Design and Assembly Considerations in the Engineering of Vascular Tissue

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:11744451</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Design and Assembly Considerations in the Engineering of Vascular Tissue

A dissertation presented

by

Jin Cheng Ye

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in the subject of

Engineering Sciences

Harvard University
Cambridge, Massachusetts

December, 2013
© 2013 – Jin Cheng Ye

All rights reserved.
Dissertation Advisor: Professor Kevin Kit Parker
Author: Jin Cheng Ye

Design and Assembly Considerations in the Engineering of Vascular Tissue

Abstract

Native vascular tissue functions are highly dependent on structural organization at the super-cellular, cellular, and sub-cellular spatial scales. We hypothesized that the structure-function relationship of vascular tissues in vivo can be leveraged to engineer vascular tissues in vitro by prescribing the shape of constituent cells and their assembly into organized three-dimensional structures. To this end, we first asked if vascular smooth muscle cell shape influences cellular contractility. We engineered human vascular smooth muscle cells to assume similar shapes to those in elastic and muscular arteries and then measured their contraction while stimulating with endothelin-1. We found that vascular smooth muscle cells with elongated shapes exhibited lower contractile strength but a greater percentage increase in contraction after endothelin-1 stimulation, suggesting that elongated vascular smooth muscle cell shape endows the muscular artery with greater dynamic contractile range. Next, we sought to assemble cells into tissues by employing a three-dimensional cellular patterning strategy based on the folding of porous, thin polymer films. We assembled different three-dimensional endothelial and vascular smooth muscle organizations by patterning two-dimensional poly(lactic-co-glycolic) acid and collagen thin films with cell suspensions at prescribed locations. The films were subsequently folded following Miura-ori geometry guidelines and the matrices were embedded subcutaneously in immunodeficient mice in order to assess the vascularization of the implanted constructs. We found that spatial organization
that allowed endothelial and vascular smooth muscle cells to interact adjacent to each other laterally in the same folding plane created the densest vascularized network, suggesting that three-dimensional structural organization of vascular cells can influence the formation of vascularized networks. Taken together, our result shows that functional vascular tissues *in vitro* can be engineered by encoding structure cues in their design and assembly.
Table of Contents

Abstract .. iii
Table of Contents ... v
Table of Figures .. ix
Acknowledgements ... xii

1 Introduction .. 1
 1.1 Mechanotransduction as a Strategy for Engineering Functional Vascular Smooth Muscle ... 1
 1.2 Cytoskeleton Components in Vascular Smooth Muscle Cell Mechanotransduction ... 5
 1.2.1 Mechanical Signaling through Integrin-ECM Interface ... 7
 1.2.2 Mechanical Signaling through Intercellular Junctions ... 9
 1.2.3 Intracellular Signaling Mechanics ... 10
 1.2.4 Zyxin and Nucleus as Mechanosensors ... 13
 1.3 Engineering Vascular Smooth Muscle Form with Mechanical Cues .. 15
 1.3.1 Tensile Stress ... 16
 1.3.2 Cellular Boundary Condition .. 17
 1.3.3 Extracellular Matrix Interactions ... 19
 1.3.4 Substrate Stiffness .. 20
 1.3.5 Topography .. 21
 1.4 Functional Evaluation of Engineered Vascular Smooth Muscle .. 22
 1.4.1 Proliferation .. 23
 1.4.2 Migration .. 24
 1.4.3 Contraction .. 25
 1.4.4 Gene Expression ... 26
1.5 Conclusions .. 27

2 The Contractile Strength of Vascular Smooth Muscle Myocytes is Shape Dependent ... 29

2.1 Introduction .. 29

2.2 Results ... 34

2.2.1 Design of Vascular Smooth Muscle Cell Shape ... 34

2.2.2 Microfabricated Isolated Vascular Smooth Muscle Cells 38

2.2.3 F-actin Alignment and Organization as a Function of Cell Shape 45

2.2.4 Nuclear Deformation as a Function of Cell Shape ... 47

2.2.5 Development of Stimulation Protocol for Studying Cell Contraction 50

2.2.6 Quantification of Vascular Smooth Muscle Cell Contractile Strength by Traction Force Microscopy ... 53

2.2.7 Isolated Vascular Smooth Muscle Cell Contractile Strength Correlated with Cellular Aspect Ratio ... 56

2.2.8 Cell Shortening as a Function of Cell Shape ... 65

2.2.9 Contractility Correlated with Subcellular Organization 67

2.3 Discussion .. 68

2.4 Experimental Challenges .. 74

2.5 Methods and Materials .. 76

2.5.1 Sample Preparation ... 76

2.5.2 Human Umbilical Arterial Smooth Muscle Cell Culture 78

2.5.3 Fluorescent and Immunohistochemical Staining .. 78

2.5.4 Cell, F-actin, and Nucleus Image Analysis ... 79

2.5.5 Cell, Patterned Fibronectin Island, F-actin and Nucleus Fluorescent Microscopy ... 80

2.5.6 Traction Force Microscopy Experiment .. 81
2.5.7 Traction Force Microscopy Data Analysis .. 81

3 Engineering Vascularized Network in Folded, Porous Polymer Matrices by Tissue Origami ... 83

3.1 Introduction ... 84

3.2 Results ... 85

3.2.1 Fabrication and Visualization of Thin, Porous PLGA film 85

3.2.2 Fabrication and Visualization of Thin, Porous Collagen Film 87

3.2.3 Folding Thin Film into Miura-geometry with Laser-etched Perforated Lines ... 90

3.2.4 Patterning of Thin Films with Post-stamping System 92

3.2.5 Three-dimensional Cell Patterning in Folded, Porous Polymer Matrices ... 96

3.2.6 Patterned Cell Viability in Folded, Porous PLGA Matrices 99

3.2.7 Organized Three-dimensional Organization Promotes Vascularized Network Formation ... 101

3.3 Discussion ... 103

3.4 Experimental Challenges ... 105

3.5 Materials and Methods ... 107

3.5.1 Preparation and Fabrication of Thin Films and Bulk Scaffold 107

3.5.2 Thin Film Characterization .. 110

3.5.3 Laser-etching and Folding of Thin Film 111

3.5.4 Post-stamping System Fabrication and Stamping 111

3.5.5 Cell Culture .. 113

3.5.6 Cell Patterning of Thin Film with Post-stamping System 113

3.5.7 Immunohistochemistry ... 115

3.5.8 Scanning Electron Microscopy .. 117
3.5.9 Confocal Microscopy ... 117
3.5.10 Cell Viability and Metabolic Assays 118
3.5.11 in vivo Mouse Implantation of Scaffold and Harvest 119
3.5.12 Vessel Density Calculation .. 120

4 Conclusion .. 121

4.1 The Effect of Vascular Smooth Muscle Cell Shape on Cytoskeletal Architecture and Contractile Strength .. 122
4.2 Engineering Vascularized Network in Folded, Porous Polymer Matrices by Tissue Origami .. 123
4.3 Limitations and Future Directions .. 125
4.4 Dissertation Summary .. 126
4.5 Funding Sources ... 128

5 Bibliography .. 129

6 Appendices ... 148

6.1 Appendix A: List of Publications .. 148
6.2 Appendix B: MATLAB code for analyzing cellular forces in traction force microscopy studies ... 149
Table of Figures

Figure 1-1: Hierarchical organization of vascular tissue spans multiple spatial scales from nanometers to meters. ... 3

Figure 1-2: Mechanotransductive cytoskeletal proteins in vascular smooth muscle cells. 6

Figure 1-3: Mechanotransductive proteins in the focal adhesion complex. 8

Figure 1-4: Force transmissions via cytoskeleton to the nucleus. 14

Figure 1-5: Cellular shape directs cytoskeletal architecture. 18

Figure 2-1: Morphology of immunostained isolated vascular smooth muscle cells 36

Figure 2-2: Projected surface area of isolated vascular smooth muscle cells 37

Figure 2-3: Observed aspect ratios of vascular smooth muscle cell from literature....... 38

Figure 2-4: Schematic representation of μCP method on polyacrylamide gel to construct isolated vascular smooth muscle cells with different aspect ratios......................... 39

Figure 2-5: Immunostained micropatterned FN islands and microfabricated isolated vascular smooth muscle cells... 40

Figure 2-6: Characterization of microfabricated immunostained isolated vascular smooth muscle cells.. 41

Figure 2-7: Shortening of rectangular isolated vascular smooth muscle cells.......... 43

Figure 2-8: Vascular smooth muscle cell thickness and volume are similar for all aspect ratios.. 45

Figure 2-9: Orientational order parameter (OOP) of F-actin fibers of isolated vascular smooth muscle cells. ... 46

Figure 2-10: Morphological changes in nuclear shape as isolated vascular smooth muscle cell elongates.. 48
Figure 2-11: Nuclear volume and surface area of isolated vascular smooth muscle cells. ... 50

Figure 2-12: A representative traction profile for an isolated vascular smooth muscle cell in response to endothelin-1 and HA-1077 treatment. ... 52

Figure 2-13: Traction force microscopy experimental protocol and representative stress spatial maps of isolated vascular smooth muscle cells. .. 55

Figure 2-14: Vascular smooth muscle cell aspect ratios correlated with strain energy output. .. 57

Figure 2-15: Vascular smooth muscle cell aspect ratios correlated with longitudinal traction force. ... 59

Figure 2-16: Transverse traction force is similar for all cellular aspect ratios. 61

Figure 2-17: Endothelin-1 induced increase in longitudinal traction force is similar for all cell aspect ratios. ... 62

Figure 2-18: Vascular smooth muscle cell aspect ratio correlated with longitudinal cumulative cellular prestress ... 64

Figure 2-19: Longitudinal cell shortening correlated with cellular aspect ratio and orientational order parameter... 66

Figure 2-20: Contractile output correlated with cytoskeletal organization and nuclear morphology... 68

Figure 3-1: PLGA film fabrication and visualization. .. 87

Figure 3-2: Collagen film fabrication and visualization .. 88

Figure 3-3: Degradation profiles of collagen thin film in PBS and collagenase. 90

Figure 3-5: Patterning PLGA thin films with post-stamping system. 93
Figure 3-6: Laser-etched circular boundaries improved patterning fidelity and consistency in PLGA thin films... 95

Figure 3-7: Laser-etched boundaries were ineffective for patterning in collagen thin film. .. 96

Figure 3-8: Patterning cells in PLGA and collagen thin films using post-stamping system. .. 98

Figure 3-9: Cell viability evaluation in folded and bulk porous PLGA polymer matrices. .. 100

Figure 3-10: Evaluating vascularization network formation in folded and bulk porous PLGA matrices... 102
Acknowledgments

I would like to thank my advisor, Prof. Kevin Kit Parker for his guidance, patience, inspiration and support throughout one of the most stressful periods during my PhD career. Although I only had the opportunity to closely interact with him for little over a year after joining the Disease Biophysics Group in September 2012, his rigorous, innovative and collaborative approach for scientific research had led to a very meaningful and productive final year of my graduate study at Harvard University. Not only have I learned how to become an independent and mature scientist under his mentorship, but also I gained a profound understanding in what it means to be a leader, in scientific research and life in general. I am certain that this will benefit me for the many years to come in my personal and professional development and I am deeply grateful for his teachings.

I am also grateful to my dissertation committee for their help, advice and time. Their subject expertise made their constructive comments and feedback in every meeting exceptionally helpful at times when I needed them the most. I would like to thank Prof. David Mooney for his valuable time and insightful advice throughout my PhD. I also would like to thank Prof. Daniel Needleman for his helpful discussion and comments at critical points of the project. I also greatly appreciate for their understanding, empathy and support for me during the final period of my PhD, for I would not have succeeded without them.

I would also like to thank all members of the Disease Biophysics Group for they have not only taught me much about scientific research, but also supported me emotionally as friends through the ups and downs I experienced during my PhD. In
particular, I would like to express my most sincere gratitude to Dr. Yvonne Aratyn-Schaus, Mr. Alexander P. Nesmith, and Dr. Megan McCain for teaching me and helping me troubleshooting the traction force microscopy assays. I also would like to thank Mr. Borna Dabiri and Dr. Leila Deravi for their helpful feedback on my presentations and writings. Their encouragement and support are essential for the completion of my PhD and I am touched by their kindness.

I also would like to thank my beloved parents for believing in me and supporting me for my pursuit of higher education in the United States. I owe much of my accomplishments today to their sacrifices in immigrating to Canada, where they hoped that it may provide a brighter future for me. Their unconditional love for me served as one of the greatest strengths in me and it is never enough to express my gratitude to them.

I thank all the faculty members, staff and my fellow graduate students and colleagues for their help and friendship during my journey here at Harvard University. I like to thank Dean Cherry Murray for her kindness and support during the difficult lab transition period. I thank Prof. Debra Auguste for her mentoring during the first four years of my PhD career. I also really appreciate all the administrative help I received from Mr. David Boyle, Ms. Katie Parodi, and Ms. Jessa Piaia. I thank all my former lab mates from the Auguste lab including Dr. Marjan Rafat, Prof. Jin-Oh You, Ms. Dariela Almeda, Ms. Renita Horton, Mr. Kyle Satterstrom, and Dr. Rico Gunawan. Their positive attitude have inspired and motivated me to become a better person.

Lastly, I am grateful for the financial support from the School of Engineering and Applied Sciences, Natural Sciences and Engineering Research Council of Canada and the Wyss Institute for Biologically Inspired Engineering at Harvard University.
1 Introduction

Engineering functional vascular smooth muscles in vitro remains challenging because of the complexity of recapitulating structural organization across multiple spatial scales. Early efforts primarily focused on controlling vascular smooth muscle functions by biochemical signaling; however, accumulating evidence suggests that mechanotransduction, the process by which cells convert mechanical stimuli in the cellular microenvironment into biochemical cues, holds promise as a novel approach to engineering this tissue. Here, we discuss an engineering strategy that recapitulates mechanotransduction to build functional vascular smooth muscles in vitro. By harnessing mechanical cues in the cellular microenvironment, functional vascular smooth muscles can be engineered with cytoskeletal architecture. A number of vascular smooth muscle functions that depend on the cytoskeletal architecture could then be evaluated through performance metrics to assess if desired functional outcome is achieved. Engineering functional vascular smooth muscle in vitro may yield new insight on the development of vascular grafts and accelerate drug discovery research for treating cardiovascular diseases.

1.1 Mechanotransduction as a Strategy for Engineering Functional Vascular Smooth Muscle

Engineering functional vascular tissue in vitro is not a trivial pursuit due to the dependency of vascular functions on the three-dimensional structural hierarchy that spans several orders of spatial magnitude ranging from centimeter length scale of the arteries to the nanometer length scale of cytoskeletal proteins (Figure 1-1). For example in a healthy arterial tissue, endothelial cells (ECs) line the inner most layer of the blood vessel to
protect the vascular smooth muscles (VSM) from blood shearing force. In turn, the VSM provides structural support to the ECs by wrapping around the ECs in helices to

Engineering functional vascular smooth muscles (VSMs) in vitro remains challenging because VSM structure and function interact over several orders of spatial magnitude, ranging from the centimeter-length scale of arteries to the nanometer-length scale of cytoskeletal proteins (Figure 1). VSM structure and function are maintained in vivo in several ways, one of which is the regulation of mechanical forces at the tissue, cellular, and sub-cellular spatial scales through a process called mechanotransduction, in which cells translate mechanical stimuli into biochemical reactions. In the native environment, cyclic cardiac cycles expose VSM to mechanical stimuli from a number of sources, such as transmural pressure, vascular strain induced by pulsatile pressure, and circumferential and axial wall tension [1]. VSM, in turn, responds by inducing changes in cytoskeletal organization [2-4], membrane ionic conductance [5-7], and signaling activation [8-11], that lead to functional changes in VSM contraction, secretion, growth, and migration. A well-studied example of this process is the myogenic response, where small arteries contract to counteract increased intraluminal pressure, protecting the blood vessel from potential hypertensive injury [12]. Thus, mechanotransduction enables VSM to respond to mechanical stimuli encoded in the local microenvironment and remodel its function to serve the needs of the blood vessel.
Figure 1-1: Hierarchical organization of vascular tissue spans multiple spatial scales from nanometers to meters. Vascular smooth muscle cells assemble into muscle tissue that forms the media layer of the elastic and muscular arteries. The spindle shaped cells contain nanometer scaled protein complexes that allow it to respond to mechanical cues in the cellular microenvironment. Adapter in part from Servier Medical Art.
Differentiated, healthy VSM typically operate in sustained constriction, or tone, to regulate peripheral resistance, thereby maintaining systemic blood pressure and controlling organ blood flow. Disruption of tone can produce vascular disorders such as hypertension [13] and vasospasm [14], where VSM contraction deviates from its homeostatic equilibrium. Such conditions are commonly treated by pharmacological manipulation of VSM contractile signaling to modulate its tone. Traditional drugs that target the VSM contractile pathway include alpha- and beta-adrenergic receptor antagonists, calcium channel blockers, angiotensin converting enzyme (ACE) inhibitors, and angiotensin II receptor antagonists [15]. Drug development efforts now seek to identify compounds that either activate or inhibit VSM cell (VSMC) large conductance Ca2+ activated K+ (BK\textsubscript{Ca}) channels to regulate the membrane potential of VSM and, in turn, control the vascular tone [16]. The efficacy of these drugs on VSM tone can only be validated \textit{in vitro} if a VSM model functionally recapitulates its \textit{in vivo} counterpart.

In this review, we discuss how an engineering algorithm based on recapitulating the native mechanotransduction processes can be applied to design, build, and test a functional VSM \textit{in vitro} model. We first demonstrate that cytoskeletal proteins in the extracellular, intercellular, and intracellular domains are mechanotransductive components responsible for regulating VSMC architecture and functions. We then describe the mechanical cues that can be used to design the assembly of these cytoskeletal proteins into VSM with engineered cellular architecture. Finally, we present a performance evaluation metric comprising functions that could be influenced by the engineered cellular architecture.
1.2 Cytoskeleton Components in Vascular Smooth Muscle Cell Mechanotransduction

VSMCs sense a wide array of mechanical stimuli through a network of cytoskeletal proteins embedded in the extracellular, intercellular, and intracellular domains. These dynamic proteins continuously sense changes in the cellular microenvironment and remodel their organization to drive the force balance towards equilibrium (Figure 1-2). For example, integrin proteins are directly connected to actin filaments, allowing forces to be transmitted from outside to inside the cells [17]. Cadherin junctions directly couple adjacent VSMCs together and propagate mechanical signals from one cell to the next [18]. Actin, intermediate filaments, and microtubules propagate mechanical signals through common hubs at dense plaques throughout the VSMC cytoplasm [19]. Thus, the cytoskeletal proteins provide design parameters that we can engineer to recapitulate the mechanotransduction processes in VSMC.
Figure 1-2: Mechano-transductive cytoskeletal proteins in vascular smooth muscle cells. Integrin links the ECM protein such as collagen to actin fibers, allowing extracellular mechanical signals to be directly transmitted into the cell. Actin responds to mechanical input to the cells by rapid by changing the F- to G-actin ratios and acts as an intracellular sensor. Cadherin junctions provide mechanical links between adjacent cells, allowing forces to be transmitted between cells.
1.2.1 Mechanical Signaling through Integrin-ECM Interface

Integrin proteins are transmembrane, heterodimeric receptors comprising α- and β-subunits. They connect the extracellular matrix (ECM) to the internal cytoskeletons at the site of focal adhesion complex via the short cytoplasmic tail of the β-subunit (Figure 1-3). Furthermore, integrins transduce both “outside-in” and “inside-out” mechanical signals in many different cell types. Twenty-four integrins have been described and among them, $\alpha_1\beta_1$, $\alpha_2\beta_1$, $\alpha_3\beta_1$, $\alpha_4\beta_1$, $\alpha_5\beta_1$, $\alpha_6\beta_1$, $\alpha_7\beta_1$, $\alpha_8\beta_1$, $\alpha_9\beta_1$, $\alpha_{10}\beta_1$, $\alpha_{11}\beta_3$, $\alpha_{\text{v}}\beta_5$, and $\alpha_{6}\text{v}$ are found in VSMCs [20, 21].
Figure 1-3: Mechatransductive proteins in the focal adhesion complex.

Transmembrane protein integrin physically links extracellular matrix protein such as collagen in the extracellular domain to intracellular structure protein such as F-actin. This allows mechanical inputs to be transmitted in both ways, allowing “outside-in” and “inside-out” signaling. Cellular components are not to scale.

In vitro studies using isolated arterioles and VSMCs have provided strong evidence that some integrins are crucial mechatransductive elements for VSMCs. Wilson and colleagues demonstrated that soluble fibronectin, integrin binding peptide GRGDTP, and antibodies to β3 or αvβ5 all independently block the mitogenic response of newborn rat VSMCs to mechanical strain [22]. Other studies subsequently showed that
an integrin-recognizing synthetic RGD peptide can cause sustained vasodilation [23] and decreased intracellular Ca\(^{2+}\) level in rat VSMCs [24]. These early studies demonstrated that integrins play an important role in transducing mechanical cues to intracellular signals that produce functional adaptive responses. More recently, studies on isolated rat arteriole tissue and VSMCs showed that antibody blocking of \(\alpha_5\beta_1\) and \(\alpha_\beta_3\) integrins significantly inhibits myogenic constriction [25, 26]. However, pulling on fibronectin and \(\beta_1\)-integrin antibody-coated magnetic beads on isolated renal VSMCs elicits an increased cell force and sustained traction, autologous to pressure-induced myogenic response [27]. The integrin mechanotransduction mechanism has also been linked to BK\(_{\text{Ca}}\) ion channel activities and \(Src\)-dependent pathways [28, 29]. Collectively, these studies demonstrated that integrins are critical to mechanotransduction and adaptive remodeling in VSM tissue and cells.

1.2.2 Mechanical Signaling through Intercellular Junctions

In addition to cell-ECM connections, VSMCs in the vascular wall contain a variety of cell-cell adherent junctions, including cadherin and gap junctions [30]. The cadherin family of calcium-dependent transmembrane receptors is mechanically important: they bind together adjacent VSMCs and link them intracellularly to actin filaments via catenins, allowing direct force transmission between neighboring cells [31-33].

VSMCs express multiple cadherins, including N-cadherin, T-cadherin, R-cadherin, cadherin-6b, and E-cadherin (in the case of atherosclerotic lesions) [21]. The predominant cadherin, N-cadherin, is expressed at a higher level in human venous
smooth muscle cells (SMCs) than in arterial SMCs [34]. While N-cadherin has been investigated in the context of VSMC migration [35], proliferation [36], and survival [37], Jackson et al. showed that selective blockage of N-cadherin or a cadherin inhibitory peptide in rat cremaster arterioles inhibits myogenic response to pressure changes independent of [Ca^{2+}]_{i}, [38], implicating N-cadherin in mechanical load sensing and arteriolar contraction regulation. T-cadherin was originally identified in a membrane fraction of aortic SMCs [39]. Unlike classical cadherin family members, T-cadherin does not have transmembrane and cytosolic domains but instead is anchored to membranes by means of glycosylphosphatidylinositol (GPI). An analysis of Triton-X fractionized human and rat VSMCs revealed that T-cadherin co-localizes with mechanotransducing signaling molecules such as Gαs protein and Src-family kinases in caveolin-rich membrane domains [18], suggesting that T-cadherin may function as a local signal-transducing protein as well as an adhesion molecule. Additional studies on the exact mechanism of cadherin-based mechanosensing are needed to understand its role in the regulation of VSMC cytoskeletal structure and contractile responses.

1.2.3 Intracellular Signaling Mechanics

Actin is the most abundant cytoskeletal protein in contractile VSMCs, contributing ~20% of total protein content [40]. Four of the six vertebrate isoforms of actin are found in VSMCs: α-smooth muscle actin (SMA), β-non-muscle actin, γ-SMA, and γ-cytoplasmic actin. Large arteries typically contain about 60% α-SMA, 20% β-non-muscle actin, and about 20% combined γ smooth muscle and γ non-muscle actin [41]. Both α- and γ-SMA are commonly referred to as contractile actin because of their
association with myosin filaments in generating tension and cell shortening. The two remaining actin isoforms are referred to as cytoplasmic actin and are localized to the cell cortex [42].

Although the precise role of cytoplasmic actin in arteriolar myogenic behavior remains uncertain, growing evidence supports the hypothesis that this subpopulation of actin contributes to VSMC mechanotransduction [2]. Earlier studies using pharmacological agents demonstrated that a short exposure period to actin depolymerizing agent profoundly suppresses VSM tension development [43-46], while exposure to actin stabilizer enhances myogenic tone [47], highlighting the critical role of actin polymerization in VSMC contraction and tension development. Independent studies using different techniques have demonstrated that actin polymerization is attributed to a small portion of G- to F-actin transition [47-50] that is associated with a redistribution of actin from the cell periphery (cortical region) to the cell interior [49]. More recently, Kim and colleagues, using labeled G-actin monomers, directly observed actin incorporation into cortical filaments upon agonist treatment [51] and that the non-muscle cytoplasmic actin is primarily responsible for the agonist-induced actin polymerization [40]. Given the known link between F-actin and putative mechanotransductive components such as integrins [52], cadherins [53], and ion channels [54], these results suggest that the cortical non-muscle actin isoforms compose a dynamic subpopulation of actin that allows it to function as an intracellular sensor that actively remodels its polymerization state in response to the level of mechanical force applied to the cells.

Intermediate filaments form bundles and associate with dense bodies to provide three-dimensional integrity to VSMCs [55]. Two intermediate proteins are found in
VSMCs, vimentin and desmin [55]. Vimentin production is high in VSMCs of large arteries. In human arteries, vimentin localization decreases gradually from proximal to distal, while desmin localization gradually increases [56-58]. Vimentin- [59] and desmin-deficient mice [60] with normal myogenic responses display alterations in vasomotor properties such as agonist sensitivity and impaired flow-dependent dilation, suggesting that vimentin and desmin may be required for sensing mechanical cues in the local microenvironment. A similar dependence on vimentin occurs in airway SMCs. Wang and colleagues reported that down-regulation of vimentin in canine airway smooth muscle attenuates force generation [61], while Tang et al. showed that airway smooth muscle stimulated with contractile agent 5-HT undergoes spatial rearrangement [62, 63]. Collectively, these results suggest that intermediate filaments of vascular and airway SMCs are important for adaptive remodeling to mechanical cues.

Microtubules provide resistive forces in many cell types and are considered the compression bearing elements [64]. Since the ability to adequately stain and detect polymerized microtubules in dense contractile tissue depends on the tissue type and staining method [65], contradicting findings on the role of microtubules in mechanotransduction have been reported for VSMCs. For example, one study showed that depolymerization of microtubules causes an elevated level of myogenic constriction in rat skeletal muscle arterioles when pressurized intravascularly. Furthermore, this response involves Rho-A dependent Ca^{2+} sensitization without an overt increase in [Ca^{2+}]_{i} [66], suggesting that regulation of microtubule dynamics may be directly linked with VSMC contraction and reactivity. However, a higher level of isometric force is associated with an increased level of intracellular calcium in porcine coronary VSMCs.
when treated with microtubule depolymerizing agent [67], suggesting that microtubules may not directly contribute to VSMC mechanical characteristics but rely on modulation of Ca\(^{2+}\) signal transduction. While the difference may be caused by the origin and species of the VSMCs, further studies are needed to determine the role of microtubules in VSMC mechanotransduction.

1.2.4 Zyxin and Nucleus as Mechanosensors

Focal adhesion associated protein and the nucleus also participate in VSMC mechanotransduction. For example, zyxin, a zinc-finger protein predominated located in the focal adhesions and stress fibers, dissociates from focal adhesions, translocates into the nucleus, and mediates expression of mechanosensitive genes within minutes of cyclic stretching in rat aortic SMCs [10]. Although the mechanistic interactions between zyxin and mechanosensitive genes remain to be elucidated, these results suggest that zyxin functions as a mechanosensor. The nucleus was recently found to interact directly with the cytoskeleton via nuclear membrane proteins such as the SUN/KASH domain proteins [68-70] (Figure 1-4). This physical linkage allows mechanical forces exerted on the surface adhesion receptors to be transmitted along the cytoskeletons to the protein complexes in the cytoplasm and nucleus [71]. By studying the contractile filament organization in airway SMCs using electron microscopy, Kuo et al. revealed that contractile filaments for airway SMCs are arranged parallel to the longitudinal axis and centrally attached to the nuclear envelope, effectively making the nucleus a force-transmitting structure [72]. Similar findings were observed by Nagayama and colleagues in aortic SMCs: stress fiber stabilizes the position of intranuclear chromatin through
mechanical connection with the nucleus [73], which modulates gene and protein expression in VSMCs and alters functional behavior. Taken together, these studies provide strong evidence that zyxin and the nucleus also play a role in VSMC mechanotransduction.

Figure 1-4: Force transmissions via cytoskeleton to the nucleus. F-actin stress fibers and intermediate filaments are connected to the SUN protein dimers via the Nesprin-1/2 and Nesprin-3 protein complexes. The SUN proteins bind to nuclear lamina and other nuclear envelope proteins, which are connected to DNA and chromatin inside the nucleus. These proteins together couple the cytoskeleton mechanically to the nucleus, allowing mechanical signal to directly influence chromatin remodeling.
In summary, the extracellular, intercellular, and intracellular components of the VSMC cytoskeleton are embedded with proteins and filaments that are able to detect mechanical stimuli from the ECM, adjacent cells, or within the cytoplasm. Sensing these stimuli allows the cell to activate signaling pathways that promote structural remodeling of its cytoskeleton to offset or adapt to mechanical loading. These mechanotransductive cytoskeletal components serve as the design components that enabled us to build VSMC with engineered cytoskeletal architecture with desired functions.

1.3 Engineering Vascular Smooth Muscle Form with Mechanical Cues

VSMCs in their native environment experience a variety of mechanical stimuli such as cyclic stretching, cell shape deformations, ECM interactions, substrate stiffness, and surface topography at micro- and nanoscale. Due to the mechanotransductive nature of the cytoskeletal proteins, mechanical stimuli can regulate both cytoskeletal architecture and cellular function and cytoskeletal proteins are tightly regulated spatiotemporally to ensure proper VSMC structure and function in normal physiological settings. When stimuli deviate from the normal range, maladaptive remodeling occurs in the cytoskeletal architecture and leads to diseased function in VSMCs. For example, in the case of vascular aging, wear and tear from cardiac cycling causes fatigue and fracture in the elastic fibers, promoting degeneration of the media layer and vessel stiffening [74]. These changes in the ECM composition and substrate stiffness increase VSMC stiffness by increasing their adhesion molecule expression [75, 76] and drive the system away from healthy conditions and toward cardiovascular diseases.
Although maladaptive remodeling in the VSM native environment can cause undesirable outcomes \textit{in vivo}, we can harness the contribution of mechanotransduction on VSMC form and function \textit{in vitro} to our advantage by regulating the assembly of these cytoskeletal proteins to build VSM with engineered cellular architecture. In the following sections, we will review the influence of different mechanical cues on the VSMC cytoskeletal architecture.

1.3.1 \textbf{Tensile Stress}

The pulsatile nature of the vasculature exposes VSMCs to cyclic stretching in their native environment. Using ultrasonography and other methods, direct viewing of the vasculature \textit{in vivo} demonstrated that each cardiac cycle can deform human arteries, arterioles, and veins between 6 and 22\%, with more distention experienced by larger, proximal arteries [77-80]. These observations generated interest in the effect of stretching on VSMC behavior \textit{in vitro}. Cyclic stretching on rat VSMCs \textit{in vitro} produces rapid reorganization of stress fibers perpendicular to the stretching direction [4]. Longitudinal stretching of the vascular wall induces actin polymerization [81]. In addition, cyclic stretching in rat VSMCs leads to increased expression level of insoluble focal adhesion contact components [3], paxillin, and vinculin [82], suggesting that cyclic stretching may strengthen the number and size of focal adhesion complexes. These findings indicate that mechanical stimulation in the form of cyclic stretching can remodel the state and organization of actin stress fibers and focal adhesions, which may subsequently feed back to VSMC functional changes.
1.3.2 Cellular Boundary Condition

Recent advances in cellular engineering have enabled reproducible and precise studies on the role of cell shape in mechanotransduction [83-85]. Our group has utilized microcontact printing (µCP) to micropattern ECM proteins on substrate to create user-defined cell-adhesive patterns that produce cells with various shapes [86-89]. More recently, our group engineered VSM tissues of varying widths by constraining the line width of micropatterned fibronectin and lamina proteins [90]. We found that, while the alignment of F-actin stress fibers is similar, the nuclear eccentricities of constituent VSMCs significantly correlates with cell shape with length-to-width aspect ratios (ARs) between 20:1 and 50:1 [90]. To investigate the shape-contractility function more rigorously, we recently engineered single VSMCs on fibronectin islands with ARs from 5:1 to 20:1 and quantified their F-actin alignment by measuring the orientational order parameter (OOP) and nuclear eccentricity (Figure 5). In contrast to VSM tissues, we found that isolated VSMCs with higher ARs have increased OOP and nuclear eccentricity, suggesting elongated cell shape leads to more aligned stress fibers and elongated nuclei [91].
Figure 1-5: **Cellular shape directs cytoskeletal architecture.** Microfabricated vascular smooth muscle cells with length to width aspect ratios of 5:1 (A-B), 10:1 (C-D), and 20:1 (E-F) self-assemble their cytoskeleton based on the boundaries of the micropatterned fibronectin pattern. (A, C, F) are differential interference contrast images of microfabricated cells. (B, D, F) are stained for F-actin (black) and nuclei (blue). Actin fibers and nuclei became increasingly aligned with the principle axis as cellular aspect ratio increased. Projected nuclear area also decreased as cell became more elongated. The remodeling of cytoskeleton as a result of cell shape re-distributes its mechanotransductive components and can lead to different contractile functions during healthy and diseased environment. (A-F) scale bars = 20 µm.
The effect of two- and three-dimensional (3D) VSMC shape on cytoskeletal remodeling has also been described by several other groups. Thakar et al. showed that bovine VSMCs cultured on micropatterned collagen strips with elongated cell shape have decreased expression of actin stress fibers and α-actin on narrower strips [92]. They also reported that elongated cell shape lowers the nuclear shape index of isolated VSMCs while reduced spreading area significantly reduces nuclear volume [93]. When isolated rat VSMCs were cultured on user-defined cell adhesive patterns fabricated by plasma lithography, Goessl and colleagues observed cell shape-dependent actin formation and nuclear shape change [94]. When rat VSMC volume was changed in three dimensions (3D) through hyperosmotic shrinkage or hyposmotic swelling, a dramatic elevation of F-to G-actin ratio was observed [95], suggesting that actin polymerization occurs in response to cell shape changes in 3D. Thus, these reports demonstrated that cellular shape and cytoskeletal architecture direct the location and organization of mechanosensitive components including stress fibers and nucleus, suggesting one potential mechanistic pathway in which cell shape changes in two and three dimensions are translated to functional differences in VSMCs.

1.3.3 Extracellular Matrix Interactions

ECM components influence VSMC phenotype and functions like migration, proliferation, and contraction in vitro. Concomitantly, significant changes in cytoskeletal organization and expression have also been reported. One early study reported that isolated rat VSMCs cultured on laminin develop significantly fewer focal adhesions than cells cultured on fibronectin [96]. Another found different amounts of myofilament
expression in rabbit VSMCs cultured on interstitial matrix (collagen I and fibronectin), basal lamina protein (collagen IV and laminin), and the serum adhesion protein vitronectin [97]. In addition, immunofluorescent staining of stress fibers with antibodies against α-actin, myosin heavy chain isoform SM2, and vimentin, revealed that stress fiber expression of VSMC cultured on fibronectin coated substrate over a 5-day culture period gradually reduced with time [98], suggesting that ECM can mediate active remodeling of cytoskeleton. More recently, distinct morphologies of actin organization and focal adhesion formation were found on VSMCs cultured on different ECM components [99]. Specifically, for VSMCs cultured on fibronectin and collagen IV, cytoskeletal stress fibers organize along the long axis of the cell and tight bundles occur along the periphery; whereas this stress fiber organization is less typical for cells cultured on collagen I and laminin. In addition, rounded focal adhesions are induced by fibronectin, while elongated morphology is more common for collagens. Furthermore, a significant decrease in both F-actin and vinculin area occurs only for cells on fibronectin matrix. These studies demonstrated that ECM regulates the assembly and organization of cytoskeleton in VSMCs.

1.3.4 Substrate Stiffness

In a large number of cardiovascular diseases involving VSMCs, such as hypertension, hypertrophy, and atherosclerosis, the stiffness of the diseased blood vessels is dramatically altered [100]. Changes in substrate stiffness in two- and three-dimensional culture systems lead to VSMC cytoskeletal remodeling. Peyton and colleagues have shown that human VSMCs cultured on two-dimensional polyacrylamide gels with a
range of stiffness from 1.0 to 308 kPa display more visible F-actin bundles and punctate focal adhesion sites on a rigid substrate compared to cells cultured on soft substrates [101]. In the same study, they also demonstrated that an intermediate stiffness produces an intermediate amount of fibers and focal adhesions. Extending those findings using a poly(ethylene glycol)-conjugated fibrinogen based three-dimensional culture system with compressive modulus between 448 and 5804 Pa, the group observed a higher level of F-actin bundling on VSMCs on stiff matrices after 14 days in culture [102]. These results suggest that VSMCs actively adapt to stiffness in the microenvironment by remodeling stress fiber and focal adhesion organization.

1.3.5 Topography

A wide range of cell types respond to topographical cues such as grooves, ridge, stops, pores, wells, and nodes in micro- and nano-scale [103-107]. VSMCs in their native environment also interact with micro- and nano-scaled features such as pores, fibers, and ridges on the basement membrane [108]. Studies that mimic these micro- and nano-scale topographies in vitro have reported active remodeling of cellular cytoskeleton. VSMCs seeded on nanopatterned gratings of poly(methyl methacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) assume elongated cell and nuclei shapes [109]. VSMCs cultured in micro-channels with channel widths of 20, 30, 40, 50, and 60 µm display highly aligned actin filaments and elongated nuclei on narrower micro-channels [110]. More recently, Taneja and colleagues evaluated the effect of 13 µm 316L stainless steel micro-grooved surface on VSMC phenotypic changes to understand how topography of endovascular stent contributes to restenosis [111]. They found that micro-grooved
surfaces induce significant cell elongation in addition to significantly higher levels of α-actin expression [111]. These studies suggest that micro- and nano-scaled topographical features can significantly alter the shape of both cell and nucleus and lead to cytoskeletal remodeling.

Altogether, these studies reveal that mechanical properties of the cellular microenvironment can be used as design tools to build VSM with engineered cytoskeletal architecture in vitro. The cytoskeleton interacts with multiple signaling pathways by regulating the activation/deactivation state of associated protein complexes [112]. As a consequence of the tight structure-function coupling in VSMC, we would expect that the engineered architecture would influence the VSM functional outcome; thus, there exists a need for a performance metric that will allow researchers to systematically evaluate and optimize the functions of the fabricated VSM tissue.

1.4 Functional Evaluation of Engineered Vascular Smooth Muscle

Although our ability to control the mechanical properties of the cellular microenvironment has become increasingly precise and refined, the ultimate goal for tissue engineers is to harness these mechanical cues to build a functional VSM in vitro. This aim will require systematic evaluation and optimization of the VSM tissue design with a standardized performance benchmark or functional metrics. Conventional standard practice evaluates engineered VSM using proteomic assays and cellular morphology; in contrast, we will use evidence from in vitro studies to show in the following sections that VSM functions, including proliferation, migration, contraction, and gene expression, are
influenced by cellular architecture and therefore should be included as part of functional evaluation for assessing engineered VSM tissue.

1.4.1 Proliferation

A growing number of studies demonstrate that the proliferation of engineered VSMCs can be influenced by the cytoskeletal architecture in vitro. With micropatterned collagen strips of 20, 30, and 50 µm width as well as 30 µm wide micro-grooves on poly-(D,L-lactide-co-glycolide) (PLGA), Thakar and colleagues showed that significantly elongated cell shape and reduced formation of actin stress fiber and α-actin are displayed by VSMCs cultured on 20 and 30 µm-wide collagen strips and micro-grooved PLGA surfaces [92]. Quantification of proliferation with 5-bromo-2’-deoxyuridine (BrdU) showed that these elongated VSMCs have a significantly reduced growth rate. In addition, a study of engineered isolated human VSMCs cultured with micropatterned matrix islands revealed that cells with elongated shape and nuclei have a lower proliferation rate [93]. Aligned and elongated bovine VSMCs engineered on PMMA and PDMS nanopatterned gratings have a reduced proliferation rate [109]. Even in the absence of direct cellular shape manipulation by ECM pattern or topography, isolated porcine VSMCs with a spindle shape also have a significantly lower proliferation rate than rhomboid-shaped cells [113]. These studies provide mounting evidence that cytoskeletal architecture can regulate VSMC proliferation.

Since cells can actively respond to extracellular boundary conditions by remodeling their cytoskeletal organization [85, 114], changes in cell shape could lead to spatially different placement and distribution of mechanosensitive protein complexes,
eventually producing changes in signaling pathway and functions. For example, focal adhesions tend to localize toward the corners of cells [89, 115]. These intramembrane protein complexes transmit mechanical tension from outside of the cell to the cytoskeleton inside the cell [116] and modify activation states of associated signaling proteins [117]. F-actin stress fibers also anchor on the focal adhesions and nuclear lamina, providing a direct physical link for tension to be transmitted to the nucleus [118, 119]. These mechanical connections to the nucleus stabilize intranuclear DNA [73], and cell shape-induced nuclear deformation can lead to chromatin remodeling and DNS synthesis [120]. Collectively, these studies indicate that VSMC proliferation depends on cellular shape and cytoskeletal architecture.

1.4.2 Migration

VSMCs migrate toward the site of vessel injury in response to growth factor gradients. Understanding and regulating VSMC migration has been a focus in treating vascular diseases for preventing post-surgical complications such as thrombogenesis and restenosis. Several studies have demonstrated that VSMC migration depends on VSMC shape and cytoskeletal organization. In one study, maximum migration speed was observed for isolated human VSMCs with the highest ARs [121]. However, a later report showed that cloned human VSMCs under serum-withdrawn conditions and with elongated morphology have a significantly lower migration speed [122]. These contradictory findings may be attributable to differences in cell types, serum conditions, and ECM proteins. A novel isolation method used by Hao et al. to obtain porcine VSMCs with distinct spindle and rhomboid morphologies showed that rhomboid-shaped VSMCs
migrate significantly faster than spindle-shaped cells [113]. When cytoskeleton reorganization is inhibited by cytochalasin D, interleukin-6-induced migration of VSMCs is inhibited [123], suggesting that VSMC migration can be regulated by cytoskeleton architecture. More recently, Jiang and colleagues showed that phosphomimetic caldesmon mutant-transfected rat VSMCs with the most robust expression of actin cytoskeleton structure have a significantly lower migration activity compared to VSMCs with normal expression of actin cytoskeleton [124]. Taken together, these studies suggest VSMC migration may be influenced by cellular architecture.

1.4.3 Contraction

The main function of quiescent, fully differentiated VSMCs is to contract or relax the vessel wall in response to pressure and flow changes. In addition to regulating proliferation and migration, which are associated with the synthetic phenotypes of VSMCs, cell shape and cytoskeletal architecture mediate the contractile strength of VSMCs. In desmin-deficient mice, VSMCs isolated from microarteries exhibit lower active and passive tension [125], while isolated VSMCs have higher active force and increased passive compliance [126], indicating the contribution of intermediate filament on VSMC contractility may be cell type-dependent. Pharmacological studies inhibiting actin polymerization with cytochalasin D [43, 45], cytochalasin B [44], and latrunculin B [127] found a complete inhibition of contraction in VSMCs. On the other hand, enhancing actin polymerization with an actin stabilizer, jasplakinolide, increases myogenic tone in rat cerebral VSMCs under intraluminal pressure [47], suggesting that actin organization plays a critical role in VSMC contraction generation. More recently,
Koltsova and colleagues reported that elevation in F- to G-actin ratios in rat VSMCs with hyperosmotic shrinkage and hyposmotic swelling also causes increased contraction [95], suggesting that a contractile response is mediated by actin polymerization. In addition to actin stress fibers, Min and colleagues found regulation of focal adhesion by Src modulates differentiated VSMC contractility [29]. By forcing VSMCs into elongated shapes on micropatterned strips of fibronectin and laminin, our group showed an increase in VSMC nuclear eccentricity and a higher degree of cell contraction [90], suggesting that cell shape may modulate VSMC contractility. Taken together, these studies suggest that VSMC contractility is a function of cellular cytoskeletal architecture and cell shape.

1.4.4 Gene Expression

The expression of genes and proteins has been used traditionally to assess the phenotypic state of VSMCs. The activation and deactivation of specific pathways that controls the expression of genes can be mediated by cytoskeletal architecture. For example, rabbit VSMCs in contractile and synthetic states with different organizations of vimentin, actin, and focal adhesion have significantly different expression and distribution of smooth muscle-specific proteins [128]. Inhibiting or enhancing actin polymerization pharmacologically significantly decreases or increases SMC-specific promoter activities, respectively, in rat VSMCs [129], suggesting that actin polymerization regulates SMC-specific gene expression. When a single stretch is applied to rat VSMCs, significant upregulation of smooth muscle-specific contractile proteins is accompanied by an increase in F- to G-actin ratio [81]. However, when the stress fiber network is disrupted pharmacologically, stretch-dependent activation of rat VSMC differentiation markers is abolished [130], indicating that an intact cytoskeleton is
required for activation of SMC-specific genes. In addition, Cattaruzza and colleagues reported that zyxin can translocate and accumulate in the nucleus and modulate VSMC-specific gene expression [10], suggesting that cytoskeletal proteins could be directly involved in modulating gene expression. Since the cytoskeleton is mechanosensitive, differences in cytoskeletal architecture can lead to differential activation of genes and proteins, which ultimately provide VSMCs with functional adaptability.

1.5 Conclusions

Vascular smooth muscle functions are highly dependent on the structural organization in multiple spatial scales as a result of the cellular mechanotransduction processes. An engineering algorithm for building functional vascular smooth muscles in vitro based on recapitulating the mechanotransduction processes allows us to control for both cellular architecture and function. Importantly, cytoskeleton proteins such as integrin, cadherin, actin, intermediate filaments, and microtubules embedded in the extracellular, intracellular, and intercellular domains are mechanotransductive components that contribute to VSMC form and function. By harnessing the mechanical cues in the cellular microenvironment, such as cyclic tensile stress, cellular shape deformation, ECM interactions, and substrate stiffness and topography, we can build functional VSMCs with engineered cytoskeletal architecture. The performance of these engineered VSMCs should then be evaluated and optimized with functional metrics including proliferation, migration, contraction, and gene expression because of their dependency on cytoskeletal architecture. The development of functional VSM in vitro models is particularly relevant for engineering small-diameter vascular grafts, where functional VSM tissue may improve graft patency and long term survival, and replacing
expensive animal models in traditional drug discovery research with a cheaper, functional
\textit{in vitro} alternative.

With this dissertation, we applied this strategy in the design and assembly of engineered vascular tissues. In chapter 2, we investigated the effect of engineered VSMC shape on its cytoskeletal architecture and contractile strength. In chapter 3, we developed a novel three-dimensional tissue patterning strategy based on folding polymer thin sheet and tested this strategy for building vascularized networks.
2 The Contractile Strength of Vascular Smooth Muscle Myocytes is Shape Dependent

Adapted from Ref. 91 with permission from The Royal Society of Chemistry.

Vascular smooth muscle cells in muscular arteries are more elongated than those in elastic arteries. Previously, we reported changes in the contractility of engineered vascular smooth muscle tissue that appeared to be correlated with the shape of the constituent cells, supporting the commonly held belief that elongated muscle geometry may allow for the better contractile tone modulation required in response to changes in blood flow and pressure. To test this hypothesis more rigorously, we developed an *in vitro* by engineering human vascular smooth muscle cells to take on the same shapes as those seen in elastic and muscular arteries and measured their contraction during stimulation with endothelin-1. We found that in the engineered cells, actin alignment and nuclear eccentricity increased as the shape of the cell elongated. Smooth muscle cells with elongated shapes exhibited lower contractile strength but greater percentage increase in contraction after endothelin-1 stimulation. We analysed the relationship between smooth muscle contractility and subcellular architecture and found that changes in contractility were correlated with actin alignment and nuclear shape. These results suggest that elongated smooth muscle cells facilitate muscular artery tone modulation by increasing its dynamic contractile range.

2.1 Introduction

The contractile function and structure of vascular smooth muscle cells (VSMCs) vary as a function of location in the cardiovascular system [131]. In large diameter elastic
arteries, such as the aorta, VSMCs contract to maintain vessel pressure during cardiac cycle [132]. This is in contrast to mid-sized muscular arteries, such as the external carotid artery of the neck and femoral artery of the thighs, where VSM contracts concentrically to constrict or relax the arterial wall in a process called vascular tone modulation [133]. These functional differences are reflected structurally, where VSMCs exhibit markedly different geometries in these arteries. Although differentiated VSMCs in elastic and muscular arteries have a characteristically spindle shape, the elongated shape of VSMCs in muscular arteries with nearly 15:1 in cell AR, is more pronounced than those found in elastic arteries, which have cell AR about 9:1 [131]. It has been speculated that the VSMC shape may facilitate vascular tone modulation in muscular arteries by providing better dynamic response to blood flow [134, 135] and pressure changes [136]. However, definitive evidence to support this relationship between VSMC shape and contractile function has been limited.

VSMCs undergo significant changes in geometry in physiological and pathological developments. Domenga and colleagues demonstrated rapid VSMC structural changes in postnatal wild-type mice, where VSMCs developed more elongated shape, increased thickness and become circumferentially oriented around the lumen by day 28 compared to immature VSMCs at birth [137]. Genetic deletion of Notch3, which is uniquely expressed in arteries but not of veins, led to thin, irregular, rounded shape VSMCs that are poorly orientated around the lumen [137]. In human, Notch3 mutation leads to a hereditary vascular dementia called cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), characterized by a cerebral non-atherosclerotic, non-amyloid angiopathy that mainly affects the small
arteries penetrating the white matter. Patients diagnosed with this disease were usually found with more rounded and irregular VSMC shape in small- and middle-sized arteries [138]. During normal vascular repair following injury, VSMCs switch their contractile phenotype to synthetic phenotype and in the process, changing their shape from the elongated spindle morphology to an epithelioid or rhomboid morphology [139]. The epithelioid shaped VSMCs proliferate and produce extracellular matrix to help with the wound healing process [139]. However, the deregulation of this phenotype switching process underlies a number of vascular disorders such as hypertension [140], restenosis [141], and vasospasm [14]. This is supported by pathological studies that observed morphologically distinct VSMC populations between spindle and epithelioid shapes at the site of atherosclerotic intima in the aorta [142-144], carotid artery [145] and coronary artery [146]. Understanding the role of VSMC shape change may elucidate mechanistic insight in the context of cellular physiology and vascular pathology.

In addition to VSMCs, shape change also plays an important role in regulating the physiological and pathological development of other smooth muscle cells and cardiomyocytes. In an early ultrastructural study focusing on the prenatal development of smooth muscle in the human fetal uteri between 12-40 weeks of gestation, Konishi et al. showed immature uterine SMCs changed from a round morphology at week 12-16 to an elongated shape with identifiable dense bodies at week 18 [147]. A clinical and pathological analysis of 26 cases of atypical smooth muscle tumours of the uterus demonstrated that SMC in leiomyoma changed from the typical elongated shape to a rounded, polygonal shape [148]. In cardiac development, cardiac looping is one of the first steps of forming a four chambered-heart that requires bending and twisting of heart
tube asymmetrically. It was found that myocardium on the concave side of the heart tube myocardium remains thick and columnar while the convex side flattened and increased in surface area, effectively reducing the AR of the myocardium epithelial tissue [149] and resulting in different contractility on the concave and convex surfaces [150]. In mature adult heart under pathological chronic pressure overload, the heart undergoes concentric hypertrophy, resulting myocytes increase cell width without significant changes in cell length. This, in turn, decreases the normal AR from 7:1 [151-153], as seen for normal ventricular myocytes, to 5:1 [154, 155]. As heart continues to fail, eccentric hypertrophy develops in response to volume overload, which adds sarcomere in series without changing myocytes, cross-section area. This eventually increased the myocytes aspect ratio to 11:1 [152, 153]. Investigating the shape and contractility relationship in myocytes, our group recently reported that myocytes contractility is optimized at AR observed in normal hearts and decreased in cardiomyocytes that resemble AR of failing hearts [88]. In addition, we observed that boundary condition encoded in the extracellular space can regulate myocyte tissue cytoskeletal alignment and function [85, 156, 157]. These studies clearly demonstrated that shape adaptations in smooth and striated muscles can profoundly influence the cellular function.

Recent advances in technologies designed to engineer and probe cell geometries and mechanics has enabled studies demonstrating the relationships between cell shape and architecture and cellular functions such as apoptosis [158], proliferation [120], cytoskeletal and focal adhesion organization [85, 159, 160], and contraction [88, 89, 157]. Utilizing micro-fabrication techniques, our group as well as others have demonstrated at a tissue level that VSM seeded in microgrooves and micropatterned fibronectin (FN)
assumed an elongated morphology [87] as well as oriented remodelling of the underlying matrix [161] and significantly lower cell proliferation rate [93]. Recently, focusing on VSM tissue structure and contractility, we showed that contractile stress of VSMC tissue increased as cell shape elongated within the tissue [90], suggesting that VSM contractility is potentially cell shape dependent. Elsewhere, Wang and colleagues sparsely seeded VSMCs on polyacrylamide (PAA) gel with an isotropic type-I collagen coating and measured an increase in contractile force as cell spreading increased [162]. In another study where VSMC spreading was controlled [93], elongated VSMCs showed reduced proliferation, a cell function commonly associated with cell shape and cytoskeletal tension. While these reports suggest that VSM tissue and cellular structure could influence its function, the role of cell shape in vasomotor tone and contractility was not elucidated. This is important, because controlling cell shape in tissue engineered vascular grafts may be an important strategy for endowing the tissue with a specific drug sensitivity and high fidelity control of the lumen diameter.

We hypothesized that forcing VSMCs to assume increasingly elongated shapes would mimic the VSMC morphology in muscular arteries in vivo and induce changes in the intracellular architecture that consequently increase the dynamic contractile range of VSMC in response to contractile stimuli. To test this hypothesis, we engineered VSMCs on micropatterned islands of fibronectin (FN) with ARs of 5:1, 10:1 or 20:1 to mimic VSMC shapes found in elastic and muscular arteries in vivo, quantified cytoskeletal and nuclear organization, and directly measured contraction via traction force microscopy (TFM) upon stimulation with a vasoconstrictor endothelin-1 (ET-1). We found cell shape significantly influenced cytoskeletal and nuclear organization and isolated VSMCs of AR
near 20:1 achieved lower basal and stimulated contractile forces but greater percent change in contractile force after stimulation. These results suggest that the elongated shape equips VSMC with a greater dynamic contractile range, facilitating modulation of vascular tone over a broad range by muscular arteries in vivo.

2.2 Results

2.2.1 Design of Vascular Smooth Muscle Cell Shape

We engineered the isolated VSMCs by designing three cellular structure parameters: geometry, size and AR. The geometry refers to the number of vertex that the isolated VSMC has. For example, circular or ellipsoidal shaped VSMCs have zero vertices and they belong to the same geometry class. Extending this concept, a spindle-, triangular- and rectangular-shaped VSMC has two, three and four vertices respectively, and they represent three different geometrical classes.

Although healthy, fully differentiated VSMCs usually assume a spindle-like shape in vivo, we designed our isolated VSMCs with a rectangular geometry for two reasons. First, isolated VSMC with tapered, spindle-like geometry may be a poor in vitro model. Kuo and colleagues demonstrated that airway smooth muscle cells work as a mechanical syncytium by transmitting intercellular force along the principle axis of the cells through mechanically coupled nucleus and aligned F-actin filaments, despite the individual spindle cell shape [72]. They argued when mechanical coupling between neighboring cells are absent, force generation in cells may be distorted, unless the isolated smooth muscle cells are long and the tapered ends are not included in the mechanical measurements. Therefore, by designing our isolated VSMCs in rectangular
geometry, we ascertain the isolated VSMCs are long and without the tapered ends and this allowed us to measure the mechanical output of the entire cell body. The second reason for using a rectangular geometry is a technical one: the longitudinal end-to-end distance is shorter for rectangular geometry than for spindle geometry of the same surface area. This allows us to fit the entire isolated VSMC in one field of view on our microscope when using the 40× objective with a 0.5× optical zoom, up to 20:1 length to width AR. Although grid imaging software can address this issue, it is not preferred in this experimental setup as grid imaging and stitching can introduce error in fluorescent bead location for traction force microscopy and require additional laser exposure cycles, which can be phototoxic to cells for extended live cell imaging. Based on the above two reasons, we designed and engineered our isolated VSMCs to be rectangular in geometry for all studies.

We asked what projected surface area we should use for designing our isolated VSMCs. It is important to have a constant projected surface area for all ARs as smooth muscle cell spreading has been shown to influence cellular function [92]. Since substrate stiffness can lead to changes in cell spreading area [101, 163, 164], we investigated the spreading behavior of VSMCs on both soft (13 kPa) polyacrylamide (PAA) gel [165] and much stiffer glass (73 GPa) substrates. To present identical extracellular matrix (ECM) to the cells, we patterned both substrates with biotinylated-fibronectin isotropically. We induced the contractile phenotype and inhibited cell division by serum starving the VSMCs for 48 hours following an initial 24 hour seeding period with media containing 10% fetal bovine serum (See Materials and Methods). We stained the cell membrane with DiO and the nucleus with DAPI in order to measure the spreading area of single VSMCs.
We observed a spectrum of morphology in isolated VSMCs on both PAA gel (Figure 2-1 A-C) and glass (Figure 2-1 D-F) substrates. We categorized the morphology into rhomboid (Figure 2-1 A, D), elongated (Figure 2-1 B, E) and spindle (Figure 2-1 C, F). For some of the spindle-shaped isolated VSMCs, cell length can extend over 300 µm (Figure 2-1 C).

![Figure 2-1: Morphology of immunostained isolated vascular smooth muscle cells on soft (13 kPa) polyacrylamide (PAA) gel (A-C) and stiffer (73 GPa) glass (D-F) substrates isotropically patterned with biotinylated-fibronectin. (White: DiO, blue: DAPI). On both substrates, a diverse morphology including rhomboid (A, D), elongated (B, E) and spindle (C, F) were observed. Scale bars = 50 µm.](image)

We measured the projected surface area of single VSMCs by manually tracing the cell borders in ImageJ. We found the projected surface area of single VSMCs on PAA
gel (Figure 2-2 A) and glass (Figure 2-2 B) to be normally distributed with a mean at 4000 µm² and 3500 µm² respectively. This is consistent with a previous study that found the spreading area of human aortic SMCs was normally distributed [166]. To provide a physiologically relevant substrate stiffness, we microfabricated all isolated VSMCs in subsequent studies with a projected surface area of 4000 µm² on PAA gel to minimize the effect of cell spreading area on cellular function.

![Graph A](image1.png)

Figure 2-2: Projected surface area of isolated vascular smooth muscle cells is normally distributed on PAA gel (A) and glass (B) substrate. The mean projected surface area of VSMCs on PAA gel is higher than those on glass. (Solid line: normal distribution, red dotted line: mean).

Finally, in order to determine physiologically relevant ARs for designing our experiment, we surveyed the literature for measurement of AR observed in previous *in vivo* [131] and *in vitro* [90, 92, 93, 161, 167, 168] studies. A wide spectrum of ARs for VSMCs was observed ranging from 2 to 50 in studies in the past 3 decades (Figure 2-3). We selected the 20:1 AR as the upper limit for our study as (1) all studies except one
showed that VSMC ARs did not exceed 20:1 in Figure 2-3 and (2) 20:1 is the upper limit for a single field of view of the entire cellular body, which reduced cellular phototoxicity and improved signal to noise ratios during traction force microscopy. We selected 5:1 AR as the lower limit for our study as (1) it is just below the 8:1 AR observed in vivo (Figure 2-3, pink bar) and (2) it permits sufficient cell shape polarization to remain rectangular. We also selected one intermediate AR of 10:1 to study the transition between the upper and lower bounds. Taken together, from the selected geometry, size and ARs above, our finalized design for microfabricated isolated VSMCs were rectangular islands with a fixed projected surface area of 4000 µm² and ARs of 5:1 (141 × 28 μm), 10:1 (200 × 20 μm) and 20:1 (282 × 14 μm).

![Figure 2-3: Observed aspect ratios of vascular smooth muscle cell from literature.](image)

In vitro (pink) VSMC ARs range between from 10:1 to 15:1 while in vitro (blue) VSMC ARs range between from 2:1 to 50:1.

2.2.2 Microfabricated Isolated Vascular Smooth Muscle Cells

To fabricate isolated VSMCs according to our design parameters, we adopted methods previously established in our group [88, 89] by culturing VSMCs in defined
media on elastic, 13 kPa PAA gels whose surfaces had been micropatterned with rectangular FN islands (Figure 2-4). For details, please see Methods and Materials section.

![Figure 2-4: Schematic representation of μCP method on polyacrylamide gel to construct isolated vascular smooth muscle cells with different aspect ratios. For details, please see Method and Materials section.](image)

To examine the quality of the micropatterned FN islands, we immunostained the islands with anti-human FN and found them to be uniform and consistent with high fidelity (Figure 2-5 A). After 1 day of culture in 10% FBS serum followed by 2 days of culture in serum-free media on PAA gel with FN islands, seeded VSMCs assumed the rectangular shape of the patterned FN islands with aspect ratio of 5:1, 10:1 and 20:1 (Figure 2-5 B). By optimizing the initial seeding density, we were able to obtain mostly island with a single cell present. However, islands occupied with more than one cell were also occasionally observed (Figure 2-5 B, arrowhead).
Figure 2-5: Immunostained micropatterned FN islands and microfabricated isolated vascular smooth muscle cells. (A) Anti-human FN staining of patterned biotin-FN on PAA gel. (B) Phase contrast images of micropatterned isolated VSMCs with aspect ratio of 5:1, 10:1 and 20:1 and surface area of 4,000 µm². Islands occupied by more than one cell had a sinusoidal cell-cell junction (arrow head). (A-B) Scale bars = 100 µm.

We measured the projected surface area, AR and thickness of isolated VSMCs to ascertain the quality and fidelity of the microfabrication process. We immunostained isolated VSMCs of AR 5:1 (Figure 2-6 A), 10:1 (Figure 2-6 B) and 20:1 (Figure 2-6 C) with phalloidin to visualize the cell shape and DAPI to ensure that only single cells were measured. We found that the projected surface areas were similar for all three ARs with mean at 2225 ± 48 µm² (Figure 2-6 D). Since VSMCs exert a basal tone at normal resting condition, the reduction in projected surface area is expected as a result of elastic deformation of the soft PAA substrate under cell generated force. The contraction of isolated VSMCs also lead to shape deformation as we found that mean and SEM of ARs of 5:1, 10:1 and 20:1 were 6.8 ± 0.1, 15.3 ± 0.5, 31.3 ± 1.4 respectively. The findings that all three cellular ARs were more elongated than the original design may suggest that
contraction in cell’s short axis changed by a greater proportion than the contraction in the long axis.

Figure 2-6: Characterization of microfabricated immunostained isolated vascular smooth muscle cells. (A-C) Phalloidin and DAPI stained patterned isolated VSMCs with AR of 5:1 (A), 10:1 (B) and 20:1 (C). (White: F-actin, blue: nuclei). Scale bar = 50 µm. (D) Measured projected surface area and AR of isolated VSMCs. Mean ± SEM. n = 17-26 cells from 2-3 coverslips per condition.

To get a sense quantitatively in terms of the magnitude of the contractions in cell’s short and long axes, we calculated the shortenings in both directions by assuming the rectangular isolated VSMCs contracted concentrically (Figure 2-7 A). This assumption is based on the observed rectangular shape of contracted isolated VSMCs in Figure 2-5. Since we know the original length (L) and width (W) of the micropatterned FN islands, we can use the following two equations based on the measured projected surface area and cell AR (Fig. 6D) to solve for shortenings in the cell’s long (2a) and short axes (2b):

\[
\text{Projected } SA = (L - 2b) \times (W - 2a) \quad (1)
\]
Cell AR = \(\frac{(L - 2b)}{(W - 2a)} \)

The magnitude (Figure 2-7 B) of shortenings calculated using this simplistic model showed that cell elongation leads to statistically greater shortening in cell’s long axis at 20:1 ARs but significantly less shortening in cell’s short axis at 10:1 and 20:1 ARs, suggesting that cell shape can influence the magnitude and distribution of contraction. Normalizing the magnitude of shortenings by the original dimensions of the micropatterned FN islands, we found that a significantly lower relative shortening in cell’s long axis was achieved by isolated VSMCs with 20:1 ARs while similar relative shortenings in cell’s short axis were achieved by all three ARs (Figure 2-7 C). This result suggests that as VSMC becomes elongated, contraction in the cell’s long axis becomes weaker. In addition, the relative shortening in the short axis is much higher than the shortening in the long axis, which supports our earlier suggestion that a greater proportion of contraction is achieved in the cell’s short axis than the long axis.
Figure 2-7: Shortening of rectangular isolated vascular smooth muscle cells. (A)

Schematic illustration of concentric shortenings in cell’s long (2a) and short (2b) axis. L and W are the length and width of the micropatterned FN island respectively. (B) Magnitude of shortening in cell’s long (black) and short (red) axes. (C) Percent shortening compared to original micropatterned FN island dimensions in cell’s long (black) and short (red) axes. (B-C) * = statistically different from 5:1 AR, † = statically different from 10:1 AR, ‡ = statistically different from 20:1 AR. p < 0.05. Mean ± SEM. n = 17-26 cells from 2-3 coverslips per condition.
We measured cell thickness using deconvolved three-dimensional confocal image stack of phalloidin labeled F-actin fibers of isolated VSMCs (Figure 2-8 A). No statistically significant difference in cell thickness was observed between the three ARs (Figure 2-8 B). Since the measured projected surface areas were similar (Figure 2-6), this result suggested the cell volume was conserved for all three ARs. Taken together this approach enabled us to control the shape of isolated VSMCs with high precision while maintaining cell spreading area, substrate stiffness, growth factor and ECM composition.
Figure 2-8: Vascular smooth muscle cell thickness and volume are similar for all aspect ratios. (A) Three dimensional rendering of a 5:1 AR VSMC patterned on PAA gel. (Red: F-actin, blue: nucleus). Scale bar = 20 µm. Isolated VSMC thickness (B) and volume (C) as a function of VSMC AR. (B-C) mean ± SEM. n = 7-12 cells per AR.

2.2.3 F-actin Alignment and Organization as a Function of Cell Shape

Previously, we reported variations in cell shape, cytoskeletal alignment, and nuclear shape in engineered vascular tissues assembled on matrix templates with varying geometries [90]. We endeavored to study this cellular remodeling under more controlled conditions. In our engineered cells, we measured the alignment of F-actin (Figure 2-6 A-
C, 5:1, 10:1 and 20:1 respectively) using immunohistochemical staining. The orientation of the F-actin fibers was calculated using a method based on structure tensor method [169] and quantified by calculating the orientational order parameter (OOP), a method borrowed from crystallography and previously reported by our group [170]. We found that F-actin OOP increased significantly as cell AR increased (Figure 2-9), suggesting that as the cell’s long axis was extended, the transverse boundary conditions on the cell potentiated the alignment of polymerizing actin with the cell’s long axis.

Figure 2-9: Orientational order parameter (OOP) of F-actin fibers of isolated vascular smooth muscle cells. VSMCs with higher ARs had a greater F-actin OOP value, suggesting more aligned F-actin fibers. * = statistically different from 5:1 AR, † = statically different from 10:1 AR, ‡ = statistically different from 20:1 AR. p < 0.05. All bars: mean ± SEM. n = 7-12 cells per AR.
2.2.4 Nuclear Deformation as a Function of Cell Shape

The cell nucleus interacts with cytoskeleton [118] and deforms when extracellular stresses were applied [171]. Changes in nuclear shape have been proposed to cause conformational changes in chromatin structure and subsequently influence transcriptional level and cell function [172]. We characterized nuclear shape changes by measuring the changes in nuclear angle offset, projected area and eccentricity (Figure 2-10 A-C, 5:1, 10:1, and 20:1, respectively) by manually outlining the stained nuclei in the plane of the culture surface (Figure 2-10 D). Nuclear angle offset, which measures the difference in orientation between the major axes of the ellipse that best fits the cell body and nucleus (Figure 2-10 A), was significantly lower for cells with 20:1 ARs (Figure 2-10 E). The projected area of the nucleus in these cells was found to decrease significantly for cells with 10:1 and 20:1 ARs (Figure 2-10 F). Consistent with previous findings [90], nuclear eccentricity significantly increased as cell AR increased (Figure 2-10 G).
Figure 2-10: Morphological changes in nuclear shape as isolated vascular smooth muscle cell elongates. (A-C) Manual traces of cell border with nuclei of isolated VSMCs. (Magenta: cell border, blue: nuclei). Nuclear orientation offset, θ, is shown between the two dotted white lines in (A), representing the major axes of the ellipses that best fit the cell body and nucleus respectively. Scale bar = 50 µm. (D) Superimposed nuclear outlines from cells in A-C show clearly the difference in nuclear eccentricity, orientation offset and projected area as cell AR increases. (H) F-actin orientational order parameter (black) and nuclear orientation offset (red) as a function of VSMC ARs. (I) Nuclear eccentricity (black) and projected area (red) as a function of VSMC ARs. * = statistically
Figure 2-10 (Continued) different from 5:1 AR, † = statically different from 10:1 AR, ‡ = statistically different from 20:1 AR. $p < 0.05$. (E-G) mean ± SEM. $n = 7-12$ cells per AR.

We wanted to test whether changes in nuclear morphology could be explained by a decrease in nuclear volume resulting from cell lengthening [120]. Based on three-dimensional rendering of nucleus (Figure 2-11 A), we assumed an ellipsoid morphology for the nucleus (Figure 2-11 B) and quantitatively evaluated the length, width and height of the ellipsoid (Figure 2-11 C). However, we found that nuclear volume and nuclear surface area were conserved at $475 \pm 32 \, \mu m^3$ and $464 \pm 21 \, \mu m^2$, respectively, independent of alterations in AR (Figure 2-11 D). These data suggested that the elongated cell shape leads to higher degree of nuclear deformation, without any change in nuclear volume.
Figure 2-11: Nuclear volume and surface area of isolated vascular smooth muscle cells. (A) A three-dimensional rendering of 5:1 AR VSMC nucleus. Scale bar = 20 µm. (B) Schematic representation shows the half-length (a, red), the half-width (b, blue) and half-height (c, black) of a nucleus with assumed ellipsoid shape. (C) Measured nuclear dimensions from three-dimensional confocal image stacks as a function of cell AR. * = statistically different from 5:1 AR. (D) Nuclear volume and surface area do not differ significantly between different cell ARs. (C-D) mean ± SEM. $n = 7-12$ cells per AR.

2.2.5 Development of Stimulation Protocol for Studying Cell Contraction

The primary contractile function of elongated VSMCs in muscular arteries is local tone modulation in response to systemic and local signals to contract or relax the
vessel wall [173]. We hypothesized that in our \textit{in vitro} system, the elongated VSMC shape would improve its dynamic contractile range in response to an external stimulus. To test this hypothesis, we used traction force microscopy to measure the force generated by cells on the PAA gel substrate when stimulated with a vasoconstrictor, endothelin-1 (ET-1), to induce cell contraction or rho-associated kinase (ROCK) inhibitor, HA-1077, to induce cell relaxation. Since VSMCs respond to stimulations on the order of minutes to hours [90], we first assessed the amount of time needed for VSMC traction to equilibrate after we dose the drugs. We imaged the cells every 4 minutes and found that isolated VSMCs produced a constant traction force prior to ET-1 dosing, which is known as basal tone (Figure 2-12). After ET-1 was added, we observed a small but noticeable gradual increase in cell traction until it peaked 16 minutes later. In the next 30 minutes, the traction gradually decreased until it returned to baseline level. We subsequently dosed HA-1077 to the imaging media and noticed an immediate and dramatic decrease in traction until 16 minutes later, where it equilibrated near zero. These results suggested that isolated VSMCs could equilibrate their traction output within 16 minutes after drug dosing.
Figure 2-12: A representative traction profile for an isolated vascular smooth muscle cell in response to endothelin-1 and HA-1077 treatment. A constant basal tone was maintained for the first 24 minutes. After ET-1 at 100 nM was added, traction peaked in about 16 minutes but returned gradually to basal level in about 28 minutes. A saturating dose of rho-associated kinase (ROCK) inhibitor HA-1077 at 100 µM caused an immediate and dramatic decrease in traction and eventually diminished close to 0 after 16 minutes.

In order to allow sufficient time for VSMC to equilibrium after drug dosing and to minimize the amount of potential phototoxicity caused by excessive laser exposure, we developed a TFM protocol to measure contractile strength of isolated VSMC with varying ARs exerted on the substrate pre- and post-stimulation with ET-1 (Figure 2-13 A). Prior to stimulation, we imaged the basal tone of isolated VSMCs. At 8 minutes, we stimulated contraction of the isolated VSMCs with a 100 nM dosage of ET-1. At 31 minutes, we treated cells with a 100 µM dosage of HA-1077, to induce relaxation of the
Finally at 60 minutes, we terminated the experiment by trypsinizing the cells from the substrate such that there was no traction on the substrate in order to establish a reference for calculation of bead displacements. For each condition, three consecutive images separated by 4-minute intervals were taken to ensure consistency in VSMC contractile output and to minimize potential phototoxic effect of laser imaging. This protocol allowed us to assess the contractile strength of isolated VSMCs in response to external stimuli while minimizing potential phototoxicity during live imaging.

2.2.6 Quantification of Vascular Smooth Muscle Cell Contractile Strength by Traction Force Microscopy

Prior to stimulation, we ascertained that isolated VSMCs fully occupied the rectangular FN islands by differential interference contrast (DIC) imaging. High fidelity rectangular isolated VSMCs with AR of 5:1 (Figure 2-13 B), 10:1 (Figure 2-13 C) and 20:1 (Figure 2-13 D) were selected for TFM experiment. We defined the AR of an isolated VSMC at its basal state prior to stimulation as the cellular AR. As a convention, we further defined the longitudinal and transverse directions of isolated VSMCs as the x- and y- axes, respectively (Figure 2-13 B). Prior to ET-1 stimulation, basal traction stresses were observed for isolated VSMCs with AR of 5:1 (Figure 2-13 E), 10:1 (Figure 2-13 F) and 20:1 (Figure 2-13 G). Following ET-1 stimulation, traction stress intensity and area both increased for AR 5:1 (Figure 2-13 H), 10:1 (Figure 2-13 I) and 20:1 (Figure 2-13 J) isolated VSMCs. After HA-1077 treatment, traction stress was significantly reduced for isolated VSMC with AR of 5:1 (Figure 2-13 K) and completely absent for AR of 10:1 (Figure 2-13 L) and 20:1 (Figure 2-13 M). After cells were detached by
trypsin, traction stress was completely absent for all ARs (Figure 2-13 N-P, respectively). For all three ARs, we observed that the basal (Figure 2-13 E-G) and ET-1 stimulated (Figure 2-13 H-J) traction stresses were localized at the two ends of the cells and pointed towards the geometric centre of the cell where the nucleus is generally located. This phenomenon became more pronounced for isolated VSMCs with AR 10:1 (Figure 2-13 F, I) and AR 20:1 (Figure 2-13 G and J). This result suggests that focal adhesion complexes formed by isolated VSMCs were localized towards the two ends of the cells.
Figure 2-13: Traction force microscopy experimental protocol and representative stress spatial maps of isolated vascular smooth muscle cells. (A) Drug administration timeline of TFM experiment for isolated VSMCs and corresponding schematic representations of cell-substrate interaction at different stages. DIC images of isolated VSMC of AR 5:1 (B), 10:1 (C) and 20:1 (D) and corresponding traction stress maps at basal (E-G), after stimulation with 100 nM endothelial-1 (H-J), after treatment with 100 µM HA-1077 (K-M) and finally detached with 0.5% v/v trypsin (N-P). The longitudinal and transverse directions of the cell are defined in x- and y-axis in (B). E-P has the same color scale to the right side. (B-P) scale bar = 10 µm.
We first quantified the contractile strength of isolated VSMCs by computing the strain energy (U) [174] from beads displacements at basal, stimulated, and relaxed conditions with respect to cell-free reference condition. Strain energy is a scalar measurement that integrates tractions exerted in all directions (Figure 2-14 A), which enabled us to measure the overall changes in cell contraction. In response to ET-1 stimulation, the isolated VSMCs further contracted, increasing the measured strain energy from the initial basal tone (U_b) to a higher level, here denoted as U_c (Figure 2-14 B). Both U_b and U_c were relatively constant over the period measured, indicating that equilibrium contractions have been reached. To assess the dynamic contractile range of isolated VSMCs in response to ET-1, we computed the relative contractile increase in strain energy (K_u) by normalizing the increase from basal tone to the ET-1 stimulated tone with the basal tone. These measurements allowed us to quantitatively assess both the absolute magnitude and relative changes in contractile strength of isolated VSMCs in response to external stimuli.

2.2.7 Isolated Vascular Smooth Muscle Cell Contractile Strength Correlated with Cellular Aspect Ratio

To characterize how cell shape affects the contractile strength of isolated VSMCs, we plotted the AR of each isolated VSMC against its measured U_b, U_c and K_u. We found that U_b (Figure 2-14 C) and U_c (Figure 2-14 D) both negatively correlated with cell AR. This suggested that the absolute contractile strength of isolated VSMC weakens as they elongate. However, relative contractile increase (Figure 2-14 E, K_u) significantly increased as cell AR increased, which indicates that elongated VSMCs exhibited a
greater percent change in contractile strength in relation to its basal tone after stimulation
with ET-1. Taken together, these results suggest that elongation of the cell AR causes a
decrease in contractile strength but an increase in overall dynamic contractile range of the
cell.

![Diagram](image)

Figure 2-14: Vascular smooth muscle cell aspect ratios correlated with strain energy output. (A) Schematics illustrating calculations for strain energy from beads
displacement and traction force of an isolated VSMC at basal (U_b) and after stimulation
with ET-1 (U_c). (B) Representative temporal strain energy profiles of isolated VSMCs
with AR 5:1 (lower bound) and 20:1 (upper bound) prior and post stimulation. Relative
Figure 2-14 (Continued) contractile increase in strain energy (K_U) is defined as the percent change in strain energy from basal to ET-1 stimulated. U_b (C), U_c (D) and K_U (E) plotted as a function of isolated VSMC ARs. (C-E) The correlation efficient, r, is determined by linear regression analysis. Reported p values for Pearson correlations are two-tailed, demonstrated that the correlation is significantly different from zero.

To gain further insight into the component breakdown of the contractile strength, we computed the contractile traction force of isolated VSMCs [174] similar to strain energy from beads displacement at basal, stimulated and relaxed conditions in reference to cell-free condition. Since traction force is a vector measurement, we could probe for changes in contractile strength either in the cell’s long axis (longitudinal, Figure 2-15 A) or short axis (transverse, Figure 2-16 A). Similar to strain energy, we observed a relative constant contraction force in both longitudinal (T_{bx}, Figure 2-15 B) and transverse (T_{by}, Figure 2-16 B) directions prior to ET-1 stimulation, indicative of the cell basal tone. In response to ET-1 stimulation, the isolated VSMCs contracted, increasing the measured longitudinal traction force from the initial basal tone (T_{bx}) to a higher level, here denoted as T_{cx} (Figure 2-15 B). Similar increases were also observed in transverse traction force (T_{cy}, Figure 2-16 B) suggesting isolated VSMC contracts in all directions. We again computed the relative contractile increase in the longitudinal (K_{Tx}) and transverse (K_{Ty}) directions by normalizing the increase in traction force with the basal tone force. We found in the longitudinal direction that while T_{bx} and T_{cx} are negatively correlated with the cell ARs (Figure 2-15 C-D), K_{Tx} showed a significant positive correlation (Figure 2-15 E), suggesting that as VSMC elongates, its contractile range increased at the expense of lower absolute contractile strength.
Figure 2-15: Vascular smooth muscle cell aspect ratios correlated with longitudinal traction force. (A) Schematics illustrating calculations for longitudinal traction force of an isolated VSMC at basal (T_{bx}) and after stimulation with ET-1 (T_{cx}). (B) Representative temporal longitudinal traction force profiles of isolated VSMCs with AR 5:1 (lower bound) and 20:1 (upper bound) prior and post stimulation. Relative contractile increase in longitudinal traction force (K_{Tx}) is defined as the per cent change in longitudinal traction force from basal to ET-1 stimulated. T_{bx} (C), T_{cx} (D) and K_{Tx} (E) plotted as a function of isolated VSMC ARs. (C-E) The correlation efficient, r, is determined by linear regression.
Figure 2-15 (Continued) analysis. Reported p values for Pearson correlations are two-tailed, demonstrated that the correlation is significantly different from zero.

However, in the transverse direction, no correlation was found between cell AR and T_{by}, T_{cy} and K_{Ty} (Figure 2-16 C-E), suggesting that longitudinal contraction is the main driving factor for observed difference in contractile output as cell elongates. Taken together, our results suggest that cell shape elongation increase the contractile range and decrease the contractile magnitude only in the direction of elongation.
Figure 2-16: Transverse traction force is similar for all cellular aspect ratios. (A) Schematics illustrating calculations for transverse traction force of an isolated VSMC at basal (T_{by}) and after stimulation with ET-1 (T_{cy}). (B) Representative temporal transverse traction force profiles of isolated VSMCs with AR 5:1 (lower bound) and 20:1 (upper bound) prior and post stimulation. Relative contractile increase in transverse traction force (K_{Ty}) is defined as the per cent change in transverse traction force from basal to ET-1 stimulated. T_{by} (C), T_{cy} (D) and K_{Ty} (E) plotted as a function of isolated VSMC ARs. (C-E) The correlation efficient, r, is determined by linear regression analysis. Reported p
Figure 2-16 (Continued) values for Pearson correlations are two-tailed, demonstrated that the correlation is significantly different from zero.

We asked if the increase in relative contractile increase in longitudinal direction (K_{Tx}) is solely caused by the decrease in basal tone force (T_{bx}). To address this question, we computed the ET-1 stimulated contractile force increase for each individual cell and plotted it against its ARs (Figure 2-17). We found that there is a wide distribution in traction force increase induced by ET-1 at all ARs and no statistically significant correlation was found. This suggests that ET-1 induced the same level of contraction in cell’s long axis regardless of the cell AR and the decrease in basal tone force (T_{bx}) is play an important role in the decrease of relative contractile increase (K_{Tx}).

![Figure 2-17: Endothelin-1 induced increase in longitudinal traction force is similar for all cell aspect ratios](image)

A wide distribution in the absolute increase of longitudinal traction force was found for all cellular aspect ratios.

In cellular tensegrity model, tensile stress, known as prestress, bore by the F-actin filaments are responsible for stabilizing the cytoskeletal network that gives the cell
shape [175]. Assuming that the force transmitted along the F-actin fibers are balanced by the traction force generated at the cell-substrate interface (Figure 2-18 A), cumulative prestress in the F-actin fibers can be obtained by dividing the longitudinal traction force (T_x) over the cross-sectional area (A') of the cell that is perpendicular to the cell’s long axis. Since isolated VSMC thickness (Figure 2-8 B) remains constant while cell width (Figure 2-7 B) decreased as cell shape elongates, the cross-sectional area (A'), the product of cell width and cell thickness, must decrease proportionally as cell width is reduced. By dividing the measured longitudinal traction forces T_{bx} (Figure 2-15 C) and T_{cx} (Figure 2-15 D) by the cross-sectional area, we calculated the cumulative prestress at basal state (P_{bx}) and after ET-1 stimulation (P_{cx}) (Figure 2-18 B). We found that P_{bx} (Figure 2-18 C) and P_{cx} (Figure 2-18 D) increased as cell AR increased respectively, suggesting that a higher tensile stress is experienced for F-actin fibers of elongated cells. Similar to strain energy and traction forces, we calculated the relative contractile increase in cumulative prestress (K_{Px}, Figure 2-18 E) by normalizing the increase in prestress ($P_{cx} – P_{bx}$) to basal prestress (P_{bx}). We found that K_{Px} increased significantly with respect to cell AR, suggesting that the changes in actin fiber prestress increased more in cells with higher cell ARs than those with shorter ARs.
Figure 2-18: Vascular smooth muscle cell aspect ratio correlated with longitudinal cumulative cellular prestress. (A) Schematics showing a free-body diagram of a section of cell. Traction forces at the cell-gel interface \((tA')\) must be balanced by the internal stress in the cell body \((P_xA'')\), mainly by the tension bearing actin fibers. In the force balance, \(P_xA'' = tA' = T_x\), where \(P_x\) is the cumulative prestress, \(t\) is the traction stress, \(A'\) is the cell-gel interfacial area, \(A''\) is the cross-sectional area of the cell section, and \(T_x\) is the measured longitudinal traction force. (B) Representative temporal longitudinal cumulative prestress profiles of isolated VSMCs with AR 5:1 (lower bound) and 20:1 (upper bound) prior and post stimulation. Relative contractile increase in longitudinal cumulative prestress \((K_{P_x})\) is defined as the per cent change in longitudinal cumulative prestress from basal to ET-1 stimulated. \(P_{bx}\) (C), \(P_{cx}\) (D) and \(K_{P_x}\) (E) plotted as a function of isolated VSMC ARs. (C-E) The correlation efficient, \(r\), is determined by linear
Figure 2-18 (Continued) regression analysis. Reported p values for Pearson correlations are two-tailed, demonstrated that the correlation is significantly different from zero.

2.2.8 Cell Shortening as a Function of Cell Shape

A previous study demonstrated that more polarized cells have reduced Rho-dependent actomyosin contractile activity [176]. We asked if the reduction in overall force generation is a result of fewer actomyosin cross-bridge cycling activities in VSMCs with more aligned F-actin fibres. Since cross-bridge cycling directly leads to cell shortening [177], we quantified longitudinal cell shortening (ΔL) from the changes in cell length during contraction with respect to basal and relaxed states (Figure 2-19 A). We found that ΔL increased for VSMC with higher ARs (Figure 2-19 B) and this increase is positively correlated with OOP values (Figure 2-19 C). These results suggested that cross-bridge cycling is unlikely to be the cause for the reduction in overall force generation.
Figure 2-19: Longitudinal cell shortening correlated with cellular aspect ratio and orientational order parameter. (A) DIC images showing longitudinal cell shortening (ΔL) of a 20:1 AR VSMC calculated from cell length difference on both ends of cell body between basal and relaxed conditions. Scale bar = 20 µm. ΔL as a function of cell AR (B) and OOP (C). The correlation coefficient, r, is determined by linear regression analysis. (B-C) Reported p value is two-tailed, demonstrating that the correlations are not significantly different from zero. (B): $n = 14-17$ cells from 4-6 experiment per AR. (C): $n = 13-18$ cells per condition. All error bars are mean ± SEM.
2.2.9 Contractility Correlated with Subcellular Organization

We asked whether differences observed in F-actin cytoskeletal organization would reflect the differences in contractility of the cells. To answer this question, we grouped isolated VSMCs into 5:1, 10:1 and 20:1 ARs and compared their actin alignments with initial basal tone (T_{bx}) and relative contractile increase (K_{Tx}). We found that as OOP increased, T_{bx} decreased while K_{Tx} increased (Figure 2-20 A), suggesting that more aligned F-actin fibres enables greater relative increase in force generation along the fibre direction at the expense of weakened overall force output.

Nuclear shape and surface area is influenced by cell morphology [178] and subsequently affects other cellular functions [120]. Our recent work showed that nuclear eccentricity is positively correlated with VSM tissue contractility [90]. We asked if nuclear shape and projected area are also suggestive of the observed differences in isolated VSMC contractility. We grouped isolated VSMCs into 5:1, 10:1 and 20:1 ARs and compared nuclear eccentricity and projected area with T_{bx} and K_{Tx}. Here, we found that as projected nuclear area increased, T_{bx} increased while K_{Tx} decreased significantly (Figure 2-20 B). However, as nuclear eccentricity increased, T_{bx} decreased while K_{Tx} decreased significantly (Figure 2-20 C). These data suggested the morphological changes in VSMC nucleus may be an important metric for assessing the absolute and relative contractile strength of VSMCs in response to external stimuli.
Figure 2-20: Contractile output correlated with cytoskeletal organization and nuclear morphology. Basal longitudinal traction force (T_{bx}, black) and relative contractile increase (K_{Tx}, red) in longitudinal traction force after ET-1 stimulation (K_{Tx}, red) as a function of OOP (A), projected nuclear area (B) and nuclear eccentricity (C). The correlation coefficient, r, is determined by linear regression analysis. Reported p values for Pearson correlations are two-tailed, demonstrated that the correlation is significantly different from zero. All plots: mean ± SEM. $n = 13$-18 cells per condition.

2.3 Discussion

In this study, we showed that VSMC shape can regulate its contractile function. We found that whereas wider width cells generate a greater force when stimulated with ET-1, but that longer, thinner VSMCS have a greater range of contraction relative to their basal tone. This suggests that where the vasculature requires a higher fidelity in its modulation of blood flow, longer, thinner cells are functionally advantageous. This is particularly relevant to vascular tissue engineering where there is a requirement that vascular grafts are compatible both anatomically and functionally at the graft site [179-181]. In the past two decades, several strategies have been explored to recapitulate the 3D architectural organization in native vessels [182]. Customarily these strategies rely on
seeded cells to migrate and self-assemble into tissues with minimal guidance. While arterial replacements can be engineered in vitro, when engrafted, the compliance mismatch between the graft and native vessel results in thrombosis and intimal hyperplasia at the anastomotic site, resulting in low patency rate [183, 184]. Our findings suggest that, in addition to closely matching the biomechanical aspects of healthy artery, engineering vascular grafts with VSMC shapes that mimic cellular architecture of the native, healthy vasculatures could improve functionality and long-term patency.

Morphology has been an important parameter in the definition of smooth muscle cell phenotypes, especially when protein marker data is not available [139]. Our result shows that individual VSMCs cultured on soft PAA gel and stiff glass substrates with isotropically patterned FN both exhibited a wide distribution of morphologies from rhomboid to spindle-like, suggesting that we may have VSMCs with both synthetic and contractile phenotypes present despite the effort to differentiate VSMC into contractile phenotype by serum starvation. A previous study demonstrated that VSMCs cultured on stiffer substrate composed of dehydrated collagen fibrils led to a more proliferative, synthetic phenotype compared to the softer hydrated collagen fibrils [185]. However, even on the much stiffer glass substrate, we still observed spindle-like morphology, highlighting the need of a combinatorial, multi-pronged approach for regulating VSMC phenotype that may include biochemical, mechanical, and extracellular matrix factors present in the cellular microenvironment.

In addition to the variance in morphology, we also observed that individual VSMC spreading area is normally distributed on both PAA gel and glass substrates. This is consistent with results reported by Tolic-Norrelykke and colleagues [166] where they
found the projected surface area of human aortic smooth muscle cells is normally
distributed. This may be a result of the intrinsic diversity of VSMC in the vessel wall
where immunohistochemical staining pattern of contractile VSMC phenotype markers
revealed highly heterogeneous staining patterns and intensity between adjacent SMCs.
[186, 187] This spectrum of phenotypes expressed in VSMCs has been suggested to be a
combinatorial effect of both genetic programing and local environmental factors. [139]
Taken together, these studies and our result suggests isotropic ECM signal would lead to
a wide distribution of VSMC phenotype in vitro, additional structural, biochemical or
mechanical cues are needed to homogenize the population phenotype.

We previously reported that engineered VSM with forced elongated spindle
shapes exerted greater contractile tensile stress when chemically stimulated [188]. The
results reported herein are consistent with the findings by Tolic-Norrelykke and Wang,
where they found that cells with wider width contracted with greater force than slimmer
cells with a similar projected area [166]. The differences in observed shape-contractility
relationship between the current findings and our previous study by Alford and
colleagues may be attributed to differences in measured quantities, experimental
techniques and cellular micro-environmental conditions. Our previous study utilized the
muscular thin film technology [189-191], which measured the contractile strength of the
VSM tissue with the component of Cauchy stress along the cell orientation. This
measured quantity represented contractile force per tissue cross-sectional area, whereas
the current study quantified the contractility of VSMCs via TFM, which measured the
contractile force and strain energy exerted by the cell on the substrate. In addition, the
engineered VSM tissue tested in Alford et al. was cultured with a higher level of cell-cell
contact, the possibility of off axis alignment of cells, and stiffer abiotic substrates as compared to this single cell study. These differences in micro-environmental conditions will influence VSMC phenotype [102] and functions [36, 37, 192-195]. As a result, measured contractile strength may be reduced as it reflects an average of all cells in the tissue, including weakly or non-contractile cells and cells oriented in off-axis compared to the global orientation of the tissue.

Tension development and generation requires F-actin network to activate myosin ATPase activity and cross-bridge cycling in all forms of muscles, including smooth muscle cells.[2] In isolated smooth muscle cells where intercellular mechanical couplings are absent, actin filaments anchored at focal adhesion complexes must balance intracellular tension by transmitting the force to the substrate. Our findings that reduced F-actin fiber alignment correlated with VSMCs with higher contractile strength suggest that higher contractile forces were bore by the less organized F-actin fibers than the aligned fibers. This is reasonable as an increased cell width permits more sites at the two ends of the cells for the formation of focal adhesion complex, which has been shown to play an important role in the stabilization of tension bearing F-actin fibres [196]. The wider cell also has more degree of freedom laterally for the F-actin fibre orientations, which explains the lower overall alignment. This cell shape mediated cytoskeletal remodelling also corroborated with our findings that decreased F-actin fibre alignment correlated with lower relative contractile increase and less cell shortening: a phenomenon that can explained by the model proposed by Seow, Ford and co-workers [197, 198] as actin filaments rearrange connections from a parallel fashion in shorter cells to a serial
fashion in elongated cells. Taken together, our results suggest that cell shape dependent contractility changes in smooth muscle cells may be mediated by cytoskeletal modelling.

Three possible mechanisms have been put forward to explain the F-actin fiber remodeling process. Gunst et al. have proposed a model that suggest cell shape adaptation is a result of a shift in the connection of actin filaments terminations among the adhesion plaques to which it may attach by modifications in length and number of actin filaments [199]. Seow et al. suggested a second mechanism that attributed the remodeling process as a parallel-to-series transition and cell elongation could lead to rearrangement of crossbridges or addition of thick filament in series [198, 200]. The third mechanism proposed by Solway et al. is a variation of second mechanism that suggested that systematic modulation in actin filament length is responsible for cell shape changes, which means cells with shorter actin filaments may undergo parallel-to-series transition while longer actin filament do not as cell elongates [201]. Although we did not directly measure for change in actin filament length, we found that relative shortening in cell’s long axis reduced significantly while it remained comparable in cell’s short axis as cell elongated, suggesting that different mechanisms may be governing the shortening process depending on the length of the cell’s axis. This is in support of the third mechanism proposed by Solway et al. as shorter actin filaments undergo parallel-to-series remodeling as cell shape elongates [201]. While the increase in F-actin alignment during the cell elongation process could be attributed to the decrease in lateral freedom in the orientations of actin filaments as a result of reduced cell width, a parallel-to-series remodeling in actin filaments may also increase the overall alignment, in support of this
mechanism. However, to definitively test this hypothesis, measurement of individual polymerized F-actin fibers is needed.

Mechanical forces exerted on the exterior of a cell are propagated into the cell via the cell cytoskeleton to the nuclear lamina [118, 119], directly affecting nuclear shape and gene transcription. While cell shape induced nucleus elongation has been well documented, the relative contribution between longitudinal tension and lateral compression imposed by the stress fibres on the nucleus is unknown [72]. Our finding that nuclear eccentricity negatively correlated with longitudinal traction force suggests that lateral compression forces exerted by stress fibres physically deforms the nucleus. This observation agrees with a recent report detailing how lateral compressive forces exerted on the nucleus are responsible for shape deformation, chromatin remodelling and reduced cell proliferation [120]. Others have proposed that compressive physical forces exerted by aligned actin fibres are required to expose transcription binding sites or DNA regulatory motifs, potentiating differences in DNA-associated protein binding and gene transcription [202]. Since nuclear shape deformation is correlated with physiological [90, 120, 203-205] and pathological [206-209] changes in cellular functions, nuclear deformation may be indicative of, and further distinguish, the function and phenotype of vascular smooth muscle.

In this study, we demonstrated that isolated VSMCs with elongated shape exhibited less contractile strength but greater relative contractile increase upon stimulation. This shape-dependent contractile behaviour suggests that the elongated shape of VSMC in muscular arteries may lead to improved dynamic contractile range, a key feature required for effective vascular tone modulation in vivo. In addition to providing
mechanical insight into the physiological structure-function relationship of VSMCs, our finding is particularly important for obtaining the desired VSMC contractile function from a clinical perspective in the design of a functionally active tissue engineered graft.\cite{210} Our data suggest that providing organizational guidance cues to guide the development and assembly of VSMC into elongated shape may be beneficial in a successful implantation of a small artery graft.

2.4 Experimental Challenges

Completing this section posed many experimental challenges, especially in regards to microfabrication of rectangular isolated VSMCs. Despite the fact that microcontact printing has been widely used in many groups including ours, the micropatterning technique used in this section uses a modified protocol in order to accommodate the soft PAA gel substrate, which requires drying of the PAA gel prior to transferring of the biotinylated FN from the PDMS micro-features. However, if the PAA gel is too dried, the gel will crack and even upon hydration, the substrate is no longer usable for subsequent micropatterning. Therefore, this step requires a careful balancing act that leaves only a narrow window of a few minutes drying time. To complicate this matter further, factors such as humidity, the amount of residue fluid on the PAA gel prior to drying and the thickness of the gel could all influence the optimal drying time, resulting a relative low rate of success in FN micropatterning and a steep learning curve initially. However, with more experience in experimental technique to minimize batch-to-batch variations and careful monitoring during the drying process over time, we were
eventually able to master the micropatterning technique and achieve a relatively high success rate.

Another challenge we encountered is to ensure the isolated VSMC stay adhered on the micropatterned islands for immunohistochemical staining. In the early phase of the study, we adopted without modification the cell culturing protocol from a previously published study from our group on VSM tissue of the same cell type [90]. This protocol specifies a 2-day culture post seeding in 10% FBS containing media followed by a 1-day serum free starvation period to induce the contractile phenotype of the VSMC. However, we discovered that this protocol did not work well for our study because: (1) the initial 2-day culture in 10% FBS media led to a significant proliferation of seeded VSMCs which caused most of the islands to be occupied by more than 1 single cell as visible during the DAPI immunohistochemical staining (data not shown) and (2) the 1-day serum starvation period was not long enough to fully induce the contractile phenotype uniformly among the microfabricated isolated VSMCs as initial assessment of micropatterned VSMC projected surface area showed a wide distribution, suggesting that not all cells have reached their equilibrium contracted state. One plausible explanation for this discrepancy maybe that when cell-cell contact is present in the case of VSM tissues in previous study, contractile phenotype is more quickly established [211]. However, in the case of isolated VSMCs, contractile phenotype establishes more slowly as only biochemical cue is present in the cellular microenvironment. We addressed these issues simultaneously by decreasing the post-seeding 10% FBS serum culturing period from 2 days to 1 day and lengthening the subsequent serum starvation from 1 day to 2 days. Following the implementation of this protocol, we obtained a higher percentage of single celled islands
by day 3 with uniform projected surface area for all ARs, suggesting a more uniform phenotype expression.

One major challenge involved with live cell imaging is the possibility of phototoxicity induced by the reactive oxygen species (ROS) generated from ambient and laser light exposures [212]. In order to monitor how isolated VSMC contractility responds to different vasoactive agents, we needed to image the cells for over 1 hour under the confocal microscope for TFM studies. This is much longer than conventional TFM studies for cardiomyocytes commonly done in our group, where a typical imaging cycle lasted only a few seconds. As a result, the repeated laser and ambient light exposures over the course of TFM led to VSMC phototoxicity in the form of cell blebbing, necrosis, and eventual delamination from the substrate. To address this issue, we increased the imaging interval from 1 minute to 4 minutes and also reduced the laser and ambient light power to the minimal level that could still be used for TFM analysis. While we lost temporal resolution for VSMC contractile kinetics, we were still able to measure the equilibrium contractile state achieved when stimulated with different vasoactive agents. With reduced imaging interval and light power greatly, most of the VSMCs imaged no longer present any signs of phototoxicity and the small percentages of VSMCs that did were excluded from subsequent analysis.

2.5 Methods and Materials

2.5.1 Sample Preparation

2.5.1.1 Photolithography
Photolithographic chromium mask for microcontact printing were designed in AutoCAD (Autodesk Inc.) and fabricated at the Center for Nanoscale Systems facility with Heidelberg DWL-66 mask writer. The design for traction force microscopy (TFM) studies, consisted of rectangles of approximately 4,000 µm² surface area and variable length to width ratios (5:1, 141 µm x 28 µm; 10:1, 200 µm x 20 µm; 20:1, 280 µm x 14 µm). Silicon wafers (Wafer World) spin-coated with SU-8 2002 negative photoresist (MicroChem Corp.) were exposed to ultra-violet (UV) light to cross-link the designed pattern. Uncross-linked regions were dissolved by submerging the wafers in propylene glycol methyl ether acetate.

2.5.1.2 Microcontact Printing of Polyacrylamide Gels

ECM protein FN after biotinylation modification was microcontact printed onto the polyacrylamide (PAA) substrate, as previous published. Briefly, FN was cross-linked with biotin using Sulfo-NHS-LC-Biotin (Pierce). 13 kPa PAA gel substrate was fabricated with 5/0.1% acrylamide/bis concentration. Immediately prior to gel polymerization, streptavidin-acrylamide and 200 nm fluorescent beads were added to the gel solution for a final concentration of 1:5 and 1:100, respectively, by volume. 15 µL of gel-bead solution was cured on activated 25 mm coverslips. 200 µg/mL biotinylated fibronectin (biotin-FN) was incubated on a PDMS (Sylgard 184, Dow Corning, Midland, MI) stamp with microscaled raised features for 1 h at room temperature and blown dry gently. The biotin-FN coated PDMS stamp was placed in contact with cured PAA gel, transferring the biotin-FN pattern to the substrate. The patterned PAA gel was stored in
phosphate buffered saline (PBS) until cell seeding. When seeded, cells were constrained to the ECM patterned portion of the substrate after serum starvation.

2.5.2 Human Umbilical Arterial Smooth Muscle Cell Culture

Human umbilical artery smooth muscle cells (Lonza, Walkersville, MD) purchased at passage 3 was cultured in growth medium consisted of M199 culture medium (GIBCO, Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, Invitrogen), 10 mM HEPES (GIBCO, Invitrogen, Carlsbad, CA), 3.5 g L⁻¹ glucose, 2 mg L⁻¹ vitamin B-12, 50 U mL⁻¹ penicillin and 50 U mL⁻¹ streptomycin (GIBCO). All experiments were performed at passage 6-7.

VSMCs were seeded in growth media at 5,000 cells cm⁻² and allowed to attach to the isotropically patterned FN on PAA gel or patterned biotin-FN islands on PAA gel for 24 hours before replaced with a growth factor free medium consisted of M199, 10 mM HEPES, 3.5 g L⁻¹ glucose, 2 mg L⁻¹ vitamin B-12, 50 U mL⁻¹ penicillin and 50 U mL⁻¹ streptomycin to induce a contractile phenotype for 48 hours prior to cell staining or TFM experiments.

2.5.3 Fluorescent and Immunohistochemical Staining

VSMCs seeded on PAA gel after 3 d of culture were fixed with 4% formaldehyde solution (Thermo Scientific Pierce) for 10 minutes prior to staining. VSMCs seeded on isotropically patterned FN were stained for cell membrane (DiO, Invitrogen) and nucleus (DAPI) while VSMCs seeded on patterned biotin-FN islands were stained for F-actin (phalloidin, Molecular Probes) and nucleus (DAPI). Patterned
FN islands were stained with rabbit anti-human fibronectin antibody (1:100 dilution, Sigma-Aldrich, St. Louis, MO) followed by Alexa Fluor 647 conjugated anti-rabbit secondary antibody (1:100 dilution, Abcam). The stained samples were then mounted with ProLong Gold antifade agent (Molecular Probes) and stored in -20°C freezer until imaging.

2.5.4 Cell, F-actin, and Nucleus Image Analysis

The spreading area of single cells on isotropically patterned FN was manually traced in ImageJ (rsbweb.nih.gov/ij/) and quantified. Cell AR was calculated by manually tracing the phalloidin stain in ImageJ. F-actin OOP was calculated from phalloidin stain with a coherence threshold of 0.3 using a structure tensor method.[1] Cell thickness was calculated from deconvolved Z-stack images of F-actin from Imaris. Nuclear angle offset (θ) was calculated by manually tracing the outlines of nucleus and cell body in ImageJ and comparing orientation difference between the principle axes. Nuclear eccentricity was evaluated by fitting an ellipse to individually traced nucleus in ImageJ and calculating its eccentricity, defined as:

\[e = \sqrt{1 - \left(\frac{\text{minor axis length}}{\text{major axis length}}\right)^2} \]

Projected nuclear area was quantified by tracing the outline of the nucleus in ImageJ. Nuclear surface area and volume were evaluated by fitting an ellipsoid with half-length (a), half-width (b) and half-height (c) to each individual nucleus from deconvolved z-stack images in Imaris (Figure 2-11 A) with the following formulas:

\[V = \frac{4}{3} abc \]
where \(p = 1.6075 \). Cell shortening was calculated by summing the differences in cell length from DIC images of cell at basal and relaxed conditions (Figure 2-19 A). OOP, nuclear angle offset, eccentricity, projected area, surface area, and volume were quantified from between 7-12 images of isolated VSMCs for each AR. All results were compared using ANOVA on ranks test, with pairwise comparisons performed using the Tukey’s test. All correlations analysis was evaluated using Pearson product moment analysis.

2.5.5 Cell, Patterned Fibronectin Island, F-actin and Nucleus Fluorescent Microscopy

Fixed and stained cells seeded on isotropically patterned FN were imaged on a line-scanning Zeiss LSM 5 LIVE confocal microscope (Carl Zeiss, Oberkochen, GER) with a 20× Plan-Apochromat objective at 1× zoom and laser excitations at 405 nm and 488 nm wavelengths to image the DAPI and DiO staining respectively. With the same microscope, stained micropatterned FN islands on PAA gel were imaged with a 20× Plan-Apochromat objective at 0.5× zoom and laser excitation at 633 nm wavelength. 2D and Z-stack images of phalloidin stained F-actin and DAPI stained nucleus were acquired with the Zeiss LSM 5 LIVE confocal microscopy with a 40× EC-Plan Neofluar lens oil objective with 1× zoom and laser excitations at 561 nm and 405 nm wavelength respectively. Z-stack images were subsequently deconvolved in Imaris (Bitplane Scientific Software).
2.5.6 **Traction Force Microscopy Experiment**

After 3 d of culture, micropatterned VSMCs on PAA gels were moved to an incubation chamber on a Zeiss LSM 5 LIVE confocal microscope maintained at 37°C and immersed in Tyrode’s solution (1.8 mM CaCl$_2$, 5 mM HEPES, 1 mM MgCl$_2$, 5.4 mM KCl, 135 mM NaCl, 0.33 mM NaH$_2$PO$_4$, adjusted to pH 7.4). After allowing the cells to equilibrate for 10 minutes in the incubation chamber, isolated VSMCs were imaged with a 40x EC Plan-Neofluar oil objective at 0.5x zoom on a Zeiss LSM 5 LIVE confocal microscope (Carl Zeiss, Oberkochen, GER) 3 times every 4 minutes with both bright field and 488 nm wavelength laser excitation to obtain images of VSMCs baseline contracting and displacing fluorescent beads in the gel substrate. Subsequently, the VSMCs were imaged 3 times every 4 minutes after stimulation with 100 nM ET-1 for 15 minutes, followed by 100 µM HA-1077 (Sigma-Aldrich, St. Louis, MO) for 15 minutes. During the stimulation, no images were taken to minimize the amount of photo-damage to cells. Immediately prior to cell detachment, cell nuclei were stained with DAPI and imaged to ensure that only single cells were analysed. At last, trypsin was added to detach the cells from the substrate. The experiment was terminated when the cell in the field of vide dissociated from the gel, thus leaving the gel with no surface traction.

2.5.7 **Traction Force Microscopy Data Analysis**

Displacement and traction stress vectors were calculated from the bead displacement as previously published [174]. Briefly, displacement of gel was determined by comparing the beads images at baseline, stimulated and relaxed states to the bead image when cells were detached from the substrate. The traction stress field was then
calculated from the displacement map using Fourier transform traction cytometry method. Traction stress vectors were discretized to a 10 x 10 µm² grid.

To calculate the total strain energy U transferred from the cell to the elastic distortion of the substrate, we applied the following equation as previously published [89]:

$$U = \frac{1}{2} \sum_n A_n (u_x,T_{x,n} + u_y,T_{y,n})$$

(4)

where u_i and T_i represent displacement and traction force vectors in the i-direction; A is the discretized unit surface area of the cell body.

To calculate the total traction force cell T_i applied to the substrate in the i-direction, we summing the magnitudes of all traction force vectors $\vec{T}_{i,n}$ cell exerted on both sides and multiply by one half as previously published [89]:

$$T_i = \frac{1}{2} \sum_n A_n |\vec{T}_{i,n}|$$

(5)

assuming that cells exerted about equal magnitude of traction force at each sides.

To calculate the longitudinal cumulative cellular prestress P_x, we divided the total traction force in the longitudinal direction T_x by the averaged cross-sectional area of the cells.

Isolated VSMC AR was calculated in ImageJ by tracing the cell outline from a DIC image taken at baseline. VSMCs that responded to ET-1 stimulation with significantly elevated strain energy were selected for correlation analysis. All correlations analysis was evaluated using Pearson product moment analysis.
3 Engineering Vascularized Network in Folded, Porous Polymer Matrices by Tissue Origami

Organ function relies on hierarchical organization within tissues from single cells (~10 µm) to functional subunit (100 µm – 1 mm). Traditional tissue engineering scaffolds typically use a porous structure made of synthetic or natural polymer, which provide little control in organizing cells into three-dimensional structures. The lack of cellular architecture contributes to suboptimal tissue function. We present a simple and versatile scaffold folding strategy, Tissue Origami, which allows organization of multiple cell populations within three-dimensional, porous, synthetic and natural polymer matrices. We demonstrated that individual layer of porous, sub-millimeter thickness poly(lactic-co-glycolic) acid and collagen films patterned with multiple cell populations can be folded in Miura-ori geometry to produce different three-dimensional cellular organization within the engineered construct. We found patterned cells were healthy and viable in the folded construct and were metabolically active 3 days after seeding. In a proof-of-concept study, we patterned endothelial and smooth muscle cells with different three-dimensional configurations in the folded constructs to build vascularized network and compare them to the traditional bulk, porous polymer matrices. We quantified the number of blood vessels formed within each construct systematically and found that the folded constructs seeded with endothelial cells and vascular smooth muscle cells adjacent to each other laterally in the same folding plane created the densest vascularized network. This technique may enable development of organized vascular tissues that closer mimic native tissues and improve the function of engineered tissues.
3.1 Introduction

Tissue engineered construct is typically assembled through the combination of cells and biomaterials in hope that it would replace damaged or diseased organs. Traditional porous polymer scaffold are designed to support the attachment and proliferation of cells, in order for them to recapitulate lost tissue functions [213]. These cells are influenced not only by autonomous programs but also by their cellular micro-environment, which include interaction with neighboring cells, biochemical factors and physical forces. The collective effect of these factors depends on the hierarchical organization among the tissue construct. However, due to lack of control over cell seeding process in three-dimensional polymer matrices, the resultant tissue engineered construct has little organization to its tissue architecture. In contrast, tissues in native environment consist of highly organized smaller repeating unit on the scale of hundreds of microns (e.g. muscle tissue, islet, nephron) that interacts with neighboring cells and performance specific functions [214]. This difference in microarchitecture leads to suboptimal functions for tissue engineered construct and hindered the advancement of this field in achieving clinically relevant organ replacement products.

Over the last decade, a number of promising techniques have emerged to address the lack of control in cellular organization for tissue engineered constructs. Several of these techniques has demonstrated the ability to produce tissue constructs with cellular organizations including 3D inkjet bioprinting [215, 216], layer-by-layer cell sheet stacking [217, 218], spheroid self-assembly [215] and laser guided direct writing [219]. These techniques largely rely on recent advancement in rapid prototyping technology to assemble miniaturized modular units with different cell types to achieve structure
organization within tissues. Although these techniques successfully patterned cells in 3D to a varying extent, there is some critical drawback associated with them that prohibited wide adoption of these techniques in clinically settings. For example, the 3D inkjet printing technique is restricted to using only hydrogel as cell carrier, tissue spheroid technique requires specialized equipment, and cell sheet stacking and laser guided direct writing have low throughput due to lengthy operations.

We developed a strategy to engineer vascularized networks in three-dimensional, porous, polymer matrices by folding synthetic and natural polymer films with patterned vascular cells. We fabricated poly(lactic-co-glycolic) acid (PLGA) and collagen thin films and folded them into Miura-ori geometry along laser-etched perforated lines. We patterned human endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) on thin films by loading them onto acrylic posts of a stamping system and subsequently inverting the posts to transfer the cell suspensions at pre-defined locations on the films. The patterned cells were viable in the folded polymer matrices 3 days after seeding. We built vascularized networks by patterning ECs and VSMCs in different three-dimensional organizations in the folded polymer matrices and found that organization with patterned ECs and VSMCs on the same folding plane had a significantly higher vessel density compared to the folded configuration that homogenously mixed the two cell types. These findings suggest that three-dimensional organized structure of vascular cells may lead improved vascularization potential in porous polymer matrices.

3.2 Results

3.2.1 Fabrication and Visualization of Thin, Porous PLGA film
We hypothesized that thin and porous films can facilitate the manual folding process and increase nutrient transport for cell survival within the construct. We adapted published solvent casting and porogen leaching methods to fabricate the PLGA film (Figure 3-1 A). Briefly, a glass plate enclosed by 4 glass slides near the edges formed a well for the solvent cast. Since PLGA film adhered strongly to glass (data not shown), we pre-coated our glass plate with 2% w/v alginate solution as a sacrificial layer that facilitates the removal of PLGA film at a later time. Sugar particles that were sieved between 90 to 106 µm served as porogen for creating a porous architecture. The amount of sugar particles was calculated to produce a 90% porous structure after leaching. Immediately after adding the sugar particles to the 5% w/v PLGA in chloroform solution, the mixture was casted into the well coated with alginate to uniformly spread the sugar particle. When the chloroform solution evaporated from the casted mixture, the entire construct was placed in a desiccator overnight to completely remove any residue solvent. The PLGA thin film was obtained by placing the construct in DiH2O for 4 hours to dissolve the embedded sugar particles and the alginate thin film, allowing the PLGA film to float to the surface.

The dried PLGA film was flexible and uniform, with no structural defect (Figure 3-1 B). Due to the highly porous nature of the film, it appeared to be translucent. The thickness of the PLGA film was 280 ± 20 µm (mean±SD), suggesting that the film contains, 2-3 layers of sugar particles prior to water leaching on average. Scanning electron microscopy (SEM) images showed a highly porous and interconnected microstructure, with some large pores passing through the entire film (Figure 3-1 C). Higher magnification images demonstrated that in addition to large pores around the size of
sugar porogen, pores between 100 nm and 3 µm are also scattered throughout the film structure (Figure 3-1 D-E). Taken together, we created a highly porous, reproducible, flexible PLGA thin film with sub-millimeter thickness.

Figure 3-1: PLGA film fabrication and visualization. (A) PLGA (75:25) porous and thin film was fabricated by using solvent casting and porogen leaching method. (B) Flexible, translucent PLGA porous thin film obtained with an average film thickness of 280 ± 20 µm (mean ± SD). SEM image of porous PLGA thin film viewed under low (C), med (D) and high (E) magnifications. The scale bars in (C-E) are 500, 50 and 5 µm respectively. Some pores penetrated all the way through the scaffold as evident in (C, white arrowheads).

3.2.2 Fabrication and Visualization of Thin, Porous Collagen Film

Since collagen is not dissolvable in organic solvent, we modified the protocol from a published patent and fabricated the collagen thin film through a freeze-drying method (Figure 3-2 A) [220]. Briefly, we dissolved the collagen powder in 0.05 M glacial acetic acid and blended the mixture with a commercial blender to obtain a uniform
mixture of slurry. After deforming the mixture by centrifugation, the collagen slurry was sandwiched between two glass plates enclosed with four Teflon tape spacers and froze in -20°C freezer. After transferring the construct to the -80°C freezer for an additional 24 hours, the construct was lyophilized for 48 hours, leaving only the porous thin film behind. The finished collagen film is flexible and thin, with a white appearance (Figure 3-2 B). We measured the thickness of the film to be 286 ± 14 µm (mean ± SD), suggesting that the inter-batch thickness variation is minimal. We examined the microstructure of the film via SEM and found a highly porous architecture with similarly sized pores (Figure 3-2 C). High magnification images showed no nano-sized pores as seen in the PLGA thin film (Figure 3-2 D-E).

Figure 3-2: Collagen film fabrication and visualization. (A) Porous, thin collagen film was made by freeze-drying blended collagen slurry. (B) Collagen thin film obtained with an average film thickness of 286 ± 14 µm (mean ± SD). SEM image of porous PLGA thin film viewed under low (C), med (D) and high (E) magnifications. The scale bars in (C-E) are 200, 100 and 50 µm respectively.
Since collagen can be degraded by enzymes such as collagenase and pepsin in vivo, we characterized the degradation behavior of the fabricated collagen thin film by calculating the weight remained (w_t) in phosphate-buffered saline (PBS) with and without collagenase as a fraction of initial weight (w_0) after specific time periods. We found that in PBS without the collagenase, the weight fraction (w_t/w_0) dropped significantly after 24 hours but remained similar thereafter until the end of the experiment 7 days later (Figure 3-3). However, degradation of collagen thin sheet was significantly faster in PBS containing collagenase at 100 µg/mL. At the end of the experiment 2 hours later, only 40% of the initial weight remained and the weight-time function was approximately linear (Figure 3-3). Taken together, the degradation profile of collagen thin film suggests that long term culture of cells that are capable of degrading collagen may compromise the structural integrity of the thin film and cross-linking of the collagen may be required prior to long term cell culture.
Figure 3-3: Degradation profiles of collagen thin film in PBS and collagenase. The weight fractions were calculated as the ratio between the weight remained (w_r) after immersing in PBS with (→) or without (→) collagenase at 100 µg/mL at 37°C to the initial weight of the thin films (w_0). The degradation behavior in collagenase can be approximated linearly with the equation: $w_r/w_0 = -8.33 \times 10^{-5} t + 0.949$ with $R^2 = 0.976$. Data ± SEM. $n = 3$ for each condition.

3.2.3 Folding Thin Film into Miura-geometry with Laser-etched Perforated Lines

We selected the Miura-geometry invented by Japanese astrophysicists Koryo Miura to fold our thin film construct because this particular geometry allows for packing of the thin sheet into a very compact area with its thickness restricted only by the thickness of the thin sheet itself. To improve the fidelity and reproducibility of manual folding, we designed the folding lines of the Miura-geometry in a computer-aided design.
(CAD) program and laser-etched periodical perforations along the design on porous PLGA (Figure 3-4 A) and collagen (Figure 3-4 B) thin sheet prior to folding. The outer boundary of the Miura-geometry was produced by using higher laser power to completely sever the thin film. The etched lines allow for folding of PLGA (Figure 3-4 C) and collagen (Figure 3-4 D) thin films easily and subsequent retaining of folded geometries without external constrains. This approach allowed us to fold PLGA and collagen thin sheet into Miura-geometry manually easily and precisely.

Figure 3-4: Folding of laser-etched PLGA and collagen thin film into the Miura-ori geometry. PLGA (A) and collagen (B) thin films with an 8-facet Miura-geometry. The perforated folding lines were laser-etched from a user-designed CAD drawing. 3D 16-facet PLGA (C) and 8-facet collagen (D) folded constructs were obtained by manually folding along the perforated lines. (A-B) scale bars = 1 cm.
3.2.4 **Patterning of Thin Films with Post-stamping System**

We developed a two parts post-stamping system to pattern the thin films at user-defined locations with liquid droplets (Figure 3-5 A). Prior to patterning the film, liquid droplets were loaded onto each individual acrylic posts on the stamping system. The posts with liquid droplets were then inverted upside down and pressed gently to allow the liquid droplets to transfer into the thin film.

The top part is made of acrylic plate with small acrylic posts of equal height fixed at various locations (Figure 3-5 B). The acrylic posts were fabricated by cutting out circular holes on a 1/8” thickness acrylic plate with laser at high power. The locations of the acrylic posts were designed in a CAD drawing such that the pattern these posts created on a two-dimensional thin sheet aligns along the z-axis when the film folds into the three-dimensional Miura-ori geometry. Low power laser was used to lightly mark the locations on the acrylic top plate and premade acrylic posts were subsequently glued at these locations.

The bottom part is made of two 1/8” thickness acrylic plates glued together where one plate had the center region shaped of the outer boundary of 2D Miura-geometry completely removed by laser (Figure 3-5 C). This hollowed center region served as the loading location for the thin film that needs to be patterned. Four 1” screws were machined into the four corners of the bottom part with the corresponding screw holes on the top part to fix the xy-plane position during the patterning process. When the top and bottom parts are assembled, four nuts were used to equalize and stabilize the downward pressure exerted on the enclosed thin film by the acrylic posts (Figure 3-5 D).
We stamped green and red liquid food coloring droplets on PLGA thin films to produce the alternating coloring pattern (Figure 3-5 E). We found that the patterned shape of the liquid droplet was not circular of the post and there was liquid bleeding underneath the film (Figure 3-5 F).

![Diagram](image)

Figure 3-5: Patterning PLGA thin films with post-stamping system. (A) Schematics illustrating the stamping process. (B) The top part is composed of acrylic posts bonded to a base acrylic plate at specific locations in the faces of the Miura-geometry such that the patterned locations aligns vertically in the z-axis of the folded thin film. Scale bar = 1 cm. (C) The base part is created by bonding two acrylic plates together with the center region of one of the plates pre-cut in the shape of the Miura-geometry. The translucent regions were the dried adhesive. Four screws are machined into the bottom part at the four corners. Scale bar = 3 cm. (D) Assembled top and bottom parts with four nuts to secure the stamping system. Scale bar = 3 cm. (E) Two different colored liquid droplets were loaded on the posts to produce the alternating pattern in PLGA thin film. Scale bar = 1 cm. (F) Patterned droplet had a non-circular shape and liquid bleeding underneath the film were visible. Scale bar = 1 cm.
To address this issue, we controlled the liquid spreading pattern in the thin film by creating circular laser-etched boundaries in the thin film at the stamping locations of liquid droplet (Figure 3-6 A). The boundaries served as a physical barrier preventing the liquid from spreading beyond the etched region into the main body of the thin film. However, when an excessive laser power was used, the etched center region detached from the thin film, leaving a hole behind (Figure 3-6 A, black arrowheads). With different food coloring diluted in DiH$_2$O, we created circular liquid dots of different sizes simultaneously in the PLGA thin films (Figure 3-6 B). By designing different post and color loading configurations, we created two patterns in the film: alternating colors of same-sized dots along the z-axis (Figure 3-6 C) and different-sized dots on the same xy-plane (Figure 3-6 D). As a result of the physical boundary, the resolution of circular dots increased to about 1 mm in diameter. Immediately after liquid droplet stamping, the film was folded along the laser-etched perforated lines into the 3D Miura-geometry construct.

We evaluated the efficiency of the post-stamping system in patterning collagen thin films. 3µL of food coloring droplets containing 1% w/v gelatin/DiH$_2$O were individually dispensed on the posts before brought into contact with the collagen thin film (Figure 3-7 A: top view, Figure 3-7 B: side view). Although most of the liquid dots were constricted within the physical boundaries, in some cases, the droplet was able to wet into the main body of the thin film, leaving a blot extending beyond the physical boundary (Figure 3-7 C). We suspected that this may be due to increased hydrophilicity of collagen. The patterned collagen thin film folded easily into the final 3D Miura-geometry construct (Figure 3-7 D). Taken together, the post-stamping system combined
with the laser-etched boundary allow for simultaneous patterning of different sized liquid dots on PLGA and collagen thin films at user-defined locations.

Figure 3-6: Laser-etched circular boundaries improved patterning fidelity and consistency in PLGA thin films. (A) Laser-etched circular boundaries in a PLGA thin film. Excessive laser power could sever the patterned region, leaving only holes on the thin film (black arrowhead). Scale bar = 1 cm. (B) Red and green coloring dots in DiH$_2$O enclosed with different sizes of laser-etched boundaries. The large dot was created with 3 µL of stamping volume while the smaller dots was created with 1.5 µL. Scale bar = 1 mm. (C) Alternating colors of same sized dots along the z-axis of a 8-facet semi-folded Miura-geometry PLGA construct. (D) Different sized dots could be simultaneously stamped on the same xy-plane of a 8-facet semi-folded PLGA construct.
Figure 3-7: Laser-etched boundaries were ineffective for patterning in collagen thin film. Top view (A) and side view (B) of an inverted post-stamping system loaded with blue food coloring droplets in 1% w/v gelatin/DiH$_2$O. (C) Collagen thin film after post-stamping. There was liquid bleeding outside of the laser-etched boundaries, possibly due to hydrophilic wicking effect of collagen. (D) Semi-folded collagen thin film with the patterned area aligning along the z-axis. (A-D) Scale bars = 1 cm.

3.2.5 Three-dimensional Cell Patterning in Folded, Porous Polymer Matrices

In order to pattern cells in the thin films, we suspended cell in a mixture of media and Matrigel as previously described [221]. Since Matrigel retains its fluidity at 4°C but polymerize into a gel at 37°C, we prepared the cell mixture with cold media and
Matrigel at 4°C and incubated the patterned cell suspension at 37°C to allow Matrigel to encapsulate the stamped cells at patterned locations. To inspect the fidelity of cell pattern, we stained two cell populations with membrane dyes DiI and DiO that excite at 549 nm and 484 nm respectively. We tested different patterns for PLGA and collagen thin films. For PLGA thin film, we loaded the cell suspensions on 4 posts configured in an equilateral triangle such that the three vertices are stamped with the DiI-stained cells while the centroid of the triangle is stamped with the DiO-stained cells (Figure 3-8 A). For collagen thin film, we loaded cells stained with the same membrane dye on the opposing corners of a square.

We found patterned cell populations retained its circular shape and relative positions to each other 2 hours after the stamping in a 2-facet folded PLGA construct (Figure 3-8 B). Stamping was completed with high fidelity as there was little defect in the shape and DAPI-stained nuclei were presented throughout the stamping area and within the laser-etched boundaries. However, in 2-facet folded collagen construct, the patterned cell populations were not as uniform as the PLGA thin film within the boundaries and there were signs of wicking in between the boundaries (Figure 3-8 C). Taken together, these data demonstrated that patterning of multiple cell populations simultaneously on PLGA and collagen thin films can be achieved using post-stamping system with Matrigel as a cell suspension carrier. However, further improvement need to be made to collagen thin films to achieve higher fidelity.
Figure 3-8: Patterning cells in PLGA and collagen thin films using post-stamping system. (A) Human endothelial cells stained with DiI and DiO were suspended in 1:1 v/v media/Matrigel and loaded onto posts before brought into the contact with the thin films. Matrigel was allowed to gel at 37°C to encapsulate the patterned the cells before media was supplied to the folded constructs. (B) Immunofluorescent confocal images of DiI and DiO stained cells with DAPI counterstain near the center of a folded, two-facet folded, porous PLGA matrices 2 hours after stamping. The stamping pattern is an equilateral triangle with its three vertices stamped with cells stained with DiI and its centroid stamped with cells stained with DiO. (C) Immunofluorescent confocal images of DiI and DiO stained cells with DAPI counterstain in a folded, two-facet folded, porous collagen matrices 2 hours after stamping. The stamping pattern is a square with the opposing
Figure 3-8 (Continued) vertices stamped with cells stained with the same membrane dye. (B-C): Dashed lines indicate laser-etched boundaries for stamping. Scale bars = 500 µm.

3.2.6 Patterned Cell Viability in Folded, Porous PLGA Matrices

We asked if the patterned cells are viable in the folded PLGA construct. We qualitatively evaluated the viability of human endothelial cells (EC) 2 hours after patterning with live/dead cell viability assay. We found that most of the cells in the patterned region were live (Figure 3-9 A) with minimal number of dead cells (Figure 3-9 B). There were no cells found in yellow, indicating an absence of active cellular apoptosis (Figure 3-9 C). For longer culture period, we quantitatively evaluated the viability of human ECs and VSMCs in bulk porous PLGA matrices (B_p) and 4-facet folded 3D PLGA constructs (Figure 3-9 D) using alamarBlue assay. The three-dimensional cellular organization of folded construct were divided into three categories: (F_s) folded PLGA matrices patterned with only ECs, VSMCs or a homogenously mixed population of ECs and VSMCs, (F_z) folded PLGA matrices patterned with alternating EC and VSMC populations along the z-axis and (F_{xy}) folded PLGA matrices patterned with both EC and VSMC populations on each facet in the same xy-folding plane arranged as shown (Figure 3-9 D). Each facet of the fold was stamped with 3×10^5 cells for a total of 1.2 million cells per construct. After 3 days of culture, we found that the metabolic activities indicated by the fluorescent readings for all conditions were similar for different three-dimensional cellular organizations (Figure 3-9 E), suggesting a comparable level of live cells for all organizations. Taken together, these results suggest that the cells
patterned in the folded PLGA matrices were able to survive after 3 days of culture *in vitro*.

Figure 3-9: Cell viability evaluation in folded and bulk porous PLGA polymer matrices. Fluorescent images of live (A) and dead (B) human endothelial cells stained with calcium AM and ethidium homodimer-1, respectively, in a 4-facet folded PLGA tissue construct. (C) Composite image of live and dead cells in (A) and (B). (A-C) Scale bars = 300 µm. Live: green. Dead: red. (D) Three-dimensional cross-sectional schematic representations of cellular organizations with ECs, VSMCs, or homogeneously mixed population of ECs and VSMCs in bulk, porous PLGA matrices (B_p) and 4-facet folded
3.2.7 Organized Three-dimensional Organization Promotes Vascularized Network Formation

Angiogenesis in native environment requires EC and VSMC work in concert spatiotemporally [222-224]. We asked if organized three-dimensional structures of EC and VSMC populations patterned in folded PLGA constructs improve vascularized network formation in vivo. To that ends, we subcutaneously implanted EC and SMC organized in porous PLGA matrices with B_p, F_s, F_z and F_xy configurations on the dorsal regions of SCID/bg male mice (Figure 3-10 A). After 2 weeks, the constructs were explanted (Figure 3-10 B), imbedded in paraffin, sectioned and immunostained for blood vessels.

We followed a systematic approach in quantifying the vessel density by imaging 36 fields of views for each stained section (Figure 3-10 C). Immunostained blood vessels of various sizes were found in the bulk porous scaffold and folded constructs (Figure 3-10 D) with perfused red blood cells visible in some vessels (Figure 3-10 E). We manually counted the number of human-caldemons positive blood vessels from the images and normalized by the field of view surface area. We found a significantly higher blood vessel density in the folded construct with F_xy configuration compared to folded constructs with F_s configuration (Figure 3-10 F), suggesting that organized three-
dimensional structures of ECs and VSMCs in PLGA matrices can improve the formation of mature blood vessels.

Figure 3-10: Evaluating vascularization network formation in folded and bulk porous PLGA matrices. (A) PLGA bulk porous scaffold (Bp), 4-facet folded construct in Miura geometry with homogenously mixed human EC and SMC populations (Fs), with alternating EC and VSMC populations in the z-axis of the construct (Fz), and with both EC and VSMC populations on the same xy-plane of each facet of the construct arranged as shown (Fx) were cultured for 3 days *in vitro* prior to subcutaneous dorsal implantation in SCID/bg male mice. (B) An example of explanted folded scaffold after 14 days of *in vivo* implantation. Scale bar = 5 mm. (C) Each sectioned paraffin slide was systematically divided into a grid of 6 x 6 field of views (black squares, not to scale) and imaged. (D) Representative immunohistochemical staining of blood vessels on a sectioned slide. (E) Representative staining of perfused blood vessels with red blood cells. (D-E): (Green: anti-human CD31, Red: anti-human Caldesmon, Blue: DAPI). Scale bars
Figure 3-10 (Continued) = 50 μm. (F) Human Caldesmon positive vessel density found for different three-dimensional organizations. Mean ± SEM. n = 3 explants.

3.3 Discussion

In this study, we developed a novel 3D cell patterning method, Tissue Origami, to organize multiple cell populations in 3D synthetic and natural polymer scaffolds by folding cell-laden 2D polymer thin films with Miura-geometry. We found cell populations could be patterned simultaneously with sub-millimeter resolution and maintained metabolically within the constructs. This is particularly relevant to the field of tissue engineering where cell organization in 3D scaffold could lead to improved function of the engineered tissue [225]. Although a number of strategies to address this issue have been reported in the past two decades, a large number of these studies rely on hydrogel as cell carrier and scaffolding material, which exclude a wide range of cell-compatible scaffolding materials such as PLGA and collagen. For strategies that do not use hydrogel, throughput and cost are prohibitive for clinically-relevant applications [226]. Our strategy does not suffer from the shortcomings of the previous techniques and can be adopted for a wide range of tissue engineering applications where specific material properties are required as scaffolds.

Our strategy offers several advantages compared to traditionally stacking or layering strategy to build 3D tissue engineering constructs. For example, Derda and colleagues built a 3D tissue engineered construct by assembling multiple layers of chromatography paper spotted with cell suspension [227]. While the authors
demonstrated the biocompatibility of the paper as a scaffolding material that supported
cell survival and growth, the paper itself cannot be degraded as an implantable material
and is not FDA approved. While its wide commercial availability is certainly
advantageous, it is disadvantageous from a material-processing perspective because it is
pre-made, which makes it difficult to modify its material properties such as porosity and
mechanical strength. In another study, Shimizu and colleagues stacked multiple layers of
cardiomyocytes cultured separately to achieve a 3D tissue engineered construct [218].
Although this strategy also enabled investigators to create user-defined cell patterns in 3D,
it significantly adds handling time and operator-variability compared to Tissue Origami
strategy where the locations of patterns are mathematically defined in all three axes as a
result of pre-determined folding lines specified in Miura-geometry.

Angiogenesis is a complex process involving multiple cell types including ECs
and VSMCs. Much of what we known currently about it came from the field of cancer
biology where inhibition of this process may slow tumor growth and reduce the chance
for metastasis [228]. In contrast, in tissue engineering, the challenge is to promote this
process so that seeded cells in engineered scaffold have sufficient nutrients to survive.
While it is commonly known that the EC and VSMC interacts with one another through
cytokine signaling and physical contact [224], controlling angiogenesis is not a trivial
pursuit for tissue engineering application due to the spatiotemporal requirements to
regulate the complex process. A number of studies demonstrated a multi-cell type
strategies can lead to improved formation of blood vessels in engineered scaffold [229-
231]. However, most of these studies did not provide any organizational cues in the
scaffold and relied on seeded cells to self-assemble into blood vessels. Our findings that
folded 3D constructs with homogeneously mixed populations of ECs and VSMCs showed significantly lower blood vessel formation than patterned EC and VSMC populations stamped on each facet suggest that spatially organizing populations of ECs and VSMCs may lead to higher blood vessel formation in the scaffold.

In summary, we designed a new 3D cell patterning strategy based on folding thin, porous polymer films with Miura-geometry, built PLGA and collagen thin films with perforated folding lines that allows two distinct populations of cells to be simultaneously patterned in 3D and tested this strategy in building vascularized networks with ECs and VSMCs. We found that initial configuration that placed EC and VSMC populations on the same plane of each facet led to the greatest yield in terms of the blood vessel formation. This technique is particularly relevant to the field of tissue engineering where spatial organization of multiple cell populations can lead to improved tissue functions. The wide range of material compatibility, low cost and high-throughput enabled by method can facilitate its adoption in manufacturing of clinically-relevant sized tissue engineered construct.

3.4 Experimental Challenges

There were a number of challenges pertaining to the development of this method. The first challenge was to develop a foldable scaffold that is biocompatible and biodegradable. With solvent-casting method, we were able to obtain nonporous, thin PLGA films that permitted folding. However, we found that due to the elasticity of the film, the folded construct tended to unfold its 3D shape and revert back to an open film over time. In addition, we were concerned about the nutrient diffusion through the
nonporous film to support cell survival and growth. To overcome these issues, we introduced an additional porogen-leaching step in the fabrication process and the resulting film became over 90% porous. The reduced density in the film greatly relieved the amount of mechanical stress experienced at the folding lines and the folded construct were able to remain in its folded shape indefinitely. The inter-connected porous structure also facilitates nutrient diffusion into the folded constructs. The folding process was later further improved with the incorporation of laser-etched perforated folding lines, which enhanced the accuracy and reproducibility of the manual folding.

The second major challenge was to develop a method to pattern multiple cell populations on the thin film simultaneously in a high-throughput and low-cost manner. Since PLGA is relatively hydrophobic, our initial attempt to deposit cell suspensions proven to be difficult as the small volume of cell suspension droplet tended to adhere to the hydrophilic surface that is used to transfer the droplet (e.g. pipette tips) rather than the PLGA thin film. To overcome this challenge, we increased the viscosity of the cell suspension droplet by adding Matrigel to the media and constructed the post-stamping system to facilitate the transfer of the droplet to the PLGA thin film. The droplets were pre-loaded onto the acrylic posts of the post-stamping systems, which are also hydrophobic. The droplets adhere to the post initially due to surface tension. However, when inverted and in contact with the PLGA surface, the droplets prefer the PLGA film than the posts and allowed the cell suspension to be stamped on the thin films. Since virtually any post- and cell-loading configurations can be designed in a CAD drawing, it enables any cell patterns to be created simultaneously in the thin films in a high-throughput and low cost manner. The patterning process was further improved with
the assistance of laser-etched boundary to control the spreading of the deposited cell suspension in the thin film laterally.

3.5 Materials and Methods

3.5.1 Preparation and Fabrication of Thin Films and Bulk Scaffold

3.5.1.1 PLGA Thin Film Fabrication

Soda-lime glass plate (3” x 4” x 1/16”, Moliterno, Inc., Pepperell, MA) was rinsed in the order of acetone, propanol, ethanol, and methanol and blow-dried with nitrogen to clean the surface. Cleaned glass plate was immediately placed in a plasma generator (PlasmaPrep2, Gala Instrumente, Germany) and treated with ionized oxygen for 30 seconds to render the surface hydrophilic. About 2 ml of 2% w/v alginate solution (Sigma-Aldrich, St. Louis, MO) was poured onto the center of the treated glass plate and spin-coated to achieve a uniform alginate thin coating. After drying the coating in an oven at 60°C for 30 minutes, glass slides (1” x 3”) were placed on the four edges of the alginate-coated glass plate to enclose an open square. The glass slides were clamped tightly onto the glass plate via 4 pairs of neodymium magnets (SuperMagnetMan, Birmingham, AL) to secure their formation. 20 µL of 1% w/v gelatin solution (Sigma-Aldrich, St. Louis, MO) was pipetted uniformly along each of the four edges of the open square to seal any open gap between the glass slides and the glass plate. The construct was placed in a fridge at 4°C to solidify the gelatin solution until ready to use.

Sugar (Domino Foods) particles were sieved between 90 to 106 µm. 1.2 g of sieved sugar particles was added to 1 mL of 10% w/v poly(lactic-co-glycolic) acid (PLGA, 75:25, Lakeshore Biomaterials, Birmingham, AL) in chloroform solution (Sigma,
St. Louis, MO) to achieve a 9:1 (sugar:PLGA) weight ratio. Prior to casting the mixture, the alginate-coated glass construct was taken out of the fridge and allowed to warm up to room temperature for 15 minutes. After briefly swirling the mixture by hand, it was poured onto the center of the open square area of the glass construct. The mixture was allowed to dry for 30 minutes in the fume hood followed by an overnight desiccation step to fully evaporate any chloroform residue in the sugar/PLGA film. Finally, the entire construct was immersed in 4 L of DiH₂O for 2 hours to leach out the sugar and to detach the film. The wet film was carefully placed on a Teflon net and allowed to dry for 4 hours in a 60°C oven.

3.5.1.2 Collagen Thin Film Fabrication

Glass plate (2” x 3” x 1/16”, VWR, Atlanta, GA) was rinsed in the order of acetone, propanol, ethanol, and methanol and blow-dried with nitrogen to clean the surface. 4 layers of Parafilm (VWR, Atlanta, GA) were wrapped near the edge of each side along the length of the plate to form a rectangular area with two open sides on the glass plate. The glass/Parafilm constructs was stored until ready to use.

2 g of collagen type I powder from bovine Achilles tendon (Sigma, St. Louis, MO) was added to 200 mL of 0.05 M glacial acetic acid (Sigma-Aldrich, St. Louis, MO) solution for 30 minutes. The mixture was blended in Oster blender at high setting for 8 minutes to achieve an uniformly mixed collagen slurry. The slurry was de-foamed by centrifugation at 2000 RPM for 10 minutes at 4°C. Immediately after de-foaming, 3 g of collagen slurry was spread within the rectangular open area of the glass plate/Parafilm M (VWR, Atlanta, GA) construct and sandwiched with another clean glass plate of the same
dimensions on top. The entire construct was clamped with 2 pairs of neodymium magnets (SuperMagnetMan, Birmingham, AL) to fasten the location of the glass slides and immediately placed horizontally in the freezer at -20°C for 24 hours to freeze the collagen slurry. The frozen collagen slurry construct was then transferred to a -80°C freezer for another 24 hours before finally lyophilized in a freeze-dryer (FTS System, Stone Ridge, NY) for 48 hours to obtain the collagen thin film.

3.5.1.3 Bulk Scaffold Fabrication

Similarly to the PLGA thin film, we fabricated the bulk PLGA scaffolds with a solvent casting and porogen leaching method. The casting volume was eight times higher than the thin film in order to keep the thickness of the bulk scaffold same as a 4-facet folded construct. We sieved sugar (Domino Foods) particles between 90 to 106 µm. 4.8 g of sieved sugar particles were added to 4 mL of 10% w/v PLGA (75:25, Lakeshore Biomaterials, Birmingham, AL) in chloroform (Sigma, St. Louis, MO) solution to achieve a 9:1 weight ratio. The mixture was swirled swiftly to homogenize the sugar particles and immediately casted into an alginate-coated well made from aluminum plate. After allowing the chloroform to evaporate and desiccate the construct overnight, the sugar was leached away in 4 L of DiH₂O for 4 hours. The wet film was placed on a Teflon net and allowed to became fully dry at room temperature.

To cut circular discs from the bulk scaffold sheet, we used the VersaLaser (VersaLaser VLS3.50, Scottsdale, AZ) set to 20% power and 80% speed with HPDFO lens. The diameter of the circular disc was 1 cm and we drew the shape in CorelDraw X5.
(Corel, Menlo Park, CA) and imported into the VersaLaser graphic user interface (GUI) software.

3.5.2 Thin Film Characterization

3.5.2.1 Film Thickness

We measured the thickness of PLGA and collagen thin films via a digital caliper. To measure the average film thickness across the entire film, we folded the thin film two times to achieve a four layered construct and sandwiched the construct in-between two glass slides (1” x 3”, VWR, Atlanta, GA) before measurement. The glass slides served as spacers to evenly distribute the compressive force exerted by the digital caliper during the measurement. The average single film thickness was obtained by subtracting the thickness of the two glass slide spacers and then dividing by four.

3.5.2.2 Collagen Thin Film Degradation

12 circular pieces of collagen thin film with an approximate diameter of 9 mm were cut using a stopper hole borer (VWR, Atlanta, GA). The mass of each film was measured on a digital atomic scale and placed in a 12-well plate (BD Biosciences). 3 mL of collagenase solution at 0.1 mg/mL in PBS was added to each well and a small metal mesh weight was added on top to fully submerge the samples. At 0.5, 1, 1.5 and 2-hour time points, the enzymatic degradation was stopped by adding 2 mL of 10 mM phosphate-buffered EDTA solution (Invitrogen) to three of the 12 wells followed by DI water rinsing three times. The samples were then desiccated overnight at room
temperature. The final mass of the dried samples were measured on the digital atomic scale to calculate the changes in mass due to degradation.

3.5.3 Laser-etching and Folding of Thin Film

Perforated lines in the shape of Miura-geometry were designed with CorelDraw X5 (Corel, Menlo Park, CA) and imported into VersaLaser GUI software. Laser (VersaLaser VLS3.50, Scottsdale, AZ) set to 10% power with 100% speed and HPDFO lens was sufficient to etch both PLGA and collagen thin sheet. Prior to laser etching, the thin PLGA or collagen sheet was taped at the four corners in the center of a letter-sized plain paper to prevent any accidental movement during the etching process. After the thin PLGA or collagen sheet was etched with the designed Miura-geometry pattern, it was stored in large deep Petri dishes until ready to use.

3.5.4 Post-stamping System Fabrication and Stamping

The post-stamping system is composed of three parts: cylindrical acrylic posts, an acrylic base plate and an acrylic top plate. The dimensions of the acrylic posts were designed in CorelDraw X5 (Corel, Menlo Park, CA) and cut out with VersaLaser (VersaLaser VLS3.50, Scottsdale, AZ) with 90% power, 9% speed and HPDFO lens from an 12” × 12” × 1/8” acrylic plate (McMaster-Carr, Robbinsville, NJ). The diameter of the posts is 2 mm. After laser cutting, the posts remained loosely connected to the acrylic plate and could be easily removed by push gently with a pointed object such as a pair of tweezers. The top acrylic plate served as the base for posts attachment. The attachment locations were marked by gentle laser etching (50% power, 90% speed,
HPDFO lens) with VersaLaser (VersaLaser VLS3.50, Scottsdale, AZ) such that the corresponding stamping locations align along the \(z \)-axis of a folded thin film with Miura-geometry. The posts were individually glued to the marked locations with Epoxy (Permatex, Hartford, CT) and allowed to fully cure at room temperature for 4 hours. The bottom acrylic plate was consisted of two identical thin plates with dimensions 12” \(\times \) 12” \(\times \) \(\frac{1}{8} \)” (McMaster-Carr, Robbinsville, NJ) glued together. The outer shape of the unfolded 2D Miura-geometry was cut out in the center of one of the plates and served as a receiving base for the thin sheet. Finally, four screws were bored through at the four corners of the bottom plate with matching holes at the top plate to eliminate any movement laterally in the stamping process.

Initial tests of post-stamping system with PLGA and collagen thin films were carried out with food colorings liquid droplets. For testing with PLGA thin films, we prepared diluted food coloring solutions by adding 5 drops of the concentrate (McCormick, Sparks, MD) to 10 mL of DiH\(_2\)O. For collagen thin films, the food coloring solution was added to 1% w/v gelatin/DiH\(_2\)O to increase the viscosity of the solution. The liquid droplets were pipetted onto each post on the top part of the post-stamping system and gently inverted and lowered onto the thin film that sit at the well at bottom part of the post-stamping system. The four nuts were threaded on the screw to prevent any vertical movement. The top part was lifted slowly after 1 minute of contact and inspected for any residue droplet.
3.5.5 Cell Culture

Human umbilical vein endothelial cells (HUVECs) (Lonza, Walkersville, MD) at passage 3 were cultured in EGM-2 media (Lonza, Walkersville, MD) in a water-jacketed 5% CO$_2$ incubator at 37°C. Following initial seeding, the cells were fed every other day until reaching 80-90% confluence, at which point, the cells were passaged and re-seeded at a density of 5000 cells/cm2. All experiments were performed at passage 5-6.

Human aortic smooth muscle cells (HASMCs) (Lonza, Walkersville, MD) at passage 3 were cultured in SmGM-2 media (Lonza, Walkersville, MD) in a water-jacketed 5% CO$_2$ incubator at 37°C. Following initial seeding, the cells were fed every other day until reaching 60-70% confluence, at which point, the cells were passaged and re-seeded at a density of 10000 cells/cm2. All experiments were performed at passage 5-6.

Whenever a mix population of both HUVECs and HASMCs were co-cultured in the folded or bulk construct, a mixed media consisted of 3 parts SmGM-2 and 1 part EBM-2 were used [232]. The media was changed every day until ready for in vivo implantation or in vitro assay.

3.5.6 Cell Patterning of Thin Film with Post-stamping System

Top and bottom parts of the post-stamping system were sterilized by spraying thoroughly with 70% v/v ethanol/DiH$_2$O followed by ultraviolet (UV) sterilization for 30 minutes in the biosafety cabinet. The perforated PLGA and collagen thin films were sterilized by UV sterilization for 1 hour on each side in the biosafety cabinet. Light neodymium magnetic rings (Model: R1013D, SuperMagnetMan, Birmingham, AL) were wrapped with Teflon tape and sterilized with sonication in 70% v/v ethanol/DiH$_2$O
solution for 15 minutes in a water-bath sonicator. The magnetic rings were air dried for 30 minutes within the biosafety cabinet and stored in a sterile Petri dish prior to cell patterning. All tweezers used for handling the thin film and the scaffold were sterilized in an autoclave.

Matrigel (BD Biosciences) was thawed in 4°C fridge overnight prior to the day of cell patterning. On the day of patterning, HUVECs or HASMCs in tissue culture flask were detached with 2 mL of 0.25% trypsin for 4 minutes at 37°C. The trypsinization reaction was stopped by adding 5 mL of the corresponding culture media and subsequently centrifuged at 2200 RPM for 5 minutes at 4°C. The supernatant was discarded and the cell pellet was suspended in a cold 50% v/v media/Matrigel solution at a density of 1 x 10^8 cells/mL. The cell suspension was pipetted rapidly to uniformly disperse the cell pellet and kept ice until use. A mixed population of HUVECs and HASMCs was prepared by pipetting equal volumes of cell suspension from each individual cell suspension and mixed thoroughly with a pipette.

Sterilized PLGA or collagen thin film was placed within the receiving base of the bottom part of the post-stamping system. 3 µL cell suspension of interest were deposited onto the posts by pipetting manually to achieve the desired cellular arrangement. Cell suspension was mixed by pipetting every 5 transfers to ensure an even amount of cells deposited on each post. When all posts were loaded with cell suspensions, the posts were inverted and put in contact with the thin film. Four nuts were threaded on the screws to prevent any vertical movement. The top part was lifted slowly after 1 minute of contact and inspected for cell suspension residues. The thin film was removed carefully from the well with sterile tweezers and folded following the creased lines into
the 3D Miura-geometry. The folded construct was clamped with a pair of Teflon tape wrapped magnetic rings to prevent the construct from unfolding and placed in a 12 well plate at 4°C. After completing all folded constructs, the 12-well plate was incubated in a water-jacketed 5% CO₂ incubator at 37°C for 10 minutes without media to polymerize the Matrigel and encapsulate the patterned cells at their stamping locations. Subsequently, 3 mL of 37°C media corresponding to the patterned cell populations was added to each well to fully immerse the construct. Due to the weight of the magnetic rings, the cell-bearing construct stayed immersed within the media. The constructs were cultured until ready for in vivo implantation or in vitro assay.

3.5.7 Immunohistochemistry

3.5.7.1 Cell Membrane Labeling

To label cell of interest with DiI or DiO membrane dye prior to stamping, cells were suspended at 1 x 10⁶ cells/mL in serum-free culture media (EBM-2 for EC or SmBM basal medium for VSMC, Lonza, Walkersville, MD). 5 µL of cell-labeling solution (Vybrant Multicolor Cell-Labeling Kit, Invitrogen) per mL of cell suspension was added to the cell suspension and mixed by gently pipetting. The cell suspensions was then incubated in the water-jacketed 5% CO₂ incubator at 37°C for 20 minutes followed by centrifuge at 1500 RPM for 5 minutes at room temperature. The supernatant was carefully removed and the cells were then re-suspended at 1 x 10⁶ cells/mL in their corresponding media at 37°C. The cells were washed three times by centrifuging at 1500 RPM for 5 minutes followed by removing the supernatant. The cell suspension was then stored on ice bath until ready to use.
3.5.7.2 Immunochemistry Paraffin Staining on Sectioned Slides

Paraffin-embedded sectioned slice of explanted scaffold were stained for ECs and VSMCs. The 5 µL sectioned slices were deparaffinized by sequentially immersed in xylene (Sigma, St. Louis, MO, xylene, ethanol, ethanol, 95% ethanol, 95% ethanol, 70% ethanol, 50% ethanol, DiH₂O, DiH₂O, and Tris-buffered saline (TBS, Cellgro, Radnor, PA) for 2 minutes each. Prior to antibody staining, antigen retrieval is performed by immersing the deparaffinized slides in Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, 0.05% Tween 20 adjusted to pH 9.0) at 95°C for 30 minutes. After allowing the slides to cool down to room temperature, the slides were blocked with 5% goat serum in TBS for 1 hour at room temperature followed by incubation with a rabbit anti-human caldesmon primary antibody (ab45691, 1:100 dilution, Abcam, Cambridge, MA) in 5% goat serum overnight at 4°C. On the following day, the slides were washed for three times in TBS for 5 minutes each and stained with a goat anti-rabbit Texas Red secondary antibody (ab6719, 1:100 dilutions, Abcam, Cambridge, MA) in 5% goat serum for 40 minutes at room temperature. After washing the slides for three times in TBS for 5 minutes each, the slides were blocked with 5% donkey serum in TBS for 1 hour and subsequently incubated overnight with a sheep anti-human CD31 primary antibody (af806, 1:30 dilutions, R&D Systems, Minneapolis, MN) at 4°C in 5% donkey serum. The slides were washed for three times in TBS for 5 minutes each at room temperature on the following day and stained with a donkey anti-sheep FITC secondary antibody (ab97124, 1:100 dilutions, Abcam, Cambridge, MA) in 5% donkey serum for 40 minutes at room temperature. Finally, the slides were rinsed for three times in TBS for 5 minutes each and
mounted on glass slides using Prolong Gold antifade reagent with DAPI (Invitrogen) and stored in -20°C freezer until confocal imaging. All incubations steps were carried out in a humidified chamber to prevent slide from drying out.

3.5.8 Scanning Electron Microscopy

Field emission scanning electron microscopy (FESEM, Zeiss Ultra 55, Thornwood, NY) images of the PLGA and collagen thin films were taken to visualize the porous structure within the film. Prior to SEM, PLGA or collagen samples near the center of the film was cut out and coated with Pt/Pd for 90 seconds at 40 mA with a sputter coater (208HR, Cressington Scientific Instruments, UK). Samples were imaged using SEM at a beam voltage of 5 kV.

3.5.9 Confocal Microscopy

3.5.9.1 Z-stack Imaging of Whole-mount Folded Construct

Patterned cells labeled with DiI and DiO in folded Miura-geometry construct were fixed in 4% paraformaldehyde for 15 minutes and stained in situ with DAPI nucleus stain for 5 minutes at room temperature. The construct was washed in PBS for three times at 5 minutes each and placed in a glass bottom Petri dish (MatTek Corporation, Ashland, MA) with PBS. Prior to Z-stack confocal imaging, the construct was weighed down with a 22 mm coverslip on top of the construct to prevent any accidental movement and to ensure a good contact with the bottom glass. 20 z-stack slices spanning 140 µm were scanned sequentially (Carl Zeiss LSM 510 inverted confocal microscope, Thornwood, NY) with a C-Apochromat 40x/1.2 W lens at 1x zoom and laser wavelengths at 405, 484
and 549 nm for DAPI, DiO and DiI staining, respectively. 3D renderings of cell
distribution were reconstructed using the Zen 2011 software.

3.5.9.2 Grid Imaging of Sectioned Slide from in vivo Explants

36 fields of view consisted of 6 rows labeled 1 to 6 and 6 columns labeled A to F were imaged systemically for each deparaffinized stained slide using the grid-imaging tool in Zen 2011 image acquisition software (Carl Zeiss LSM 510 inverted confocal microscope, Thornwood, NY). For each sectioned construct, the four corners representing the maximum and minimum coordinates in the x- and y-axis were set as the four corner images for the grid (1A, 1F, 6A and 6F). DAPI, FITC and Texas Red stains were sequentially excited with 405 nm, 488 nm and 633 nm lasers respectively and imaged for each grid (Carl Zeiss LSM 510 inverted confocal microscope, Thornwood, NY).

3.5.10 Cell Viability and Metabolic Assays

The viability of cells encapsulated in polymerized Matrigel (BD Biosciences) in folded PLGA construct was examined by a Live/Dead (viability/cytotoxicity) assay for mammalian cells (Molecular Probes, Eugene, OR). Two hours after initial seeding, folded construct was washed gently with Dulbecco's phosphate-buffered saline (D-PBS, Invitrogen) and incubated with 2 µM calcein-AM and 4 µM ethidium homodimer-1 (Molecular Probes, Eugene, OR) for 45 minutes at room temperature before imaged with a Zeiss Axiovert 200 M fluorescence microscope (Carl Zeiss Micro-Imaging, Thornwood, NY) with GFP and Texas Red channels.
To quantitatively assess the metabolic activities of seeded cells in folded or bulk PLGA construct after an extended period of culture, alamarBlue cell viability assay (Invitrogen) was used. After 3 days of culture in a 12-well plate with media change every day, folded or bulk construct was washed gently with D-PBS and then replenished with 2 mL of fresh culture media. Prior to adding alamarBlue solution, the constructs were cut into small pieces with sterile surgical scissors within the well to increase the surface area to volume ratio. After 200 µL of alamarBlue solution was added to each well, the plate was gently swirled until the alamarBlue solution became uniformly mixed with the media. The plate was then incubated for 1 hour in a water-jacketed 5% CO₂ incubator. After gently pipetting each well up and down a few times to mix the solution, three 100 µL solution of each condition were added to a 96-well plate and its fluorescence was read using a fluorescence excitation wavelength of 570 nm and emission wavelength of 585 nm (Gemini XPS fluorescence microplate reader, Molecular Devices, Sunnyvale, CA). We used an acellular PLGA scaffold as negative control and subtracted its fluorescent readings as background from other conditions.

3.5.11 in vivo Mouse Implantation of Scaffold and Harvest

All animal experiment was approved by the Standing Committee on the Use of Animal in Research and Teaching at the Faculty of Arts and Sciences at Harvard University. Male C.B.-17 SCID/beige mice between 5-8 weeks (Taconic Farms, Germantown, NY) were anesthetized by 2% isofluorane in 98% O₂ via inhalation using a nose cone on a water-heated surgical platform. After shaving the dorsal trunk and preparing the skin for surgery, one 1 cm incision pocket was made on each side of the
dorsum and a subcutaneous pocket was created for scaffold implantation. Each mouse received a combination of a bulk and a Miura-folded scaffold or two pairs of Miura-folded scaffold of different seeding configurations. Incisions was sutured (3-4 sutures per incision) with polypropylene monofilament suture (PROLENE, Ethicon, Somerville, NJ). Subcutaneous injections of buprenorphine (American Regent Inc., Shirley, NY) were given to all mice every 12 hours for 72 hours as analgesia. Up to 4 mice was placed in an individual cage until harvest two weeks later from the initial surgery date.

On day 14 since initial surgery, the mice were euthanized and incisions were made with surgical scissors around the subcutaneous pockets to harvest the implanted construct. Roughly a 1 cm² skin section was removed and fixed in 4% paraformaldehyde overnight. On the following day, the fixed tissues were transferred to 70% ethanol solution and shipped to Mass Histology Service (Worcester, MA) for paraffin embedding and sectioning.

3.5.12 Vessel Density Calculation

Blood vessels in confocal images were identified by anti-human CD31 and anti-human Caldesmon immunofluorescent staining. For each sectioned slice of the explanted construct, the number of human Caldesmon positive blood vessels was manually counted from the 36 field of views designated from 1A to 6F. The total blood vessel number were averaged with the two other constructs and divided by the total area of the field of view to obtain the vessel density. All results were compared using ANOVA on rank tests, with pairwise comparison performed using the Tukey’s test.
Vascular tissue functions are fundamentally linked to its structural organization across multiple spatial scales. At the tissue level, endothelial cells line the inner most layer of the blood vessel to protect the VSM from blood shearing force while VSM wraps around the ECs in helices in order to withstand the expansion force both longitudinally and laterally. At the cellular level, VSMCs assume an elongated spindle-shape and connect with either other cells or the ECM in order to efficiently propagate mechanical forces along the blood vessel wall. At the subcellular level, cytoskeletal architecture can influence a wide array of VSM functions including proliferation, migration and contraction. When this elegant structure-function relationship in vascular tissue is disrupted in pathological conditions, maladaptive remodeling in the tissue structure can lead to diseased functional outcomes in vitro. While it is difficult to pinpoint the exact cause that initiated the structure remodeling in vitro due to the complex native signal and tissue interactions, a highly controllable artificial cellular microenvironment can be engineered in vitro to regulate the tissue structure and in turn, tissue functions. With the integration of increasingly precise microfabrication technologies in tissue engineering, an engineering algorithm based on designing and building vascular architecture to achieve desired functional outcomes has emerged. For example, our group has previously applied this algorithm in a proof-of-concept study and successfully reverse engineered a Aurelia aurita jellyfish in a biohybrid life form consisted of synthetic polymer thin film and spatially engineered rat cardiac tissue [233]. With this dissertation, we developed in vitro models to understand how cellular shape of VSMC as a structural input can affect its contractile strength and cytoskeletal arrangement and how engineered spatial
organizations of ECs and SMCs in a three-dimensional polymer matrices can affect vascularization.

4.1 The Effect of Vascular Smooth Muscle Cell Shape on Cytoskeletal Architecture and Contractile Strength

Although structure and function are closely coupled in the vascular tissues as described above, their relationship can vary depending on the location in which they were found. For example, it has been observed that VSMC shape and function are uniquely defined by the locations in the cardiovascular system. In large diameter elastic arteries, exemplified by the aorta, VSMC has a length to width aspect ratio of about 10:1. However, in mid-sized muscular arteries, such as the external carotid artery of the neck and femoral artery of the thighs, the VSMC AR increased to 15:1. Functionally, VSMC in elastic arteries contract to maintain vessel pressure during the cardiac cycle whereas VSMC in muscular arteries regulate blood flow and pressure by constricting or relaxing the vessel wall. While it has been speculated that the elongated cellular shape for VSMC in elastic arteries may provide better dynamic response to blood pressure and pressure changes, its primary function, there is no definitive evidence to support this structure-function relationship.

In chapter 2, we investigated the how the contractile strength and cytoskeletal architecture of VSMC changes as a function of its cellular shape. We developed an in vitro model by engineering human VSMCs to take on the same shapes as those seen in elastic and muscular arteries and measured their contraction during stimulation with endothelin-1. We measured the actin alignment and nuclear eccentricity of engineered
VSMCs and found that they increased as the shape of the cell elongated. Using traction force microscopy, we measured the contractile strength of individual VSMCs and found VSMCs with elongated shapes exhibited lower contractile strength but greater percentage increase in contraction after endothelin-1 stimulation. We analysed the relationship between smooth muscle contractility and subcellular architecture and found that changes in contractility were correlated with actin alignment and nuclear shape. These results suggest that elongated VSMC shape facilitate muscular artery tone modulation by increasing its dynamic contractile range, suggesting that where the vasculature requires a higher fidelity in its modulation of blood flow, longer, thinner cells are functionally advantageous.

This study highlighted the advantage of the design, build and test engineering algorithm for in vitro systems where we can precisely design the cellular microenvironment, build the cell or tissue of interest and test exactly how an independent input, the cell shape, can affect a dependent output, the contractile strength. In addition, this result here is particularly relevant for the tissue engineering of small-diameter vessel graft where functional mismatch between host and graft has been a major challenge in the past two decades. Our findings suggest that in addition to mimicking the biomechanical aspect of the healthy artery, providing guidance cues to engineer the VSMCs into the desired shape may improve the functionality and long-term patency of vascular graft.

4.2 Engineering Vascularized Network in Folded, Porous Polymer Matrices by Tissue Origami
At the tissue level, design considerations for engineering vascular tissues broaden to include the spatial interaction and assembly between multiple cell types. However, these factors are often neglected in conventional tissue design dogma where multiple cell types are simply mixed and directly placed on the supporting polymer matrices, without controlling for their three-dimensional structural organization. As a result, the engineered tissue construct often has little organization to its architecture. In contrast, tissues in vitro consist of hierarchical smaller repeating unit on the scale of hundreds of microns that interacts with neighboring cells and performance specific functions. This difference in microarchitecture leads to suboptimal functions for tissue engineered construct and hindered the advancement of this field in achieving clinically relevant organ replacement products.

In chapter 3, we developed a novel 3-dimensional cell patterning method based on folding of polymer thin film to spatially organize cellular interactions. We fabricated porous, foldable thin films from synthetic (PLGA) and natural (collagen) polymers and laser-etched perforated lines in them to facilitate the folding process. We built a simple acrylic stamping system that utilizes small posts to deposit liquid cell suspensions at user-defined locations on the 2-dimensional thin film. The 3-dimensional tissue construct with spatially defined cellular interactions was obtained by folding the cell-patterned thin film into a Miura-ori geometry and cultured. We evaluated the viability of cells in folded construct and found they remain alive after 72 hours. We applied this method in a proof-of-concept study to build a vascularized tissue with different EC and VSMC spatial configurations in a subcutaneous immunodeficient mouse in vitro model. We found that folded scaffold with EC and SMC patterned laterally on the same plane produced a
significantly higher number of vessels compared to folded configuration where EC and
SMC were seeded in a homogeneous mixture.

Prior to the development of this method, organization of spatial cellular
interactions in 3-dimensional synthetic and natural polymer scaffold remains a challenge.
The fact that this method is compatible with both synthetic and natural polymers makes it
widely applicable to many fields of tissue engineering in which these types of polymers
were frequently used as scaffolding materials for cells. In addition, with the field of tissue
engineering moving towards co-culture of multiple cell types, the ability to spatially
organize their interactions in 3-dimensional scaffold can be a valuable tool. With our
proof-of-concept study in building vascularized tissue with patterned ECs and SMCs, our
findings suggested that increasing spatially organized interactions between ECs and
SMCs may lead to a more efficient vascularization in a porous synthetic scaffold than
simply mixing the two cell types homogeneously. This is particularly relevant for
engineering thicker or more metabolically demanding tissue replacement where more
efficient vascularization may improve overall tissue survival and function.

4.3 Limitations and Future Directions

With this dissertation, we elucidated how structure cues such as cell shape and
spatial interactions between multiple cell types can affect the functions of cells and
tissues. One of the drawbacks for our study in chapter 2 is the use of isolated VSMCs,
which lacks physiological relevance compared to confluent VSMC tissue in vitro. In a
previous study where we investigated the contractility of patterned VSM tissue, the
cellular shapes assume a range of length to width ratios in VSM tissues. Therefore, there
is a tradeoff between *in vitro* relevancy and the precision in control over the microenvironment. A possible solution to this challenge may be to grow VSMCs on close-packed micropatterned ECM protein islands such that individual VSMC shapes can be controlled while allowing neighboring VSMCs to communicate with each other. This may lead to more physiologically relevant *in vitro* VSM tissue model and bring us closer to achieving an engineered functional VSM tissue.

One limitation of our 3D cell patterning strategy in chapter 3 is the need for Matrigel for seeding the cells on the polymer thin films. The Matrigel encapsulates the patterned cells on the thin film when polymerized, allowing us to control the spatial cell distribution in 3D. Since Matrigel is a protein mixture secreted by the Engelbreth-Holm-Swarm mouse sarcoma cells, it may contain growth factors or cytokines that signals non-physiological behavior on human cells. This poses significant concern for using this strategy in a clinical setting. Therefore, future studies should test for replacement hydrogel material that allows cell encapsulation, yet do not contain the mixture of cytokines.

4.4 Dissertation Summary

Collectively, the work in this dissertation provided new insights into the effect of cell shape and tissue spatial organizations on the functions of engineered vascular tissues. In chapter 1, we first presented an engineering algorithm that is broadly applicable for building biological tissues. We used vascular smooth muscle tissue as an example and elucidated how we can engineer a functional VSM *in vitro* by designing the cellular architecture with mechanotransductive cytoskeletal proteins, building it with
engineered mechanical cues in the cellular microenvironment, and finally testing the performance of the engineered cells with a functional metrics. We applied this engineering algorithm in chapter 2 by designing and building human vascular smooth muscle cells to take on the same shapes as those seen in elastic and muscular arteries in vitro and subsequently measuring their contraction during stimulation with endothelin-1 with traction force microscopy as a function of cellular shape. We found the actin alignment and nuclear eccentricity of engineered VSMCs increased as the shape of the cell elongated. We found VSMCs with elongated shapes exhibited lower contractile strength but greater percentage increase in contraction after endothelin-1 stimulation, suggesting elongated VSMC shape enables muscular artery to have greater dynamic contractile range. In chapter 3, we developed a 3-dimensional cellular patterning strategy based on folding of polymer thin films and measured the effect of spatial interactions between ECs and SMCs in forming a vascularized network in folded, porous polymer matrices. We folded PLGA and collagen thin films along laser-etched perforated lines and patterned the thin films by stamping cell suspensions on them with a post-stamping system. We evaluated the cell survival in folded construct and found cells were viable after 72 hours post stamping. We used an subcutaneous implantation mouse model to evaluate vascularization efficiency and found that three-dimensional organization that patterned human ECs and SMCs within the same folding facet had significantly higher density of human caldesmon positive blood vessels than folded construct patterned with a homogenously mixed populations of ECs and SMCs, suggesting that increasing spatially organized interactions between EC and SMC may lead to more densely vascularized tissues.
In summary, this dissertation enhanced our understanding for the design and assembly of engineered vascular tissues. We learned that structure and functions are closely coupled in vascular systems across multiple spatial scales and as bioengineers, we can harness this structure-function relationship by engineering cellular and tissue microenvironment to build specific cellular and tissue architecture that give rises to desired functions in vitro.

4.5 Funding Sources

This work was supported by the Defence Advanced Research Projects Agency cooperative agreement (W911NF-12-2-0036 for K.K.P.), the School of Engineering and Applied Sciences, Harvard University, the Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarships-Doctoral (NSERC PGS-D), Materials Research Science and Engineering Centers (MRSEC). The author gratefully acknowledges the use of facilities at the Harvard Center for Nanoscale Systems and the Wyss Institute for Biologically Inspired Engineering.
5 Bibliography

6 Appendices

6.1 Appendix A: List of Publications

1. Ye GJC, Aratyn-Schaus Y, Nesmith, AP, Pasqualini FS, Alford PW, Parker KK.

 The contractile strength of vascular smooth muscle myocytes is shape
dependent. *Integrative Biology*. DOI: 10.1039/C3IB40230D
function DBG_force_calculation(pathname)

cd(pathname);

imgfile = ('Full_stack_aligned.tif');
tif_info = imfinfo(imgfile);
tif_size = size(tif_info,1);

file_name = ['Full_stack_aligned_ROI_1_1_512_512_1_' num2str(tif_size) '_Mat.mat'];
load (file_name);
load ('ROI_1_1_512_512_Cell_boundary.mat');
frame_count = length(TFM_results);

I = imread('Cell.tif');
c = xruby;
r = yrub;
BW = roipoly(I,c,r);
scaled_mask=imresize(BW,1/16,'nearest');
sum_force = zeros(10,2);

for frame_number = 1:frame_count

 %for the first frame, get the principle and normal axis of the cell
if frame_number == 1

figure, imshow('Cell.tif');

h = imline;

position = wait(h);

principle_axis = [position(2,1)-position(1,1), position(2,2)-position(1,2)];

% get unit vector

principle_axis = principle_axis / norm(principle_axis);

normal_axis = [-(position(2,2)-position(1,2)), position(2,1)-position(1,1)];

normal_axis = norm(normal_axis) / norm(normal_axis);

close all

end

% getting the principle axis traction force

tract_parallel = zeros(length(TFM_results(1,1).traction(:,:)),1);

for i = 1:length(TFM_results(1,frame_number).traction(:,:))

 tract_parallel(i) = abs(dot(principle_axis,TFM_results(1,frame_number).traction(i,:)));

end

% convert to a 32 x 32 grid

tract_parallel_array = zeros(32);

count = 1;
for i = 1:32
 for k = 1:32
 tract_parallel_array(k,i) = tract_parallel(count);
 count=count+1;
 end
end

tract_parallel_array_mask = tract_parallel_array.*scaled_mask;
sum_force_principle = sum(sum(tract_parallel_array_mask));

% getting the perpendicular axis traction force
tract_perpendicular = zeros(length(TFM_results(1,1).traction(:,:)),1);
for i = 1:length(TFM_results(1,frame_number).traction(:,1))
 tract_perpendicular(i) = abs(dot(normal_axis,TFM_results(1,frame_number).traction(:,i)));
end

% convert to a 32 x 32 grid
tract_perpendicular_array = zeros(32);
count = 1;
for i = 1:32
 for k = 1:32
 tract_perpendicular_array(k,i) = tract_perpendicular(count);
 end
end
count=count+1;
end
end

tract_perpendicular_array_mask = tract_perpendicular_array.*scaled_mask;
sum_force_perpendicular = sum(sum(tract_perpendicular_array_mask));

%convert from Pa to uN by multiplying 100um^2 lattice area and then divide by 2 since two ends
sum_force(frame_number,:) = [sum_force_principle
sum_force_perpendicular]/10000/2;
end
%save the file
[nrows,ncols]= size(sum_force);
filename = 'sum_force.txt';
fid = fopen(filename, 'w');
for row=1:nrows
 fprintf(fid, '%6.4f %6.4f
', sum_force(row,:));
end
fclose(fid);
load sum_force.txt;
xlswrite('sum_force.xls', sum_force);
function [initial, ET_1, HA, ref] = DBG_calculate_average_X(pathname)

cd(pathname);

imgfile = ('Full_stack_aligned.tif');
tif_info = imfinfo(imgfile);
tif_size = size(tif_info,1);

num = xlsread('sum_force.xls');

if (tif_size < 11)
 initial = 0;
 ET_1 = 0;
 HA = 0;
 ref = 0;
else
 initial = mean(num(1:3,1));
 ET_1 = mean(num(4:6,1));
 HA = mean(num(7:9,1));
 ref = num(10,1);
end
end

function [initial, ET_1, HA, ref] = DBG_calculate_average_Y(pathname)
cd(pathname);

imgfile = ('Full_stack_aligned.tif');
tif_info = imfinfo(imgfile);
tif_size = size(tif_info,1);

num = xlsread('sum_force.xls');

if (tif_size < 11)
 initial = 0;
 ET_1 = 0;
 HA = 0;
 ref = 0;
else
 initial = mean(num(1:3,2));
 ET_1 = mean(num(4:6,2));
 HA = mean(num(7:9,2));
 ref = num(10,2);
end
end