There Can Be No Turing-Test--Passing Memorizing Machines

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
http://hdl.handle.net/2027/spo.3521354.0014.016

Accessed
February 14, 2018 6:37:51 PM EST

Citable Link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11684156

Terms of Use
This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(Article begins on next page)
Calculating the critical Turing Test length

Supplement to “There can be no Turing-Test–passing memorizing machines”
Stuart M. Shieber
February 8, 2014

This Mathematica document is intended as a supplement to the paper “There can be no Turing-Test–passing memorizing machines” to appear in Philosopher’s Imprint. It provides derivations of all of the primary technical results presented in that paper, as well as the development of the graphs. It is not intended as a standalone document; it should be used in conjunction with the associated paper.

Functions of interest

The maximum time of a Turing Test that a memorizing machine can support depends on the radius \(r \) of its storage, as well as the spatial density of information \(\alpha \) and the temporal density \(\beta \), as well as the number of half-rounds of communication that must be allowed for.

\[
\text{\texttt{In[612]:=}} \quad t[r_\text{,} \alpha_\text{,} \beta_\text{,} \text{\textbar} k_\text{\textbar}] := \frac{\text{Log}_2[(\alpha / \text{bit}) r^3] \text{bit}}{k \beta}
\]

Basic units and conversions

Spatial density of information assuming 1 bit per Planck volume, given in bits per cubic light second. This is a gross overestimate of information density.

\[
\text{\texttt{In[613]:=}} \quad \alpha := \frac{4 \pi}{3} \left(\frac{1 \text{ bit}}{\text{plancklength}^3} \right) \times \left(\frac{1.616 \times 10^{35} \text{ plancklength}}{\text{m}} \right)^3 \times \left(\frac{2.998 \times 10^8 \text{ m}}{\text{lightsecond}} \right)^3
\]

(Planck length value taken from [Mohr:2012:CRV, page 1587]. Meters to light-seconds is the SI definition of the meter ("the length of the path travelled by light in vacuum during a time interval of \(1/299 \ 792 \ 458 \) of a second". [Taylor:2008:ISU, page 18])

\[
\text{\texttt{In[614]:=}} \quad N[\alpha]
\]

\[
\text{\texttt{Out[614]=}} \quad 4.7633 \times 10^{131} \text{ bit} \quad \frac{}{\text{lightsecond}^3}
\]

A slightly more reasonable estimate of spatial information density, assuming a terabit per cubic centimeter.
The temporal density of spoken information, based on entropy estimates of written English and standard speaking rates.

\[
\alpha_1 := \frac{4\pi}{3} \left(\frac{10^{12} \text{ bit}}{(.01 \text{ m})^3} \times \left(\frac{3 \times 10^8 \text{ m}}{\text{lightsecond}} \right)^3 \right)
\]

\[
N[\alpha_1] = 1.13097 \times 10^{44} \text{ bit lightsecond}^3
\]

An estimate of the size of the universe (its radius) in light seconds, based on its age.

\[
\beta := \frac{5 \text{ bit}}{\text{word}} \times \frac{200 \text{ word}}{\text{minute}} \times \frac{\text{minute}}{60 \text{ second}}
\]

(Entropy of English from [Brown:1992:EUB] is 1.75 bits per character. This is an upper bound, so use a conservative estimate of 1 bit per character, 5 characters per word.)

\[
N[\beta] = 16.6667 \text{ bit second}
\]

An estimate of the size of the universe (its radius) in light seconds, based on its age.

\[
\gamma := \frac{1 \text{ second}}{\text{lightsecond}}
\]

Replicating and extending the “communication-free” estimates

Replicating the “less than a minute” estimate of Shieber (2007)

\[
N[t[\text{runiv}, \alpha, \beta, 1]] = 36.6126 \text{ second}
\]

If the universe were ten times older, the critical length doesn’t increase much.

\[
N[t[10 \times \text{runiv}, \alpha, \beta, 1]] = 37.2106 \text{ second}
\]

Reducing this estimate based on a single round of communication. The process could be repeated to
get successively shorter estimates but convergence is extremely rapid. We get convergence to four significant digits in just three rounds.

In[624]:= \[N[t[36.509834144709295 \text{ lightsecond}, \alpha, \beta, 1]]

Out[624]= 27.1797 \text{ second}

In[625]:= \[N[t[\% / \gamma, \alpha, \beta, 1]]

Out[625]= 27.1031 \text{ second}

In[626]:= \[N[t[\% / \gamma, \alpha, \beta, 1]]

Out[626]= 27.1023 \text{ second}

Solving for the fixed point

The function \(f \) from Appendix B determines if the constraint of Equation (1) is solvable.

In[827]:= f[r_, \beta_, k_] := (r^3 2^{-k} \beta r / \text{bit})

In[828]:= f[r \text{ lightsecond}, \beta, 2] / (\text{bit lightsecond}^3)

Out[828]= 2^{-100} r^3 r^3

In[829]:= \(a^{-1} (\text{bit / lightsecond}^3) \)

Out[829]= 2.09939 \times 10^{-132}

In[830]:= Off[NSolve::ifun]

In[831]:= solns = NSolve[f[r, \beta, 2] / (\text{bit lightsecond}^3) = a^{-1} \text{bit / lightsecond}^3, r]

Out[831]= \{ \{ r \to (-6.40227 \times 10^{-45} - 1.10891 \times 10^{-44} \text{i}) \text{ lightsecond},

r \to (-6.40227 \times 10^{-45} + 1.10891 \times 10^{-44} \text{i}) \text{ lightsecond},

r \to 1.28045 \times 10^{-44} \text{ lightsecond},

r \to 13.4603 \text{ lightsecond} \}\}

We ignore the two imaginary solutions. The other two solutions provide the lower and upper bounds on the range for which communication is feasible.

In[832]:= lower := r /. solns[3]

In[833]:= upper := r /. solns[4]

In[834]:= lower

Out[834]= 1.28045 \times 10^{-44} \text{ lightsecond}

In[835]:= upper

Out[835]= 13.4603 \text{ lightsecond}

Verifying the solution
A machine of this radius can support a Turing Test of the following length:

```
In[87]:= N[t[upper, α, β, 2]]
Out[87]= 13.4603 second

What about requiring two roundtrips?

```

```
In[88]:= NSolve[f[r, β, 4] / (bit lightsecond^3) = α^-1 bit / lightsecond^3, r]
Out[88]= \{r \to -6.40227 \times 10^{-45} - 1.10891 \times 10^{-44} i\} lightsecond,
       \{r \to -6.40227 \times 10^{-45} + 1.10891 \times 10^{-44} i\} lightsecond,
       \{r \to 1.28045 \times 10^{-44}\} lightsecond, \{r \to 6.68471 lightsecond}\}

One hundred roundtrips?

```

```
In[89]:= NSolve[f[r, β, 200] / (bit lightsecond^3) = α^-1 bit / lightsecond^3, r]
Out[89]= \{r \to -6.40227 \times 10^{-45} - 1.10891 \times 10^{-44} i\} lightsecond,
       \{r \to -6.40227 \times 10^{-45} + 1.10891 \times 10^{-44} i\} lightsecond,
       \{r \to 1.28045 \times 10^{-44}\} lightsecond, \{r \to 0.128564 lightsecond\}

Half a roundtrip? (This verifies the iteratively determined fixed point above.)

```

```
In[90]:= NSolve[f[r, β, 1] / (bit lightsecond^3) = α^-1 bit / lightsecond^3, r]
Out[90]= \{r \to -6.40227 \times 10^{-45} - 1.10891 \times 10^{-44} i\} lightsecond,
       \{r \to -6.40227 \times 10^{-45} + 1.10891 \times 10^{-44} i\} lightsecond,
       \{r \to 1.28045 \times 10^{-44}\} lightsecond, \{r \to 27.1023 lightsecond\}
```

Finding the maximum of f

Here we replicate the derivation in Appendix B of the maximum value of f to verify that the maximum is above the needed threshold.

```
In[91]:= dimfree[x_] := x /. {lightsecond -> 1, second -> 1, bit -> 1}

In[92]:= f[r_] := dimfree[f[r, β1, k1]]

In[93]:= f'[r]
Out[93]= 3 \times 2^{-k_1 \beta_1} r^2 - 2^{-k_1 \beta_1} k_1 r^3 \beta_1 \log(2)
```
\begin{verbatim}
In[646]:= Solve[f'[r] == 0, r]
Out[646]= \{\{r \to 0\}, \{r \to \frac{3}{k1 \beta 1 \log(2)}\}\}

In[647]:= f[r /. %[[3]]]
Out[647]= \frac{27 \times 2^{-\frac{3}{\log(2)}}}{k1^3 \beta 1^3 \log(2)^3}

In[648]:= rmax := \frac{3}{2 \beta \log(2)}

In[649]:= fmax := f[rmax, \beta, 2]

In[650]:= ScientificForm[N[dimfree[fmax]]]
Out[650]/ScientificForm= 1.08985 \times 10^{-4}

In[651]:= ScientificForm[N[dimfree[\alpha^{-1}]]]
Out[651]/ScientificForm= 2.09939 \times 10^{-132}
\end{verbatim}

Alternative scenarios

What if we require that each round of communication happen in near real time, say, within a second?

\begin{verbatim}
In[652]:= N[t[1 lightsecond, \alpha, \beta, 1]]
Out[652]= 26.2455 second

Suppose instead we imagine the device being the size of the earth (.02 light seconds in radius)

\begin{verbatim}
In[653]:= N[t[.02 lightsecond, \alpha, \beta, 1]]
Out[653]= 25.2296 second
\end{verbatim}

What about 1 mile in radius?

\begin{verbatim}
In[654]:= N[t[5.36819375 \times 10^{-6} lightsecond, \alpha, \beta, 1]]
Out[654]= 23.0942 second
\end{verbatim}

1 mile with reasonable storage densities?

\begin{verbatim}
In[655]:= N[t[5.36819375 \times 10^{-6} lightsecond, \alpha 1, \beta, 1]]
Out[655]= 5.62926 second
\end{verbatim}
\end{verbatim}
We generate a table of the critical Turing Test length for exponentially increasing values of k. The values plot as a straight line on a log-linear scale, showing the extremely slow reduction in CTTL as k increases.
Information density based on surface area

As noted in Footnote 13, the estimates above, based on 1 bit per Planck volume, are extremely conservative. They ignore work in quantum gravity that places limits on the information capacity of a region based on its surface area rather than its volume. (See the footnote for pertinent references.) We can recalculate based on this better estimate of storage capacity limits. The result, as expected, is lower by a factor of 2/3, since volume grows as the cube of the radius, but surface area only as the square.

\[
\alpha_2 := 4 \pi \left(\frac{1 \text{ bit}}{\text{ plancklength}^2} \times \left(\frac{1.616 \times 10^{35} \text{ plancklength}}{\text{ m}} \right)^2 \times \left(\frac{2.998 \times 10^8 \text{ m}}{\text{ lightsecond}} \right)^2 \right)
\]

\[
t_2[r_, \alpha, \beta, k_] := \frac{\log_2[(\alpha / \text{ bit}) r^2 \text{ bit}]}{k \beta}
\]

\[
N[t_2[\text{runiv}, \alpha_2, \beta, 1]]
\]

24.5448 second

\[
N[t_2[\%\text{ lightsecond} / \text{ second}, \alpha_2, \beta, 1]]
\]

18.1875 second

\[
N[t_2[\%\text{ lightsecond} / \text{ second}, \alpha_2, \beta, 1]]
\]

18.1356 second

\[
f_2[r_, \beta, k_] := \left(r^2 2^{k \beta r / \text{ bit} \text{ bit}} \right)
\]
In[668]:= \(f2[r \text{ lightsecond}, \beta, 2] \)

Out[668]= \(2^{-100} r^{1/3} \text{ bit lightsecond}^2 r^2 \)

In[669]:= \(a^{-1} \)

Out[669]= \(\frac{2.09939 \times 10^{-132} \text{ lightsecond}^3}{\text{ bit}} \)

In[670]:= \(\text{NSolve}[f2[r, \beta, 2]/(\text{bit lightsecond})^2 = a2^{-1} \text{ bit/lightsecond}^2, r] \)

Out[670]= \(\{ \{ r \rightarrow -5.82267 \times 10^{-45} \text{ lightsecond} \}, \{ r \rightarrow 5.82267 \times 10^{-45} \text{ lightsecond} \}, \{ r \rightarrow 9.00697 \text{ lightsecond} \} \} \)

In[671]:= \(\text{N}[t2[r /. \%[[3]], a2, \beta, 1]] \)

Out[671]= 18.0139 \text{ second}