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Abstract

Neurons in sensory systems can represent information not only by their firing rate, but also by the precise timing of
individual spikes. For example, certain retinal ganglion cells, first identified in the salamander, encode the spatial structure of
a new image by their first-spike latencies. Here we explore how this temporal code can be used by downstream neural
circuits for computing complex features of the image that are not available from the signals of individual ganglion cells. To
this end, we feed the experimentally observed spike trains from a population of retinal ganglion cells to an integrate-and-
fire model of post-synaptic integration. The synaptic weights of this integration are tuned according to the recently
introduced tempotron learning rule. We find that this model neuron can perform complex visual detection tasks in a single
synaptic stage that would require multiple stages for neurons operating instead on neural spike counts. Furthermore, the
model computes rapidly, using only a single spike per afferent, and can signal its decision in turn by just a single spike.
Extending these analyses to large ensembles of simulated retinal signals, we show that the model can detect the orientation
of a visual pattern independent of its phase, an operation thought to be one of the primitives in early visual processing. We
analyze how these computations work and compare the performance of this model to other schemes for reading out spike-
timing information. These results demonstrate that the retina formats spatial information into temporal spike sequences in a
way that favors computation in the time domain. Moreover, complex image analysis can be achieved already by a simple
integrate-and-fire model neuron, emphasizing the power and plausibility of rapid neural computing with spike times.
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Introduction

In most of the vertebrate nervous system, neurons communicate

by all-or-nothing action potentials rather than graded potentials. It

is commonly assumed that neurons transmit information using

their average firing rate, namely by modulating the number of

spikes produced in a coarse window of time or in a large neuronal

population [1]. Indeed, the characterization of spike trains by their

mean firing rates has been the dominant approach in the vast

majority of electrophysiological and computational modeling

studies.

Several observations have already challenged the rate-based

description of neuronal processing and stoked interest in temporal

neural codes that involve the timing of single spikes. Studies of the

visual, auditory, olfactory, and somatosensory pathways have

revealed precise timing relationships in neuronal firing patterns

elicited by sensory stimuli [2–7], suggesting that an important

component of stimulus information could be encoded in the timing

of individual spikes [8].

In the visual system, spike timing codes may be particularly

relevant in the context of the natural dynamics of vision. In

humans and most other animals, vision occurs in discrete episodes

where the eye is relatively still, interrupted by rapid gaze shifts

called ‘‘saccades’’. During such a saccade, the visual image sweeps

rapidly over the retina, and several retinal ganglion cell types are

strongly suppressed [9]. After the image comes to rest, many

ganglion cells fire a burst of spikes [10–12]. These bursts of spikes

during the fixation period comprise all the retinal information

available for processing the new scene.

Recently, it has been shown that certain ganglion cells of the

salamander retina encode information about the spatial content of

a newly encountered image in the timing of the very first spike

after image onset [13]. Based on spike times measured in

populations of such retinal ganglion cells, we here explore how a

neuronal readout model can use this information to compute

image information that is not available from responses of

individual ganglion cells. To do so, we employ the simplest of

downstream neural circuits: a single post-synaptic neuron with

suitably adjusted synaptic weights for its afferents. By optimizing
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the weights according to the recently introduced tempotron

learning rule [14], we test whether the readout neuron can detect

predefined classes of visual stimuli by spiking in response while

remaining silent for other stimuli. Despite the simplicity of this

model, we find that it can already perform surprisingly sophisti-

cated visual computations on the received retinal signals: It can

detect specific stimulus features while remaining invariant to the

polarity and strength of the image contrast. Building on the

preceding reports [13,14], we now show that the temporal code

generated by the retina is, in fact, highly conducive to the temporal

computations performed by the integrate-and-fire neuron. It will

be seen that both selectivity and invariance of important visual

detection tasks emerge almost trivially once they are formatted in

the time domain.

Results

Certain Retinal Ganglion Cells Encode a New Image by
Spike Latencies

We analyzed spiking responses of retinal ganglion cells (RGCs)

in the salamander retina to the appearance of a new image on the

retina. The stimulus was a uniform gray field followed by a square

grating [13]. We presented the grating at eight different spatial

phases. A micro-electrode array recorded spike trains simulta-

neously from many retinal ganglion cells. The RGC population

consists of several types, and we focus here on the so-called ‘‘fast-

Off’’ cells [13,15]. These neurons exhibit low or zero baseline

activity and generally fire in response to both an increase and

decrease in intensity on the receptive field. To the grating stimuli

in the present study, they typically responded with a burst of

spikes, regardless of the position of the grating [13]. However, the

latency of the spike burst varied systematically with the grating

position (Figure 1A).

To better understand how the stimulus identity is represented

by these neurons, we inspected more closely the tuning curves for

two parameters of the spike burst: the latency, namely the time of

the first spike following stimulus onset; and the total spike count in

the response interval. Both the latency and the spike count

depended on grating phase in approximately sinusoidal fashion

(Figures 1B, C). For the 41 fast-Off RGCs analyzed in the present

study, both the mean latencies and the mean spike counts were well

fitted by cosine tuning curves (Figures 1D, E; coefficients of

determination mR2
L~0:87 and mR2

C~0:85, respectively). On the

single-trial level, however, only the first-spike latencies were

faithfully described by cosine tuning (average R2
L~0:84), whereas

the tuning fidelity for spike counts was substantially lower (average

R2
C~0:55), reflecting a high trial-to-trial variability in the spike

counts. These tuning characteristics are consistent with a prior

report that latencies typically convey more stimulus information

than spike counts for this cell type [13].

Each of these tuning curves had a different phase offset,

depending on the location of the corresponding cell’s receptive

field center, and the population covered all phase offsets roughly

uniformly (Figure 1F). The tuning curves for latency and spike

count were shifted by ,180u (Figure 1F), consistent with the

expectation that strong stimuli elicit short latencies and high spike

counts. Interestingly, neither the baseline values (Figure 1G) nor

the modulation amplitudes (Figure 1H) of the cells’ first-spike

latencies appeared to be correlated with the corresponding

parameters of the spike count tuning curves, indicating that the

characteristics of latency coding and spike-count coding are

independently distributed within this ganglion cell class.

An increase in stimulus contrast generally produced a decrease

in latency (Figure 1I) and an increase in spike count (not shown).

Figure 1. Tuning of retinal ganglion cell responses. (A)
Illustration of retinal ganglion cell recordings used in this work. Left,
the eight grating patterns used as stimuli, along with the receptive field
centers of two recorded fast-Off RGCs. One grating period measured
660 mm on the retina. Middle and right, spike rasters recorded from
these two RGCs, plotted vs time since the onset of each grating
stimulus. The gratings were presented multiple times randomly
interleaved. (B) Cosine fit (solid line) to the first-spike latencies of the
RGC from (A), middle column. Boxes depict mean latency 61SD. Gray
lines show the baseline (vertical) and phase offset (horizontal) of the
cosine fit. (C) As in (B), but for the spike count. (D) Quality of the cosine
fits, measured by coefficients of determination for single-trial first-spike
latencies, R2

L, and of single-trial spike counts, R2
C, in the highest

contrast condition. Each point is one RGC, different symbols denote
different experiments, the filled square represents the fits shown in (B)
and (C). The cross marks the population means. (E) As in (D), but
coefficients of determination for single-trial spike counts, R2

C , plotted
versus each fit’s coefficients of determination for mean spike counts,
mR2

C . The mR2
C values are large even when the corresponding R2

C is

small, which indicates that R2
C is affected by large noise in the spike

counts rather than a systematic failure of the cosine model. (F) Scatter
plot of phase offsets for the cosine fits of spike count (y-axis) and
latency (x-axis). The solid black line depicts a relative phase shift of 180u.

Computing with Retinal Spike Times
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These shifts were mostly additive, affecting all eight stimuli in a

similar fashion. Thus contrast affected mostly the baselines of the

tuning curves, not their amplitude or phase. Moreover, because

these shifts were similar across the RGC population (Figure 1I),

even the largest applied contrast changes resulted in only small

distortions of the relative latencies between RGCs.

The latency code of fast-Off cells can be understood with a

quantitative model of retinal circuitry [13,16]. Fast-Off cells

receive rectified excitation from both On- and Off-bipolar cells,

which explains why they fire both on brightening and dimming of

the receptive field. But the activation of On-bipolars is slower than

for Off-bipolars, which explains why a brightening leads to spikes

with longer latency. For gratings of different spatial phase, the

receptive field experiences varying amounts of dimming and

brightening, and thus the latency varies periodically with the

spatial phase.

A Neuronal Model that Computes with Spike Latencies
How can downstream visual circuits take advantage of this

information encoded in the latency of ganglion cell spikes? Ideally,

neurons in the recipient population should already perform a

substantial computation, extracting visual features that are not

represented by individual ganglion cells. With this goal in mind,

we explored the capabilities of what is perhaps the simplest model

of post-synaptic processing: a single integrate-and-fire neuron.

The model neuron receives synaptic inputs from the population

of RGCs (Figure 2A, top). These inputs may be of variable

strength and either excitatory or inhibitory – the latter perhaps via

a fast interneuron that introduces minimal delay [17,18].

Neuronal processing occurs in episodes during which the afferents

fire a volley of spikes (Figure 1A), as observed following visual

saccades. Depending on the relative timing of these incoming

spikes and their respective synaptic efficacies, the summed post-

synaptic potentials from all synaptic inputs will either cross the

neuron’s firing threshold or not (Figure 2A, bottom left). By either

producing a spike or not, the model therefore classifies the input

firing patterns into ‘‘target’’ (spike) and ‘‘null’’ (no spike) patterns.

To accomplish a desired division of target and null patterns, one

must adjust the synaptic strengths of the inputs appropriately.

Recently, a synaptic learning rule has been introduced that finds

the synaptic weights appropriate for a given classification task and

operates successfully for a broad range of spike-time-based codes

[14]. The integrate-and-fire neuron model, equipped with

classification based on a single output spike and the associated

learning rule, has been called the ‘‘tempotron’’ [14]. We will adopt

this name as short-hand for the classifier model, even in cases

where the appropriate synaptic weights are found by some other

fitting procedure.

In the context of the above eight-grating experiment, we defined

two image classification tasks, each requiring the detection of a

specific visual feature. In each task, two of the eight gratings were

defined as target stimuli to be discriminated from two other

gratings that were null stimuli. In the first task, termed ‘‘luminance

task’’, the stimuli were grouped according to the luminance level at

a certain location in the visual field (Figure 2B). This means that

the tempotron had to discriminate a pair of neighboring gratings

against their polarity-inverted complements, for example by

discriminating gratings 1and 2 against 5 and 6 (Figure 1A). In

the second task, the ‘‘boundary task’’, stimuli were grouped by the

presence or absence of a luminance boundary at a certain location,

regardless of the sign of that boundary (Figure 2B). Specifically,

one grating and its polarity-inverted complement had to be

discriminated against another polarity-inverted pair, for example

gratings 1 and 5 against 3 and 7 (Figure 1A). Intuitively, the

luminance task is simple because it groups together stimuli that are

very similar. The boundary task is harder because it groups stimuli

that are as different as possible.

The Tempotron can Classify Diverse Visual Features
We provided the tempotron model with spike trains recorded

simultaneously from a population of retinal ganglion cells and

searched for the set of afferent connection strengths that solves

each of the tasks specified above, using the tempotron learning

rule. The tempotron’s readout performance was then measured by

the fraction of trials on which the stimuli were classified correctly.

Based on two separate populations of 7 and 8 simultaneously

recorded RGCs, respectively, the tempotron learned both tasks

(G) As in (F), but for the baseline values. (H) As in (F), but for
modulation amplitudes. (I) Contrast affects response latency similarly in
different cells. For each RGC, cosine fits for the latency were obtained at
all four studied contrast levels and the shift DL of the latency baseline
was measured relative to the highest contrast, i.e. from 47% to 39%
(diamonds), 47% to 31% (squares), and 47% to 29% (circles). For all pairs
of RGCs analyzed, this scatterplot shows the baseline shifts of the two
members. Solid line is the identity.
doi:10.1371/journal.pone.0053063.g001

Figure 2. Spike-timing computations based on retinal spike
trains. (A) Schematic of the modeled readout neuron. The neuron
receives input from multiple afferents (top left). Each afferent spike
produces a PSP of stereotyped shape with an amplitude that depends
on the synaptic strength (insets top right, x-scale = 20 ms, y-scale = -
spike threshold). For some RGC spike patterns (e.g. the one in blue),
excitatory and inhibitory input spikes arrive segregated in time such
that the resulting PSPs sum to a peak voltage, V , above the spike
threshold (q~1), and the model neuron fires an action potential
(bottom left, blue trace). For other patterns (e.g. red), excitation and
inhibition interfere such that the peak voltage (red trace) remains below
threshold and the model neuron remains silent. (B) Two visual
categorization tasks based on the grating stimuli. Top: The luminance
task asks whether a particular location in the field (dotted line) is bright
(left) or dark (right). The readout neuron should fire in the former case
but not in the latter; the opposite rule is another version of this task.
Bottom: The boundary task asks whether a particular location (dotted
line) has a boundary of either polarity (left) or no boundary (right).
doi:10.1371/journal.pone.0053063.g002
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very well (Figure 3A). The luminance task was accomplished

without errors and the boundary task with a mean error of only

,4%. We confirmed the generality of these results by, firstly,

random resampling of the ganglion cell populations from our total

pool of RGCs and, secondly, cross-validation on the basis of

separate training and test sets (see Materials and Methods).

An advantage of a temporal code is that information may be

available already with the arrival of the first spike and thus allow

faster processing than codes that rely on counting spike numbers

over extended time periods. To test the limits of rapid processing,

we trained the tempotron using only the first spike or a subset of

spikes from each afferent. Interestingly, discrimination on the

boundary task improved with decreasing number of spikes,

reaching error-free performance when only the first spike was

admitted to the decoder (Figure 3A). Clearly, the timing

information contained in the first spike from each RGC after a

saccade is sufficient to perform these computations. Subsequent

spikes in the burst interfere, though only slightly, with performance

in the present task. This finding supports the idea that, for some

visual tasks, processing could proceed as rapidly as possible by

operating already with the timing of the very first spike. The

solution of other visual tasks, on the other hand, may be

accomplished by different readout neurons that rely on the

subsequent spikes. For the RGC type considered here, for

example, the number of spikes in the burst contains information

about stimulus contrast [13].

How might a biological tempotron restrict its operations to the

first spike of a burst on each afferent? A plausible mechanism is

short-term synaptic depression, commonly observed in visual

pathways [19,20]. To explore this, we implemented a well-known

model of synaptic dynamics [21] at each input to the tempotron.

In this model, each action potential uses a fraction U of synaptic

resources for transmission – for example readily releasable vesicles

– which then recovers with time constant tr. If U is sufficiently

large, and tr is long compared to the interspike intervals in a burst,

synaptic depression will strongly discount all spikes but the first. As

shown in Figure 3B, this synaptic depression can indeed enhance

operation of the tempotron on the boundary task to near perfect

performance, and this holds over a wide range of the dynamic

parameters.

The Tempotron Outperforms Other Readout Models on
the Boundary Task

The ‘‘rate code’’ hypothesis stipulates that downstream visual

areas extract image information from the firing rates of the

ganglion cells. To evaluate the performance of the tempotron, it is

therefore interesting whether a neuronal decoder could achieve

similar discriminations by using only the spike count of bursts from

ganglion cells and not their timing. Thus, we implemented a

second readout neuron that follows the classic perceptron model of

neural integration [22,23]. Analogously to the tempotron, this

model neuron also receives ganglion cell inputs from its afferent

sources and adjusts their scalar synaptic efficacies through an

iterative learning rule. However, unlike the tempotron’s integra-

tion of incoming spike trains in continuous time, the perceptron

evaluates each afferent’s spike count within a fixed input window

of 150 ms after stimulus onset, and its classification decision is

given by thresholding the weighted sum of the incoming spike

counts.

The perceptron performed the luminance task very well

(Figure 3C): Clearly the RGC population contained enough

neurons whose firing rates encoded whether the receptive field is

dark or light. However, the perceptron performed poorly on the

boundary task, with a mean error rate of ,15% (Figure 3C).

Figure 3. Performance of the tempotron and other decoders on
RGC population responses. (A) Performance of the tempotron on
the luminance (circles) and boundary (triangles) tasks in the highest
contrast condition. Results are averaged over all realizations of each
task and two separate populations of simultaneously recorded fast-Off
RGCs, one with 7 neurons, the other with 8. The fraction of correct
stimulus classifications is shown as a function of the maximal number of
spikes admitted from each RGC. (B) Effect of synaptic depression on
performance in the ‘‘all spikes’’ condition of the boundary task in (A).
The fraction of correct responses is plotted as a function of the recovery
time constant tr of synaptic depression and the synaptic utilization
parameter U , which determines the degree of depression (cf. Equation
5); U~1 (maximal depression, black), 0.8 (blue), 0.6 (red). The dotted
line indicates the performance with static synapses from (A). (C) As in
(A), but performance of the perceptron decoder based on spike counts.
(D) Comparison of the tempotron (Temp) and perceptron (Perc) peak
performances from (A) and (C) with other timing-based readout
schemes for the luminance (left) and boundary (right) tasks: Rank-order
decoder (Rank), temporal-winner-take-all decoder using the first spike

Computing with Retinal Spike Times
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Unlike the tempotron, the perceptron’s performance degraded as

the number of admitted spikes was reduced (Figure 3C). When

limited to just the first spike from each RGC, not surprisingly, the

perceptron failed at both tasks; its meager residual performance

was owed to ganglion cells that failed to fire at all for some stimuli.

A somewhat better performance was obtained by limiting the

perceptron spike count to a fixed time window after stimulus onset,

but this window length required optimization for each task (80 ms

for the boundary task, Figure 3D). Furthermore this readout

scheme requires that the decoder know the absolute time of the

saccade, whereas the tempotron operates only on relative spike

times. Note that tempotron and perceptron models had the same

free parameters, namely the synaptic strengths. Yet the tempotron

operating with spike times was superior to the perceptron

operating with spike rates: It could perform a more complex

visual task, and it solved the computation with fewer spikes, hence

also in much shorter time.

Another useful benchmark for comparison are models of

neural processing that operate on individual spikes, but only

consider the temporal order of spike arrival on different

afferents, not their spike times. In one of these readout

schemes, the ‘‘temporal winner-take-all model’’, each afferent

votes for one of the two outcomes of the visual computation,

and the afferent that fires first determines the decision [24].

This model performed moderately on the luminance task, but

failed entirely on the boundary task (Figure 3D). In a more

general version of this readout scheme [25], we considered the

first three spikes in the afferent population and computed the

outcome by majority vote of those neurons. This model solved

the luminance task well, but was still worse than the perceptron

on the boundary task (Figure 3D). Considering more than

three spikes did not improve the model’s performance on

either of the tasks.

While the temporal winner-take-all model bases the decision

entirely on one or a few neurons that fire first, an alternative

‘‘rank order decoding’’ model is sensitive to the temporal order

of the first spikes from all its afferents [26]. Like the tempotron,

this model has the synaptic weight of each afferent as a free

parameter and in addition a factor that accounts for

progressive desensitization of the recipient neuron. The rank

order decoding model also solved the luminance task well, but

again failed on the boundary task (Figure 3D). These alternate

models were designed for rapid neural computation by

operating on the first few spikes in a sensory episode. For

each of these models, we assumed that the appropriate set of

spikes could be selected, such as each afferent’s first spike or

the first three spikes of the population, without regard to the

mechanisms that might accomplish this. Nevertheless, these

models could not perform a complex classification like the

boundary task in a single synaptic stage.

The Tempotron’s Performance is Contrast-invariant
A hallmark of sophisticated receptive fields is that they are

highly tuned for certain visual features while remaining non-

selective for other features. For instance, neurons in the face area

in primate cortex respond selectively to a specific face, indepen-

dent of the retinal position of that face [27]. The decoder of the

boundary task already has this character: It is selective for the

spatial location of a light-dark edge independent of its polarity. We

further explored the invariance of the tempotron to changes in

another dimension of the stimulus, namely its contrast. In these

experiments, each of the eight gratings was presented at different

contrast levels, randomly interleaved. The model neuron was

again trained to classify stimuli in the luminance and boundary

tasks, but this time invariantly with respect to four different levels

of stimulus contrast, ranging from 23% to 47%. This contrast

range provided a substantial increase in the drive to the ganglion

cells, with the average spike number for the preferred phase

growing by 60% from 3.67 to 5.61. Below this range an increasing

fraction of ganglion cells failed to respond to all used stimulus

phases.

We found that the tempotron adjusted easily to this added

requirement, with essentially zero errors on the luminance task,

and on average 1.2% errors on the boundary task (Figure 3E).

Moreover, the tempotron was able to generalize effectively to new

contrast values that it never experienced during the training phase

(Figure 3E).These observations suggest that the tempotron makes

use of patterns in the ganglion cell responses that remain invariant

under changes of stimulus contrast. Indeed, an increase in stimulus

contrast led to shorter absolute latencies by up to several tens of

milliseconds (Figure 1I) [13]. However, this effect is of similar

magnitude for different cells in the population and across stimuli,

so that the relative latencies between RGCs vary rather little

(Figure 1I). The tempotron has no access to absolute time or

stimulus onset; instead, it operates only on relative latencies, and

thus its performance remains largely contrast-invariant.

Mechanisms of Tempotron Computing
How does the tempotron accomplish these tasks? It helps to

inspect the simplest version of the readout that uses just two RGCs

for input, using just the first spike each, corresponding to strongly

depressing synaptic transmission. This reduced scenario is

amenable to an analytical treatment for finding the optimal

synaptic weights and thereby to a conceptual characterization of

the types of solutions as seen below. We analyzed the circuit’s

classification performance for all 89 available pairs of simulta-

neously recorded RGCs, and found that among these ,89% could

solve the luminance task and ,24% could solve the boundary task

with error rates below 5%.

To understand how this is achieved, consider two RGCs whose

receptive fields are separated by about one grating bar, or by a

phase of 180u (Figure 4A). Under the luminance task, the two

RGCs experience opposite light intensities and thus fire at

different times (Figures 4A1 and B1). For one stimulus class, cell

1 fires first, and for the other class, cell 2 fires first (Figure 4C1).

Hence, the tempotron must merely determine the order of firing

among these two afferents. This can be accomplished in two ways.

One solution uses positive synaptic weights of unequal magnitude

(Figure 4D1). Each afferent’s PSP by itself remains below

threshold. If the stronger one fires first, its effect decays by the

time the weaker PSP arrives, and the sum fails to cross threshold.

By contrast, if the weaker one fires first, this gives enough of a

boost to the second stronger PSP to cross threshold. Another

solution combines excitation and inhibition such that, again, the

threshold is crossed only in one order of firing, and not the

(Twta 1) or the first three spikes (Twta 3). The boundary task includes
performance of a perceptron with an optimized integration window of
80 ms duration (Perc D). (E) Contrast dependence of tempotron
performance in the luminance (circles) and boundary (triangles) tasks
when using at most the first spike of each afferent ganglion cell. The
fraction of correct classifications was measured separately within each
of four contrast conditions (x-axis) on the basis of a seven-cell input
population of RGCs. Open symbols with dotted lines: after training on
all four contrast levels. Filled symbols with solid lines: after training only
on the lowest and highest contrast levels. Note that the tempotron
performs well even when generalizing to intermediate stimulus
contrasts that were not encountered during training (colored symbols).
doi:10.1371/journal.pone.0053063.g003
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opposite (Figure 4E1). Both solutions map the two stimulus classes

into clearly distinct values of the model’s peak membrane voltage

(Figures 4F1 and G1).

The boundary task (Figure 4A2) presents a more intricate

challenge. One stimulus class leads the two RGCs to fire almost

synchronously (Figure 4B2) because both receptive fields are

straddled by a luminance boundary and thus experience the same

input. The other class makes them fire at different latencies, but

neuron 1 leads under one stimulus and neuron 2 under the other

(Figure 4B2). The histogram of relative latencies now has three

peaks (Figure 4C2), and the readout neuron must separate the

events in the central region, when the two RGCs fire in near

synchrony, from the regions on either side. To solve this task, both

afferents are assigned the same positive weight. If the two spikes

occur simultaneously, their PSPs superpose and cross threshold. If

one or the other fires earlier, its effect decays, such that the

summed PSP remains below threshold (Figures 4D2 and F2).

Again, another solution can be found that combines excitation and

inhibition, this time with reversed roles of the target and null

classes (Figures 4E2 and G2). In this case, synchronous firing of the

RGCs leads to destructive interference of the excitatory and

inhibitory inputs. By contrast, temporally separated firing allows

the supra-threshold excitatory afferent to trigger a post-synaptic

spike. See also Figure 2A for an implementation of this solution

using a larger population.

The tempotron’s ability to separate the central region of the

relative latency histogram from the two adjoining ones underlies its

solution of the boundary task. One can show analytically that the

tempotron with two inputs can always accomplish a tripartite

dissection of the range of relative latencies around zero, no matter

where the two desired decision boundaries lie (Figure 5, see also

Materials and Methods). Furthermore, there is a broad range of

decision boundaries for which purely excitatory solutions are

available (‘‘++’’ in Figure 5B). Finally, if one allows shorter or

longer PSP time courses, then every possible tripartite dissection

can be served by a purely excitatory solution as well as a mixed

excitation-inhibition solution, underscoring the versatility of this

simple readout architecture. Although this analysis is specific to

two inputs with one spike each, it provides insight into the ability

of the tempotron to use timing information to perform rather

complex computations in a single stage. As seen earlier, additional

spikes may interfere somewhat with performance, but should not

affect the fundamental solutions of tempotron operation – and

their effect on the readout may be minimized by synaptic

depression.

Figure 4. Mechanisms of spike-latency-based neuronal com-
puting. Illustration of sample tempotrons that solve the luminance
(left) or the boundary (right) task. Each tempotron receives inputs from
only two RGCs, and only their first spikes are processed. (A) The four
grating stimuli that define each task and the relative locations of the two
recorded RGC receptive fields. Solid line: Cell 1; dashed line: Cell 2. (B)
Latency tuning of the two RGCs under the eight gratings. Lines show
fitted cosine tuning curves. Colored horizontal bars highlight the spatial
phases of the four stimuli used in each task, color-coded as in (A). For
each of these stimuli, boxes depict the mean 61 SD of the measured
first-spike latency. (C) Histograms of the differential latencies D of the
two RGCs during the four task-relevant stimuli, color-coded as in (A). (D)
Sample voltage traces of a tempotron that solves the task, color-coded

according to the four stimuli. The input spike times of this example
represent the median differential latencies observed experimentally.
Horizontal dotted line depicts the spike threshold. Inset: The minimal
readout circuit with two RGCs connected to one postsynaptic neuron.
Traces show the PSPs of cell 1 (black) and cell 2 (gray) that underlie the
solution shown in the main panel. Scale bars depict 20 ms in the x-
direction and half of the spike threshold in the y-direction. In these
implementations, both afferents are excitatory. D1: tm~28ms, D2:
tm~16ms. (E) Like (D), but in these solutions, one afferent is excitatory
and the other inhibitory. E1: tm~38ms, E2: tm~32ms. Note that the
solution in (E2) encodes the identity of the stimulus within the target
class by the latency of the output spike: While early responses signal the
dark red stimulus, later responses signal the light red stimulus. The
membrane time constants in (D) and (E) were chosen to minimize the
generalization errors for the sample distributions of (C) in the
investigation of threshold noise (Materials and Methods). (F) Histogram
of the peak voltage of the tempotron in (D) for all experimental trials,
color-coded by stimulus as in (A). Note that the target and null stimuli
are well separated on either side of the threshold (dotted vertical line).
(G) Like (F), but for the solutions in (E).
doi:10.1371/journal.pone.0053063.g004
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Noise Robustness and Speed of Tempotron Computing
With this understanding of the basic computation implemented

by the tempotron readout neuron, we now consider some

limitations to its performance. One obvious limitation is imposed

by the spike-timing precision of the afferent neurons. Large noise

in spike timing will lead to broad peaks in the relative latency

histogram (Figure 4C). If the peaks from different stimulus classes

overlap, a readout neuron has no chance of separating them. For

the recorded retinal ganglion cell spike trains, the jitter of absolute

latencies was on the order of a few milliseconds [13]. The effects of

this noise are diminished, however, by the fact that the trial-to-trial

variations in latency are correlated across ganglion cells

(Figures 6A–C) [13]. Spike times of different neurons tend to shift

Figure 5. Synaptic solution space of a ganglion cell pair
decoder. (A) In this simple version of the decoder, each of the two
afferents fires exactly one spike per stimulus presentation at times tA

and tB. The two spikes produce PSPs with identical kinetics but different
amplitudes wA and wB. The relative latency D~tB{tA of the two spikes
determines whether the combined PSP crosses threshold for a spike.
This classifier divides the range of D into three regions: Dv{D1 ,
{D1vDvD2 , and D2vD. Depending on the two synaptic weights, the
decoder fires only in the middle region (top right, e.g. Figure 4D2) or
only outside that region (bottom right, e.g. Figure 4E2). (B) One can
prove that for any desired location of the boundaries {D1 and D2 there
is a combination of synaptic weights wA and wB that provides the
correct classification. Here this solution space is computed using PSP
kinetics with tm~20ms and ts~5ms. The left hand plot shows for any
combination of D1 and D2 the ratio of synaptic weights wA=wB that
solves the task. In the region marked ‘‘++’’ both synaptic weights are
positive and the readout neuron fires inside the range {D1vDvD2 . In
the regions marked ‘‘+–’’ and ‘‘–+’’ the weights are of opposite sign, and
the readout neuron fires outside the specified range. Dashed lines
indicate the boundary between the three types of solutions. Their
location depends on the PSP kinetics and asymptotically approaches
the time-to-peak of the PSP (solid lines). See Materials and Methods for
details. The right hand plots illustrate two specific solutions for the
D1,D2ð Þ combinations indicated by the arrows. In each case, the PSP is

shown for several different latencies D; bold lines correspond to the
limiting cases D~{D1 and D~D2 , for which the PSP just reaches
threshold.
doi:10.1371/journal.pone.0053063.g005

Figure 6. Effects of spike-time noise, threshold noise, and
readout time on tempotron performance. (A) Scatterplot of first-
spike latencies of two RGCs on multiple trials for each of the eight
stimulus phases in the highest contrast condition. For this cell pair, the
latencies covary, with an average correlation coefficient of 0.46 over all
eight grating phases. (B) Histogram of correlation coefficients for first-
spike latencies observed for all simultaneously recorded cell pairs,
stimuli, and contrasts (black). Note the excess of positive correlations.
As a control, the gray line shows the analogous histogram obtained
when correlating latencies of the two cells separated by one stimulus
trial. (C) Top, histogram of relative latencies for the cell pair of (A) for
the boundary task of Figure 4C2. Bottom, the same histogram of
relative latencies, but obtained from shifted trials. Note the increased
dispersion of the relative latencies and the increased overlap between
the red and blue peaks. (D) Effect of latency correlations on readout
performance. For all simultaneously recorded cell pairs, we obtained the
minimal tempotron error rates with inputs from simultaneous trials and
with inputs from shifted trials. The ratio of these two error rates is
plotted against the error rate obtained for simultaneous trials. Squares:
luminance task; circles: boundary task. Symbol colors represent the
mean latency correlation across the four stimuli that constitute a given
task (color bar). Note that most of the points lie below unity, showing
that in most cases the readout performance degrades when trials are
shifted and latency correlations destroyed. (E) Distributions of the peak
voltage of the tempotron for the boundary task, based on the
distributions of relative latencies shown in (C) (top; same color code).
The two voltage distributions result from optimizing the tempotron
weights for different PSP kinetics, namely tm~7ms(top) and tm~20ms
(bottom). In this example the shorter PSPs generate a much larger
separation between the maximal voltages for target and null stimuli
(red vs blue), such that the spike readout would be more robust to any
noise in the neuron’s threshold. (F) Optimal classification performance
on the boundary task with the input cell pair of (C) and assuming a
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back and forth together, possibly because of small gain changes in

the circuit that depend on the common stimulus history or because

of shared input noise [28]. Therefore the jitter in relative latency is

considerably smaller than one might assume if the two RGCs had

been recorded independently. We found that this makes a

substantial difference to neuronal classification performance

(Figure 6D); strongly correlated cell pairs had considerably smaller

error rates when the actual simultaneously recorded data were

analyzed as compared to the scenario where their correlations

were broken up by shuffling the trials. This shows that spike time

correlations increase robustness to spike time jitter, and it

emphasizes the importance of simultaneous population recordings

when one considers computations involving spike timing.

Even if the input spikes are timed reliably, a realistic detector

neuron will experience some noise unrelated to the inputs, so that

effectively its threshold varies from trial to trial. If the maximum

voltages produced by null and target stimuli are well separated, the

model is robust to such threshold noise, but otherwise it will

experience classification errors (Figures 6E and F). The distribu-

tion of maximum voltages in turn depends on the temporal

window of the postsynaptic potential (Figure 6E). We analyzed this

sensitivity to threshold noise in the simple case of just two inputs,

each of which fires one spike. For the difficult boundary task, we

found that the optimal postsynaptic integration time when

processing RGC responses was on the order of milliseconds to a

few tens of milliseconds (Figure 6F). As expected this time scale is

comparable to the latency differences that need to be discrimi-

nated, tens of milliseconds (Figure 1B), but clearly a rather broad

range of PSP time constants will work. In this regime, the

tempotron accomplished near perfect performance even if the

threshold was corrupted by noise equal to 5% of the PSP

amplitude (Figure 6F, see also Materials and Methods). Thus the

temporal computations are robust as long as the time scale of

postsynaptic integration is chosen appropriately.

For the purpose of rapid neuronal processing, the speed of the

tempotron’s computation is of central importance. We explored

this further by restricting the tempotron’s input spikes to those

arriving within a certain limited time window after stimulus onset.

As this window is extended, performance rises from chance to

perfection (Figures 6G and H). Note that at larger stimulus

contrast, less time is required to perform the classification tasks;

this follows directly because all absolute response latencies are

shorter at high contrast (Figure 1I) [13]. Interestingly the

boundary task always requires more time than the luminance

task. Referring to the histogram of relative latencies (Figure 4C),

one sees that the luminance task can be decided as soon as the

short-latency spikes have arrived (Figure 6G), whereas the

boundary task requires the neuron to wait through the period of

intermediate latencies (Figure 6H). In general therefore, one

expects that the timing of the tempotron response will vary with

the nature of the task. The timing of the output spike can also

carry further information about the input stimulus even within the

target class (e.g., Figure 4E2), and this may be used by spike-timing

computations at the next stage of neuronal processing.

The Tempotron can Implement Orientation Selectivity
with and without Phase Invariance

The observation that the tempotron allows detection of

boundaries independent of polarity led us to explore the detection

of other visual features. A very common task used in human

psychophysics and animal experiments is the discrimination of

grating displays oriented at different angles. In most of these

studies the grating is presented at random phase, due to

uncontrolled eye movements, so the visual computation requires

detecting the grating orientation independently of its phase. In the

mammalian visual cortex one finds neurons that may contribute to

this task: so-called ‘‘simple’’ cells are selective for gratings of a

particular orientation and phase, whereas ‘‘complex’’ cells are

selective for an orientation, but invariant with phase [29–31]. Can

a tempotron perform this task based on the raw spike trains from

retinal ganglion cells?

For illustration, imagine an array of retinal ganglion cells on a

hexagonal lattice (Figure 7A). We consider stimuli that switch from

uniform gray to an arbitrary pattern of dark and bright regions.

Each RGC responds with a spike whose latency depends on the

stimulus: short latency if the receptive field turned dark, longer

latency if it turned bright. The tempotron receives inputs from a

patch of seven such ganglion cells. For stimulus selectivity

analogous to a simple cell, this neuron should fire for a horizontal

grating with central dark bar, but remain silent if the same grating

is rotated or inverted in phase (Figure 7A). Indeed we shall require

the neuron to remain silent for all 127 bright/dark stimulus

patterns other than the preferred grating. For complex-cell-like

behavior, the postsynaptic cell should fire for the horizontal

grating as well as its phase-inverted version, but remain silent for

the other 126 stimuli. Although this may at first seem challenging,

these stimulus selectivities are in fact achieved with a very simple

pattern of synaptic weights (Figure 7B). Furthermore, the same

synaptic weights will produce either simple or complex selectivity:

A lowering of the firing threshold or a shorter PSP duration elicits

a switch from selectivity for an individual pattern to phase

invariance (Figure 7B). Thus the degree of invariance in the

tempotron’s response could be controlled by modulating its

effective integration time, for example depending on the amount

of shunting conductance [32,33].

While this schematic example gives some intuition how

orientation tuning with single spikes might work, it is restricted

to a small number of stimuli and leaves open whether this can be

accomplished using realistic retinal spike trains as input. To

explore this, we set the goal of producing a model cell that

responds to grating stimuli of arbitrary orientation and phase by

firing reliably within a narrow orientation range, but entirely

independent of the phase of the grating (Figure 8A). As inputs we

used 200 model ganglion cells with randomly scattered receptive

fields and response properties drawn from the experimentally

observed population of fast-Off RGCs (Figure 1). The efficacies of

their synapses onto the model readout neuron were trained by the

tempotron rule, with the objective of obtaining a spike from the

tempotron model if and only if the grating orientation is in a

specified range, with a width of either 30 or 60 degrees.

We found that the trained readout neuron achieved precise

orientation tuning in the specified ranges, regardless of the phase

of the grating (Figure 8A). Interestingly, whereas the presence of

the output spike depended only on the orientation of the stimulus

Gaussian threshold noise whose standard deviation is 5% of the mean
synaptic weight magnitude. The error was minimized for each PSP time
constant (x-axis) over the synaptic efficacies for the purely excitatory
solution (black, Figure 4D2) and the mixed solution with one excitatory
and inhibitory input (gray, Figure 4E2). (G) Performance of optimal
tempotrons operating with a pair of RGCs on the luminance task as a
function of the maximal allowed latency, tmax, of input spikes. The
fraction of correct classifications was averaged over all input cell pairs
that allowed for error-free performance in the highest contrast
condition at large tmax. Results are plotted for different values of the
stimulus contrast (indicated in %). (H) As in (G) but for the boundary
task and the fraction of correct classifications averaged over all input
cell pairs with errors below 5% in the highest contrast condition at large
tmax.
doi:10.1371/journal.pone.0053063.g006
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grating, the exact time of the spike was strongly dependent on the

phase of the grating (Figure 8B). We can only speculate whether

there exist neurons downstream from the retina that attain

orientation selectivity in this way, yet this analysis shows that the

sophisticated receptive fields encountered in many cortical

neurons can, in principle, be realized by computations with single

spikes. It seems likely that a dedicated brain pathway for rapid

image analysis would benefit from neurons that achieve orienta-

tion-selective and phase-invariant responses in a single stage of

synaptic integration in order to facilitate rapid complex visual

recognition processes.

Discussion

This study was triggered by the observation that certain types of

retinal ganglion cells implement an explicit spike latency code, in

which the timing of a spike at the onset of image fixation encodes

the spatial layout of the stimulus (Figure 1). We explored how

downstream neurons of the visual system might compute with this

code to extract features not represented by individual RGCs. It

emerged that the simplest picture of a receiver neuron, the well-

known integrate-and-fire model, already offers substantial capa-

bilities for computation based on spike times. Using just a single

spike per afferent fiber, this ‘‘tempotron’’ can perform basic visual

tasks representative of biological feature detectors in the visual

system (Figures 3, 7 and 8), while models that operate on the spike

count or purely on the temporal order of afferent spikes fail on the

more challenging tasks (Figure 3). The tempotron’s performance

was highest when focusing on the first spike of each afferent

(Figure 3A) and synaptic depression provides a plausible mecha-

nism for this restriction (Figure 3B). With different sets of synaptic

weights, the tempotron can implement qualitatively very different

computations (Figures 4 and 7), while its output is invariant to

stimulus contrast and robust to certain forms of noise originating

in the retina (Figure 6). Finally, we found that the tempotron can

achieve in a single synaptic stage orientation selectivity and phase

invariance, a computation reminiscent of cortical complex cells,

whereas conventional models of neural processing require multiple

synaptic stages for this feat (Figures 7 and 8). The speed and

versatility of tempotron computation recommends this mechanism

for a rapid image-processing channel.

Spike-time Computations
The notion that stimulus information can be extracted from the

spike times of sensory neurons has been explored extensively

[34,35]. Indeed, the communication from retina to cortex by first-

spike latencies has been modeled before [36,37], and a hierarchi-

cal network of latency-decoding neurons has been shown capable

Figure 7. Schematic model of orientation selectivity by latency processing. (A) In this model, a population of 7 RGCs is stimulated by a
sudden appearance of a bright/dark grating, and the resulting spike trains are processed by a tempotron. To emulate a cell that detects a single
horizontally oriented pattern, reminiscent of a cortical simple cell, the tempotron should fire to the preferred grating (left), but remain silent to its
inverse (middle), a rotated version (right), or any other pattern of illumination. To detect a horizontal grating independent of polarity, the tempotron
should fire both to the preferred grating (left) and its inverse (middle), but reject all other patterns. (B) A set of synaptic weights assigned to the 7
RGCs (left) that solves this problem. Each RGC fires a spike either early or late (if its receptive field turns dark or bright, respectively) with a relative
time difference of D~25ms (Figure 1H). The resulting spike patterns produced by 4 different stimuli (top) are shown, with colors indicating each
spike’s excitatory or inhibitory contribution. Bottom panels show the postsynaptic voltage traces elicited in the tempotron (tm~10ms). All 126 binary
stimulus patterns other than the preferred grating and its inverse produce a peak voltage of Vmaxƒ2 in units of the unitary PSP amplitudes. The
preferred grating and its inverse produce the two highest values with Vmaxw2; in the present model, this occurs if D=tmw1:63. Because of the order
of excitation and inhibition, the preferred grating always elicits a higher peak voltage than the inverse grating. Hence, if the spike threshold q is high
(green line) the tempotron detects a single pattern, if q is lower (pink line) it detects horizontal gratings of both polarities.
doi:10.1371/journal.pone.0053063.g007
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of high-level visual tasks like face recognition [26]. In general,

these arguments assume that sensory encoding occurs in discrete

episodes, such as visual fixations, olfactory sniffs, or somatosensory

whisking, and that, for each sensory neuron, stronger stimuli

produce spikes earlier in the episode. In this way, the temporal

order of firing encodes the stimulus, allowing decoding in

downstream regions by reading the firing sequence. To this

framework, we add two important concepts: more elaborate and

realistic sensory encoding and a concrete proposal for a simple but

powerful biophysical decoding mechanism that extracts informa-

tion from multi-neuronal spike latency patterns.

First, the retinal ganglion cell signals in our study were actually

observed experimentally, and we focused on a cell type with

specialized response properties. These neurons fire bursts of spikes

in response to almost any stimulus, and the onset time of the burst

depends on the proportion of light and dark regions in the

receptive field [13]. Second, we offer a concrete mechanism to

exploit this spike latency code in downstream brain regions in a

way that goes beyond a mere readout of the stimulus and already

begins certain computations. The course of the computation is

embodied entirely in the synaptic strengths of the afferents, which

we obtained via the tempotron learning rule [14] or by exhaustive

search. In nature, the synaptic strengths may well be hard-wired or

learned by some activity-dependent mechanism. We do not

consider this question further here, except to note that there exists

a biologically plausible synaptic learning rule that approximates

the tempotron rule [14] and that other mechanisms for learning

specific spike patterns have been explored [38].

At the heart of tempotron computing lies its sensitivity to the

temporal relation between inputs from different afferents [14]. For

example, solving the boundary task requires an assessment

whether two stimulus components are the same or different. The

tempotron can determine easily whether two neurons fire at

different times, regardless of their order (Figures 4 and 5). This is

equivalent to solving the so-called ‘‘XOR problem’’, a task that is

notoriously impossible for a perceptron model, which operates by

linear summation of a scalar response measure over its inputs

[22,39]. With just two inputs, a tempotron can partition the

stimulus space into three separate regions (Figures 4 and 5),

whereas the perceptron can only cut the stimulus space in two.

Similarly, the other models that rely on the rank order of spikes

can distinguish different orders of arrival among the afferent

spikes, but they cannot separate coincident from non-coincident

patterns. This explains why the tempotron performed the

boundary task better than the perceptron or the other considered

models. The same principle is behind the tempotron’s ability to

detect the orientation of a grating regardless of its phase in a single

synaptic stage (Figures 7 and 8).

Biological Implementation of Spike-time Computing
Given the potential power of tempotron processing, one

wonders whether nature actually exploits computation with spike

Figure 8. A tempotron model for orientation tuning with phase invariance. (A) Orientation tuning curves of a tempotron model designed
to show phase invariance. Extending the schematic model shown in Figure 7, this tempotron received inputs from 200 model RGCs whose Gaussian
receptive fields were randomly placed in the circular region over which the grating was presented. The latency of each RGC was cosine-tuned to the
fraction of its receptive field covered by dark grating bars as in the experimental recordings (Figure 1). The tempotron was trained to fire in response
to orientations within 615u (left) or 630u (right) independently of the grating phase. The curves show average orientation tuning curves of the
maximal voltage for four different grating phases (–90u: blue, 0: red, 90u: black, and 180u: green). Averages were obtained over 14 (left) and 15 (right)
independent RGC populations and tempotrons. For each tuning width, insets show the four orientation tuning curves of one individual tempotron,
overlaid on the mean 61 standard deviation of the populations (shaded areas). (B) Spike timing of the two tempotron models shown in the insets of
(A) with narrow (left) and wide (right) orientation tuning. The latency of the output spike (color code) was measured relative to the shortest-latency
spike of the tempotron and plotted as a function of orientation and phase of the stimulus grating. Each tempotron spiked only for orientations within
the dashed vertical lines.
doi:10.1371/journal.pone.0053063.g008
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latencies. In the following, we speculate about the possibility of

such pathways in the mammalian visual system and discuss the

necessary ingredients for implementing them. Beginning already

in the retina, visual information is processed in many parallel

pathways, each presumably playing some unique role for the

animal’s overall visual performance [40]. Spike-time computing

would be particularly useful in a processing pathway where speed

is essential, for example for a rapid coarse assessment of the new

visual scene after a saccade. Indeed, humans and monkeys can

make high-level decisions about images already 100–200 ms after

light strikes the retina [41–43], and cortical neuronal signals have

been measured that support such rapid classification both in

monkeys [44] and in humans [45]. This suggests that some aspects

of visual processing occur at high speed. Presumably other parallel

pathways through the visual brain operate with more leisure – for

example for a detailed inspection of the scene throughout a visual

fixation – and these may well use a different neural code. Thus we

suggest that tempotron computing may be a hallmark of

specialized pathways through the visual system, which benefit

from the appropriate synaptic and cellular physiology.

Input from the retina. The On-Off retinal ganglion cells we

considered are a special cell type that has been characterized

extensively in the salamander retina [46,47]. Mammalian retinas

also contain multiple RGC types with On-Off responses [48–50].

On the other hand, On-Off ganglion cells are not essential for the

proposed computations. The tempotron may equally well combine

inputs from On cells and Off cells with overlapping receptive

fields. The essential requirement for the present scheme is that On

and Off responses follow different dynamics. For example, On and

Off parasol cells of macaques differ in response latency by 10–

15 ms [51], which could support spike-time computing at the

onset of fixation.

Transmission through the thalamus. Relay cells in the

lateral geniculate nucleus generally mirror the response properties

of retinal ganglion cells. Often they are dominated by input from a

single RGC and fire time-locked to the input spikes [52,53]. There

is little temporal dispersion of action potentials from the retina all

the way to the visual cortex [54]. Thus the spikes arriving at the

visual cortex maintain the essential timing relationships [55,56].

Moreover, relative timing between pairs of thalamic neurons has

recently been shown to encode the orientation of a moving grating

[57].

Transmission to visual cortex. Each recipient cell in the

cortex is within reach of ,100 afferents from the thalamus [58], so

this is clearly a site of spatial computations. A pathway that

performs spike-time computing of the type considered above

should meet certain conditions. First, the cortical neuron should

receive strong afferents such that only a few, well timed PSPs are

sufficient to reach the firing threshold. Indeed, the synapses from

geniculate afferents are remarkably strong, and just a few spikes

are sufficient to make cortical neurons fire [59]. Second, the

integration time of postsynaptic neurons should be matched to the

temporal structure of retinal activity. Based on the responses of

salamander RGCs, we predicted an optimal integration time of

,10 ms (Figure 6F), and this should be somewhat shorter in a

mammal with faster responses. Indeed time constants of 2–9 ms

have been measured in cat visual cortex [60], and a direct

measurement of spike interactions from thalamic afferents

revealed an integration time constant of 2.5 ms [61]. Thus it

appears that both the strength of afferent synapses and the

dynamics of postsynaptic integration are conducive to spike-time

computing in cortical cells.

Intracortical circuits. The canonical view of cortical neural

coding is that the information about relevant visual features is

distributed among many cells, that individual neurons are noisy,

that their synapses are weak but numerous, and that individual

spikes have a negligible effect on connected neurons. While this

picture seems less conducive to cellular computation based on

afferent spike times, it is fair to say that the available experimental

evidence leaves ample room for dedicated pathways within the

cortex that operate differently [62]. In fact, the typical cortical

neuron is rather silent, with maintained firing of 1 Hz or less [63];

on that low background activity, even a single spike triggered by a

saccade can stand out effectively. Furthermore, within the sea of

weak synapses, one finds a conspicuous subset of very strong

connections, where individual spikes evoke postsynaptic potentials

of several millivolts [64,65]. These circuits could provide an

effective substrate for tempotron computation.

The role of inhibition. Although the tempotron can solve

visual tasks with excitation only (Figures 4 and 5), the most

versatile application of the model assumes that each afferent could,

in principle, contribute net excitatory or inhibitory signals. Indeed,

this kind of synaptic circuitry is available, at least in the early

sensory pathways. At the retino-thalamic synapse, an individual

spike from a retinal ganglion cell can evoke both excitatory and

inhibitory postsynaptic currents in the projection neuron [17].

Although the inhibition arrives via an additional interneuron, its

delay is as short as 1 ms. Similarly at the thalamocortical synapse,

one finds that individual afferents can evoke both excitation and

feed-forward inhibition in the cortical cell, again separated by as

little as 1 ms [18]. Because these delays are considerably shorter

than the membrane time constant, the excitatory and inhibitory

currents interfere effectively, as required for the simple tempotron

model. For some cortical neurons, the inhibition from a sudden-

onset stimulus even precedes the excitation, which allows a gating

of responses with high temporal precision [66]. Thus there is

precedent in cortical circuits for strong and rapid inhibition,

including leading inhibition as also occurs in some of our examples

(Figures 2A and 4E).

Implications for Visual Processing Downstream of the
Retina

What would be the identifying characteristics of neurons

operating in the way we propose? At a minimum, the tempotron

should have low background firing, so that individual spikes are

significant events. It should respond reliably to a flashed or

saccadic stimulus. And the very first spike of the response should

already exhibit feature selectivity. Indeed, such neurons have been

observed in V1 of the awake primates, with low maintained firing,

and sharply tuned orientation selectivity in the earliest part of the

response [67].

A downstream neuron dedicated to spike-latency processing

would benefit from strong synaptic depression at its inputs

(Figure 3B) to focus the computation on the first spike in the

train. This could be an interesting marker of single-spike

computations. Note that other postsynaptic neurons may observe

the same spike train with non-depressing synapses, thus making

use of slower components of the response. As applied to the visual

processing after a saccade, one can envision a rapid feedforward

sweep through dedicated cortical pathways that support the

earliest appearance of object recognition, followed by a longer

wave of activity that is shaped by recurrent and feedback

processing [68] and subserves additional visual functions.

At the output end of the tempotron, the energetic cost of spikes

would favor neurons that produce just one or zero spikes within a

processing episode. Indeed, such binary responses have been

observed in the auditory cortex, in response to brief tone

presentations [69]. Because extracellular and optical recordings
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are biased against neurons with low spike numbers [62], detecting

binary responses required the alternate approach of cell-attached

recording [70]. Perhaps a similar search could be conducted in

visual cortex, using natural saccade-fixation stimuli to which a

rapid image-analysis pathway would be suited.

A more specific hallmark of our proposed mechanism is that it

operates on the kinetic differences between On and Off channels

arriving from the retina. As a consequence, the response latency of

the tempotron depends on the nature of the visual task (Figures 6G

and H). For example, the model cell of Figure 8 has identical

orientation tuning for all grating phases, but its latency depends

systematically on phase (Figure 8B). These predictions could be

tested in neurophysiological experiments.

In this paper, we have focused on spike time computation in the

visual system. But the model for spike-time computing proposed

here is not specific to the processing of visual inputs. The exhibited

power of the tempotron model suggests that it may be equally

applicable to readout functions in other sensory systems – hearing,

smell, touch, and electrosensation – where spike times have

already been shown to convey important stimulus information

[4,71–76].

Materials and Methods

Ethics Statement
All experiments were carried out in accordance with the Guide

for the Care and Use of Laboratory Animals of the National

Institutes of Health, and this study was specifically approved by the

Institutional Animal Care and Use Committee of Harvard

University.

Recordings
The experiments contributing to this study have been described

in previous work [13]. In short, retinas were isolated from larval

tiger salamanders, superfused with oxygenated Ringer’s medium

at room temperature, and placed ganglion cell layer down on a

multi-electrode array, which recorded spike trains from many

ganglion cells simultaneously [77]. Spikes were sorted off-line by a

cluster analysis of their shapes, and spike times were measured

relative to the beginning of each stimulus repeat. Only units

corresponding to well-separated spike clusters with a clear

refractory period were included in further analysis. For these

cells, the spike patterns during the 150-ms time window of stimulus

presentation provided the input to the tempotron and perceptron

models.

Stimulation
Visual images were projected onto the photoreceptor layer of

the retina via a CRT monitor with a frame rate of 66 Hz. White

light was used with an average image luminance of

I0~16mW
�

m2 and a spectrum as described in [78]. For the

salamander’s red cone photoreceptor, this mean intensity was

equivalent to 20000 photons/mm2/s at lmax~630nm. A gray

screen of average luminance was displayed for 750 ms, followed by

a square-wave grating for 150 ms. The bar width of the grating

was 330 mm on the retina, somewhat larger than a typical

ganglion-cell receptive field center. The eight different grating

versions were obtained by successively shifting the grating by one

fourth of the bar width. The minimal shift between gratings was

82.5 mm, considerably smaller than most ganglion-cell receptive

field centers. The light and dark bars had intensity values I0zI1

and I0{I1, respectively, and the quoted contrast values are

Michelson contrast, I1=I0. The gratings were presented in pseudo-

random order, mixing the spatial phases of the grating as well as

the contrast levels in experiments with varying contrast.

Cell Types
To determine the cell type of the recorded retinal ganglion cells

(RGCs), we analyzed the shape of the spike-triggered average

recorded under a white-noise flicker stimulus and found different

cell types according to a cluster analysis [13]. Here we focused

exclusively on cells of the ‘‘fast Off’’-type, which are characterized

by an Off-type spike-triggered average but generally respond at

both the onset and offset of a light step. This RGC type displays a

pronounced latency code [13]. In total, the present work is based

on 41 fast Off cells that were recorded in nine separate

experiments with 8, 7, 5, 5, 5, 3, 3, 3, and 2 simultaneously

recorded cells, respectively. From these, the eight-cell and two of

the five-cell experiments were conducted with only the highest

contrast level, yielding a total of 1658 trials. In the other

experiments, several different contrast levels were used with

roughly 280 trials per contrast condition.

Characterization of Response Tuning
We characterized the first-spike latency and the spike count

tuning of each RGC (Figure 1) by fitting a cosine tuning function

of the form f (w)~AzB cos (w{w0) to each of the two response

measures at a given stimulus contrast level. Here A denotes the

baseline of the response, B its modulation amplitude and w0 the

phase offset. For the first-spike latency tuning, only trials with at

least one spike were used in the fitting procedure. Fits and

goodness-of-fit statistics were computed with the fit() function of

the MATLAB Curve Fitting Toolbox environment. The coeffi-

cient of determination mR2
C for mean spike counts was computed

by using the fit parameters obtained with the single-trial spike

counts to compute the expected counts fi for each stimulus phase i

and evaluating

mR2
C~1{

P8
i~1

xi{fið Þ2

P8
i~1

xi{xð Þ2

where the xi are the observed mean spike counts for each stimulus

phase and x is the mean spike count over all phases. Coefficients of

determination for the mean first-spike latencies mR2
L were

computed analogously. This quantity corresponds to the fraction

of variance explained by the fit.

Tempotron Model
To read out the measured ganglion cell spike trains, we used the

tempotron neuron model, an integrate-and-fire model together

with a synaptic learning rule described previously [14]. Briefly, the

sub-threshold voltage of the current-based leaky integrate-and-fire

neuron model was given by a weighted sum of postsynaptic

potentials (PSPs) from all incoming spikes:

V tð Þ~Vrestz
X

i

wi

X
j

K t{t
j
i

� �
: ð1Þ

Here t
j
i denotes the jth spike time of the ith afferent and

K t{t
j
i

� �
~V0 exp { t{t

j
i

� �
=tm

� �
{exp { t{t

j
i

� �
=ts

� �� �
ð2Þ
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is the normalized PSP contributed by each incoming spike. The

factor V0 normalizes the peak amplitude to unity such that

individual PSP amplitudes are given by the synaptic efficacies wi.

Except when stated otherwise, the time constant of membrane

integration was set to tm~10ms. The decay time constant of

synaptic currents was always ts~tm=4, providing for a biologically

realistic, fixed shape of the post-synaptic currents. The tempotron

was trained to perform a given visual classification task by feeding

the retinal population responses elicited by the corresponding

visual stimuli as inputs into the tempotron and applying the

tempotron learning rule: Following an error trial each synaptic

efficacy wi was modified by

Dwi~+l
X

t
j
i
vtmax

K tmax{t
j
i

� �
ð3Þ

with the change being positive if the neuron failed to spike during

a target input spike pattern and negative if the neuron fired

erroneously in response to a null input pattern [14]. Here tmax

denotes the time at which the postsynaptic voltage V tð Þ reaches its

maximal value. The constant lw0 specifies the maximal size of

the synaptic update per input spike. To accelerate learning, we

used a momentum heuristic for the tempotron learning rule with a

momentum parameter of m~0:99 [14,39].

Tempotron with Depressing Synapses
Short-term synaptic dynamics (Figure 3B) were implemented

following the model of Tsodyks et al. [21]. The static amplitude of

postsynaptic potentials w is scaled by the product of a depression

variable that captures the depletion of synaptic resources due to

previous spikes and a facilitation variable that mimics the spike-

dependent dynamics of the release probability. For the present

purpose we treat only depression [79]. The postsynaptic voltage

(cf. Equation 1) is given by

V tð Þ~Vrestz
X

i

wi

X
j

U :xj
i
:K t{t

j
i

� �
ð4Þ

where U is the baseline efficacy of the synapse, and x
j
i is a dynamic

factor indicating depression of the ith afferent at its jth spike time,

determined by

x
j
i~x

j{1
i 1{Uð Þexp {

t
j
i{t

j{1
i

tr

 !
z1{exp {

t
j
i{t

j{1
i

tr

 !
ð5Þ

and the initial condition x1
i ~1. The ensuing synaptic dynamics

are controlled by the baseline efficacy U , and the recovery time

constant tr. To accommodate this dynamic synaptic model, the

tempotron learning rule for updating the synaptic weights was

modified accordingly to

Dwi~+l
X

t
j
i
vtmax

x
j
i
:U :K tmax{t

j
i

� �
: ð6Þ

Training Procedure and Performance Measurements
To analyze the ability of a neuronal decoder model to use a

given retinal representation for visual processing, we studied two

visual discrimination tasks (Figure 2B). For each task, two classes,

consisting of two visual stimuli each, were selected, and the task for

the tempotron was to detect one stimulus class by firing at least one

spike while remaining silent for the other class. Given the eight

stimulus gratings used in the present experiments, the two tasks

could be realized in eight and four different ways, respectively,

because of the different ways by which individual stimuli could be

grouped into the stimulus classes. The reported performance

measures are averages over all possible realizations of each task.

For each task realization, we performed several learning runs. For

each learning run, a readout neuron model was trained by cycling

through all the relevant stimulus trials and applying the learning

rules of the tempotron [14] or the perceptron [39], respectively.

Learning started with random Gaussian initial synaptic efficacies

(with zero mean and a range of standard deviations sw as specified

below) and extended over 2000 cycles. The fraction of misclas-

sified input patterns in each cycle was smoothed by a moving

average that extended over 50 consecutive learning cycles, and the

performance of a particular run was defined as the minimum of

the resulting smoothed error curve.

Based on these individual learning runs, the performance of

each neuron model for a particular task realization was defined as

the minimal error that was achieved over 100 runs at each

combination of the learning rule parameters

l~ 0:0001,0:001,0:01f g and sw~ 0:001,0:01,0:1,1f g. To study

the tempotron’s visual processing capabilities in varying stimulus

contrast conditions, we analyzed its performance on spike trains of

a 7-cell population across 4 contrast levels. Here, the above

training procedure was performed either with spike patterns from

all 4 contrasts or with only the highest and lowest contrast

conditions. The synaptic efficacies of the best readout neuron

during this training were then used to measure its performance in

each single contrast condition separately.

Validation of Analysis Results
We probed the validity of the tempotron’s classification

performance in the most general condition, i.e. with all ganglion

cell spikes admitted for decoding and dynamic synapses (U~1;

tt~200ms), in two ways. First, we tested whether the performance

extends to other RGC populations of similar size, by resampling

many subsets of cells from our total pool of RGCs of this type.

Specifically, the analysis was repeated over 10 randomly sampled

populations of 8 RGCs out of the total of 18 RGCs that were

measured in the high contrast condition and 10 populations of 7

RGCs sampled from the total of 23 RGCs measured in the

variable contrast experiments. The average performance of these

virtual populations matched the results obtained for the native

populations on both tasks, with only a slight decrement of ,2% on

the boundary task. Second, we ruled out overfitting of the model

by using separate subsets of the data for training (75%) and testing

(25%). When using a training margin, optimized over (0, 0.025,

0.05, 0.1, 0.15, 0.2), this cross-validation produced essentially

identical performance measures as the ones obtained with our

above measure (the reduction in fraction correct of the tempotron

was less than 0.07% for the luminance task and approximately

1.25% for the boundary task). This is expected because the

dimensionality of the data vastly exceeds the number of

parameters of the tempotron model.

Temporal Winner-take-all Decoder
We compared the obtained classification results to the

performance of a temporal winner-take-all model (Figure 3D). A

binary temporal winner-take-all classifier [24] is fully characterized

by labeling each afferent of an input population with one of the

two possible classification decisions. For an incoming spike pattern

among the afferents, the label belonging to the afferent with the

shortest latency determines the decision of the classifier. In
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addition to this first-spike-based winner-take-all decoder, we also

evaluated the performance of an extended winner-take-all decoder

[25] whose decision was implemented as a majority vote between

the afferents belonging to the three shortest latencies. For each

task, both temporal-winner-take-all decoders were optimized over

the entire data set, by an exhaustive search through all possible

labelings of the afferents.

Rank-order-based Decoder
For further comparison, we implemented a rank-order-based

decoder (Figure 3D) following Delorme and Thorpe [26]. Briefly,

this decoder is an integrate-and-fire neuron whose afferents each

produce at most one spike. The post-synaptic potential is given by

the sum v~
Pm
i~1

wiq
oi over all m activated synapses, where wi is the

synaptic weight of the ith afferent, oi denotes the temporal rank of
the ith afferent’s spike latency, and q[ 0,1� � is an attenuation factor
by which the neuron desensitizes after each spike. To make the
decoder selective for a particular target condition, the synaptic
efficacy of each afferent was set to its average attenuation factor
over all the firing patterns in the target condition, wi~Sqoi Ttarget

[26]. To obtain a conservative comparison, we optimized both the

value of q and the neuron’s firing threshold.

Analysis of Retinal Ganglion Cell Pairs
To explore the basic computations underlying the tempotron

decoding of spike-latency-based neuronal representations, we

evaluated the tempotron’s classification performances on the basis

of pairwise retinal inputs. The performance values for pairs of

RGCs were based on exhaustive searches of the tempotron and

perceptron parameter spaces. In these analyses, the input to the

tempotron model was based on only the first spike of each

ganglion cell. For each pair of ganglion cells, the reported

performance refers to the best performance over all realizations of

a given task type. This performance measure was chosen because

the two receptive fields may, for some task realizations, fall outside

the stimulus regions most relevant for the task.

To interpret relative spike latencies, the tempotron with just two

inputs requires at least one spike per afferent. However, on some

trials, especially at low stimulus contrast, certain ganglion cells

failed to fire entirely. The quoted analyses of errors incorporate all

trials, including such spike failures. To evaluate the speed of the

tempotron decoding, we evaluated its operation under the

constraint that only first spikes of each afferent with arrival times

before a maximal time tmax were used. The synaptic weights were

optimized separately for each value of tmax.

We analyzed the robustness of the tempotron decoding to noise

(Figure 6F) by fitting the input distribution of relative latencies

with a Gaussian for each stimulus grating of the task realization.

Then, for each value of tm, the tempotron’s weights were

optimized such that the corresponding projection of the input

distribution to maximal voltages yielded a minimal classification

error when assuming a Gaussian threshold noise with zero mean

and a standard deviation set to 5% of the mean weight magnitude.

Analytical Treatment of the Tempotron with Two
Afferents

To obtain a full understanding of the decoding of ganglion

cell pairs we derived an analytic solution of the corresponding

tempotron decoder (Figure 5). We considered a tempotron that

is driven by two afferents with non-zero synaptic efficacies w1

and w2, each firing exactly one spike per trial. The neuron maps

each relative latency D between these two input spikes into a

peak postsynaptic voltage Vmax(D). Importantly, this mapping is

non-monotonic. If the magnitude of D is large, the two inputs

act essentially in isolation and Vmax(+?)~max(w1,w2) as-

sumes the value of the larger of the two synaptic efficacies. We

assume here that at least one of them is excitatory and their sum

positive. If, on the other hand, the two input spikes arrive in

synchrony, D~0, then Vmax(0)~w1zw2 becomes the sum of

the two.

Assuming that the neuron’s firing threshold lies between

Vmax(+?) and Vmax(0), two behaviors emerge: Firstly, if both

efficacies are excitatory Vmax(0)wVmax(+?), the neuron fires

within a region of small D and remains silent if the magnitude of D
is large. Secondly, if one synapse is excitatory and the other

inhibitory, the neurons fires if the magnitude of D is large, but not

if it is small. Hence, the tempotron with two afferents generates a

tripartite segmentation of the space of relative latencies. The

boundary between the different response regions is characterized

by a pair of relative latencies, one for each firing order. Defining

D1 as the boundary for inputs with w1 firing before w2 and D2 as

the boundary when w1 fires after w2, the maximal voltages obey

Vmax(D1)~Vmax(D2)~q, where q is the neuron’s firing threshold.

Using analytical expressions for Vmax(D), we numerically solved

this equation for w1 and w2.

Model for Phase-invariant Orientation Tuning
To test whether a single tempotron can realize phase-

invariant orientation tuning on the basis of realistic first-spike

latency patterns, we trained the tempotron to respond to spike

trains from a modeled retinal patch of 200 ganglion cells that

was stimulated with square gratings of continuous spatial phase

and orientation (Figures 7–8). For the description of the

model’s configuration below, the spatial period of the stimulus

grating is defined as 1. The 200 model ganglion cells had

receptive fields with a Gaussian sensitivity profile, whose

centers were randomly placed within a circular region of radius

1= 2 sin p=3ð Þð Þ. The standard deviation of each two-dimen-

sional Gaussian receptive field was 1=12. For a given grating

stimulus with phase q and orientation h, the first spike latency

of the ith cell was given by

tlat
i q,hð Þ~t0

i zmi cos pA q,hð Þð Þ ð7Þ

where A q,hð Þ denotes the integral of the receptive field portion

that is covered by dark areas of the grating and the offset t0
i

and modulation mi were drawn from normal distributions

fitted to the latency statistics of our empirical ganglion cell

sample (N 0,10:3 msð Þfor t0
i and DN 16:2 ms, 5:4 msð ÞD for mi).

Tempotrons were trained on a fine rectangular grid of 201

phases, which were linearly spaced between 2180u and 180u,
and 101 orientations, spanning the range between 290u and

90u. To obtain examples of wide and narrow tuning of

orientation selectivity, the target stimuli consisted of all stimuli

with orientations either between 215u and 15u (narrow tuning)

or between 230u and 30u (wide tuning). Robust generalization

beyond the training grid was ensured by training with a margin

of 610% of the firing threshold for all orientations, except

near the boundary of the response region (within 63u or 66u
for the 30u- or 60u-wide region, respectively). Initial synaptic

weights were drawn from a Gaussian distribution with zero

mean and a standard deviation of 0.001. To enhance the

learning speed, we employed a schedule for the step size

l~lini=(1z10{7k) where lini~5:10{5 and k counts the

number of presented input spike patterns. A momentum

parameter of 0.99 was used. Learning continued for 10,000
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cycles of the entire phase–orientation grid presented at a

random but fixed order. With these parameters, 14 out of 20

tempotrons converged to zero error on the grid for the narrow

tuning task and 15 out of 20 for the wide tuning task.
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