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ABSTRACT 

Haploid budding yeast has two mating types, defined by the alleles of the MAT locus, 

MATa and MATα.  Two haploid cells of opposite mating types mate by signaling to each other 

using reciprocal pheromones and receptors, polarizing and growing towards each other, and 

eventually fusing to form a single diploid cell.  The pheromones and receptors are necessary and 

sufficient to define a mating type, but other mating type-specific proteins make mating more 

efficient.  We examined the role of these proteins by genetically engineering “transvestite” cells 

that swap the pheromone, pheromone receptor, and pheromone processing factors of one mating 

type for another.  These cells mate with each other, but their mating is inefficient.  By 

characterizing their mating defects and examining their transcriptomes, we found Afb1 (a-factor 

barrier), a novel MATα-specific protein that interferes with a-factor, the pheromone secreted by 

MATa cells.  Strong pheromone secretion is essential for efficient mating, and the weak mating 

of transvestites can be improved by boosting their pheromone production.  Synthetic biology can 

characterize the factors that control efficiency in biological processes.  In yeast, selection for 

increased mating efficiency is likely to have continually boosted pheromone levels and the 

ability to discriminate between partners who make more and less pheromone.  This 

discrimination comes at a cost: weak mating in situations where all potential partners make less 

pheromone. 
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INTRODUCTION 

 

Biological processes are typically defined by the genes that are necessary and sufficient 

for function.  However, in many cases, this minimal gene set does not encompass all the proteins 

involved in a process, and additional proteins promote biological efficiency.  Finding these 

additional proteins may require the detection of subtle phenotypes, making it hard to know if all 

the genes involved in a process have been identified.  One way to answer this question is to 

reengineer a pathway and ask whether the synthetic version fully mimics the natural function.  

Here, we show that this form of synthetic biology illuminates how cells of the budding yeast, 

Saccharomyces cerevisiae, mate efficiently. 

 Budding yeast can be stably maintained as haploids or diploids.  Haploids mate when two 

cells of opposite mating types signal to each other using reciprocal pheromones and receptors, 

polarize and grow towards each other, and eventually fuse to form a single diploid.  Yeast has 

two mating types, a and α (Figure 1A), determined by two alternative alleles at the MAT locus, 

MATa and MATα, which encode different transcription factors (Herskowitz 1988).  These factors 

regulate the expression of mating type-specific genes, many of which are involved with the 

production and detection of the pheromones yeast cells use to signal to one another.  The 

pheromones (a- and α-factor) are detected by G-protein coupled receptors; MATa cells express a-

factor (Betz and Duntze 1979), which is secreted through an ATP binding cassette (ABC) 

transporter (Ste6) (McGrath and Varshavsky 1989) and the α-factor receptor (Ste2) (Blumer et 

al. 1988; Dohlman and Thorner 2001).  MATα cells express α-factor (Kurjan and Herskowitz 

1982; Singh et al. 1983) and the a-factor receptor (Ste3) (Hagen et al. 1986; Dohlman and 

Thorner 2001).  Pheromone binding activates a signaling pathway which produces three 
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responses: cell polarization, cell cycle arrest in G1, and increased transcription of mating-type 

specific genes (Bardwell 2005). 

Bender and Sprague (1989) used mutations that alter pheromone and receptor expression 

to show that a cell's mating type is determined by which pheromones and receptors it expresses.  

Although pheromone secretion and detection are the essential elements for mating, additional, 

mating type-specific genes make mating more efficient.  One of these is the MATa-specific α-

factor protease, Bar1 (Sprague Jr and Herskowitz 1981; MacKay et al. 1988), which helps MATa 

cells detect an α-factor gradient and polarize towards MATα partners (Jackson and Hartwell 

1990; Barkai et al. 1998).  Yeast cells also express mating-type specific agglutinins, which help 

cells attach to mating partners (Cappellaro et al. 1991) in liquid but individually have little effect 

on mating efficiency on solid media (Lipke et al. 1989; Roy et al. 1991; de Nobel et al. 1995).  

Evidence for the final, characterized MATa-specific gene was produced by Bender and Sprague 

(1989) who noticed that cells expressing MATa-specific proteins and Ste3 were unable to mount 

a pheromone response.  The gene responsible for this was later identified as ASG7, which 

terminates pheromone signaling after mating has occurred and allows diploid cells to escape 

from the G1 arrest of their parental haploid cell (Kim et al. 2000; Roth et al. 2000). 

Bender and Sprague (1989) used mutations at MAT and exogenous promoters to 

manipulate pheromone and receptor expression.  As a result, any quantitative defects in mating 

could reflect incorrect levels of pheromone and receptor expression or the accessory role of other 

genes in mating.  To distinguish these possibilities we constructed “transvestite” strains: 

genetically engineered strains that have a wild-type allele at MAT but express the pheromone, 

pheromone receptor, and proteins responsible for secreting or processing pheromones that are 

normally induced by the other MAT allele (Figure 1B).  These strains should mate well if we 
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have swapped all the genes required for efficient mating and expressed them at the right level. 

Mating defects in these engineered cells indicate the presence of additional, uncharacterized, 

mating type-specific proteins or incorrect expression of the known mating genes.  

By studying these genetically engineered cells, we learned more about the requirements 

for efficient mating.  MATa-playing-α cells (MATa cells that express α-factor and Ste3) mate 

three-fold worse than genuine MATα cells.  Their main defect is low α-factor secretion: 

increasing α-factor production makes them mate almost as well as genuine MATα cells.  In 

contrast, MATα-playing-a cells (MATα cells that express a-factor, Ste6, Ste2, and Bar1) mate 60-

fold worse than genuine MATa cells.  These transvestites have two defects: they express a novel, 

MATα-specific a-factor blocker, which we named Afb1 (a-factor barrier), and they show a 

transient as opposed to a prolonged arrest when exposed to α-factor.  Our manipulations reveal 

that mating is not robust to reduced levels of pheromone production. 

 

MATERIALS AND METHODS 

 

Yeast strains and culturing: Table S1 lists the strains we used.  All strains were derived 

from the W303 wild-type background (ade2-1 can1-100 his3-11,15 leu2-112 trp1-1 ura3-1) 

using standard genetic techniques.  All media were prepared as described (Sherman et al. 1974) 

and contained 2% wt/vol of glucose.  Cells were grown in Synthetic Complete media (2% 

glucose) (SC) or Yeast Extract Peptone Dextrose (2% glucose) (YPD) at 30
o
C in culture tubes on 

roller drums or on agar plates or at room temperature (25
o
C) for timelapse microscopy.  Mating 

assays used agar plates containing SC without adenine (SC-ade), SC without uracil (SC-ura), or 

SC without adenine and uracil (SC-ade-ura).  Bovine serum albumin (BSA) was used to reduce 
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the non-specific absorption of α-factor to glass and plastic surfaces.  A 10% wt/vol stock was 

prepared in deionized water and then diluted into media to 0.1% wt/vol.  Synthetic α-factor 

(Biosynthesis, Lewisville, TX) was suspended in dimethyl sulfoxide (DMSO) and then diluted 

into either YPD + 0.1% BSA or SC + 0.1% BSA at the appropriate concentration.  Yeast extract 

was obtained from EMD Millipore (Billerica, MA).  Peptone and yeast nitrogen base were 

obtained from BD (Franklin Lakes, NJ).  Bacto-agar was obtained from US Biological 

(Swampscott, MA).  Unless otherwise noted, all chemicals were obtained from Sigma-Aldrich 

(St. Louis, MO). 

 

Quantitative Mating Assay: Quantitative mating assays were modified from Reid and 

Hartwell (1977).  Briefly, cells were grown to log phase (~5x10
6
 cells/mL).  5x10

6
 cells were 

harvested from each strain, mixed at a 1:1 ratio, sonicated, and filtered onto a 0.22µm 

nitrocellulose filter (Millipore, MA).  Filters were placed on a YPD plate and incubated at 30
o
C 

for 5 hours.  To assay for the initial ratio of the haploid cells, a 2.5x10
-5

 dilution of the initial 

mating mixture was plated onto SC-ade and SC-ura plates.   After 5 hours, cells were washed off 

the filters into 1 mL of deionized water and then plated onto SC-ade, SC-ura, and SC-ade-ura 

plates at appropriate dilutions to produce ~400 colonies per plate.  SC dropout plates were 

incubated for 2 days before counting the colonies on each plate.  Mating efficiencies were 

determined by dividing the number of colonies on the SC-ade-ura plate by the number of 

colonies on whichever of the SC-ade or SC-ura plates plated after the mating incubation had 

fewer colonies.  Three technical replicates were done of each mating assay and averaged for a 

single biological replicate.  Error bars are the standard deviation of at least 5 biological 

replicates.  Statistical significance was determined using Student’s t-test. 
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Bioassay for α-factor production: The bioassay for α-factor production was modified 

from Gonçalves-Sá and Murray (2011).  For details see File S1.   

 

Shmooing index: Cells were grown to log phase (~5x10
6
 cells/mL), washed into YPD + 

0.1% BSA with various concentrations of synthetic α-factor added at 5x10
5
 cells/mL, and then 

incubated at 30
o
C on a roller drum for 2 hours.  After incubation, the cells were sonicated, fixed 

using 60% ethanol at -20
o
C, and resuspended into 20% glycerol in phosphate buffered saline 

(PBS).  Culture tubes were BSA-coated by incubating overnight at 4
o
C with PBS + 2% BSA.  

The PBS + 2% BSA was poured out immediately prior to the use of the culture tube.  At least 

200 cells were counted to determine the percentage of cells shmooing.  Error bars are standard 

deviations.  Statistical significance was determined using Student’s t-test. 

 

Microscopy: Microscopy was done at room temperature using a Nikon Ti-E inverted 

microscope with either a 20x Plan Apo VC 0.75NC air lens or a 60x Plan Apo VC 1.4NA oil 

lens, and images were acquired with a Photometrics CoolSNAP HQ camera (Roper Scientific, 

AZ).  Timelapse photography was done using Metamorph 7.7 (Molecular Devices, CA).  For 

details see File S2. 

 

Halo Assay: Halo assays were modified from Sprague (1991).  Cells whose a-factor 

production was to be measured were grown to saturation in YPD at 30
o
C.  For halo assays on 

individual strains, 4.5x10
8
 cells of each strain were pelleted and resuspended in 20µL of 

deionized water.  For halo assays on cell mixtures, cells were mixed at a 1:8 ratio (MATa 
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wildtype:cell type of interest) with a final cell count of 4.5x10
8
.  Cells were pelleted and 

resuspended in 20µL of deionized water.  10µL of each strain or strain mix was spotted onto 

YPD plates and incubated overnight (~24 hours) at 30
o
C.  Supersensitive MATα sst2Δ cells 

grown to stationary phase were then sprayed over the cell spots using a martini atomizer (Item 

900432, Oenophilia, Hillsborough, NC ).  Plates were incubated overnight (~18 hours) at 30
o
C, 

and pictures were taken using a Panasonic (Secaucus, NJ) Lumix DMC-TZ5 camera. 

 

RNA isolation and sequencing: Cells were grown to log phase (5x10
6
 cells/mL) in YPD 

+ 0.1% BSA at 30
o
C.  10 mL of the culture was harvested by spinning at 4

o
C, washed in 1 mL 

RNase-free ice-cold water, pelleted, and flash frozen in dry ice.  10nM α-factor was added to the 

remaining culture, incubated for 2 hours at 30
o
C, and harvested in the same manner.  RNA was 

isolated as described by Collart and Oliveiro (2001) and dissolved in 1mM sodium citrate, pH 

6.4.  RNase-free chemicals were obtained from Invitrogen (Carlsbad, CA) except for chloroform, 

which was obtained from VWR (Radnor, PA). 

 RNA libraries were prepared using the Illumina TruSeq kit (www.illumina.com) and 

sequenced using an Illumina HiSeq 2000 with 50 base pair, single end reads with 89x mean 

coverage across the genome. 

 

Sequence analysis: To analyze the sequencing data, the RNA sequences were aligned to 

the S288C reference genome r64 (downloaded from the Saccharomyces Genome Database 

www.yeastgenome.org) using TopHat (Trapnell et al. 2009).  We then used Cufflinks (Trapnell 

et al. 2010) to look for genes with significantly different levels of gene expression between 

MATa bar1Δ cells and MATα-playing-a PBAR1-BAR1 cells.  Significant differences in expression 

http://www.panasonic.com/
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were identified using the default setting in Cufflinks, which tests the observed log-fold-change in 

gene expression against the null hypothesis of no difference between the two samples with a 

false discovery rate of 0.05 (Trapnell et al. 2010).  The data discussed in this publication have 

been deposited in NCBI’s Gene Expression Omnibus (Edgar et al. 2002) and are accessible 

through GEO Series accession number GSE49372 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49372). 

 

RESULTS 

 

Transvestite cells can mate: To find genes required for efficient mating, we constructed 

two types of transvestite strains.  MATa-playing-α cells are MATa cells that have been 

engineered to produce α-factor and the a-factor receptor by replacing the open reading frame of 

STE2 with STE3 and the open reading frames of the two a-factor genes with those of the two α-

factor genes (replacing MFA1 with MFα1 and MFA2 with MFα2) (Figure 1B).  We also deleted 

BAR1, which encodes the α-factor protease (Sprague Jr and Herskowitz 1981), and ASG7, which 

inhibits signaling from Ste3 (Roth et al. 2000).  However, these cells are still MATa at the MAT 

locus and, thus, will have MATa-specific expression patterns for all genes except those we 

manipulated.  MATα-playing-a cells are MATα at the MAT locus but have been engineered to 

produce a-factor and the α-factor receptor by replacing the open reading frame of STE3 with 

STE2, MFα1 with MFA1, and MFα2 with MFA2 (Figure 1B).  We also drove the expression of 

BAR1 with an engineered version of the haploid specific promoter, PFUS1 (Ingolia and Murray 

2007), which is expressed in both MATa and MATα cells (Trueheart et al. 1987), and the 

expression of the a-factor transporter, STE6 with the MFα1 promoter.  Since we tested mating 
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efficiency on solid media, we did not manipulate the expression of the mating agglutinins, which 

function mainly when cells mate in liquid (Lipke et al. 1989; Roy et al. 1991). 

 We asked if the manipulated genes are the only mating-type specific proteins required for 

efficient mating.  Crossing these cells with wild-type cells of their original mating type (e.g. 

MATα-playing-a crossed to MATα) has a potential caveat.  When two wild-type cells mate, the 

combination of the transcription factors expressed from MATa and MATα turns off the 

pheromone and receptor genes of both mating types (Haber 1998), and the zygotes escape 

pheromone-induced G1 arrest (Roth et al. 2000).  But zygotes produced by crossing a 

transvestite to a wild-type cell of the same mating type will keep expressing pheromones and 

receptors from both mating types (since both parents have the same MAT locus), raising the 

concern that these zygotes respond to their own pheromones and remain arrested in G1.  To 

measure the mating efficiency of these crosses, we selected for viable diploids by crossing 

transvestite cells and wild-type cells with complementary nutritional requirements. We obtained 

both MATa-playing-α/MATa and MATα-playing-a/MATα diploids. Most of these diploids 

progress normally through the cell cycle and have normal cell morphology (Figure 1C).  We did 

find an occasional population of MATα-playing-a/MATα diploids with abnormal morphology, 

suggesting delayed progression through G1, but even these are capable of budding (Figure 1C).  

The ability of these diploids to bud indicates that it is possible to measure the mating efficiency 

of transvestites crossed with wild-type cells. 

We used quantitative mating assays to measure the mating efficiency of the transvestite 

cells.  Cells of the two mating types are incubated together and then plated on media that 

distinguishes diploid cells from either parental haploid. When wild-type MATa cells are mated 

with wild-type MATα cells, 66% of haploids form diploids (Figure 1D).  However, the mating 
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efficiency of the MATa-playing-α cells crossed with MATa cells is three-fold lower than that of a 

wild-type cross, and the mating efficiency of the MATα-playing-a cells crossed with MATα cells 

is about 60-fold lower than the efficiency of a wild-type cross (Student’s t-test, p<10
-6

) (Figure 

1D).  These mating defects are synergistic: crossing the transvestite strains to each other 

decreases mating efficiency about 700-fold, (Student’s t-test, p<10
-6

) (Figure 1D).  Our 

observation that transvestites can mate with unmanipulated strains with the same MAT locus, 

confirms earlier work showing that pheromones and receptors define a cell's mating type (Bender 

and Sprague 1989).  But the low mating efficiency of the transvestite crosses implies that there 

are additional requirements for efficient mating. 

 

MATa-playing-α cells produce too little α-factor: We studied the mating defects of 

transvestite cells.  MATa-playing-α cells mate three-fold less efficiently than genuine MATα cells 

(Figure 1D).  Because the engineered genes in this strain encode the pheromone and pheromone 

receptor, the best candidates for this difference were the ability of the MATa-playing-α cells to 

respond to a-factor and to produce α-factor. 

We began by testing the response to a-factor.  We made mating mixtures of MATa-

playing-α cells expressing YFP under the pheromone-inducible promoter, PFUS1, and MATa cells 

expressing mCherry under the ACT1 promoter and assayed for the expression of YFP in the 

MATa-playing-α cells after 2.5 hours.  The expression of YFP in the MATa-playing-α cells 

indicates that they can successfully detect a-factor using the a-factor receptor and activate 

pheromone-induced genes (Figure 2A).  The two cell types mated to form zygotes that continue 

to signal to themselves, thus forming diploid cells, which express both YFP under the FUS1 

promoter and mCherry under the ACT1 promoter (Figure 2A).  Since the G-protein and 
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downstream components of the pheromone signaling pathway should be the same in MATa and 

MATα cells (Bardwell 2005), we asked if reduced pheromone production is the cause of the 

mating defect. 

Pheromone production is important for zygote formation (Kurjan 1985; Michaelis and 

Herskowitz 1988), and MATa cells prefer the MATα cell that produces the highest amount of α-

factor (Jackson and Hartwell 1990).  Since we manipulated pheromone genes to make the 

transvestites, we measured the pheromone production of MATa-playing-α cells using a bioassay.  

We grew cells in rich medium, filtered out the cells, incubated the medium with MATa cells 

lacking the α-factor protease, Bar1, measured the fraction of cells that arrest and shmoo (the 

shmooing index), and compared this data to a standard curve generated with synthetic α-factor.  

Unstimulated, MATa-playing-α cells produce about 70 times less α-factor than MATα cells 

(Student’s t-test, p=0.01) (Figure 2B).  To measure the α-factor production of stimulated cells, 

we mixed the α-factor producing cells in a 10:1 mixture with MATa bar1Δ cells (which produce 

a-factor and do not destroy α-factor) and measured the α-factor present in the supernatant.  

Stimulated MATa-playing-α cells produce 20-fold less α-factor than stimulated wild-type MATα 

cells (Student’s t-test, p=9x10
-6

) (Figure 2B). 

To test the effect of reduced pheromone production in MATα cells, we knocked out 

MFα1, which is the majority α-factor producer in MATα cells (Kurjan 1985).  This reduces α-

factor production 12-fold compared to wild-type MATα cells in unstimulated cells (Student’s t-

test, p=0.02) and 9-fold in stimulated cells (Student’s t-test, p=10
-5

) (Figure 2B).  We compared 

the mating efficiency of MATα mfα1Δ cells, which have decreased mating efficiency (Kurjan 

1985), to that of MATa-playing-α cells and determined that MATα mfα1Δ cells only mate 1.5-

fold more efficiently than MATa-playing-α cells (Student’s t-test, p=0.004) (Figure 2C).  This 
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suggests that the reduced mating efficiency of the MATa-playing-α cells is due, at least in part, to 

low α-factor production.  

 To test this hypothesis, we increased α-factor production in the MATa-playing-α cells by 

expressing MFα1 from the TDH3 promoter.  This promoter is not pheromone-regulated, but it is 

one of the most highly expressed promoters in the yeast genome (Krebs 1953; McAlister and 

Holland 1985) and should increase α-factor production to at least wild-type MATα levels.  

Unstimulated MATa-playing-α PTDH3-MFα1 cells secrete twice as much α-factor as unstimulated 

MATα cells (Student’s t-test, p=0.04), but when stimulated, MATa-playing-α PTDH3-MFα1 cells 

secrete 5-fold more α-factor than stimulated MATα cells (Student’s t-test, p=10
-4

) (Figure 2B), 

suggesting that α-factor production is regulated by both post-translational mechanisms, such as 

pheromone maturation and secretion and transcription of the pheromone genes.  If low α-factor 

production accounts for the weak mating of MATa-playing-α cells, MATa-playing-α PTDH3-MFα1 

cells should have a mating efficiency approaching that of wild-type MATα cells, which is indeed 

what we found (Figure 2C).  This confirms previous results, which showed that sufficient α-

factor production is important for efficient mating (Kurjan 1985) and shows that the principle 

defect of MATa-playing-α cells is insufficient α-factor production.  This defect could reflect a 

difference in the strengths of the MFA1 versus the MFα1 promoter or differences in the 

translation or processing of α-factor between MATa and MATα cells. Our analysis also shows 

that there are no additional MATa-specific genes, beyond those we manipulated (STE2, MFA1, 

MFA2, BAR1, and ASG7), that interfere with the ability of MATα cells to mate. 

 

AFB1 encodes a novel a-factor barrier protein: We examined the decreased mating 

efficiency of the MATα-playing-a cells.  Because pheromone production is important for 
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efficient mating (Kurjan 1985; Michaelis and Herskowitz 1988), we investigated a-factor 

production of MATα-playing-a cells.  Both α-factor and a-factor go through several processing 

steps before secretion (Betz and Duntze 1979; Kurjan and Herskowitz 1982).  But while α-factor 

is secreted as a small, unmodified peptide (Kurjan and Herskowitz 1982), mature a-factor is 

modified with a 15 carbon farnesyl group, causing it to be very hydrophobic (Betz and Duntze 

1979; Chen et al. 1997) and hard to quantify biochemically.  We therefore used a bioassay to 

measure the relative a-factor production of the MATα-playing-a cells: we plated patches of a-

factor producing cells and then sprayed the plates with a suspension of MATα cells that were 

made supersensitive to pheromone by deleting SST2, which encodes a GTPase activating protein 

that reduces the duration of signaling from the pheromone-activated G protein (Chan and Otte 

1982a; Chan and Otte 1982b; Dohlman et al. 1996; Apanovitch et al. 1998).  The a-factor 

secreted by the patch of cells arrests the MATα sst2Δ tester cells in G1, producing a halo of 

growth inhibition (Chan and Otte 1982a; Chan and Otte 1982b); the halo's diameter increases 

with the amount of a-factor produced by the cell patch (Figure 3A).  The halo produced by 

MATα-playing-a cells is smaller than that of wild-type MATa cells, implying that MATα-playing-

a cells secrete less a-factor than wild-type MATa cells (Figure 3B). 

 We considered two explanations for the low a-factor secretion of MATα-playing-a cells: 

MATα-playing-a cells secrete less a-factor than MATa cells, or MATα cells secrete a protein that 

provides a barrier to a-factor that is analogous to the MATa-specific α-factor protease, Bar1.  We 

tested for the presence of a MATα-specific a-factor blocker secreted from MATα-playing-a cells 

by comparing the halo sizes of two mixtures of cells: MATa cells mixed with MATα-playing-a 

cells and MATa cells mixed with MATa cells that lack the genes encoding a-factor and, thus, 

produce no a-factor (MATa mfa1Δ mfa2Δ).  If the MATα-playing-a cells secrete an a-factor 
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blocker, we would expect the halo size of the MATa cells mixed with MATα-playing-a cells to be 

smaller than that of the MATa cells mixed with pheromone-less MATa cells because the a-factor 

blocker would interfere with the a-factor from both the MATα-playing-a cells and the MATa 

cells.  However, if there is no a-factor blocker, we would expect the halo size of the MATa cells 

mixed with MATα-playing-a cells to be larger than that of the MATa cells mixed with 

pheromone-less MATa cells because both the MATa cells and the MATα-playing-a cells are 

capable of secreting a-factor.  The halo produced by MATa cells mixed with MATα-playing-a 

cells is smaller than the halo produced by MATa cells mixed with pheromone-less MATa cells, 

indicating that MATα-playing-a cells secrete an a-factor blocker (Figure 3C). 

We searched for the gene responsible for this activity by comparing the transcriptomes of 

MATa and MATα-playing-a cells.  Although the gene expression of pheromone-stimulated MATa 

cells has been investigated, the extreme hydrophobicity of a-factor has made similar experiments 

on pheromone-stimulated MATα cells difficult (Roberts et al. 2000).  The MATα-playing-a cells 

make it possible to study the transcriptome of pheromone-stimulated cells that are MATα at the 

MAT locus but are stimulated by α-factor in a controlled fashion.  We chose a concentration of 

pheromone, 10nM, in a regime in which MATa bar1Δ and MATα-playing-a cells with BAR1 

under its endogenous promoter have a similar shmooing index (Figure 4A), to compare the 

transcriptomes of stimulated and unstimulated MATa and MATα-playing-a cells using RNA 

sequencing. 

 Just as MATα cells do not secrete Bar1 to cleave their own α-factor (Sprague Jr and 

Herskowitz 1981), we would not expect MATa cells to secrete an a-factor blocker to inhibit their 

own a-factor.  Thus, we hypothesized that a MATα-specific a-factor blocker would be expressed 

more highly in both pheromone-stimulated and unstimulated MATα-playing-a than MATa cells.  
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Ten genes fit this criterion and of these, only one, YLR040C, is annotated as encoding a secreted 

protein that is not already known to be important in mating (Yeast Genome Database, 

http://www.yeastgenome.org) (see Table S2). 

YLR040C was previously identified as an α-specific gene by its reduced transcription in a 

MATα cell that lacked the transcription factor Matα1 (Galgoczy et al. 2004), which induces 

expression of α-specific genes (Strathern et al. 1981).  It has also been shown to be translated by 

ribosome profiling (Brar et al. 2012) and localized to the cell wall (Hamada et al. 1999; Giaever 

et al. 2002).  Deletion of YLR040C was reported as having no effect on mating (Galgoczy et al. 

2004).  We found that in unstimulated cells the gene is expressed 11-fold more strongly in 

MATα-playing-a than in MATa cells and that its transcription is not significantly induced when 

MATα-playing-a cells are exposed to pheromone (see Table S2).  The protein is conserved in 

yeasts that experienced the whole genome duplication around 100 million years ago and is also 

found in some yeasts, such as Hansenula polymorpha, that substantially predate this event 

(Wolfe and Shields 1997; Dietrich et al. 2004; Dujon et al. 2004; Kellis et al. 2004) (Figure 3D).  

The experiments described below demonstrate that YLR040C encodes a protein that provides an 

a-factor barrier function, leading us to name this gene AFB1 for a-factor barrier. 

To determine whether AFB1 is indeed the a-factor blocker, we knocked it out in MATα-

playing-a cells.  The halos produced by MATα-playing-a afb1Δ cells are larger than those of 

MATα-playing-a AFB1 cells, indicating that deleting AFB1 increases the amount of pheromone 

secreted from a patch of MATα-playing-a cells (Figure 3B).  The halo around the MATα-playing-

a afb1Δ cells, however, is still smaller than the halo produced by wild-type MATa cells 

suggesting that MATα-playing-a cells secrete less a-factor than wild-type MATa cells (Figure 

3B).  We also placed AFB1 under a strong (ACT1) promoter in MATa cells and observed a 
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decrease in halo size compared to wild-type MATa cells, indicating that Afb1 is able to block a-

factor secreted by MATa cells (Figure 3B). 

To test whether Afb1 is responsible for blocking a-factor produced by other cells, we 

made cell mixtures of MATa cells with MATα-playing-a afb1Δ cells and compared the halo 

produced by this mixture to the halo produced by the mixtures of MATa cells with MATα-

playing-a cells and to the halo produced by MATa cells with MATa mfa1Δ mfa2Δ cells.  As 

expected from our other results, the mixture of MATa cells with MATα-playing-a afb1Δ cells has 

a slightly larger halo than the MATa cells mixed with MATa mfa1Δ mfa2Δ cells and a 

significantly larger halo than the MATa cells mixed with MATα-playing-a cells (Figure 3C).  

This result indicates that when Afb1 is not present in the cell mixtures, the a-factor from the 

wild-type MATa cells as well as that from the MATα-playing-a cells is free to interact with the 

supersensitive MATα cells.  Taken together, our results provide strong evidence that Afb1 has an 

a-factor barrier function. 

We asked whether the expression of AFB1 affected the mating efficiency of MATα-

playing-a cells.  We crossed MATα-playing-a afb1Δ cells with wild-type MATα cells and 

observed a five-fold increase in mating efficiency over a similar cross with MATα-playing-a cells 

(Student’s t-test, p<10
-6

) (Figure 3E).  However, deleting AFB1 from wild-type MATα cells does 

not reduce their mating efficiency (Figure 3E), perhaps because small changes in a-factor 

production do not have a large effect on mating efficiency (Michaelis and Herskowitz 1988).  

We tested this possibility in two ways.  The first was to delete MFA1 from wild-type MATa cells.  

We saw a small decrease in the halo size of MATa mfa1Δ compared to that of wild-type MATa 

cells, but as previously reported (Michaelis and Herskowitz 1988), the mating efficiency of 

MATa mfa1Δ cells was statistically indistinguishable from that of MATa MFA1 cells (Figure 3B 
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and 3E).  We also tested the mating efficiency of MATa cells with AFB1 placed under the ACT1 

promoter.  These cells produce a smaller halo than wild-type MATa cells (Figure 3B) but mate 

slightly better than wild-type MATa cells, implying that there is a range of a-factor production 

that results in efficient mating, at least in the absence of additional mutations (Student’s t-test, 

p=0.03) (Figure 3E). 

 

MATα-playing-a cells shmoo but arrest only transiently in the presence of 

pheromone: Although the expression of AFB1 in MATα-playing-a cells was responsible for a 

portion of the reduced mating efficiency of MATα-playing-a cells, MATα-playing-a afb1Δ cells 

still mate 12-fold worse than wild-type MATa cells (Student’s t-test, p<10
-6

) (Figure 3E).  We 

hypothesized that the response of MATα-playing-a cells to pheromone could also reduce their 

mating efficiency.   

There are three cellular responses to pheromone stimulation: altered gene expression, cell 

polarization, and cell cycle arrest (Bardwell 2005).  We compared the transcriptomes of MATα-

playing-a and MATa cells both with and without exposure to α-factor (see Table S2), excluding 

those genes, such as STE3 and BAR1, that had been removed during the construction of the 

strains.  Twenty-one genes showed a more than two-fold variation in both comparisons.  Ten 

genes showed a more than two-fold variation when comparing the two stimulated cell types but 

were not significantly different when comparing the unstimulated cells, and another 8 genes 

showed the opposite pattern.  As expected, known α-specific genes, such as the MATα-specific 

agglutinin gene, SAG1, were expressed more strongly in MATα-playing-a cells than in MATa 

cells, and known a-specific genes, such as the a-specific agglutinin gene, AGA2, were expressed 

less strongly in MATα-playing-a cells than in MATa cells.  Despite our attempts to engineer their 
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expression to match the levels seen in MATa cells, three important a-specific genes, STE2, 

MFA1, and MFA2 are expressed at five-fold, seven-fold, and 120-fold lower levels, respectively, 

in MATα-playing-a cells compared to MATa cells (see Table S2). 

We assayed cell polarization (Segall 1993; Butty et al. 1998) by measuring the shmooing 

index of MATα-playing-a cells stimulated with known quantities of synthetic α-factor.  We found 

that MATα-playing-a PBAR1-BAR1 cells have a similar shmooing index to MATa bar1Δ cells at 

low concentrations of α-factor, indicating that the MATα-playing-a cells are as sensitive to low 

concentrations of α-factor as MATa cells (Figure 4A) and suggesting that BAR1 is not expressed 

in MATα cells.  Because efficient mating in MATa x MATα crosses depends on the secretion of 

Bar1 by the MATa cells, we investigated the pheromone response of MATα-playing-a cells that 

express BAR1 from a mutant version of the pheromone-induced FUS1 promoter (Trueheart et al. 

1987): the mutant promoter, PFUS1*, was selected to have a low basal and a high pheromone-

stimulated level of expression (Ingolia and Murray 2007).  These cells make fewer shmoos at 

50nM α-factor than MATα-playing-a PBAR1-BAR1 cells (which lack detectable Bar1 activity) 

make at 2nM α-factor, indicating that MATα-playing-a PFUS1*-BAR1 cells are able to secrete 

Bar1 (Student’s t-test, p=0.02) (Figure 4A and 4B).  In contrast, the MATα-playing-a PFUS1*-

BAR1 cells make significantly more shmoos than wild-type MATa cells at each concentration of 

α-factor tested (Student’s t-test, p<0.005) (Figure 4B), suggesting that MATα-playing-a PFUS1*-

BAR1 cells secrete less Bar1 than wild-type MATa cells.  This difference is unlikely to be the 

sole remaining cause of the mating defect of MATα-playing-a PFUS1*-BAR1 cells: reducing the 

expression of Bar1 in MATa cells, by expressing it from the FUS1* promoter, does not reduce 

their mating efficiency (Figure 4C).  
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We observed α-factor-induced cell cycle arrest (Chang and Herskowitz 1990) in a 

microfluidic device.  Pheromone stimulation arrests MATa cells in G1 through phosphorylation 

of Far1, a protein that binds to cyclin-dependent kinase/cyclin complexes (Chang and 

Herskowitz 1990; Tyers and Futcher 1993; Peter and Herskowitz 1994).  When MATa bar1Δ 

cells are exposed to 10nM α-factor, their cell cycle remains arrested for many hours while they 

form multiple successive shmoos (Figure 4D and see File S3).  However, even at this high α-

factor concentration, MATα-playing-a bar1Δ cells form shmoos but arrest only transiently 

(Figure 4D and see File S4). 

The transient cell cycle arrest in MATα-playing-a cells could be due to a difference in the 

response of MATα and MATa cells to pheromone stimulation or the inhibition of Ste2 by MATα-

specific proteins in the MATα-playing-a cells.  We tried to find the responsible genes by looking 

for differential expression of genes that might have an effect on cell cycle arrest between 

pheromone-stimulated MATa and MATα-playing-a cells.  We manipulated the expression of 

three candidates, PCL1, GYP8, and TOS4, which had at least a two-fold difference in expression 

between stimulated MATa and MATα-playing-a cells and a plausible connection to cell cycle 

control (see Table S2).  None of these manipulations altered the pheromone-induced cell cycle 

arrest of either MATa or MATα-playing-a cells (Data not shown). 

 

How robust is mating?: Mating would be robust to variation in pheromone levels if 

substantial increases or decreases in pheromone expression had no effect on mating efficiency.  

The mating of the transvestite strains to each other suggests that mating efficiency is not robust 

to variation in pheromone production.  Mating MATa-playing-α cells to wild-type MATa cells 

reduces mating frequency three-fold, and mating MATα-playing-a cells to wild type MATα cells 
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reduces mating 60-fold, relative to a wild type MATa x MATα cross, but the mating frequency of 

the cross between the two transvestites is reduced 700-fold, suggesting that mating defects are 

synergistic (Student’s t-test, p<10
-6

) (Figure 1D).  If this synergism is largely due to reduced 

pheromone production by the transvestite strains, increasing pheromone production should 

increase the efficiency of the inter-transvestite cross.  We increased α-factor production from 

MATa-playing-α cells by placing MFα1 under the control of the TDH3 promoter and a-factor 

production from MATα-playing-a cells by deleting AFB1.  When crossed to each other, these 

strains mate 90 times better than the cross between the original MATa-playing-α and MATα-

playing-a cells.  Thus, after improving pheromone production, the inter-transvestite cross is only 

eight-fold less efficient than a standard MATa x MATα cross (Student’s t-test, p<10
-6

) (Figure 5).  

If reduced pheromone production is the primary cause of the weak mating of the inter-

transvestite cross, the cross between a MATα strain making less α-factor and a MATα-playing-a 

cell should mimic the inter-transvestite cross.  The mating efficiency of the cross between MATα 

mfα1Δ cells, which produce less α-factor than wild-type MATα cells, and MATα-playing-a cells 

is statistically indistinguishable from that of the double transvestite cross (Figure 2B and 5). 

 

DISCUSSION 

 

 Our experiments show that genetic engineering can be used to investigate the factors that 

control the efficiency of mating in budding yeast.  We tested the idea that previous research had 

found all the genes that control mating efficiency by engineering transvestite strains that switch 

the mating genes of one mating type for those that are normally expressed in its partner.  The 

behavior of these strains led to two conclusions: there are still more genes that control mating, 
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such as the a-factor barrier protein, Afb1, and mating is not robust to reductions in pheromone 

production.  

 

Engineering efficient maters: Investigating the pheromone production of the 

transvestite strains allowed us to account for a significant portion of their mating defects.  

Unstimulated MATa-playing-α cells secrete 70-fold less α-factor than wild-type MATα cells, and 

stimulated MATa-playing-α cells secrete 20-fold less α-factor than stimulated MATα cells.  

Increasing the α-factor production of the MATa-playing-α cells increased their mating efficiency 

to nearly that of wildtype, showing that the main defect of the MATa-playing-α cells is low α-

factor production and that the level of α-factor secretion is important for efficient mating.  The 

observation that α-factor secretion is still pheromone-inducible, even when α-factor expression is 

driven by a strong, constitutive promoter, demonstrates that pheromone processing and export 

respond to pheromone stimulation.  Indeed, Ste13, a protein required for the maturation of α-

factor (Julius et al. 1983), is pheromone-induced (Achstetter 1989). 

 The mating defects of MATα-playing-a cells are more complex.  We determined that 

these cells do not make as much a-factor as wild-type MATa cells and that at least part of this is 

due to the expression of the novel a-factor blocker, Afb1.  Increasing the a-factor production of 

MATα-playing-a cells by deleting AFB1 causes a five-fold increase in their mating efficiency, 

indicating that sufficient a-factor expression is important for efficient mating as a MATa cell.  

We were unable to engineer MATα cells to mate efficiently as MATa cells.  There are two 

possible explanations for the remaining defect: even after the removal of Afb1, the MATα-

playing-a cells make less a-factor than MATa cells, and MATα-playing-a cells only arrest 
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transiently in response to α-factor.  We suspect both contribute to the reduced mating of MATα-

playing-a cells. 

 Similar pheromone and receptor swaps have been done on other fungi, including 

Cryptococcus neoformans (Stanton et al. 2010) and Ustilago maydis (Bölker et al. 1992).  Like 

the strains we constructed, the engineered versions of these organisms could mate to cells that 

bore the same genes at the mating type locus.  In Candida albicans, a-a or α-α matings can be 

induced by enhancing autocrine signaling (Alby et al. 2009).  Studying the mating defects of 

engineered transvestites in other fungi, should identify additional genes involved in their mating 

pathways. 

  

AFB1 encodes a novel MATα-specific a-factor barrier protein: Studies on 

pheromone-induced genes in MATα cells were hampered by the difficulties in working with a-

factor.  We avoided these by looking at the pattern of gene expression in MATα-playing-a cells, 

which would still express α-specific genes but would increase their expression in response to α- 

rather than a-factor. We argued that novel α-specific genes would be identified by higher 

expression in MATα-playing-a than in MATa cells.  Mixing experiments suggested that MATα-

playing-a cells produced an extracellular factor that interfered with the action of a-factor, 

prompting us to look for the secreted product of a MATα-specific gene.  This computational 

sieve produced a single gene, YLR040C, which had previously been identified as a gene 

regulated by the MATα-specific transcription factor, Matα1 (Galgoczy et al. 2004).  Removing 

YLR040C increased a-factor production from MATα-playing-a cells and the mating efficiency of 

MATα-playing-a cells, leading us to rename YLR040C AFB1 for a-factor barrier.  There have 

been previous searches for a protein with a-factor barrier function.  The first reported a 
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supersensitive MATα mutant, which mapped to a location on Chromosome XII over 600 

kilobases away from AFB1 (Steden et al. 1989).  The second reported the detection of MATα-

specific a-factor endopeptidase activity, but the gene responsible for this was not identified, and 

the protein was not purified (Marcus et al. 1991).  Without being able to manipulate the genes 

involved in these studies, it is impossible to assess their effect on a-factor activity or stability or 

their relationship to AFB1. 

Deleting AFB1 increased the mating efficiency of MATα-playing-a cells.  Sequence 

analysis shows Afb1 is conserved as far as Hansenula polymorpha and contains an N-terminal 

signal sequence and C-terminal motif that suggests it is a GPI-anchored protein (Hamada et al. 

1999) but lacks other detectable motifs.  In particular, Afb1 shows no sequence homology with 

any other protease but contains a number of conserved aromatic residues (Figure 3D).  Our 

inability to find Afb1 throughout the ascomycete fungi has two possible interpretations: either 

the protein evolves too rapidly to be detected by standard tools that use sequence homology to 

identify orthologs, or the protein evolved within in one branch of the ascomycete lineage, rather 

than in its last common ancestor.  Unusually rapid evolution of a single protein or independent 

evolution of the same function in different lineages may also explain why the α-factor degrading 

protease, Bar1, in S. cerevisiae is not the closest homolog of the same protein in C. albicans 

(Schaefer et al. 2007). 

We speculate that Afb1 acts to bind and sequester a-factor rather than to degrade it.  The 

biological function of Afb1 may mirror that of Bar1, which promotes the efficient mating of 

MATa cells by keeping the α-factor concentration at the plasma membrane within the narrow 

range needed for accurate pheromone gradient detection (Barkai et al. 1998).  Since Afb1 is 

predicted to be GPI-anchored, it is possible that the function of Afb1 closely mimics that of Bar1 



 

26 

 

trapped in the cell wall of MATa cells: creating a pheromone sink that makes it both more likely 

that two cells of the same mating type will avoid each other (Jin et al. 2011) and easier to 

distinguish between two, close, potential partners (Rappaport and Barkai 2012).  It is also 

possible that Afb1 in S. cerevisiae acts like Bar1 in C. albicans (Alby et al. 2009): decreasing the 

threat of autocrine signaling caused by leaky repression of a-factor in MATα cells. 

 

MATα-playing-a cells only arrest transiently in response to pheromone: In MATa 

cells, exposure to α-factor leads to a prolonged cell cycle arrest.  In contrast, MATα-playing-a 

cells show only a transient arrest, even though their ability to shmoo is statistically 

indistinguishable from wild-type MATa cells.  This result surprised us because MATa and MATα 

cells arrest the cell cycle in the same fashion: by signaling through Far1 (Peter and Herskowitz 

1994; Bardwell 2005). 

There are two possible explanations for the transient cell cycle arrest of MATα-playing-a 

cells.  The first is that MATa and MATα cells have evolved to respond to pheromone stimulation 

in subtly different ways and that MATα cells shmoo but do not experience enduring arrest.  

Although it is important for cells to be in the same phase of the cell cycle during nuclear fusion, 

it is possible that transient arrest of MATα cells is sufficient to allow for the formation of 

zygotes, while a lasting arrest is required for MATa cells.  Because α-factor is more diffusible, 

we suspect that initial signaling is usually from α to MATa cells, meaning that it is the 

MATa cells that arrest first and, thus, need to wait until the α cells receive a strong enough 

signal to arrest, implying that fusion would usually occur shortly after the arrest of the MATα cell 

but at a longer and more variable time after the arrest of the MATa cell.  
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The second possibility is that interactions between Ste2 and proteins present in the 

MATα-playing-a cells make the cells keep cycling, like cells that express both Ste3 and Asg7 

(Bender and Sprague 1989; Roth et al. 2000).  We looked for genes that might be responsible for 

the lack of enduring arrest in MATα-playing-a cells by focusing on genes that are differentially 

expressed in pheromone-stimulated MATa and MATα-playing-a cells and might not have been 

identified in earlier work.  Although we tested the effect of deleting or overexpressing several 

candidate genes individually, we did not find an individual gene responsible for the transient cell 

cycle arrest in MATα-playing-a cells. 

 

Robustness of mating: Characterizing the mating defects of the transvestite strains 

allowed us to improve our understanding of the pheromone response of MATα cells and study the 

robustness of mating efficiency to changes in gene expression.  We investigated changing the 

expression levels of three proteins: Bar1, α-factor, and a-factor. 

 The α-factor protease, Bar1, helps MATa cells to detect an α-factor gradient and choose a 

mating partner (Sprague Jr and Herskowitz 1981; Jackson and Hartwell 1990; Barkai et al. 

1998).  Reducing Bar1 expression by using an engineered FUS1 promoter (Ingolia and Murray 

2007) reduces the concentration of α-factor required to get 50% of the cells to shmoo four-fold.  

This change appears to have little effect on mating: expressing BAR1 under PFUS1* in MATa cells 

leaves mating unimpaired, suggesting that mating efficiency is robust to substantial changes in 

Bar1 expression.   

 Mating efficiency is not robust to reductions in α-factor secretion, a result that might have 

been predicted from work that showed that cells make graded responses to increasing levels of 

pheromone stimulation (Moore 1983; Takahashi and Pryciak 2008).  Previous studies have 
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shown that agglutination, shmoo formation, and pheromone-induced transcription increase with 

increasing α-factor concentration (Moore 1983; Takahashi and Pryciak 2008).  Decreased α-

factor production leads to a fusion defect and, thus, a decrease in mating efficiency (Brizzio et al. 

1996).  We show that an approximately 10-fold reduction in α-factor production in otherwise 

wild-type cells, such as MATα mfα1Δ cells, results in a two-fold reduction in mating efficiency 

when mated to a wild-type partner.  Mating MATα mfα1Δ cells to a compromised partner, such 

as the MATα-playing-a cells, results in a synergistic reduction in mating efficiency.  Although 

reduced levels of a-factor production have also been shown to cause a cell fusion defect and a 

decrease in mating efficiency (Brizzio et al. 1996), the precise regulation of a-factor production 

does not appear to be as important to mating efficiency as precise regulation of α-factor 

production.  MATa mfa1Δ cells have a mating efficiency that is indistinguishable from wildtype 

(Michaelis and Herskowitz 1988), and reducing the a-factor production of MATa cells by 

overexpressing AFB1 actually causes a slight increase in mating efficiency, indicating that the 

ideal quantity of a-factor production may be less than the amount of a-factor produced by wild-

type MATa cells but greater than the amount of a-factor produced by MATα-playing-a cells. 

Taken together, these results argue for a molecular arms race in pheromone production.  

Cells prefer the partner that makes the most pheromone (Jackson and Hartwell 1990), possibly 

because this is the only indicator of fitness available to a potential mating partner.  We speculate 

that both MATa and MATα cells have evolved to produce higher and higher concentrations of 

pheromone, resulting in the need for proteins such as Bar1 and Afb1 to improve gradient 

detection in dense mating mixtures.  Once such functions have been evolved, they imply that 

mutations that reduce pheromone production back to ancestral levels will decrease mating 

efficiency because the pheromone antagonists overwhelm the lower pheromone levels. 
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Figure 1. Yeast cells expressing the pheromone and receptor of the opposite mating type are capable of forming 

zygotes with cells of their original mating type. A. MATa cells express the pheromone a-factor, the α-factor 

receptor, Ste2, and the α-factor protease, Bar1. MATα cells express the pheromone α-factor and the a-factor 

receptor, Ste3. B. MATα-playing-a cells are MATα cells that express a-factor instead of α-factor, Ste2 instead of 

Ste3, and the α-factor protease, Bar1.  MATa-playing-α cells are MATa cells that express α-factor instead of a-

factor, Ste3 instead of Ste2, and are bar1Δ. C. The indicated diploid strains were grown in YPD, and pictures were 

taken using DIC with 20x magnification. The right panel shows abnormal morphologies indicated of cells secreting 

pheromones that they can respond to. D. Mating efficiency of the indicated crosses.  Mating efficiencies are the 

percentage of diploids that form colonies on double dropout plates relative to the number of colonies formed on 

single dropout plates.  Error bars are standard deviations. Matings were performed as described in Materials and 

Methods. 

 

Figure 2. Low mating efficiency of MATa-playing-α cells is due to low α-factor production. A. MATa-playing-α 

PFUS1-YFP cells in a mating mixture with MATa PACT1-mCherry cells.  Yellow indicates YFP expression.  Red indicates 

mCherry expression.  The orange cell is a diploid expressing both YFP and mCherry. The picture was taken 2.5 

hours after mixing the cells using DIC and fluorescence at 20x magnification. B. α-factor production is measured by 

growing cells in YPD, harvesting the supernatant, and exposing MATa bar1Δ cells to the supernatant.  The 

shmooing index of the MATa bar1Δ cells is measured and then compared to a standard curve, produced with 

synthetic α-factor, to determine the amount of α-factor present in the media. Error bars are standard deviations. 

C. Mating efficiency relative to a wild-type cross between MATa and MATα cells. Matings were performed as 

described in Materials and Methods.  Error bars are standard deviations. 

 

Figure 3. AFB1 encodes a novel a-factor blocker. A. Halo assays are done by letting cell patches grow on YPD 

overnight and then spraying super-sensitive MATα sst2Δ cells over the cell patches.  Where a-factor produced by 

the cell patches has diffused into the YPD, the MATα sst2Δ cells cannot grow, forming a halo around the cell patch 

with a size that corresponds to the amount of a-factor secretion. B. Halo assays done on various cell patches 

containing a single cell type.  MATa mfa1Δ mfa2Δ is a negative control, and MATa is a positive control.  White bars 
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indicate the width of the halo.  The halo assays were repeated multiple times and the rank order of the halo sizes is 

consistent. C. Halo assays done on cell patches containing two cell types at a 1:8 ratio of MATa cells to the 

experimental cell of interest.  White bars indicate the width of the halo.  The halo assays were repeated multiple 

times and the rank order of the halo sizes is consistent. D. Sequences were obtained from the Yeast Genome Order 

Browser (http://ygob.ucd.ie) and Blast searches of fungal genomes at NCBI.  Sequences were aligned in Jalview 

using the MAFFT-L-INS-I option, and the aligned core that follows the signal sequence and precedes the GPI 

anchorage sequence is shown. Amino acids are colored with a scheme that represents chemically similar amino 

acids in similar colors, and universally conserved amino acids are highlighted in red in the consensus sequence.   

Full species names: Saccharomyces cerevisiae, Saccharomyces mikatae, Saccharomyces kudriavzevii, 

Saccharomyces bayanus, Candida glabrata, Kazachstania africanus, Kazachstania naganishii, Naumovzyma castelli, 

Naumovzyma dairenensis, Tetraspora blattae, Tetraspora phaffi, Vanderwaltomyzoa polyspora,  

Zygosaccharomyces rouxii, Torulaspora delbruckii, Kluveromyces lactis, Saccharomyces kluyveri, Eremothecium 

cymbalariae, and Hansenula/Ogataea polymorpha. Of these, Z. rouxii, T. delbrueckii, K. lactis, S. kluyveri, E. 

cymbalariae, and H. polymorpha did not undergo a whole genome duplication.  E. Mating efficiency of the 

indicated crosses relative to a wild-type cross between MATa and MATα cells.  Matings were performed as 

described in Materials and Methods.  Error bars are standard deviations. 

 

Figure 4. MATα-playing-a cells shmoo but arrest transiently in the presence of pheromone. A. Shmooing indices 

of MATa bar1Δ cells and MATα-playing-a PBAR1-BAR1 cells exposed to known concentrations of α-factor.  Error bars 

are standard deviations.  B. Shmooing indices of MATa cells and MATα-playing-a PFUS1*-BAR1 cells exposed to 

known concentrations of α-factor.  Error bars are standard deviations. C. Mating efficiency relative to a wild-type 

cross between MATa and MATα cells.  Matings were performed as described in Materials and Methods.   Error 

bars are standard deviations. D. MATa bar1Δ cells shmooing and MATα-playing-a bar1Δ cells shmooing and 

budding when incubated with SC plus 10nM α-factor in a microfluidic chamber.  Pictures were taken using DIC with 

60x magnification 8 hours after the addition of α-factor.  White arrows point to buds. 

 

http://ygob.ucd.ie/
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Figure 5. Mating is not robust to changes in pheromone production.  Mating efficiency relative to a wild-type 

cross between MATa and MATα cells.  Matings were performed as described in Materials and Methods.  Note the 

logarithmic scale for mating efficiency.  Error bars are standard deviations.  
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