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A trio of inference problems that could win
you a Nobel Prize in statistics (if you help
fund it)

Xiao-Li Meng

Department of Statistics
Harvard University, Cambridge, MA

Statistical inference is a field full of problems whose solutions require the same
intellectual force needed to win a Nobel Prize in other scientific fields. Multi-
resolution inference is the oldest of the trio. But emerging applications such as
individualized medicine have challenged us to the limit: Infer estimands with
resolution levels that far exceed those of any feasible estimator. Multi-phase
inference is another reality because (big) data are almost never collected,
processed, and analyzed in a single phase. The newest of the trio is multi-
source inference, which aims to extract information in data coming from very
different sources, some of which were never intended for inference purposes. All
of these challenges call for an expanded paradigm with greater emphases on
qualitative consistency and relative optimality than do our current inference
paradigms.

45.1 Nobel Prize? Why not COPSS?

The title of my article is designed to grab attention. But why Nobel Prize
(NP)? Wouldn’t it be more fitting, for a volume celebrating the 50th anniver-
sary of COPSS, to entitle it “A Trio of Inference Problems That Could Win
You a COPSS Award (and you don’t even have to fund it)?” Indeed, some
media and individuals have even claimed that the COPSS Presidents’ Award
is the NP in Statistics, just as they consider the Fields Medal to be the NP
in Mathematics.

No matter how our egos might wish such a claim to be true, let us face the
reality. There is no NP in statistics, and worse, the general public does not
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538 NP-hard inference

seem to appreciate statistics as a “rocket science” field. Or as a recent blog
(August 14, 2013) in Simply Statistics put it: “Statistics/statisticians need
better marketing” because (among other reasons)

“Our top awards don’t get the press they do in other fields. The No-
bel Prize announcements are an international event. There is always
speculation/intense interest in who will win. There is similar interest
around the Fields Medal in mathematics. But the top award in statis-
tics, the COPSS award, doesn’t get nearly the attention it should. Part
of the reason is lack of funding (the Fields is $15K, the COPSS is $1K).
But part of the reason is that we, as statisticians, don’t announce it,
share it, speculate about it, tell our friends about it, etc. The prestige
of these awards can have a big impact on the visibility of a field.”

The fact that there is more public interest in the Fields than in COPSS
should make most statisticians pause. No right mind would downplay the
centrality of mathematics in scientific and societal advancement throughout
human history. Statistics seems to be starting to enjoy a similar reputation
as being at the core of such endeavors as we move deeper into the digital age.
However, the attention around top mathematical awards such as the Fields
Medal has hardly been about their direct or even indirect impact on everyday
life, in sharp contrast to our emphasis on the practicality of our profession.
Rather, these awards arouse media and public interest by featuring how inge-
nious the awardees are and how difficult the problems they solved, much like
how conquering Everest bestows admiration not because the admirers care or
even know much about Everest itself but because it represents the ultimate
physical feat. In this sense, the biggest winner of the Fields Medal is math-
ematics itself: Enticing the brightest talent to seek the ultimate intellectual
challenges.

And that is the point I want to reflect upon. Have we statisticians ade-
quately conveyed to the media and general public the depth and complexity
of our beloved subject, in addition to its utility? Have we tried to demonstrate
that the field of statistics has problems (e.g., modeling ignorance) that are as
intellectually challenging as the Goldbach conjecture or Riemann Hypothesis,
and arguably even more so because our problems cannot be formulated by
mathematics alone? In our effort to make statistics as simple as possible for
general users, have we also emphasized adequately that reading a couple of
stat books or taking a couple of stat courses does not qualify one to teach
statistics?

In recent years I have written about making statistics as easy to learn
as possible. But my emphasis (Meng, 2009b) has been that we must make a
tremendous collective effort to change the perception that “Statistics is easy
to teach, but hard (and boring) to learn” to a reality of “Statistics is hard
to teach, but easy (and fun) to learn.” Statistics is hard to teach because it
is intellectually a very demanding subject, and to teach it well requires both
depth in theory and breadth in application. It is easy and fun to learn because
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it is directly rooted in everyday life (when it is conveyed as such) and it builds
upon many common logics, not because it lacks challenging problems or deep
theory.

Therefore, the invocation of NP in the title is meant to remind ourselves
that we can also attract the best minds to statistics by demonstrating how
intellectually demanding it is. As a local example, my colleague Joe Blitzstein
turned our Stat110 from an enrollment of about 80 to over 480 by making it
both more real-life rooted and more intellectually demanding. The course has
become a Harvard sensation, to the point that when our students’ newspaper
advises freshmen “how to make 20% effort and receive 80% grade,” it explicitly
states that Stat110 is an exception and should be taken regardless of the effort
required. And of course the NPs in the natural and social sciences are aimed
at work with enormous depth, profound impact, and ideally both. The trio
of inference problems described below share these features — their solutions
require developing some of the deepest theory in inference, and their impacts
are immeasurable because of their ubiquity in quantitative scientific inquiries.

The target readership of this article can best be described by a Chinese
proverb: “Newborn calves are unafraid of tigers,” meaning those young talents
who are particularly curious and courageous in their intellectual pursuits.
I surely hope that future COPSS (if not NP) winners are among them.

45.2 Multi-resolution inference

To borrow an engineering term, a central task of statistical inference is to
separate signal from noise in the data. But what is signal and what is noise?
Traditionally, we teach this separation by writing down a regression model,
typically linear,

Y =

p∑
i=0

βiXi + ε,

with the regression function
∑p
i=0 βiXi as signal, and ε as noise. Soon we teach

that the real meaning of ε is anything that is not captured by our designated
“signal,” and hence the “noise” ε could still contain, in real terms, signals of
interest or that should be of interest.

This seemingly obvious point reminds us that the concepts of signal and
noise are relative — noise for one study can be signal for another, and vice
versa. This relativity is particularly clear for those who are familiar with multi-
resolution methods in engineering and applied mathematics, such as wavelets
(see Daubechies, 1992; Meyer, 1993), where we use wavelet coefficients below
or at a primary resolution for estimating signals. The higher frequency ones are
treated as noise and used for variance estimation; see Donoho and Johnstone
(1994), Donoho et al. (1995) and Nason (2002). Therefore what counts for
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signal or noise depends entirely on our choice of the primary resolution. The
multi-resolution framework described below is indeed inspired by my learning
of wavelets and related multi-resolution methods (Bouman et al., 2005, 2007;
Lee and Meng, 2005; Hirakawa and Meng, 2006), and motivated by the need
to deal with Big Data, where the complexity of emerging questions has forced
us to go diving for perceived signals in what would have been discarded as
noise merely a decade ago.

But how much of the signal that our inference machine recovers will be
robust to the assumptions we make (e.g., via likelihood, prior, estimating equa-
tions, etc.) and how much will wash out as noise with the ebb and flow of our
assumptions? Such a question arose when I was asked to help analyze a large
national survey on health, where the investigator was interested in studying
men over 55 years old who had immigrated to the US from a particular coun-
try, among other such “subpopulation analyses.” You may wonder what is so
special about wanting such an analysis. Well, nothing really, except that there
was not a single man in the dataset who fit the description! I was therefore
brought in to deal with the problem because the investigator had learned that
I could perform the magic of multiple imputation. (Imagine how much data
collection resource could have been saved if I could multiply impute myself!)

Surely I could (and did) build some hierarchical model to “borrow infor-
mation,” as is typical for small area estimations; see Gelman et al. (2003) and
Rao (2005). In the dataset, there were men over 55, men who immigrated
from that country, and even men over 55 who immigrated from a neighboring
country. That is, although we had no direct data from the subpopulation of
interest, we had plenty of indirect data from related populations, however de-
fined. But how confident should I be that whatever my hierarchical machine
produces is reproducible by someone who actually has direct data from the
target subpopulation?

Of course you may ask why did the investigator want to study a subpop-
ulation with no direct data whatsoever? The answer turned out to be rather
simple and logical. Just like we statisticians want to work on topics that are
new and/or challenging, (social) scientists want to do the same. They are
much less interested in repeating well-established results for large populations
than in making headway on subpopulations that are difficult to study. And
what could be more difficult than studying a subpopulation with no data? In-
deed, political scientists and others routinely face the problem of empty cells
in contingency tables; see Gelman and Little (1997) and Lax and Phillips
(2009).

If you think this sounds rhetorical or even cynical, consider the rapidly
increasing interest in individualized medicine. If I am sick and given a choice of
treatments, the central question to me is which treatment has the best chance
to cure me, not some randomly selected ‘representative’ person. There is no
logical difference between this desire and the aforementioned investigator’s
desire to study a subpopulation with no observations. The clinical trials testing
these treatments surely did not include a subject replicating my description
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exactly, but this does not stop me from desiring individualized treatments.
The grand challenge therefore is how to infer an estimand with granularity or
resolution that (far) exceeds what can be estimated directly from the data, i.e.,
we run out of enough sample replications (way) before reaching the desired
resolution level.

45.2.1 Resolution via filtration and decomposition

To quantify the role of resolution for inference, consider an outcome vari-
able Y living on the same probability space as an information filtration
{Fr, r = 0, . . . , R}. For example, Fr = σ(X0, . . . , Xr), the σ-field generated
by covariates {X0, . . . , Xr}, which perhaps is the most common practical sit-
uation. The discussion below is general, as long as Fr−1 ⊂ Fr, r = 1, . . . , R,
where r can be viewed as an index of resolution. Intuitively, we can view Fr
as a set of specifications that restrict our target population — the increased
specification/information as captured by Fr allows us to zoom into more spe-
cific subpopulations; here we assume F0 is the trivial zero-information filter,
i.e., X0 represents the constant intercept term, and FR is the maximal filter,
e.g., with infinite resolution to identify a unique individual, and R can be
infinite. Let

µr = E(Y |Fr) and σ2
r = var(Y |Fr)

be the conditional mean (i.e., regression) and conditional variance (or covari-
ance) of Y given Fr, respectively. When Fr is generated by {X0, . . . , Xr}, we
have the familiar µr = E(Y |X0, . . . , Xr) and σ2

r = var(Y |X0, . . . , Xr).
Applying the familiar EVE law

var(Y |Fr) = E{var(Y |Fs)|Fr}+ var{E(Y |Fs)|Fr},

where s > r, we obtain the conditional ANOVA decomposition

σ2
r = E(σ2

s |Fr) + E{(µs − µr)2|Fr}. (45.1)

This key identity reveals that the (conditional) variance at resolution r is the
sum of an estimated variance and an estimated (squared) bias. In particular,
we use the information in Fr (and our model assumptions) to estimate the
variance at the higher resolution s and to estimate the squared bias incurred
from using µr to proxy for µs. This perspective stresses that σ2

r is itself also
an estimator, in fact our best guess at the reproducibility of our indirect data
inference at resolution r by someone with direct data at resolution s.

This dual role of being simultaneously an estimand (of a lower resolution
estimator) and an estimator (of a higher resolution estimand) is the essence of
the multi-resolution formulation, unifying the concepts of variance and bias,
and of model estimation and model selection. Specifically, when we set up a
model with the signal part at a particular resolution r (e.g., r = p for the linear
model), we consider µr to be an acceptable estimate for any µs with s > r.
That is, even though the difference between µs and µr reflects systematic
variation, we purposely re-classify it as a component of random variation.



542 NP-hard inference

In the strictest sense, bias results whenever real information remains in the
residual variation (e.g., the ε term in the linear model). However, statisticians
have chosen to further categorize bias in this strict sense depending on whether
it occurs above or below/at the resolution level r. When the information in
the residual variation resides in resolutions higher than r then we use the
term “variance” for the price of failing to include that information. When
the residual information resides in resolutions lower than or at r, then we
keep the designation “bias.” This categorization, just as the mathematician’s
O notation, serves many useful purposes, but we should not forget that it is
ultimately artificial.

This point is most clear when we apply (45.1) in a telescopic fashion (by
first making s = r + 1 and then summing over r) and when R =∞:

σ2
r = E(σ2

∞|Fr) +

∞∑
i=r

E{(µi+1 − µi)2|Fr}. (45.2)

The use of R = ∞ is a mathematical idealization of the situations where
our specifications can go on indefinitely, such as with individualized medicine,
where we have height, weight, age, gender, race, education, habit, all sorts of
medical test results, family history, genetic compositions, environmental fac-
tors, etc. That is, we switch from the hopeless n = 1 (i.e., a single individual)
case to the hopeful R = ∞ scenario. The σ2

∞ term captures the variation of
the population at infinite resolution. Whether σ2

∞ should be set to zero or not
reflects whether we believe the world is fundamentally stochastic or appears
to be stochastic because of our human limitation in learning every mechanism
responsible for variations, as captured by F∞. In that sense σ2

∞ can be viewed
as the intrinsic variance with respect to a given filtration. Everything else in
the variance at resolution r are merely biases (e.g., from using µi to estimate
µi+1) accumulated at higher resolutions.

45.2.2 Resolution model estimation and selection

When σ2
∞ = 0, the infinite-resolution setup essentially is the same as a po-

tential outcome model (Rubin, 2005), because the resulting population is of
size one and hence comparisons on treatment effects must be counterfactual.
This is exactly the right causal question for individualized treatments: What
would be my (health, test) outcome if I receive one treatment versus another?
In order to estimate such an effect, however, we must lower the resolution
to a finite and often small degree, making it possible to estimate average
treatment effects, by averaging over a population that permits some degrees
of replication. We then hope that the attributes (i.e., predictors) left in the
“noise” will not contain enough real signals to alter our quantitative results,
as compared to if we had enough data to model those attributes as signals, to
a degree that would change our qualitative conclusions, such as choosing one
treatment versus another.
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That is, when we do not have enough (direct) data to estimate µR, we first
choose a Fr̃, and then estimate µR by µ̂r̃. The “double decoration” notation
µ̂r̃ highlights two kinds of error:

µ̂r̃ − µR = (µ̂r̃ − µr̃) + (µr̃ − µR). (45.3)

The first parenthesized term in (45.3) represents the usual model estimation
error (for the given r̃), and hence the usual “hat” notation. The second is
the bias induced by the resolution discrepancy between our actual estimand
and intended estimand, which represents the often forgotten model selection
error. As such, we use the more ambiguous “tilde” notation r̃, because its
construction cannot be based on data alone, and it is not an estimator of R
(e.g., we hope r̃ � R).

Determining r̃, as a model selection problem, then inherits the usual bias-
variance trade-off issue. Therefore, any attempt to find an “automated” way
to determine r̃ would be as disappointing as those aimed at automated pro-
cedures for optimal bias-variance trade-off (see Meng, 2009a; Blitzstein and
Meng, 2010). Consequently, we must make assumptions in order to proceed.
Here the hope is that the resolution formulation can provide alternative or
even better ways to pose assumptions suitable for quantifying the trade-off in
practice and for combating other thorny issues, such as nuisance parameters.
In particular, if we consider the filtration {Fr, r = 0, 1, . . .} as a cumulative
“information basis,” then the choice of r̃ essentially is in the same spirit as
finding a sparse representation in wavelets, for which there is a large literature;
see, e.g., Donoho and Elad (2003), Poggio and Girosi (1998), and Yang et al.
(2009). Here, though, it is more appropriate to label µr̃ as a parsimonious
representation of µR.

As usual, we can impose assumptions via prior specifications (or penalty
for penalized likelihood). For example, we can impose a prior on the model
complexity R̃δ, the smallest (fixed) r such that E{(µr − µR)2} ≤ δ, where δ
represents the acceptable trade-off between granularity and model complexity
(e.g., involving more X’s) and the associated data and computational cost.
Clearly R̃δ always exists but it may be the case that R̃δ = R, which means
that no lower-resolution approximation is acceptable for the given δ.

Directly posing a prior for R̃δ is similar to using L0-regularization (Lin
et al., 2010). Its usefulness depends on whether we can expect all X ′rs to be
more or less exchangeable in terms of their predictive power. Otherwise, the
resolution framework reminds us to consider putting a prior on the ordering of
the Xi’s (in terms of predictive power). Conditional on the ordering, we impose
priors on the predictive power of incremental complexity, ∆r = µr+1 − µr.
These priors should reflect our expectation for ∆2

r to decay with r, such as
imposing E(∆2

r) > E(∆2
r+1). If monotonicity seems too strong an assumption,

we could first break the Xi’s into groups, assume exchangeability within each
group, and then order the groups according to predictive power. That is to say,
finding a complete ordering of the Xi’s may require prior knowledge that is too
refined. We weaken this knowledge requirement by seeking only an ordering
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over equivalence classes of the Xi’s where each equivalence class represents a
set of variables which we are not able to a priori distinguish with respect to
predictive power. The telescoping additivity in (45.2) implies that imposing a
prior on the magnitude of ∆r will induce a control over the “total resolution
bias” (TRB)

E(µR̃δ − µR)2 =

R∑
r=R̃δ

E(µr − µr+1)2,

which holds because ∆r and ∆s are orthogonal (i.e., uncorrelated) when s 6= r.
A good illustration of this rationale is provided when Fr is generated by

a series of binary variables {X0, . . . , Xr}, r = 0, . . . , R. In such cases, our
multi-resolution setup is equivalent to assuming a weighted binary tree model
with total depth R; see Knuth (1997) and Garey (1974). Here each node is

represented by a realization of ~Xr = (X0, . . . , Xr), ~xr = (x0, . . . , xr), at which

the weights of its two (forward) branches are given by w~xr (x) = E(Y | ~Xr =
~xr, Xr+1 = x) respectively with x = 0, 1. It is then easy to show that

E(∆2
r) ≤

1

4
E{w ~Xr

(1)− w ~Xr
(0)}2 ≡ 1

4
E{D2( ~Xr)},

where D2( ~Xr) is a measure of the predictive power of Xr+1 that is not already

contained in ~Xr. For the previous linear regression, D2( ~Xr) = β2
r+1. Thus

putting a prior on D2( ~Xr) can be viewed as a generalization of putting a prior
on the regression coefficient, as routinely done in Bayesian variable selection;
see Mitchell and Beauchamp (1988) and George and McCulloch (1997).

It is worthwhile to emphasize that Bayesian methods, or at least the idea
of introducing assumptions on ∆r’s, seems inevitable. This is because “pure”
data-driven type of methods, such as cross-validation (Arlot and Celisse,
2010), are unlikely to be fruitful here — the basic motivation of a multi-
resolution framework is the lack of sufficient replications at high resolutions
(unless we impose non-testable exchangeability assumptions to justify syn-
thetic replications, but then we are just being Bayesian). It is equally impor-
tant to point out that the currently dominant practice of pretending µR̃ = µR
makes the strongest Bayesian assumption of all: The TRB, and hence any
∆r (r ≥ R̃), is exactly zero. In this sense, using a non-trivial prior for ∆r

makes less extreme assumptions than currently done in practice.
In a nutshell, a central aim of putting a prior on ∆r to regulate the pre-

dictive power of the covariates is to identify practical ways of ordering a set of
covariates to form the filtration {Fr, r ≥ 0} to achieve rapid decay of E(∆2

r)
as r increases, essentially the same goal as for stepwise regression or principal
component analysis. By exploring the multi-resolution formulation we hope to
identify viable alternatives to common approaches such as LASSO. In general,
for the multi-resolution framework to be fruitful beyond the conceptual level,
many fundamental and methodological questions must be answered. The three
questions below are merely antipasti to whet your appetite (for NP, or not):
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(a) For what classes of models on {Y,Xj , j = 0, . . . , R} and priors on ordering
and predictive power, can we determine practically an order {X(j), j ≥ 0}
such that the resulting Fr = σ(X(j), j = 0, . . . , r) will ensure a parsimo-
nious representation of µR with quantifiably high probability?

(b) What should be our guiding principles for making a trade-off between
sample size n and recorded/measured data resolution R, when we have
the choice between having more data of lower quality (large n, small R)
or less data of higher quality (small n, large R)?

(c) How do we determine the appropriate resolution level for hypothesis test-
ing, considering that hypotheses testing involving higher resolution esti-
mands typically lead to larger multiplicity? How much multiplicity can we
reasonably expect our data to accommodate, and how do we quantify it?

45.3 Multi-phase inference

Most of us learned about statistical modelling in the following way. We have a
data set that can be described by a random variable Y , which can be modelled
by a probability function or density Pr(Y |θ). Here θ is a model parameter,
which can be of infinite dimension when we adopt a non-parametric or semi-
parametric philosophy. Many of us were also taught to resist the temptation
of using a model just because it is convenient, mentally, mathematically, or
computationally. Instead, we were taught to learn as much as possible about
the data generating process, and think critically about what makes sense
substantively, scientifically, and statistically. We were then told to check and
re-check the goodness-of-fit, or rather the lack of fit, of the model to our data,
and to revise our model whenever our resources (time, energy, and funding)
permit.

These pieces of advice are all very sound. Indeed, a hallmark of statistics
as a scientific discipline is its emphasis on critical and principled thinking
about the entire process from data collection to analysis to interpretation to
communication of results. However, when we take our proud way of thinking
(or our reputation) most seriously, we will find that we have not practiced
what we have preached in a rather fundamental way.

I wish this were merely an attention-grabbing statement like the title of
my article. But the reality is that when we put down a single model Pr(Y |θ),
however sophisticated or “assumption-free,” we have already simplified too
much. The reason is simple. In real life, especially in this age of Big Data, the
data arriving at an analyst’s desk or disk are almost never the original raw
data, however defined. These data have been pre-processed, often in multiple
phases, because someone felt that they were too dirty to be useful, or too
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large to pass on, or too confidential to let the user see everything, or all of
the above! Examples range from microarrays to astrophysics; see Blocker and
Meng (2013).

“So what?” Some may argue that all this can be captured by our model
Pr(Y |θ), at least in theory, if we have made enough effort to learn about the
entire process. Putting aside the impossibility of learning about everything
in practice (Blocker and Meng, 2013), we will see that the single-model for-
mulation is simply not rich enough to capture reality, even if we assume that
every pre-processor and analyst have done everything correctly. The trouble
here is that pre-processors and analysts have different goals, have access to
different data resources, and make different assumptions. They typically do
not and cannot communicate with each other, resulting in separate (model)
assumptions that no single probabilistic model can coherently encapsulate.
We need a multiplicity of models to capture a multiplicity of incompatible
assumptions.

45.3.1 Multiple imputation and uncongeniality

I learned about these complications during my study of the multiple impu-
tation (MI) method (Rubin, 1987), where the pre-processor is the imputer.
The imputer’s goal was to preserve as much as possible in the imputed data
the joint distributional properties of the original complete data (assuming, of
course, the original complete-data samples were scientifically designed so that
their properties are worthy of preservation). For that purpose, the imputer
should and will use anything that can help, including confidential informa-
tion, as well as powerful predictive models that may not capture the correct
causal relations.

In addition, because the imputed data typically will be used for many
purposes, most of which cannot be anticipated at the time of imputation, the
imputation model needs to include as many predictors as possible, and be as
saturated as the data and resources permit; see Meng (1994) and Rubin (1996).
In contrast, an analysis model, or rather an approach (e.g., given by software),
often focuses on specific questions and may involve only a (small) subset of
the variables used by the imputer. Consequently, the imputer’s model and the
user’s procedure may be uncongenial to each other, meaning that no model
can be compatible with both the imputer’s model and the user’s procedure.
The technical definitions of congeniality are given in Meng (1994) and Xie
and Meng (2013), which involve embedding an analyst’s procedure (often of
frequentist nature) into an imputation model (typically with Bayesian flavor).
For the purposes of the following discussion, two models are “congenial” if
their implied imputation and analysis procedures are the same. That is, they
are operationally, though perhaps not theoretically, equivalent.

Ironically, the original motivation of MI (Rubin, 1987) was a separation
of labor, asking those who have more knowledge and resources (e.g., the US
Census Bureau) to fix/impute the missing observations, with the hope that
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subsequent analysts can then apply their favorite complete-data analysis pro-
cedures to reach valid inferences. This same separation creates the issue of
uncongeniality. The consequences of uncongeniality can be severe, from both
theoretical and practical points of view. Perhaps the most striking example
is that the very appealing variance combining rule for MI inference derived
under congeniality (and another application of the aforementioned EVE law),
namely,

varTotal = varBetween−imputation + varWithin−imputation (45.4)

can lead to seriously invalid results in the presence of uncongeniality, as re-
ported initially by Fay (1992) and Kott (1995).

Specifically, the so-called Rubin’s variance combining rule is based on
(45.4), where

varBetween−imputation and varWithin−imputation

are estimated by (1 +m−1)Bm and Ūm, respectively (Rubin, 1987). Here the
(1 + m−1) factor accounts for the Monte Carlo error due to finite m, Bm is

the sampling variance of θ̂(`) ≡ θ̂A(Y
(`)
com) and Ūm is the sample average of

U(Y
(`)
com), ` = 1, . . . ,m, where θ̂A(Ycom) is the analyst’s complete-data estima-

tor for θ, U(Ycom) is its associated variance (estimator), and Y
(`)
mis are i.i.d.

draws from an imputation model PI(Ymis|Yobs). Here, for notational conve-
nience, we assume the complete data Ycom can be decomposed into the missing
data Ymis and observed data Yobs. The left-hand side of (45.4) then is meant
to be an estimator, denoted by Tm, of the variance of the MI estimator of θ,
that is, θ̄m, the average of {θ̂(`), ` = 1, . . . ,m}.

To understand the behavior of θ̄m and Tm, let us consider a relatively
simple case where the missing data are missing at random (Rubin, 1976), and
the imputer does not have any additional data. Yet the imputer has adopted
a Bayesian model uncongenial to the analyst’s complete-data likelihood func-
tion, PA(Ycom|θ), even though both contain the true data-generating model
as a special case. For example, the analyst may have correctly assumed that
two subpopulations share the same mean, an assumption that is not in the
imputation model; see Meng (1994) and Xie and Meng (2013). Furthermore,
we assume the analyst’s complete-data procedure is the fully efficient MLE
θ̂A(Ycom), and UA(Ycom), say, is the usual inverse of Fisher information.

Clearly we need to take into account both the sampling variability and
imputation uncertainty, and for consistency we need to take both imputation
size m → ∞ and data size n → ∞. That is, we need to consider replications
generated by the hybrid model (note PI(Ymis|Yobs) is free of θ):

PH(Ymis, Yobs|θ) = PI(Ymis|Yobs)PA(Yobs|θ), (45.5)

where PA(Yobs|θ) is derived from the analyst’s complete-data model
PA(Ycom|θ).
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To illustrate the complication caused by uncongeniality, let us assume m =
∞ to eliminate the distraction of Monte Carlo error due to finite m. Writing

θ̄∞ − θ = {θ̄∞ − θ̂A(Ycom)}+ {θ̂A(Ycom)− θ},

we have

varH(θ̄∞) = varH{θ̄∞ − θ̂A(Ycom)}+ varH{θ̂A(Ycom)}
+2 covH{θ̄∞ − θ̂A(Ycom), θ̂A(Ycom)}, (45.6)

where all the expectations are with respect to the hybrid model defined in
(45.5). Since we assume both the imputer’s model and the analyst’s model
are valid, it is not too hard to see intuitively — and to prove under regularity
conditions, as in Xie and Meng (2013) — that the first term and second
term on the right-hand side of (45.6) are still estimated consistently by Bm
and Ūm, respectively. However, the trouble is that the cross term as given in
(45.6) is left out by (45.4), so unless this term is asymptotically negligible,
Rubin’s variance estimator of varH(θ̄∞) via (45.4) cannot be consistent, an
observation first made by Kott (1995).

Under congeniality, this term is indeed negligible. This is because, under
our current setting, θ̄∞ is asymptotically (as n→∞) the same as the analyst’s
MLE based on the observed data Yobs; we denote it, with an abuse of notation,
by θ̂A(Yobs). But θ̂A(Yobs) − θ̂A(Ycom) and θ̂A(Ycom) must be asymptotically
orthogonal (i.e., uncorrelated) under PA, which in turn is asymptotically the
same as PH due to congeniality (under the usual regularity conditions that
guarantee the equivalence of frequentist and Bayesian asymptotics). Otherwise

there must exist a linear combination of θ̂A(Yobs)− θ̂A(Ycom) and θ̂A(Ycom) —

and hence of θ̂A(Yobs) and θ̂A(Ycom) — that is asymptotically more efficient

than θ̂A(Ycom), contradicting the fact that θ̂A(Ycom) is the full MLE under
PA(Ycom|θ).

When uncongeniality arises, it becomes entirely possible that there exists a
linear combination of θ̄∞− θ̂A(Ycom) and θ̂A(Ycom) that is more efficient than
θA(Ycom) at least under the actual data generating model. This is because
θ̄∞ may inherit, through the imputed data, additional (valid) information
that is not available to the analyst, and hence is not captured by PA(Ycom|θ).
Consequently, the cross-term in (45.6) is not asymptotically negligible, making
(45.4) an inconsistent variance estimator; see Fay (1992), Meng (1994) and
Kott (1995).

The above discussion also hints at an issue that makes the multi-phase in-
ference formulation both fruitful and intricate, because it indicates that consis-
tency can be preserved when the imputer’s model does not bring in additional
(correct) information. This is a much weaker requirement than congeniality,
because it is satisfied, for example, when the analyst’s model is nested within
(i.e., less saturated than) the imputer’s model. Indeed, in Xie and Meng (2013)
we established precisely this fact, under regularity conditions. However, when
we assume that the imputer model is nested within the analyst’s model, we
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can prove only that (45.4) has a positive bias. But even this weaker result
requires an additional assumption — for multivariate θ — that the loss of
information is the same for all components of θ. This additional requirement
for multivariate θ was both unexpected and troublesome, because in practice
there is little reason to expect that the loss of information will be the same
for different parameters.

All these complications vividly demonstrate both the need for and chal-
lenges of the multi-phase inference framework. By multi-phase, our motivation
is not merely that there are multiple parties involved, but more critically that
the phases are sequential in nature. Each phase takes the output of its im-
mediate previous phase as the input, but with little knowledge of how other
phases operate. This lack of mutual knowledge reality leads to uncongenial-
ity, which makes any single-model framework inadequate for reasons stated
before.

45.3.2 Data pre-processing, curation and provenance

Taking this multi-phase perspective but going beyond the MI setting, we
(Blocker and Meng, 2013) recently explored the steps needed for building
a theoretical foundation for pre-processing in general, with motivating ap-
plications from microarrays and astrophysics. We started with a simple but
realistic two-phase setup, where for the pre-processor phase, the input is Y
and the output is T (Y ), which becomes the input of the analysis phase. The
pre-process is done under an “observation model” PY (Y |X, ξ), where X repre-
sents the ideal data we do not have (e.g., true expression level for each gene),
because we observe only a noisy version of it, Y (e.g., observed probe-level
intensities), and where ξ is the model parameter characterizing how Y is re-
lated to X, including how noises were introduced into the observation process
(e.g., background contamination). The downstream analyst has a “scientific
model” PX(X|θ), where θ is the scientific estimand of interest (e.g., capturing
the organism’s patterns of gene expression). To the analyst, both X and Y
are missing, because only T (Y ) is made available to the analyst. For exam-
ple, T (Y ) could be background corrected, normalized, or aggregated Y . The
analyst’s task is then to infer θ based on T (Y ) only.

Given such a setup, an obvious question is what T (Y ) should the pre-
processor produce/keep in order to ensure that the analyst’s inference of θ
will be as sharp as possible? If we ignore practical constraints, the answer
seems to be rather trivial: Choose T (Y ) to be a (minimal) sufficient statistic
for

PY (y|θ, ξ) =

∫
PY (y|x; ξ)PX(x|θ)µ(dx). (45.7)

But this does not address the real problem at all. There are thorny issues
of dealing with the nuisance (to the analyst) parameter ξ, as well as the
issue of computational feasibility and cost. But most critically, because of the
separation of the phases, the scientific model PX(X|θ) and hence the marginal
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model PY (Y |θ, ξ) of (45.7) is typically unknown to the pre-processor. At the
very best, the pre-processor may have a working model P̃X(X|η), where η
may not live even on the same space as θ. Consequently, the pre-processor
may produce T (Y ) as a (minimal) sufficient statistic with respect to

P̃Y (y|η, ξ) =

∫
PY (y|x; ξ)P̃X(x|η)µ(dx). (45.8)

A natural question then is what are sufficient and necessary conditions on
the pre-processor’s working model such that a T (Y ) (minimally) sufficient for
(45.8) will also be (minimally) sufficient for (45.7). Or to use computer science
jargon, when is T (Y ) a lossless compression (in terms of statistical efficiency)?

Evidently, we do not need the multi-phase framework to obtain trivial and
useless answers such as setting T (Y ) = Y (which will be sufficient for any
model of Y only) or requiring the working model to be the same as the scien-
tific model (which tells us nothing new). The multi-phase framework allows us
to formulate and obtain theoretically insightful and practically relevant results
that are unavailable in the single-phase framework. For example, in Blocker
and Meng (2013), we obtained a non-trivial sufficient condition as well as a
necessary condition (but they are not the same) for preserving sufficiency un-
der a more general setting involving multiple (parallel) pre-processors during
the pre-process phase. The sufficient condition is in the same spirit as the
condition for consistency of Rubin’s variance rule under uncongeniality. That
is, in essence, sufficiency under (45.8) implies sufficiency under (45.7) when
the working model is more saturated than the scientific model. This is rather
intuitive from a multi-phase perspective, because the fewer assumptions we
make in earlier phases, the more flexibility the later phases inherit, and con-
sequently, the better the chances these procedures preserve information or
desirable properties.

There is, however, no free lunch. The more saturated our model is, the less
compression it achieves by statistical sufficiency. Therefore, in order to make
our results as practically relevant as possible, we must find ways to incorporate
computational efficiency into our formulation. However, establishing a general
theory for balancing statistical and computational efficiency is an extremely
challenging problem. The central difficulty is well known: Statistical efficiency
is an inherent property of a procedure, but the computational efficiency can
vary tremendously across computational architectures and over time.

For necessary conditions, the challenge is of a different kind. Preserving suf-
ficiency is a much weaker requirement than preserving a model, even for min-
imal sufficiency. For example, N (µ, 1) and Poisson(λ) do not share even the
same state space. However, the sample mean is a minimal sufficient statistic
for both models. Therefore, a pre-processing model could be seriously flawed
yet still lead to the best possible pre-processing (this could be viewed as a case
of action consistency; see Section 45.5). This type of possibility makes building
a multi-phase inference theory both intellectually demanding and intriguing.
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In general, “What to keep?” or “Who will share what, with whom, when,
and why?” are key questions for the communities in information and computer
sciences, particularly in the areas of data curation and data provenance; see
Borgman (2010) and Edwards et al. (2011). Data/digital curation, as defined
by the US National Academies, is “the active management and enhancement of
digital information assets for current and future use,” and data provence is “a
record that describes the people, institutions, entities, and activities involved
in producing, influencing, or delivering a piece of data or a thing”; see Moreau
et al. (2013). Whereas these fields are clearly critical for preserving data qual-
ity and understanding the data collection process for statistical modelling,
currently there is little dialogue between these communities and statisticians
despite shared interests. For statisticians to make meaningful contributions,
we must go beyond the single-phase/single-model paradigm because the fun-
damental problems these fields address involve, by default, multiple parties,
who do not necessarily (or may not even be allowed to) share information,
and yet they are expected to deliver scientifically useful data and digital in-
formation.

I believe the multi-phase inference framework will provide at least a rel-
evant formulation to enter the conversation with researchers in these areas.
Of course, there is a tremendous amount of foundation building to be done,
even just to sort out which results in the single-phase framework are directly
transferable and which are not. The three questions below again are just an
appetizer:

(a) What are practically relevant theoretical criteria for judging the quality
of pre-processing, without knowing how many types of analyses ultimately
will be performed on the pre-processed data?

(b) What are key considerations and methods for formulating generally un-
congeniality for multi-phase inference, for quantifying the degrees of un-
congeniality, and for setting up a threshold for a tolerable degree?

(c) How do we quantify trade-offs between efficiencies that are designed for
measuring different aspects of the multi-phase process, such as computa-
tional efficiency for pre-processing and statistical efficiency for analysis?

45.4 Multi-source inference

As students of statistics, we are all taught that a scientific way of collect-
ing data from a population is to take a probabilistic sample. However, this
was not the case a century ago. It took about half a century since its for-
mal introduction in 1895 by Anders Nicolai Kiær (1838–1919), the founder
of Statistics Norway, before probabilistic sampling became widely understood
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and accepted (see Bethlehem, 2009). Most of us now can explain the idea
intuitively by analogizing it with common practices such as that only a tiny
amount of blood is needed for any medical test (a fact for which we are all
grateful). But it was difficult then for many — and even now for some — to
believe that much can be learned about a population by studying only, say,
a 5% random sample. Even harder was the idea that a 5% random sample
is better than a 5% “quota sample,” i.e., a sample purposefully chosen to
mimic the population. (Very recently a politician dismissed an election pool
as “non-scientific” because “it is random.”)

Over the century, statisticians, social scientists, and others have am-
ply demonstrated theoretically and empirically that (say) a 5% probabilis-
tic/random sample is better than any 5% non-random samples in many mea-
surable ways, e.g., bias, MSE, confidence coverage, predictive power, etc. How-
ever, we have not studied questions such as “Is an 80% non-random sample
‘better’ than a 5% random sample in measurable terms? 90%? 95%? 99%?”

This question was raised during a fascinating presentation by Dr. Jeremy
Wu, then (in 2009) the Director of LED (Local Employment Dynamic), a pi-
oneering program at the US Census Bureau. LED employed synthetic data to
create an OnTheMap application that permits users to zoom into any local
region in the US for various employee-employer paired information without
violating the confidentiality of individuals or business entities. The synthetic
data created for LED used more than 20 data sources in the LEHD (Lon-
gitudinal Employer-Household Dynamics) system. These sources vary from
survey data such as a monthly survey of 60,000 households, which represent
only .05% of US households, to administrative records such as unemployment
insurance wage records, which cover more than 90% of the US workforce, to
census data such as the quarterly census of earnings and wages, which includes
about 98% of US jobs (Wu, 2012 and personal communication from Wu).

The administrative records such as those in LEHD are not collected for
the purpose of statistical inference, but rather because of legal requirements,
business practice, political considerations, etc. They tend to cover a large per-
centage of the population, and therefore they must contain useful information
for inference. At the same time, they suffer from the worst kind of selection
biases because they rely on self-reporting, convenient recording, and all sorts
of other “sins of data collection” that we tell everyone to avoid.

But statisticians cannot avoid dealing with such complex combined data
sets, because they are playing an increasingly vital role for official statistical
systems and beyond. For example, the shared vision from a 2012 summit
meeting, between the government statistical agencies from Australia, Canada,
New Zealand, the United Kingdom, and the US, includes

“Blending together multiple available data sources (administrative and
other records) with traditional surveys and censuses (using paper,
internet, telephone, face-to-face interviewing) to create high quality,
timely statistics that tell a coherent story of economic, social and en-
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vironmental progress must become a major focus of central government
statistical agencies.” (Groves, February 2, 2012)

Multi-source inference therefore refers to situations where we need to draw
inference by using data coming from different sources and some (but not all)
of which were not collected for inference purposes. It is thus broader and more
challenging than multi-frame inference, where multiple data sets are collected
for inference purposes but with different survey frames; see Lohr and Rao
(2006). Most of us would agree that the very foundation of statistical infer-
ence is built upon having a representative sample; even in notoriously difficult
observational studies, we still try hard to create pseudo “representative” sam-
ples to reduce the impact of confounding variables. But the availability of a
very large subpopulation, however biased, poses new opportunities as well as
challenges.

45.4.1 Large absolute size or large relative size?

Let us consider a case where we have an administrative record covering fa
percent of the population, and a simple random sample (SRS) from the same
population which only covers fs percent, where fs << fa. Ideally, we want to
combine the maximal amount of information from both of them to reach our
inferential conclusions. But combining them effectively will depend critically
on the relative information content in them, both in terms of how to weight
them (directly or implied) and how to balance the gain in information with the
increased analysis cost. Indeed, if the larger administrative dataset is found
to be too biased relative to the cost of processing it, we may decide to ignore
it. Wu’s question therefore is a good starting point because it directly asks
how the relative information changes as their relative sizes change: How large
should fa/fs be before an estimator from the administrative record dominates
the corresponding one from the SRS, say in terms of MSE?

As an initial investigation, let us denote our finite population by
{x1, . . . , xN}. For the administrative record, we let Ri = 1 whenever xi is
recorded and zero otherwise; and for SRS, we let Ii = 1 if xi is sampled, and
zero otherwise, i = 1, . . . , N . Here we assume na =

∑N
i=1Ri >> ns =

∑N
i=1 Ii,

and both are considered fixed in the calculations below. Our key interest here
is to compare the MSEs of two estimators of the finite-sample population
mean X̄N , namely,

x̄a =
1

na

N∑
i=1

xiRi and x̄s =
1

ns

N∑
i=1

xiIi.

Recall for finite-population calculations, all xi’s are fixed, and all the random-
ness comes from the response/recording indicator Ri for x̄a and the sampling
indicator Ii for x̄s. Although the administrative record has no probabilistic
mechanism imposed by the data collector, it is a common strategy to model
the responding (or recording or reporting) behavior via a probabilistic model.
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Here let us assume that a probit regression model is adequate to capture
the responding behavior, which depends on only the individual’s x value.
That is, we can express Ri = 1{Zi≤α+βxi}, where Zi’s are i.i.d samples from
N (0, 1). We could imagine Zi being, e.g., the ith individual’s latent “refusal
tendency,” and when it is lower than a threshold that is linear in xi, the
individual responds. The intercept α allows us to model the overall percentage
of respondents, with larger α implying more respondents. The slope β models
the strength of the self-selecting mechanism. In other words, as long as β 6= 0,
we have a non-ignorable missing-data mechanism (Rubin, 1976).

Given that x̄s is unbiased, its MSE is the same as its variance (Cochran,
2007), viz.

var(x̄s) =
1− fs
ns

S2
N (x), where S2

N (x) =
1

N − 1

N∑
i=1

(xi − x̄N )2. (45.9)

The MSE of x̄a is more complicated, mostly because Ri depends on xi. But
under our assumption that N is very large and fa = na/N stays (far) away
from zero, the MSE is completely dominated by the squared bias term of x̄a,
which itself is well approximated by, again because N (and hence na) is very
large,

Bias2(x̄a) =

{∑N
i=1(xi − x̄N )p(xi)∑N

i=1 p(xi)

}2

, (45.10)

where p(xi) = E(Ri|xi) = Φ(α+ βxi), and Φ(Z) is the CDF for N (0, 1).
To get a sense of how this bias depends on fa, let us assume that the

finite population {x1, . . . , xN} itself can be viewed as a size N SRS from a
super population X ∼ N (µ, σ2). By the law of large number, the bias term in
(45.10) is essentially the same as (again because N is very large)

cov{X, p(X)}
E{p(X)}

=
σE{ZΦ(α̃+ β̃Z)}

E{Φ(α̃+ β̃Z)}
=

σβ̃√
1 + β̃2

φ

 α̃√
1 + β̃2


Φ

 α̃√
1 + β̃2

 , (45.11)

where α̃ = α+ βµ, β̃ = σβ, Z ∼ N (0, 1), and φ(z) is its density function. (In-
tegration by parts and properties of normals are used for arriving at (45.11).)

An insight is provided by (45.11) when we note Φ{α̃/(1 + β̃2)1/2} is well
estimated by fa because N is large, and hence α̃/(1+ β̃2)1/2 ≈ Φ−1(fa) = zfa ,
where zq is the qth quantile of N (0, 1). Consequently, we have from (45.11),

MSE(x̄a)

σ2
≈ Bias2(x̄a)

σ2
=

β̃2

1 + β̃2

φ2(zfa)

f2
a

=
β̃2

1 + β̃2

e−z
2
fa

2πf2
a

, (45.12)
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which will be compared to (45.9) after replacing S2
N (X) by σ2. That is,

MSE(x̄s)

σ2
=

1

ns
− 1

N
≈ 1

ns
, (45.13)

where 1/N is ignored for the same reason that var(x̄a) = O(N−1) is ignored.
It is worthy to point out that the seemingly mismatched units in comparing

(45.12), which uses relative size fa, with (45.13), which uses the absolute
size ns, reflects the different natures of non-sampling and sampling errors.
The former can be made arbitrarily small only when the relative size fa is
made arbitrarily large, that is fa → 1; just making the absolute size na large
will not do the trick. In contrast, as is well known, we can make (45.13)
arbitrarily small by making the absolute size ns arbitrarily large even if fs → 0
when N → ∞. Indeed, for most public-use data sets, fs is practically zero.
For example, with respect to the US population, an fs = .01% would still
render ns more than 30,000, large enough for controlling sampling errors for
many practical purposes. Indeed, (45.13) will be no greater than .000033. In
contrast, if we were to use an administrative record of the same size, that is,
if fa = .01%, then (45.12) will be greater than 3.13, almost 100,000 times
(45.13), if β̃ = .5.

However, if fa = 95%, zfa = 1.645, (45.12) will be .00236, for the same β̃ =
.5. This implies that as long as ns does not exceed about 420, the estimator
from the biased sample will have a smaller MSE (assuming, of course, N >>
420). The threshold value for ns will drop to about 105 if we increase β̃ to 2,
but will increase substantially to about 8,570 if we drop β̃ to .1. We must be
mindful, however, that these comparisons assume the SRS and more generally
the survey data have been collected perfectly, which will not be the case in
reality because of both non-responses and response biases; see Liu et al. (2013).
Hence in reality it would take a smaller fa to dominate the probabilistic sample
with fs sampling fraction, precisely because the latter has been contaminated
by non-probabilistic selection errors as well. Nevertheless, a key message here
is that, as far as statistical inference goes, what makes a “Big Data” set big
is typically not its absolute size, but its relative size to its population.

45.4.2 Data defect index

The sensitivity of our comparisons above to β̃ is expected because it governs
the self-reporting mechanism. In general, whereas closed-form expressions such
as (45.12) are hard to come by, the general expression in (45.10) leads to

Bias2(x̄a)

S2
N (x)

= ρ2
N (x, p)

{
SN (p)

p̄N

}2{
N − 1

N

}2

< ρ2
N (x, p)

1− p̄N
p̄N

, (45.14)

where p̄N is the mean of pi, ρN (x, p) is the correlation between xi and pi,
and the term inside the first set of brackets is the coefficient of variation of
pi, all of which are with respect to the finite population, that is, the uniform
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distribution over the index space {i = 1, . . . , N}. This explains the notation
ρN (x, p), in contrast to ρ(X, p(X)), which is with respect to X from the super
population.

The (middle) re-expression of the bias given in (45.14) in terms of the
correlation between sampling variable x and sampling/response probability p
is a standard strategy in the survey literature; see Hartley and Ross (1954) and
Meng (1993). Although mathematically trivial, it provides a greater statistical
insight, that is, the sample mean from an arbitrary sample is an unbiased
estimator for the target population mean if and only if the sampling variable
x and the data collection mechanism p(x) are uncorrelated. In this sense we
can view ρN (x, p) as a “defect index” for estimation (using sample mean)
due to the defect in data collection/recording. This result says that we can
reduce estimation bias of the sample mean for non-equal probability samples
or even non-probability samples as long as we can reduce the magnitude of
the correlation between x and p(x). This possibility provides an entryway
into dealing with a large but biased sample, and exploiting it may require less
knowledge about p(x) than required for other bias reduction techniques such
as (inverse probability) weighting, as in the Horvitz-Thompson estimator.

The (right-most) inequality in (45.14) is due to the fact that for any ran-
dom variable satisfying U ∈ [0, 1], var(U) ≤ E(U){1 − E(U)}. This bound
allows us to control the bias using only the proportion p̄N , which is well es-
timated by the observed sample fraction fa. It says that we can also control
the bias by letting fa approach one. In the traditional probabilistic sampling
context, this observation would only induce a “duhhh” response, but in the
context of multi-source inference it is actually a key reason why an adminis-
trative record can be very useful despite being a non-probabilistic sample.

Cautions are much needed however, because (45.14) also indicates that
it is not easy at all to use a large fa to control the bias (and hence MSE).
By comparing (45.13) and the bound in (45.14) we will need (as a sufficient
condition)

fa >
nsρ

2
N (x, p)

1 + nsρ2
N (x, p)

in order to guarantee MSE(x̄a) < MSE(x̄s). For example, even if ns = 100, we
would need over 96% of the population if ρN = .5. This reconfirms the power
of probabilistic sampling and reminds us of the danger in blindly trusting that
“Big Data” must give us better answers. On the other hand, if ρN = .1, then
we will need only 50% of the population to beat a SRS with ns = 100. If
ns = 100 seems too small in practice, the same ρN = .1 also implies that a
96% subpopulation will beat a SRS as large as ns = ρ−2

N {fa/(1−fa)} = 2400,
which is no longer a practically irrelevant sample size.

Of course all these calculations depend critically on knowing the value of
ρN , which cannot be estimated from the biased sample itself. However, recall
for multi-source inference we will also have at least a (small) probabilistic
sample. The availability of both small random sample(s) and large non-random
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sample(s) opens up many possibilities. The following (non-random) sample of
questions touch on this and other issues for multi-source inference:

(a) Given partial knowledge of the recording/response mechanism for a (large)
biased sample, what is the optimal way to create an intentionally biased
sub-sampling scheme to counter-balance the original bias so the resulting
sub-sample is guaranteed to be less biased than the original biased sample
in terms of the sample mean, or other estimators, or predictive power?

(b) What should be the key considerations when combining small random
samples with large non-random samples, and what are the sensible “corner-
cutting” guidelines when facing resource constraints? How can the com-
bined data help to estimate ρN (x, p)? In what ways can such estimators
aid multi-source inference?

(c) What are theoretically sound and practically useful defect indices for pre-
diction, hypothesis testing, model checking, clustering, classification, etc.,
as counterparts to the defect index for estimation, ρN (x, p)? What are
their roles in determining information bounds for multi-source inference?
What are the relevant information measures for multi-source inference?

45.5 The ultimate prize or price

Although we have discussed the trio of inference problems separately, many
real-life problems involve all of them. For example, the aforementioned On-
TheMap application has many resolution levels (because of arbitrary zoom-in),
many sources of data (more than 20 sources), and many phases of pre-process
(even God would have trouble keeping track of all the processing that these
twenty some survey, census, and administrative data sets have endured!), in-
cluding the entire process of producing the synthetic data themselves. Person-
alized medicine is another class of problems where one typically encounters all
three types of complications. Besides the obvious resolution issue, typically the
data need to go through pre-processing in order to protect the confidentiality
of individual patients (beyond just removing the patient’s name). Yet individ-
ual level information is most useful. To increase the information content, we
often supplement clinical trial data with observational data, for example, on
side effects when the medications were used for another disease.

To bring the message home, it is a useful exercise to imagine ourselves
in a situation where our statistical analysis would actually be used to decide
the best treatment for a serious disease for a loved one or even for ourselves.
Such a “personalized situation” emphasizes that it is my interest/life at stake,
which should encourage us to think more critically and creatively, not just to
publish another paper or receive another prize. Rather, it is about getting to
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the bottom of what we do as statisticians — to transform whatever empirical
observations we have into the best possible quantitative evidence for scientific
understanding and decision making, and more generally, to advance science,
society, and civilization. That is our ultimate prize.

However, when we inappropriately formulate our inference problems for
mental, mathematical, or computational convenience, the chances are that
someone or, in the worst case, our entire society will pay the ultimate price.
We statisticians are quick to seize upon the 2008 world-wide financial crisis as
an ultimate example in demonstrating how a lack of understanding and proper
accounting for uncertainties and correlations leads to catastrophe. Whereas
this is an extreme case, it is unfortunately not an unnecessary worry that if
we continue to teach our students to think only in a single-resolution, single-
phase, single-source framework, then there is only a single outcome: They
will not be at the forefront of quantitative inference. When the world is full
of problems with complexities far exceeding what can be captured by our
theoretical framework, our reputation for critical thinking about the entirety
of the inference process, from data collection to scientific decision, cannot
stand.

The “personalized situation” also highlights another aspect that our cur-
rent teaching does not emphasize enough. If you really had to face the un-
fortunate I-need-treatment-now scenario, I am sure your mind would not be
(merely) on whether the methods you used are unbiased or consistent. Rather,
the type of questions you may/should be concerned with are (1) “Would
I reach a different conclusion if I use another analysis method?” or (2) “Have
I really done the best given my data and resource constraints?” or (3) “Would
my conclusion change if I were given all the original data?”

Questions (1) and (2) remind us to put more emphasis on relative opti-
mality. Whereas it is impossible to understand all biases or inconsistencies in
messy and complex data, knowledge which is needed to decide on the optimal
method, we still can and should compare methods relative to each other, as
well as relative to the resources available (e.g., time, energy, funding). Equally
important, all three questions highlight the need to study much more qual-
itative consistency or action consistency than quantitative consistency (e.g.,
the numerical value of our estimator reaching the exact truth in the limit).
Our methods, data sets, and numerical results can all be rather different (e.g.,
a p-value of .2 versus .8), yet their resulting decisions and actions can still
be identical because typically there are only two (yes and no) or at most a
handful of choices.

It is this “low resolution” of our action space in real life which provides
flexibility for us to accept quantitative inconsistency caused by defects such as
resolution discrepancy, uncongeniality or selection bias, yet still reach scientifi-
cally useful inference. It permits us to move beyond single-phase, single-source,
or single resolution frameworks, but still be able to obtain theoretically ele-
gant and practically relevant results in the same spirit as those NP-worthy
findings in many other fields. I therefore very much hope you will join me for
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this intellectually exciting and practically rewarding research journey, unless,
of course, you are completely devoted to fundraising to establish an NP in
statistics.
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sign of lack of sleep — this has been the most stressful paper I have ever writ-
ten. I also thank the NSF for partial financial support, and the co-Editors,
especially Xihong Lin and Geert Molenberghs, for help and extraordinary pa-
tience.

References

Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for
model selection. Statistics Surveys, 4:40–79.

Bethlehem, J. (2009). The Rise of Survey Sampling. CBS Discussion Paper
No. 9015.

Blitzstein, J. and Meng, X.-L. (2010). Nano-project qualifying exam pro-
cess: An intensified dialogue between students and faculty. The American
Statistician, 64:282–290.

Blocker, A.W. and Meng, X.-L. (2013). The potential and perils of prepro-
cessing: Building new foundations. Bernoulli, 19:1176–1211.



560 NP-hard inference

Borgman, C.L. (2010). Research data: Who will share what, with whom,
when, and why? China-North America Library Conference, Beijing, Peo-
ple’s Republic of China.

Bouman, P., Dukic, V. and Meng, X.-L. (2005). A Bayesian multiresolution
hazard model with application to an AIDS reporting delay study. Statis-
tica Sinica, 15:325–357.

Bouman, P., Meng, X.-L., Dignam, J., and Dukić, V. (2007). A multireso-
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