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Application of compressed sensing to the simulation of atomic systems

X. Andrade,1 J. N. Sanders,1 and A. Aspuru-Guzik1, ∗

1Department of Chemistry and Chemical Biology, Harvard University,
12 Oxford Street, Cambridge, MA 02138, United States

Compressed sensing is a method that allows a significant reduction in the number of samples
required for accurate measurements in many applications in experimental sciences and engineering.
In this work, we show that compressed sensing can also be used to speed up numerical simulations.
We apply compressed sensing to extract information from the real-time simulation of atomic and
molecular systems, including electronic and nuclear dynamics. We find that for the calculation of
vibrational and optical spectra the total propagation time, and hence the computational cost, can
be reduced by approximately a factor of five.

INTRODUCTION

A recent development in the field of data analysis is
the compressed sensing (CS) (or compressive sampling)
method [1, 2]. The foundation of the method is the con-
cept of sparsity: a signal expanded in a certain basis
is said to be sparse when most of the expansion coeffi-
cients are zero. This extra information can be used by
the CS method to significantly reduce the number of mea-
surements needed to reconstruct a signal. CS has been
successfully applied to data acquisition in many differ-
ent areas [3]. For example, to improve the resolution of
medical magnetic-resonance imaging [4]. It has also been
applied to the experimental study of atomic and quan-
tum systems [5–7].

In this article we show that CS can also be an invalu-
able tool for some numerical simulations where the opti-
mal sampling of CS is reflected in a considerable reduc-
tion of the computational cost. We focus on atomistic
simulations of nanoscopic systems by using CS to extract
frequency-resolved information from real-time methods
such as molecular dynamics (MD) and real-time electron
dynamics.

In MD[8, 9] the trajectory of the atomic nuclei is ob-
tained by integrating their equations of motion with an
interaction obtained from parametrized force-fields or by
explicitly modeling the electrons [10]. Many static and
dynamical properties can be obtained from MD, making
it one of the most widely used methods to study atom-
istic systems computationally. As such it is important
to develop methods that can improve the precision and
reduce the computational cost of this method, especially
for ab-initio MD.

While not as widely used as MD, real-time electron
dynamics, in particular real-time time-dependent den-
sity functional theory (TDDFT) [11], is an important
approach to study linear and non-linear electronic re-
sponse [12–15]. Due to the scalability and parallelizabil-
ity properties real-time TDDFT is particularly efficient
for large electronic systems [16], so an additional reduc-
tion in the computational cost can push the boundaries
of the system-sizes that can be studied.

Many physical properties are represented by frequency-
dependent quantities. To obtain these from a real-time
framework usually a discrete Fourier transform (FT) is
used. Our approach is to replace this FT by a calcula-
tion of the Fourier coefficients based on the CS method.
To obtain a given frequency resolution, the CS method
requires a total propagation time that is several times
smaller than that required by a FT.
CS has the potential to provide across-the-board

speedup for many applications involving the computa-
tion of sparse spectra. Moreover, this speedup may be
obtained without making any changes to the underly-
ing propagation code used in different types of electronic
and nuclear calculations; one simply replaces the FT al-
gorithm with the CS method, making the approach quite
straightforward to implement. This paper introduces
CS and demonstrates its broad utility in computational
chemistry and physics by applying it to the calculation of
various nuclear and electronic spectra of small molecules.
The resulting computer code is available as open-source
software.
The article is structured as follows. We first introduce

the CS method and show how it may be applied to the
determination of Fourier coefficients. Next, we apply CS
to the calculation of vibrational, optical absorption, and
circular dichroism spectra. We then proceed to a discus-
sion of the numerical methods used in our CS implemen-
tation. Finally, we offer conclusions and an outlook.

COMPRESSED SENSING

In this section, we briefly introduce the application of
the CS method to the calculation of Fourier coefficients.
More details about the method and its origins may be
found in Refs. [17–19].
For simplicity, we assume that we want to calculate

a certain frequency-resolved quantity g(ω) that is given
by the sine transform of a certain time-resolved function
h(t)

g(ω) =

∫
∞

−∞

dt sin(ωt)h(t) (1)
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(the analysis is equally valid for the cosine transform).
Since we are interested in numerical solutions, we need
to think in terms of discrete quantities. In this case
we want to obtain a series of values {g1, g2, . . . , gNω

} at
Nω equidistant frequencies ωj = ∆ω j, from the known
set of time-resolved values {h1, h2, . . . , hNt

} given at Nt

equidistant times tj = ∆tj.

In principle, the gk set can be directly obtained using
the discrete FT,

gk =
Nt∑
j=1

∆t sin(ωktj)hj . (2)

However, if we expect that many of the Fourier coeffi-
cients are zero, a property known as sparsity, we can use
this additional information to obtain more precise results.
This is the basis for the CS scheme.

We start by reformulating the discrete Fourier trans-
form in eq. (2) as a matrix inversion problem. From this
perspective, we are trying to solve the linear equation for
g,

Fg = h , (3)

where F is the Nω ×Nt Fourier matrix with entries

Fjk =
2

π
∆ω sin(ωjtk) . (4)

Our objective is to obtain sensible results with Nt as
small as possible. Thus, we are interested in the case
Nω > Nt, where the linear system is under-determined,
and there are many solutions for g (in fact, one of them
will be given by eq. (2)). From all the solutions of eq. (3),
we select the one that has the largest number of zero co-
efficients: the sparsest solution. This turns out to be
equivalent to the so-called basis-pursuit (BP) optimiza-
tion problem [18]

min
g

|g|1 subject to Fg = h , (5)

which is what one solves in practice (where |g|1 =
∑

k |gk|
is the standard 1-norm).

The CS scheme can be generalized to allow for a certain
amount of noise in the time-resolved signal. In this case
the problem to be solved is known as basis-pursuit de-
noising (BPDN)

min
g

|g|1 subject to |Fg − h| < η , (6)

where η represents the level of noise in the signal. This
is the formulation we use in our case, since we expect a
certain amount of noise coming from the finite-precision
numerical calculations (and possibly other sources).

VIBRATIONAL SPECTRA

MD can be used to obtain information about the vi-
brational modes of atomic systems. Experimentally, the
quantities that usually give access to the vibrational
modes are the infrared and Raman spectra that can be
obtained from MD as the Fourier components of the elec-
tronic polarization and polarizability, respectively. If we
are only interested in the vibrational frequencies, from
the nuclear velocities, {vi}, we can calculate the velocity
autocorrelation function

γ(t) =
〈
∑

i vi(t) · vi(0)〉

〈
∑

i vi(0) · vi(0)〉
, (7)

whose cosine transform is the vibrational frequency dis-
tribution [20]

f(ω) =

∫
dt γ(t) cos(ωt) . (8)

Since this spectrum is composed of a finite number of
frequencies (less than three times the number of atoms
in the system), the calculation is ideal for the CS method.
To illustrate the properties of the CS method we start

with a simple case, the single vibrational frequency of a
diatomic molecule, Na2, that we simulate using ab-initio
molecular dynamics. In Fig. 1, we show how the vibra-
tional spectrum depends on the amount of time for which
the velocity autocorrelation is calculated. While the dis-
crete FT requires long times to resolve the vibrational
frequency, the CS method gives a well-defined peak even
with less than one oscillation of the molecular vibrational
mode. That the peak is well defined, however, does not
imply that peak position is converged. As it can be seen
in Fig. 2, the peak position oscillates with the total time
until it converges to the proper value after a few periods
are sampled. Still, the result converges much faster than
compared with the width of the peak given by a FT. We
remark that the CS process does not use any additional
information about the the signal beyond assuming it is
sparse.
To further demonstrate the advantages of this ap-

proach, we now calculate the vibrational spectrum for a
benzene molecule from a ab-initio MD simulation, Fig. 3.
We can see that the CS approach with 1000 fs obtains a
spectrum that is better resolved than the FT results for
5000 fs. This is directly translated into a reduction of
the computational time by five times or more. It is rea-
sonable to expect that equivalent gains can be obtained
for the computer simulation of other vibrational spectro-
scopies like infrared and Raman.

OPTICAL ABSORPTION SPECTRA

Optical absorption is an electronic process. While it
can be calculated from a linear response framework [21,
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FIG. 1: Frequency distribution spectrum of Na2
calculated using a Fourier transform and compressed
sensing for different total propagation times: a) 100 fs,
b) 205.65 fs (≈ 1 oscillation period), and c) 4000 fs.

The left plots show the velocity autocorrelation function
and the right plots show the frequency spectrum.
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FIG. 2: Error in the vibrational frequency of Na2
computed by compressed sensing with respect to total
time. For comparison we plot the width of the peak
obtained by using a discrete Fourier transform. The
width, σ, is calculated by assuming the peak has a

Gaussian form A exp[−ω2/(2σ2)].
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FIG. 3: Frequency distribution spectrum of benzene.
Comparison of a compressed sensing calculation with

1000 fs and a Fourier transform with 5000 fs.

22], it can also be obtained from real-time electron dy-
namics [12]. To obtain the spectrum from real-time dy-
namics the electronic system is propagated under the
effect on an electric field of the form E(r, t) = κδ(t).
From the propagation the time-dependent dipole moment
p(t) is obtained, and from the dipole, the frequency-
dependent polarizability can be obtained as (atomic units
are used in the next two sections)

αij(ω) =
1

κi

∫
∞

0

dt e−iωt [pj(t)− pj(0)] . (9)

In order to obtain the full α tensor three propagations
are required (with κ in different directions.
The absorption cross-section is related to the trace of

the imaginary part of the polarizability tensor

σ(ω) =
4πω

3c
Im

∑
i

αii(ω) . (10)

The optical absorption spectra is an ideal candidate for
the application of CS. For a molecule, the electronic tran-
sitions between bound states produce a discrete spectrum
in the low energy region. At higher energies, the transi-
tions to unbound states produce a continuous spectrum.
Standard calculation approaches, however, cannot cap-
ture this continuous spectrum and approximate it as a
sequence of discrete excitations.
In Fig. 4, we show the optical absorption spectrum for

benzene calculated via real-time TDDFT. There we illus-
trate the effect of the propagation time on the spectrum
for CS and FT. From the figure, it is clear that the CS
method is capable of resolving the spectrum much better
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FIG. 4: Optical absorption spectra for benzene
computed from real-time TDDFT with different

propagation times. Comparison between compressed
sensing and discrete Fourier transform. Experimental

results from Ref. [23].

and with a shorter propagation time than a discrete FT.
For a given resolution, the FT requires approximately 5
times the propagation time as CS (as can be seen, for
example, by comparing the FT at 25 fs with CS at 5 fs).

CIRCULAR DICHROISM SPECTRA

Another property that can be calculated from real-
time electron dynamics is circular dichroism (CD) spec-
tra [24, 25]. A CD spectrum measures the difference in
a chiral molecule’s response to left and right circularly-
polarized light. The real-time calculation is performed in

the same manner as the optical absorption case, but the
key quantity to be calculated is now the time-dependent
orbital magnetization m(t). The frequency-dependent
electric-magnetic cross-response tensor may be obtained
as

βij(ω) =
ic

ωκi

∫
∞

0

dt e−iωt [mj(t)−mj(0)] . (11)

The rotatory strength, which is the quantity typically
plotted in CD spectra, is related to the trace of the imag-
inary part of β(ω) according to

R(ω) =
ω

πc
Im

∑
i

βii(ω) . (12)

The rotatory strength R(ω) is suitable to the CS scheme
because it is sparse in frequency space. In fact, the peaks
in a CD spectrum are located at the same positions as
in an absorption spectrum. However, the CD spectrum
contains both positive and negative peaks.

Fig. 5 compares the CD spectrum for (R)-
methyloxirane as computed by FT and CS for two dif-
ferent propagation times (10 fs and 50 fs). As can be
seen from the figure, for a given propagation time, the
CS method provides better spectral resolution than the
discrete FT. In fact, just as with linear absorption, FT re-
quires a propagation time approximately 5 times as long
as CS to obtain a comparable spectral resolution (as can
be seen by comparing the 50 fs FT with the 10 fs CS).

Fig. 5 also illustrates another feature of CS: unlike a
direct FT, the CS method is non-linear. Adding together
time-resolved signals, then applying CS, generally gives
different results from applying CS first and then adding
together the results in the frequency domain; this is par-
ticularly the case if not all the peaks are well-resolved. In
other words, the use of CS to convert time-resolved data
into the frequency-domain, as in eq. (11), and the calcu-
lation of the trace, as in eq. (12), do not commute. Hence,
there are two approaches to obtain the CD spectrum: we
can perform CS for each propagation direction and then
compute the trace, or we can compute the trace in the
time-domain and then perform CS. Both approaches are
shown in Fig. 5; at 10 fs, they give similar but not iden-
tical results. This is to be expected: the ability of CS to
resolve peaks depends on the sparsity of the spectrum.
Since each propagation direction is sparser than the sum
of all three, CS resolves more peaks at 10 fs when it is per-
formed prior to the trace. For longer propagation times
(50 fs), all of the peaks are more fully resolved and the
two approaches converge. In any event, both approaches
to CS provide much improved resolution over a direct FT
for a given propagation time.
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FIG. 5: Circular dichroism spectrum computed for
(R)-methyloxirane from real-time TDDFT with
different propagation times. Comparison between
discrete Fourier transform and compressed sensing

(CS). Since the CS process is non-linear we compute the
spectra in two ways. CS before trace: the spectra is
calculated for each direction using CS and then the

trace, eq. (12), is computed. CS after trace: the trace is
calculated in the time domain and then the CS process

is used over this averaged signal.

NUMERICAL METHODS

Numerically, to find a spectrum using the CS method
we need to solve eq. (6). This is not a trivial prob-
lem, so we rely on the SPGL1 algorithm developed by
van den Berg and Friedlander [26]. To avoid numerical

stability issues we work with a normalized BPDN prob-
lem, where the factors of the F matrix, eq. (4), are left
out and h is normalized. The missing factors are included
in g after the solution is found. This has the additional
advantage of making the noise parameter η of eq. (6)
dimensionless.
Since we do not a have an a priori estimate for η, we

do not set it directly. As the SPGL1 algorithm finds
a sequence of approximated solutions with a decreasing
value of η, we set the target value to zero. We assume
that the calculation is converged when the value of η falls
below a certain threshold (10−7) or the active space of the
system, the set of non-zero coefficients, has not changed
for a certain number of iterations (50). In the former case
we consider that a solution of the BP problem, eq. (5),
has been found. For all the calculations presented here
η < 10−3.
CS is much more costly numerically than the discrete

FT approach, as it usually involves several hundreds of
matrix multiplications. However, this is not a problem
for application since usually the solution process nor-
mally only takes a few minutes, much less than the com-
putation time required to simulate the real-time dynam-
ics of large atomic systems.
All the calculations presented in this article were per-

formed using the octopus code [16, 27] at the (time-
dependent) density functional theory level with the PBE
exchange correlation functional [28]. The adiabatic
molecular dynamics calculations were performed from
first principles using the modified Ehrenfest method [29,
30] with a µ factor of 30 for Na2 and 5 for benzene. The
systems were given initial velocities equivalent to 300 K
and the MD is performed at constant energy.
All calculations used norm-conserving pseudo-

potentials with a real-space grid discretization. The
shape of the grid is a union of boxes around each atom.
For Na2 we use a spacing of 0.375 a.u. with a sphere
radius of 12 a.u., and the MD time-step is 0.057 fs.
For benzene, the grid-spacing is 0.35 a.u., the radius
is 14 a.u., and the time-step is 0.0085 fs for MD and
0.0017 fs for real-time TDDFT. For (R)-methyloxirane,
the spacing is 0.378 a.u., the sphere radius is 15.1 a.u.,
and the time-step is 0.0008 fs for real-time TDDFT. For
the vibrational spectrum calculation we use a time-step
10 times the one of the MD, the energy step is 0.01
1/cm, and the maximum spectrum energy is 5000 1/cm.
For the benzene optical absorption spectra, we use a
time-step of 0.0017 fs, the energy step is 0.027 eV,
and the maximum spectrum energy is 820 eV. For
the (R)-methyloxirane circular dichroism spectra, the
time-step is 0.0008 fs, the energy step is 0.01 eV, and
the maximum spectrum energy is 330 eV. The structure
of benzene was taken from ref. [31] and the structure of
(R)-methyloxirane was taken from ref. [32].
All discrete FTs were performed using third-order

polynomial damping: each signal at time t was multi-
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plied by p(t) = 1 − 3(t/T )2 + 2(t/T )3 prior to Fourier
transform, where T is the time-length of the signal.
The SPGL1 method used for CS was implemented into

octopus based on a Fortran translation of the original
Matlab code of van den Berg and Friedlander [33]. We
plan to release this implementation as a standalone tool
in the near future (for the moment the code can be ob-
tained from the octopus repository).

CONCLUSIONS

We have shown that the CS method can be applied to
the numerical calculation of different kinds of atomic and
electronic spectra. This results in a significant reduction
of the computational time required for the numerical sim-
ulations. The effect of this reduction is to increasing the
size of the systems that are currently accessible to numer-
ical simulations, and to make possible simulations with
more precise, but more costly, methods. It also means
that other types of simulations become more affordable
from a real-time perspective, for example the combined
dynamics of nuclei and electrons that are constrained to
short simulation times by the fast dynamics of the elec-
tron.
In this work, we have shown the application of CS

to the calculation of a few types of spectra, but the
method most likely can be applied to other quantities
as well, such as non-linear optical response [14, 15], mag-
netic circular dichroism [34], semi-classical nuclear dy-
namics [35, 36], 2D spectroscopy [37, 38], etc. Of course,
the method is not limited to atomistic simulations and
could be applied to simulations in all scientific fields.
The main limitation of the CS approach is that it will

not be beneficial for quantities that are not sparse. In
such case, the performance of CS will be equivalent to
a standard discrete FT. There are some cases where the
sparsity requirement might be circumvented. For exam-
ple, though the real part of the polarizability tensor is not
sparse, it could be computed from the imaginary part by
using the Kramers-Kronig relation. Another example is
crystalline systems [39], where there is a continuum of
excitation energies. In this case it might be possible to
apply the CS scheme to each k-point separately.
We expect that compressed sensing will become widely

used in the scientific computing community once its ad-
vantageous properties become more widely known. The
main difficulty in the adoption of CS is that it is more
complex to implement than a discrete FT. This problem
can be solved by providing libraries and utilities that
can be used by researchers as a black-box. Other issue
of the CS approach it has some aspects that might re-
sult counter-intuitive at first. For example, non-linearity
and the fact that with CS the peak width is not always
related to the convergence of the spectrum.
Moreover, we believe that our direct application of the

compressed sensing methodology to numerical simulation
opens the path for more challenging applications. An
idea that we could call “compressed computing”, where
the principles of sparsity could be used to design algo-
rithms for numerical simulations that have a reduced
computational cost of calculations not only in the num-
ber of operations, but also in memory and data transfer
bandwidth requirements.
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[37] T. Mančal, A. V. Pisliakov, and G. R. Fleming,
J. Chem. Phys. 124, 234504 (2006).

[38] J. Yuen-Zhou and A. Aspuru-Guzik,
J. Chem. Phys. 134, 134505 (2011).

[39] G. Bertsch, J.-I. Iwata, A. Rubio, and K. Yabana,
Phys. Rev. B 62, 7998 (2000).


