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Compressed sensing for multidimensional electronic spectroscopy experiments
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Compressed sensing is a processing method that significantly reduces the number of measure-
ments needed to accurately resolve signals in many fields of science and engineering. We develop
a two-dimensional (2D) variant of compressed sensing for multidimensional electronic spectroscopy
and apply it to experimental data. For the model system of atomic rubidium vapor, we find that
compressed sensing provides significantly better resolution of 2D spectra than a conventional discrete
Fourier transform from the same experimental data. We believe that by combining powerful resolu-
tion with ease of use, compressed sensing can be a powerful tool for the analysis and interpretation
of ultrafast spectroscopy data.

Multidimensional spectroscopy [1–4] is an important
tool for studying ultrafast dynamical processes in com-
plex molecular systems. For instance, it can be used to
analyze vibrational energy transfer at liquid/air inter-
faces on picosecond timescales [5] or exciton dynamics in
natural light harvesting systems at hundreds of femtosec-
onds [6–8]. It can also be applied for efficient detection
and identification of molecules, which is one of the crucial
challenges in chemistry, biology, and medicine with im-
portant applications, for example, in molecular sensing,
chemical separation, and DNA analysis. Frequently, in
these nonlinear optical techniques, the data collected in
the time domain is Fourier transformed to the frequency
domain. The crucial issue, then, for obtaining high fre-
quency resolution in measured spectra is the long sam-
pling time required. Here, we demonstrate that a method
known as compressed sensing (CS) can be applied as a
very efficient alternative to the Fourier transform to ob-
tain high-resolution multidimensional spectra.

Compressed sensing is a state-of-the-art signal process-
ing method which has recently become popular through-
out the physical and biological sciences. The method is
founded on the concept of sparsity. When a signal is
known to be sparse in a certain basis (i.e. most of the
coefficients are negligibly small), this additional knowl-
edge can be used to dramatically reduce the number of
measurements required to reconstruct the signal [9, 10].
This method has been applied to many areas of research,
ranging from magnetic resonance imaging [11] to super-
resolved imaging of single molecules [12] and quantum
process tomography [13]. Earlier, some of us showed that
CS can also be used to significantly reduce the compu-
tational cost of atomistic simulations [14]. In that work,
the application of CS was particularized for molecular dy-
namics and real-time time-dependent density functional
theory simulations for obtaining linear spectra (vibra-
tional, optical absorption, and circular dichroism) [15].
However, CS can be applied to other types of simu-
lations and experimental techniques. Multidimensional
non-linear spectroscopy is then an interesting and rel-

evant candidate to explore the possibilities of CS. Re-
cently, CS has been pursued to reconstruct one of the
dimensions in ultrafast 2D NMR data [16] and to simu-
late 2D spectra using random sampling [17].
In this letter, we present the first application of CS to

experimental ultrafast 2D optical spectroscopy. We ap-
ply the method to an atomic system – Rubidium vapor,
which is frequently used as a test model for multidimen-
sional spectroscopy techniques [18–20]. We find that CS
presents several additional advantages beyond a simple
speed-up. Many multidimensional experiments are in-
herently limited in the amount of time-domain data that
may be collected, either due to measurement constraints
or to more fundamental limitations such as the timescale
of the dynamics one wishes to explore (which may be
very short due to decoherence and other processes). We
believe CS can extend the range of spectroscopically-
observable dynamics by providing higher frequency reso-
lution even given limited time domain data.
Another benefit of CS is that it is quite easy for ex-

perimentalists to integrate. As discussed below, our ap-
proach simply replaces the 2D discrete Fourier transform
(FT) by a new 2D compressed sensing scheme. Since we
recast 2D CS as a series of one-dimensional problems,
we are able to harness the power of parallel computing
so that the entire signal processing does not take signifi-
cantly longer than 2D FT. It is our hope that CS’s easy
portability and short processing time will help it become
a method of choice among experimental spectroscopists.
The rest of this letter is structured as follows. We

begin by presenting the compressed sensing method and
outlining its application to the resolution of 2D ultra-
fast optical spectra. We next apply the method to a
model experimental system, namely gas-phase Rubidium
atoms, and show how CS may be used to better resolve
the spectral features. We then discuss the experimental
methods and numerical implementation. Finally, we offer
conclusions and a future outlook. We begin by describ-
ing how the CS method can be applied to 2D ultrafast
optical spectroscopy; see refs. [21–23] for more detailed
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FIG. 1. Schematic illustration of the sequence of four pulses
used in 2D optical spectroscopy.

information about CS. In particular, we will focus on
four-wave mixing experiments, similar to those used to
study coherent energy transfer in light-harvesting com-
plexes, quantum dots, and other systems of physical and
biological interest. Typically, these experiments involve
irradiating a sample with four optical pulses and varying
the time gaps between the pulses (Fig. 1). Defining the
time gaps as τ (the coherence time between pulses 1 and
2), T (the population time between pulses 2 and 3), and
t (the waiting time between pulses 3 and 4), the signal
measured in the time domain is a function S(τ, T, t). The
standard approach in four-wave mixing is to perform a
2D discrete Fourier transform in τ and t to obtain the
spectrum S(ωτ , T,ωt). This spectrum is typically plot-
ted in ωτ—ωt space for different values of T , and the
dynamics of the peaks then give information about the
dynamics of the underlying system.
The CS method can be used to replace a 1D discrete

FT in converting time-resolved data into the frequency
domain [9, 14], obtaining a significantly better frequency
resolution than the conventional discrete FT. Our basic
approach here, then, is to reduce the 2D CS computation
to a series of 1D CS calculations. A major advantage of
this approach (as compared to an inherently 2D method)
is that the 1D computations can be performed in parallel,
and each is individually inexpensive. To obtain the 2D
spectrum for a particular population time T , our proce-
dure involves two steps:
Step 1: For every value of τ in the data set, perform a

1D CS in t to convert the signal to the ωt domain. By col-
lecting all the results for different τ together, we obtain
the half-transformed signal S(τ, T,ωt) which is sparse in
ωt. This step requires a total of Nτ 1D CS calculations
(where Nτ is the number of τ data points). Each calcula-
tion takes a short time and all of them can be performed
in parallel.
Step 2: Now for every value of ωt in the half-

transformed signal, perform a 1D CS in τ to convert the
signal to the ωτ domain. This step requires Nωt

1D CS
calculations which also take a short time and may be
performed in parallel. Collecting all the results together
yields the final sparse spectrum S(ωτ , T,ωt).
It should be noted that the roles of τ and t may be

interchanged to yield similar final results. In either case,
if the spectrum is sparse in the ωτ—ωt plane, then this
2D compressed sensing procedure yields better-resolved
peaks in the frequency domains with less time-domain

5 2P3/2

5 2P1/2

5 2S1/2

DI
(2.370 rad/fs)

DII
(2.414 rad/fs)

FIG. 2. Energy level diagram for atomic 87Rb vapor.

data than the conventional 2D discrete FT, as we will
illustrate.
For completeness, however, we first provide a very brief

review of the 1D CS calculations, as these underlie the
2D method discussed above (see ref. [14] for a more de-
tailed derivation). In each 1D CS calculation, we want
to obtain a vector g of values {g1, g2, . . . , gNω

} at Nω

equidistant frequencies ωj = ∆ω j, from the known vec-
tor h set of time-resolved values {h1, h2, . . . , hNt

} given
at Nt equidistant times tj = ∆tj. (The scheme can be
generalized for non-uniform sampling.) Our objective is
to obtain sensible results with Nt as small as possible, so
we are interested in the case Nω > Nt. In principle, the
gk set can be directly obtained using the discrete FT,

gk =
Nt∑

j=1

∆t eiωktj hj . (1)

However, if we expect that many of the Fourier coeffi-
cients are negligible, we can use CS to extract more pre-
cise results from the same signal. This is done by the
recasting the Fourier coefficient calculation as a linear
equation. Since this is an underdetermined problem (as
Nω > Nt), the sparsity condition means that we should
select the solution that has the larger number of zero co-
efficients. In practice this solution can be obtained by
solving the basis-pursuit de-noising (BPDN) problem [9]

min
g

|g|1 subject to |Fg − h|
2
< η , (2)

where F is theNω×Nt inverse Fourier matrix with entries

Fjk =
2

π
∆ω e−iωjtk (3)

and η represents a level of noise that we assume is present
in the signal. In all calculations which follow, η < 10−4.
To illustrate the utility of CS in two-dimensional op-

tical spectroscopy, we consider phase-modulation 2D flu-
orescence spectroscopy (PM-2DFS) data collected from
atomic 87Rb vapor [20]. The 87Rb system may be consid-
ered as a quantum three-level system with ground state
5 2S1/2, first excited state 5 2P1/2, and second excited
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state 5 2P3/2, as illustrated in Fig. 2. The four light
pulses are produced by a titanium saphire laser [with
full width at half maximum (FWHM) ∼ 42 fs] which
is on resonance with the two electronic D line transi-
tions of 87Rb: 5 2S1/2 → 5 2P1/2 (with transition fre-
quency 2.370 rad/fs) and 5 2S1/2 → 5 2P3/2 (with tran-
sition frequency 2.414 rad/fs). We considered 87Rb va-
por to be an ideal candidate for our 2D CS method as
its 2D electronic spectrum is expected to be sparse in
frequency space, with diagonal and cross peaks corre-
sponding to the transitions just mentioned. The natu-
ral lifetime of electronic excitations in 87Rb is ∼ 25 ns,
which should correspond to very narrow lines (DI 36.1
and DII 38.1 rad/ms). Full and extensive details of
the PM-2DFS experimental method used to collect the
data are given in refs. [20, 24]. The experiments yield
time-resolved fluorescence-detected “sum” and “differ-
ence” signals [Ssum(τ, T, t) and Sdiff(τ, T, t)] which are
analogous, respectively, to the nonrephasing and rephas-
ing third-order polarizations collected in more traditional
four-wave mixing experiments, minus the effects of non-
resonant interactions.
The main results of this letter are given in Figs. 3 and

4, which compare the performance of the conventional
discrete Fourier transform (top) and our 2D compressed
sensing method (bottom) in resolving the peaks corre-
sponding to transitions in the atomic 87Rb vapor. Fig. 3
shows the “sum” (nonrephasing) signal Ssum(ωτ , T,ωt)
while Fig. 4 shows the “difference” (rephasing) signal
Sdiff(ωτ , T,ωt) for the population time T = 140 fs. Sim-
ilar results were obtained for other population times.
Note that the exact same set of time-resolved data was
used for the discrete FT spectra as for the CS spectra.
As can be seen from the figures, CS produces peaks

that are far better resolved in frequency space than those
obtained by the discrete FT. In fact, the peaks obtained
by CS are at least 5 to 10 times less wide in each di-
mension than those obtained via the discrete FT, con-
sistent with the results we previously obtained in one-
dimensional spectra [14]. In other words, to achieve a
comparable resolution as CS with the discrete FT, one
would need to collect far more time-resolved data by con-
tinuing to measure the signal S(τ, T, t) for longer time
delays τ and t. Given that CS obtains narrow peaks
with only limited time-resolved data, we expect this sig-
nal processing method to be particularly useful in resolv-
ing closely-spaced peaks in their 2D spectra.
One immediate question arising from the comparison

of the FT and CS spectra in Figs. 3 and 4 is that of
peak shape. As for long sampling times the CS result
matches the FT spectra, the question is how capable is
CS of resolving those peak features for short times. The
issue of peak shape certainly deserves a more extensive
investigation in the future, most likely by applying our
2D CS method to more complex experimental systems
with intricate features that are broadened by internal

structure or an environment.
In conclusion, we have demonstrated the first applica-

tion of compressed sensing to two-dimensional electronic
spectroscopy experiments. Focusing on electronic tran-
sitions in an atomic 87Rb vapor model system, we have
shown that the 2D CS method that we have developed
provides much finer resolution of the peaks in a 2D spec-
trum as compared to the standard discrete FT. As a re-
sult, we expect that 2D CS will substantially reduce the
experimental effort needed to obtain well-resolved spec-
tra by decreasing the amount of time-resolved data which
must be collected. Furthermore, we hope that 2D CS will
increase the range of spectral features resolvable in ultra-
fast experiments, particularly closely-spaced peaks.
An important question is the degree to which CS ac-

curately reproduces peak shapes in more complex sys-
tems with internal structure and an environment; this
question definitely merits a further joint theoretical and
experimental effort. We hope and expect that CS will be-
come more widely investigated and employed in the 2D
experimental ultrafast community once its easy portabil-
ity, competitive speed, and strong resolving power be-
come widely known.

METHODS

The experimental methods used to collect the time-
resolved data for the atomic 87Rb vapor are de-
tailed in ref. [20]. Time-resolved “sum” and “differ-
ence” signals were collected at all points on a two-
dimensional grid consisting of 51 equally-spaced coher-
ence times τ and 50 equally-spaced waiting times t (with
∆τ = ∆t = 26.687 fs) for a series of 5 population times
T = 140, 175, 210, 245, 280 fs.
The full 2D CS spectrum was obtained by performing

a series of 1D CS calculations as described in the text.
For each 1D CS calculation, the optimization problem in
eq. (2) was solved using the SPGL1 algorithm developed
by van den Berg and Friedlander [25]. To avoid numerical
stability issues we work with a normalized BPDN prob-
lem, where the prefactor 2∆ω/π of the F matrix, eq. (3),
is left out and h is normalized. The missing factors are
included in g after the solution is found.
For the CS calculations, we use a frequency grid con-

sisting of 1000 evenly-spaced points between −π/∆τ and
π/∆τ for ωτ and 1000 evenly-spaced points between
−π/∆t and π/∆t for ωt (the same grid spacings are also
used for the discrete FT).
We acknowledge J. Yuen-Zhou and J. Goodknight for

useful discussions.
The computations in this paper were run on the

Odyssey cluster supported by the FAS Science Division
Research Computing Group at Harvard University.
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FIG. 3. Comparison between discrete Fourier transform (top) and compressed sensing (bottom) for the “sum” (nonrephasing)
2D optical spectra of 87Rb vapor for population time T = 140 fs. CS yields narrower, better-resolved peaks than the discrete
FT.
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