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Abstract  An extension of the Gurson model that incorporates damage development in 

shear is used to simulate the tension-torsion test fracture data presented in Faleskog and 

Barsoum (2012) (Part I) for two steels, Weldox 420 and 960.  Two parameters 

characterize damage in the constitutive model: the effective void volume fraction and a 

shear damage coefficient.  For each of the steels, the initial effective void volume fraction 

is calibrated against data for fracture of notched round tensile bars and the shear damage 

coefficient is calibrated against fracture in shear.  The calibrated constitutive model 

reproduces the full range of data in the tension-torsion tests thereby providing a 

convincing demonstration of the effectiveness of the extended Gurson model.  The model 

reinforces the experiments by highlighting that for ductile alloys the effective plastic 

strain at fracture cannot be based solely on stress triaxiality.  For nominally isotropic 

alloys, a ductile fracture criterion is proposed for engineering purposes that depends on 

stress triaxiality and a second stress invariant that discriminates between axisymmetric 

stressing and shear dominated stressing. 

 

Keywords:  Ductile fracture, fracture in shear, tension-torsion test, fracture criterion, 

Lode parameter 



1.  Introduction 

 Trends in fracture ranging from zero to relatively high stress triaxiality brought 

out in Faleskog and Barsoum (2012) (hereafter designated as Part I) for two steels, 

Weldox 420 and 960, reveal that the effective plastic strain at fracture is not 

monotonically related to stress triaxiality.  This trend was first highlighted earlier in a 

series of fracture tests by Bao and Wierzbicki (2004) on Al 2024-T351.  Moreover, the 

Bao-Wierzbicki experiments demonstrated that some metal alloys have less ductility 

under pure shear than under axisymmetric stress states with significantly higher 

triaxiality. These experimental findings have motivated recent efforts to extend damage-

based constitutive models such as the Gurson Model (1977) to more realistically predict 

fracture under low stress triaxiality conditions including pure shear (Nahshon and 

Hutchinson, 2008; Xue and Wierzbicki, 2008).  In this paper, designated as Part II, the 

extended Gurson Model will be employed to simulate the tension-torsion tests of the two 

steels presented in Part I.  Guided by the experimental data and predictions of the 

extended Gurson Model, a modification of the stress-dependence of the critical effective 

plastic strain will be proposed for a widely used ductile fracture criterion (Hancock and 

Mackenzie, 1976; Johnson and Cook, 1985).  

The distinction between axisymmetric stress states and shearing states plays an 

important role in the fracture trends noted above.  Denote the stress by ij , the mean 

stress by / 3m kk  , the stress deviator by ij ij m ijs     , and the effective stress by 

3 / 2e ij ijs s  .  Denote the ordered principal stresses by I II III    .  In addition to 

m  and e , two other related measures of the stress state will be useful in characterizing 

the fracture trends confronted in this paper: the Lode parameter, 
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and the  -measure introduced by Nahshon and Hutchinson, 
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The Lode parameter lies in the range, 1 1L   , while the   has the range 0 1  ;  

they are related by 
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Both measures discriminate between axisymmetric and shearing stress states, as will now 

be discussed. 

Axisymmetric stress states are characterized by either 

Case I:    ( 0, 1)I II III L        ,  or    (4) 

Case II:   ( 0, 1)I II III L             (5) 

The  -measure is zero for all axisymmetric stress states.  The magnitude of the Lode 

parameter is unity for these states, but it discriminates between a uniaxial stress plus a 

hydrostatic component (Case I in (4) with 1L   ) and an equi-biaxial stress state plus a 

hydrostatic component (Case II in (5) with 1L  ).  In this paper, for lack of better 

terminology, states comprised of a pure shear stress, 0  , plus a hydrostatic component, 

m , 

 , , ( 1, 0)I m II m III m L                .   (6) 

are referred to as shearing stress states.  For all such states, 1   and 0L  . 

 The original formulation of the Gurson Model does not account for damage 

growth and material softening in pure shear unless continuous void nucleation occurs.  

The original version predicts that fracture does not occur at zero triaxiality under pure 

shear.  The only fundamental change to the Gurson Model in the extension of Nahshon 

and Hutchinson (2008) is the modification of the equation governing the increment of 

damage growth f : 
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with p
ij  as the plastic strain increment.  The first contribution is that incorporated in the 

original model while the second is the extension.  The modification deliberately leaves 

the constitutive relation unaltered for axisymmetric stress states ( 0  ) because the 

Gurson Model and its subsequent calibrations were based on axisymmetric void growth 



solutions.  The effect of the modification is felt most strongly for shearing states ( 1  ).   

In a state of pure shear stress, (7) gives / 3Pf k f   , where P is the plastic shear 

strain rate and 
 
k  is the shear damage coefficient, the sole new parameter in the extended 

model.  The inclusion of the second term in (7) rests on the notion that the volume of 

voids undergoing shear may not increase, but void deformation and reorientation 

contribute to softening and constitute an effective increase in damage.  In addition, the 

second term can model damage generated by the shear of tiny secondary voids in void 

sheets linking larger voids.  Thus, in the extension, f  is no longer directly tied to the 

plastic volume change.  Instead, it must be regarded either as an effective void volume 

fraction or simply as a damage parameter, as it is, for example, when the Gurson model is 

applied to materials with distinctly non-spherical voids.  Recent simulations of void 

interaction in shear by Tvergaard (2008, 2009) and Tvergaard and Nielsen (2010) have 

shown that this phenomenological extension of Gurson Model can capture quantitative 

aspects of softening and localization in shear if k  is properly calibrated.  More 

generally, other recent theoretical studies (Barsoum and Faleskog, 2011; Scheyvaerts et 

al., 2010) have helped to clarify the role of the Lode parameter in characterizing void 

growth and shear localization. 

The extension of Gurson Model does not alter the yield function: 

   
2

22
1 3

3
, , 2 cosh 1

2
e m

e m
M M

q
F f q f q f

  
 
   

      
   

   (8) 

Here, M  is the flow stress of the undamaged material at the current matrix strain.  This 

is an input to the model that has been obtained experimentally for each of the two steels 

in the study, as will be described.  The three parameters, iq , have been calibrated 

specifically for the steels in this study in the manner described by Faleskog, et al. (1998) 

and Kim, et al. (2004) with values listed later.  Further discussion of the model and 

suggestions for its calibration are given by Nahshon and Hutchinson (2008) and Xue et 

al. (2010).  The reader is referred to these references for a complete listing of the 



equations governing the constitutive model.1  It can also be noted that the constitutive 

model used in carrying out the present calculations employed accelerated void grow for 

0.15Cf f  , as is commonly done to model final failure behavior (Xue et al., 2010).  

However, none of the results presented in this paper are affected by the accelerated void 

growth because the fracture strain as defined here is attained when f  is everywhere 

smaller than Cf , as described later. 

To provide a background to the trends seen in the experiments in Part I and in the 

tests of Bao and Wierzbicki (2004), a selection of localization predictions based on the 

Gurson Model and its extension is presented in the next section.  The objective of this 

brief “primer on localization” is to bring out the significant difference between 

localization under axisymmetric stressing from that under shear stressing—this difference 

is at the heart of the fracture trends addressed here and in Part I.    

 

2.  Basic results on localization 

The localizations of interest here are localization bands (shear and normal 

separation bands) not necking localizations.  Shear and normal separation localization 

bands have a thickness set by material microstructure, typically on the order of tens of 

microns.  In ductile alloys, they often occur within a necking localization whose 

thickness is set by overall geometry, e.g. the diameter of a tensile bar or the thickness of a 

plate.  The onset of a shear band or a normal separation band marks the maximum overall 

strain possible for that stress state because, once the band forms, essentially all of the 

subsequent deformation in the local vicinity takes place within the band; material outside 

the band will then usually unload elastically.  The critical strain in the material outside 

the band at localization defines the relevant fracture strain for engineering purposes.  A 

similar definition of fracture is adopted by Barsoum and Faleskog (2011) in their study of 

the combined roles T  and L  in localization.  Their study makes use of three dimensional 

void growth simulations to describe behavior within the band and thereby complements 

the present study in that it is not tied to the Gurson model. 

 
                                                 
1 There is an error in both references in the expression for / MF   .  The sign of the second term should 

be minus not plus. 



(2.1)  Stress-state dependence of shear and normal localizations 

The predictions presented in this section are drawn from Nahshon and Hutchinson 

(2008) and from additional localization computations similar to those reported in that 

reference carried out in preparation of this paper.  The material parameters are those for 

the steel Weldox 420 which will be detailed in full later in the paper.  To a high degree of 

approximation, Weldox 420 is initially isotropic with a relatively high strain hardening 

index, 0.18N  .  The calibrated values of the initial effective void volume fraction and 

shear damage coefficient are 0 0.005f   and 1.1k  , as will be detailed later.2  Results 

computed with 0k   are those for the conventional Gurson Model; those with 0k   

are based on the extended model.  The trends which follow for Weldox 420 are similar to 

those for the higher strength steel, Weldox 960, and they can be considered representative 

of many tough ductile alloys.   

As described in Nahshon and Hutchinson (2008), the localization simulations are 

based on an infinite planar band of uniform thickness sandwiched between two semi-

infinite outer blocks—similar to the plane stress simulations of Marciniak and Kuczynski 

(1967).  For the simulations in this section, the initial effective void volume fraction in 

the band is taken as 0 0.005f   while the effective  volume fraction outside the band is 

taken to be zero.  There are two uniform states of stress and strain—that within the band 

and that outside.  The localization results presented in this sub-section have all been 

computed by imposing proportional stressing with no material rotation outside the band.  

Specifically, outside the band, the principal stress axes are fixed with respect to the 

material and the maximum principal stress, I , is increased monotonically.  The other 

two components are increased according to II II Ir   and III III Ir   with IIr  and IIIr  

prescribed to be constant.  All possible orientations of the band are considered.  That 

orientation which produces localization at the lowest effective plastic strain in the outer 

blocks is identified as the critical orientation.  Rotation of the material occurs within the 

band.  Localization is associated with the condition that the strain rates within the band 

                                                 
2  The tensile stress-strain curve characterizing the base material in this section uses a pure-power relation 
between plastic strain and stress and is somewhat simpler than that used in simulations in Section 3.  This 
difference has essentially no effect on the trends presented. 



grow in an unbounded manner relative to the strain rates outside the band—in most cases 

this coincides with the onset of elastic unloading outside the band. 

Fig. 1 presents plots of the effective plastic strain at localization as a function of 

stress triaxiality, /m e  , for axisymmetric stressing as prescribed by (4) for Case I and 

by (5) for Case II.  The effective plastic strain is defined by 

0

tP P
e e dt      with  2 / 3P P P

e ij ij           (9) 

with P
ij  as the logarithmic strain rates such that P

e  can be regarded the logarithmic 

measure of the effective plastic strain.  The lessons to be drawn from Fig. 1 are: 

(1) For the infinite blocks of uniformly strained material, the critical 

plastic strain is associated with a shear band in all these cases.  At 

localization, the band is approximately 45o to the maximum principal 

stress direction.  The effect of the shear damage coefficient k  is 

shown for Case I and it is seen that it has essentially no effect on these 

predictions.  Similarly, there is no effect for Case II, although this is 

not shown.  Thus, there is essentially no distinction in the localization 

predictions between the original Gurson Model and its extension for 

axisymmetric stressing.  The slight difference that does exist is due to 

the fact that the state within the band at the onset of localization is not 

precisely axisymmetric stressing due to the fact that the critical band 

orientation is not normal to the maximum principal stress.    

(2) For Case I, results are shown for normal separation localizations 

which have been computed by restricting the band to be normal to the 

maximum principal stress.  At localization, the strain-rate in the band 

is uniaxial and oriented parallel to the maximum principal stress.  A 

normal separation localization often occurs at the center of a neck or a 

notch in a round tensile bar as the beginning of cup-cone failure.  It is 

important to note that the critical strain for normal localization is only 

slightly larger than that associated with shear localization.  In 

geometries like a notched round tensile bar, the constraint on shear 



localization due to axial symmetry can favor the emergence of a 

normal localization in the central region. 

(3) The Gurson Model predicts some difference in the plastic strain to 

localization between Cases I and II, although this difference is 

relatively small compared to that between axisymmetric and shearing 

states discussed next.  In revising a commonly used engineering 

fracture criterion in Section 4, we will ignore the difference between 

Cases I and II and simply use 0   to characterize axisymmetric 

stress states. 

Fig. 2 compares the critical effective plastic strain for axisymmetric stressing 

( 0  ) with those for shear stressing (6) with 1  .  All the localizations in this figure 

are shear bands oriented approximately 45o to the maximum principal stress at 

localization with the normal in the plane of ( ,I III  ).  The main conclusions are: 

(1) At a given triaxiality, the original Gurson Model ( 0k  ) predicts an 

appreciably lower localization strain under shear stressing than 

axisymmetric stressing.  Nevertheless, at low triaxiality, e.g., 

/ 0.2m e   , localization is effectively excluded even for shear 

stressing.  As noted earlier, localization does not occur in pure shear 

( / 0m e   ) according to the original Gurson Model without 

continuous nucleation of voids. 

(2) The extended model predicts a strong dependence of the localization 

strain on k  under shear stressing.  With 1.1k  , corresponding to the 

calibrated value for Weldox 420, the spread between localization 

strains under axisymmetric stressing and shear stressing is large. In 

pure shear, ( ) 1.6P
e C  . 

(3) While not shown, localization strains for stress states other than 

axisymmetric stressing and shear stressing with 0 1  , fall between 

those shown in Fig. 2. 



These conclusions are also supported by the localization study carried out by Barsoum 

and Faleskog (2011) based on three dimensional simulations of void deformation within 

the localization band. 

The higher susceptibility to localization under shear stressing, compared to that 

under axisymmetric stressing, in large part accounts for the fact that triaxiality alone 

cannot capture the dependence of stress state on ductile fracture.  It follows that the 

common practice of measuring fracture strains using axisymmetric notched tensile bars 

will overestimate fracture strains for non-axisymmetric stress states at corresponding 

levels of triaxiality. 

 

(2.2) Simplified model of the tension-torsion test 

 This brief primer on localization is concluded with simulations of localization for 

a simplified model of combined stressing in tension and shear which provide insight into 

the tension-torsion experiments presented in Part I. 

 Consider proportional stressing with 0   and 0   in axes 1 2 3( , , )x x x  with 

11 22 12 33 13 23, / 2, , 0, 0, 0                 (10) 

such that / 2m   and 2 23 / 4 3e    , with the ratio, /  , constant in each 

deformation history.  Because 22 0s  , 22 0P  ; thus, the deformation is constrained 

against straining in the 2x -direction, apart from an elastic component.  In principal axes 

of stress, 
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The stress triaxiality and   measure are 
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The stress states specified by all combinations of ( , )   are similar to those in the 

tests of Part I in that in the two limits (pure shear, 0  , and plane strain tension, 0  ) 

are states of shear stressing with 1  .  Moreover, the intermediate state with / 2   

is axisymmetric stressing with 0   (e.g., a uniaxial stress state with 3 / 2I  , 

0II III   ).  Thus, this combination of proportional stressing histories has the same 

property of the tension-torsion test series in Part I in that over the range of states it 

evolves continuously from 1   when 0   to an intermediate state with 0   and 

then back to 1   at the other limit when 0  .  Material rotation outside and within the 

band occurs and is accounted for in the localization simulations. 

 The effective plastic strain in the material outside the band at localization,  P
e C
 , 

is plotted in Fig. 3 for the full range of proportional stressing histories specified by (11).  

Two abscissas are used: / ( )    which varies from 0 to 1 and triaxiality in (12) which 

varies from 0 to 0.58, the latter corresponding to plane strain tension.   A companion plot 

of   is given in Fig. 4.  Predictions are shown for the original Gurson Model ( 0k  ) 

and for the extended model with 1.1k  .  All the localizations are shear bands with 

normal oriented at approximately 45o  to the ( , )I IIIx x  axes.  The predictions of the 

original model and its extension are nearly coincident when / 2   because for this 

case the state of stress outside the band is axisymmetric with 0  .  However, for the 

other combinations of   and   significant differences between the predictions of the 

two constitutive models are evident.  In particular, in the range of low triaxiality the 

original Gurson Model predicts that localization will not occur, except possibly at 

unrealistically large strains. 

 The trend seen in the tension-shear simulations in Fig. 3 wherein a local 

maximum in the localization strain occurs at an intermediate triaxiality state 

corresponding (approximately) to axisymmetric stressing is qualitatively similar to the 

trend of tension-torsion data for fracture strains in Part I (see also Figs. 10 and 13 below).  

The range of triaxiality of the stress states in the tests in Part I is larger due to the fact that 

the test specimens are notched, but the non-monotonic character of the fracture strain 

with increasing triaxiality applies to both situations. 



 The tension-torsion loadings considered in this section and characterized by (10)-

(12) are the same as those achieved in tubular test specimens of Al 6061 designed for 

uniform stress and tested by Haltom, Kyriakides & Ravi-Chandar (2013).  The critical 

effective plastic strains in Haltom, et al., are measured within the shear localization zone.  

Thus, it is not possible to make direct comparison with simulations in this section which 

focus on the effective plastic strain just outside the localization band at the onset of 

localization.  Unlike the trend seen in Fig. 3 and later for the two Weldox steels, the 

effective plastic strain reported by Haltom, et al., for Al 6061 decreases monotonically 

with triaxiality.  The range of test data achieved in the Haltom, et al., test series is less 

than that of the simulations presented in Figs. 3 and 4 owing to plastic buckling in near-

pure shear and necking of the specimen at the other limit when tension dominates.   

 

3.  Application of the extended Gurson model to simulate the tension-torsion tests of 

Weldox 420 and 960 and a set of notched round bar tensile tests 

 In this section, the procedure used to calibrate the extended Gurson model will be 

described and executed for the two steels, Weldox 420 and 960, reported on in Part I.  

Then, the extended model will be used as the constitutive module within a finite element 

code to simulate the full range of the tension-torsion tests on these steels allowing direct 

comparison with the experimental data.  Experiments on a smaller set of notched round 

bar tensile tests will also be simulated. 

 

3.1 Calibration of the constitutive model 

 Several tests are required to calibrate the extended Gurson model (Xue, et al., 

2010). Here, a three-step procedure has been followed: (1) data from an un-notched 

round bar tensile test is used to generate the tensile stress-strain curve, ( )  , 

characterizing the undamaged material; (2)  data from a notched round bar tensile test is 

used to identify the initial void volume fraction, 0f ; and (3) the pure torsion test in the 

series of Part I is used to calibrate k .  Calculations for steps (1) and (2) were carried out 

using the Standard version of ABAQUS (2010), while all the simulations of the tension-

torsion tests, including step (3), employed the Explicit version of ABAQUS (2010). The 

calibration process is now described in more detail.   



Considerable care has been taken to characterize the true stress-log strain tensile 

stress strain curve of the material in the absence of any damage, ( )  , which is the input, 

M , in the yield function (8).  This requires fitting a representation to the uniaxial data, 

accounting for necking, and extrapolating beyond the point where damage becomes 

important.  With reference to the tensile data for Weldox 420 in Fig. 5, the following 

representation used is (see also Part I): 
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            (13) 

with values of the coefficients given in Table 1.  The base curve, ( )  , for the material 

with no damage is plotted in Fig. 5 showing the extrapolation to a logarithmic strain of 

0.3.   Included in Fig. 5 is the experimentally measured stress-overall strain curve from 

the smooth round bar test and the corresponding curve simulated using the finite element 

code employing (13) for the base material.  The stress for these curves is defined as the 

force/current area, assuming the current area is determined as if the deformation were 

uniform.  Similarly, the overall strain is the logarithmic strain evaluated in terms of the 

elongation of the gage section assuming uniform elongation.  The specimen begins to 

neck at a strain of roughly 0.2.  The abrupt downturn in the experimental curve at an 

overall strain of about 0.28 corresponds to the onset of a normal localization band at the 

center of the neck, i.e. the onset of the cup-cone failure mode.  Prior to this onset, damage 

in the form of non-zero 0f  has relatively little effect on the simulated curve.  This 

assertion has been verified directly and it will be illustrated below for another example.  

The shear damage coefficient, k , and the effective void volume fraction at which 

accelerated void growth begins, Cf , have essentially no effect on the behavior of the 

round bar tensile test until shear-off begins in the final stages of cup-cone fracture. 

 

 

 



Material  N    

Weldox 420 418 0.18 0.002 0.0162 0.0084 

Weldox 960 956 0.059 0.0046 0.0046 0 

 

Table 1.  Material parameters for Weldox 420 and 960.  For both steels, the Young’s 

modulus is taken as 208E GPa  with Poisson’s ratio, 0.3  .   

 

The three parameters used in the yield function of the Gurson model for Weldox 

420 have been taken as 1 1.07q  , 2 1.01q   and 2
3 1q q  based on a separate calibration 

using an axisymmetric cell model subject to proportional stressing with T  in the interval  

from 0.8 to 1.8 in a range of 0f  appropriate for the Weldox materials (Part I).  The 

calibration process for the q’s is discussed in some detail by Faleskog, et al. (1998) and 

Kim, et al. (2004).  The values for Weldox 960 are 1 0.90q   and 2 1.16q  .  

 In principle, the onset of the cup-cone failure in smooth round bar tensile test 

could be used to calibrate 0f , but we found that fitting to the onset of failure in a 

notched-round bar tensile test is more robust.  The data used for the calibration is plotted 

in Fig. 6 as average stress versus elongation for two notched-round bar tests on Weldox 

420.  Two tests have been conducted for each specimen geometry.  Included in this plot 

are curves simulating the specimen with various values of 0f .  In the simulations, the 

onset of failure, coincident with the slope change seen in Fig. 6, is associated with the 

formation of a normal localization band at the center of the notch.  Subsequently, the 

band spreads out from the center and at some stage branches as a shear band and links to 

the surface.  Details of this failure sequence will not be reported here because they have 

been reported in considerable detail for similar simulations by Xue, et al. ( 2010) where 

the role of the finite element mesh  on the cup-cone failure mode is reported.  Note that 

prior to the onset of failure at the slope change, the choice of 0f   has very little effect on 

the overall stress-elongation behavior, as mentioned earlier.  At small void volume 

fractions representative of tough structural alloys, damage plays a critical role in giving 

rise to normal and shear localizations but has relatively little observable effect on overall 

load-deflection behavior before localization.   The onset of the normal localization band 



is insensitive to k  (and Cf ) in these calculations, but the transition to final shear-off 

depends strongly on k  and to a lesser extent Cf .  The value 0 0.005f   has been chosen 

to reproduce the onset of the failure in the center of the neck associated with the slope 

change seen in the overall stress-elongation curves in Fig. 6.  A comparison of two tests 

on a shallow notched bar ( / 0.2a r  ) with simulations using 0 0.005f   also show good 

agreement, but these are not shown. 

 With the base stress-strain and the initial void volume fraction in hand, the last 

step is to choose k  to fit a set of test data for which it plays an important role.  For this 

purpose, the experimental data from pure torsion test in Part I is employed, which is 

included here in Fig. 7.  In this case, the downturn in the experimental curve is even more 

abrupt.  It is associated with the formation of a shear band extending across the notched 

region of the specimen.  Based on the comparisons seen in Fig. 7, the choice 1.1k   has 

been made.  The same feature noted above with respect to the effect of 0f  on behavior 

prior to localization is evident in Fig. 7.  That is, k  has a very strong influence on the 

shear localization strain, but its effect on overall behavior prior to localization is hardly 

discernable.  The onset of accelerated void growth at Cf  has no effect on these results 

because localization occurs at void volume fractions much below Cf .   

 Finally, a remark is in order on the accuracy of the simulations of steeply 

dropping load-deflection behavior seen following the onset of localization when the band 

extends across the loaded cross-section in Figs. 6 and 7.  In the simulations, the predicted 

steepness of the load-deflection curve depends on element size because the band localizes 

to a width of essentially one element.  No attempt has been made to calibrate the element 

size to accurately represent behavior in the post- localization regime.  Thus the results 

following localization presented in Figs. 6 and 7 are included only to illustrate the 

dramatic transition following localization.   These remarks also apply to the simulations 

of the tension-torsion experiments in the next section.  The important point to note is that 

the emphasis in this paper is on the onset of localization at the point where the material 

abruptly loses its load carrying capacity and not on the behavior in the post-localization  

regime.  The onset of localization is accurately predicted. 



 In summary, for Weldox 420, the base stress-strain behavior of the undamaged 

material is specified by (13) with parameter values listed in Table 1.  The two damage-

related parameters associated with the extended Gurson model are 0 0.005f   and 

1.1k  .  The calibration procedure described above was repeated for Weldox 960 with 

base curve parameters given in Table 1 and 0 0.004f   and 1k  .   

 

(3.2) Simulation of the double-notched tension-torsion tests 

 The geometry of the double-notched specimen is shown in Fig 1(a-c) and Fig. 

A1(a) of Part I. The extended Gurson model has been implemented as user subroutines 

through the VUMAT interfaces in ABAQUS (2010). The Explicit version of this code 

has been used to carry out the simulations for the tension-torsion tests. The three 

dimensional finite element mesh used in the simulations of the tests is shown in Fig. 8. It 

is essential that a three dimensional model is used because generally the localization 

modes do not conform to axial symmetry, as seen in the fractographs in Fig. 10 of Part I. 

Eight-node linear brick elements with reduced Gaussian integration and hourglass control 

(C3D8R in ABAQUS Explicit) were used in all regions. Iterations on element size and 

meshing details were made prior to arriving at the mesh used to carry out the final 

analysis. As shown in Fig. 8, sufficiently refined mesh was used in the notch region; the 

smallest elements along the center line have dimensions about 50 50 250 m   with 

250 m  in the circumference direction. This mesh configuration is able to adequately 

capture near-axisymmetric deformation, and it is adequate for localizations with 

circumferential variations smaller than axial and through-thickness variations.  The mesh 

would not accurately resolve shear localizations in which variations in the circumferential 

direction are relatively large.  

Outside the notch region, the mesh was gradually coarsened in the length 

direction. The elemental size in the circumference direction was kept as 250 m . The 

loading, same as what described in Part I, was applied to both ends of the specimen 

simultaneously. For precisely controlling the ratio of the axial force and the torque, a user 

subroutine through the VUAMP interface in ABAQUS Explicit was utilized, where the 

calculated axial load from the previous step was monitored at the beginning of each step 



and then the applied torque is updated at the end of the current step according to the 

prescription.  

The reader is referred to the details of the test protocol which are laid out in 

Section 2.1 of Part I.  The numerical simulations attempted to reproduce these details to 

the full extent possible.  With F as the axial force and M  as the torque applied to the 

specimen, each test was conducted under proportional loading with /mFR M   

maintained constant, with mR  as the radius to the middle of the notch of the undeformed 

specimen.  Note that this ratio is equivalent to the ratio of the true axial and shear stresses 

averaged over the plane at the center of the notch, /axial shear   .  For presenting data, 

the relative proportion of axial stress to shear stress is measured by 

1
axial

T
axial shear

k


  
 

 
       (14) 

ranging from 0 in pure torsion to 1 in pure axial force.  Results from the calculations will 

be presented for the equivalent plastic strain at failure at several points throughout the 

neck.  In addition, the definition given in Section 3.1 of Part I of an “overall equivalent 

plastic strain” expressed in terms of the normal displacement across the notch, n , and 

the rotation across the notch, n , will also be used because it allows direct comparison 

with quantities measured in the tests.   

 The simulations are carried out using the extended Gurson model with 

constitutive inputs for Weldox 420 and 960 as described above.  In the simulations, the 

actual dimensions of the specimen have been used.  To facilitate comparison with the 

experimental data, some of the results will be presented in dimensional form.  It is useful  

to begin with the simulations of the overall load-displacement behavior for Weldox 420 

presented in Fig. 9.   Curves for torque versus rotation across the notch and axial force 

versus displacement across the notch are plotted for the full range of simulations with Tk  

prescribed to be constant in each case.  The curves in Fig. 9 were not computed with 

precisely the same values of Tk for the individual tests of Part I, but Fig. 10 shows direct 

comparisons of the simulations and the experiments for two of the tests.  The simulations 

are of the quantities directly measured in the experiments.  In this paper, the onset of the 

abrupt down-turn in the load-displacement curves seen in Figs. 9 and 10 is identified as 



the point of failure, and the equivalent plastic strain associated with this point is labeled 

the fracture strain.  The down-turn point is associated with some combination of a shear 

or normal localization spreading across the notch, as will be discussed below.  Thus, the 

definition of the fracture strain is tied to formation of the band of localization, consistent 

with the definition in Section 2.  Local strains larger than this fracture strain will occur 

within the localization band itself, but for the purposes of characterizing the tests, as well 

as for engineering applications, a definition of fracture strain based on the onset of an 

abrupt loss of strength is the proper choice.  Further discussion related to the 

identification of the fracture strain will be given later. 

 Fig. 11 presents the overall equivalent plastic strain at fracture as measured in the 

test series for Weldox 420 and the predicted results based on the calibrated damage 

parameters ( 0 0.005f  , 1.1)k  , as well as results predicted for two other choices of 

damage parameters.  The results based on the calibrated constitutive parameters 

reproduce the experimental trend reasonably well.  In particular, they capture the non-

monotonic trend with increasing Tk  and the local peak in fracture strain at 0.65Tk  .  

The stress state in the notch varies from essentially pure shear ( 1  ) at 0Tk  , to an 

axisymmetric state (uniaxial stress plus hydrostatic tension with 0  ) at 0.7Tk  , to 

plane strain tension with superimposed hydrostatic tension at the center of the notch 

( 1  ) at 1Tk  .  The dependence of   in the notch on Tk  is very similar to that plotted 

for the model problem in Fig. 4.  As noted in connection with the model problem in 

Section 2.2, the Gurson model without the extension ( 0k  ) would not predict a local 

peak in the fracture strain.  Moreover, if 0f  were chosen such that the predictions gave a 

reasonable fit for the data at 1Tk  , then the fracture strain predicted for Tk  less than 

about 0.3 would be unrealistically large. 

 Two additional curves in Fig. 11 have been included to illustrate the sensitivity of 

the predictions to the choice of the damage parameters.  With 0 0.002f   and 1.5k  , 

the experimental data for pure torsion and pure axial extension (both with 1  ) is well 

predicted, but for Tk in the mid-range the prediction significantly overestimates 

experimental data because the initial void volume fraction is too small.  Conversely, with  



0 0.005f   and 1.5k  , the predictions fit the experimental data fairly well for 0.3Tk  , 

but significantly underestimate the experimentally measured shear strain at fracture in 

pure torsion because the shear damage coefficient is too large. 

 The stresses and strains are not uniformly distributed across the notch as has been 

emphasized in Part I.  The equivalent plastic strain has a minimum at the center of the 

notch when Tk  is small and shear bands emerge from the edges of the notch and spread 

towards the center.  The distribution of the effective void volume fraction, f , across the 

notch within the shear band at the onset of fracture is shown in Fig. 12 for three loading 

cases, 0, 0.7 & 1Tk   as simulated by the extended Gurson model for Weldox 420.  For 

torsional loading, 0Tk  , the stress concentration at the edges of the notch promotes the 

emergence of the shear band, while for the other two loadings, 0.7 & 1Tk  , the higher 

triaxiality at the middle of the notch accelerates void grow and triggers the onset of the 

shear band at that location.   

Further insight into the non-uniform behavior in the notch is displayed in Fig. 13 

where the equivalent plastic strain at the edges and middle of the notch are plotted as a 

function of the overall equivalent plastic strain for Weldox 420 for pure torsional loading.  

Strains within the incipient shear band are compared with those just outside the band as 

predicted using the extended Gurson model.  As the onset of fracture is approached the 

strains within the band begin to increase more rapidly than those just outside the band, as 

is especially noticeable in the middle of the notch.  Also included in Fig. 13 is the 

prediction at the three locations based on Mises theory with no damage (i.e., the present 

constitutive model with 0 0f  ) using precisely the same mesh.  The predictions with no 

damage are accurate until a point just prior to the onset of fracture when the extended 

Gurson model predicts significant shear band localization.  These findings validate the 

use of the classical Mises theory in Part I to establish the strain distributions associated 

with the experimentally measured onset of fracture. 

 As noted above, the simulations of the tension-torsion specimen reveal that shear 

localization starts either at the edges of the notch or at the center and spreads across the 

entire notch cross section.  For example, the abrupt downturn in the torque-twist behavior 

seen in Fig. 7, and the down-turn for all the curves in Fig. 9, does not occur until the 



shear band has spread across the entire central plane of the notch.  Thus, the definition of 

“fracture” employed here is not associated with the first formation of a localization band.  

Instead, fracture is taken as the point where the localization spreads across the structural 

element causing a drop in load carrying capability.  One must be cognizant of such 

considerations when invoking the concept of a critical plastic strain to characterize 

ductile fracture in structural applications.  The fact that simulations in Fig. 13 based on 

Mises plasticity with no damage agree reasonably closely to those based on the extended 

Gurson model prior to fracture underpins the use of an engineering fracture criterion 

based on a critical plastic strain computed using Mises plasticity. 

 The details of the results for Weldox 960 are similar to those discussed above and, 

thus, only the comparison between the experimental and numerically simulated results for 

the overall equivalent plastic strain at fracture is presented in Fig. 14.  As in the case of 

the intermediate strength steel, the simulations based on the extended Gurson model 

capture the experimental trend rather well.  The fracture strains of Weldox 960 are about 

one half of those of Weldox 420 as expected given that the strength of the former is about 

twice that of the latter.  The damage parameters for Weldox 960 ( 0 0.004f  , 1k  ) are 

not too different from those for Weldox 420 ( 0 0.005f  , 1.1k  ), but the lower 

straining hardening ( 0.059N   versus 0.18N  ) and higher initial yield stress 

( 996Y MPa   versus 415Y MPa  ) are also important in determining localization. 

 

4. An extension of the Hancock-Mackenzie/Johnson-Cook criterion for ductile 

fracture  

 Motivated by the experimental results in the previous section and the localization 

predictions based on the extended Gurson Model in Section 2, we propose a 

phenomenological ductile fracture criterion for initially isotropic metal alloys based on a 

critical effective plastic strain suitable for engineering applications.  The proposal 

incorporates a dependence of the effective plastic strain at fracture on stress triaxiality, 

/m eT   , as in the criterion of Hancock & Makenzie (1976) and Johnson & Cook 

(1985), as well as on the invariant measure   defined in (2) which discriminates between 

axisymmetric states and shearing states.  It has been noted earlier that the difference 



between fracture in states with different signs of the Lode parameter, such as between 

axisymmetric states with 1L   , is relatively small compared to the difference between 

axisymmetric states and shearing states.  This assertion is supported by the present 

simulations and those of Nahshon and Hutchinson (2008) and Barsoum and Faleskog 

(2011).  The dependence on the sign of the Lode parameter will be neglected in the 

criterion given below by assuming a dependence on  , but not on the sign of L .  This 

issue will be discussed further later in this section.   

Denote the effective plastic strain at fracture as a function of triaxiality, T , and   

by ( , )T  .  Denote the limit for axisymmetric states ( 1L   , 0  ) by ( ) ( ,0)A T T   

and the limit for shearing states ( 1  ) by ( ) ( ,1)S T T  .  The simulations in Section 2 

indicate that at any T ,  ( )A T  is the upper limit and  ( )S T  is the lower limit.  If fracture 

strains for these two limits were known, an interpolation of these two limiting states can 

be expressed as  

 ( , ) 1 ( ) ( ) ( ) ( )S AT p T p T             (15) 

with (0) 1p   and (1) 0p  .  Shear localization calculations for Weldox 420 will be used 

to guide the choice of the interpolation function ( )p  .   

 Fig. 15 presents curves of effective plastic strain at the onset of shear localization 

computed for Weldox 420 over the full range of the Lode parameter for two levels of 

stress triaxiality.  These results have been computed using the formulation described in 

Section (2.2) wherein the principal stresses, ( , , )I II III   , are increased proportionally 

with fixed T  and L .   As noted earlier, the localization strain for Case II ( 1L  ) is 

slightly larger than that for Case I ( 1L   ) at the same triaxiality.  The prediction of (15) 

for two possible interpolation functions is included in Fig. 15: a linear interpolation with 

( ) 1p     and a quadratic interpolation with 2( ) (1 )p    .  Of the two, the 

quadratic interpolation is clearly superior, and, given its simplicity, it will be used in the 

sequel, although other interpolation functions could be considered. 

 The following implementation of the phenomenological fracture relation (15) 

illustrates its potential in practical applications.  The illustration will apply (15) to the 

tension-torsion “data” in Fig. 3 using the results on axisymmetric and shear states 

presented for the same material in Fig. 2.  In this scheme, four experimental data points 



are used to calibrate the relation.  Take ( ) Ac T
A AT b e   and determine Ab  and Ac  by 

fitting to axisymmetric data for two triaxiality levels (illustrated here using 1/ 3T  , and 

1/ 3T   with 1L    ( 0  ) from Fig. 2).  Then, with ( ) Sc T
S ST b e  , determine Sb  

and Sc  by fitting to data for shearing stress states ( 1  ) at two triaxiality levels (here 

using pure shear, 0T  , and plane strain tension, 1/ 3T   from Fig. 2).  This 

calibration procedure yields  

   1.97 4.25( , ) 1 ( ) 1.6 ( ) 9.07T T
C T p e p e           (16) 

Based on the expressions for T  and   in (12), the fracture strain from (16) with 

2( ) (1 )p     is plotted in Fig. 3.  The phenomenological relation does a reasonably 

good job of reproducing the extended model predictions in Fig. 3 over the entire range of 

the simplified tension-torsion test.  A plot illustrating the role of the two bounding curves 

in (15), the upper limit for axisymmetric states and the lower limit for shearing states, is 

presented in Fig. 16, with the schematic trend of the torsion-tension tests imposed. 

One difficulty in establishing any phenomenological critical plastic fracture 

criterion, including the present, is that experimental data for axisymmetric states at low 

triaxiality, i.e., ( )A T  for 0.3T  , requires high pressure test procedures such as those 

conducted by Bridgman (1953).  The effective plastic strain to fracture in shearing states, 

( )S T , can be measured experimentally at lower triaxiality more readily than ( )A T  

(Mohr and Ebnoether, 2009).  Moreover, based on the present study, it might be argued 

that ( )S T  is the more fundamental of the two limits in that ( )S T  provides the lower 

limit on the fracture strain at a given triaxiality. 

This section concludes with further discussion of the possible importance of the 

sign of the Lode parameter, and, specifically, the evidence for a difference in fracture 

strain at the same triaxiality between axisymmetric states with 1L   , Case I, (with 

I II III    ) and 1L  , Case II, (with I II III    ).  Shear band localization results 

in Figs. 1 and 2 based on the Gurson model, as well as the results in Fig. 15, indicate that 

Case II has a slightly larger effective strain at localization than Case I at all triaxialities.  

This trend is also seen in Fig. 17 where the role of the strain hardening exponent on the 

Lode parameter dependence of the localization strain is brought out.  At low strain 



hardening, asymmetry with respect to L  is somewhat more pronounced than at higher 

strain hardening, implying that the symmetric model (15) will be less accurate at low 

hardening.  Nevertheless, the dominant effect remains the distinction between shearing 

states ( 1  ) and axisymmetric states ( 0  ), particularly at lower and intermediate 

triaxialies.  The localization study of Barsoum and Faleskog (2011), based on three-

dimensional void simulations, also confirms these trends. 

Bai and Wierzbicki (2008) assert that a large difference in fracture strain may 

exist between the axisymmetric Cases I and II (e.g., see their Fig. 14).  Moreover, they 

suggest that the strain associated with Case II is significantly less than that for Case I, in 

stark contrast to the trends noted here.  They base their argument on fracture strains 

measured in an upsetting test—a squat cylindrical specimen subject to compression that 

develops a barrel shape with tensile circumferential stresses at the surface and tensile 

radial stresses at the center.  Bai and Wierzbicki view the upsetting test as an example of 

Case II ( I II III    ), which is the correct characterization of the stress state along the 

central axis of the specimen.  However, fracture occurs at the surface of the specimen due 

to the barreling, not at its center.  The surface is in a state of plane stress.  Thus, for 

example, an upsetting test having zero triaxiality at its surface has , 0III I II      

corresponding to a state of pure shear ( 0, 1L   ).  In such cases, the shear crack is 

observed to form with its plane normal to the surface at roughly 45o  to the axis of the 

specimen in accord with what would be expected for a shear localization evolving into a 

shear crack. 

Several recent publications have taken steps to address the limitations of the 

Johnson-Cook fracture criterion based solely on triaxiality.  A modification of the 

Johnson-Cook criterion introducing a dependence on the Lode parameter has been given 

by Chocron et al. (2011) with emphasis on ballistic applications.  Details of the Chocron 

et al. modification differ from the present proposal (15), but their proposal also neglects 

dependence of the sign of the Lode parameter, consistent with the assertions made here.   

Kane et al. (2011) consider a ductile fracture criterion for application in the range of low 

triaxiality with a dependence on the Lode parameter.  Their criterion incorporates a 

difference between the axisymmetric Cases I and II that is in accord with the trend of the 



present results, i.e., with the fracture strain in Case II being somewhat larger than that in 

Case I.  However, the criterion of these authors does not incorporate the significant 

reduction in fracture strains for shearing states relative to axisymmetric states seen in the 

experimental data in part I for Weldox 420 and 960 and in the data for Al 2024-T351 of 

Bao and Wierzbicki (2004).  Lou, et al. (2012) have proposed a criterion for the critical 

plastic strain for plane stress states with applications to sheet metal forming limits and 

have compared their criterion with data from an extensive series of sheet metal tests.  

Their criterion incorporates a dependence on the Lode parameter which produces non-

monotonic trends on triaxiality similar in many respects to those that emerge here.  

Finally, it can be noted that Gruben et al. (2011) have conducted fracture tests on a series 

of dual phase steel specimens at different combinations of triaxiality and Lode parameter.   

Their data also reveals an increase in the effective plastic strain under increasing 

triaxiality at axisymmetric stressing associated with uniaxial tension, with trends 

qualitatively similar to that of the Weldox steels but with less variation in the critical 

plastic strain. 

 

5.  Conclusions 

The two damage parameters of the extended Gurson Model, 0f  and k , have been 

calibrated for two steels, Weldox 420 and 960, using a combination of notched round bar 

and shear tests.  The calibrated model has then been used in a finite element code to 

simulate the fracture strains in the tension-torsion test series of the two steels reported in 

Part I.  The simulations reproduce the main features of the test series with reasonable 

fidelity.  In particular, they capture the fact that the fracture strain does not decrease 

monotonically with increasing stress triaxiality.  The essence of the extended Gurson 

model that makes it possible to reproduce the experimental trend is the incorporation of 

damage growth in shear through a dependence on the parameter   defined in (2) which 

discriminates between axisymmetric and shearing stress states. 

The Gurson Model and its extension have been derived and validated under 

proportional, or near-proportional, stressing and straining conditions.  Thus, it should not 

be expected that the constitutive model used here would be able to capture the growth of 

void damage under loading histories that are distinctly non-proportional, as for example 



if the present specimens were first deformed in tension well into the plastic range and 

then subject to failure in torsion.  The development of constitutive relations capable of 

capturing the strong history-dependence of ductile fracture remains an open challenge.  

Similarly, the phenomenological critical plastic strain criterion (15) should not be 

expected to be valid under strongly non-proportional conditions. 

The definition of a fracture strain for engineering purposes is not straightforward.  

For the test specimens, the definition adopted in Part I and followed here employs a 

measure of the overall effective plastic strain in the notch at the point where an abrupt 

downturn in the load carrying capacity begins.  The simulations show that this downturn 

occurs when the shear localization has first spread across the entire width of the notch.  

The beginning of the fracture process is the onset of shear localization at a local point 

within the notch.  The fracture strain defined here occurs slightly later in the process but 

still prior to crack initiation. 

Recent experimental work has convincingly shown that the third stress invariant 

must be taken into account in addition to stress triaxiality in criteria for fracture of 

nominally isotropic ductile alloys.  A modification of the critical effective plastic strain 

criterion of Hancock and Mackenzie (1976) and Johnson and Cook (1985) has been 

suggested in Section 4.  As the measure of the third stress invariant, this modification 

employs   which distinguishes between axisymmetric and shearing stress states.  The 

brief review of recent literature in Section 4 highlights the fact that there are a number of 

open issues related to how the third stress invariant should be brought into any 

modification, e.g., through the Lode parameter or through the more restrictive parameter 

 .   The shear localization study carried out in Section 2 suggests that the dependence on 

the sign of the Lode parameter is relatively small compared to the difference between 

axisymmetric and shearing states, as suggested earlier by the more fundamental study of 

Barsoum and Faleskog (2011).  These studies show that shear localizations occur in Case 

I ( I II III    ) at only slightly lower strain than in Case II ( I II III    ).  Given 

this finding and the lack of experimental data presently available to discriminate between 

these two types of axisymmetric states, the criterion proposed in Section 4 neglects the 

influence of the sign of the Lode parameter by employing the measure  .  The multi-

axial extension of the Johnson-Cook fracture criterion (15), as illustrated in Fig. 16, has a 



relatively simple form which exploits the assertion that, at any triaxiality, axisymmetric 

states have the highest fracture strain and shearing states have the lowest.  It remains for 

future work to clarify some of the issues highlighted above concerning the manner in 

which the third stress invariant is brought into the modified dependence. 
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Fig. 1  Effective plastic strain at localization as a function of stress triaxiality for 

axisymmetric stressing as predicted by the Gurson Model ( 0k  ) and its extension 

0k  .  The material properties are those of Weldox 420 given in the text.  Inside the 

band 0 0.005f   while outside the band 0 0f  .  Curves are shown for Case I having 

stress states with uniaxial stress plus a hydrostatic component (4) and for Case II having 

an equi-biaxial stress state plus a hydrostatic component (5).  For Case I, two sets of 

results are shown: normal localizations in which the band is restricted to be normal to the 

maximum principal stress such that the deformation within the band is uniaxial straining 

in the normal direction, and shear localizations with the band orientation chosen to 

produce the minimum effective plastic strain at the onset of localization (these lie at 

approximately 45o to the maximum principal stress).  The normal localization is strictly 

independent of k  while the shear localizations are nearly independent of k for 

axisymmetric stressing.  Similarly, the shear localization results for Case II are essentially 

independent of k .  Normal localizations for Case II are not shown. 



 

 

Fig. 2  Critical effective plastic strain at localization as a function of triaxiality for 

axisymmetric stressing and shearing stress states with 0 0.005f   inside the band.  The 

results for axisymmetric stressing are essentially independent of the shear damage 

coefficient, k , while those for shear stressing depend strongly on k .  The result for 

0k   is that based on the conventional Gurson Model.  The result for 1.1k   is that 

based on the extended model calibrated to Weldox 420. 



 

 

 

Fig. 3  Effective plastic strain at localization under proportional stressing for all 

combinations of shear and plane strain tension prescribed by (11).   The properties of the 

material represented by the extended Gurson Model ( 1.1k  ) are those calibrated to 

Weldox 420 later in the paper.   The initial void volume fraction is 0 0.005f   within the 

localization band and 0 0f   outside the band.  The predictions based on the original 

Gurson model ( 0k  ) and the proposed phenomenological fracture criterion in Section 

4 are included for comparison. 



 

 

Fig. 4  The measure   associated with the proportional stressing histories in Fig. 3. 

 



  
 

 
 

 

Fig. 5 (a) Dimensions of the round smooth bar specimen (in mm). (b) Stress-log strain 

curve for Weldox 420. For the experimental curve and FEM simulated curve, the stress 

plotted is determined as 0 0( / )( / )P A L L  where P  is the load, 0A  is the initial cross-

sectional area of the gage section, and 0/L L  is the ratio of deformed to undeformed 

length of the gage section.  The log strain is 0ln( / )L L .  The input curve is the true stress- 

log strain curve (13) with parameter values given in Table I. 
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Fig. 6  Notched round bar tests used for calibrating the initial void volume fraction, 0f .  

Specimen geometry in mm: A) / 1a r   and B) / 1a r  .  Two tests for each of two notch 

geometries are shown along with simulations for several choices of 0f : C) for / 3a r   

and D) for / 4a r  .  



 

 

Fig. 7  Calibration of the shear damage coefficient, k . Experimental data from the pure 

torsion test of the tension-torsion series of Part I compared with simulations of the 

specimen for four values of k . 



 

 

Fig. 8  The tension-torsion specimen and the finite element mesh used in the finite 

element analysis. 

 



 

 

 

Fig. 9  Computed curves of torque versus rotation across the notch and axial force versus 

axial displacement across the notch for the series of tests, each with constant Tk , for 

Weldox 420. 



 

Fig. 10  Comparison of simulations with experimentally measured force-displacement 

relation in a) and moment-twist relation in b) for two of the experiments.  Experiment 

109 has 0.324Tk   and experiment 119 has 0.651Tk  . 



 

 

Fig. 11  A comparison of the experimental data for the tension-torsion tests for Weldox 

420 with finite element simulation based the extended Gurson model.  The overall plastic 

strain at fracture (defined in Part I) versus the relative proportion of tension to torsion as 

measured by Tk .  The calibrated damage parameters for Weldox 420 are 

0( 0.005, 1.1)f k  .  Predictions for two other sets of damage parameters are show to 

give an indication of the sensitivity to these parameters. 



 

 

 

 

 

Fig. 12. Distribution of the effective void volume fraction across the notch mid-plane 

within the shear band just at the onset of the abrupt down-turn of the overall load-

deflection behavior for Weldox 420 for three loadings: 0Tk   (torsion), 0.7Tk   and 

1Tk   (tension).  For the torsional loading, 0Tk  , shear localization starts at the edges 

of the notch and propagates inward.  For the other two loadings, the shear band first 

forms in the middle of the notch where the triaxiality is the highest and then spreads 

outward towards the edges. 

 



 

 

Fig. 13  The equivalent plastic strain at three locations within the minimum section of the 

notch as a function of the overall equivalent plastic strain for Weldox 420 for torsional 

loading ( 0Tk  ) .  As noted in Fig. 12, for this loading the strains are larger at the outer 

and inner surfaces than at the middle of the notch.  Three predictions are shown for each 

location: (1) based on Mises theory with no damage (i.e., 0 0f  ) using precisely the 

same mesh, based on the extended Gurson model  within the incipient shear band (2), 

and just outside the incipient shear band (3).  The strains within and outside the emerging 

shear band begin to diverge prior to the onset of failure in torsion at overall equivalent 

plastic strain slightly less than 1.4.  The results for Mises plasticity with no damage are 

reasonably accurate until the overall strain approaches the onset of failure.  



 

 

 

Fig. 14  A comparison of the experimental data for the tension-torsion tests for the high 

strength steel Weldox 960 with finite element simulation based the extended Gurson 

model.  The overall plastic strain at fracture (defined in Part I) versus the relative 

proportion of tension to torsion as measured by Tk . 



 

 

 

 

Fig. 15  Effective plastic strain at the onset of shear localization as dependent on the full 

range of the Lode parameter, L , for two levels of triaxiality computed using the extended 

Gurson model with the material parameters for Weldox 420 specified in Section 2.2.   

Included are the plots of the proposed extension to the phenomenological fracture strain 

criterion (15) based on the linear ( ( ) 1p    ) and quadratic ( 2( ) (1 )p    ) 

interpolation functions chosen to reproduce axisymmetric stress states with 1L    

( 0  ) and shearing stress states with 0L   ( 1  ). 



 

Fig. 16  A schematic plot illustrating the phenomenological critical strain criterion (15) 

showing the two bounding curves: the upper curve for axisymmetric stress states and the 

lower curve for shearing stress states.  The schematic trend of the torsion-tension tests 

between these two limiting curves is also included.
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Fig. 17  The effect of the strain hardening exponent on the Lode parameter dependence of 

the localization strain for two levels of triaxiality based on the computational model in 

Section 3.  Apart from the strain hardening exponent, N , the parameters are the same as 

those in Fig. 15. 

 


