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Abstract. We initiate a study of randomness condensers for sources
that are efficiently samplable but may depend on the seed of the con-
denser. That is, we seek functions Cond : {0, 1}n×{0, 1}d → {0, 1}m such
that if we choose a random seed S ← {0, 1}d, and a source X = A(S)
is generated by a randomized circuit A of size t such that X has min-
entropy at least k given S, then Cond(X;S) should have min-entropy at
least some k′ given S. The distinction from the standard notion of ran-
domness condensers is that the source X may be correlated with the seed
S (but is restricted to be efficiently samplable). Randomness extractors
of this type (corresponding to the special case where k′ = m) have been
implicitly studied in the past (by Trevisan and Vadhan, FOCS ‘00).
We show that:
– Unlike extractors, we can have randomness condensers for samplable,

seed-dependent sources whose computational complexity is smaller
than the size t of the adversarial sampling algorithm A. Indeed, we
show that sufficiently strong collision-resistant hash functions are
seed-dependent condensers that produce outputs with min-entropy
k′ = m−O(log t), i.e. logarithmic entropy deficiency.

– Randomness condensers suffice for key derivation in many crypto-
graphic applications: when an adversary has negligible success proba-
bility (or negligible “squared advantage” [3]) for a uniformly random
key, we can use instead a key generated by a condenser whose output
has logarithmic entropy deficiency.

– Randomness condensers for seed-dependent samplable sources that
are robust to side information generated by the sampling algorithm
imply soundness of the Fiat-Shamir Heuristic when applied to any
constant-round, public-coin interactive proof system.

1 Introduction

Randomness extractors — functions that convert sources of biased and/or cor-
related bits into almost uniformly distributed bits — have a wide variety of
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applications in cryptography and other parts of theoretical computer science.
However, to extract randomness from rich models of sources, e.g. sources for
which we only have a lower bound on their min-entropy (or even sources where
each bit is mildly unpredictable given the previous ones), deterministic functions
cannot be randomness extractors [30]. Thus the general definition of randomness
extractor by Nisan and Zuckerman [27] allows the extractor to be probabilistic
— the extractor is given a uniformly random seed that it can use as a catalyst
for extraction.

The need for a seed, however, is a problem in some applications of randomness
extractors. First, if the reason for extraction is lack of access to high-quality
random bits, then we may not have any way to generate the seed.4 (In algorithmic
applications of randomness extractors, it is often possible to try all possible seeds,
and combine the results obtained for each extractor output. But this does not
work in most cryptographic applications. Even one bad seed can compromise
one’s secrets, and thus eliminate security.) Second, even if we can generate a
uniformly random seed, it is crucial that the weak random source from which
we extract is independent from the seed. This means that it is problematic
to generate the seed once and for all (perhaps using an expensive source of
randomness) in hope that it can be used for all future randomness extractions.
If there is any chance that the future weak sources can be influenced by the seed,
then the extractor guarantees will be lost. For example, if the seed is stored in
some hardware random number generator (RNG) that extracts from physical
sources of randomness within the computer (e.g. timing of various events), these
sources may be affected by the internal computations of the RNG itself and thus
we have correlations between the seed and the sources.

Such considerations and others have motivated a revival in the study of de-
terministic extractors over the past decade, i.e. extractors that do not require a
seed. Since deterministic extraction is impossible for general weak sources of ran-
domness, this body of work has sought to identify the richest classes of sources
for which deterministic extraction is possible, and construct explicit extractors
for those sources. Most of the studied models of such “extractable sources”
(e.g. bit-fixing sources [9], discrete control sources [26] or multiple independent
sources [8]) implicitly or explicitly require independence between different por-
tions of the source. To avoid this, Trevisan and Vadhan [34] suggested study-
ing the class of samplable sources, sources generated by efficient algorithms, e.g.
polynomial-sized circuits. They showed that for every t, there exist (non-explicit)
deterministic extractors for sources generated by circuits of size t, provided that
the min-entropy of the source is ω(log t). Moreover, this result is based on a prob-
abilistic argument, and can be viewed as giving an explicit seeded extractor that
works for seed-dependent sources in the following sense. We generate once and
for all a random seed S for the extractor, then an adversary A of size t generates
a source X = A(S) (using additional randomness) with the property that X has
enough min-entropy given S, and our extractor Ext(X;S) produces an output

4 Actually, using 2-source extractors [8,11], the seed can also be weakly random, but
it still needs to be independent from the source.



that is statistically close to uniform given S. (We remark that [34] also gave
an explicit and seedless extractor for samplable sources having min-entropy rate
close to 1 based on some strong complexity assumptions, and subsequent works
have given explicit and seedless extractors for sources sampled by weaker mod-
els of computation, such as small-space algorithms [24,25,23] and constant-depth
circuits [35].)

A deficiency of the above extractors is that their computational complexity
is poly(t) — larger than the complexity of the adversary generating the source.
As observed in [34], this is inherent. If the adversary has more resources than
the extractor, then it can randomly generate inputs on which the first few bits of
the extractor’s output is constant (and this will be a high min-entropy source).
More precisely, if the adversary’s running time is larger than the extractor’s by
a factor of t, it can fix roughly log t bits of the output (and generate a source on
n bits of min-entropy approximately n− log t).

The starting point for our paper is the observation that the above attack is
not so bad. If the adversary can only reduce the min-entropy of the extractor’s
output by a logarithmic number of bits, we have still achieved something very
nontrivial and useful. Indeed, we will have what is called a randomness con-
denser [28,29] — which takes an n-bit source with at least some k bits of min-
entropy and outputs an m-bit source with at least some k′ bits of min-entropy.
Randomness condensers are nontrivial when the output entropy deficiency m−k′
is smaller than the input entropy deficiency n− k (otherwise we could condense
just by truncating the source). They have been extensively studied in the liter-
ature as a building block towards constructing randomness extractors (starting
with [29], and continuing in some of the latest extractors [20]), as well as bipartite
expander graphs [33,7].

Here we note that condensers are useful in their own right. If the entropy
deficiency of the output is at most β, then any event that occurs with probability
p under a uniformly random string can occur under the condenser’s output with
probability at most p′ = 2β ·p. For example, if p is negligible and β is logarithmic,
then p′ is also negligible.

Motivated by the above, we initiate a study of condensers for samplable
sources.

Defining seed-dependent randomness condensers. We define a con-
denser for seed-dependent samplable sources to be a function Cond : {0, 1}n ×
{0, 1}d → {0, 1}m with the following property. If S ← Ud, and X = A(S) is a
source with (min-)entropy at least k given S, generated by a randomized circuit
A of size at most t, then we require that Cond(X;S) should be (close to) a
source with min-entropy at least k′ given S. We provide a number of variants of
this definition, using different measures of conditional entropy, and also consider
the case that A generates side information along with X (to be discussed more
below).

Condensers from CR hashing. We show that sufficiently strong collision-
resistant hash functions provide good seed-dependent condensers for samplable
sources. Here the seed is simply a description of a hash function h from the



family, and Cond(x;h) = h(x). We show that if efficient algorithms can find
collisions in the hash functions with probability at most 2β/2m, then the con-
denser output will have min-entropy k′ ≈ m − β given the seed (for sources of
min-entropy larger than m). Note that a birthday attack will find collisions with
probability O(t2/2m) in time t. If time t algorithms cannot do much better, e.g.
the probability of finding collisions is at most poly(t)/2m, then we can achieve
entropy deficiency β = O(log t), within a constant factor of the lower bound
mentioned above.

Condensers and key derivation. We formalize the applicability of seed-
dependent condensers to key derivation. Specifically, we consider using the out-
put of a condenser as a key in a cryptographic application, and show that for
“unpredictability” applications (where an adversary can win in a security game
with at most negligible probability), security is preserved if the output entropy
deficiency β is small enough (e.g. logarithmic). For indistinguishability applica-
tions, we follow [3] and show that security is preserved if the “squared advan-
tage” is negligible, which can be achieved for a number of applications. These
results provide the first formal evidence that when seed-dependent sources arise
in practice [21] security is not immediately compromised.

Condensers and Fiat–Shamir. We investigate seed-dependent condensers
for adversaries A(S) that generate some side information Z in addition to X
(with the requirement that X has min-entropy at least k given S and Z), anal-
ogously to the notion of average-case extractors introduced by [12]. We observe
that the most natural generalization of our condenser definition to this setting,
namely requiring that Cond(X;S) has min-entropy at least k′ given S and Z, is
impossible to achieve: the adversary A(S) can simply compute Z = Cond(X;S)
as its side information. However, it seems plausible to have good condensers
if we provide the side information also as input to the condenser. While this
may not be feasible in some applications (because we do not know the side in-
formation), we show that condensers satisfying this definition can be used to
obtain a sound implementation of the Fiat–Shamir Heuristic for all constant-
round, public-coin interactive proof systems (ones with statistical soundness),
and hence show that such protocols cannot be zero knowledge (by connections
established by Dwork et al. [14]). This novel connection between the Fiat–Shamir
Heuristic and randomness condensing is obtained by observing a close relation
between seed-dependent condensers for samplable sources tolerating side infor-
mation and some conjectures of Barak, Lindell, and Vadhan [4] (made in the
study of zero knowledge and Fiat–Shamir). In fact, this connection only requires
condensers for “leaky sources” — ones that are uniform prior to conditioning on
the adversary’s side information — and we show that such condensers are also
necessary for soundness of the Fiat–Shamir Heuristic. It remains an intriguing
open problem to give a construction of condensers for leaky sources based on
some more well-studied complexity assumptions.



2 Definitions and Preliminaries

Entropy and Statistical Distance. We start by defining the relevant no-
tions of entropy that we use, which are min-entropy, collision (also known as
Renyi) entropy and Shannon entropy. The Shannon entropy and min-entropy

of a random variable X are defined as H1(X)
def
= Ex←X [− log Pr[X = x]] and

H∞(X)
def
= − log(maxx Pr[X = x]). We also define average (aka conditional)

Shannon entropy and average min-entropy of a random variable X conditioned

on another random variable Z by H1(X|Z)
def
= E(x,z)←(X,Z) [− log Pr[X = x|Z = z]]

and H∞(X|Z)
def
= − log (Ez←Z [ maxx Pr[X = x|Z = z] ]) respectively, where

Ez←Z denotes the expected value over z ← Z.

The collision probability of a random variable X is defined as Col(X)
def
=∑

x Pr[X = x]2, and the collision entropy of X is H2(X) = log(1/Col(X)).
It is easy to see that for any X, H∞(X) ≤ H2(X) ≤ H1(X) and H2(X) ≤
2H∞(X). We can also define average collision probability and collision en-
tropy of a random variable X conditioned on another random variable Z by
Col(X|Z) = Ez←Z [Col(X|Z = z)] and H2(X|Z) = log(1/Col(X|Z)). Once
again, H∞(X|Z) ≤ H2(X|Z) ≤ H1(X|Z) and H2(X|Z) ≤ 2H∞(X|Z).

We denote with distD(X,Y ) the advantage of a function D in distinguishing

the random variables X,Y : distD(X,Y )
def
= | Pr[D(X) = 1] − Pr[D(Y ) = 1] |.

The statistical distance between two random variables X,Y is defined by

SD(X,Y )
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = max
D

distD(X,Y )

We say that X and Y are ε-close if SD(X,Y ) ≤ ε. We also note that any tuple
(X,Z) is ε-close to (X ′, Z) such that H∞(X ′|Z) ≥ H2(X|Z)− log (1/ε), which
is often much better than bounding H∞(X|Z) ≥ 1

2 ·H2(X|Z).

3 Seed-Dependent Condensers

We now generalize the notion of a condenser to the seed-dependent setting, in
which the adversarial sampler A of size t can depend on the seed S. As we
will see, seed-dependent condensers are useful for important applications such
as cryptographic key derivation.

Definition 3.1 (Seed-Dependent Condenser). Let c, c′ ∈ {1, 2,∞}. An ef-
ficient function Cond : {0, 1}n × {0, 1}d → {0, 1}m is a seed-dependent ([Hc ≥
k]→ε [Hc′ ≥ k′], t)-condenser if for all probabilistic adversaries A of size at most
t who take a random seed S ← {0, 1}d and output (using more coins) a sample
X ← A(S) of entropy Hc(X|S) ≥ k, the joint distribution (S,Cond(X;S)) is
ε-close to some (S,R), where Hc′(R|S) ≥ k′.

The quantity β
def
= m− k′ is called the entropy deficit of the condenser. When

c = c′ is clear from the context, we say that Cond is a seed-dependent (k →ε k
′, t)-

condenser. We omit the reference to ε and/or t when ε = 0 and/or t = ∞,
respectively.



A notion for traditional condensers arises by replacing A in the definition above
with an unbounded circuit that does not take the seed S as input. Unlike with
traditional condensers, seed-dependent condensers require that A be efficient.
Otherwise, an inefficient A can, by repeatedly evaluating the condenser using
the seed S, always find a high entropy distribution of inputs that map to a
low entropy output distribution. Second, while a seed-dependent extractor can
be defined as a special case of the definition above corresponding to k′ = m,
Proposition 3.3 below implies that it is impossible to build a (non-trivial) seed-
dependent extractor.

The following lemma (see proof in [13]) will be useful in several of our later
results.

Lemma 3.2. Let c ∈ {1, 2,∞}. Then,

• “Output (∞→ 2→ 1)”: If c′ ≥ c′′ and Cond is a seed-dependent (([Hc ≥
k]→ε [Hc′ ≥ k′]), t)-condenser, then Cond is also a seed-dependent (([Hc ≥
k]→ε [Hc′′ ≥ k′]), t)-condenser.

• “Output (2 → ∞)”: For any γ > 0, if Cond is seed-dependent (([Hc ≥
k]→ε [H2 ≥ k′]), t)-condenser, then Cond is also a seed-dependent (([Hc ≥
k] →ε+γ [H∞ ≥ k′ − log(1/γ)]), t)-condenser and also a seed-dependent
(([Hc ≥ k]→ε [H∞ ≥ k′/2]), t)-condenser.

• “Input (1 → 2 → ∞)”: If c′ ≤ c′′ and Cond is seed-dependent (([Hc′ ≥
k]→ε [Hc ≥ k′]), t)-condenser, then Cond is also a seed-dependent (([Hc′′ ≥
k]→ε [Hc ≥ k′]), t)-condenser.

Thus, it is somewhat preferable (but also the hardest) to build a seed-
dependent ([H2 ≥ k] →ε [H∞ ≥ k′]) condenser, since it implies ([Hc ≥ k] →ε

[Hc′ ≥ k′])-condenser for any c, c′ ∈ {2,∞}. In contrast, it is preferable to base
a security of a given application on a ([H∞ ≥ k]→ε [H2 ≥ k′])-condenser, since
such condensers are likely to have slightly better parameters k and k′.

The following negative result shows that the output entropy deficiency β =
m − k′ must be at least roughly log t to work for samplers computable in time
t, if the condenser is computable in time significantly less than t. In particular,
we cannot hope for a seed-dependent extractor (i.e. β = 0) that is computable
in time significantly less than t, generalizing an observation of Trevisan and
Vadhan [34] about deterministic extractors for samplable sources.

Proposition 3.3. Let Cond : {0, 1}n × {0, 1}d → {0, 1}m be computable by a
circuit of size t′, and let β ∈ [0,m], ε, δ ∈ (0, 1/2). Then for Cond to be a
(([H∞ ≥ n− α]→ε [H1 ≥ m− β]), t)-condenser for α = d(β + 1)/(1− ε− δ)e,
it must be that α ≥ log t− log t′ −O(log(1/δ)) or α ≥ m.

Note that as ε, δ → 0, the ratio between α and β approaches 1. Thus, the propo-
sition says that if we want to decrease the entropy deficiency by any significant
factor, we must settle for output entropy deficiency β ≈ α that is at least roughly
log t.



Handling Side Information. One can naturally generalize the notion of
(regular) extractors and condensers to handle some side information Z about
the source X, yielding the notion of average-case extractors/condensers [12].
Formally, the adversarial samplerA produces a pair (X,Z) such that Hc(X|Z) ≥
k, and one requires that the joint distribution (Z, S,Ext(X;S)) is ε-close to
(Z, S, Um) (for condensers, that (Z, S,Cond(X;S)) is ε-close to (Z, S,R) where
Hc′(R|(S,Z)) ≥ k′).

However, things become a bit trickier in the seed-dependent case that we in-
troduce in this work. Naturally, the sampler A now takes the seed S to produce
the pair (X,Z). Unfortunately, this means that A can now run the condenser
Cond(X;S) and simply record all or part of this output in the side information Z.
This still leaves the entropy of X high enough (say, if k is noticeably larger than
m), but now the output entropy k′ drops to 0. Thus, to make a meaningful but
satisfiable definition in the case of side information, we will relax the syntax of
the condenser Cond to also take the side information Z as part of its input. While
less convenient for some applications, now the previous attack no longer applies,
since the sampler A(S) has to choose Z before R = Cond((X,Z);S) is derived,
making it much harder to “correlate” R and Z. Therefore we say that a con-
denser is a average-case, seed-dependent ([Hc ≥ k] →ε [Hc′ ≥ k′], t)-condenser
if (Z, S,Ext((X,Z);S)) is ε-close to (Z, S,R) where S ← {0, 1}d, (X,Z)← A(S)
with Hc(X|(S,Z)) ≥ k, and Hc′(R|(S,Z) ≥ k′). A formal definition can be
found in the full version [13].

We notice that Lemma 3.2 clearly extends to the average-case setting. Also,
when Z is empty, this still generalizes the “worst-case” seed-dependent condenser
from Definition 3.1. However, the introduction of side information makes the
notion of seed-dependent condenser very non-trivial to satisfy even when the
source X is perfectly uniform, but some side information Z = f(X) is “leaked”
to the attacker. Indeed, we show in Section 6 that this special case of average-
case condensers (see Definition 6.1) is exactly what is needed to instantiate the
Fiat-Shamir heuristic.

Finally, an equivalent way to think about average-case condensers is to in-
terpret the output (X,Z) of the sampler as a single (variable-length) source X ′,
so that the condenser is simply applied to X ′, but a subset of (known) physical
bits Z of X ′ is leaked to the attacker/distinguisher.

4 Condensers from Collision Resistance

In this section we show that a sufficiently strong collision-resistant hash func-
tion (CRHF) gives a good seed-dependent (but not average-case) ([H2 ≥ k]→0

[H2 ≥ k′]) condenser, which also implies non-trivial bounds for other input/output
entropy settings when c, c′ ∈ {2,∞}, by Lemma 3.2.

Definition 4.1. A family of hash function H = {h : {0, 1}∗ → {0, 1}m} is
(t, δ)-collision-resistant if for any (non-uniform) attacker B of size at most t,
Pr[H(X1) = H(X2) ∧X1 6= X2] ≤ δ where H ← H and (X1, X2)← B(H).



The proof of the following theorem appears in the full version [13].

Theorem 4.2. Fix any β > 0. If H is a (2t, 2β−1/2m)-collision-resistant hash

function family, then Cond(X;H)
def
= H(x) for H ← H is a seed-dependent

(([H2 ≥ m− β + 1] → [H2 ≥ m− β]), t)-condenser with entropy deficit β and
no error.

In particular, it is also a seed-dependent (([H∞ ≥ m− β + 1] → [H2 ≥
m− β]), t)-condenser and (([H∞ ≥ m− β + 1] →ε [H∞ ≥ m− β + log ε]), t)-
condenser.

Parameters. To obtain good entropy deficit β as a function on the sampler’s
complexity t, we need to understand the best possible (2t, δ)-collision-resistant
security of H. Clearly, a birthday attack (essentially) implies that δ = Ω(t2/2m),
since the attacker can pick t random points, evaluate h on them, and hope for
some collision. Conversely, this bound is tight in the random oracle model, and
state-of-the-art hash functions more or less assume that the “birthday attack” is
the only possible attack on a good CRHF design. For example, birthday attacks
are currently the best known attacks on many popular hash functions, such as
SHA-256, SHA-512, and the new SHA-3 functions, as well as discrete-log based
CRHFs over many elliptic curve groups (c.f., [32]). Thus, under such (strong
but reasonable) assumptions, all the above popular hash functions achieve δ =
O(t2/2m), which means that we can set 2β−1 = O(t2) resulting in β = 2 log t+
O(1). More generally, if the best collision-finding attack has success probability
δ = poly(t)/2m, then β = O(log t).

Corollary 4.3. Assuming the existence of (t, O(t2)
2m )-collision-resistant hash func-

tions, there exists a seed-dependent (([H2 ≥ m− β + 1] → [H2 ≥ m− β]), t)-
condenser with entropy deficit β = 2 log t+O(1) and no error.

In particular, it is also a seed-dependent (([H∞ ≥ m− β + 1] → [H2 ≥
m− β]), t)-condenser with entropy deficit β = 2 log t + O(1) and no error, and
(([H∞ ≥ m− β + 1] →ε [H∞ ≥ m− β − log (1/ε)]), t)-condenser with entropy
deficit β′ = (2 log t+ log (1/ε) +O(1)) and error ε.

Average-Case Setting? Unfortunately, the proof of Theorem 4.2 does not
extend to average-case seed-dependent condensers. The problem is that when
estimating the value Col(H(X,Z)|(H,Z)), one already needs to sample two
sources X1 and X2 corresponding to the same side information Z, which seems
to be hard. A bit more formally, a natural attempt to define a collision-finding
adversary B would be to first let B(H) run A(H) to produce a tuple (X1, Z1),
and then run A(H) several more times to try to produce a second tuple (X2, Z2)
with the hope that Z2 = Z1. But this will not be guaranteed to be efficient
unless Z is very short (e.g., just a few bits). In some sense, the difficulty of
handling side information might be expected, since we show that average-case
seed-dependent condensers are enough to instantiate the random oracle in the
Fiat-Shamir heuristic (see Section 6), which is a long-standing open problem.



5 Application to Key Derivation

Consider any cryptographic primitive P (e.g., digital signatures, encryption,
etc.), which uses randomness R ∈ {0, 1}m to derive its secret (and, public, if
needed) key(s). Without loss of generality, we can assume that R itself is the
secret key. In the “ideal” setting, R ← {0, 1}m is chosen uniformly at random,
and the attacker B against P obtains no knowledge about the choice of R, except
for what is revealed by P . In practice, however, R is not perfectly uniform. For
example, it may be the output of a system random number generator (RNG)
that attempts to extract uniform bits from a source of entropy. To guarantee
security for the widest range of settings, we ask for the key-derivation to be se-
cure even against seed-dependent5, adversarially-manipulated sources. However,
Proposition 3.3 shows that, at least in general, no extractors exist that work
for such a strong adversarial model. We therefore turn to seed-dependent con-
densers, showing that these yield strong positive results about the security of
key-derivation.

Towards this, we model the “real” seed-dependent setting as follows. Let
S ← {0, 1}d be a random seed that is chosen and X ← A(S) is sampled by
an adversarial sampler A. Finally, the cryptographic primitive P uses R ←
Cond(X;S) as the key. While the above model is the one of greatest most direct
practical interest, we will actually consider the more general case of average-case
condensing, in which an attacker B against P obtains part of the input to the
condenser, the side-information Z. The resulting real/ideal settings for deriving
the key for P are formalized by the procedures Real(A) and Ideal(A):

Real(A):

S ← {0, 1}d
(X,Z)← A(S)
R← Cond((X,Z);S)
Return (R,S, Z)

Ideal(A):

S ← {0, 1}d
(X,Z)← A(S)
R← {0, 1}m
Return (R,S, Z)

The two procedures are parameterized by a sampler A that on input the seed
S outputs a pair (X,Z). We assume that the sampler A has size at most t
and produces a source X of (conditional) min-entropy H∞(X|(S,Z)) ≥ k, for
some parameters t and k. We call such samplers (t, k)-bounded. Sometimes, to
emphasize the dependence on the sampler complexity t and source min-entropy
k, we will refer to the above two settings as the (t, k)-real and (t, k)-ideal models,
respectively.

The side information Z naturally models information about the random
source X that may be leaked to an adversary via a side channel. However, in
most or all practical scenarios, our assumption that the value of Z is known and
available to the condenser is unrealistic. Thus, we will also state our results for
the analogous models without side information, meaning we omit Z in both the
real and ideal models.

5 For example the Linux RNG folds back into its entropy pool prior outputs [21].



Defining Real/Ideal Security. We assume that the security of the cryp-
tographic primitive P is defined via an interactive game between a probabilistic
attacker B(s, z) and a probabilistic challenger C(r). Here one should think of s
and z as particular values of the seed and the side information, respectively, and
r as a particular value used by the challenger in the key generation algorithm
of P . We note that C only uses the secret key r and does not directly depend
on s and z. In particular, in the ideal model, the values s and z are not re-
ally useful to the actual attacker B, since the key r used by the challenger C is
chosen completely independently from these values. Still, we include them for
consistency.

At the end of the game, C(r) outputs a bit b, where b = 1 indicates that the
attacker “won the game”. Since C is fixed by the definition of P (e.g., C runs the
unforgeability game for signature or the semantic security game for encryption,
etc.), we denote by DB(r, s, z) the (abstract) distinguisher which simulates the
entire game between B(s, z) and C(r) and outputs the bit b. We also let

AdvB(r, s, z)
def
= Pr[DB(r, s, z) = 1]− c

be the advantage of B(s, z) to win the game against C(r), where c = 0 for
unpredictability applications (one-way functions, signatures, etc.) and c = 1/2
for indistinguishability applications (encryption, pseudorandom functions, etc.).
Thus, AdvB(·) ∈ [0, 1] for unpredictability applications and AdvB(·) ∈ [− 1

2 ,
1
2 ]

for indistinguishability applications. When B is clear from the context, we simply
write Adv(r, s, z).

In the following security definition for P , we will use the letter T to denote
the maximum allowable resources of B, which include all the efficiency measures
we might care about in the corresponding application, such as the circuit size,
number of oracle queries, etc. We say that such a B is T -limited.

Definition 5.1. Given a sampler A and an attacker B, we define their ideal

advantage ∆(A,B)
def
= | E[AdvB(Ideal(A))] | . We say that P is (T, δ)-secure

in the (t, k)-ideal model if for any (t, k)-bounded sampler A and any T -limited
attacker B, ∆(A,B) ≤ δ. Similarly, given A and B, we define their real advan-

tage ∆̃(A,B)
def
= | E[AdvB(Real(A))] | . We say that P is (T ′, δ′)-secure in the

(t, k)-real model if for any (t, k)-bounded sampler A and any T ′-limited attacker

B, ∆̃(A,B) ≤ δ′.

5.1 Simple Bound for Unpredictability Applications

As our first attempt, we would like to argue that if P is (T, δ)-secure in the
ideal setting, then P is also (T ′, δ′)-secure in the real setting, where T ′ is not
much lower than T , and, more importantly, δ′ is not much larger than δ. With
traditional extractors, this is done by arguing that the derived real key R is
(statistically) ε-close to Um, even conditioned on S and Z. This means that
δ′ ≤ δ + ε. Unfortunately, in the seed-dependent settings it is impossible to
achieve statistical extraction, as shown by Proposition 3.3. In this section, we
observe that is not strictly necessary to argue statistical extraction: if the original



ideal security δ is low enough, a good enough condenser (achievable even in
the seed-dependent setting) might result in “real” security δ′ not much larger
than the “ideal” security δ. At least, we show that this intuition is true for
unpredictability applications (where, recall, Adv(·) ≥ 0) in the following lemma.

Lemma 5.2. Assume P is some unpredictability application which is (T, δ)-
secure in the (t, k)-ideal model, and Cond is an average-case seed-dependent
(([H∞ ≥ k]→ε [H∞ ≥ k′]), t)-condenser with entropy deficit β = m− k′. Then
P is (T, δ′)-secure in the (t, k)-real model, where .δ′ ≤ ε+δ·2β .. If instead Cond is
an (non-average-case) seed-dependent (([H∞ ≥ k]→ε [H∞ ≥ k′]), t)-condenser,
then P is (T, δ′)-secure in the (t, k)-real model without side information.

Parameters. In essence, Lemma 5.2 states that the security δ degrades ex-
ponentially with the entropy deficit β of our seed-dependent condenser. Recall
that β = O(log t) is the best we can hope for (by Proposition 3.3); this would
give a meaningful security guarantee δ′ ≈ δ · poly(t), as long as δ � 1/poly(t).

For example, for the non-average-case setting, we can combine the bound in
Lemma 5.2 with the construction from Corollary 4.3 to show that a O(t2)/2m-
collision-resistant hash function suffices for real model security.

5.2 General Bound through Squared Advantage

The bound of Lemma 5.2 only holds for unpredictability applications, and also re-
quires seed-dependent condensers guaranteeing the min-entropy of the extracted
key R. In this section we show a more general bound which also holds for in-
distinguishability applications, has better dependence on the entropy deficit of
the condenser, and needs a slightly weaker type of seed-dependent condenser
for collision entropy. However, the small price we pay for such improvements is
that we can no longer directly relate the real-security δ′ of our application to its
ideal security δ. Rather, we use the notion of the squared advantage ∆2(A,B),

and will relate ∆̃(A,B) to ∆2(A,B), which will in turn relate δ′ to the “square-
security” σ which we define below. This notion of squared advantage/security
was implicitly introduced by Barak et al. [3] in the “seed-independent” setting
(to improve the entropy loss of the Leftover Hash Lemma), who also showed that
for many important applications the value σ is not “too much worse” than δ (see
the full version for more details [13]).

Definition 5.3. Given a sampler A and an attacker B, we define their (ideal)

square advantage ∆2(A,B)
def
= E[AdvB(Ideal(A))2] . We say that P is (T, σ)-

square-secure in the (t, k)-ideal model if for any (t, k)-bounded sampler A and
any T -limited attacker B, ∆2(A,B) ≤ σ.

We can now state our improved bound, and then compare it to our previous
bound from Lemma 5.2. The proof appears in the full version [13].

Lemma 5.4. Assume P any application which is (T, σ)-square-secure in the
(t, k)-ideal model, and Cond is an average-case seed-dependent (([H∞ ≥ k] →ε



[H2 ≥ k′]), t)-condenser with entropy deficit β = m − k′. Then P is (T, δ′)-

secure in the (t, k)-real model, where .δ′ ≤ ε +
√
σ · 2β .. If instead Cond is an

(non-average-case) seed-dependent (([H∞ ≥ k] →ε [H∞ ≥ k′]), t)-condenser,
then P is (T, δ′)-secure in the (t, k)-real model without side information.

Using Corollary 4.3, we obtain a nearly optimal security degradation in the
real model with no side information:

Corollary 5.5. Assuming the existence of (t, O(t2)
2m )-collision-resistant hash func-

tions, if P is (T, σ)-square-secure in the (t,m− 2 log t+O(1))-ideal model with
no side information, then using a collision-resistant function as a condenser
makes P to be (T, δ′)-secure in the (t,m− 2 log t+O(1))-real model with no side
information, where δ′ ≤ O(t ·

√
σ) .

6 Side-Information and Fiat-Shamir

One of the earliest and most influential applications of the Random Oracle Model
in cryptography (predating its formalization by Bellare and Rogaway [5]) was
to analyze the Fiat-Shamir Heuristic [15]. In the Fiat–Shamir Heuristic, a hash
function is used to eliminate interaction in constant-round public-coin protocols,
replacing the verifier’s random challenges with hashes of the transcript so far. If
the hash function is modeled as a random oracle, then this heuristic is known
to preserve soundness of the underlying protocol (up to a factor polynomial in
the number of queries made by the adversary to the random oracle). However,
there are no natural examples of protocols for which the Fiat–Shamir Heuristic
has been proven sound when the hash function is implemented by an efficiently
computable family of functions.

The original motivation for the Fiat–Shamir Heuristic was as a method to
convert identification schemes into digital signature schemes, and the method
gave rise to many efficient digital signature schemes in practice [15,31,19] (albeit
with only a proof in the Random Oracle Model). Another compelling motivation
for understanding the soundness of the Fiat–Shamir Heuristic is its close con-
nection to the zero-knowledge property of the underlying protocols, as pointed
out by Dwork, Naor, Reingold, and Stockmeyer [14]. Dwork et al. showed that
the soundness of the Fiat–Shamir Heuristic on a given protocol is essentially
equivalent to that protocol not being (auxiliary-input) zero knowledge unless
the underlying language is in BPP.6 There are many constant-round public-coin
protocols whose zero knowledge status is a long-standing open problem (e.g.

6 The forward direction is shown as follows: if there is an efficiently computable family
of hash functions for which the Fiat–Shamir heuristic is sound, then it is infeasible
to simulate a verifier that has a random hash function from the family as auxiliary
input, and obtains its challenges by applying the hash function to the transcript so
far. Indeed, an efficient simulator would constitute a prover strategy that generates
accepting proofs for the Fiat-Shamir-collapsed protocol, which would only be possible
for inputs in the language.



ones obtained by starting some underlying basic zero-knowledge protocol and
applying parallel repetition to make the soundness error negligible). While these
protocols cannot be black-box zero knowledge (for nontrivial languages) [16], they
may still be non-black-box (auxiliary-input) zero knowledge.

Indeed, Barak [2] constructed a constant-round, public-coin (non-black-box)
zero-knowledge argument system for NP (assuming the existence of collision-
resistant hash functions), thereby yielding a natural protocol on which the Fiat–
Shamir heuristic is unsound (for any efficiently computable family of hash func-
tions). Goldwasser and Kalai [17] extended Barak’s techniques to construct 3-
message public-coin identification schemes on which the Fiat–Shamir Heuristic
is unsound. In both of these counterexamples to the Fiat–Shamir Heuristic, the
initial interactive protocol is only computationally sound, and the results seem
to use this in an essential way.

Thus, Barak, Lindell, and Vadhan [4] conjectured that there is a sound im-
plementation of the Fiat–Shamir Heuristic for any statistically sound interactive
proof of language membership (and thus that there can be no constant-round
public-coin zero-knowledge proof system with negligible soundness for a language
outside BPP). Indeed, they provided a plausible property for a family of hash
functions that suffices for it to provide a sound implementation of Fiat–Shamir
on proof systems. While they conjectured that such hash families exist, it re-
mains open to construct one based on a standard complexity assumption.

The significance of statistical soundness for reducing interaction was further
highlighted by the recent work of Kalai and Raz [22], who showed that a method
proposed by Aiello et al. [1] (based on Private Information Retrieval) can be
used to convert (statistically sound) interactive proofs into 2-message argument
systems. However, this construction does not subsume Fiat–Shamir, because the
2-message argument system it produces is private coin (so the verifier’s first
message cannot be published as a CRS and shared by all verifiers, as needed for
the application to digital signatures) and it does not have the connection to zero
knowledge mentioned above.

Here we show that condensers for seed-dependent samplable sources that can
handle side information (i.e. average-case condensers) imply hash functions for
which the Fiat–Shamir Heuristic is sound for proof systems. In fact, we only
require condensers for the case that the initial source X is uniform and the
adversary’s side-information Z consists of a bounded-length “leakage” f(X,S)
on the source and seed, for an efficiently computable leakage function f . We also
show a partial converse — some form of such condensers are also necessary for
the Fiat–Shamir heuristic to be sound for all proof systems.

Our results are inspired by a similarity between the definition of condensers
for samplable sources and the aforementioned conjectures of Barak et al. [4].
While the existence of such condensers and hash functions remains an open
problem, the connection between randomness condensing and the Fiat–Shamir
Heuristic, along with our construction of condensers without side information
(Theorem 4.2), seem to yield a clearer picture of what is needed for the Fiat–



Shamir Heuristic to work. (In particular, we find the definition of a seed-dependent
average-case condenser more natural than the conjectures in [4].)

We begin by defining the restricted form of average-case condensers that we
relate to the Fiat–Shamir heuristic:

Definition 6.1 (Condensers for Leaky Sources). Let c, c′ ∈ {1, 2,∞}. An
efficient function Cond : {0, 1}n × {0, 1}α → {0, 1}m is an (ε, [Hc′ ≥ k′], t)-
condenser for leaky sources if for all probabilistic adversaries A of size at most
t who take a random source X ← {0, 1}n and output a string Z := A(X)
of length α, the joint distribution (Z,Cond(X,Z)) is ε-close to (Z,R), where
Hc′(R|Z) ≥ k′.

When ε = 0, we will refer to Cond as an ([Hc′ ≥ k′], t)-condenser for leaky

sources. The quantity β
def
= m− k′ is called the entropy deficit of the condenser.

Thus, instead of allowing an arbitrary efficiently samplable source X that has
high entropy given the adversary’s side information Z, we restrict to X ← {0, 1}n
and Z of bounded length α. For natural measures of conditional entropy, this
implies that H(X|Z) ≥ n−α, so an average-case condenser for entropy k = n−α
is also condenser for leaky sources according to Definition 6.1. Note that in the
case of leaky sources, we do not provide the condenser with a seed; that is
because any seed can be viewed as part of the uniformly random source X.
Indeed, average-case condensers with seeds imply seedless condensers for leaky
sources; further discussion and formal results are in the full version [13].

Now we define the Fiat–Shamir heuristic more precisely. Let (P, V ) be a
public-coin interactive protocol, where the parties receive no inputs (except a
security parameter κ), there are 2r+ 1 messages exchanged starting with P . We
denote the lengths of P ’s messages by ` = `(κ) and the lengths of V ’s messages
by m = m(κ).

Definition 6.2. For a language L = L(κ) ⊆ {0, 1}`, we say that (P, V ) is a
(t, ε)-sound interactive argument for L iff there is no prover strategy P ∗ of circuit
size at most t that convinces V to accept on a transcript whose first message is
not in L with probability greater than ε.

We say that (P, V ) is an ε-sound interactive proof for L iff it is an (∞, ε)
interactive argument for L (i.e. it holds for computationally unbounded prover
strategies P ∗).

Ordinarily, interactive proofs are formulated with the input x (whose mem-
bership in L is being determined) being provided separately as a common input
to P and V . However, incorporating x into the first message of the protocol is
notationally more convenient for us.

Fiat and Shamir [15] suggested a way to remove the interaction from protocols
as above, by replacing the verifier’s messages with hashes of the transcript:

Definition 6.3. For an interactive protocol (P, V ) as above, α = r·`+(r−1)·m,
and a family of hash functions H = H(κ) = {h : {0, 1}α → {0, 1}m}, the Fiat-
Shamir collapse of (P, V ) using H is the 2-message public-coin protocol (P ′, V ′)
defined as follows:



(1) V ′ sends P ′ a random hash function H ← H,

(2) P ′ sends V ′ a tuple (M1,M2, . . . ,Mr+1) ∈ ({0, 1}`)r+1,

(3) V ′ accepts iff V accepts on the transcript (M1, R1,M2, R2, . . . ,Mr, Rr,Mr+1)

where Ri
def
= H(M1, R1, . . . ,Mi−1, Ri−1,Mi) for each i ∈ [r].

We say that the Fiat-Shamir heuristic using H is (t, ε′)-sound on (P, V ) iff
(P ′, V ′) is a (t, ε′)-sound interactive argument for the language L′ = {(M1, . . . ,
Mr+1) : M1 ∈ L}.

Now we prove that we can use condensers for leaky sources to construct hash
functions for which the Fiat–Shamir heuristic is secure:

Theorem 6.4. Let (P, V ) be an interactive protocol as above, and let α = r ·`+
(r−1) ·m. Given Cond : {0, 1}n×{0, 1}α → {0, 1}m, define H = {hx : {0, 1}α →
{0, 1}m}x∈{0,1}n by hx(z) = Cond(x, z).

Then if (P, V ) is an ε1-sound interactive proof for some language L and Cond
is an (ε2, [H∞ ≥ m − β], t)-condenser for leaky sources, then the Fiat-Shamir
heuristic is (t′, ε′)-sound on (P, V ), for t′ = t− (r − 1) · tCond −O(n) and

ε′ = 2rβ · ε1 +
2rβ − 1

2β − 1
· ε2 ≤ 2rβ · (ε1 + ε2).

For intuition about the parameters, consider the standard, polynomial-time
asymptotic setting. Here all length parameters of the proof system (`, m) are
some fixed polynomial in the security parameter κ, and we are interested in
protocols whose soundness error ε1 is negligible, i.e. ε1 = κ−ω(1). We focus on
constant-round proof systems, so r = O(1). We take the length n = poly(κ)
of the condenser source to be significantly larger than m + α = r · (` + m).
This means that the condenser should work for sources with entropy at least
k = n − α, which is significantly larger than m. By analogy with Theorem 4.2,
we can hope for the output to have min-entropy deficiency β = O(log t), which
is O(log κ) for any polynomial t = t(κ), possibly with some negligible statistical
difference ε2 = κ−ω(1). Thus the new soundness error satisfies

ε′ ≤ 2rβ · (ε1 + ε2) = 2O(log κ) · (κ−ω(1) + κ−ω(1)) = κ−ω(1),

which is still negligible.
For intuition about the proof, consider a cheating prover strategy, that given

the description X of a random hash function from the family, tries to construct
a transcript (M1, R1, . . . ,Mr, Rr,Mr+1) such that M1 /∈ L, the original verifier
accepts, and each Ri is the hash of the prefix preceding it, i.e.

Ri = hX(M1, R1, . . . ,Mi) = Cond(X, (M1, R1, . . . ,Mi)).

Viewing Zi = (M1, R1, . . . ,Mi) as the adversary’s side information (which is of
length at most r ·`+(r−1)·m), the condenser property says that Ri is ε2-close to
having min-entropy deficiency at most β given the prefix M1, R1, . . . ,Mi. Com-
pared to Ri being uniform and independent of the prefix, this should increase
the soundness error by an additive ε2 and a multiplicative 2β . Incurring this
blow up for each of the rounds i yields the bound in the theorem. The formal
proof is given in the full version [13].



Many interactive proofs of interest have only three messages (i.e. r = 1 above)
and have optimal soundness ε1 = 1/2m, meaning that for every initial prover
message not in L, there is at most 1 verifier challenge that can lead to an ac-
cepting transcript. Examples include parallel repetitions of Blum’s Hamiltonicity
protocol [6], the Goldwasser-Micali-Rackoff Quadratic Residuosity Protocol (to
which Fiat-Shamir was originally applied) [18], and any Σ protocol [10]. Setting
r = 1 and ε1 = 1/2m, we see that the resulting soundness error is ε′ = 2β/2m+ε2,
which is small even for entropy deficiency β that is quite close to m, i.e. the out-
put entropy of the condenser need only be k′ = m − β = log(1/ε3) to achieve
soundness error ε2 + ε3:

Corollary 6.5. Let Cond, H, and (P, V ) be as in Theorem 6.4. Suppose further
that (P, V ) has 3 messages (i.e. r = 1), and has soundness ε1 = 1/2m, where m
is the length of the verifier’s challenge.

Then if Cond is a (ε2, [H∞ ≥ log(1/ε3)], t)-condenser for leaky sources com-
putable in time tCond, it follows that the Fiat-Shamir heuristic is (t′, ε′)-sound
on (P, V ), for t′ = t−O(n) and ε′ = ε2 + ε3.

Theorem 6.4 and Corollary 6.5 are stated using average min-entropy as the
entropy measure for the output of the condenser. We now discuss their extensions
to other entropy measures.

If the condenser output is only guaranteed to have high collision entropy
given the seed and the adversary’s side information, we can deduce that it is
statistically close to having high average-min-entropy. Indeed, if H2(A|B) ≥ k,
then for every γ > 0, (A,B) is γ-close to some (A′, B) such that H2(A′|B) ≥
k−log(1/γ). Thus we can switch from min-entropy to collision entropy at a price
of increasing the entropy deficiency by at most log(1/γ) and increasing ε by at
most γ.

If the condenser output is only guaranteed to have high Shannon entropy, we
can only deduce that the Fiat–Shamir Heuristic has soundness error bounded
by a constant. This is still quite nontrivial, and indeed the soundness error can
be made negligible without adding interaction by repeating the heuristic with
several independent hash functions. This case (obtaining constant error using
condensers for Shannon entropy) actually follows from the results in [4] and
the connection between condensers for leaky sources and the conjectures in [4].
Moreover, in the full version [13], we give a converse, that soundness of the
Fiat-Shamir transform implies the existence of condensers for leaky sources.
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