong Kong ‘flu) strain that

has been in circulation since.

Following antigenic shift the new influenza variant is in

competition with an incumbent strain that is already at

equilibrium in the population which suggests that the growth rate

r is small, so Wv0. From the perspective of directionality theory

(Table S1) the favourable condition for establishment of the new

type is higher entropy relative to the existing circulating sub-types

(DSw0), i.e. a longer duration of infection. In the antigenic shift

case we are addressing infection in the entire global population so,

in effect the population of infectives, N is very large. Therefore the

role of the demographic index term c (though again it will be small

and ,0, for influenza) is minimal.

The larger entropy of the variant corresponds to longer

infectious duration than the circulating incumbents. However,

the mechanism of antigenic drift (as described above) then begins

to operate on this newly established sub-type and so there will be a

gradual decrease in infectious duration of the dominant circulating

variant with time. Given that the new virus is likely to be a hybrid

animal-human type, it is likely that it is less well adapted to human

hosts so it might have a low R0. If, rather crudely, we associate

infectious duration in the host with pathogenicity, directionality

theory implies high pathogenicity immediately following estab-

lishment of a new sub-type followed by decreasing pathogenicity in

subsequent years. That is, the new Influenza A sub-type (such as

1918, 1957 and 1968) appears to be highly pathogenic in the

immediate interval following establishment, but there is a

contribution to the decrease in ’flu mortality in the era following

the antigenic shift by the action of competitive selection of lower

entropy variants during the antigenic drift phase in the SE-Asia

seeding region. When a new Influenza A virus sub-type is

generated due to antigenic shift the cycle is repeated again.

Clearly, there will be a decrease in the absolute influenza mortality

figure (number of fatalities) during the drift phase because as time

passes the overall population immunity level increases. However,

the model suggests that the case fatality rate (CFR - number of

fatalities per infected individuals) will decline during the drift phase

due to declining pathogenicity. A decline in the CFR is observed

empirically when comparing a pandemic attack year and the next

subsequent epidemic [39] but there does not appear to be any

detailed epidemiological analysis of long-term CFR trends during

the drift phase. A recent detailed study of the epidemiology of

Influenza A H1N1 in the era 1918–1951 [40] shows, Figure 2, that

Table 1. Basic reproduction numbers and infectious
durations for a number of communicable diseases.

R0 Infectious duration, D

Swine flu 2009 1.2 to 1.6 3 days

Seasonal flu 1.2 3–6 days

1918 flu ,2 (up to 20) 4 days

SARS ,3 ,9 days

Measles .10 .8 days

Chickenpox .7 .7 days

Mumps .10 .12 days

Swine ’flu from Fraser et al. [13], seasonal ’flu from Earn et al. [37], 1918 ’flu from
Mills et al. [38], SARS from Lipsitch et al. [6], measles chickenpox and mumps
from Anderson and May [10].
doi:10.1371/journal.pone.0012951.t001

Figure 2. Influenza A (H1N1) weekly mortality rates in large cities in England and Wales for the major influenza outbreaks 1918 to
1951. Note the log scale on the mortality rates. The thick bars on each of the outbreaks proportional to the basic reproduction number of the
epidemic.
doi:10.1371/journal.pone.0012951.g002
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during the H1N1 era there is evidence of a sustained decrease in

mortality rate between 1918 (autumn wave) and 1924 and likewise

between 1928 and 1944. Whilst some of this progressive

weakening of the influenza epidemics is due to increasing host

population immunity it is likely that there is also a contribution to

declining pathogenicity resulting from the mechanisms proposed

in the directionality theory.

H1N1 (2009) Swine flu. In March 2009 the first reports of an

epidemic of a novel influenza-like pathogen emerged in Mexico

[13]. Analysis showed that the infectious agent in this on-going

epidemic to be Influenza A H1N1 (swine flu) [7]. H1N1 has

generated epidemics in humans in the past and was responsible for

the 1918 influenza pandemic and a 1977 ’flu epidemic. It is

possible to explain the relentless spread of this current outbreak in

directionality theory. This new variant has emerged from a ’flu

type associated with pigs, but now has human-to-human

transmission capability. This successful variant has a shorter

infectious duration than other influenza A strains [13] which

suggests that it may have emerged with a competitive advantage

founded on its lower entropy DSv0ð Þ relative to other currently

circulating ’flu strains. The extent of pre-existing immunity to

H1N1 (swine flu) is currently unknown, but our results suggest that

in humans there may be some pre-existing protection from

previous exposure to influenza virus. This possibility is also noted

by Fraser et al. [13]. Alternatively it may simply be a novel

pandemic strain with short infectious duration. SARS had a higher

R0 and longer infectious duration (Table 1) than swine flu yet did

not have the same global impact, which reinforces the generic

suggestion from entropic considerations that it is those emergent

diseases with shorter infectious durations that appear to have the

greater pandemic potential.

Existing endemic infections. We noted above that many

antigenically stable infectious diseases (measles, chickenpox for

example) have comparatively long infectious durations compared

with emergent infections (Table 1). Directionality theory suggests

that this might be the consequence of a long evolutionary

adaptation to humans by occasional mutations resulting in ever

higher evolutionary entropy S. In this picture, for a mutation to

dominate an established equilibrium incumbent strain it is necessary

for the variant to have DSw0, so on evolutionary time scales we

see an upward drift in entropy and, consequently, ever increasing

duration of infectiousness. Although such diseases do have a

seasonal component to their incidence they nevertheless exist at

some stable mean prevalence within the host population. The next

dominant strain measles has to compete against a long-established

incumbent strain that is at overall equilibrium in the population.

Figure 3 shows the change (upward drift) in entropy of the most

frequent variants in the population using a simulation of the

invasion process. In this picture the dynamics of invasion is

considered at a global scale (number of infectives N large) so the

conventional Malthusian picture re-asserts itself. Consequently in

this situation there will be proportionality between the duration of

infection and R0, so the concept of a basic reproduction number

retains its conventional role as a measure of selective advantage

and, hence, its usefulness as a metric for the amount of vaccination

required to eliminate a given pathogen strain. It is apparent that

within the approach presented here the epidemiological context

(emergent pathogen versus established equilibrium) in which the

competition takes place does matter to the outcome and the

properties of strains that will dominate.

Discussion

In summary, directionality theory shows that during the

fluctuating (opportunistic) competitive growth phase of multi-strain

pathogen epidemic establishment it is short infectious duration (low

entropy) strains that are favoured over longer infectious duration

(higher entropy) strains. Moreover, they will be resilient to

competition from other strains thereby giving them pandemic

potential. By contrast, in established (equilibrium) populations it is

longer infectious duration (high entropy) strains that have

competitive advantage. This suggests that the epidemiological

circumstances, opportunistic or equilibrium, that are prevalent in a

host population during competitive emergence are critical in

determining the properties of the dominant pathogen strain. To

be clear, the stochasticity and fluctuations present in this model arise

from consideration of an infection process in a finite population that

has infection demographics defined by the function V (x). In this

Figure 3. Simulations showing evolutionary entropy increasing over time for three realisations of the simulation (arbitrary units).
This corresponds to the scenario of Wv0, i.e. variants are competing against incumbents at equilibrium in the host population. Because DHDSw0, a
plot of H versus time would yield the same pattern.
doi:10.1371/journal.pone.0012951.g003
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case the straightforward application of the concept of the basic

reproductive number can be of limited usefulness as a key

determinant of epidemic dynamics as there is no longer an

automatic correlation between R0 and competitive dominance.

The model presented above has some explanatory power beyond

that of conventional theory in that it suggests that for Influenza A

new pandemic variants generated by antigenic shift will be more

pathogenic (assuming pathogenicity correlates with infectious

duration) than the subsequent seasonal strains generated by the

process of evolutionary antigenic drift. From a public health

perspective these results suggests that monitoring of those emergent

strains with a shorter infectious duration is a better indicator of

pandemic risk than focussing on just R0, as they present an elevated

threat of triggering pandemics and may need to be the target of

timely vaccine development. Moreover, these results suggest the

calculations of R0 may not provide a reliable guide to the

vaccination effort required to eliminate an emergent pandemic

strain. The limitation of a singular focus on R0 has been highlighted

by Meyers [41] in the context of epidemics on networks. However,

further work is needed to develop the application of directionality

theory to empirical epidemiological questions such as determining

the optimal vaccination coverage. Table 2 contrasts the classical and

entropic models in order to emphasize their fundamental differences

in explanatory and predictive power.

The reasons why some flu strains are more pathogenic than

others is a complex issue involving specific details of host-virus

interactions, but the model we propose has the attraction of

capturing (on a simple criterion of pathogenicity, at least) evolution

to generally less-pathogenic strains. The determinants that drive

empirically observed patterns of emergence and spread of novel

infectious pathogens are incompletely understood, turning as it

does on the interplay of epidemiological, immunological and

genetic considerations. No single model is able to capture the full

complexity of this reality, but the work presented here is intended

to shed some light on the criteria for invasion success and

subsequent evolution of emergent strains.

Our results show that conditions of demographics of the infection

process, finite population size and consideration of the prevailing

epidemiological dynamics against which strain competition occurs

together impose limitations on the explanatory and predictive

power of any analysis based solely on the basic reproduction

number. The concept of evolutionary entropy provides a framework

that is stochastic in its foundation for resolving these limitations.

Materials and Methods

Details of the simulations
The population of infectives is divided into a number of discrete

‘‘age’’ classes. Each day every individual either moves up to the

next age class or moves to the Recovered class with probability bi.

An infective in age-class i produces on average mi infectives. These

new infectives each begin their journey through the infective stage

in age-class 1. Consequently, there are two functions, defined by li
and mi, (and hence Vi~limi see File S1 section i) that characterise

a pathogen strain and its behaviour in the host.

Transitions in the simulation are decided by a stochastic

process. The simulation starts with N wild-type infectives. Each

day each infective has its infectious age increased by 1. A random

number in the interval (0,1) is then generated for each infective. If

this number is ,current recovery probability bi then the

individual recovers, otherwise it generates its quota of secondary

infectives mi. New infectives begin with infectious age = 0. For

each new infective a random number in the range (0,1) is

generated. If it is ,mutation rate then this new infective will be a

variant strain. Mutations are generated by a small perturbation to

the function Vi (see below ‘‘Mutation and Competition’’). Each

day the number of each strain is calculated so that the dominant

(highest frequency) strain can be identified. The entropy, S, of this

strain is then calculated using the demographic parameters.

To simulate the Ww0 scenario in Figure 1 (which corresponds

to antigenic drift in the SE Asia region) requires rapid strain

growth rates (r large). This is done by initially allowing the total

population (of all strains) to grow rapidly. Once the supply of

susceptibles becomes depleted the population collapses abruptly

(resource availability variable). The supply of susceptibles is then

re-instated and the boom-bust cycle repeats itself. New strain

variants are generated through the cycle. The purpose of this is to

mimic the conditions for emergence of new variants when there is

competition and growth. In this scenario variants that compete

against each other are not at equilibrium in the population so we

are addressing a localised competitive situation. The total

population size used for this simulation was 10,000 individuals

with d(x)~a with a in the range +0:1 with a mutation rate of

10{5 day-1.

To simulate the Wv0 scenario in Figure 3 the supply of

susceptibles is controlled to maintain the total population of

infectives at a broadly constant level (i.e. resource availability

constant). This reflects low-to-minimal growth rate (equilibrium, r

small) of the incumbent. The number of infectives fluctuates

around an equilibrium level and new variants attempt to invade

the system whilst it is in this configuration. In this scenario the

incumbent is already established at equilibrium, so we are

addressing a global competitive situation. These simulations were

run for 200,000 days with d(x)~a with a in the range +0:1 and

with a mutation rate of 10{4 day-1.

Mutation and competition
Each variant is characterised by the net fecundity function Vi.

We assume that mutants are defined by V�(x)~V (x)1zd(x) where

d(x) is monotonic in x. As a consequence, mutants arise from

translation on the function V (x) (corresponding to a change in the

age of infector) or from a re-scaling of V (x) (corresponding to an

increase or decrease in the net fecundity function). Monotonicity is

imposed to preclude net-fecundity profiles that are large at early

and late stages and low at intermediate stages.

The genotypes of mutant and wild-types are constructed so as to

have positive growth rates. Consecutive time-steps of evolution are

simulated by generating random numbers to decide which

individuals recover or continue as infectives. To simulate

competition between strains some additional growth constraints

have to be applied to each scenario. In the Ww0 case the initial

population is allowed to grow rapidly from an initial starting

number Ninit. Following exhaustion of the supply of susceptibles

(i.e. resources are depleted) an extrinsic mortality 1{Ninit=Nð Þ is

Table 2. Contrasting properties of conventional and entropic
epidemic models.

Properties Classical Model Entropic Model

Organising parameter Basic reproduction number R0 Entropy S

Selective advantage ~ss~DR0 ~ss~{ W{c=Nð ÞDS

Duration of infection D D~1=n D~ke S{bð Þ

Nature of infective
process

Deterministic Stochastic

doi:10.1371/journal.pone.0012951.t002
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applied to all individuals to reduce the population of infectives

back down to its starting value. This process is repeated over many

time-steps. In the Wv0 case if the total population size (Nmax) of

infectives is exceeded an extrinsic mortality 1{Nmax=Nð Þ is

applied probabilistically so that the population is maintained at a

level that fluctuates around Nmax.

In both scenarios, at each time step, the dominant (most

frequent) genotype is determined and its entropy calculated from

equation S4.The value of this entropy is recorded for the duration

of the simulation. It should be noted that these simulations are not

based on an elaboration of S-I-R models of the usual type where

susceptibles and infectives interact via conventional mass-action

terms. Here, the population of infectives is directly manipulated to

reflect the kind of epidemiological dynamics that are typically seen

in the emergent and equilibrium phases [42].

Supporting Information

Table S1 Invasion criteria in the entropy model. *‘‘a.s. = Almost

surely’’ refers to the fact the result is a stochastic process. The

criteria for large and small population size are defined in more

detail in Demetrius et al. [19]. The criteria noted in Table S1 have

been tested against simulation where they have been shown to be

replicated.

Found at: doi:10.1371/journal.pone.0012951.s001 (0.07 MB

DOC)

Figure S1 Life cycle for an infective corresponding to the matrix

in equation S1 with 4 infectious age classes.

Found at: doi:10.1371/journal.pone.0012951.s002 (0.06 MB TIF)

File S1 Supporting text.

Found at: doi:10.1371/journal.pone.0012951.s003 (0.22 MB

DOC)
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