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Abstract 

 

Long non-coding RNAs (lncRNAs) are increasingly recognized as important regulators of 

genomic processes and cellular specification.  Many lncRNAs regulate chromatin by functionally 

impacting the epigenetic state through direct interactions with chromatin-modifying proteins. We 

developed a protocol to enrich for chromatin-lncRNA interactions and used this technique to 

identify several candidate lncRNAs that interact with the Polycomb group (PcG) proteins.  Our 

immunoprecipitation protocol uses a crosslinked chromatin fraction as the input and employs 

stringent washes and cross-validation techniques to dramatically decrease mRNA signal (as a 

metric of transient interactions or false positives), and increase the dynamic range of conventional 

RNA immunoprecipitation protocols. Applying this protocol to the PRC1 component Bmi1, we have 

identified 11 PcG-interacting lncRNA candidates whose expression impacts the transcription of 

many other chromatin factors and PcG targets.  We focus on knockdown of one lncRNA 

candidate, CAT7, which increases expression of several homeobox-containing transcription factors 

as well as chromatin interacting proteins, including Trithorax group proteins, Jumanji-domain 

containing proteins, and PcG-like proteins in HeLa cells.  Consistent with the observed increase in 

gene expression, knockdown of CAT7 decreases PcG binding (Suz12, H3K27me3 and Bmi1) at 

the promoter of the homeodomain protein Mnx1, located at the boundary of an adjacent gene 

desert.  During early motor neuron differentiation from embryonic stem cells, knockdown of CAT7 

is accompanied by changes in expression of master regulators of neuronal specification: increased 

upregulation Mnx1, upregulation of Isl1, and downregulation of Irx3, as well as changes in 
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expression to several other PcG-regulated targets.  Overall, this protocol is the first of its kind to 

efficiently identify de novo interactions between the PcG proteins and lncRNAs which impact PcG 

binding or PcG target gene expression.
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INTRODUCTION 
Polycomb-Group Proteins and Long Non-Coding RNAs Contribute to Epigenetic 
Control of Transcription and Cellular Identity  

1



Cellular specification is an intricate process that involves many layers of genomic regulation. 

Transcription, as the direct output of the genome, is the foundation for establishing cellular 

identity.  The contribution of transcription to cellular identity is evidenced by the diverse spectrum 

of RNAs present in any given cell type 1-3, including transcripts originating from both protein-

coding and non-coding regions of the genome.   However, transcriptional diversity cannot arise 

from the DNA sequence alone, since, from fertilization onwards, nearly every cell in the body 

contains essentially the same DNA.  Regulation of when, where, and how much of a gene is 

transcribed must then, in part, be “epigenetic”: independent of DNA sequence, easily modified, 

and heritable through cell division.  Here, I review protein-based modes of epigenetic inheritance 

and also explore the role of non-protein coding transcripts in directing these processes. 

 

Epigenetics 

While genetic information is a means to retain information from our parents, epigenetic control 

allows the body to alter its usage of that information in response to the environment.  In this way, 

environmental cues (such as diet, development or disease) can leave a molecular impression to 

impact gene expression, even after the environment has changed. 

Epigenetic control of transcription involves several layers of regulation.  As one means of 

epigenetic control, the genome is organized into repeated units of DNA spooled around a core 

set of proteins called the histone proteins.  The regular inclusion of histone proteins throughout the 

DNA provides a ubiquitous platform for an additional layer of genomic regulation. The placement 

of histones on the DNA, the higher order organization of the histones in the nucleus, and physical 

modification of the histones or the DNA itself, can epigenetically influence gene expression. 
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Histones are present in eukaryotes and Achaea, and are the most highly conserved of all proteins.   

The vertebrate somatic histones (H2A, H2B, H3, and H4, or their variants) form heterodimers that 

together compose an octameric core, around which a nearly equivalent mass of DNA (146 

basepairs) is wrapped; this structure is called the nucleosome.  Small stretches of linker DNA 

between nucleosomes are associated with the histone protein H1 in some silenced regions of the 

DNA.  The nucleosome is itself the fundamental repeated unit of a more highly ordered structure, 

chromatin, which also includes tethered proteins and RNAs.  Finally, chromatin is further arranged 

in the 3D space of the nucleus, having a highly regulated, but still fluid conformation.  In effect, 

organizing the genome into chromatin not only provides a platform for regulation, but protects the 

DNA from damage and condenses it to fit in the nucleus.   

Chromatin organization also influences molecular processes, such as transcriptional initiation and 

elongation 4-6, which require direct interaction of protein complexes with the DNA.  Specifically, 

binding of the transcription factor TBP to the DNA upstream of the transcription start site (TSS) is 

required for transcriptional initiation by RNA Polymerase II.  Nucleosomal depletion at the TSS, 

which is a hallmark of active eukaryotic genes, permits direct access of TBP to the DNA so that the 

pre-initiation complex may assemble 7-9.  Conversely, the presence of a nucleosome occluding the 

TSS is often a feature of silenced genes 10,11. For example, studies in mouse tissue report that a 

wide array of liver-specific genes, such as Cytochrome P450 and Murinoglobin1, display “on” 

(depleted TSS) or “off” (occluded TSS) modes of nucleosomal occupancy in matched liver and 

brain samples, respectively12.  Similarly to the TSS, other regulatory regions that are bound by 

transcription factors may also differ in nucleosomal occupancy to influence tissue specific “on” 

versus “off” states 13.  Such loci may include sites adjacent to the TSS, called promoters, or distal 

sites, called enhancers.  During hematopoiesis, the collinearly regulated globin genes display 

3



coordinated changes in nucleosomal occupancy at both individual promoters and at a shared 

enhancer site14,15. 

The rate of proper transcriptional elongation can also be influenced by “remodeling” the 

nucleosomes: sliding a nucleosome along the DNA, sterically altering the DNA/histone interactions, 

or subjecting the nucleosome to histone replacement or ejection 6,8.   In vitro transcription of 

nucleosomal arrays reveals that the presence of a nucleosome greatly slows the rate of 

transcription, as compared to naked DNA 16.  During elongation of highly transcribed genes, such 

as Hsp70 in heat shock response, entire histone octamers may be rapidly ejected from the gene 

body to facilitate immediate access of the large (1 MegaDalton) RNA polymerase to the DNA 17. 

However, only one histone pair (H2A/H2B) is ejected during elongation of moderately 

transcribed genes.  This topologically limits the rate of elongation because the polymerase must 

travel along the DNA that is partially constrained by the remaining histones18-20.  Inclusion of 

specific histone variants, such as H3.3 in the gene body or H2A.Z at the -1 nucleosome, is also 

correlated with active transcription 21. 

Many remodeling events, such as those as above, require breaking hundreds of points of contact 

between the DNA and the histones, and overcoming biases for nucleosome positioning which may 

be driven by DNA sequence 22.  These processes may be carried out in an ATP-dependent 

manner, as an active means of transcriptional regulation 8,9,23.  Mutations in ATP-dependent 

chromatin remodelers display an expansive range of effects, such as global misregulation of 

splicing 24, or widespread developmental effects, as in CHARGE syndrome 25. 

Physical epigenetic marks on the chromatin comprise another form of epigenetic regulation.  Such 

marks consist of either methylation of the DNA itself at CG dinucleotides (“CpG”) or covalent 

post-translational modifications, including methylation or acetylation (among others), of the N-

terminal tails of histones26.  Histone N-termini are structurally disordered and protrude from the 
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core of the nucleosome, allowing access to enzymes or transcription factors that can modify or 

recognize specific histone residues.  These modifications alter the sterics of DNA/histone 

interactions, the stacking or compaction of nucleosomes, and the binding of non-histone proteins to 

the chromatin 6.  Consequently, histone marks are correlated with and, in some instances, are 

necessary for, altered levels of gene expression 27-29.  

Histone marks, as well as the incorporation of histone variants, are believed to have combinatorial 

effects on both small regions of the genome, such as promoters, as well as large “domains” of 

chromatin. One broadly defined domain, heterochromatin, was first described as the regions of 

the nucleus that exhibited intense staining by the intercalating dye DAPI.  Heterochromatin 

corresponds to transcriptionally silenced, gene-poor regions of DNA, in contrast to its gene-rich, 

transcriptionally active counterpart, euchromatin.  On the molecular level, heterochromatin is 

characterized by highly compacted nucleosomes, and the presence of the H3K9me3 mark of 

silencing, the transcription factor HP1 and the linker histone H1 30.  Euchromatin is generally less 

compacted, though not all parts of euchromatin are actively transcribed, and not all 

heterochromatin is strictly silent. 

Chromatin may also be classified into domains in both a functional manner: displaying 

interdependent levels of gene expression, and/or a physical manner: co-localizing in 3D 

space31,32.  Such domains may be comprised of segments of DNA that are not necessarily 

contiguous. While the precise mechanisms for establishing or maintaining chromatin structure are 

not well understood, these processes are largely modulated by DNA sequence, transcription 

factor binding, and chromatin remodeling. 

The organization of chromatin into physical domains is a pervasive mechanism for transcriptional 

regulation.  Domains of “active” or “silenced” chromatin can extend in physical space to impact 

expression of seemingly unrelated, but proximal genes.  In flies, an inverted translocation of the X 
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chromosome causes the pigment gene white to be adjacent to heterochromatin. The result is a 

variegated change in eye color in males: though genetically identical, only a portion of the mutant 

cells show a null (colorless) phenotype, caused by variable spreading of heterochromatin to 

silence the white gene 33,34. This quintessential example highlights the profound influence of 

nuclear architecture and epigenetic boundaries on gene expression. 

Similarly, in wild-type cells, broad euchromatic domains are further subdivided and modularly 

regulated.  For example, a group of developmental proteins called the HOX genes are 

organized co-linearly on the chromosome.  Spatially and temporally coordinated expression (or 

silencing) of HOX genes is essential for proper body patterning during development.  The active 

and silenced domains are often segregated from each other by insulator proteins, such as the 

architectural, sequence-specific DNA binding protein, CTCF.  Upon perturbation of the binding site 

for CTCF between active HOX genes and a silenced enhancer, the organism can no longer silence 

the enhancer region, leading to aberrant expression of HOX genes and developmental defects 

35. This example shows the relevance of chromatin organization and boundaries to gene 

expression. 

An important aspect of epigenetic inheritance is stability through cell division.  For a cell to divide, 

the DNA must be replicated and then split evenly into each daughter cell.  During DNA 

replication, chromatin is dismantled, and most proteins (including histones) and RNAs are stripped 

from the DNA to allow access to the replication machinery 36.  Upon completion of replication and 

subsequent cell division, each cell must re-establish its former nuclear architecture to maintain 

cellular identity.  Rather than initiating this process de novo with respect to each cell type, the cell 

employs a mechanism to “remember” the former epigenetic state.  While this process is poorly 

understood, it is known that a small portion of certain transcription factors remain bound to the 

DNA, demarcating the epigenetic features and boundaries which underlie a cell’s identity37,38.  
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The process of establishing chromatin architecture from such boundaries is also unknown, but is 

influenced by spreading of genomic features within the retained boundaries and preservation of 

DNA methylation on the parent strand.    

Dividing cells (such as stem cells) have both the ability to self-renew and to develop into 

terminally differentiated cells.  A stem cell not only expresses many different genes compared to 

a terminally differentiated cell, but also differs in its epigenetic signatures and chromatin 

architecture across much of the genome3.  A stem cell may divide and then alter its epigenetic 

state in order to differentiate, or it may maintain its epigenetic state to remain a stem cell 39.  In 

this way, maintenance of epigenetic marks and chromatin domains is critical to both establishing 

and preserving cellular identity, and is a defining characteristic of epigenetic inheritance.  

While the importance of epigenetic regulation is apparent from its impact on genomic regulation 

and a number of disease states, many aspects of epigenetic regulation remain unknown.  A major 

question is how epigenetic regulators coordinate with each other to execute targeted changes to 

transcription, and how chromatin is regulated in response to various biological stimuli or through 

biological processes, such as differentiation, cell division, and cancer. 

   

The Polycomb Group Proteins 

The Polycomb group (PcG) proteins are a prominent group of transcription-modulating proteins 

important for epigenetic maintenance of gene silencing.  Polycomb was first defined as a 

dominant genetic mutation in flies causing aberrant expression of the gene Scr, resulting in the 

formation of extra pairs of sex combs on the second and third legs of male flies40,41. Further 

genetic and biochemical investigation showed that Polycomb, in complexes with a handful of other 

proteins collectively termed the PcG proteins, is critical for proper gene silencing of the axial 
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development proteins, the HOX genes.  Not all trancriptionally inactive genes are silenced by 

PcG proteins; rather, PcG target genes are heavily enriched for developmental regulators42,43.   

Since their initial discovery, PcG proteins and their homologs have been identified throughout 

metazoans, regulating thousands of genomic targets in every cell type and playing critical roles in 

cancer, cell cycle, and most notably in embryonic development.    

In mammals, PcG proteins are critical for regulating cell plasticity by silencing certain 

developmental factors so that others may activate properly.  Remarkably, cells are unable to 

progress from the embryonic stem (ES) cell state without the PcG proteins, and will die upon 

differentiation 44,45. In addition, many multipotent stem cells show accelerated differentiation upon 

PcG depletion 46.  PcG proteins may also play a role in maintaining the state of terminally 

differentiated cells.  Ablation of PcG proteins in adult mouse neurons (via a conditional knockout) 

leads to progressive neurodegeneration, memory loss, and impaired mobility, a phenotype similar 

to Huntington’s Disease 47.  These changes have been previously associated with derepression of 

homeobox-domain containing genes and developmental transcription factors, the characteristic 

targets of PcG proteins.  

Mechanistic studies have shown that PcG proteins maintain transcriptional silencing in an 

epigenetic fashion; they modify chromatin architecture by compaction of polynucleosomes and 

covalent modification of histones. There are at least two major functional core complexes of PcG 

proteins: PRC1 and PRC2, though many subcomplexes are still being identified and functionally 

defined 48.  Broadly, PRC2 has histone-methyltransferase activity, conferring tri-methylation of 

lysine 27 of H3 (H3K27me3) as a mark of silenced euchromatin. PRC1 has a binding preference 

for H3K27me3 nucleosomes 49 and is recruited to many (but not all) of the same sites as PRC2, 

possibly through an independent recruitment mechanism 42,50,51.  H3K27me3 is not necessary for 

all PcG-mediated silencing.  In fact, PRC1 binding is sufficient for compaction of polynucleosomes 

8



in vitro 52,53 , and correlates with gene silencing in vivo.  A specific subcomplex of PRC1, 

potentially exclusive from the compaction complex, also ubiquitinates histone H2A at lysine 11954.  

However, the significance of this mark to silencing in mammals is unknown.    While the core 

proteins of PRC1 and PRC2 are conserved between flies and mammals, notable differences in the 

catalytic activity of each component 52 and in PcG recruitment exist between the two species. 

In both mammals and flies, PcG proteins form “bodies” or large 3D structures composed non-

contiguous regions of the chromatin whose silencing is interdependent55.  While the formation of 

PcG bodies is not well understood, fly PcG bound loci are proposed to scan the nucleus in trans 

for similarly bound sites, creating PcG bodies.  PcG repression in cis is partially explained in flies 

by (non-PcG) transcription factor binding at PcG-target promoter regions.  Briefly, functionally 

defined stretches of DNA, called Polycomb Response Elements (PREs) dock the PcG proteins to 

cause silencing of the adjacent chromatin 56.  Fly PREs are non-uniformly marked by combinations 

of binding motifs of various sequence-specific transcription factors which together recruit PcG 

proteins.  However, in mammals, none of the sequence-specific transcription factors are conserved 

with the exception of Pho/YY1, whose binding is not sufficient to define a PRE.  Though the first 

mammalian PREs have recently been discovered 57,58, pinpointing additional mammalian PREs is 

further obfuscated by the broad regions (relative to regions in flies) of PcG binding and 

H3K27me3.  This difference highlights the possibility of distinct mechanisms between the species in 

recruitment or spreading of PcG proteins.  

Targeting of mammalian PcG complexes remains elusive, and different modes of targeting may 

exist in different biological contexts.  In ES cells, PRC1 and PRC2 complexes bind almost 

exclusively to unmethylated CpG dinucelotides and primarily target developmental 

regulators39,59.  As development progresses, PcG repression is selectively lost at specific 

developmental genes in order to facilitate differentiation of the cell down a defined lineage 
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pathway.  As seen during differentiation of insulin-producing beta cells60, canonical PcG signaling 

may govern the transcriptional state.  An array of classical PcG-regulated, CpG-rich, 

developmental targets become derepressed from the progenitor state, losing H3K27me3 as the 

beta cells mature.  These targets are essential master regulators of both beta cell and neuronal 

differentiation, and strongly influence the transcriptionally circuitry.  In fact, though beta cells and 

neurons originate from different tissues (endoderm versus ectoderm) which diverge at the earliest 

stages of development, the transcriptome of beta cells is more similar to neuronal cells than to 

other endoderm-derived tissues 60.  This process is reflective of the essential role of the PcG 

proteins in development and cellular specification. 

Concurrently, during beta cell differentiation, PRC2 mediated silencing (at least as evidenced by 

H3K27me3 signatures) also occurs de novo at genes which are not canonical PcG targets.  Beta 

cell progenitors express several non-developmental proteins, such as SLC16A1 (insulin 

hypersecretion/monocarboxylic acid transport), that impede differentiation or survival of beta 

cells.  However, these genes are transcriptionally silent and are enriched for H3K27me3 in mature 

beta cells60.  Unlike the canonical PcG targets, these de novo silenced genes are not enriched for 

CpG islands, and are not silenced by H3K27me3/PcG proteins in ES cells, other tissues, or at 

earlier developmental stages.  Together, these data reveal the complex nature of mammalian 

PcG regulation. 

The targeting of PcG proteins at regions transitioning from silent to active (or the reverse) is not 

well understood.  A class of activating proteins called the Trithorax group proteins (TrX) 

functionally antagonize the PcG proteins, binding at many of the same sites, but conferring a 

mark of initiation (H3K4me3) at promoters.  Genes which contain both H3K4me3 and H3K27me3 

at their promoters (e.g. bivalent domains) are considered to be in a transitory chromatin state, 

where they are poised for activation or may already be transcribed.  Importantly, there are 
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several H3K4me3 histone methyl-transferases, but to date, PRC2, and specifically, its core 

component EZH2 (or occasionally, the closely related EZH1), are the only known H3K27me3 

methyltransferases in vivo.   

Several studies have also implicated a class of tudor-domain containing proteins in the transition 

from an active to a PcG-repressed state 61.  These proteins bind specifically to marks of active 

chromatin, such as H3K36me3 or H3K4me3, and form complexes with histone demethylases.  

Removal of such marks may allow the PRC2 proteins to bind and confer the H3K27me3 mark.  

Additionally, binding partners of PRC2, such as the inactive histone demethylase Jarid2, may also 

contribute to its binding specificity 48.  In one model of PcG regulation, PRC2 samples the genome 

to identify nucleosome-dense 62, primed chromatin and/or a lack of mRNA transcription 63,64, 

before stably binding.  PRC1 binding may follow PRC2 binding, though is generally considered a 

form of more stable silencing and might employ independent recruitment mechanisms. 

This model is nevertheless unsatisfying: protein-based mechanisms are often correlative, and 

currently are too broad to explain the complex mechanisms precisely governing PcG activity. 

Historically, proteins, such as the PcG proteins and their binding partners, were considered the 

readers, writers and erasers of epigenetic marks.  However, recent evidence potentiates another, 

rapidly generated, class of epigenetic effectors that may modulate activity of protein complexes: 

namely, RNA molecules which are never translated into protein (ncRNAs).  Specifically, these 

molecules have been shown to interact with PcG proteins in the nucleus, and are proposed to play 

roles in PcG recruitment, spreading, and organization of the chromatin. 
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Long non-coding RNAs 

Non-coding RNAs (ncRNAs) are increasingly recognized as regulators of cellular specification and 

many biological processes.  Their contribution to transcriptional diversity is astounding: while at 

least 80% of the genome is transcribed, less than 2% of the genome is translated into protein 1.  

The significance of the non-coding transcriptome to life is perhaps best exemplified by staggering 

developmental defects or lethality induced by depletion of any one of a multitude of ncRNAs, 

several of which will be reviewed below.  However, identification of functional ncRNAs and the 

mechanisms of how ncRNAs execute their functions in the cell are widely unknown.   

Many ncRNAs function in protein complexes, acting in capacities often ascribed to protein 

components: sequestering proteins from other targets, allosterically regulating protein binding 

domains, targeting proteins to the DNA or mRNA, or acting as scaffolding for protein 

complexes65.  The mechanisms underlying these protein/ncRNA interactions often necessitate strict 

sequence motifs, length, or structural features in the ncRNAs, such as are found in ribosomal RNAs, 

transfer RNAs and short RNAs (siRNAs/piRNAs/miRNAs/snoRNAs /snRNAs). 

Most ncRNA species, however, do not fall into these well-established classes and their function, 

structural motifs, and protein binding partners, if any, are not well defined.  Amidst this ambiguity, 

a very broad classification of long ncRNAs (lncRNAs) has emerged in recent years.  These lncRNAs 

annotations are usually derived from deep transcriptome sequencing data (RNAseq) from a 

variety of tissues or cancers, with a focus on intergenic, intronic or long antisense transcripts with 

low coding potential 2,66,67.  Typically, lncRNAs are over 200 basepairs in length, spliced, 

expressed at lower copy number per cell compared to mRNAs (with some exceptions), and 

frequently display cell-type specific expression.   Lists of putative lncRNAs have also been 

bioinformatically curated based on the genomic features of actively transcribed chromatin at 

protein coding RNAs (mRNAs) and a few known lncRNAs.  These predictions preferentially 
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consider regions of the genome with chromatin marks of initiation and elongation (H3K4me3 and 

H3K36me3 respectively), RNA polymerase II binding, capping and polyadenylation.  

Additionally, some predictions rely heavily on conservation: based on the idea that functional 

lncRNAs will have sequence-based or syntenic conservation, and supported by the observation 

that many lncRNAs are transcribed from pseudogenes 66.  Conversely, other predictions contend 

that because lncRNAs are largely repetitive and do not code for amino acids, they are 

hypoconserved (compared to protein-coding genes) with the exception of small stretches of 

evolutionarily pressured interaction domains 67.  

LncRNAs have been implicated in cancer, development, sex determination and various diseases in 

the body.  Knockout of the canonical lncRNA Xist, is embryonic lethal in female mammals, as 

developing female cells lacking Xist cannot balance expression of RNA from both X-chromosomes 

68.  Similarly, depletion of the lncRNAs Fendrr and Braveheart cause embryonic-lethal defects in 

murine heart formation 69,70, and depletion of HOTTIP 71can induce limb malformations.  In 

zebrafish development, the lncRNAs Cyrano and Megamind lead to widespread developmental 

defects: notochord and Neurod-related defects, and brain/eye malformations, respectively 67.  

Surprisingly, morpholino depletion of Cyrano and Megamind can be partially rescued by ectopic 

expression of the syntenic human transcripts.  The syntenic transcripts are not well conserved with 

respect to sequence, with the exception of small, putative protein binding domains.  A plethora of 

other lncRNAs has also been correlated with cancer prognoses and congenital diseases such as 

Brachydactyly 72, and many lncRNAs show overexpression in specific tissues or diseases in vivo 73.  

However, understanding the mechanisms of these lncRNAs remains technically challenging. 

While lncRNAs have been implicated in countless biological processes, there is almost no 

understanding of which features make a lncRNA biologically relevant 74.  On the contrary, there 

are some cases where lncRNA depletion has no apparent effect on the cell 75.  Rather, the 
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opening of the chromatin through the process of transcription might be necessary for gene 

regulation of certain loci, rather than the transcript itself.  Alternatively, a transcript may simply 

be a byproduct of open chromatin, where spurious promoters become accessible.   Notably, 

spurious, mis-spliced, or abortive transcripts, as well as introns of highly transcribed genes, often 

have very short half lives in the cell 76,77.  This indicates that there might be specific characteristics 

to mark which transcripts are retained.  Furthermore, it is not known if and how lncRNAs avoid 

translation, particularly because a number of lncRNAs were identified because they have similar 

features or genomic signatures as mRNAs (such as polyA tails).  Features such as secondary 

structure, length of the polyA tail (if any) or association with a specific ribosomal protein 78 or 

snRNA 79 may control RNA stability or translational potential, though several of these hypotheses 

remain speculative or disconnected from true causation.  Such inquiries will be difficult to ascertain 

until the lncRNAs are more conclusively annotated and classified. 

Many lncRNAs, such as Xist, HOTTIP, Braveheart or Fenderr, have been shown to execute their 

widespread functions by modulating transcription through direct interactions with chromatin 

proteins.  lncRNAs are involved in a broad scope of chromatin processes, affecting expression of 

both specific loci and entire chromosomes, and organizing the formation of nuclear structures or 

domains.  Xist interacts directly with the X chromosome in female cells, silencing the entire 

chromosome from which it is transcribed.  Xist initially localizes to gene-rich regions on the 

chromatin in a seemingly sequence-independent, proximity-driven manner 80,81.  Namely, it binds 

to gene-rich regions proximal in 3-D space to its transcription site, and spreads to coat and 

silence nearly the entire X-chromosome.  Antisense-blocking of the RepC region of Xist prevents 

Xist from nucleating, and therefore stops spreading of Xist and inactivation of the X chromosome.  

This phenotype is relieved as the blocking-oligo is diluted through cell division.  
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lncRNAs have also evolved to regulate the expression of individual loci by interaction with the 

chromatin 65.  Some genes, such as the imprinted genes, require that only one allele is transcribed.  

However, unlike the X chromosome, which is inactivated at random early in development, the 

expression of the imprinted genes is determined by parental origin: DNA methylation of imprinted 

enhancer elements persists through gametogenesis to control gene expression in the progeny.  

lncRNA transcripts have been isolated from many imprinted genes, including the Kcnq1ot182, 

Gtl283, Airn 84, and h19 32 lncRNAs, and are necessary for silencing of the Kcnq1, Dlk1,  Igf2r, 

and Igf2 loci, respectively.  An exception is h19 which is thought to be transcribed from an 

enhancer region, but whose expression impacts silencing of several distal regions. Generally, 

imprinted lncRNAs colocalize with the chromatin, may or may not be involved in antisense 

regulation, and are necessary for silencing of large (often >100kb), contiguous segments of the 

DNA.   

Another class of lncRNAs is a cis acting antisense-derived lncRNAs.  Two such lncRNAs, ANRIL 85 

and Evf2 86, act as a switch to determine which gene is expressed from a co-regulated locus.  

These lncRNAs may function by recruiting silencing (or activating) factors cotranscriptionally: 

ANRIL balances the expression of InK4A and Arf to regulate cell cycle and senescence, and Evf2 

regulates the homeotic Dlx5/6 locus in neural development.  In both instances, the lncRNAs contain 

sequence that is antisense to the mRNA in the respective loci, but also contain regions necessary to 

recruit chromatin proteins.  In comparison to imprinted loci, antisense regulated genes silence much 

smaller genomic regions, indicating potential differences in recruitment and/or spreading 

mechanisms.   

Establishment of nuclear domains or structures may also be dependent on lncRNAs. Telomeric 

silencing and some instances of heterochromatin formation have been shown to be dependent on 

lncRNAs87,88, as has the formation of nuclear paraspeckles via the highly abundant lncRNA, 
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NEAT189.  Additionally, the HOX-locus encoded transcript HOTTIP influences HOX genes up to 

nearly 40 kb away, but physically near HOTTIP in 3D space71.  Proximity to HOTTIP RNA has 

been shown as necessary and sufficient to organize long range interactions and specifically 

impact gene expression.  Finally, knockdown, knockout and DNA-FISH studies implicate Kcnq1ot1 

in control of the expression and chromatin architecture of the ~1 Mb Kcnq1 locus82,90-93.  

Transgenic expression of Kcnq1ot1 is sufficient to bidirectionally silence flanking genes in vivo82.  

Kcnq1ot1 also organizes chromatin so that its targets are in proximity of silenced genes to 

perinucleolar regions, presumably to facilitate silencing91.  Mechanistically, Kcnq1ot1 has been 

proposed to act like Xist, to concurrently mediate gene expression and chromatin 

architecture90,91,93. 

 

Relationship between PcG proteins and lncRNAs 

As has been seen in plants, several lncRNAs have been shown to directly contribute to PcG 

recruitment or silencing in mammals.  Among these lncRNAs are Xist (PRC2) 94, Braveheart 

(PRC2)70, the HOX encoded transcript HOTAIR (PRC2) 95, Fendrr (PRC2) 69, Kcnq1ot1 (PRC2) 82, 

Gtl2 (PRC2) 83 and ANRIL (PRC1 and PRC2) 85,96, though notably, these genes are not conserved 

in flies, or even necessarily between mouse and human.  Depletion of these lncRNAs culminates a 

loss of silencing of the respective target loci (ref) and/or death.   

Direct interactions of lncRNAs and the PcG proteins were primarily found through a protocol 

called RNA immunoprecipitation (RIP) or the closely related UV-crosslinked RIP (CLIP), where 

lncRNAs are pulled down via a protein interactor 97.  Several of the above studies have been 

supplemented by gel shift/EMSA (electric mobility shift assays), or by studies where PcG proteins 

bind to ectopic lncRNAs in nuclear lysate.  However, such assays must be revisited, as recent 
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evidence suggests that the PRC2 protein, EZH2, binding strongly to RNAs without clear sequence 

specificity in vivo and in vitro 54,64.  Additional evidence to support these interactions comes from 

perturbation data, showing knockdown of a candidate impacts transcription of PcG target genes 

and PcG localization to target loci, such as for Braveheart, HOTAIR, or Gtl2.  Similarly, both Alu-

repeat deletion and competitive blocking interactions of the ANRIL transcript 49,98, where 

complementary oligos hybridized to ANRIL at putative PcG/RNA-binding sites, yield changes in 

gene expression and loss of PcG binding to the RNA and the regulated Ink4a/Arf DNA locus .  

Complementary mutations to PcG proteins (CBX7) showed a similar result.  Finally, RNA and DNA 

FISH data reveal that in the absence of the PRC2 (e.g. Eed knockout), several genes in the Kcnq1 

locus lose their silencing 91.   

Perhaps the most extensive mechanistic studies on lncRNA/PcG interactions validate interactions 

between the PcG proteins and Xist.  In a set of experiments, Xist was specifically pulled down via 

antisense oligos, alongside its associated chromatin 80,81.  These studies showed that PRC2 is 

recruited to the X chromosome in direct proportion to Xist binding, consistent with the hypothesis 

that Xist mediates PRC2 binding along the inactive X.  EMSA and deletion analysis have also 

implicated the A-rich repeat RepA of Xist, as a region of PcG interaction 94.  RepA is essential for 

silencing and spatial organization of genes on the inactive X chromosome.  Mutation or deletion of 

RepA leads to a loss of the Xist/EZH2 binding in vitro, and a loss of Xist binding and silencing at 

genic regions along the X-chromosome in vivo.  

Finally, the PcG proteins have been shown to interact with components of the RNAi machinery and 

the RNA helicase, MOV10 99.  Perturbation of MOV10 causes imbalances in INK4a/Arf 

expression, and is speculated to directly impact ANRIL functionality.  Together, these data suggest 

a versatile relationship between many lncRNAs and the PcG proteins in gene silencing. 
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In addition to lncRNAs that bind to the PcG proteins, short (50-200nt) double-hairpin ncRNAs also 

are also transcribed from binding sites of PRC1 and PRC2 proteins, and bind the PRC2 protein 

Suz12 as assessed by RIP and EMSA 100.  These short ncRNAs are transcribed from sites of CpG 

rich regions at the 5’ end of many PcG targets, and are often accompanied by paused RNA 

Polymerase II.  The hairpins are thought to work upstream of PcG silencing, and might serve to 

fine-tune PcG proteins by recruiting them to target gene promoters, or to act as scaffolding for 

complex assembly. 

Many intergenic regions which show changes in PcG binding during development are also 

transcribed 101. The genomic boundaries of such lncRNA transcripts precisely coincide with 

conserved regions of Suz12 binding and/or H3K27me3 (at some developmental point), though 

the transcribed regions are often CpG-poor.  Expression of these lncRNAs may either coincide 

with or oppose PcG binding and H3K27me3.  Knockdown of several such lncRNA transcripts 

generated from PcG sites affects transcription of both flanking (cis) and distant (trans) PcG 

regulated genes (ref) in differentiating mouse neural precursor cells.   Though a direct interaction 

of these lncRNA transcripts with the PcG proteins has not been thoroughly investigated, these data 

support the role of ncRNAs as major players in the transcriptional circuitry, particularly at PcG-

regulated genes essential for embryonic development. 

While many PcG interacting lncRNAs, such as Xist and Kcnq1ot1, are proposed to modify 

chromatin structure over long ranges in cis, the first candidate trans acting lncRNA has also been 

identified: the HOX encoded transcript, HOTAIR 95.   Expression of HOTAIR is important for PcG 

mediated silencing of a HOX gene on an entirely different chromosome.  However, the low-

expression of lncRNAs, such as HOTAIR or HOTTIP, raises mechanistic questions of how lncRNAs 

could locate their genomic targets in the nucleus.   
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The possibility of lncRNAs organized with both distant and nearby chromatin, such as is the case 

for the (highly expressed) NEAT1-dependent formation of paraspeckles 89, provides an attractive 

mechanistic hypothesis that could support the existence of trans-acting, low abundance lncRNAs.  

In the context of PcG proteins, lncRNAs might bind PcG proteins as they sample the genome, and 

tether, scaffold or recruit the PcG proteins to PcG bodies and trans loci.  In this way, similar to Xist 

and Kcnq1ot1 activity in cis, even low-expression, trans acting lncRNAs could micro-organize PcG 

activity and chromatin structure. 

One lncRNA which controls expression in a colocalized region of the genome is the transcript from 

the CISTR-ACT locus 72.  This lncRNA is upregulated in patients exhibiting certain forms of 

Brachydactyly.  While the CISTR-ACT transcript has not been shown to interact directly with the 

PcG proteins, overexpression of the transcript causes changes in PcG-regulated genes which are 

spatially co-localized (both genes in trans and in cis) with CISTR-ACT.  This culminates in 

widespread changes in EZH2 binding and gene expression of developmental targets.   

Several individual PcG proteins have shown in vitro binding to RNAs through gel shifts.  The EZH2, 

EZH2 with EED, and Suz12 components of PRC2 have each shown binding to various RNAs.  

However, recent studies have demonstrated that EZH2 binds many RNAs in vitro and in vivo 

without strong sequence specificity 63,64. Notably, structural conservation is very difficult to predict, 

and was not well accounted for in these studies. 

While PRC2 binds promiscuously to RNAs around the genome, lncRNA function in the specific 

setting of PRC1-mediated stable silencing and/or compaction is relatively unexplored.  Several 

PRC1 proteins, such as the chromodomain of CBX7 49and the Phe-Cys-Ser (FCS) domain of 

Polyhomeotic 102, have shown RNA binding without sequence specificity in vitro.  Mutated FCS of 

Polyhomeotic in flies leads to lower levels of repression at an array of PcG targets in vivo. In the 

case of CBX7, the compaction subunit in mammalian PRC1, the chromodomain has shown both in 
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vitro binding to ssRNA, and to a lower extent dsRNA, as well as a minor affinity for dsDNA.    

Notably, the chromodomain also shows high affinity for H3K27me3 nucleosomes in vitro, and as 

suggested by immnoflourescence and ChIP studies, in vivo54,85,103.  Mutation of CBX7 leads to 

decreased binding and silencing of ANRIL in vitro and in vivo respectively49.  However, mutations 

to PcG proteins are often difficult to interpret as they effect wide-spread changes in the 

chromatin landscape.  An underlying question remains as to how the PcG proteins bind specifically 

to RNA in vivo. 

While there is an ever-growing body of literature suggesting interactions between lncRNAs and 

the PcG proteins, the precise nature of these interactions is relatively unknown.  Namely, 

mechanistic studies and identification of lncRNA interactors are hindered by the high incidence of 

non-specific binding between PcG proteins and RNA, a lack of understanding of how the protein 

complexes specifically recognize partner lncRNAs, and the uncertainty of which PcG directly bind 

RNA in vivo.  In my study, I developed a protocol that identifies novel, non-random lncRNA 

interactions with chromatin proteins, across a large range of transcript expression.  This protocol 

does not require knowledge of which PcG protein(s) directly bind the lncRNA, or are necessary 

for binding specificity.  By employing cross-validation and stringent washes, the protocol greatly 

reduces mRNA noise or transient interactions.  I used my protocol to find lncRNAs that bind the 

PcG proteins in the context of stable silencing by the PRC1 complex, and found that a majority of 

the candidates assayed show widespread changes to the PcG-regulated transcriptional gene 

network upon siRNA knockdown.  Finally, I also found that depletion of one candidate, CAT7, 

causes loss of PcG binding at the promoter of an upregulated gene Mnx1.  Lastly, I showed 

depletion of CAT7 also induces differential expression of several PcG-regulated master 

regulators of neural/pancreatic beta development during motor neuron differentiation from ES 

cells.  
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ABSTRACT 

 

Long non-coding RNAs (lncRNAs) are increasingly recognized as important regulators of genomic 

processes and cellular specification.  Many lncRNAs are hypothesized to regulate chromatin by 

functionally impacting the epigenetic state through interactions with chromatin-modifying proteins.  

Recently, numerous lncRNAs have been reported to play roles in the activity or recruitment of 

epigenetic factors such as the Polycomb group (PcG) proteins, to genomic sites.  However, 

identification and functional validation of chromatin-interacting RNAs are technically challenging 

with respect to distinguishing true RNA interactors from artifacts.  In order to identify new lncRNAs 

that interact with PcG-bound chromatin, we developed an immunoprecipitation protocol which 

dramatically decreases mRNA noise (as a metric of false positives), and increases the dynamic 

range of conventional RNA immunoprecipitation (RIP).  Namely, we purified chromatin away from 

free nucleic acids and free proteins, performed an immunoprecipitation on the chromatin, and 

applied stringent washes geared at both RNA and protein specificity.  We then applied this 

protocol to the PcG protein Bmi1 to generate a list of novel candidate lncRNAs interactors, 

including the functionally-elusive RepE region of Xist.  Analyzing these candidates, we found that 

PRC1 putatively binds a class of nuclearly localized lncRNAs that show tissue-specificity in the 

body, and which may contain tandem repeats, possibly as structural elements. 
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Introduction 

Interactions between lncRNAs and chromatin proteins, such as the PcG proteins, have been 

identified in vivo by a technique called RNA immunoprecipitation (RIP)1.  In canonical RIP and its 

variations, cells may or may not be lightly crosslinked by formaldehyde or UV light, and RNAs 

are co-precipitated with a protein and sequenced.  RIP conditions are generally optimized for 

protein/protein stability and specificity; however, these are precisely the conditions which 

promote non-specific RNA/RNA or RNA/protein interactions2,3.   Such artifacts arise upon nuclear 

shearing, when distal RNAs are brought together and hybridize to one another via small stretches 

of complementarity4.   In addition, the limited stringency of native washes, the inefficiency of UV 

crosslinking, and the low shearing resolution of most RIP protocols also contribute to a very low 

signal to noise ratio.  As evidenced by the disparity of candidate lncRNAs found between various 

sources of PcG RIP data 5-8, there is a lack of consensus between RIPs from different groups, 

coupled with a high contamination of mRNA exons: a metric of false positives in RIP of many 

chromatin proteins.   

RIP has been successfully used to verify lncRNA/protein interactions, which were suggested a 

priori by other sources of data.  As exemplified by the lncRNAs interacting with PcG proteins, such 

as the essential cardiogenesis lncRNA Braveheart 9 or the HOX gene-regulator lncRNA HOTAIR 10, 

differential expression and knockdown of the transcripts were first observed to cause changes in 

expression of classical PcG target genes, and then sought out in PcG-RIP.  Likewise, in the case of 

the highly abundant lncRNA Xist 11 or several lncRNAs associated with imprinted genes8,12,13,  PcG 

proteins were already known to be involved in silencing of the adjacent target regions.  In these 

instances, RIP was used to verify, rather than to first indicate, the interactions with the PcG 

proteins. 
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The overwhelming false positive rate renders RIP ineffective as a means to identify protein/RNA 

interactions de novo, at least for lowly or moderately expressed RNAs.  RIP often cannot readily 

discern true signal from noise of higher-expressed RNAs (such as mRNAs), essentially limiting the 

dynamic range of RIP to highly or overexpressed lncRNAs.  Furthermore, since most lncRNAs are 

expressed at significantly lower levels than mRNAs14,15, many lncRNAs are well outside this 

dynamic range.   Indeed, RIP is not a robust technology for uncovering novel chromatin-interacting 

lncRNAs, and, a scarce number of RNAs from such studies have been biologically verified. 

The PcG proteins also pose particular biochemical challenges for finding novel lncRNA 

interactions.  Firstly, it is yet unclear which protein or set(s) of proteins directly bind to RNAs, or 

confer specificity for binding.  Previously, the PcG protein EZH2 had been shown in vitro to 

directly bind to RNAs such as the RepA region of Xist 11 and has since been shown to spread 

along the inactive X in correlation with Xist spreading 16,17.  However, recent evidence shows that 

EZH2 does not have strong specificity for any RNA motif, and strongly binds many RNAs 

regardless of sequence, in vivo and in vitro 2,18.  Additionally, EZH2 is just one of several proteins 

in the methyltranferase complex of the PcG proteins, PRC2.  It is not known whether the entire 

complex, or perhaps additional component(s) which interact with the complex, are important for 

proper lncRNA binding. 

PcG mediated silencing is also executed by another PcG complex, PRC1, whose interactions with 

lncRNAs are yet uncertain.  PRC1, or, more accurately, several PRC1-like complexes comprised of 

various combinations of subunits, are responsible for the compaction of chromatin and 

ubiquitylation of H2A.  It is this compaction which is thought to block access of the transcriptional 

machinery to the DNA.  PRC1 components are essential for the stabilization of silencing and are 

partially retained on the chromatin during mitosis to maintain epigenetic memory through cell 

division 19,20.  Though there is extensive overlap between PRC1 and PRC2 binding on the 
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chromatin21,22, differences in activity of the complexes, recruitment of the complexes, and binding 

sites exist23,24.  Therefore, it is mechanistically important to study lncRNAs in the presence of PRC1, 

the main engine of repression. 

Previous data have suggested interactions between PRC1 and lncRNAs25-27, though the specifics 

of such interactions remain unstudied.  It is not well understood if PRC1 directly interacts with RNA 

in vivo, or how lncRNAs impact the activity or recruitment of PRC1 to the chromatin.  Several PRC1 

components, such as Polyhomeotic show in vitro binding to RNA 27, though notably, many of those 

same protein domains bind DNA as well. The PRC1 proteins Bmi1 and CBX7 have been shown to 

interact with the lncRNA ANRIL 25,28 to modulate the Ink4a/Arf locus.  However, additional 

candidates have been poorly studied in comparison to PRC2-interacting lncRNAs.  It is not even 

known whether PRC1 is generally present at sites of lncRNA/PRC2 binding, or whether such 

interactions occur while PRC2 is bound to the chromatin.  We therefore sought to develop a 

method that was better able to predict novel lncRNA interactions with chromatin, and specifically 

to investigate lncRNAs present at sites of PRC1 binding. 

 

Results 

Our goal is to uncover novel lncRNAs that interact with chromatin, with the hypothesis that 

interacting RNAs may modulate gene expression.  While conventional RIP has been used to 

validate a priori hypotheses of lncRNA interactions, the variable results of such experiments 

between different groups, as well as strong mRNA contamination, indicate a high level of noise.  

Such noise interferes with identification of legitimate, stable lncRNA/chromatin interactions, and 

may arise from non-specific RNA interactions that occur during the purification, rather than in the 

cell.   
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To this end, we attempted to improve the signal to noise ratio of conventional RIP by purifying 

chromatin as the input to the immunoprecipitation (IP), and tailoring the washes around both RNA 

and protein specificity.  Accordingly, we developed an IP protocol that uses a CsCl gradient to 

isolate chromatin, the substrate of the PcG proteins, away from free nucleic acids or free protein.  

We reasoned that by removing these sources of noise, we might also change the spectrum of 

RNAs that were pulled down to enrich for stable, in vivo interactions.  We also chose to work in 

crosslinked cells, where complex components are covalently fixed together.  In this manner, we 

could identify lncRNAs that act at the same genomic loci as PRC1, without necessarily knowing 

which component(s) of PRC1 or its binding partners (including PRC2) directly bound the lncRNAs.  

Moreover, the covalent fixing of the complexes allowed us to employ more stringent chromatin 

purification, IP, and wash conditions aimed at reducing RNA noise. In order to investigate the 

interactions of lncRNAs with chromatin proteins, such as the PcG proteins, we needed to expand 

the dynamic range of canonical RIP to include lowly expressed lncRNAs and exclude mRNAs.    

 

Development of the Assay 

We set up our system in HeLa cells stably expressing a FLAG-tagged PRC1 component, FLAG-

Bmi1 (25% overexpression) to allow for cross-validation of results between the endogenous and 

tagged protein.  The over-expressed FLAG-Bmi1 in this cell line was shown previously to interact 

with the core components of PRC129.  We further characterized the FLAG-Bmi1 protein by anti-

FLAG immunofish, confirming the protein was indeed localized to punctate bodies on the 

chromatin (Figure 1), typical of endogenous Bmi1(Figure 2). 

A brief description of our technique for discovering PRC1-associated lncRNAs on the chromatin is 

as follows: we isolated nuclei from crosslinked HeLa cells stably overexpressing FLAG-Bmi1, and 

34



M
2 

(α
FL

A
G

) 
FL

A
G

 B
m

i1
 IF

2u
M

Fi
gu

re
 1

. I
m

m
un

of
lo

ur
es

ce
nc

e 
of

 F
LA

G
-B

m
i1

Im
m

un
of

lo
ur

es
ce

nc
e 

ta
rg

et
in

g 
FL

AG
 w

as
 p

er
fo

rm
ed

 in
 H

el
a 

ce
lls

 th
at

 s
ta

bl
y 

ex
pr

es
s 

bo
th

 e
nd

og
en

ou
s 

Bm
i1

 a
nd

 F
LA

G
-

Bm
i1

 (2
5%

 o
ve

re
xp

re
ss

io
n)

.  
O

nl
y 

FL
AG

-B
m

i1
 is

 r
ec

og
ni

ze
d

by
 th

e 
an

tib
od

y.
  P

un
ct

at
e 

di
st

rib
ut

io
n 

is 
vi

sib
le

 in
 a

ll 
ce

lls
(1

00
 c

el
ls 

co
un

te
d,

 n
=

3)
.

α
Bm

i1
 IF

2u
M

Fi
gu

re
 2

. I
m

m
un

of
lo

ur
es

ce
nc

e 
of

 B
m

i1
 

Im
m

un
of

lo
ur

es
ce

nc
e 

ta
rg

et
in

g 
Bm

i1
 in

 H
eL

a 
ce

lls
 th

at
 s

ta
bl

y 
ex

pr
es

s 
bo

th
 e

nd
og

en
ou

s 
Bm

i1
 a

nd
 F

LA
G

-B
m

i1
 (2

5%
 o

ve
re

xp
re

ss
io

n)
.  

Bo
th

 
en

do
ge

no
us

 a
nd

 F
LA

G
-B

m
i1

 a
re

 r
ec

og
ni

ze
d 

by
 th

e 
an

tis
er

a.
  

Pu
nc

ta
te

 d
ist

rib
ut

io
n 

an
d 

nu
cl

eo
la

r 
ex

cl
us

io
n 

is 
vi

sib
le

 in
 a

ll 
ce

lls
 (1

00
 

ce
lls

 c
ou

nt
ed

, n
=

3)
.

35



Formaldehyde crosslink cells

Isolate nuclei

Apply lysate to density gradient (CsCl)

Fractionate and identify chromatin-
containing fractions

Shear DNA

Perform IP on pooled 
chromatin fractions

Sequence co-precipitating RNAs

Dialyze CsCl  

O

CH3H3C

O

CH3H3C

O

CH3H3C

Dialyze CsCl

Free Protein

Free 
Nucleic Acid

Chromatin

most dense

least dense

Figure 3. Schematic of protocol to isolate Chromatin Associated Transcripts (CATs)
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sheared the nuclei. To isolate the chromatin, we applied the nuclear lysate to a CsCl density 

gradient.  Chromatin-containing fractions from the gradient were identified by immunoblot and 

spectrophotometry, and pooled for further purification.  CsCl was removed from the pooled 

fractions by dialysis to prepare the chromatin for IP against the PcG proteins (or various controls).  

Finally, the IP’s were washed in both high and low salt for protein and RNA specificity, 

respectively, and the co-precipitating RNAs were isolated for sequencing (Figure 3).  More 

detailed descriptions of these steps follow. 

 

Migration of biomolecules through the CsCl Density Gradient 

The isolation of chromatin by CsCl density gradient is a major purification step in the protocol. The 

density gradient, once a routine step in early mammalian ChIP, separates the bulk chromatin from 

sources of noise: free nucleic acids, free protein, lipids, and aggregates.  As previously described 

in early ChIP studies 30, free protein is expected to run near the top of the gradient whereas free 

nucleic acids, which are much denser than proteins, are expected to collect at the bottom of the 

gradient.  Chromatin, which is comprised of both nucleic acids (DNA and RNA) and proteins 

(histones, transcription factors, etc) is expected to migrate to the center of the gradient.   

We confirmed previous results outlining the migration of various biomolecules through the density 

gradient.  By Bradford assay, protein ran from the center of the gradient to nearly the top 

(Figure 4).  Immunoblot analysis of specific targets revealed that the chromatin binding proteins 

Bmi1, Suz12, PHC1 and CTCF migrated slightly below the bulk protein, in the central fractions 

(fractions 4,5 and 6) with the histones (Figure 5).  DNA, which is associated with protein and 

largely compacted into chromatin, migrated in the center of the gradient (Figure 6, Figure 7).  The 
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tight co-migration of DNA and chromatin proteins suggested that the DNA was sufficiently 

crosslinked to remain associated with chromatin proteins through the purification.  

 In contrast, RNA collected at the bottom of the gradient, but was also spread throughout the 

bottom and middle of the gradient (Figure 8, Figure 9).  RNA migration at the bottom of the 

gradient can be readily explained by the effect of high salts on RNA binding.  Namely, the high 

concentrations of CsCl ablate weak or non-specific RNA/RNA interactions or non-specific 

interactions between basic patches of protein and RNA, and precipitate free RNA.  RNA 

migration in the central fragments can be explained by crosslinking and protein association: 

Nucleic acids are inefficiently crosslinked to protein by formaldehyde, and are generally retained 

by being trapped in crosslinked protein “cages”.  The presence of RNAs in the bottom and central 

fractions is likely due to RNAs being caged by various protein interactors, and being sheared into 

non-uniform fragments based on RNA secondary structure and RNA/protein interactions 

(footprinting).  Therefore, the crosslinked CsCl gradient serves not only as a means to reduce non-

specific binding, but to then separate much of the contaminating RNA from the chromatin. 

To ensure that lncRNAs indeed remained bound to the chromatin, we probed migration of the 

canonical chromatin bound lncRNAs Xist and h19 RNAs as a proxy of lncRNA retention.  RT-qPCR 

revealed that both Xist and h19 lncRNAs migrated in fractions 4-6, with the bulk chromatin (Figure 

9).  This demonstrates that the Xist and h19 present in the nuclear prep are protein-bound, and 

are sufficiently crosslinked to maintain the interaction through the purification.  

We also examined mRNAs of various transcription levels to assay where mRNA noise might be 

generated from, and to show that retention of RNAs was specific to protein bound RNAs.  We 

found that free nucleotides were precipitated to the bottom of the gradient, whereas highly 

transcribed RNAs (processed or unprocessed) migrated in a single, central fraction.  P68, a 

processed mRNA of low/moderate transcription, was expected to accumulate in the lowest 
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fractions if present due to cytoplasmic contamination (free of protein), or possibly in higher 

fractions if being transcribed or shuttled with proteins.  P68 mostly accumulated in the bottom of 

the gradient or was present at levels indistinguishable from untranscribed controls (Oct4) (Figure 

9, Figure 10), indicating that most of the P68 in the sample was free, and separated from the 

chromatin.  Highly transcribed mRNAs such as GAPDH and unprocessed pre-mRNAs (GAPDH 

intron/exon junction normalized to a –RT control) were almost exclusively located in the most 

dense chromatin fraction (4), presumably still tethered to the chromatin and PolII (Figure 10). 

These data suggested that free RNA was indeed migrating to the bottom fraction, chromatin 

interacting lncRNAs were largely retained alongside chromatin proteins, and that mRNA in the 

chromatin fractions were likely tethered to the DNA, presumably at the respective genomic loci. 

We optimized our shearing conditions using Bmi1 and Xist as positive controls to test the effects of 

shearing on PcG-bound lncRNAs.  Xist has previously been shown to interact with PRC2 

components, though direct binding to PRC1 has not been investigated.  However, the high 

abundance of Xist in the cell made it an attractive candidate for RT-qPCR analysis.  Interestingly, 

more intense shearing lead to migration of Bmi1 in the higher fractions, whereas total histone 

migration was not proportionally elevated (Figure 11).  This is consistent with reported shearing-

hypersensitivity of PcG binding sites, thought to be caused by nucleotide bias and a broad 

nucleosome-free region.  Similarly, Xist but not GAPDH migration mirrored the elevated migration 

pattern of Bmi1 (Figure 12).  Accordingly, shearing conditions (4.5 Kbp DNA fragments) were 

optimized to solubilize the DNA (Figure 17) and maintain RNA integrity, while keeping Bmi1 

together with the bulk chromatin.  Only fractions which contained both Bmi1 and the bulk 

chromatin (fractions 4,5, and 6) were pooled for dialysis and immunoprecipitation. 
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IP specificity 

We immunoprecipitated Bmi1 and FLAG-Bmi1 from the pooled chromatin fractions (fractions 4-6) 

expecting that true PcG-binding lncRNAs would be enriched over input, and cross-validated 

between the two samples.  The FLAG-Bmi1 IP differed from the Bmi1 IP in a number of ways: it 

was performed with a mouse anti-FLAG antibody, was specific for only 20% of the Bmi1 in the 

cell (FLAG-Bmi1), was precipitated with covalently crosslinked agarose beads instead of ProteinA 

coated beads, was subjected to harsher IP conditions and washes (1M Urea), and was eluted 

from the beads via peptide elution (3X FLAG) instead of by SDS.  We additionally performed an 

IP targeting the widely bound transcription factor CTCF (though in smaller scale), to show 

specificity for associations with Bmi1 versus general associations with chromatin.  Finally we also 

performed a (smaller scale) IgG IP, as a universal negative control.  We reserved portions of the 

input and IP eluates for immuno-blot (or silver stain) (Figure 13, Figure 14) and qPCR (Figure 15, 

Figure 16).  These assays verified that the IP’s targeting multiple chromatin proteins were specific 

at the protein and DNA levels.  Of note, the mean length of the DNA from the Bmi1 IP was 3.5 

kbp whereas the input DNA had a mean length of 4.5 kbp (Figure 17).    

 

Identification of candidates: RNAs cross-validate in a non-random fashion 

We sequenced RNA from the input, Bmi1 IP, and FLAG-Bmi1 IP and identified enriched peaks 

which cross-validated between the two samples.  We first aligned uniquely mapping reads from 

each sample, using Bowtie.  Using the program Model-based Analysis of ChIP-Seq31 (MACS), we 

identified read pileups (peaks) in our sequencing data from individual IP samples.   MACS called 

peaks based on read density, peak shape, amplitude, and width, to identify transcripts de novo 

from the data.  These peaks represent exons of lncRNAs and potential protein binding domains.  
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Silver Stain 
~150 kDa

α H3

α Bmi1

α CTCF

Figure 13. Immunoblot of IP Eluates
Eluates show protein specificity: CTCF and Bmi1 are selectively pulled down in the 
CTCF and Bmi1/FLAG-Bmi1 IP’s.  Similar results seen in >4 biological replicates.  
A non-related lane was electronically removed for figure clarity.

Figure 14. Silver Stain Analysis of IP Eluates
CTCF IP did not show a band in the Immunoblot input. We therefore confirmed 
that the IP shows a single band at the expected size by silver stain
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Figure 15. CTCF-IP shows specificity for CTCF targets
DNA was isolated from the a portion of the IP-eluate.  qPCR was performed at two 
regions of published CTCF binding and an intergenic control. qPCR performed in 
triplicate.  Similar results seen in >3 biological replicates.

Figure 16. Bmi1 IP and FLAG-Bmi1 IP show specificity for 
Bmi1 targets.
DNA was isolated from the a portion of the IP-eluate.  qPCR was performed at two
regions of published Bmi1 binding and an intergenic control.  Notably, FLAG-Bmi1 only 
accounts for 20% of the total Bmi1 in the cell.  qPCR performed in triplicate.  
Similar results seen in >5 biological replicates.
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The exons are unassembled and may not represent an entire lncRNA due to RNA shearing and 

possible footprinting effects.  Therefore, to compare the samples, we simply considered 

overlapping peaks which were called in both Bmi1 and Bmi1 and FLAG-Bmi1 IPs, and had a 

pvalue from MACS less than 10-15 in both samples.  For each overlapping peak, we then 

calculated the intensity ratios (reads in the IP over reads in the input) to normalize to transcript 

abundance in the input.  We found that the intensity ratios across the entire set of overlapping 

peaks correlated with Rval=.61 (Figure 18).  Significant enrichment over input was further 

determined at each peak using EdgeR32, and overlapping, enriched peaks from Bmi1 and FLAG-

Bmi1 IP’s (pval <.01, fold change > 2) were selected for further study.  These peaks represent 

cross-validated, enriched candidates for PcG interaction. 

We also correlated the log-intensities at annotated regions, and found that the correlation 

occurred only at RNAs from specific regions of the genome.  We first correlated all mRNA exons, 

as annotated by RefSeq33.  Generally, processed mRNAs are expressed at higher levels than 

lncRNAs14,15, and often are used as a metric of false-positives or transient interactions since no 

biology has implicated them in PcG function.  We found that the log intensity ratios across mRNA 

exons were correlated with a low Rvalue of .30 (Figure 19). Of 8,731 mRNA exons expressed 

over background in both IP’s, zero exons were significantly co-enriched between the replicates.  

Conversely, we found that intensity ratios across previously annotated lncRNAs (Ensembl)33,34 had 

Rval = .80, and an Rval = .73 excluding all repetitive regions called by Repeatmasker35 (Figure 

20).  Since lncRNAs are often poorly annotated, we also correlated only regions of lncRNAs with 

signal (MACS peaks within the lncRNAs), excluding repeats.  These peaks had an Rval = .68 

(Figure 21).  Taken together, these data revealed that the correlations were non-random: strong 

at regions of predictive of true interactions, and weak at regions predictive of noise.  

Furthermore, the global depletion of mRNA exons is indicative of a major reduction in a known 
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source of noise.  Therefore, we had high confidence in our MACS-peak candidates, and the 

enriched, annotated lncRNAs also represented a second set of candidates for PcG interaction. 

 

RT-qPCR validates individual candidates  

We then validated individual RNA sequencing results by RT-qPCR, and incorporated additional 

controls.  We performed RT-qPCR directly on the eluate from the Bmi1 IP, as well as from the 

CTCF IP and the IgG control from matched input (Figure 22).  We examined Xist, which has been 

proposed previously to interact directly with EZH2 of PRC2, and which, specifically the RepE 

domain, was also the top hit of our de novo peaks (Figure 23).  RT-qPCR revealed that Xist RepE 

was highly enriched in the Bmi1 IP, but not in the IgG or CTCF IP.  The functionality of Xist in this 

cell line was supported by RNA-FISH of Xist, showing that each cell had a single, distinct barr 

body (Figure 24). Conversely, h19 (Figure 22, Figure 25), which has not been shown to interact 

directly with PcG proteins, was not enriched in the initial sequencing experiments or by RT-qPCR.  

ANRIL, which has been previously implicated to play a role in Bmi1 mediated regulation of the 

Ink4a/Arf locus, was mildly enriched in the Bmi1 IP sequencing data, but not the FLAG IP 

sequencing data. Because of this lack of cross-validation, and because the cell-cycling role of 

ANRIL in a cancer line is unclear, we could not interpret it as a control and did not pursue it by RT-

qPCR.  Overall, these data confirm that the sequencing results were specific in comparison to IgG 

and CTCF. 

We next confirmed our results by performing a biological replicate of the FLAG-Bmi1, Bmi1 and 

IgG IP’s.  By comparison with the replicates (via IP/RT-qPCR) we identified reproducible 

candidates, removed IgG non-specific peaks, and demonstrated relatively low variability in the 

technique.  We first generated cDNA similarly as we did in preparation for library construction 
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above (NuGeN kit) and performed qPCR on a number of candidates from each IP/input in the 

replicate experiment.  Once again, Xist was enriched in the pulldowns of Bmi1 or FLAG-Bmi1 as 

compared to the IgG; GAPDH and h19 were not (Supplemental Table 1).  We expanded our RT-

qPCR screen to target sixty-three candidates in addition to Xist, GAPDH, and h19.  Candidates 

were selected from co-enriched MACS peaks for validation based on: intergenic location, p-value 

as assigned by EdgeR, the absence of large repetitive regions (RepeatMasker), and peak width 

greater than 500 bp.  We also gave higher weight to peaks aligning to previously annotated 

lncRNAs.  Trying up to two amplicon pairs per peak, we found that 42 candidates were validated 

in the replicate pulldowns but not the IgG, 6 did not reproduce and were higher in the IgG, and 

15 candidates consistently gave multiple melt curves, and were not interpretable.  This yields a 

minimum 66.7% validation rate. These transcripts became our top candidates for PRC1 

interaction. All results summarized in Supplemental Table 1. 

We surveyed the 65 initial candidates for sequence motifs, though did not find any strong 

sequence bias.  However, though we considered only uniquely mapping reads, many candidates 

contained tandem repeats36.  More precisely, many candidates contained ~40-200bp sequences 

that were repeated with modest fidelity (~75%) along a single, contiguous region of the genome.  

These domains might account for the difficulty in obtaining single melt curves for many candidates 

by RT-qPCR. Furthermore, such domains may also be highly structured, and could represent a 

structural class of PcG-interacting lncRNAs. 

 

Expression levels, nuclear localization, and tissue-specificity of the candidates 

After showing non-random candidates had a high validation rate, we further characterized our 

highest-confidence candidates.  We assayed the dynamic range of the experiment (with respect 
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to candidate expression level), localization of the candidates in the cell, and expression of the 

candidates in biological tissue. 

The expression levels of our candidates varied widely.  On average, the top 100 MACS peaks 

selected had an rpkm (reads per kilobase per million) of 0.48 in the input, yet about 7.71 in the 

Bmi1 IP (Figure 27, Figure 28, Figure 29).  As a reference, Xist Rep E, which was our top 

candidate as ranked by p-value assigned by Edge-R, had an rpkm of 3.78 in the input and 

34.43 in the IP (Figure 23).  This showed us that our protocol was identifying candidates 

expressed at a wide range of abundances. 

Based on prior evidence that lncRNAs modulate the PcG protein activity on chromatin, we verified 

that the candidate lncRNAs were indeed appreciably retained in the nucleus.  We mined cell-

fractionated RNA-seq data, publicly available from ENCODE.  These data included matched 

whole-cell, nuclear and cytoplasmic RNAseq data, obtained from ten different human cell lines, 

including a HeLa line.  For the 65 RT-qPCR verified targets, we verified 53 were primarily 

localized to the nucleus, 6 were both nuclear and cytoplasmic, and 7 had insufficient data to 

determine localization (e.g. 53/59 verified; 42/42 of which were replicated by RT-qPCR) 

(Supplementary Table 1). 

Finally, we characterized expression of these lncRNAs, found in HeLa cells, in a biologically 

relevant setting.  RT-qPCR was performed for selected candidates across RNA from 20 tissues in 

the body, placenta, and developing fetus, as well as in embryonic stem cells.  We saw that these 

lncRNAs were indeed present in various tissues of the body, and were not simply artifacts 

exclusive to HeLa cells.  Furthermore, each candidate was differentially expressed in a tissue-

specific manner (Figure 26).  These results show that we have generated a high-confidence, cross-

validated list of non-random lncRNA candidates that may be working with the PcG proteins across 

various tissues of the body. 
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Figure 26. Relative expression of selected candidates across a variety of human 
tissue.  
“Chromatin Associated Transcripts” (CATs) from our screen appear to be expressed in 
a tissue specific manner across the body.  RT-qPCR was performed in triplicate and 
mean expression of select CATs is shown relative to GAPDH.  Signal is further normal-
ized to the mean value across each column.  Hierarchical clustering using a Euclidean 
distance metric was  used to generate the plot.
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Discussion 

The molecular understanding of gene regulation has shifted to include lncRNAs as regulators of 

transcription.  However, techniques to identify such lncRNAs remain limited in specificity and 

dynamic range.  Our technology identifies a broad spectrum of chromatin-interacting lncRNAs, 

expressed at a variety of levels.  By relying on a clean chromatin input, stringent washes geared 

at RNA specificity, and cross-validation techniques, we have nearly eliminated mRNA 

contamination from our top peaks: a metric of noise that plagues canonical RIP reactions.  

Applying our technology to the PRC1 protein, Bmi1, we generated a list of candidates that 

potentially interact with PRC1, and/or its binding partners.   

Previous RIP or CLIP studies have targeted PRC2 components to study PcG/lncRNA binding.  In 

particular, many sources have searched for RNAs by EZH2 binding.  However, recent reports state 

that EZH2 promiscuously binds RNAs in vitro and in vivo 2,18.  It remains unknown which protein(s) 

confer specificity to PRC2 in vivo. Our IP protocol uses crosslinked complexes, allowing us to 

identify RNAs at sites of PRC1 binding, without assuming which PRC1 protein(s) –  or which PRC1 

binding partner, such as PRC2 – the RNA directly binds.   

Our RNA candidates not only cross-validate between biological replicates, but also are enriched 

in a parallel immunoprecipition of a stable FLAG-Bmi1.  Overall, the FLAG-Bmi1 and endogenous 

Bmi1 IP’s correlate well, and, importantly, in a non-random fashion that is not driven by 

expression level.  Namely, the correlation is strong at regions of putative positive control 

(lncRNAs) but much weaker at regions of noise (mRNA exons). 

Among our candidates, we have identified a functionally novel region of Xist as the top hit.  

Though Xist has been shown to bind to EZH2 at its RepA locus in vitro 11, RepA deletion does not 
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result in PRC1-component delocalization from the inactive X chromosome (personal communication, 

Neil Brockdorff), and generally, PRC1 components are dispensable for X inactivation37.  

Furthermore, though localization of PRC1 components to the chromatin has been reported28,37,38, 

the direct interaction of PRC1 with Xist has not been investigated.  We found striking enrichment 

of Xist signal precisely over RepE, rather than at RepA .  RepE is near the 3’ end of Xist, and its 

function remains elusive.  Our results suggest that RepE may play a role in recruitment of PRC1 

proteins to the inactive X. 

A large number of the top candidates contained tandem repetitive regions that were unique to a 

single, contained area of the genome – such as RepE.  Sequence analysis of top candidates did 

not reveal any significant binding motif, though many candidates were modestly C-rich.  Taken in 

the context of PRC2 lacking definite sequence specificity and yet binding to the highly structured 

domain RepA , it is possible that these tandem repetitive regions constitute a structural class of 

PcG target lncRNAs. 

 

Conclusion: 

Our method identifies nuclear, non-random RNAs that interact with chromatin proteins.  As 

demonstrated with the PRC1 protein Bmi1, associated RNAs cross-validate at regions of expected 

signal, but not at noise.  Our candidates are expressed in the body, largely localized to the 

nuclei, and often contain short tandem repeats.  Moreover, they range from very high abundance 

in the cell, such as Xist RepE, to lower abundance transcripts, which are readily discernable from 

negligible mRNA noise.  These RNAs constitute a class of lncRNAs, we refer to as Chromatin 

Associated Transcripts (CATs).   Moreover, this protocol works for a variety of proteins/antisera, 

supporting its applicability to other systems, such as perhaps Oct4/Sox2/Nanog proteins in ES 

cells, to find CATs involved in maintaining the ES cell state.  Our list of PRC1-interacting CATs are 
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strong contenders for true PcG interaction.  Further validation is necessary in order to integrate 

them into the PcG gene-regulatory network. 

 

Methods 

Cell Culture and crosslinking 

HeLa cells stably transduced with a copy of FLAG- tagged Bmi1 at approximately 25% 

overexpression29 were cultured in DMEM supplemented with 10% FBS (Sigma), NaHCO3 pH 7.5 

and gentamycin.   Cells were grown in suspension in a spinner flask (Matrical) to a density of 

approximately 3x108 cells per liter.  The cells were crosslinked at 1% formaldehyde for 20’ in 

PBS at room temperature with light rocking. 

 

Nuclei prep, Sonication and CsCl Gradient 

All steps were performed in the presence of RNAsIn plus (Promega) RNAse inhibitor, DTT, .05 mM 

Spermine, .05 mM Spermidine, and Complete EDTA-free Protease inhibitor tablets (Roche). 

Crosslinked HeLa cells were resuspended in LB1 (50 mM Tris 7.4, 140 mM KOAc, 1 mM EDTA, .5 

mM EGTA, 10% glycerol, .5% NP-40, .25% Triton X-100, .1% digitonin) and spun to isolate 

nuclei and porate the nuclear membrane.  The porated nuclei were then dounced in LB1 using a 

Wheaton homogenizer type A and applied over a glycerol pad (25% glycerol, 1 mM EDTA, .5 

mM EGTA, 10 mM Tris pH7.4) to further separate cytoplasmic debris and expelled nucleoplasm.  

The nuclei were rinsed in LB2 (Tris pH 7.4, 10 mM EDTA, 5 mM EGTA and 200 mM KOAc), 

resuspended 1:1 in LB2 and sheared using the Covaris S2 machine (30 minutes at 20% Duty 

cycle, power 7 and 200 cycles/burst, in 30 second intervals; 700 uL aliquots).  The sheared nuclei 

were then resuspended (dropwise) in LB2 with 3.37M CsCl and .1% Sodium Sarkosyl, and spun 

60



for 48 hrs at 200,000 g at 8 degrees Celsius to form a density gradient.  Fractions were 

collected by a peristaltic pump in aliquots of 1/10 the total volume. 

 

Immunoprecipitation 

Selected fractions were pooled and dialyzed (MWCO 3,500 kDa) for >5 hours in LB2 containing 

5% glycerol at 4 degrees Celsius.  Following dialysis, .05% NP-40 and .5% Triton X-100 was 

added as well as 100 mM urea (or 1 M urea for immunoprecipitations against FLAG).  The 

material was then spun out and moved to a new tube to ensure removal of any aggregates.  Less 

than 5% loss was checked by spectrophotometry at A260 and samples were normalized in the 

same buffer to 800 ng/uL.  The material was then pre-cleared for 45 minutes with IgG-Agarose 

beads (Sigma).  Dynal protein A beads (Invitrogen) were pre-bound to antibody with blocking by 

RNAse-free BSA (Ambion).  The pre-bound beads, or covalently conjugated FLAG-agarose beads 

(Sigma) rinsed in LB2 were added to the input and incubated at 4o Celsius overnight with light 

rocking.  Beads were washed at room-temperature four times in IP buffer and twice in IP buffer 

with reduced salt (25 mM KoAc).  The immunoprecipitated material was eluted from Dynal beads 

in 1% SDS and 1mM EDTA or from M2 agarose beads with 3X FLAG peptide as described by 

Sigma.   Crosslinks were reversed for 1.5 hrs at 65o Celsius in the presence (RNA isolation) or 

absence (Protein and DNA isolation) of 1U/uL proteinase K (Roche). 

 

RNA isolation, cDNA generation and library construction 

Either input RNA or RNA from the immunoprecipitation was stored in Trizol LS (Invitrogen) 

following crosslink reversal and proteinase K treatment.  Chloroform was added and the sample 

was spun out according to the manufacturer’s instructions.  The aqueous phase was applied to 
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Zymo Clean-and concentrator 5 columns and DNAsed “in tube”as per the manufacturer’s 

instructions for RNAs larger than 200 nucleotides.  cDNA was generated using the NuGEN RNA 

Ovation FFPE kit (7150-08), or by SuperScript VILO (Invitrogen).  For library generation, cDNA 

was blunted, A-tailed, and ligated to Illumina adaptors as described previously (Simon et al., 

2011).  

 

Antibodies 

Antibodies for immunoprecipitations targeted either FLAG (M2) (Sigma #M8823); Bmi1 (rabbit 

polyclonal antisera39, or CTCF (Active Motif #39621).   Immuno-blots and IF were carried out 

using primary antibodies as above, Suz12 (ab12703), pan-H3 (Abcam ab1791), or Clean-Blot 

HRP-conjugated secondary antibody. 

 

RNA-FISH and Immunofluorescence (IF) 

RNA FISH and IF was performed as previously published40 using a CSK pre-extraction to 

permeabilize the cells.  The construct targeting Xist was a gift from Dr. Judith Sharp, and was first 

used in the above work. 

 

Immuno-blots and Silver Stain 

Protein was either isolated from CsCl fractions by TCA precipitation and reverse-crosslinked in 

SDS as above, or loaded from the crosslink reversal stage from the immunoprecipitations.  A final 

concentration of 0.5U/uL Benzonase (Novagen) was added to each sample with Lamelli Buffer 

and incubated at room temperature for 10 minutes followed by 10 minutes of boiling prior to 

SDS-PAGE.  Antibodies were used at 1/4000 (Bmi1, Pan-H3) or 1/1000 (CTCF, Suz12).  Silver 
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staining was performed with the SilverQuest kit (Invitrogen) according to the manufacturer’s 

instructions. 

 

DNA isolation and qPCR 

Reverse-crosslinked eluate from immunoprecipitations was treated with DNAse-free RNAse 

(Roche) followed by Proteinase K (Roche) and subjected to phenol chloroform isolation.  The 

aqueous phase was then ethanol precipitated with glycogen and NaCl.  All qPCR was performed  

using Biorad iTaq with SYBR and ROX.  A list of all primers used is compiled in Supplementary 

Table 1. 

 

Peak calling and Significance using MACS and EdgeR 

Uniquely mapped reads were aligned to the hg19 build of the genome.  MACS31 was used to 

call peaks over regions of read pileups.  We used default parameters with the exception of the 

p-value, which was selected at 10E-15.  Overlapping MACS peaks were defined as having as 

little as 1 bp overlap.  Peaks were merged between Bmi1 and FLAG-Bmi1.  Because MACS 

assumes a flat input (e.g. as for ChIP), we also assayed for significance relative to the input in two 

ways: by EdgeR32 and by using MACS itself with an input control.  All peaks reported were highly 

significant by p-value by either method.  EdgeR also imposed intensity cuts as reflected in the p-

value.  Necessarily, we did not pay attention to the FDR because many peaks were expected in 

the input that were not in the IP data.  We chose peaks with pval <.01 and fold change >2, as 

assessed by EdgeR. 
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ABSTRACT 

 

While a growing body of work has shown that the Polycomb group (PcG) proteins interact with 

long non-coding RNAs (lncRNAs), discerning true interactors from artifacts has proven extremely 

challenging.  Here, we consider 17 novel candidates previously shown to interact with the PRC1 

component Bmi1, and/or its binding partners in vivo, in HeLa cells. We find that siRNA depletion 

of 11 of the 17 individual candidates show widespread changes in the transcription of PcG-

regulated genes.  Furthermore, we show that depletion of one of our candidates, CAT7, leads to 

upregulation of the activating transcription factors the Trithorax group proteins, lysine-specific 

histone demethylases, and an array of homeodomain-containing genes.  In addition, loss of CAT7 

causes derepression of the moderately close (400kbp away) gene Mnx1, as well as loss of PcG 

binding at the Mnx1 promoter.  Examining loss of CAT7 during motor neuron differentiation from 

embryonic stem (ES) cells, we find that several essential regulators of neuronal development, such 

as the PcG/Shh regulated Mnx1, Irx3 and Isl1, and many PcG-silenced genes in ES cells, show 

differential gene expression. 
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Introduction: 

Long non-coding RNAs (lncRNAs) are emerging as genomic regulators which govern the 

transcriptional machinery.  However, integration of IncRNAs into existing, protein-based models of 

gene-regulatory networks remains challenging.  lncRNAs have been suggested to interact with 

protein complexes as tethers, allosteric switches, scaffolds, and protein evictors 1.  However, 

regulatory lncRNAs remain difficult to identify, and it is harder still to understand how they 

execute changes to gene expression.   

Many lncRNAs have been shown to impact gene expression by modulating activity of transcription 

factors.  Technologies such as RNA Immunoprecipitation (RIP) have been employed to identify 

transcription factor/RNA interactions.  However, RIP is beleaguered with noise from non-specific 

RNA/RNA and RNA/protein binding 2,3.  These artifacts often overwhelm true signal, making RIP 

ineffective at generating novel hypotheses for biological validation. 

In the previous chapter, we developed a technology to identify lncRNAs that interact with 

chromatin proteins.  Our protocol drastically reduces mRNA contamination (a readout of noise) to 

expand the dynamic range of RNAs pulled down in a canonical RIP.  We applied our technology 

to Bmi1, a Polycomb (PcG) protein that is part of a complex (PRC1) important for stable 

chromatin silencing and compaction.  The output of our protocol was a list of lncRNAs candidates 

that interact with Bmi1 (PRC1), or its binding partners, potentially including another PcG complex, 

PRC2.  These lncRNAs are of high interest because they represent candidate interactors of the 

PcG proteins at sites of stably silenced chromatin. 

A growing body of work has implicated PRC2 in direct lncRNA binding 4-8, whereas PRC1 has 

remained largely unexamined.  Though the precise role of lncRNAs in PcG mediated silencing has 

not been mechanistically established, much of the above evidence suggests that lncRNAs may 
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impact PRC2 component localization at specific sites on the chromatin.  PRC1 binding is often 

preceded by PRC2 activity on the chromatin and in some instances, may require PRC2 and/or the 

product of PRC2 on the chromatin (H3K27me3) for proper localization.  Notably, H3K27me3 is 

not necessary for all PcG-mediated silencing. 

Recently, however, the veracity of many lncRNA/PRC2-interactions found by RIP has come into 

question.  Several studies have shown that a component of PRC2, the methyltranferase EZH2, 

binds random RNAs in vitro, and also without sequence specificity in vivo 9,10.  Indeed, it is not 

known which components (if any) of PRC1/2 confer specificity in regards to RNA binding.  These 

technical challenges demand that a higher standard of evidence is presented before a lncRNA is 

validated as part of the PcG gene network.  Furthermore, there is a stark lack of biological 

validation from the resulting lncRNAs from PRC2-RIP screens.  In order to assess the role of a 

lncRNA as it relates to PcG biology, not only should the lncRNA show interaction with the PcG 

proteins, but perturbation of the lncRNA should also exhibit an impact on the PcG-mediated gene-

regulatory network or some aspect of PcG function 7,8.  Such biologically motivated criteria might 

include the ability of a lncRNA to affect PcG binding and/or expression of PcG target genes. 

Our list of candidates from Chapter 2 represents a non-random set of putative PcG interactors 

that have been cross-validated, biochemically purified from a major source of noise (mRNAs), and 

found in nuclei of various tissues of the body.  We therefore capitalized on our unique position to 

further investigate the role of lncRNAs in the PcG biology.  Namely, we screened our candidates 

for effects on PcG-regulated targets and, after identifying interesting candidates, examined the 

role of a lncRNA in PcG recruitment at an affected locus.  Finally, we probed the role of one of 

our candidates in a biological context, during motor neuron differentiation from embryonic stem 

cells. 
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Results: 

Strategy to identify candidates for functional studies 

To better understand the function of our lncRNAs in the cell, and particularly in relation to PcG 

biology, we designed a basic screen to identify which candidates functionally impact gene 

expression of PcG targets (Figure 30).  Specifically, we reasoned that knocking down a lncRNA 

candidate might affect recruitment or assembly of PcG proteins at a repressed locus (or loci).  As 

a result, the PcG proteins would no longer be able to repress expression of target gene(s) at the 

affected locus or loci, leading to an increase in gene expression at those site(s).  Therefore, our 

screen consisted of knocking down RNAs and searching for changes in the transcriptome (RNAseq) 

relative to a scramble control. 

We further considered that indirect effects of modifying PcG activity would also impact the 

output of the screen.  Characteristically, PcG proteins silence master regulators of transcription.  

Moreover, several PcG-regulated genes might be directly affected by perturbing the same locus, 

such as genes organized in a PcG body.  It follows that increased expression of such PcG targets 

could potentially enact a signaling cascade, affecting entire gene networks.  Therefore, de-

repression of PcG targets would not necessarily imply a direct interaction of a lncRNA with the 

chromatin at the target sites, or even that the change in expression was caused by loss of PcG 

binding.  However, such a perturbation in the PcG gene network might be readily discernible 

from noise by broadly assaying changes in PcG target-gene expression. 
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Application and analysis of the screen 

We selected seventeen of our top PRC1-interacting candidates in HeLa Bmi1F17 cells11 (where 

they were first isolated), alongside Suz12 (of PRC2), Bmi1 (of PRC1), Xist lncRNA and scramble 

controls, to screen by this method.  In choosing our lncRNA candidates, or Chromatin Associated 

Transcripts (CATs), we ranked candidates by p-value (EdgeR) but selectively included 9 

candidates mapping back to previously annotated lncRNAs.  CATs came from both unannotated 

and annotated lncRNA regions of the genome, but even the annotated CATs were primarily 

located in lncRNA introns, usually on the same strand.  We also included one candidate which 

shared an exon with the transcript of CISTR-ACT, a chromatin interacting lncRNA upregulated in 

Brachydactyly 12.  The CISTR-ACT overlapping RNA was not among our top candidates, but was 

recently proposed to control changes in chromatin structure and expression, and to directly 

interact with chromatin near PcG binding sites.  We also selected 9 of the top candidates which 

contained tandem repeats: short (20-200 nucleotides) repeated with ~75% fildelity across a 

single region of the genome, and called by Tandem Repeat Finder13.  Such peaks are predicted 

to be highly structured, and were selected based on the previous finding that RepA, a tandem 

repeat found in Xist, binds to PRC2 components.  Notably, Xist was also enriched in our screen 

and selected as a candidate for knockdown. However, our results suggested a strong enrichment 

precisely at the RepE locus of Xist, rather than at RepA (Figure 22-Figure 25). 

We opted for an RNAi methodology that would increase the likelihood of knockdown in the 

nucleus.  This decision was based on the hypothesis that our candidates acted directly on the 

chromatin, and also on prior cell fractionation data from ENCODE 14 suggesting many of our 

candidates are primarily localized to the nucleus.  We chose to knockdown candidates using 

siRNAs, in order to avoid the need for shRNA processing.  We also used nucleofection, which 

electroporates the cellular and nuclear membranes, to efficiently deliver the siRNAs into the 
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nucleus.  After 48 hours (post nucleofection) in standard culture conditions, we harvested the total 

RNA from the cells to test knockdown efficiency by RT-qPCR.  Following knockdown validation, we 

sequenced the (ribosomally depleted) total RNA to search for changes in transcriptional gene 

networks. 

We developed a data pipeline to identify changes in gene expression following lncRNA 

knockdown (Figure 30).  For each candidate, only uniquely mapping, non-duplicated reads, were 

aligned to the genome, yielding approximately 15M aligned reads per sample.  The total 

aligned reads were normalized in the scramble sample for each comparison to a knockdown 

sample.  We confined our comparisons to mRNAs annotated by Refseq15.  We then analyzed the 

number of reads mapping back to each mRNA transcript, including various isoforms of the same 

gene.  Transcripts were considered if they had signal above background in both the scramble and 

the knockdown transcriptomes.  The list of genes (identified by gene name to avoid bias from 

multiple isoforms) represented the total set of expressed genes.  We then broadly filtered the set 

of expressed genes, selecting genes with greater than 2-fold or less than 50% signal relative to 

the scramble control.  This set was designated as the “changed-genes” for each knockdown. 

We characterized each list of changed genes to find significant overlap with PcG-regulated 

genes.  To analyze our data for enrichment of functional data sets, we submitted a list of changed 

genes to the data compendium, the Molecular Signatures database16, for each knockdown 

experiment.  We then identified which of 6,791 previously curated gene-sets showed significant 

overlap with the changed-genes for a knockdown.  These gene sets included transcription factor 

motif binding sets, gene ontology sets, and curated pathways, such as protein reactome gene sets. 

Among these gene sets were PcG and H3K27me3 target gene sets from ChIP data, as well as 

sets of genes whose transcription changed after PcG protein depletion (RNAseq data), from an 

array of cell lines.  To calculate significance for the intersection of a particular gene-set with a list 
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Knock down a lncRNA 
by siRNA nucleofection

48 hours (HeLa)
72 hours (Motor Neurons)

Harvest RNA to assess knockdown 
and make libraries for sequencing

Compare gene expression in lncRNA KD 
vs Scramble KD cells

Select genes above background with >2 fold 
or less than 50% expression versus scramble control

Search for signi�cantly overlapping gene 
sets in the Molecular signatures Database 

If PcG or H3K27me3 gene sets show signi�cant overlap
(top 10) select the candidates for further investigation

Figure 30. Strategy to identify lncRNAs 
that perturb the PcG gene-regulatory 
network
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of changed genes, we only considered genes in any list (or gene background) that were 

expressed in the cell and were identified in the Molecular Signatures database.  We then 

generated p-values and expected values for overlaps to ensure significance of our findings. 

We first applied this strategy to identify expression changes from Bmi1 and Suz12 depletion, as 

positive controls (Figure 31).  We independently knocked each mRNA down using single clones of 

previously published siRNA sequences 17,18.  However, despite showing 81.5% mRNA knockdown 

after 48 hours (versus a scramble), Bmi1 protein levels persisted near WT levels (Figure 32), 

presumably due to the long protein half-life in the cell.  As a result, we did not expect to see 

many changes in gene expression.  We found 157 changed-genes, largely biased towards 

membrane biology (pval = 4.07E-23) and probably a result of membrane damage during 

nucleofection.  In effect, the Bmi1 knockdown served as a baseline control and validation of 

effective RNAi, rather than a comprehensive list of gene targets sensitive to loss of Bmi1. 

Conversely, we observed significant mRNA and moderate protein reduction in Suz12 knockdowns: 

69% of mRNA and more than 50% of protein was depleted (Figure 31, Figure 33).   RNA-seq 

revealed 2-fold (or 50%) expression changes in 236 genes, several of which included other PRC2 

components.  This is consistent with previous reports of destabilization of PRC2 upon perturbation 

of any of its core components.  Analyzing the set of changed genes, we saw a mild overlap with 

PRC2 target gene sets in the Molecular Signatures Database, which came from a wide range of 

cell types.  The relatively moderate effect might be attributed to the residual protein in the cell 

(Figure 33).  While this control also did not produce a comprehensive list of every gene impacted 

by Suz12, it revealed that many PcG targets were indeed susceptible to changes in expression 

due to loss of a PcG protein, and identifiable in the context of this assay. 

We then verified that our siRNAs could enter the nucleus by knocking down Xist (RepE).  Xist is a 

highly abundant, nuclear lncRNA which silences the X chromosome in female cells.  It is notoriously 
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Figure 31. siRNA knockdown of Bmi1 and Suz12 mRNA after 48 hours.
Single siRNA clones were nucleofected into HeLa cells  Target mRNAs are identified on the X-axis.  After 
48 hours, Suz12 or Bmi1 expression was examined by RT-qPCR (triplicate) in the respective knockdowns 
as well as a scramble control.  Each lane was normalized to GAPDH signal, and then further normalized 
for each primer set such that the scramble was 100%. All primer sets spanned exons.  Biological repli-
cates showed similar results in n=3 (Bmi1) or n>5 (Suz12)
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Figure 32. Immunoblot of Bmi1 knock-
down after 48hrs
Bmi1 protein persisted even 48 hours after 
siRNA treatment.

Figure 33. Immunoblot of Suz12 knock-
down after 48hrs
Suz12 protein showed significant knock-
down 48 hours after siRNA knockdown.  
However, there was still a significant protein 
remaining after knockdown.

Bmi1

H3

Bm
i1 

siR
NA 

Kn
oc

kd
ow

n

Scr
am

ble
 

Kn
oc

kd
ow

n

Suz12

H3

Su
z1

2 s
iRN

A 

Kn
oc

kd
ow

n

Scr
am

ble
 

Kn
oc

kd
ow

n

77



difficult to deplete in the cell and yields minimal changes in expression, even with significant 

knockdown.  However, we used Xist knockdown as a control to firstly confirm the siRNAs were 

entering the nucleus, and secondly to gauge background changes in expression.  We saw a 

predictably modest 52% knockdown of Xist, and a relatively low number of changes in mRNA 

expression overall (141).  There was no apparent bias towards changed expression of genes on 

the X chromosome (3/141).  Once again, a significant portion of the changed genes were 

membrane proteins, likely a consequence of the nucleofection process, rather than a specific 

effect of the siRNA.  This experiment demonstrated that our siRNAs were active in the nucleus, and 

gave a relative baseline of expression changes similar to the Bmi1 mRNA knockdown. 

To investigate the role of our lncRNAs in the cell, we subjected seventeen of our novel candidates 

to this screen.  We first verified that off-target effects were minimized in the cell for each 

knockdown.  Explicitly, all knockdowns were performed using 2 unique siRNAs per candidate, 

versus a control scramble siRNA.   The siRNAs were initially verified by BLAST19 for sequence 

specificity (14 or fewer bp of homology to RefSeq-annotated transcripts).  Whole transcriptome 

sequencing (RNAseq) of the knockdowns revealed that none of the most similar mRNA targets (by 

sequence) were significantly downregulated after 48 hours. 

Applying the same analysis as for the control knockdowns above, we found that knockdown of 

most of the candidates affected PcG-related gene expression, without affecting expression of the 

core PcG proteins themselves.   Of the 17 additional lncRNA candidates (besides Xist), 11 showed 

enrichment for gene sets relating to PRC2-regulated or H3K27me3 genes (Figure 34, Figure 35).  

In fact, excluding plasma membrane related gene sets, PcG-related sets were consistently among 

in the top ten most enriched gene sets in these knockdowns, and additional PcG-related gene sets 

were also enriched throughout the top 100 enriched gene sets.   Importantly, the PcG related 

changed genes from each knockdown were not identical, expression of the core PcG proteins 
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Observed intersection 

Number of differentially 
expressed genes in gene set

15

17

18

41

43

35

Suz12 
Targets

Brain 
Bivalent

Eed 
Targets

4.98E -09

pval 2.5E-09
Expected intersection
 (if by chance)

Figure 34. Genes with changed expression after CAT12 knockdown show significant overlap with 
PcG-related gene sets.  
Total RNA from a lncRNA knockdown and scramble was sequenced. and aligned to genes.  Genes 
expressed above background and showing >2fold (or less than 50%) expression relative to a scram-
ble control were analyzed.  Here, we show the gene set for CAT12 knockdown. Selected gene sets 
were identified by the Molecular signatures database.  p-values and expected overlaps were calcu-
lated using a hypergemetric distribution, only considering genes that were expressed above back-
ground in the cell and found in the Molecular Signatures database.   Isoforms were not included to 
avoid bias.

Figure 35. Knockdown of 11 of 17 candidates resulted in perturbations of the PcG gene 
network
Knockdown of individual candidates caused widespread changes to expression of PcG regulated 
genes or their targets.  By this measure, the majority (11/17) candidates tested were found to be 
involved in PcG gene-regulatory networks.  Knockdown of 3 individual candidates did not widely 
impact PcG gene networks, but may be involved in other biological functions.  Knockdown of 3 
other candidates had no clear effect.

Metabolism (2)

PcG related (11)

Cell Cycle (1)

No clear function
(3)

Number of candidates affecting various gene networks

pval

pval 6.21E-09
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themselves was unaffected, and no genes other than plasma membrane genes were changed in 

every assay.  We ranked these 11 lncRNAs as high priority candidates for PcG interactions. 

The top enriched gene sets in this analysis consistently suggested PRC2 involvement.  However, we 

refrained from making any conclusions about these candidates regarding PRC1 versus PRC2 

biology because the number and size of the gene sets included in the Molecular Signatures 

database were biased towards PRC2 (versus PRC1).   This bias might be due to the (generally) 

poor quality of PRC1 antisera in regards to generating PRC1 component ChIP data sets, the 

availability of H3K27me3 data sets, and also by the redundancy and longer half-life of PRC1 

proteins in knockdowns or knockout data sets.  Instead, we chose to use PRC2 related gene sets as 

a proxy for general PcG activity. 

Of the remaining six targets which did not show significant enrichment with PcG gene sets, one 

lncRNA was enriched for general metabolism genes, another for cell proliferation genes (perhaps 

S-phase), and a third for mitochondrial/electron transport chain related genes.  The results are 

summarized in Supplemental Table 2. Lastly, the changed genes from final three targets did not 

show any overtly recognizable gene ontology.  While a lncRNA may easily be regulating an 

aspect of PcG biology without exhibiting widespread changes to the PcG gene network, such 

pheonotypes are not readily recongnizable by this assay. Therefore, we considered these six 

candidates as less likely to be true PcG interactors.  We conclude that 11 of the 17 lncRNAs that 

we tested indicate possible direct involvement with PRC1 regulation. 
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Impact of CAT7 KD on PcG binding 

After identifying 11 candidates that disrupt the PcG gene network, we wanted to further 

investigate individual candidates for a role in PRC1 biology.  We tested if upregulated PcG 

targets were coupled with a loss of PcG protein binding at the promoter sites.  We were 

particularly intrigued by one lncRNA whose knockdown resulted in changes not only of PcG 

regulated gene targets, such as homeodomain proteins, but also caused upregulation of Trithorax 

group proteins (MLL1-4, SETD1B), several Jumanji-domain containing proteins, and an assortment 

of transcription factors and other chromatin proteins.  This lncRNA, referred to as “Chromatin-

Associated Transcript 7” (CAT7), is a 1.7 kbp, polyadenylated, capped RNA, composed of a 

single exon (Figure 36, Figure 37, Figure 38) (by RACE-PCR) and largely overlaps with a tandem 

repeat.   

We next searched the genomic environment in the vicinity of CAT7, and found that CAT7 was 

encoded on the same strand as an intron of a previously annotated EST/lncRNA of unknown 

function.  This may be due to a poor annotation of the lncRNA, which is not expressed at 

annotated exons.  Broadly, CAT7 is located in an EZH2-rich gene desert between the 

developmental patterning gene Sonic Hedgehog (Shh) and the testis-specific gene, RNF32 (Figure 

39).  Large deletion mutants of the syntenic region in mouse showed massive misregulation of Shh 

patterning in developing mouse embryos.  These defects are thought to be due to loss of enhancer 

elements. Notably, CAT7 is not conserved in mouse based on sequence or the presence of a 

tandem repeat in syntenic regions.  

We also noticed that CAT7 was transcribed directly 5’ to another EST of the same strand, a liver-

specific lncRNA transcript, and wanted to explore the role of CAT7 in regulation of this transcript.  

Based on previous data from ENCODE, the putative promoter/enhancer region (directly 5’ of the 

transcript, bounded by CAT7) showed DNAse sensitivity, a p300 like binding site, a Retinoid X 
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Figure 36. RT-qPCR of CAT7 lncRNA knockdown in HeLa (GAPDH normalized)
HeLa cells were nucleofected with siRNA targeting  CAT7 lncRNA or a scramble control.  RNA was 
extracted and RT-qPCR for CAT7 and GAPDH was performed.

Figure 37. Northern Blot reveals CAT7 is primarily nuclear and is efficiently knocked down.  
Nuclei and cytoplasm were separated, and RNA was isolated from each.  Northern of CAT7 in 
celluar compartments reveals that CAT7 is primarily nuclear. Similarly, Northern analysis shows 
that knockdown is observed in nuclear extracts upon siRNA treatment. All lanes have 20ug 
RNA/well; 18S EtBr loading control.
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Input 

Bmi1 IP

FLAG-Bmi1 IP

Figure 38. CAT7 Enrichment in IP vs Input by RNAseq, and the Surrounding Genomic Landscape
A nearby liver specific transcript and TF binding site, and a tandem repeat region are highlighted.

Liver specific TF binding

Liver specific transcript

CAT7 lncRNA
as identified by RNAseq of IPs
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Receptor binding site, several HNF and Forkhead transcription factor binding sites, and a CTCF 

binding site (Figure 38).  Presence of these proteins, as well as RNA PolII, were almost exclusively 

shown in liver with the exception of CTCF binding, which was present in a wide array of cell lines.  

We were surprised to see that genes with altered expression in the CAT7 knockdown do not 

significantly overlap with gene sets pertaining to liver-related functions, at least in the context of 

HeLa cells.  Additionally, the liver-specific lncRNA adjacent to CAT7 is not transcribed in either the 

scramble or the knockdown samples.  However, many differentially expressed genes are PcG 

regulated genes, such as Mnx1 (up) and Irx3 (down), which are also regulated by Shh signaling, 

or, in the case of HoxA13 (up), control overlapping developmental processes 20.  

We then tested whether overexpression of a PcG target gene in the CAT7 knockdown was 

accompanied by a loss of PcG binding at its promoter. We were particularly intrigued by the 

overexpression of Mnx1 (Figure 40, Figure 42) because it is located reasonably close to CAT7 

(~400kbp away on the same chromosome), on the border of a neighboring gene desert (Figure 

39).  In addition, Mnx1 was also overexpressed (2.1 fold) in the Suz12 knockdown, but not as a 

consequence of any other lncRNA knockdown.  To test if loss of CAT7 caused a loss of PcG protein 

binding at Mnx1, we performed ChIP, targeting Bmi1, Suz12, and H3K27me3 in CAT7 

knockdown versus scramble cells.  We observed a 27% loss in Suz12 binding, a 34% loss in 

H3K27me3 signal, and a 22% loss in Bmi1 binding at the Mnx1 promoter in knockdown cells.  

Conversely, we saw almost no loss of ChIP signal at the control locus (HoxB6), and minimal signal 

in all IP’s at an intergenic, negative control (Figure 41).  These data show that knockdown of CAT7 

causes derepression of Mnx1 and loss of PcG binding.   
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Perturbation of CAT7 during motor neuron differentiation  

We wanted to further investigate the role of CAT7 in a biological system where both Mnx1 and 

PcG proteins are essential.  Mnx1 is expressed early in development as well as in adult tissue 21, 

and is causal of the developmental disorder Curriano syndrome 22.  Specifically, Mnx1 is essential 

for both motor neuron development and insulin-producing beta-cell formation in the pancreas.  

Interestingly, genomic analysis reveals that neuronal and beta-cell transcriptomes are closely 

related, despite their different origins in early embryogeneis (endoderm versus ectoderm) 23.  The 

similar expression patterns may largely be driven by an array of essential PcG-mediated 

regulators specific for both neuronal and beta cell differentiation, including Mnx1, Isl1, Pax6 and 

Neurod1, which are silenced and H3K27me3 in most other cell types.  We therefore were 

interested in neuronal formation based on the essential roles of Mnx1 and the PcG proteins. 

While Mnx1 is initially silenced in hES cells and bound by the PcG proteins 23-25, this repression is 

alleviated over the course of differentiation.  We decided to use an Mnx1 reporter human ES line 

to probe the role of CAT7 through differentiation.  The reporter cell line contains multiple 

insertions of eGFP under the control of a 9kb murine Mnx1 promoter, and GFP expression has 

been shown previously to correspond to endogenous Mnx1 expression 26. In previous publications 

with this cell line, this protocol robustly generates GFP-positive early motor neurons after six days 

of differentiation.  Notably, CAT7 is expressed in human ES cells (Figure 26). 

We designed a knockdown-assay in order to investigate the role of CAT7 in motor neuron 

development from human embryonic stem cells (hES cells).  Similar to our assay in HeLa cells, we 

knocked down CAT7 in an ES line by electroporation with siRNAs.  After allowing the cells to 

recover overnight in ES conditions, we directed the cells toward motor neuron differentiation by 

replacing the media with media containing neural growth factors and retinoic acid.  Finally, we 

harvested cells at 72 hours and isolated the RNA for sequencing and analysis.   
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We performed the assay and saw that CAT7 knockdown derepresses Mnx1 expression in 

neuronal differentiation conditions.  After verification of the CAT7 knockdown (>71.3% in each 

replicate) by RT-qPCR, we tested for Mnx1 expression relative to GAPDH in neurons (Figure 40).   

As seen in HeLa cells, Mnx1 was upregulated 2.3 fold and 2.7 fold in biological replicates 

relative to scrambles.   qPCR of eGFP revealed that GFP was expressed specifically in the 

knockdown cells, but at very low levels (data not shown). 

Notably, CAT7-mediated overexpression of Mnx1 was only observed in specific conditions.  

When CAT7 was knocked down in ES cells and maintained in ES-cell media for 72 hours, Mnx1 

was not overexpressed relative to a scramble control, and was lowly expressed in both samples.  

Similarly, when CAT7 was knocked down and the cells were placed in random differentiation 

conditions or in identical neural differentiation conditions without retinoic acid, Mnx1 was neither 

highly expressed nor differentially regulated between the knockdown and scramble (data not 

shown).  Together, these data indicate a role for the retinoic acid pathway in CAT7 mediated 

derepression of Mnx1.  

To more broadly test the effect of the knockdown on the PcG gene network, we sequenced the 

total RNA from the CAT7 knockdown and scramble ES cells placed in neural+retinoic acid 

conditions.  Applying the same analysis as above, we searched for genes with expression 

changed relative to a scramble control.  We saw once again that PcG targets and developmental 

regulators were highly overrepresented in the list of changed genes.  As expected from the RT-

qPCRs, Mnx1 overexpression (3.5 fold upregulation) was observed, as well as downregulation of 

the inversely related Irx3 (51% decrease) (Figure 42, Figure 43, Figure 44).  Notably, eGFP did 

not have much signal, and did not show changes in expression from the knockdown to the 

scramble at low depth (data not shown).  We also saw that the neuronal master regulator Isl1 

and several pancreas or diabetes-type I genes were upregulated, including HLA proteins and 
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GAB1.    Many developmental targets listed in the Molecular Signatures database as H3K27me3 

in ES cells, MLL-targets, or genes with bivalent promoters in an array of cell types were also 

differentially expressed.  However, unlike the knockdown in HeLa cells, the Trithorax group 

proteins and Jumanji-domain containing proteins were not overexpressed.  This indicates that 

Mnx1 overexpression is not a result of elevated Trithorax group protein transcription.  

Furthermore, CAT7 may be playing different roles in the context of cancer and development. 

 

Discussion: 

In our study, we investigated a list of potential PRC1-interacting lncRNAs for involvement in the 

PcG gene-regulatory network.  We knocked down candidates in HeLa cells and searched for 

widespread changes in mRNA expression of PcG targets, relative to a scramble control.  A 

striking 11 of the 17 candidates examined showed significant changes in PcG targets upon 

knockdown, 3 showed clear changes to other pathways such as metabolism and cell cycling, and 3 

had no clear effect.  In addition, the RepE region of Xist, a highly transcribed lncRNA shown 

previously to interact with PRC2, was also identified in this study, though the above assay was not 

an effective method to validate this interaction.  Taken together, these data demonstrate that the 

wide dynamic range of the protocol used to identify these interactions (Chapter 2) allows capture 

of biologically relevant lncRNAs across a wide range of expression.  Specifically, we have 

generated a technology which successfully identified multiple PRC1-interacting candidates that 

influence the PcG gene-regulatory network. 

We also showed that knockdown of one of our candidates, CAT7, not only causes overexpression 

of the PcG/Shh-regulated gene Mnx1, but also leads to loss of a PRC1 component, a PRC2 

component and H3K27me3 binding at the Mnx1 promoter.  This is consistent with Mnx1 

derepression observed in our Suz12 knockdown. During early motor neuron differentiation from 
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hES cells, knockdown of CAT7 causes significant changes in expression of several Shh/PcG 

regulated motor neuron master regulators.  Namely, upregulation of Mnx1 and Isl1, and 

downregulation of Irx3, were observed.  These factors are initially repressed with H3K27me3 

signatures in the ES-cell state and are activated during differentiation.  Although CAT7 is 

expressed in hES cells, knockdown of the transcript does not result in upregulation of Mnx1 in the 

absence of differentiation.  Similarly, identical neural differentiation conditions which lack retinoic 

acid show low, non-differential Mnx1 expression between candidates. This indicates that 

knockdown of CAT7 is not sufficient to initiate derepression of Mnx1, and might require additional 

components from the retinoic acid pathway. 

Furthermore, while CAT7 depletion induced upregulation of activation factors such as the 

Trithorax group proteins and Jumanji domain containing proteins, in HeLa cells, none of these 

factors were upregulated as an effect of CAT7 depletion in differentiating motor neurons.  This 

could represent the different effects of CAT7 in different cellular contexts. 

The widespread transcriptional effects seen in this study evoke a mechanistic question of how 

lower abundance lncRNAs could elicit broad responses in PcG networks. We can further address 

this question by examination of one of our candidates that influences the PcG gene network.  This 

candidate shares an exon with the previously studied transcript DA125942.  During 

chondrogenesis, DA125942 plays an important role in expression of master developmental 

regulators 12.  Namely, complementary to our findings, prior network analysis suggested that 

overexpression of DA125942 enacts a negative feedback loop leading to decreased PTHLH 

(chondrogenic developmental regulator) expression (cis) and decreased SOX9 (developmental 

gene) expression (trans).  This leads to widespread changes in both EZH2 binding and gene 

expression of a variety of PcG targets. Though PTHLH and SOX9 are not expressed in our HeLa 

cells, the isoform of DA125945 found in HeLa cells may be influencing another developmental 
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regulator or perhaps may play tissue-specific developmental roles, based on the nuclear 

landscape.  

DA125942 is transcribed from a regulatory locus, CISTR-ACT which is located in close physical 

(3D) proximity to PTHLH and Sox9 (in trans) during chondrogenesis. In certain forms of 

Brachydactyly, D125942 is upregulated, PTHLH is translocated far away from the CISTR-

ACT/SOX9 locus and has reduced expression, and SOX9 expression is also reduced. Our study 

additionally suggests an interaction between an isoform of DA125942 with the PcG proteins in 

HeLa cells, where the 3D contacts of CISTR-ACT has not been investigated.  Collectively, these 

data could support a model where lncRNAs interact with the chromatin factors, such as the PcG 

proteins, to repress even trans targets that are in close physical proximity, and initiate a 

widespread signaling cascade.  Such a model is consistent with previous reports of PcG proteins 

affecting co-localized, co-regulated regions of the chromatin (such as PcG bodies). It is also 

consistent with reports of various lncRNAs, such as Xist 5,27, Kcnq1ot1 28,29, and HOTTIP 30, which 

affect chromatin architecture and expression in close physical proximity to the RNA.  

Broad application of this model can also explain how low-abundance nuclear lncRNAs reach 

distal targets to affect large genomic networks.  Explicitly, low-expression lncRNAs could influence 

multiple targets by working at co-localized regions, such as in PcG bodies, to enact a signaling 

cascade.  Expanding this model, we note that the PcG proteins are proposed to scan the genome 

for their targets, perhaps through an EZH2/RNA interaction.  While surveying the chromatin, the 

PcG proteins might bind specific lncRNAs at their transcription sites, and then use the lncRNA to 

properly target the complex.  Such a mechanism could serve to physically bring target lncRNAs to 

particular PcG regulated sites in both cis or trans, and in some instances might bypass the 

constraint that a low-expression lncRNA be transcribed in precisely the same 3D-space as its 

target gene. 
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Extending this model to CAT7, we see that CAT7 and Mnx1 are located 400kb away from each 

other near the borders of adjacent PcG-rich gene desert regions.  While CAT7 mediated 

recruitment of the PcG proteins to the Mnx1 promoter is perhaps the simplest mechanistic 

explanation for the interaction and derepression observed in this study, such we cannot verify that 

CAT7 is localized to the Mnx1 promoter.  Technologies such as RNA/DNA-FISH, CHART, or RAP 

could be used to map the RNA to a distinct locus or loci on the chromatin, though these methods 

are not yet optimized for low abundance transcripts.  Such studies could also be supplemented 

with DNA/DNA-FISH or 3C to gauge physical proximity of CAT7 and Mnx1.  

 

Conclusion 

In our screen, we sought to validate the relevance of our candidates from Chapter 1 to the PcG 

gene-regulatory network.  We found that the majority (11/17) of candidates tested did, in fact, 

yield widespread changes to PcG target-gene expression upon siRNA knockdown.  Furthermore, 

perturbation of one candidate, CAT7, causes overexpression of the nearby master developmental 

protein Mnx1, and the Mnx1 promoter loses a significant portion of PcG binding.  These results 

also validated in early motor neurons differentiating from ES cells, where siRNA depletion of 

CAT7 caused misregulation of essential motor-neuron regulators.  Taken together, our results show 

that the protocol we have developed in Chapter 1 identifies a class of lncRNAs which impact PcG 

recruitment, and gene-expression of PcG targets. 

 

Methods: 

HeLa Cell Culture 

HeLa cells stably transduced with a copy of FLAG- tagged Bmi1 at approximately 25% 
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overexpression11 were cultured in DMEM supplemented with 10% FBS (Sigma), NaHCO3 pH 7.5 

and gentamycin.   Cells were grown in suspension in a spinner flask (Matrical) to a density of 

approximately 3x108 cells per liter. 

 

Human ES cell culture and differentiation to motor neurons 

Human embryonic stem cells (hESCs) were maintained on plates coated with hESC-qualified 

Matrigel (BD Biosciences) in chemically defined mTeSR-1 medium (Stemcell technologies) and were 

passaged by manual picking or enzymatic digestion with TrypLE Express (Life Technologies) in the 

presence of 10 µM Y27632 (Sigma). For all experiments, passage number was less than 40. 

Media was changed daily. 

hESCs were differentiated using a differentiation basal media containing 1:1 DMEM/F12 (Life 

Technologies) and NeuroBasal (Life Technologies), 2 mM glutamax-I (Life Technologies), 1x N2 

supplement (Life Technologies), 1x B27 supplement (Life Technologies). For the non-directed 

differentiation, basal media was supplemented with 10% fetal calf serum (FCS) (Life 

Technologies).  For neural differentiation, the media was supplemented with 10nM SB431542 

(Sigma), 1 μM dorsomorphin (Millipore) and for certain experiments additionally with 0.1 μM 

retinoic acid (RA) (Sigma). Media was changed daily. 

 

siRNA Knockdown 

siRNAs were ordered from BioSciences.  For HeLa cells, 106 cells were nucleofected in 100uL of 

Nucloefector R solution and 200nmoles of siRNA.  Nucleofections were carried out using program 

I-013 on the Nucleofector II as per manufacturer’s instructions.   After 48 hours, cells were isolated 

for RNAseq or ChIP.  For ES cells, the Neon torrent was used in place of the Nucleofector II.  
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2x106 cells were used in 1 pulse, 1200V, 20ms.  All siRNA sequences can be found in 

Supplemental Table 2. 

 

RNA purification, cDNA generation, and preparation for libraries for RNAseq 

Whole cells, nuclei, or cytosolic were stored in Trizol (Invitrogen).  Chloroform was added and the 

sample was spun out according to the manufacturer’s instructions.  The aqueous phase was 

applied to Zymo Clean-and concentrator 5 columns and DNAse was applied “in tube”as per the 

manufacturer’s instructions for RNAs larger than 200 nucleotides.  For RT-qPCR, cDNA was 

generated using SUPERscript VILO (Invitrogen).  For sequencing, isolated RNA was ribo-depleted 

using the Ribo-Zero Magnetic Gold kit (Epicentre/Illumina) according to manufacturer instructions, 

and cDNA was generated with the TruSeq kit (Illumina).  Libraries were constructed as previously 

described5. 

 

ChIP 

Samples were dissociated from wells and pooled, and an aliquot of cells was reserved for RNA 

isolation (to test knockdown).  ChIP was performed on the remaining cells, as previously published, 

but at a smaller scale24,25.  Briefly, 5x106 cells were crosslinked with 1% HCHO for 10 minutes in 

media, at room temperature. Bmi1 antisera31, Suz12 (ab12703), H3K27me3 (ab6002), or rabbit 

IgG (Jackson Labs) was prebound to 20uL ProteinA beads in BSA (with 2ug Ab), and then added 

to sheared nuclear lysate from the crosslinked cells.  Beads were washed in RIPA buffer four times 

and chromatin was eluted in Tris, SDS, and EDTA at 65C.  After crosslink reversal, RNAse 

treatment, Proteinase K treatment and phenol-chloroform isolation, DNA was EtOH precipitated 

and resuspended in water for qPCR.  
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qPCR 

qPCR was performed as per manufacturer’s instructions using the Biorad iTaq 2X master mix). 

Primer sets can be found in Supplemental Table 1. For RT-qPCR, approximately 2ng cDNA/well 

was used. 

 

Native Cell Fractionation 

Nuclear isolation was performed in native cells, as previously published32,33 and checked by 

hemocytomter (>97%) with Trypan blue.  Cytosolic extract was also reserved, alongside whole 

cell extract.  All extracts were immediately stored in Trizol. 

 

Northern Blot and RACE Analysis 

Nuclei were isolated from native cells to >97% purity by Trypan Blue staining on a 

hemocytometer.  Northern blot analysis was performed using RNA probes as in previously 

published protocols34, with the exception that a Hybond-N+ membrane was used instead of 

nitrocellulose.  RACE was performed using the Ambion RLM-RACE kit (AM1700) as per 

manuafacturer’s instructions.   

The Northern probe sequence was as follows: 

AACAAAGCCUGAGUCGAACACGAAAGGAAGAUGGUCGCUGAAGCGAAGGGGAGUCAUUU

GUGUCCGUUCCAUAAAUCAAGACUGUCGCCUUUCGAAAAGGGGAGGUGUCGCAGUCUGA

CAGCCUGAUCUGUUUCUAGGACGGCGUGUUUCCAGGAA 
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Gene Set Enrichment 

RNAseq data was aligned to the hg19 build of the genome.  Only uniquely mapped, non-

duplicated reads were included.  This yielded an average of 15M reads per lane.  Samples were 

normalized by total reads, and total reads mapping back to an mRNA (only at exonic regions, as 

defined by RefSeq15) were compared in a scramble control versus an individual knockdown.  

Removing any mRNA that had fewer than 5 reads in either lane, we then searched for mRNAs 

that showed greater than 2-fold difference between a sample and the scramble control.  This 

analysis included multiple isoforms.  However, after identifying differentially expressed genes, we 

only considered one isoform per differentially expressed gene, to avoid bias.  We entered 

differentially expressed genes into the Molecular Signatures Database16 and compared our gene 

set to 6,791 others (default parameters, but excluding cancer gene sets and TF binding site 

motifs).  We then identified if Suz12, PRC1, or H3K27me3 related gene-sets were significantly 

enriched using a broad null hypothesis (that all genes in the Molecular Signatures Database were 

expressed above background).  We then calculated true p-values for the enrichment of these sets 

by considering the total number of genes actually expressed above background (as before) in 

the cell, which were also identified in the Molecular signatures database.  We used a 

hypergeometric distribution to generate p-values and (rounded) expected values.  A summary of 

the results is found in Supplemental Data Table 2.  A schematic of this process is also found in 

Figure 30. 
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CONCLUSIONS 
AND FUTURE DIRECTIONS  
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In our study, we developed a general protocol to identify lncRNAs that interact with chromatin 

proteins (CATs). By applying this protocol to Bmi1 of PRC1, we identified at least 11 novel 

candidates whose expression impacts PcG binding and/or PcG target gene expression.  One such 

lncRNA, CAT7, also influences transcription of key neuronal factors during early motor-neuron 

differentiation from human embryonic stem cells. 

Our final efforts in the lab will be to further characterize CAT7 and a few other lncRNAs.  We 

have generated libraries from the PcG ChIP-qPCR in CAT7 knockdowns from Chapter 2. In this 

way, we can look genome-wide for the effects of knockdown on PcG recruitment.  Similarly, we 

have knocked down 2 more CAT’s and are awaiting ChIP sequencing. We will also compare our 

results with HiC data to look for co-localization of affected genes and the lncRNA transcription 

site. 

Interestingly, CAT7 is conserved by sequence in Zebrafish.  Preliminary of results show that CAT7-

targeted morpholino leads to a sinusoidal back defect in developing zebrafish.  Experiments to 

try to rescue the phenotype with the human RNA are underway.  In addition, we want to gauge 

the impact of Rep E deletion in mouse or human, on PRC1 recruitment to the inactive X by IF.  This 

experiment will be done either by LNA-knockoff + IF, or by IF in deletion mutants. 

Finally, others in the lab may try to optimize CHART or RAP to look at where on the chromatin the 

CATs are binding.  As of yet, these technologies have only worked for very highly abundant 

lncRNAs, so the feasibility of these protocols on low abundance transcripts is yet unclear.   The lab 

may also use this protocol to look at interactions with other chromatin proteins as well.  It is with 

humility and great pleasure that I see my work continuing in others’ hands and I look forward to 

seeing how it evolves.   

Thank you for your time and attention. 
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