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Abstract  The role of substrate nonlinearity on the stability of wrinkling of thin films bonded to 

compliant substrates is investigated within the initial post-bifurcation range when wrinkling first 

emerges.  A fully nonlinear neo-Hookean bilayer composed of a thin film on a deep substrate is 

analyzed for a wide range of the film/substrate stiffness ratio, from films that are very stiff 

compared to the substrate to those only slightly stiffer.  Substrate pre-stretch prior to film 

attachment is shown to have a significant effect on the nonlinearity relevant to wrinkling.  Two 

dimensionless parameters are identified which control the stability and mode shape evolution of 

the bilayer: one specifying arbitrary uniform substrate pre-stretch and the other a stretch-

modified modulus ratio.  For systems with film stiffness greater than about five times that of the 

substrate the wrinkling bifurcation is stable, while for systems with smaller relative film stiffness 

bifurcation can be unstable, especially if substrate pre-stretch is not tensile. 

Key words: winkling, wrinkling stability, thin films, neo-Hookean elasticity 

*Contributed in celebration of the 75th birthday of J.M.T. Thompson 

**Author for correspondence  (hutchinson@husm.harvard.edu) 

1. Introduction 

For many film-substrate systems, compressive buckling of the film into a wrinkling mode is a 

phenomenon to be avoided.  This view motivated much of the early work on wrinkling such as 

that of Allen (1969) on structural composite panels having stiff outer skins and thick compliant 

cores.  In recent years, new motivation for studying wrinkling has arisen wherein the 
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phenomenon has become a desirable means to generate micron-to-millimeter scale surface 

patterns for a wide range of applications involving soft materials.  The emphasis in studying 

wrinkling has shifted to understanding the patterns that emerge and how they can be selected and 

manipulated.  Applications include textured surfaces for biological applications, for altering 

wettability, adhesion and haptic characteristics, for flexible electronics, and for controlling fluid 

flow within boundary layers.  Overviews of recent developments related to wrinkling and some 

of its applications are available in Genzer & Groenewold (2006) and Li et al. (2012).   

Much of the recent thrust on wrinkling takes place within the context of research on soft 

elastomeric substrate materials characterized by low stiffness and substantial elasticity.  

Moreover, the range of stiffness of the materials being employed, as measured by elastic 

modulus, is extraordinary, greatly expanding the parameter space of for wrinkle pattern design.  

Film/substrate systems with metal or ceramic films deposited on polymers or elastomers can 

have a film/substrate modulus ratio as large as ten thousand.  Systems formed by oxidizing the 

surface of a material such as polydimethylsiloxane (PDMS) have silica-like films with modulus 

ratios in the range from one to ten thousand (Chan & Crosby, 2006).  Systems having polymer 

films bonded to elastomer substrates will have lower modulus ratios.  For example, lower 

modulus ratios have been produced and studied by Yin, et al. (2012) with films chemically 

deposited on PDMS: a ratio of 4 for hydroxyethl methacrylate films and 17 for ethylene glycol 

diacrylate films.  Biological systems often have skins with a modulus only slightly above that of 

the underlying substrate  (Genzer & Groenewold, 2006; Yin, et al., 2008). 

The above observations motivate one aspect of the present study: the investigation of 

wrinkling over a range of film/substrate stiffness ratio from only slightly greater than unity to 

very large.  This aspect builds on earlier studies by Cai and Fu (1999) and Cao and Hutchinson 

(2012a) where bifurcation of a neo-Hookean bilayer was studied over the full range of modulus 

ratios.  Here, the emphasis is on the stability of the wrinkling bifurcation and the evolution of the 

wrinkle mode shape as the system is compressed beyond the critical bifurcation strain.  Under 

plane strain compression, models based on a linear substrate response predict stable wrinkling 

behavior with no evolution in mode shape.  Substrate nonlinearity underlies the main concerns of 

interest in this paper.  The paper begins by presenting some generally applicable analytical 

results on the nonlinear response of a pre-stretched neo-Hookean half-space subject to sinusoidal 
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surface loadings.  As further background, a brief summary is presented in Section 3 of the 

classical results on plane strain wrinkling behavior based on the widely adopted model for stiff 

films attached to compliant linear substrates.  Section 4 presents the results of the initial post-

bifurcation analysis of the neo-Hookean bilayer, with calculation details provided in the 

Appendix.  The analysis accounts for the possibility of a general uniform pre-stretch imposed on 

the substrate prior to film attachment.  The release of tensile substrate pre-stretch is commonly 

used as a technique to generate film compression.  It will be seen that substrate pre-stretch can 

have a significant effect on wrinkling behavior, due to its effect on nonlinearity, and is thus 

another potential means of manipulating wrinkling patterns. 

2. Nonlinear response of a neo-Hookean substrate to sinusoidal loadings 

In this section the results of a perturbation analysis are presented characterizing the nonlinear 

response of a semi-infinite neo-Hookean substrate subject to a combination of uniform pre-

stretch and periodic surface tractions.  The central results, which will be used to interpret thin 

film wrinkling, are presented in this section, with details of the analysis given in the Appendix.  

The geometry and notation is shown in Fig. 1.  Lagrangian coordinates, 1 2 3( , , )x x x , associated 

with locations of material points in the undeformed state are used throughout this paper with 

vector and tensor components defined relative to the corresponding Cartesian base vectors.  The 

surface of the undeformed half-space coincides with the plane 2 0x   with the substrate lying 

below.  A uniform pre-stretch characterized by 1 2 3( , , )    with 1 2 3 1     is imposed on the 

substrate with displacements ( 1)i i iu x   (no sum on i ) such that the surface remains 

coincident with the plane 2 0x  .  In addition to the pre-stretch, the loading produces plane strain 

deformations of the substrate that are periodic with period   with respect to 1x  and decay to zero 

as 2x  .  The total displacements are 

1 1 1 1 1 2 2 2 2 2 1 2 3 3 3( 1) ( , ) , ( 1) ( , ) , ( 1)u x U x x u x U x x u x             (1) 

Throughout this paper, 3  is taken as fixed and 1  is regarded as the prescribed stretch such that 

the ratio  2
2 1 1 3/ 1 /r       is determined by 1 .   
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 The neo-Hookean substrate material is incompressible with ground state shear modulus 

S .   Nominal tractions acting on the substrate surface (force per undeformed area) are denoted 

by 1( )T x  ( 1,2  ) and these have zero average and period   with respect to the coordinate 1x .  

The change in energy of the loaded substrate (per unit distance 3x  and per wavelength  ) from 

that in the uniformly pre-stretched state is (Cao and Hutchinson, 2012b): 

 
0

2 1 10 0
( , , ) ( , , )i S iQ I Q dx dx T U dx   


    U U

 
     (2) 

with 

 
   
  

2 2 2 2
1,1 2,2 1,2 2,1 2 1,1 1 2,2

1,1 2,2 1,2 2,1

1
( , , )

2iI Q U U U U Q U U

r Q U U U U

       

  

U
   (3) 

In (2), the tractions are regarded as prescribed and Q  is a Lagrangian multiplier introduced to 

enforce the incompressibility condition: 

 2 1,1 1 2,2 1,1 2,2 1,2 2,1 0U U U U U U            (4) 

The Euler equations obtained by rendering   stationary with respect to ( ,QU ) are (4) and 

 2
1 2 ,1 ,1 2,2 ,2 2,1 0U Q Q U Q U             (5) 

 2
2 1 ,2 ,2 1,1 ,1 1,2 0U Q Q U Q U            (6) 

The surface tractions are given by 

    
2 2

1 1,2 2,1 2 2,2 1,1 10 0
( ) , ( )S Sx x

T U r Q U T U r Q U Q  
 

          (7) 

The form of the equations based on coordinates defined with respect to the undeformed 

state will be used to produce the solutions in this paper.  Nevertheless, the following change of 

variables reveals that the solution to the traction boundary value problem depends on the single 

pre-stretch parameter, 2
2 1 1 3/ 1/r      , together with a stretch modified shear modulus, 
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3/S   .  Specifically, define coordinates with respect to material points in the uniform pre-

stretched state by i i ix x (no sum).  The energy change defined in (2) is 

 01 1
3 3 1 2 10 0

( , , ) ( , , )i SQ I r Q r dx dx T U dx      


    U U

 
  

where 1  , 1 3/T T     is the nominal traction per pre-stretched area, and 

 
   
  

2 2 2 2 2 2
1;1 2;2 1;2 2;1 1;1 2;2

1;1 2;2 1;2 2;1

1
( , , )

2
I r Q U r U r U U Qr U U

r r Q U U U U

     

  

U
  

with ;( ) ( ) /j jx   .  Thus, any  , ,U Q T   rendering   stationary will depend only on r  and 

3/S  .  At various points in this paper, it will be useful to switch between variables defined with 

respect to the undeformed state and those defined with respect to the pre-stretched state. 

 In the solution below,   is the dimensionless amplitude of the lead term in the 

perturbation expansion of sinusoidal surface tractions and displacements.  Displacements are 

normalized by the only length parameter in the problem, the wavelength   of the period in 1x .  

The expansion developed in the Appendix and given below is symmetric with respect to 1 0x  .  

It is exact to order 2 .  The displacements and tractions at the surface are 

 
 

(1) 2 (2)
1 1 1 1 1

(1) 2 (2) (1) (1)
2 2 1 2 1 1 2 1

(1) 2 (2)
1 1 1 1 1

(1) 2 (2)
2 2 1 2

ˆ ˆ( / 2 ) sin(2 / ) sin(4 / )

ˆ ˆ ˆ ˆ( / 2 ) cos(2 / ) cos(4 / ) / (2 )

ˆ ˆsin(2 / ) sin(4 / )

ˆ ˆcos(2 / )

S

S

U u x u x

U u x u x u u

T t x t x

T t x t

    

     

    

   

   
    

   

 

  

  

 

 1cos(4 / )x  

   (8) 

For prescribed displacements on the surface, the four dimensionless amplitude factors (1)û  and 

(2)û   can be prescribed arbitrarily, as long they are independent of   and at least one of the first 

order components (1)û  is nonzero.  The term (1) (1)
1 2 1ˆ ˆ / (2 )u u   in the second order contribution to 

2U  arises owing to the incompressibility constraint.   Alternatively, for prescribed surface 
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tractions, the four factors  (1)t̂  and (2)t̂  can be prescribed arbitrarily if at least one of the first 

order components (1)t̂  is nonzero.   

The amplitude factors in (8) are related by  

 (1) (1) (2) (2) (1) (1)

1

1ˆ ˆˆ ˆ ˆ ˆ( ) , 2 ( ) ( )t C r u t C r u C r u u        
        (9) 

or, in inverted form, by  

 (1) (1) (2) (2) (1) (1)

1

1 1ˆ ˆ ˆ ˆˆ ˆ( ) , ( ) ( )
2 2

u D r t u D r t D r t t        
       (10) 

Here, 

 1

1 1

1 ( 1)

r r
C

r r r 

  
    

        (11) 

             
1

2 3

1 ( 1)1

( 1) ( 1)(1 3 )

r r r
D C

r r r rr r r 
   

        
       (12) 

The six coefficients, C C  , which depend only on 2 1/r   , have not been obtained 

analytically but they have been computed to high accuracy (Appendix) and are plotted in Fig. 2 

and listed in Table 1.  The other set of coefficients is given by D D D D D C       . 

The relations above are valid for any pre-stretch having 3.383r  .  The matrices C  and 

D  are singular for 3.383Biotr r   (i.e., when 2 31 3r r r   =0).  This is Biot’s bifurcation 

condition for surface wrinkling of a traction-free neo-Hookean half-space (Biot, 1963).  

Reference will be made later to the Biot condition and to the condition for finite amplitude 

surface creasing at  2.38creaser r   (Hohlfeld & Mahadevan, 2011;  Hong et al. 2009). 

The solution is readily converted to variables defined relative to the pre-stretched state.  

With the replacements 1 1 1/x x  , 1/   , 1 3T T    and 3/S S    in (8), the 

expansion in the pre-stretched state has the general form 
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(1) 2 (2)
1 1 1 1 1

(1) 2 (2) (1) (1)
2 2 1 2 1 1 2

(1) 2 (2)
1 3 1 1 1 1

(1) 2
2 3 2 1

ˆ ˆ( / 2 ) sin(2 / ) sin(4 / )

ˆ ˆ ˆ ˆ( / 2 ) cos(2 / ) cos(4 / ) / 2

ˆ ˆ( / ) sin(2 / ) sin(4 / )

ˆ( / ) cos(2 / )

S

S

U u x u x

U u x u x u u

T t x t x

T t x

    

    

     

    

   
    
   

 

  

  

 

 (2)
2 1
ˆ cos(4 / )t x  

   (13) 

The connections now become 

 (1) (1) (2) (2) (1) (1)ˆ ˆˆ ˆ ˆ ˆ( ) , 2 ( ) ( )t C r u t C r u C r u u                (14) 

 (1) (1) (2) (2) (1) (1)1 1ˆ ˆ ˆ ˆˆ ˆ( ) , ( ) ( )
2 2

u D r t u D r t D r t t                (15)  

with no changes in the 'C s  and 'D s .  There is no explicit 1 -dependence in the second order 

contributions when the pre-stretched state is employed. 

 To illustrate pre-stretch influence on nonlinear substrate traction-deflection behavior, two 

limiting cases are presented which have relevance to film wrinkling.  The representation in the 

pre-stretched state is employed and a pure sinusoidal normal traction is imposed on the surface 

of the substrate: 

 2 1 2 1( ) (0)cos(2 / )T x T x  ,  i.e.,  (1) (2)
2 2 3 2
ˆ ˆ(0) / ( / ) , 0St T t        (16) 

Case 1 has no tangential traction constraint: 1 0T   ( (1) (2)
1 1
ˆ ˆ0, 0t t  ).  Case 2 has tangential 

displacement constraint, 1 0U  , such that (1) (1)
1 12 2 11
ˆ ˆ /t D t D   and (2) (1) (1)

1 1 11
ˆ ˆ ˆ /t D t t D   .  In both 

cases, the normal displacement, 2 1( )U x  is given by the second equation in (13) where (1)
2û  and 

(2)
2û  are expressed in terms of (1)t̂  and (2)t̂  by (15).  

 A dimensionless relation between the normal displacement at 1 0x  , 2 (0)U , and the 

corresponding normal traction amplitude is obtained for the cases prescribed above: 

 

2

2

22 3 22 3

(0) (0) (0)

2 / ( ) 2 / ( )S S

U T T
K

D D   
   

    
   

      (17) 
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 For Case 1, 22 22D D  and   2
222 12 22 22/K D D D D  ;  for Case 2, 2

22 22 12 11( / )D D D D   and 

 

2

12 12 12 12 12
211 111 212 112 222 122

22 11 22 11 22

2
22

2
D D D D D

D D D D D D
D D D D D

K
D



        
            

         
 

For the normalization used in (17), the coefficient characterizing the lowest order influence of 

nonlinearity, K , depends on pre-stretch only through r  for both cases.  This dependence is 

plotted in Fig. 3, which makes clear the significant effect of both the pre-stretch and the 

tangential constraint.  The normalized traction-displacement relation (17) is plotted in Fig. 4 for 

several values of pre-stretch for Case 1.   

 The plots in Figs. 3 and 4 reveal important aspects of the role of pre-stretch on substrate 

nonlinearity.  A nonlinear softening or stiffening response depends on the pre-stretch only 

through 2
2 1 1 3/ 1 /r      .  If 1r  , softening occurs for upward deflections and stiffening 

occurs for downward deflections.  Conversely, 1r   produces stiffening for upward deflections 

and softening for downward deflections.  The coefficient K  vanishes if 1r   corresponding to 

no pre-stretch.  Thus, the lowest order nonlinearity without pre-stretch is cubic while otherwise it 

is quadratic.  These same trends hold for Case 2 with tangential displacements constrained to be 

zero.  For plane strain, 3 1  , pre-compression ( 1 1  ) results a stiffening response for upward 

deflections and a softening response for downward deflections; pre-tension ( 1 1  ) has the 

opposite effect.  These trends for plane strain are in accord with earlier observations based on the 

finite element calculations of Zang et al. (2012).  

3. Stiff films on linearized pre-stretched substrates 

To set the stage for the present study, it is useful to summarize the wrinkling behavior of very 

stiff linear elastic films bonded to compliant, but linear, elastic substrates.  Allen (1969) 

presented one of the earliest analyses of these systems with the film modeled by nonlinear plate 

theory and the substrate taken to be a linear elastic half-space.  Recent work relevant to the 

present study has extended such analyses by accounting for the effect of pre-stretch of neo-
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Hookean substrates on the linearized stiffness of the half-space (Sun, et al. 2012; Cao & 

Hutchinson 2012a), and it is this work that will be summarized.   

 If the film is assumed to constrain the tangential displacement of the substrate to be zero,  

then the linearized response of a neo-Hookean substrate to a sinusoidal normal displacement, 

2 2 1(0) cos(2 / )U U x  , is 2 2 1(0) cos(2 / )T T x  , where from the results of the previous 

section,    2 3 22 2(0) 2 / ( ) (0) /ST C r U    .  The barred quantities are defined with respect to 

the pre-stretched state of the substrate.  This provides the linearized stiffness of the half-space in 

the model as dependent on the substrate pre-stretch specified by 3/S   and 2
1 31/r   .  An 

unstretched film of thickness h  is bonded to the pre-stretched substrate and, subsequently, the 

film/substrate system is subject to plane strain compression.  For an incompressible film with 

elastic shear modulus, F , the compressive strain in the film at bifurcation and the wavelength 

of the critical mode are: 

  
2/3

1

3

31
1

4 2
S

C
F

r

 

 
  

 
  and    

1/3

1

3

3
2 1

2
S

C
F

h r

 



 
  

 
     (18) 

These formulas accurately capture the effect of pre-stretch on bifurcation for film/substrate 

stiffness ratios satisfying 3 / 100F S     (Cao & Hutchinson 2012a). 

The post-bifurcation problem for the model with a fully nonlinear von Karman plate on 

the linear substrate can be solved exactly in closed form (Chen & Hutchinson 2004).  The shape 

and wavelength of the vertical deflection of the film in the bifurcation mode,  

2 1cos(2 / )CU h x   ,  do not change as   increases above  C , and the dimensionless 

amplitude of the mode increases as 

1
C




    or   21C            (19) 

The post-bifurcation behavior is highly stable according to this model with the deflection 

increasing monotonically (19) as the compression is increased.  The results, (18) and (19), which 
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are limited to large 3 /F S    and, thus, relatively small  , will be compared with exact results 

for a neo-Hookean bilayer in the next section.  

4. Initial post-wrinkling behavior of a neo-Hookean bilayer 

In this section, wrinkling of a thin neo-Hookean film bonded to a deep compliant neo-Hookean 

substrate is studied for films attached to substrates that have been pre-stretched.  The 

film/substrate system is then subject to plane strain compression.  The stability and initial 

evolution of the wrinkling mode is investigated using an initial post-bifurcation analysis along 

the lines originally formulated by Koiter (Koiter 1945; van der Heijden 2009) and further 

developed and promulgated by Thompson (1963) and Thompson and Hunt (1973) for a wide 

class of elastic systems.  The primary focus will be on the stability of the wrinkling bifurcation 

and the evolution of the wrinkling mode shape immediately following bifurcation in the range 

when the perturbation expansion retains its accuracy.   

The substrate is semi-infinite with ground state modulus S .  The film has initial 

thickness, h , with ground state modulus F .  Attention is limited to systems with F S  .  The 

uniform pre-stretch in the substrate is now denoted by 0 0 0
1 2 3( , , )   , and the unstretched film is 

bonded to the substrate in this state.  Following film attachment, the system is subject to a 

uniform plane strain compression by imposing a compressive strain in the 1-direction,  , with 

no additional straining in the out-of-plane direction.  The top surface of the film is traction-free.  

The fundamental solution characterizing the pre-bifurcation state has uniform stretches in the 

film and in the substrate.  With F
i denoting the stretches in the film in the fundamental solution 

relative to its unstretched state, the imposed nominal overall compressive strain is  1 1F    . 

With S
i denoting the stretches in the substrate in the fundamental solution relative to its 

undeformed state, the following dependencies on   hold: 

 1 2 31 , 1 / (1 ), 1F F F               with  21/ (1 )Fr        (20) 

 0 0 0
1 1 2 2 3 3(1 ), / (1 ),S S S              with  0 2/ (1 )S Sr r      (21) 

where 0 0 0 02 0
2 1 1 3/ 1 /Sr      .   
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Two sets of Lagrangian coordinates are used, one for the film and the other for the 

substrate.  Each is defined with respect to the undeformed state in that layer, and each will be 

denoted by ix ,  but due regard will be made for the difference in definition from one layer to the 

other owing to the fact that the substrate is pre-stretched.   In each layer, the 3-coordinate lies in 

the out-of-plane direction and 2 0x   coincides with the film-substrate interface.  The periodic 

bifurcation and post-bifurcations solutions sought have the form 

1 1 1 1 1 2 2 2 2 2 1 2 3 3 3( 1) ( , ) , ( 1) ( , ) , ( 1)u x U x x u x U x x u x             (22) 

where the stretches in each layer are given by (20) or (21) and the coordinate definition switches 

from layer to layer.   The fundamental solution is given with 0U  and it is fully characterized 

by the substrate pre-stretches, 0
i , and the overall compressive strain,  .  

The energy change in the film/substrate system from that in the fundamental solution 

(now defined per wavelength per unit 3x  in the film) is 

 
00 0

2 1 3 2 10 0 0
( , , , ) ( , , ) ( / ) ( , , )

F Sh F S
i F i S iQ I Q dx dx I Q dx dx      


     U U U

 
  (23) 

Here, I  is defined in (3), with due regard for variable changes from layer to layer; F  and 

0
1/S F    are the period wavelengths in the respective coordinate systems. 

 The detailed bifurcation and initial post-bifurcation analysis is presented in the Appendix.  

The central findings obtained from the perturbation expansion about the critical strain at 

bifurcation, C , will be presented in this section.  The vertical deflection of the upper surface of 

the film is 

 2 (2) (2)2 1 1
2 0

2 4
ˆ ˆcos cos

F F

U x x
u u

h

  
    

      
     

      (24) 

and the relation between the dimensionless mode amplitude,  , and the overall imposed 

compressive strain is 

  21C b              (25) 
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The expansions are exact to order 2 ; higher order terms are not listed.  Using variable changes 

similar as those discussed for the substrate in Section 2, it can be shown that C , /F h , b , (2)
0û  

and (2)
2û  depend only on two dimensionless parameters:  

 
0

0 2
0 0 2 0 0

1 1 3 3

1
,

( )
S

S R
F

r
 

    
          (26) 

The reduction in the number of essential parameters makes it possible to present relatively 

complete results for all combinations of moduli and pre-stretch. 

 The critical strain, C , and the normalized wavelength, /F h , are presented in Fig. 5 as 

a function of 3 /F S    for four values of 0
Sr .  These results are in complete agreement with the 

results for plane strain pre-stretch presented by Cao & Hutchinson (2012a) who did not note the 

parametric dependence reduction allowed by (26).  More extensive results for the bifurcation 

problem have been presented in that reference with comparisons to (18) from the simpler model 

in Section 3. 

 The initial post-bifurcation coefficient, b , governing the relation between the mode 

amplitude and the imposed compression in (25) is plotted in Fig. 6.  By (19), the simpler model 

for a stiff film on a linear substrate predicts 1b  .  For 3 / 100F S    , the fully nonlinear 

results for b  in Fig. 6 are only slightly below unity, and thus the initial post-bifurcation 

expansion confirms the simpler model’s prediction that the wrinkling bifurcation is stable for 

sufficiently large 3 /F S   .  Complete agreement between the two predictions should not be 

expected, even asymptotically for large 3 /F S   , because, not only does the simpler model not 

account for substrate nonlinearity,  it does not fulfill all the conditions on continuity across the 

film/substrate interface.  

As seen in Fig. 6, b  decreases for smaller 3 /F S    and can become negative.  

Bifurcation is unstable if 0b  .  As depicted in bifurcation plot in Fig. 7, if 0b  , no wrinkling 

solution exists in the vicinity of the bifurcation point when the imposed compressive strain is 

increased above C .  A perfect film/substrate system having 0b   becomes unstable when   
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attains C  and would snap dynamically into a finite amplitude wrinkling mode, which the 

present perturbation analysis cannot predict.  Included in Fig. 7 is a plot of the boundary between 

stable and unstable bifurcation in the parameter plane  0 ,1/S Rr  .  Over most of the parameter 

range considered in this paper, bilayer wrinkling is stable in the initial post-bifurcation regime.  

Unstable wrinkling bifurcation is predicted only when the modulus parameter, 3 /F S   , is  less 

than about  5.  Tensile pre-stretch of the substrate ( 0 1Sr  ) can suppress the bifurcation 

instability.  With no pre-stretch ( 0 1Sr  ), bifurcation is unstable only for 0
3 / 1.73F S    .  

Nevertheless, sharply reduced values of b  occur for 3 / 10F S    , especially if the substrate is 

subject to pre-compression with 0 1Sr  .  Reduced values of b  imply that wrinkles develop more 

rapidly as the overall compression is increased above C . 

 The film in this study experiences plane strain deformation.  For the entire set of 

parameters for which results have been presented in this paper, the compressive strain at 

bifurcation in the film, C , is below the strain required for the existence of finite amplitude 

crease, 0.35crease  , and well below the Biot strain for surface wrinkles, 0.458Biot  .  The 

wavelength of bifurcation mode in all cases is many times the film thickness (c.f., Fig. 5), and 

the mode has no resemblance to a crease or a short wavelength Biot surface mode within the 

film.  It is also true that in all cases the essential stretch ratio in the substrate at bifurcation, 

0 2
2 1/ / (1 )S S

S Sr r     , never exceeds 3.383Biotr   corresponding to a singular substrate 

stiffness matrix as discussed in Section 2.  However, Sr  does exceed 2.38creaser   when 

3 /F S    is sufficiently small for pre-stretch with 0 1Sr  .  This is illustrated in Fig. 8 where the 

values of Fr  and Sr  at bifurcation are plotted as a function of 3 /F S    for values of 0
Sr  

corresponding to the instability boundary in Fig. 7.  While the film ratio, Fr , is always below 

creaser ,  the substrate ratio, Sr , exceeds creaser  on most of the instability boundary.  The 

implications of S creaser r  are not obvious.  As long as S Biotr r , the analysis carried out here is 

well behaved.  However, if crease S Biotr r r  , it is possible that energetically favorable finite 

amplitude crease-like modes for the bilayer may exist at compressive strains below the 

bifurcation strain predicted here.  If so, these modes would not emerge as a bifurcation but would 
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have to be triggered by an initial imperfection.  In their analysis, Hohlfeld and Mahadevan 

(2011) attached to the substrate a very thin film having bending stiffness but no stretching 

stiffness to regularize the substrate crease problem.   The fact that these authors find crease 

modes when the film bending stiffness is sufficient small suggests that there may be a range of 

3 /F S    for which such finite amplitude crease-like modes may supersede wrinkling for the 

bilayer.  It is also possible that the bilayer system snaps into a crease-like mode in the regime 

when bifurcation is unstable.  The existence of these modes is beyond the scope of this study. 

 The evolution of the shape of the wrinkle after bifurcation is determined by (24) and, 

specifically, by (2)
2û , which is plotted in Fig. 9.  For 3 / 100F S    , (2)

2û  is relatively small and 

positive.  However, for sufficiently small 3 /F S   , (2)
2û  changes sign and becomes increasing 

negative as 3 /F S    decreases, depending strongly on the pre-stretch parameter,  0
Sr .  The 

influence of  (2)
2û  on the wrinkle shape evolution is illustrated in Fig. 10.  A positive (2)

2û , which 

is promoted by large 3 /F S    and pre-stretch with 0 1Sr  , gives rise to amplification of the 

wrinkle peaks and a flattening of the valleys.  This is in accord with softening for upward 

deflections and stiffening deflections noted in Section 2 for the nonlinear behavior of the 

substrate when 1Sr  .  Conversely, negative (2)
2û , which is promoted by smaller 3 /F S    and 

pre-stretch with 0 1Sr  , gives rise to flattening of the peaks and sharpening of the valleys.  This, 

again, is in accord with the expectation noted in Section 2 for substrates with 1Sr  .  Thus, the 

initial post-bifurcation analysis points to the possibility of the wrinkling mode evolving towards 

either ridges when (2)
2ˆ 0u   or folds when (2)

2ˆ 0u  .  Ridges (Cao & Hutchinson 2012a; Zang et 

al. 2012; Ebata et al. 2012 ) and folds (Brau et al. 2010; Sun et al. 2012) are advanced post-

buckling modes that form at compressive strains that can be many times C  and well outside the 

range of validity of the perturbation expansions developed here.  Nevertheless, the tendency 

towards the two types of advanced modes is evident in the perturbation of the sinusoidal 

bifurcation mode.  Moreover, this tendency is in general agreement with the role of stretch on the 

nonlinear response of the substrate obtained in Section 2. 
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5. Conclusions 

Two dimensionless parameters characterize the solutions for the neo-Hookean bilayer system: a 

measure of substrate pre-stretch, 0 0 0 0 2 0
2 1 1 3/ 1 /Sr      , and a stretch modified modulus ratio,  

0
3/R S F    .  For 0.1R  , the compressive strain in the film at bifurcation is less than 0.1 

and the wrinkling bifurcation is stable, in agreement with the classical model for wrinkling of 

stiff films on compliant linear substrates.  However, when the film stiffness is more comparable 

to that of the substrate, with 0.2 0.5R  , bifurcation can be unstable, especially for 

compressive pre-stretches having 0 1Sr  .  Over the entire range of bifurcations investigated here 

the wrinkling mode at bifurcation has a wavelength that is very long compared to the film 

thickness.  Moreover, the compressive strains in the film are well below both the short-

wavelength Biot surface wrinkling strain and the critical strain for existence of a finite amplitude 

surface crease within the film.  For compressive pre-stretch, 0 1Sr  , in the modulus range 

0.2 0.5R  , the compressive strain within the substrate can exceed the critical strain for a 

finite amplitude surface crease.  It remains an open question whether the bilayer will experience 

imperfection-driven finite amplitude creasing modes below the bifurcation strain in this range. 

 The classical model for stiff films on compliant linear substrates predicts that the 

wrinkling mode remains stable with no change from the sinusoidal shape under plane strain 

compression.  It is substrate nonlinearity that influences both the stability of wrinkling and the 

evolution of the shape of the wrinkling mode as the compression is increased beyond the onset of 

bifurcation.  Substrate pre-stretch has been shown to have a strong effect on substrate 

nonlinearity.  Compression, with 0 1Sr  , gives rise to nonlinearity which favors deflections into 

the substrate over outward deflections, while tensile pre-stetch, with 0 1Sr  , has the opposite 

effect.  The former favors evolution towards fold-like wrinkle shapes while the latter favors 

evolution towards ridge-like shapes. The details of these conclusions are based on the 

assumption of neo-Hookean elasticity but the general trends are likely to carry over to more 

elaborate nonlinear elastic material models. 

 The initial post-bifurcation expansion does not reveal the unusual wrinkling modes 

observed at compressive strains well above the bifurcation strain such as period doubling and 
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folding (Pocivavsek et. al. 2008, Brau et al. 2011; Sun et al. 2012;  Cao & Hutchinson 2012a) 

and ridging (Ebata et al. 2012; Zang, et al. 2012).  The transition of a periodic wrinkle pattern 

into a pattern that alternates between highly localized undulations and relatively flat regions is 

also a consequence of substrate nonlinearity (Hunt et al. 1989; Wadee et al. 1997; Zang et al. 

2012).  The perturbation approach in the present study which employs the sinusoidal bifurcation 

mode as the leading term brings in the higher order harmonics of this mode.  While it can reveals 

some effects of substrate nonlinearity, it is not able to capture localization phenomena such as 

folding or ridging.   
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Appendix 

Nonlinear behavior of pre-stretched neo-Hookean half-space 

In the notation of (8), the solution to the linearized equations in (4)-(7) is  

 

   

   

(1) (1) (1) 1
1 2 1 1 1 1

1 1
1 2 1 2 1

1 (1) (1) 1 (1) (1)
1 1 2 2 1 2
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r r r

U U Q k f kx g kx k q kx

f c e c r e g c e c e q c r r e

c r ru u c r r u u

    

    



 


       
       

   (A-1) 

with 2 /k    and 2kx  .  From this solution, and using the linearized relation (7) for the 

surface tractions, one obtains the relations of order   in Section 2.   

The next step in the perturbation solution is to substitute an expansion in the general form 

of (8) into the nonlinear equations (4)-(7) and require all terms of order 2  to vanish.  The 

second order solution is 

   

 

2 1
(2) (2) (2)

1 2 1 0 0
1

2 1

1 1 1
1

, , 0, ( ), ( )
2

( )sin 2 , ( ) cos 2 , ( ) cos 2
2

k
U U Q G k H

k
F kx G kx k H kx

  


   






 

    (A-2) 

where 0 0, ( )G f g H f g f q     , and F , G  and H  satisfy the 4th order ode system  

 4 2 , 4 , 2F F rH g q g q G G H f q f q G rF f g f g                      (A-3) 
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with ( ) ( ) /d d  .  The boundary conditions for the 4th order system of ode’s (A-3) require the 

functions to vanish as    and    (2) (2)
1 1 2ˆ ˆ(0), (0) 2 ,F G u u .  The second order surface 

traction coefficients in (8) are determined from (7) as  

        1 1(2) (2)
1 1 2 10 0
ˆ ˆ2 , 2t F g q t G H f q

 
  

 
           (A-4) 

The solution to the problem can be constructed as the sum of a homogeneous solution, with 

0f g q    in  (A-3) and (A-4), satisfying    (2) (2)
1 1 2ˆ ˆ(0), (0) 2 ,F G u u  and a particular 

solution, with f , g and h  as defined in (A-1), and (0) (0) 0F G  .  The homogeneous solution 

gives the contribution, (2) (2)ˆ ˆ2t C u   , in (9) while particular solution provides the other part.  In 

principle, it is possible to produce a closed form analytical solution to the particular problem, but 

the algebraic effort would be prohibitive.  Instead, in computing the values of C  given in 

Table 1, the ode system is solved numerically and the coefficients are identified using (A-4). 

 Given that the displacements decay exponentially to zero as    and that the 

material is incompressible, displacements imposed on the surface cannot change the volume of 

the half-space.  This condition can be expressed as   
2

2 1 1 1 100
/ 0

x
U dU dx dx


 


.  It is not 

necessary to impose this condition as an extra condition because the solution satisfies (4) 

ensuring incompressibility to order 2 .  The second order term in (8), 2 (1) (1)
1 2 1ˆ ˆ / (2 )u u  , is a 

consequence of the incompressibility constraint and it derives from 0 (0) (0) (0)G f g  . 

Initial post-bifurcation analysis of neo-Hookean bilayer 

The nonlinear Euler equations, (4)-(7), listed in Section 2 and expressed in each of the two layers 

render the energy functional (23) stationary.  These govern the plane strain bilayer problem, 

together with conditions that the tractions and displacements are continuous across the 

film/substrate interface on 2x  0 and tractions vanish on the film surface.  The linearized 

equations govern the bifurcation problem.  It’s solution is given by the following extended 

recipe:  
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    (1) (1) (1)
1 2 1 1 1 1, , ( )sin , ( ) cos , ( ) cosU U Q h f kx g kx k q kx         (A-5) 

where 2 /F Fk k     and 1 1
F   in the film, 2 0x  , and where 2 /S Sk k     and 

1 1
S   in the substrate, 2 0x  .  The coordinates x  are different in the film and in the 

substrate, as defined in Section 4, and 2kx   changes accordingly from film to substrate.  The 

functions in (A-5) that satisfy the linearized Euler equations are  
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      (A-6) 

with the ic  to be determined. 

Continuity of tractions and displacements across 0   and zero tractions on Fk h   

provide the eigenvalue equation, 0ij jM c   ( 1,6; 1,6i j  ), where M  is given by

1 1

1 1

1 1 1

1 1 1

1 1 1

2 ( ) 2 ( ) 0 0
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     2 R

 
 
 
 
 
 
 
 
  

 

By (20) and (21), this matrix can be expressed in terms of 0
Sr , 3/ ( )R S F    ,   and /F h .  

(Note that 2 /F Fk h h  .  While 0
1S Fk k  depends on 0

1 , it does not need to be specified in 

the eigenvalue calculation or in the post-bifurcation calculations below.)   The eigenvalue 

condition for   is 0M  .  The critical eigenvalue and associated wavelength, C and ( / )F Ch , 

are obtained by minimizing the eigenvalue with respect to the wavelength.  The results plotted in 

Fig. 5 have been obtained numerically.  The associated eigenfunction is normalized by requiring 

(0) 1g   such that on the surface (1)
2 1cos(2 / )FU h x   .  
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 The problem for the second order solution of order 2  is obtained in a manner similar to 

that described for the substrate problem with the nonlinear equations (4)-(6) governing in the 

respective regions.  Now, however, nonlinear equations (7) governing continuity of tractions 

across the interface and zero traction on the film surface must also be considered.  The second 

order solution is 

 

   

 

2 2
(2) (2) (2)

1 2 1 0 0 0
1

2 2

1 1 1
1

, , ( ), ( ), ( )
2

( )sin 2 , ( ) cos 2 , ( ) cos 2
2

kh
U U Q F G k H

kh
F kx G kx k H kx

   


   


 

    (A-7) 

where definitions switch from film to substrate in the same manner as in (A-5).  The two ode 

systems are 

 0 0 0 00, ( ) , ( )F G H f h G f g                (A-8) 

4 2

4

2

F F rH gh g h

G G H f h f h

G rF f g f g

     
       
     

         (A-9) 

The traction-free boundary conditions on the film surface require (on Fk h  ) 

 0 02 0, , 2 0F FF r G g q G H f q G r F H f q            

On the interface ( 0  ), continuity of displacements requires continuity of 0F , F , 0G  and G , 

while continuity of tractions requires   

   
   
   0 0 0 0

2 2

2 2

F R S

F R S

R

F r G g q F r G g q

G r F H f q G r F H f q

G H f q G H f q







     

       

     

 

with terms evaluated in the film on the left and those in the substrate on the right. 
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 The solution to (A-8) satisfying all the boundary and continuity conditions is 

 0 0 00, , ( )F G f g H f g f q        

The solution to the 4th order system of linear odes, (A-9), has been obtained numerically.  The 

numerical solution has been carried out using a standard ode solver, and, in doing so, it has been 

useful to recast the system using four dependent variables that are continuous across the 

interface: F , G , and the combination of variables in the two traction conditions above. 

 The final step in the calculation is the evaluation of the initial post-bifurcation stability 

coefficient b  defined in (25).  One way to compute b  would be to continue the perturbation 

process by deriving the boundary value problem for terms of order 3 , and then use b  to 

suppress the secular nonhomogeneous terms.  In addition to providing a unifying framework, one 

of the benefits of the general theory of initial post-bifurcation developed by Koiter (1945) and 

Thompson & Hunt (1973) is that it yields a general expression for b  in terms of the solution to 

the first and second order perturbations without direct consideration of the third order problem.  

Here, we present this expression without derivation using a compact notation employed by Cao 

& Hutchinson (2012b) in a stability analysis of neo-Hookean half-space surface winkling.   

With the dependence on pre-stretch, 0
i , implicit, represent the energy functional (23) as 

( , )U  with 1 2( , , )U U U Q .  The full solution (22) has the form 

 (0) (0) (1) 2 (2)( ) ( ) ....u U U U U U           

with (0) ( )U   as the fundamental solution.  The formula for b  in this compact notation is 

 
   3 (1) 2 3 (1) 2 (2)

2 3

,0 ,0C C
C

U U U
b

U U

 



   

 
  

      (A-10) 

Because   in (23) has no quartic terms in U , there is no contribution of terms proportional to 

(1) 4U  in (A-10), as would generally be present.   Eq. (A-10) is made explicit in the following: 
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with ( )AF g q r fg    .  The expression for b  is 
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The four integrals in this expression are evaluated by numerical integration.  In these formulas 

the stretches and wavenumbers are evaluated at C  .  As noted earlier, all parameters are 

determined in terms of 0
Sr  and R . The coefficient determining the evolution of the mode shape 

is given by (2)
2 1ˆ ( ) / 2 F

F Fu k hG k h  .  
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r 
111C   122C  112C  211C        222C  212C  

0.2 0.1469 -2.266 0.1406 -0.2407 1.797 -0.4220 
0.4 0.2334 -1.167 0.0583 -0.5283 0.4291 -0.5749 
0.6 0.3240 -0.7934 0.0318 -0.7045 0.1592 -0.5396 
0.8 0.4125 -0.6093 0.0138 -0.8580 0.0524 -0.5156 
1 0.5000 -0.5000 0 -1.000 0 -0.5000 

1.2 0.5876 -0.4270 -0.0114 -1.134 -0.0285 -0.4896 
1.4 0.6755 -0.3746 -0.0210 -1.263 -0.0450 -0.4825 
1.6 0.7640 -0.3350 -0.0292 -1.388 -0.0548 -0.4775 
1.8 0.8531 -0.3038 -0.0365 -1.509 -0.0608 -0.4740 
2 0.9429 -0.2786 -0.0429 -1.629 -0.0643 -0.4714 

2.2 1.033 -0.2576 -0.0486 -1.746 -0.0663 -0.4696 
2.4 1.124 -0.2400 -0.0538 -1.861 -0.0672 -0.4684 
2.6 1.216 -0.2248 -0.0584 -1.975 -0.0674 -0.4675 
2.8 1.308 -0.2116 -0.0627 -2.088 -0.0672 -0.4670 
3.0 1.400 -0.2000 -0.0667 -2.200 -0.0667 -0.4667 

 

Table 1  ( )C r   

 

 

Fig. 1 Geometry and conventions for the problems in Sections 2 and 4. 
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Fig. 2  Dimensionless coefficients in (9) and (14) characterizing the lowest order nonlinear 
traction-displacement relation of a semi-infinite, incompressible neo-Hookean substrate that has 
been subject to an initial pre-stretch 1 2 3( , , )   .  The coefficients depend only on 

2
2 1 1 3/ 1/r       and are listed in Table 1. 
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Fig. 3  The coefficient in Eq. (17) governing the lowest order nonlinear traction response of a 
pre-stretched substrate to an imposed normal sinusoidal surface traction.  One curve applies to a 
substrate whose surface has tangential displacement constraint ( 1 0U  ) while the other curve 

applies for no tangential constraint ( 1 0T  ).  The plot holds for any combination of uniform pre-

stretch specified by r .
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Fig. 4  The effect of pre-stretch as measured by 2
2 1 1 3/ 1/r       on the normalized nonlinear 

traction-displacement behavior in (17) for a neo-Hookean substrate subject to an imposed normal 
sinusoidal surface traction 2 1 2 1( ) (0)cos(2 / )T x T x   with 1 0T  .  Here, 1   is the 

wavelength of the imposed traction in the pre-stretched state.   If 1r  , a softening response 
occurs for upward deflections and a stiffening response occurs for deflections into the substrate.  
Conversely, 1r  produces stiffening for upward deflections and softening for downward 
deflections.  To the order computed, this relation is linear if there is no pre-stretch ( 1r  ).  
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Fig. 5  The compressive nominal strain at bifurcation and the normalized mode wavelength as a 
function of 1 / R  for several combinations of substrate pre-stretch as measured by 0

Sr . 

 

 

Fig. 6  The initial post-bifurcation coefficient b  determining the stability of the bifurcation 
results in Fig. 5.  
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Fig. 7  The relation between the mode amplitude and the compressive strain in the initial post-
bifurcation regime (on the left).  The boundary between stable bifurcation ( 0b  ) and unstable 
bifurcation ( 0b  ) in the space of the two parameters characterizing the bilayer (on the right). 

 

 

Fig. 8  Values of 0
Sr , ( )F Cr  and ( )S Cr  along the instability boundary in Fig. 7 as a function of 

0
31/ /R F S    .  The strains within the film remain below the conditions for localized surface 

creasing or short-wavelength Biot wrinkling.  The strains within the substrate exceed the surface 

creasing condition if 0 1Sr  .  
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Fig. 9  The dependence of the initial post-bifurcation coefficient (2)
2û  on substrate pre-stretch, 0

Sr , 

and modulus parameter, 0
31/ /R F S    .   

 

Fig. 10  The evolution of the shape of the normal deflection of the wrinkle mode at the top of the 
film surface as the mode amplitude,  , increases, for (2)

2ˆ 0.2u   (on the left) and  (2)
2ˆ 0.2u    (on 

the right).  The shape plotted is given by 2 (2)
2 1 2 1ˆ/ cos(2 / ) cos(4 / )F FU h x u x      . The 1x -

independent term in (24), (2)
0û , does not affect the shape.   

 


