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Quantifying Methane Emissions Using Satellite Observations 
 
Abstract 
 
 Methane is the second most influential anthropogenic greenhouse gas. There are 

large uncertainties in the magnitudes and trends of methane emissions from different 

source types and source regions. Satellite observations of methane offer dense spatial 

coverage unachievable by suborbital observations. This thesis evaluates the capabilities of 

using satellite observations of atmospheric methane to provide high-resolution constraints on 

continental scale methane emissions. In doing so, I seek to evaluate the supporting role of 

suborbital observations, to inform the emission inventories on which policy decisions are 

based, and to enable inverse modeling of the next generation of satellite observations. 

Errors were characterized in the standard TES methane data product using 

observations from the HIPPO aircraft campaign. An observation system simulation 

experiment (OSSE) using synthetic TES-like observations showed that TES can constrain 

emissions on global to continental scales. An experimental TES methane data product 

containing two pieces of information in the vertical has smaller errors than the standard 

product, and is therefore of promising value for constraining methane emissions. 

Methane emissions in the United States (US) are quantified during summer 2004 

using observations from SCIAMACHY, which has dense spatial coverage and sensitivity 

throughout the troposphere. Aircraft data from the INTEX-A campaign serve to 

characterize errors in the SCIAMACHY data and to evaluate inversion results. An 

inversion at ~100x100 km2 horizontal resolution provides the optimal estimate of US 
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emissions. Optimized emissions are larger than estimated by the US Environmental 

Protection Agency (EPA), particularly from livestock sources.  

Methane emissions from California are quantified using a dense set of aircraft 

observations from the CalNex campaign (May-June 2010) are found to be nearly a factor 

of two higher than estimated by the California Air Resources Board. Satellite 

observations from TES constrain free troposheric background methane while GOSAT 

observations identify the spatial pattern of error observed by CalNex but are too sparse to 

quantify statewide emissions. OSSEs show that the future TROPOMI satellite instrument 

may constrain California emissions at a detail comparable to the CalNex observations. 

Geostationary observations offer even greater for constraining future emissions. 
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Chapter 1. Overview 

 Methane is the second most powerful anthropogenic greenhouse gas after carbon 

dioxide (Myhre et al. 2013). Present day methane concentrations are ~2.5 times higher 

than those of the pre-industrial atmosphere (Etheridge et al., 1998). The magnitude of 

global methane emissions is constrained within +/- 15% by knowledge of the dominant 

global sink, chemical reaction with the OH radical. However, the magnitudes and trends 

of emissions from different source types and source regions are far more uncertain 

(Myhre et al. 2013, Hartmann et al. 2013). Satellite observations of atmospheric methane 

offer dense spatial coverage, and through inverse modeling, provide a powerful means of 

reducing these uncertainties.  

 

1.1 Methane emissions and their uncertainties 

Present day methane emissions are estimated to be ~550 Tg a-1, 50-65% of which 

are anthropogenic (Ciais et al. 2013). Major anthropogenic sources include natural gas 

and petroleum extraction, natural gas distribution, coal mining, landfills, livestock, rice 

cultivation, wastewater, and biofuel use. Wetlands are the largest natural source, followed 

by open fires, termites, and geological sources. Methane has an atmospheric lifetime of 

9.1 ± 0.9 years (Prather et al. 2012). Reaction with OH accounts for 90% of methane loss, 

with minor contributions from oxidation in the stratosphere, soil absorption, and reaction 

with tropospheric chlorine. 

Global total emissions are constrained within ± 15% by knowledge of OH 

concentrations, derived from observations of methyl chloroform (Prinn et al. 2005, 

Montzka et al. 2011). The magnitudes of emissions from different source types and 
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source regions are far more uncertain. Reducing methane emissions has been identified as 

a low-cost priority in greenhouse gas emissions reduction strategies (IEA World Energy 

Outlook 2013, van Vuuren et al. 2006, Weyant et al. 2006). Efficacious emission 

reduction policies require better quantification of emissions on scales relevant to 

regulatory agencies (national, state). 

 

1.2 Satellite observations of methane 

Satellite observations of atmospheric methane provide a resource for constraining 

emissions through inverse modeling, as first demonstrated by Bergamaschi et al. (2007). 

Satellites deliver dense spatial and temporal coverage unachievable by surface networks 

or aircraft campaigns. Methane has been retrieved from nadir satellite measurements of 

solar backscatter in the short-wave infrared (SWIR) and terrestrial radiation in the 

thermal infrared (TIR). SWIR retrievals are available from SCIAMACHY (2003-2012; 

Frankenberg et al. 2011) and GOSAT (2009-present; Parker et al. 2011; Schepers et al. 

2012). TIR retrievals are available from AIRS (2002-present; Xiong et al., 2008), TES 

(2004-2011; Worden et al. 2012), and IASI (2007-present; Xiong et al. 2013; Crevoisier 

et al. 2013). SWIR retrievals provide total atmospheric columns. TIR retrievals provide 

vertical profiles but with low sensitivity to the lower troposphere due to lack of thermal 

contrast, and this limits their value for detecting regional sources (Wecht et al., 2012). 

The TROPOMI instrument to be launched in 2015 will provide SWIR methane data with 

global daily coverage and 7x7 km2 nadir resolution (Veefkind et al., 2012). There are also 

several current proposals for geostationary SWIR observation of methane over North 

America, drawing on plans for the NASA GEO-CAPE mission (Fishman et al., 2012).""
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1.3 Research objectives and approach 

 This thesis evaluates the capabilities of using satellite observations of atmospheric 

methane to provide high-resolution constraints on continental scale methane emissions. In 

doing so, I seek to evaluate the supporting role of suborbital observations, to inform the 

emission inventories on which policy decisions are based, and to enable inverse modeling of 

the next generation of satellite observations.  

To pursue the goals stated above, I perform inverse modeling using the GEOS-

Chem chemical transport model (CTM) to relate methane emissions to satellite 

observations. The inverse modeling consists of minimizing a Bayesian cost function that 

weighs the constraints on emissions from the satellite observations against a priori 

estimates of emissions (Rodgers, 2000)."

Minimization of the cost function is performed using the GEOS-Chem CTM, its 

adjoint, and a quasi-Newton optimization method. The GEOS-Chem adjoint was 

described by Henze et al. (2007) with application to CO by Kopacz et al. (2009). 

Application to methane follows that for CO but includes only methane chemistry and 

methane emissions. The computational cost of the adjoint method is only weakly 

sensitive to both the number of observations and to the number of geographical regions 

from which emissions are estimated. This enables the use of dense satellite observations 

to constrain methane emissions at a spatial scale limited only by the CTM. Throughout 

this thesis, suborbital observations from aircraft or surface stations are used to support 

inverse modeling through characterization of errors in satellite observations and 

evaluation of inversion results. 
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1.4 Summary of Results 

Chapter 2 evaluates the utility of TES methane version 4 (V004) for constraining 

surface emissions globally. Errors in the TES methane product are characterized by 

comparison to aircraft vertical profiles over the Pacific Ocean from the HIAPER Pole-to-

Pole Observation (HIPPO) program, described by Wofsy et al. (2012). An Observation 

System Simulation Experiment (OSSE) is then conducted as follows. Using GEOS-

Chem, synthetic TES data with error characteristics equivalent to those of V004 are 

generated from a “true” distribution of methane emissions. A priori methane emissions 

are then perturbed, and the synthetic data are assimilated in the GEOS-Chem inverse 

modeling framework in an attempt to recover the “true” methane distribution. OSSE 

results show that V004 data can constrain emissions on global to continental scales. An 

experimental TES data product with two pieces of information in the vertical (V005) has 

less random error than V004, and may provide better constraints on surface emissions. 

Chapter 3 quantifies methane emissions from the United States (US) using 

observations from SCIAMACHY during the summer of 2004. Data from the INTEX-A 

aircraft campaign over the eastern US are used to identify and correct a water vapor 

dependent bias in the SCIAMACHY data. An inversion is conducted at the native 

resolution of GEOS-Chem (~50x50 km2). GEOS-Chem grid cells are then grouped using 

a hierarchical clustering algorithm to extract maximum information from the 

SCIAMACHY observations. An inversion for emissions from 1000 clustered grid 

squares (~100x100 km2) provides better a better fit to SCIAMACHY observations. 

Improvement in the inversion is evaluated using boundary layer INTEX-A observations. 
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Optimized US emissions are 32.0 ± 1.3 Tg a-1, compared to 28.3 Tg a-1 in EPA emission 

inventory (EPA, 2013). US livestock emissions are underestimated by 60% by the EPA 

and are twice the natural gas and oil emissions, in contrast to the EPA inventory, in which 

these two sources are of comparable magnitude. 

Chapter 4 demonstrates the capabilities of aircraft, current satellites, and future 

satellites for constraining emissions from California. Inversion of observations from the 

CalNex aircraft campaign (May-June 2010) at the native resolution of GEOS-Chem yield 

total California methane emissions of 2.86 ± 0.21 Tg a-1, compared with 1.51 Tg a-1 in the 

California Air Resources Board (CARB) inventory used for state regulations of 

greenhouse gas emissions. Current satellite observations from GOSAT can constrain 

methane emissions in the Los Angeles Basin but are too sparse to constrain emissions 

quantitatively elsewhere. An OSSE for the future TROPOMI satellite instrument (launch 

2015) shows that it can constrain California methane emissions at a detail comparable to 

the CalNex aircraft campaign. Geostationary satellite observations offer even greater 

potential for constraining methane emissions in the future. 
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Chapter 2. Validation of TES methane with HIPPO aircraft 

observations: implications for inverse modeling of methane 

sources 

 

[Wecht, K.J., Jacob, D.J., Wofsy, S.C., Kort, E.A., Worden, J.R., Kulawik, S.S., Henze, 

D.K., Kopacz, M., and Payne, V.H., 2012. Validation of TES methane with HIPPO 

aircraft observations: implications for inverse modeling of methane sources. Atmospheric 

Chemistry and Pysics, 12, 1823-1832. Copyright 2012 Atmospheric Chemistry and 

Physics] 

 

Abstract 

We validate satellite methane observations from the Tropospheric Emission 

Spectrometer (TES) with 151 aircraft vertical profiles over the Pacific from the HIAPER 

Pole-to-Pole Observation (HIPPO) program. We find that a collocation window of ±750 

km and ±24 h does not introduce significant error in comparing TES and aircraft profiles. 

We validate both the TES standard product (V004) and an experimental product with two 

pieces of information in the vertical (V005). We determine a V004 mean bias of 65.8 ppb 

and random instrument error of 43.3 ppb. For V005 we determine a mean bias of 42.3 

ppb and random instrument error of 26.5 ppb in the upper troposphere, and mean biases 

(random instrument errors) in the lower troposphere of 28.8 (28.7) and 16.9 (28.9) ppb at 

high and low latitudes respectively. Even when V005 cannot retrieve two pieces of 

information it still performs better than V004. An observation system simulation 
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experiment (OSSE) with the GEOS-Chem chemical transport model (CTM) and its 

adjoint shows that TES V004 has only limited value for constraining methane sources. 

Our successful validation of V005 encourages its production as a standard retrieval to 

replace V004. 

 

2.1 Introduction 

Methane is the second most powerful anthropogenic greenhouse gas after carbon 

dioxide (Forster et al. 2007). Present day methane concentrations are ~2.5 times higher 

than those of the pre-industrial atmosphere (Etheridge et al., 1998). This change is 

presumably driven by increasing emissions, but may also reflect changes in the chemical 

sink (reaction with the OH radical) (Forster et al. 2007). The magnitude of global 

methane emissions is constrained within +/- 15% by knowledge of the global sink, but 

the magnitudes and trends of emissions from different source types and source regions 

are far more uncertain (Forster et al. 2007, Denman et al. 2007). Inverse modeling of 

atmospheric observations has emerged over the past decade as a powerful tool to reduce 

these uncertainties. Most inverse studies so far have relied on surface observations 

(Bergamaschi et al., 2005; 2010; Bousquet et al., 2006; Chen and Prinn, 2006; Fletcher et 

al., 2004; Hein et al., 1997; Houweling et al., 1999; Meirink et al., 2008b) but the sparsity 

of the network limits the ability to resolve sources (Villani et al., 2010). A few studies 

have used observations from the SCIAMACHY satellite instrument over land 

(Bergamaschi et al., 2007; 2009; Meirink et al., 2008a). Satellite observations of 

atmospheric methane provide dense spatial coverage but must be carefully validated to 

enable inverse modeling. We use here extensive vertical profiles of methane measured 
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from aircraft by the HIAPER Pole-to-Pole Observation (HIPPO) program over the 

Pacific (Wofsy et al., 2011) to characterize errors in methane retrievals from the 

Tropospheric Emission Spectrometer (TES) aboard the NASA Aura satellite. We show 

that the standard product currently available from TES is of limited utility for inverse 

modeling, but also validate a new TES product with increased vertical information and 

more promise. 

Tropospheric methane is well-mixed, with a lifetime of about 9 years (Denman et 

al. 2007). Space-borne observations of column methane require precision of 1-2% and 

accuracy of at least 1% for inverse modeling of methane sources (Meirink et al., 2006). 

Methane can be retrieved from nadir measurements of solar backscatter in the near 

infrared (NIR) or terrestrial radiation in the thermal infrared (TIR). NIR retrievals are 

sensitive to the entire tropospheric column, but their dependence on reflected sunlight 

precludes observations at night, over most ocean surfaces, and over most cloudy targets. 

NIR retrievals are available from the Scanning Imaging Absorption SpectroMeter for 

Atmospheric CHartographY (SCIAMACHY) for 2003-2009 (Frankenberg et al., 2011) 

and from the Greenhouse gases Observing SATellite (GOSAT) for 2009-present (Yokota 

et al., 2009). 

TIR methane retrievals have limited sensitivity to the lower troposphere due to 

lack of thermal contrast, but they can be performed day and night, over land and ocean, 

and for partly cloudy scenes. Uncertainties in atmospheric temperature, surface 

emissivity, and spectroscopic parameters of methane and interfering gases including 

water vapor, N2O, and HDO limit the precision of TIR methane retrievals (Worden et al., 

2004; Xiong et al., 2008). The Interferometric Monitor of Greenhouse gases (IMG) 
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aboard the ADEOS satellite was the first space-borne instrument used to retrieve 

tropospheric methane from the TIR (Clerbaux et al., 2003; Kobayashi et al., 1999). It was 

operational only from August 1996 to June 1997. The Atmospheric Infrared Sounder 

(AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) have provided TIR 

methane retrievals from 2002-present and 2007-present respectively (Crevoisier et al., 

2009; Razavi et al., 2009; Xiong et al., 2008). The Tropospheric Emission Spectrometer 

(TES) aboard the Aura satellite was launched in July 2004 and remains operational, 

providing so far seven years of nearly continuous global methane retrievals. The current 

standard methane data product is version 4 (V004), but no validation has been published 

so far. A new TES methane product (V005) has recently been developed and is in the 

prototype stage (Worden et al., 2012). The V005 retrieval offers sensitivity lower in the 

atmosphere by expanding the spectral range used in the retrieval, thus increasing the 

value of TES methane for identifying methane sources. 

Before satellite retrievals can be used for inverse modeling of methane sources, 

their systematic and random errors must be characterized. Previous validations of 

SCIAMACHY and GOSAT have used coincident observations from a limited number of 

ground based Fourier transform spectrometers (FTS), most of which are located in 

Europe and eastern North America (Dils et al., 2006; Morino et al., 2011; Sussmann et 

al., 2005). AIRS methane has been validated with NOAA/GMD aircraft profiles from 22 

locations (Xiong et al., 2008), though mainly in a small latitudinal range over North 

America and not extending above 400 hPa. HIPPO provides a unique resource for 

satellite validation with near-continuous curtains of methane vertical profiles from near-

surface to 330-180 hPa over a wide latitudinal range (67S – 85N). 
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2.2  Data 

 

2.2.1 TES 

TES is in a sun-synchronous polar orbit with an equator overpass local time of 

~13:45. It makes nadir observations with a spatial resolution of 5.3 by 8.3 km2. 

Observations are made every 182 km along the orbit track.  Successive orbit tracks are 

separated by about 22° longitude. The most recent publicly available TES methane 

product is V004 (available at http://eosweb.larc.nasa.gov/), using spectral windows of 

1292.02 – 1305.76 cm-1 (7.658 - 7.740 !m) and 1307.02 – 1307.8 cm-1 (7.646 – 7.651 

!m). Vertical methane profiles are retrieved using the Rodgers (2000) optimal estimation 

technique: 

ln  = ln za + A(ln z – ln za)    (2.1) 

where  is the retrieved vertical profile vector consisting of mixing ratios on a fixed 

pressure grid, A is the averaging kernel matrix that represents the sensitivity of the 

retrieved profile to the true profile z, and za is the a priori specified from the MOZART 

chemical transport model (CTM). The retrieval method and error characterization are 

described by Bowman et al. (2006). A previous version of the methane retrieval (V003) is 

described by Payne et al. (2009). 

Figure 2.1 (left panel) shows a typical TES V004 averaging kernel matrix in the 

tropics. The sensitivity peaks in the mid-upper troposphere at 200-400 hPa. The degrees 

of freedom for signal (DOFS) is defined as the trace of the averaging kernel matrix and 

estimates the number of pieces of information in the vertical profile. TES V004 methane 
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retrievals have 0.6-1.6 DOFS, highest over warm surfaces. In view of this limited 

resolution we reduce each TES vertical profile to a single representative tropospheric 

volume mixing ratio (RTVMR) as recommended by the TES Level 2 Data User’s Guide 

(http://tes.jpl.nasa.gov/uploadedfiles/TESDataUsersGuideV4_0.pdf) and described by 

Payne et al. (2009). The RTVMR is a tropospheric column average mixing ratio weighted 

by vertical sensitivity. The RTVMR approach maps the retrieved methane profile from 

the standard 67-level pressure grid to a four-level grid uniquely defined for each TES 

retrieval and consisting of points at 1) the Earth’s surface, 2) the altitude of maximum 

sensitivity, 3) the tropopause, and 4) the top of the atmosphere: 

    c = M*       (2.2) 

Here c is the TES profile on the four-level RTVMR grid,  is the TES profile on the 67-

level pressure grid, and M* is the triangular interpolation matrix that maps the fine grid 

Figure 2.1: Typical averaging kernel matrices for TES methane retrievals over the 
tropical ocean: V004 (left) and V005 (right). Data are from the same target on 7 
November 2009 at 1.1° S and 166.9° W. Lines are the individual rows of the averaging 
kernel matrix and represent the sensitivities of retrieved methane at given pressure levels 
to methane concentrations throughout the atmospheric column. Black circles indicate the 
pressure levels used for comparison to the HIPPO aircraft observations. 
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onto the coarse grid. Values of c at the second lowest elevation define the RTVMR, 

termed yR, and represent most of the TES information. The black circle in Figure 2.1 

marks the pressure level associated with yR for that particular profile. 

V005 methane offers sensitivity lower in the atmosphere by expanding the 

spectral range of the retrieval (Worden elal., 2012), and lower systematic biases by 

normalizing the methane columns using simultaneously retrieved N2O columns. For this 

study, V005 retrievals were performed on an experimental basis along the HIPPO I and II 

flight paths. Figure 2.1 (right panel) shows the V005 averaging kernel matrix from the 

same target as previously shown for V004. V005 DOFS are on average 0.5 greater than 

for V004. Vertical sensitivities for V005 targets with DOFS > 1.6 have two tropospheric 

maxima in the upper and mid troposphere, near 200 and 550 hPa respectively. In order to 

capture these two pieces of vertical information, we modify the RTVMR approach for 

scenes with DOFS > 1.6 by defining a five-level pressure grid onto which we map the 67-

level TES retrieval. The five pressure levels are uniquely defined for each TES retrieval 

and are located at 1) the Earth’s surface, 2) the lower tropospheric level of maximum 

sensitivity, 3) the upper tropospheric level of maximum sensitivity, 4) the tropopause, 

and 5) the top of the atmosphere. The second and third pressure levels define lower and 

upper tropospheric VMRs, termed yL and yU respectively. The black circles in Figure 2.1 

mark the levels associated with yL and yU. For TES V005 scenes with DOFS ! 1.6, we 

follow the original RTVMR approach and validate a single piece of information, yR. 

 

2.2.2 HIPPO and Application of the TES Operator 

Figure 2.2 shows the flight paths of NSF’s Gulfstream V (GV) during the first  
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two HIPPO missions in January and October-November 2009 (HIPPO I and II 

respectively). The GV transected the Pacific Ocean from 85N to 67S, performing in-

progress vertical profiles every ~220 km or 20 minutes (Wofsy et al., 2011). Methane 

was measured with a Quantum Cascade Laser Spectrometer (QCLS) at 1 Hz frequency 

with accuracy of 1.0 ppb and precision of 0.5 ppb (Kort et al., 2011). HIPPO methane 

data are reported on the NOAA04 calibration scale. Latitudinal curtains of the data are 

shown in Figure 2.2. For direct comparison to TES methane we isolate each vertical 

profile performed by the GV, map the data on the 67 levels of the TES pressure grid, and 

extrapolate above the GV ceiling using the shape of the TES a priori profile. We then 

apply the TES observation operator to the resulting HIPPO profile, zH: 

    ln H = ln za + A(ln zH – ln za)   (2.3) 

Figure 2.2: The left panel shows flight paths of HIPPO missions I and II during 
January and October–November 2009 respectively. Center and right panels show 
methane concentrations as a function of latitude and pressure measured during 
southbound and northbound flight paths of HIPPO I and II. Black lines show the 
aircraft profiles with methane data. Solid contours are interpolated. 
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Here H represents the profile that would have been retrieved had TES sampled the same 

air as HIPPO, according to the averaging kernel matrix and in the absence of other errors. 

We calculate yR, yL, and yU from H as described earlier.  

 

2.3 TES Validation 

 

2.3.1 Approach 

TES and HIPPO profiles are not perfectly coincident in time and space. To 

compare the data sets, we must define an appropriate spatio-temporal coincidence 

window. Previous TES validation studies for tropospheric ozone with ozonesondes used 

coincidence criteria from ±9 h to ±48 h and 300 km to 600 km (Worden et al., 2007; 

Nassar et al., 2008). The high density of the HIPPO data allows an objective analysis of 

the collocation error and its effect on the validation constraints. 

 For each HIPPO vertical profile (covering ~220 km in ~20 minutes), we calculate 

a mean location and time. We then find all TES observations coincident with the HIPPO 

profile in a specified (space, time) coincidence window. Where a single TES observation 

is coincident with multiple HIPPO profiles, we match it to the nearest HIPPO profile in 

time and space, weighting time and space equally within the coincidence window. We 

calculate yR, yL, and yU from the TES and HIPPO profiles. From the statistics of the TES-

HIPPO differences, !yR, !yL, and !yU, we calculate a mean TES bias (mean value of !y) 

and residual standard deviation (standard deviation of !y).  

Figure 2.3 shows the TES V004 mean bias and residual standard deviation as a 

function of the size of the coincidence window. If collocation error were significant, we 
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would expect the residual standard deviation to increase with the size of the coincidence 

window. This is not the case, implying that collocation error is not significant on scales 

up to 750 km and 24 h. This may reflect the lack of fine-scale variability in the HIPPO 

data (Figure 2.2) due to the remoteness from methane sources. We will use coincidence 

requirements of 750 km and 24 h in what follows, matching 151 HIPPO profiles to 398 

V004 TES observations. Validation statistics are reported in Table 2.1 and discussed 

below. 

 

 

 

 

 

Table 2.1: TES V004 and V005 Methane Validation Statisticsa.  
 
Observations Mean Bias (ppb) Residual standard deviation (ppb)  # TES 
V004 yR 69.5    43.0     396 
V005  yL 19.9    32.3     253 

yU 50.9    31.0     253 
yR 29.0    37.7     128 

 
a Mean biases and residual standard deviations from TES-HIPPO difference statistics 
(!y). Units are ppb. For the V005 product and scenes when the degrees of freedom for 
signal (DOFS) exceeds 1.6, the validation is given for two pieces of information in the 
vertical, yL (lower troposphere) and yU (upper troposphere).  
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Figure 2.3: Error statistics for TES V004 methane plotted as a function of the size of 
the coincidence window for the HIPPO I and II vertical profiles. Green and blue 
symbols represent coincident time windows of ±24 h and ±12 h respectively. Values 
shown are the mean value (mean bias) and residual standard deviation of the 
difference !yR between TES and HIPPO representative tropospheric volume mixing 
ratios (RTVMRs). The numbers of observations in the statistics are shown in the right 
panel. Error bars in the left panel represent standard errors on our estimates of the 
mean bias. 
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2.3.2 V004 Validation 

Figure 2.4 shows the TES-HIPPO differences !yR as a function of latitude. We 

combine HIPPO I and II data because validation statistics are similar. We find a mean 

bias of 65.8 ppb (3.7 %) with a residual standard deviation of 43.8 ppb (2.4%). The 

residual standard deviation contains contributions from random instrument error in the 

TES retrievals and error induced by extrapolating above the observed HIPPO profiles. 

We estimate the extrapolation error from the variability in upper troposphere lower 

stratosphere (UTLS) methane concentrations observed during HIPPO, the Airborne 

Figure 2.4: Latitudinal profile of the difference !yR between TES V004 and HIPPO 
methane concentrations (RTVMRs) during HIPPO I & II in January and October–
November 2009. Symbols represent individual HIPPO vertical profiles, and associated 
vertical bars are the theoretical error standard deviations reported in the TES 
retrievals. Black circles and vertical bars are the means and standard deviations of yR 
binned by 10° latitude. 
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Southern Hemisphere Ozone Experiment (ASHOE), the Stratospheric Tracers of 

Atmospheric Transport (STRAT), and the Photochemistry of Ozone Loss in the Arctic 

Region in Summer (POLARIS) (Elkins et al., 1996; Hurst et al., 1999). From these data 

sets we infer negligible error in extrapolation up to the local tropopause or 200 hPa, 

whichever is higher, and an error standard deviation of 6% above. Using local tropopause 

data from the GEOS-5 assimilation by the NASA Global Modeling and Assimilation 

Office (GMAO). We estimate an extrapolation error standard deviation of 6.7 ppb, 

Assuming that instrument and extrapolation errors add in quadrature, we conclude that 

the TES instrument error is 43.3 ppb (2.4 %). 

This TES instrument error quantified by comparison with HIPPO observations is 

larger than the TES V004 theoretical error of 1.1%. Theoretical errors are the square 

roots of the diagonals of the TES self-reported error covariance matrices described by 

Boxe et al. (2010). Figure 2.5 shows the vertical structure of V004 theoretical and 

observed errors, the latter defined as the standard deviations of TES-HIPPO residual 

profiles ( - H). Observed errors are consistently higher than theoretical errors. 

There is no apparent trend in !yR bias as a function of latitude. An analysis of 

variance (ANOVA) fails to find statistically significant differences between the mean 

biases in 10-degree latitude bins (Figure 2.4), with a p-value of 0.80. The standard 

deviation of !yR increases north of 40° N. This trend is driven by larger !yR values over 

land (residual standard deviation of 52.0 ppb) than over ocean (39.6 ppb). The mean 

biases of land and ocean observations are 68.4 ppb (3.8 %) and 64.6 ppb (3.6 %), 

respectively. The biases are not statistically significantly different, with a two-sided p-

value of 0.43. 
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2.3.3 V005 Validation 

Figure 2.6 shows the latitudinal distribution of V005-HIPPO residuals for all 

observations within coincidence requirements determined previously (±750 km, ±24 h). 

The bottom panel depicts !yR comparisons for scenes with DOFS " 1.6. These show 

V005 yR to be more accurate and precise than V004 yR, with a mean bias of 28.7 ppb (1.6 

%) and residual standard deviation of 30.0 ppb (1.7 %). We subtract extrapolation error 

in the same way as before and calculate a V005 !yR instrument error of 24.7 ppb (1.4 %). 

This error is larger than the V005 self-reported yR error of 0.8%. There is no significant 

trend in error over the limited latitudinal range of the data.  

Figure 2.6 top and middle panels show the latitudinal distributions of !yU and !yL 

for scenes with DOFS > 1.6. There is no significant trend in !yU bias or residual standard 

deviation as a function of latitude. We therefore calculate a single mean bias of 42.3 ppb 

(2.4 %) with a residual standard deviation of 30.9 ppb (1.7 %). Removing the 

extrapolation error implies a TES instrument error of 26.5 ppb (1.5 %). There is no 

significant trend in !yL residual standard deviation as a function of latitude, but an 

ANOVA reveals that !yL mean biases in 10-degree latitude bins are marginally 

significantly different, with a p-value of 0.06. We therefore report separate validation 

statistics for !yL at low latitudes  (20°S - 20°N) and at high latitudes. Mean biases for low 

and high latitude !yL are 16.9 ppb (0.9 %) and 28.8 ppb (1.6 %), respectively. Residual 

standard deviations of low and high latitude !yL are 29.2 ppb (1.6 %) and 29.8 ppb (1.7 

%), respectively. Removing extrapolation error implies low and high latitude !yL TES  
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Figure 2.6: Latitudinal profiles of the differences !y between TES V005 and HIPPO 
methane concentrations during HIPPO I and II in January and October–November 2009. 
The top two panels show results for the lower and upper tropospheric TES data (!yL and 
!yU, respectively) in scenes where the degrees of freedom for signal (DOFS) exceeds 1.6. 
The bottom panel shows results for the RTVMR (!yR) in scenes where the DOFS is 
lower than 1.6. Blue vertical bars are the theoretical error standard deviations reported in 
the TES retrievals. Black circles and vertical bars are the means and standard deviations 
binned by 10° latitude. 
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Figure 2.6 (Continued)
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instrument errors of 28.9 ppb (1.6 %) and 28.7 ppb (1.6 %), respectively. 

V005 observed errors are larger than self-reported errors for yU and yL of 1.0 % 

and 0.9 % respectively. Errors for individual retrievals are typically larger than the 

theoretical error, as indicated by the error bars in Figure 2.6. Figure 2.5 shows the vertical 

structure of V005 theoretical and empirical errors. Observed errors match the vertical 

shape of theoretical errors but are larger. This suggests that a uniform scaling of the 

observation error covariance matrix is needed for successful use of the V005 product for 

inverse modeling. 

   

2.4  Utility of TES V004 Data for Inverse Modeling of Methane Sources 

 We conduct here a simple observation system simulation experiment (OSSE) to 

evaluate the utility of the TES V004 standard methane product for constraining methane 

sources through inverse analysis. For this purpose we generate “true” atmospheric 

methane concentrations in the GEOS-Chem CTM (Pickett-Heaps et al., 2011) with 4ox5o 

horizontal resolution using a “true” emission distribution as shown in Figure 2.7. We 

sample the “true” concentrations at the times and locations of TES observations, apply 

the TES observation operator, calculate yR, and add random Gaussian noise with standard 

deviation of 40 ppb, as per our validation results in Table 2.1. We then perturb the “true” 

emission distribution to produce a deliberately incorrect a priori, and assimilate the 

synthetic observations to generate an “optimized” emissions estimate. Comparison of the 

“true” and “optimized” emissions provides a measure of the utility of TES for 

constraining methane emissions. 
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 We perform the OSSE for July-August 2008. There are 40,600 TES observations 

during this period. The ensemble of synthetic observations sampling the “true” 

atmosphere constitutes a vector yO of RTVMR values. The GEOS-Chem simulation with 

perturbed emissions generates a corresponding model vector yM. The “true” emissions on 

the 4ox5o grid (land only) define a state vector x. The perturbed emission values represent 

the a priori xa and are increased or decreased by 50% relative to x in large blocks as 

depicted in figure 2.8. We perform Bayesian optimization by minimizing the least 

squares scalar cost function, J(x): 

J(x) = (yM – yO)T Se
-1 (yM – yO) + (x – xa)T Sa

-1 (x – xa)  (2.4) 

Here Se  and Sa are the observational and a priori error covariance matrices, respectively. 

Se contains contributions from instrument, model, and representation errors. We estimate 

the total observational error by applying the Relative Residual Error (RRE) method to 

actual TES data and corresponding GEOS-Chem yR (Heald et al., 2004). This method 

Figure 2.7: Methane emissions [Mg per grid square per month] in the GEOS-Chem 
CTM for July–August 2008 at 4°!5° horizontal resolution. These are taken as the 
“true” emissions for the OSSE inversion of methane sources. Gray represents regions 
covered by ocean or ice. 
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attributes the temporal mean of model-observation differences for a given grid square to 

an error in methane emissions, and the residual to observational error. We calculate a 

mean 44.6 ppb RRE for the ensemble of TES observations used in the V004 validation 

and use this value to populate the diagonal of Se. From the residual difference between 

HIPPO and GEOS-Chem RTVMR, we estimate a combined model and representation 

error of 16.3 ppb, indicating that the observational error is principally contributed by the 

instrument error.  

 Error correlations between observations can be neglected at 4° x 5° resolution 

(Heald et al., 2004), so Se is diagonal. Sa is also diagonal and assigns 50% error to 

emissions, commensurate with the perturbation made to the “true” emissions. Although 

Figure 2.8: Relative (left) and absolute (right) error of a priori (top) and optimized 
(bottom) methane emissions. Red and blue represent over and underestimates 
respectively. Gray represents regions covered by ocean or ice. 
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the a priori errors in figure 2.8 are highly spatially correlated through the use of 

homogeneous perturbations in large blocks, this correlation is mainly for ease of 

interpretation and we would not expect such correlation in actual a priori errors. We 

therefore do not include error covariance terms in Sa.  

 We use GEOS-Chem and its adjoint to iteratively solve xJ(x) = 0. The GEOS-

Chem adjoint was developed by Henze et al. (2007) with application to CO source 

optimization by Kopacz et al. (2009). Our application to methane follows that for CO. 

The GEOS-Chem adjoint methane simulation calculates xJ(x), and in combination with 

a steepest descent algorithm, iterates to find xJ(x) = 0. 

Figures 2.8 and 2.9 show the extent to which the optimization can correct the 

initially wrong a priori. TES has success for some individual 4° x 5° grid squares with 

particularly large emissions and therefore large xJ(x). In general, however, it corrects 

less than half of the a priori error. We conclude that V004 is only of limited value for 

constraining methane emissions. Considering that most of the observational error is due 

to instrument error, reducing that error would improve the inversion. The TES V005 data 

with smaller errors and higher DOFS therefore hold promise but quantitative testing must 

await availability of a global database of averaging kernels. 
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Figure 2.9: Scatterplot of optimized vs. “true” methane emissions for individual 4°!5° 
grid squares. Blue and red points show emissions with negative and positive a priori 
perturbations, respectively. The a priori perturbations correspond to the blue and red 
lines. 
 



 30 

References 

Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., 
Ramonet, M., Peters, W. and Dlugokencky, E.: Inverse modelling of national and 
European CH4 emissions using the atmospheric zoom model TM5, Atmos Chem Phys, 5, 
2431–2460, 2005. 

Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., 
Platt, U., Kaplan, J. O., Korner, S., Heimann, M., Dlugokencky, E. J. and Goede A.: 
Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 
2. Evaluation based on inverse model simulations, J. Geophys. Res., 112, D02304, 
doi:10.1029/2006JD007268, 2007. 

Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, 
S., Dentener, F., Dlugokencky, E. J., Miller, J. B., Gatti, L. V., Engel, A. and Levin I.: 
Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite 
retrievals, J. Geophys. Res., 114(D22), D22301, doi:10.1029/2009JD012287, 2009. 

Bergamaschi, P., Krol, M., Meirink, J. F., Dentener, F., Segers, A., Van Aardenne, J., 
Monni, S., Vermeulen, A. T., Schmidt, M., Ramonet, M., Yver, C. Meinhardt, F., Nisbet, 
E. G., Fisher, R. E., O'Doherty, S. and Dlugokencky, E. J.: Inverse modeling of European 
CH4 emissions 2001–2006, J. Geophys. Res., 115(D22), D22309, 
doi:10.1029/2010JD014180, 2010. 

Bowman, K., Rodgers, C., Kulawik, S., Worden, J., Sarkissian, E., Osterman, G., Steck, 
T., Lou, M., Eldering, A., Shephard, M., Worden, H., Lampel, M., Clough, S., Brown, P., 
Rinsland, C., Gunson, M., and Beer, R.: Tropospheric emission spectrometer: Retrieval 
method and error analysis, Ieee T Geosci Remote, 44(5), 1297–1307, 
doi:10.1109/TGRS.2006871234, 2006. 

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., 
Van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge, C., Langenfelds, R. L., Lathière, 
J., Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C. and White, J.: 
Contribution of anthropogenic and natural sources to atmospheric methane variability, 
Nature, 443(7110), 439–443, doi:10.1038/nature05132, 2006. 

Boxe, C.S., Worden, J. R., Bowman, K. W., Kulawik, S. S., Neu, J. L., Ford, W. C., 
Osterman, G. B., Herman, R. L., Eldering, A., Tarasick, D. W., Thompson, A. M., 
Doughty, D. C., Hoffmann, M. R., and Oltmans, S. J.: Validation of northern latitude 
Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during 
ARCTAS: sensitivity, bias and error analysis, Atmos Chem Phys, 10, 9901-9914, 2010. 

Chen, Y.-H. and Prinn, R. G.: Estimation of atmospheric methane emissions between 
1996 and 2001 using a three-dimensional global chemical transport model, J Geophys 
Res-Atmos, 111(D10), D10307, doi:10.1029/2005JD006058, 2006. 

Clerbaux, C., Hadji-Lazaro, J., Turquety, S., Megie, G. and Coheur, P.: Trace gas 
measurements from infrared satellite for chemistry and climate applications, Atmos 



 31 

Chem Phys, 3, 1495–1508, 2003. 

Crevoisier, C., Nobileau, D., Fiore, A. M., Armante, R., Chedin, A. and Scott, N. A.: 
Tropospheric methane in the tropics - first year from IASI hyperspectral infrared 
observations, Atmos Chem Phys, 9(17), 6337–6350, 2009. 

Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., 
Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da 
Silva Dias, P. L., Wofsy, S. C., and Zhang, X.: Climate Change 2007: The Physical 
Science Basis. Contribution of working group 1 to the fourth assessment report of the 
Intergovernmental Panel on Climate Change, chap. Changes in Atmospheric Constituents 
and in Radiative Forcing, Cambridge University Press, Cambridge and New York, 499–
587, 2007. 

Dils, B., De Maziere, M., Muller, J., Blumenstock, T., Buchwitz, M., de Beek, R., 
Demoulin, P., Duchatelet, P., Fast, H., Frankenberg, C., Gloudemans, A., et al.: 
Comparisons between SCIAMACHY and ground-based FTIR data for total columns of 
CO, CH4, CO2 and N2O, Atmos Chem Phys, 6, 1953–1976, 2006. 

Elkins, J. W., Fahey, D. W., Gilligan, J. M., Dutton, G. S., Baring, T. J., Volk, C. M., 
Dunn, R. E., Myers, R. C., Montzka, S., A., Wamsley, P. R., Hayden, A. H., Butler, J. H., 
Thompson, T. M., Swanson, T. H., Dlugokencky, E. J., Novelli, P. C., Hurst, D. F., 
Lobert, J. M., Ciciora, S. J., McLaughlin, R. J., Thompson, T. L., Winkler, R. H., Fraser, 
P. J., Steele, L. P., and Lucarelli, M. P.: Airborne gas chromatograph for in situ 
measurements of long-lived species in the upper troposphere and lower stratosphere, 
Geophys Res Lett, 23(4), 347-350, 1996. 

Etheridge, D., Steele, L., Francey, R. and Langenfelds, R.: Atmospheric methane 
between 1000 AD and present: Evidence of anthropogenic emissions and climatic 
variability, J Geophys Res-Atmos, 103(D13), 15979–15993, 1998. 

Fletcher, S., Tans, P., Bruhwiler, L., Miller, J. and Heimann, M.: CH4 sources estimated 
from atmospheric observations of CH4 and its C-13/C-12 isotopic ratios: 1. Inverse 
modeling of source processes, Global Biogeochem Cy, 18(4), GB4004, 
doi:10.1029/2004GB002223, 2004. 

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, 
J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schultz, M., and 
Van Dorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing, in: 
Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to 
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited 
by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. 
and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New 
York, NY, USA, 2007. 

Frankenberg, C., Aben, I., Bergamaschi, P., Dlugokencky, E. J., van Hees, R., 
Houweling, S., van der Meer, P., Snel, R. and Tol, P.: Global column-averaged methane 



 32 

mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability, 
J. Geophys. Res., 116(D4), D02304, doi:10.1029/2010JD014849, 2011. 

Heald, C., Jacob, D., Jones, D., Palmer, P., Logan, J., Streets, D., Sachse, G., Gille, J., 
Hoffman, R. and Nehrkorn, T.: Comparative inverse analysis of satellite (MOPITT) and 
aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide, J 
Geophys Res-Atmos, 109(D23), D23306, doi:10.1029/2004JD005185, 2004. 

Hein, R., Crutzen, P. and Heimann, M.: An inverse modeling approach to investigate the 
global atmospheric methane cycle, Global Biogeochem Cy, 11(1), 43–76, 1997. 

Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-
Chem, Atmos Chem Phys, 7, 2413-2433, 2007. 

Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J. and Heimann, M.: Inverse 
modeling of methane sources and sinks using the adjoint of a global transport model, J 
Geophys Res-Atmos, 104(D21), 26137–26160, 1999. 

Hurst, D. F., Dutton, G. S., Romashkin, P. A., Wamsley, P. R., Moore, F. L., Elkins, J. 
W., Hintsa, E. J., Weinstock, E. M., Herman, R. L., Moyer, E. J., Scott, D. C., May, R. 
D., and Webster, C. R.: Closure of the total hydrogen budget of the northern extratropical 
lower stratosphere, J Geophys Res-Atmos, 104(D7), 8191-8200, 1999. 

Kobayashi, H., Shimota, A., Kondo, K., Okumura, E., Kameda, Y., Shimoda, H. and 
Ogawa, T.: Development and evaluation of the interferometric monitor for greenhouse 
gases: a high-throughput Fourier-transform infrared radiometer for nadir Earth 
observation, Appl Optics, 38(33), 6801–6807, 1999. 

Kopacz, M., Jacob, D. J., Henze, D. K., Heald, C. L., Streets, D. G., Zhang, Q.: 
Copmarison of adjoint and analytical Bayesian inversion methods for constraining Asian 
sources of carbon monoxide using satellite (MOPITT) measurements of CO columns, . 
Geophys. Res., 114, D04305, doi:10.1029/2007JD009264, 2009. 

Kort, E. A., Patra, P. K., Ishijima, K., Daube, B. C., Jiménez, R., Elkins, J., Hurst, D., 
Moore, F. L., Sweeney, C. and Wofsy, S. C.: Tropospheric distribution and variability of 
N2O: Evidence for strong tropical emissions, Geophys Res Lett, 38(15), L15806, 
doi:10.1029/2011GL047612, 2011. 

Meirink, J., Eskes, H. and Goede, A.: Sensitivity analysis of methane emissions derived 
from SCIAMACHY observations through inverse modelling, Atmos Chem Phys, 6, 
1275–1292, 2006. 

Meirink, J. F., Bergamaschi, P., Frankenberg, C., D'amelio, M. T. S., Dlugokencky, E. J., 
Gatti, L. V., Houweling, S., Miller, J. B., Röckmann, T., Villani, M. G. and Krol, M. C.: 
Four-dimensional variational data assimilation for inverse modeling of atmospheric 
methane emissions: Analysis of SCIAMACHY observations, J. Geophys. Res., 
113(D17), D17301, doi:10.1029/2007JD009740, 2008a. 



 33 

Meirink, J. F., Bergamaschi, P. and Krol, M. C.: Four-dimensional variational data 
assimilation for inverse modelling of atmospheric methane emissions: method and 
comparison with synthesis inversion, Atmos Chem Phys, 8(21), 6341–6353, 2008b. 

Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P. O., Toon, G. 
C., Wunch, D., Roehl, C. M., Notholt, J., Warneke, T., et al.: Preliminary validation of 
column-averaged volume mixing ratios of carbon dioxide and methane retrieved from 
GOSAT short-wavelength infrared spectra, Atmos. Meas. Tech., 4(6), 1061–1076, 
doi:10.5194/amt-4-1061-2011, 2011. 

Nassar, R., Logan, J. A., Worden, H. M., Megretskaia, I. A., Bowman, K. W., Osterman, 
G. B., Thompson, A. M., Tarasick, D. W., Austin, S., Claude, H., Dubey, M. K., 
Hocking, W. K., Johnson, B. J., Joseph, E., Merrill, J., Morris, G. A., Newchurch, M., 
Oltmans, S. J., Ponsy, F., Schmidlin, F. J., Vömel, H., Whiteman, D. N. and Witte, J. C.: 
Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using 
ozonesonde measurements, J Geophys Res-Atmos, 113(D15), D15S17, 
doi:10.1029/2007JD008819, 2008. 

Payne, V. H., Clough, S. A., Shephard, M. W., Nassar, R. and Logan, J. A.: Information-
centered representation of retrievals with limited degrees of freedom for signal: 
Application to methane from the Tropospheric Emission Spectrometer, J. Geophys. Res., 
114(D10), D10307, doi:10.1029/2008JD010155, 2009. 

Pickett-Heaps, C. A., Jacob, D. J., Wecht, K. J., Kort, E. A., Wofsy, S. C., Diskin, G. S., 
Worthy, D. E. J., Kaplan, J. O., Bey, I. and Drevet, J.: Magnitude of seasonality of 
wetland methane emissions from the Hudson Bay Lowlands (Canada), Atmos Chem 
Phys, 11(8), 3773-3779, 2011. 

Razavi, A., Clerbaux, C., Wespes, C., Clarisse, L., Hurtmans, D., Payan, S., Camy-
Peyret, C. and Coheur, P. F.: Characterization of methane retrievals from the IASI space-
borne sounder, Atmos Chem Phys, 9(20), 7889–7899, 2009. 

Rodgers, C.D.: Inverse Methods for Atmospheric Sounding, World Scientific Publishing 
Co. Pte. Ltd, Tokyo 2000. 

Sussmann, R., Stremme, W., Buchwitz, M. and de Beek, R.: Validation of 
ENVISAT/SCIAMACHY columnar methane by solar FTIR spectrometry at the ground- 
truthing station zugspitze, Atmos Chem Phys, 5, 2419–2429, 2005. 

Villani, M. G., Bergamaschi, P., Krol, M., Meirink, J. F. and Dentener, F.: Inverse 
modeling of European CH4 emissions: sensitivity to the observational network, Atmos 
Chem Phys, 10(3), 1249–1267, 2010. 

Wofsy, S. C.the HIPPO Science Team and Cooperating Modellers and Satellite Teams: 
HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of 
climatically important atmospheric gases and aerosols, Philosophical Transactions of the 
Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1943), 2073–
2086, doi:10.1098/rsta.2010.0313, 2011. 



 34 

Worden, H. M., Logan, J. A., Worden, J. R., Beer, R., Bowman, K., Clough, S. A., 
Eldering, A., Fisher, B. M., Gunson, M. R., Herman, R. L., Kulawik, S. S., et al.: 
Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to 
ozonesondes: Methods and initial results, J. Geophys. Res., 112(D3), D03309, 
doi:10.1029/2006JD007258, 2007. 

Worden, J., Kulawik, S., Shephard, M., Clough, S., Worden, H., Bowman, K. and 
Goldman, A.: Predicted errors of tropospheric emission spectrometer nadir retrievals 
from spectral window selection, J Geophys Res-Atmos, 109(D9), D09308, 
doi:10.1029/2004JD004522, 2004. 

Worden, J., Kulawik, S., Frankenberg, C., Bowman, K., Payne, V., Cady-Peirara, K., 
Wecht, K., Lee, J-E., Noone, D., Risi, C.: Profiles of CH4, HDO, H2O, and N2O with 
improved lower tropospheric vertical resolution from Aura TES radiances, Atmos. Meas. 
Tech. Discuss., 4, 6679-6721, 2012. 

Xiong, X., Barnet, C., Maddy, E., Sweeney, C., Liu, X., Zhou, L. and Goldberg, M.: 
Characterization and validation of methane products from the Atmospheric Infrared 
Sounder (AIRS), J. Geophys. Res., 113(null), G00A01, doi:10.1029/2007JG000500, 
2008. 

Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H. and Maksyutov, 
S.: Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary 
Results, Sola, 5, 160–163, doi:10.2151/sola.2009-041, 2009. 

 



 35 

Chapter 3. Mapping of North American methane emissions 

with high spatial resolution by inversion of SCIAMACHY 

satellite data 

 

[Wecht, K.J., Jacob, D.J., Frankenberg, C., Blake, D.R., and Jiang, Z., in preparation for 

submission] 

 

Abstract 

We estimate methane emissions from North America with high spatial resolution 

by inversion of SCIAMACHY satellite observations using the GEOS-Chem chemical 

transport model and its adjoint. The inversion focuses on summer 2004 when data from 

the INTEX-A aircraft campaign over the eastern US are available to validate the 

SCIAMACHY retrievals and evaluate the inversion, From the INTEX-A data we identify 

and correct a water vapor-dependent bias in the SCIAMACHY data. We conduct an 

initial inversion of emissions on the horizontal grid of GEOS-Chem (1/2ox2/3o) to 

identify correction tendencies relative to the EDGAR v4.2 emission inventory used as a 

priori. We then cluster these grid cells with a hierarchical algorithm to extract the 

maximum information from the SCIAMACHY observations. A 1000-cluster ensemble 

can be adequately constrained, providing ~100 km resolution across North America. 

Analysis of results indicates that the Canadian wetlands source is lower than the a priori 

but consistent with other recent estimates. Anthropogenic US emissions are 32.0 ± 1.3 Tg 

a-1, compared to 25.8 Tg a-1 and 28.3 Tg a-1 in the EDGAR v4.2 and EPA inventories 
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respectively. We find that US livestock emissions are underestimated by 60-70% in these 

two inventories. No such discrepancy is apparent for overall US gas/oil emissions, 

although this may reflect some compensation between overestimate of emissions from 

storage/distribution and underestimate from production. We find that US livestock 

emissions are twice the gas/oil emissions, in contrast to the EDGAR v4.2 and EPA 

inventories where these two sources are of comparable magnitude. 

 

3.1 Introduction 

Methane is the second most powerful anthropogenic greenhouse gas after carbon 

dioxide (Myhre et al. 2013). Major anthropogenic sources include natural gas extraction 

and use, coal mining, landfills, livestock, rice cultivation, and biomass burning. Wetlands 

are the largest natural source. The magnitude of global methane emissions is constrained 

within ±15% by knowledge of the global sink from oxidation by OH, but the magnitudes 

and trends of emissions from different source types and source regions are highly 

uncertain (Myhre et al. 2013, Hartmann et al. 2013). Reducing methane emissions has 

been identified as a low-cost priority in greenhouse gas emissions reduction strategies 

(IEA World Energy Outlook 2013, van Vuuren et al. 2006, Weyant et al. 2006) but this 

requires that the sources be quantified. The United States (US) Environmental Protection 

Agency (EPA) provides national emission inventories for methane (EPA, 2013). 

However, a number of studies using atmospheric observations from surface and aircraft 

suggest that these inventories may be too low by a factor of two or more (Katzenstein et 

al. 2002; Xiao et al. 2008; Kort et al. 2008; Petron et al. 2012; Santoni et al. submitted; 

Miller et al. 2013a; Karion et al. 2013).  
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Satellite observations of atmospheric methane provide a resource for constraining 

emissions, as first demonstrated by Bergamaschi et al. (2007), Satellites deliver dense 

spatial coverage unachievable by surface networks or aircraft campaigns. Methane has 

been retrieved from nadir satellite measurements of solar backscatter in the short-wave 

infrared (SWIR) and terrestrial radiation in the thermal infrared (TIR). SWIR retrievals 

are available from SCIAMACHY (2003-2012; Frankenberg et al. 2011) and GOSAT 

(2009-present; Parker et al. 2011; Schepers et al. 2012). TIR retrievals are available from 

AIRS (2002-present; Xiong et al., 2008), TES (2004-2011; Worden et al. 2012), and IASI 

(2007-present; Xiong et al. 2013; Crevoisier et al. 2013).  SWIR retrievals provide total 

atmospheric columns. TIR retrievals provide vertical profiles but with low sensitivity to 

the lower troposphere due to lack of thermal contrast, and this limits their value for 

detecting regional sources (Wecht et al., 2012). SCIAMACHY had full global coverage 

with a six-day return time. Current coverage by GOSAT is much sparser. Instrument 

degradation limited the value of the SCIAMACHY data after 2005 (Frankenberg et al. 

2011). The TROPOMI instrument to be launched in 2015 will provide SWIR methane 

data with global daily coverage and 7x7 km2 nadir resolution (Veefkind et al., 2012).  

Here we use SCIAMACHY observations for July-August 2004 in an inversion of 

methane sources in North America with the adjoint of the GEOS-Chem chemical 

transport model (CTM) at 1/2ox2/3o (~50x50 km2) resolution. This time window takes 

advantage of concurrent methane observations from the NASA INTEX-A aircraft 

mission over the eastern US (Singh et al., 2006) that offer extensive vertical profile 

information (for satellite validation) and boundary layer mapping (for complementary 

source characterization). The EPA (2013) emission inventory shows no significant 
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change from 2005 to 2011, implying that constraints on 2004 emissions should be 

relevant to present-day. 

A number of previous studies have used SCIAMACHY data for global inverse 

modeling of methane sources (Bergamaschi et al. 2007; Meirink et al. 2008; Bergamaschi 

et al., 2009; Bergamaschi et al. 2013; Monteil et al. 2013; Cressot et al. 2013; Houweling 

et al. 2013). All have recognized the need for correcting bias in the SCIAMACHY data 

that otherwise propagates to the inverse solution. An early validation of SCIAMACHY 

using ground based Fourier transform spectrometers (Dils et al. 2006) failed to identify 

retrieval error related to inaccuracies in water vapor spectroscopic parameters 

(Frankenberg et al. 2008). More recently, Houweling et al. (2013) show that bias in 

SCIAMACHY is correlated with tropospheric water vapor concentrations. As we show 

below, a water vapor correction enables successful validation of the SCIAMACHY data 

with the INTEX-A vertical profiles.  

Our work goes beyond the above studies in using SCIAMACHY for a 

continental-scale optimization of methane sources with high resolution, including 

validation and verification with independent aircraft data. The adjoint-based approach 

allows us to exploit the density of the satellite observations to optimize emissions at the 

1/2ox2/3o native resolution of GEOS-Chem, but we show that too fine a resolution can 

inhibit successful inversion by diluting the information from the observations. Previous 

studies have proposed methods for coarsening the discretization of model emissions in a 

way that optimizes the inversion (Bocquet 2005; Bocquet 2009; Bocquet et al. 2011; Wu 

et al. 2011). These methods require laborious construction of the Jacobian of the CTM, 

which is precisely what we seek to avoid by using the adjoint method. Here we introduce 
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a hierarchical clustering algorithm to optimize the discretization of emissions in the 

context of adjoint-based inverse modeling. 

 

3.2  Observations 

 SCIAMACHY is in a sun-synchronous polar orbit with an equator overpass local 

time of ~10:00. It retrieves methane from nadir SWIR spectra at 1.66-1.67 µm with a 

nadir footprint of 30 x 60 km2 and cross-track scanning. It achieves complete global 

coverage every 6 days. Observations are limited to daytime and land. We use the Iterative 

Maximium A Posteriori (IMAP) v5.5 retrieval from Frankenberg et al. (2011). The 

retrieval first calculates the methane vertical column density !CH4 [molecules cm-2]: 

!CH4 = !a + aT(! – !A)     (3.1) 

where ! is the true vertical profile of methane, consisting of 20 partial columns on a 

vertical grid, !A is the a priori profile provided by the TM5-4DVAR CTM (Meirink et al. 

2008), !A is the corresponding a priori column concentration, and a is an averaging 

kernel vector that describes the sensitivity of the retrieved column to each partial column 

in !. The sensitivity measured by a is nearly uniform throughout the troposphere and 

decreases with altitude in the stratosphere. To account for the impact of aerosols and 

partial cloud cover on the observed light path, !CH4 is normalized and converted to a 

column mixing ratio XCH4 [v/v] using the CO2 proxy method described in detail by 

Frankenberg et al. (2006): 

XCH4 = (!CH4 / !CO2) XCO2    (3.2) 

where !CO2 is the vertical column density of CO2 also retrieved by SCIAMACHY, and 

XCO2 is a modeled column mixing ratio of CO2. CO2 is used for normalization because it 
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is retrieved in a spectrally neighboring fitting window and its mixing ratio is known with 

much higher precision than methane. 

The IMAP v5.5 product was previously validated by Houweling et al. (2013), 

who used coincident observations from the Total Carbon Column Observing Network 

(TCCON) to identify a seasonally-dependent bias that they attributed to water vapor. 

Here we use in situ vertical profiles from the INTEX-A aircraft during summer 2004. The 

aircraft flew over the eastern US with extensive boundary layer legs (Figure 3.1, right 

panel) and vertical profiles extending up to 12 km. Methane was measured using gas 

chromatography from whole air flask samples collected every 4 minutes with accuracy of 

1.0 ppb and precision of 0.1 ppb (Colman et al. 2001; http://www-air.larc.nasa.gov/cgi-

bin/arcstat). For SCIAMACHY validation we require vertical profiles that span from at 

least 900 to 400 hPa and coincide with SCIAMACHY overpasses within ± 150 km and 

±6 h. We find 9 profiles satisfying these criteria, each corresponding to 7 to 29 satellite 

observations. We map the aircraft profiles on the 12 levels of the SCIAMACHY retrieval 

pressure grid, extrapolate above the DC-8 ceiling using the SCIAMACHY a priori 

profile, and apply equation (3.1) to simulate the SCIAMACHY retrieval. From there we 

derive XCH4 by dividing by the local air column density. We average the coincident 

SCIAMACHY observations and compute the SCIAMACHY-INTEX difference !XCH4. 

Results indicate a mean bias !XCH4 = -14.2 ppb (0.8%) and a residual standard deviation 

of 29.2 ppb (1.6%) for individual SCIAMACHY observations.  

Previous studies have demonstrated the need for a latitudinally dependent 

SCIAMACHY bias correction (Bergamaschi et al 2007; Meirink et al. 2008;  
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Bergamaschi et al. 2009; Bergamaschi et al. 2013; Cressot et al. 2013). Some have 

documented the interference of water vapor as the cause of the bias (Frankenberg et al. 

2008; Houweling et al. 2013) and we seek such a relationship here. Figure 3.2 (left panel) 

shows the relationship of !XCH4 with the average pressure-weighted specific humidity in 

the 900-400 hPa column measured by the INTEX-A aircraft. There is a linear relationship 

(weighted R2 = 0.69) that implies a negative bias under dry conditions and a positive 

dependence of the bias on humidity.  We use this relationship to calculate a linear bias 

correction factor and apply it to the original IMAP v5.5 retrieval. After the correction we 

find an insignificant mean bias !XCH4 = 2.5 ppb (0.1 %) and residual standard deviation 

of 28.2 ppb (1.6 %) for individual SCIAMACHY observations (Figure 3.2, right panel). 

The residual standard deviation (which we take to represent SCIAMACHY random 

measurement error) is consistent with the average IMAP v5.5 theoretical error of 30.9  

 

Figure 3.1: Methane over North America during the INTEX-A aircraft campaign (1 
July – 14 August 2004): SCIAMACHY mean column mixing ratios (left) and INTEX-
A mixing ratios below 850 hPa (right). Observations are averaged spatially on the 
1/2ox2/3o GEOS-Chem grid and temporally over the INTEX-A campaign duration. 
Note the difference in scales between the two panels. 
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ppb (1.7 %) reported by Frankenberg et al. (2011). All SCIAMACHY data shown here 

include the specific humidity correction applied with the local GEOS-5 meteorological 

data used to drive GEOS-Chem. 

Figure 3.1 (left) shows mean SCIAMACHY methane column mixing ratios 

during the INTEX-A period. Values are highest over the central US where there are large 

sources from livestock and from natural gas and oil (gas/oil) production. Values are also 

high over the Canadian wetlands in northern Ontario. The low values in the West reflect 

elevated terrain so that the stratosphere (where methane is depleted) makes a relatively 

large contribution to the column mixing ratio. Also shown in Figure 3.1 are the individual 

INTEX-A observations in the boundary layer (below 850 hPa). These show areas of high 

Figure 3.2: Validation of the SCIAMACHY IMAP v5.5 retrieval of methane column 
mixing ratio (XCH4) with coincident INTEX-A aircraft vertical profiles (see text). Left: 
difference !XCH4 between SCIAMACHY and INTEX-A plotted as a function of the 
mean pressure-weighted specific humidity in the 900-400 hPa column measured by 
the INTEX-A aircraft. The red line shows a linear regression weighted by the number 
of SCIAMACHY observations. Regression parameters and weighted R2 are shown 
inset. Right: comparison of SCIAMACHY and INTEX-A XCH4 after applying the 
water vapor correction from the linear regression. Weighted R2 is shown inset and the 
1:1 line is also shown. Colors represent the number of SCIAMACHY observations 
averaged around each INTEX-A profile. 
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concentrations in the Midwest and East but with fine-scale structure that must reflect in 

part day-to-day variability in meteorology. We do not use the INTEX-A data for the 

inversion but use them instead for validation (as described above) and as independent 

evaluation of the inversion results obtained from SCIAMACHY. 

 

3.3 Optimization of methane emissions 

 

3.3.1 GEOS-Chem model and a priori emissions 

We use the GEOS-Chem CTM v9-01-02 

(http://acmg.seas.harvard.edu/geos/index.html) as the forward model for the inversion. 

GEOS-Chem is driven by GEOS-5 meteorological data from the NASA Global Modeling 

and Assimilation Office (GMAO). The GEOS-5 data have 1/2° latitude x 2/3° longitude 

horizontal resolution and 6-h temporal resolution (3-h for surface variables and mixing 

depths). Here we use the native 1/2ox2/3o resolution for GEOS-Chem over North 

America and adjacent oceans (10-70°N, 40-140°W), with 3-h dynamic boundary 

conditions from a global simulation with 4° x 5° resolution. This nested North American 

functionality of GEOS-Chem has been used previously in a number of air quality studies 

including extensive evaluation with observations (Park et al., 2004, 2006; L. Zhang et al., 

2011, 2012; Y. Zhang et al. 2011; van Donkelaar et al. 2012). These show a good 

simulation of regional transport with no apparent biases. 

 The GEOS-Chem methane simulation was originally described by Wang et al. 

(2004) and updated by Pickett-Heaps et al. (2011). The main methane sink is 

tropospheric oxidation by OH, computed using a 3-D archive of monthly average OH 
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concentrations from a GEOS-Chem simulation of tropospheric chemistry (Park et al. 

2004). The mean mass-weighted tropospheric OH concentration is 10.8 x 105 molecules 

cm-3. Additional minor sinks for methane are soil absorption (from Fung et al. 1991) and 

oxidation in the stratosphere. We use stratospheric methane loss frequencies archived 

from the NASA Global Modeling Initiative (GMI) model (Considine et al. 2008; Allen et 

al. 2010) as described by Murray et al. (2012). The resulting global mean atmospheric 

lifetime of methane is 8.9 years and the lifetime against oxidation by tropospheric OH is 

9.9 years. Model intercomparisons in the literature give corresponding values of 8.6 ± 1.2 

years and 9.8 ± 1.6 years (Voulgarakis et al., 2013). Prather et al. (2012) estimate 

corresponding values of 9.1 ± 0.9 years and 11.2 ± 1.3 years from observational 

constraints. 

For the a priori emissions we use the 2004 anthropogenic inventory from EDGAR 

v4.2 with 0.1ox0.1o resolution and no seasonality (EC-JRC/PBL 2009). Natural sources 

include temperature-dependent emissions from wetlands (Kaplan et al. 2002; Pickett-

Heaps et al. 2011), termites (Fung et al. 1991), and daily GFED3 open fire emissions 

(van der Werf et al. 2010; Mu et al. 2010). Figure 3.3 shows total methane emissions for 

North America and the contributions from the five largest source types. 

Table 3.1 lists US anthropogenic emission totals by source type in the EDGAR 

v4.2 and EPA inventories (the EPA inventory is available only as a national total). Total 

US anthropogenic emissions from EDGAR v4.2 and EPA are 25.8 and 28.3 Tg a-1, 

respectively. EDGAR v4.2 and EPA give similar estimates for emissions by source type,  
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Figure 3.3: North American methane emissions used as a priori for the inversion: total 
emissions (top left panel) and contributions from the major source types. Inventories are 
from Kaplan et al. (2002) and Pickett-Heaps et al. (2011) for wetlands and from GEIA v 
4.2 for all other (anthropogenic) sources. Values are averages for 22 June – 15 August 
2004. Annual emission rates for 2004 (Tg a-1) are shown inset for the North America 
domain as encompassed by the figure. 
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Table 3.1: US anthropogenic sources of methane in 2004 [Tg a-1].  
 
Source type  EPA (2013)a EDGAR v4.2b This Workc 
Total 28.3 (24.6, 32.3) 25.8 32.0±1.3 
Livestock 8.8 (7.7, 10.4) 8.5 14.1±1.3 
Natural Gas and Oil 9.0 (7.2, 13.4) 6.3 7.2±0.6 
Landfills 5.4 (2.5, 7.9) 5.3 5.8±0.3 
Coal Mining 2.7 (2.3, 3.2) 3.9 2.4±0.3 
Otherd 2.4 (1.4, 4.2) 1.9 2.5±0.2 
a Values in parentheses represent lower and upper ends of 95% uncertainty ranges. 
b Used as a priori for the inversion. 
c Uncertainties on emissions from individual source types assume that the a priori source 
type distributions are correct (see text). 
d Including waste water treatment, rice cultivation, biofuel use, and other small sources. 
According to EPA (2013), none of these sources account for more than 3% of total US 
anthropogenic emissions. 
 
 
except for gas/oil and coal mining. EDGAR reports gas/oil emissions of 6.3 Tg a-1, 30% 

lower than the EPA (2013) estimate of 9.0 Tg a-1. It reports US coal mining emissions of 

3.9 Tg a-1, 40% higher than the EPA (2013) estimate of 2.7 Tg a-1.  

Figure 3.4 shows surface air methane concentrations from the global and nested 

GEOS-Chem simulations with a priori emissions as described above, compared to 

observations from the NOAA Global Monitoring Division (GMD) network 

(http://www.esrl.noaa.gov/gmd/). Boundary concentrations for the nested grid are 

archived at the edge of the North America domain. Comparison of GEOS-Chem with the 

NOAA data over the oceans show that the model simulates realistic latitudinal gradients. 

This conclusion is supported by comparison of GEOS-Chem to observations from the 

HIPPO campaign (Wofsy et al. 2012), which shows that GEOS-Chem simulates northern 

hemispheric latitudinal gradients without significant error (Turner et al. 2013). 
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3.3.2 Inversion Method 

We seek to use the SCIAMACHY observations over North America during the 

INTEX-A period to optimize methane emissions on the 1/2ox2/3o GEOS-Chem grid. 

Consider the ensemble of SCIAMACHY observations (column mean methane mixing 

ratios) assembled into an observation vector y. Simulation of these observations over the 

North American domain of GEOS-Chem depends on the gridded emissions within the 

domain as well as on the boundary conditions (methane background concentrations) at 

the edges of the domain. We assemble the gridded emissions and the gridded boundary 

conditions into a state vector x. Let F represent the GEOS-Chem model serving as 

forward model for the inversion. We have   

y = F(x) + !      (3.3) 

Figure 3.4: Methane concentrations in surface air averaged over the inversion period (22 
June – 14 August 2004). The GEOS-Chem simulation with a priori sources (background) 
is compared to NOAA GMD observations (circles). Left: global simulation at 4°x5° 
resolution used to archive a priori boundary concentrations for the nested simulation. 
Right: nested simulation at 1/2ox2/3o resolution for the North America domain. Note 
difference in scale between panels. The NOAA GMD data were obtained from 
http://www.esrl.noaa.gov/gmd/. 
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where ! is the observational error and includes contributions from forward model error, 

representation error (sampling mismatch between observations and the model), and 

measurement error. Error statistics are represented by the observational error covariance 

matrix SO = E[!!T] where E[ ] is the expected value operator.  

Bayesian optimization weighs the constraints on x from the SCIAMACHY 

observations with the a priori estimates xA (error covariance matrix SA). Applying Bayes’ 

theorem and assuming Gaussian errors leads to an optimized estimate for x by 

minimizing the cost function J(x) (Rodgers 2000): 

J(x) = (F(x) – y)T SO
-1 (F(x) – y) + (x – xa)T SA

-1 (x – xA)   (3.4) 

Minimization of J(x) is done with the GEOS-Chem adjoint model, developed by Henze et 

al. (2007) with application to methane source optimization by Wecht et al. (2012). The 

adjoint calculates xJ(xA), passes it to a steepest-descent algorithm that returns an 

improved estimate of x, calculates xJ(x), and iterates until convergence to find xJ(x) 

= 0. We describe below in more detail the different components of the inversion. 

 The ability of the inversion to constrain methane emissions over North America is 

contingent on the model variability being driven by these emissions. Starting from initial 

conditions, we find that it takes about a week for variability of methane columns over 

North America in the nested model to be driven by fresh emissions and boundary 

conditions (as opposed to the initial conditions). We therefore initialize our simulation on 

22 June, 9 days prior to assimilating the first observations on 1 July. The lifetime of 

methane against oxidation by OH is sufficiently long to play no significant role in the 

variability of methane concentrations over the North America domain. 

 We initially attempted to optimize North American emissions and boundary 
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conditions as a single state vector in the inversion. This was not successful because 

boundary conditions have a much larger impact in determining methane concentrations, 

even if they are less important for determining variability. We therefore iteratively 

minimize two separate cost functions, J(xb) and J(xe), to optimize boundary 

concentrations and emissions, respectively: 

! 

J(xB) = (F(xB) " y)
TSO

"1(F(xB) " y) + (xB " xB,A )
TSB,A

"1(xB " xB,A )  (3.5) 

! 

J(xE ) = (F(xE ) " y)
TSO

"1(F(xE ) " y) + (xE " xE,A )
TSE,A

"1(xE " xE,A ) (3.6) 

Here the state vectors are xB, scale factors of boundary concentrations at the edge of the 

domain relative to the a priori, and xE, logarithms of scale factors of methane emissions 

relative to the a priori within the North America domain. We optimize the logarithms of 

the emission scale factors to ensure positivity in the optimized emissions. A priori values 

for xB and xE are labeled xB,A and xE,A, respectively, and the corresponding a priori error 

covariance matrices are SB,A and SE,A. 

Each element of xB represents a temporally averaged scale factor applied to a 

4ox5o grid cell on the North American boundary (47 vertical levels) for a total of 3290 

elements. A priori boundary concentrations are specified from the global GEOS-Chem 

simulation with a priori emissions (shown in figure 3.4). The a priori error covariance 

matrix SB,A is constructed using error statistics from HIPPO-GEOS-Chem comparisons 

over the central Pacific presented by Turner et al. (2013). The diagonal is populated with 

a model error standard deviation of 16 ppb (0.9%), and off-diagonal terms are 

parameterized with exponential error correlation length scales of 275 km in the horizontal 

and 78 hPa in the vertical (Wecht et al. 2012). We assume that the above error statistics 

apply to all four boundaries. 
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 Each element xE,i.j of xE represents a temporal average applied to each 1/2ox2/3o 

emitting grid cell (i,j) in North America for a total of 7906 elements. It is expressed as 

follows: 

    xE,i,j = ln( Ei,j / EA,,i,j )     (3.7) 

where Ei,j is the true emission flux and EA,i,j is the a priori described above.  

The emissions a priori error covariance matrix, SE,A is constructed by assuming a 

uniform relative error standard deviation of 30% for emissions from each model grid cell 

and no a priori error correlations so that SE,A is diagonal. The sensitivity of the optimized 

solution to the specification of a priori error will be discussed later by considering an 

inversion without a priori constraints. 

The observational error covariance matrix SO includes contributions from 

representation error, measurement error, and GEOS-Chem model error (Heald et al. 

2004). Representation error is assumed to be negligible because SCIAMACHY XCH4 

observations have horizontal footprints (30 km x 60-120 km) comparable to the size of 

GEOS-Chem grid cells. We use reported IMAP v5.5 values for the measurement error 

(standard deviation 30.2 ppb or 1.7%) since these are consistent with our INTEX-A 

validation (section 3.2). GEOS-Chem comparison to HIPPO vertical profiles across the 

Pacific indicates a model error standard deviation of 16 ppb for methane column mixing 

ratios and we assume that this holds for North America too. All errors are assumed to be 

Gaussian and are added in quadrature to calculate the observational error for each 

observation. We do not include error correlation between observations since the overall 

observational error variance is dominated by the measurement error for which no 

correlation is expected. 
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The iterative optimization works as follows. First, we perform five adjoint 

iterations to reduce J(xB). We then use the updated values of xB to calculate J(xE) and 

perform five iterations to reduce J(xE). We use the updated values of xE to recalculate 

J(xB) and repeat. When the reduction of the cost function at each iteration becomes small, 

after 40 iterations, we hold xB constant, and iteratively solve 

! 

"xE
J(xE )  = 0. Optimization 

of xB corrects background methane for the inversion and is of peripheral interest here. We 

focus our discussion on the optimization of emissions in North America. 

 

3.3.3 Clustering 

Figure 3.5 shows the results from the inversion described above, with optimized 

correction factors of methane emissions at the 1/2ox2/3o horizontal resolution of the 

model over North America. Optimized emissions in 93% of grid cells have inversion 

corrections of less than 30%, as compared to 68% of grid cells that would be expected 

from the a priori error. This is because the observations have insufficient information to 

constrain emissions at the native GEOS-Chem resolution. 

 
 
Figure 3.5: Emission scale factors relative to the a priori (top left panel of Figure 3.3) 
from inversions optimizing emissions on the 1/2ox2/3o native resolution of GEOS-Chem 
(left) and for 1000 clustered regions (right). Gray areas (ocean/ice) are not included in the 
state vector for the inversion. 
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As the discretization of emissions becomes finer, the observations become less 

sensitive to emissions from each grid cell. The inversion therefore has less ability to pull 

emissions in each grid cell away from their a priori value, and the optimal solution will 

be more tightly constrained by the a priori.  This can be seen quantitatively from the 

minimization of (3.6):  

! 

"xE J(xE ) = 2("xEF)
T SO

#1 (F(xE ) # y) + 2SE,A
#1 (xE # xE,A ) = 0  (3.8) 

where 

! 

"xE
F  is the Jacobian matrix of the forward model. As the dimension of xE 

increases, the Jacobian matrix values become smaller and thus the individual terms of 

! 

("xEF)
T SO

#1 (F(xE ) # y)  decrease in magnitude as 

! 

("xE
F)T  distributes 

! 

SO
"1 (F(xE ) " y)  

over a larger number of state vector elements. By contrast, the magnitude of individual 

terms of 

! 

SE,A
"1 (xE " xE,A )  does not change. Thus the a priori increases in importance 

relative to the observations.  

The problem could be mitigated by accurately specifying error correlations in the 

a priori or by imposing them in the solution, as is done in geostatistical inversions 

(Michalak et al., 2004). But there is little confidence to be had in the specification of 

error correlations for methane sources.  

 We opted therefore to reduce the dimension of our emission state vector by 

clustering of grid cells, taking advantage of the results from the native-resolution 

inversion (Figure 3.5) to group together neighboring grid cells with similar emission 

scale factors and thus minimize the aggregation error associated with clustering. We tried 

successively smaller numbers of clusters and repeated the inversion in the same manner 

described above for the native-resolution inversion, seeking to find the best number of 

clusters for the inversion as measured by the fit to observations, As we initially decrease 
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the number of clusters starting from the native resolution, , we can expect an improved fit 

of the inversion results to the observations for the reasons discussed above. However, as 

the spatial resolution of the state vector becomes too coarse (too few clusters), the fit to 

observations degrades because of aggregation error. 

 We use a hierarchical clustering algorithm (Johnson 1967) as a data-driven 

aggregation technique to optimally define clusters from the native resolution emissions 

grid. The algorithm initially assigns each 1/2ox2/3o grid cell to its own region, calculates 

the “distance” to all other regions, and joins the two most similar. Distance is calculated 

as follows. We define the location for a region l by the vector vl=(p, 0.05*s)T where p is 

the location of the region centroid on a sphere and s is the mean value of the optimized 

scale factor from the native resolution inversion presented in Figure 3.5. All variables are 

normalized to unit variance and zero mean. The factor 0.05 was selected to adjust the 

weight of scale factors relative to geographic distance. The distance between two regions 

l and m is calculated as the norm  ||vl – vm||. The process of joining the two most similar 

regions proceeds iteratively, reducing the number of regions by one during each step. The 

algorithm can be stopped at any stage so that any number of clusters can be constructed. 

 Figure 3.6 (black) shows the contribution of the model-observation term, 

! 

(F( ˆ x E ) " y)T SO
"1(F( ˆ x E ) " y) , to the optimized cost function for inversions performed 

using different numbers of clustered regions. Here  is the optimal estimate from the 

inversion. We do not include the a priori term since it depends on the number of clusters 

used. The best results are achieved for 300-1000 clusters. As the number of clusters 

decreases from 7906 (native resolution) to 1000, the observations become more sensitive 

to elements in the state vector, producing a better model fit. As the number of clusters 
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decreases below 300, aggregation error degrades the model fit. The range in the cost 

function for the different inversions is relatively small because the measurement error 

dominates for any individual data point. We see from Figure 3.6 that our optimal estimate 

for total US anthropogenic emissions is only weakly sensitive to the number of clusters 

used. We will use the inversion with 1000 clusters as our best estimate in terms of 

optimization and spatial detail. 

 

 

Figure 3.6: Sensitivity of inversion results to the resolution with which North 
American methane emissions are optimized from the SCIAMACHY data for 1 July – 
14 August 2004. Resolution is expressed as the number of spatial clusters used in the 
inversion. The maximum of 7906 clusters represents the native 1/2ox2/3o grid of 
GEOS-Chem. Optimal aggregation of grid cells based on proximity and emission 
correction tendencies yields successively smaller numbers of clusters. Black points 
show the model-observation term of the cost function 

! 

(F( ˆ x E ) " y)T SO
"1(F( ˆ x E ) " y)  

describing the ability of the cost function to fit the SCIAMACHY observations.  Red 
points show optimized US anthropogenic emissions for each inversion. 
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3.3.4 Evaluation with SCIAMACHY and INTEX-A data 

The right panel of Figure 3.5 shows the correction factors to the a priori methane 

emissions from the 1000-cluster inversion. Figure 3.7 shows optimized emissions, 

calculated as the product of optimized correction factors and prior emissions in each grid 

cell. We checked for improvement of the model fit to the SCIAMACHY data by 

comparing GEOS-Chem simulations with optimized and a priori emissions and boundary 

conditions. For this we calculated the GEOS-Chem – SCIAMACHY root-mean-square 

difference (RMSD) and correlation coefficient (R) for the ensemble of 1/2ox2/3o grid 

cells with SCIAMACHY data, averaged over the July 1 – August 14, 2004 period and 

weighted by the number of SCIAMACHY observations in each grid cell. We find that the 

inversion reduces the model-observation RMSD from 11.6 to 9.7 ppb, while R increases 

from 0.65 to 0.76. This demonstrates improvement, limited by the random noise in the 

SCIAMACHY measurements. 

We further used the boundary layer observations from INTEX-A (Figure 3.1) to 

provide independent verification of the inversion results. The model-observation RMSD 

for individual observations decreases from 33.5 to 28.5 ppb, while R increases from 0.73 

to 0.74. Here the improvement appears to be limited by small-scale model and 

representation error for individual observations.  

Averaging of the data allows us to reduce that error and is a more useful 

comparison. Figure 3.8 shows boundary layer (>850 hPa) GEOS-Chem – INTEX-A 

differences averaged on an 8°x10° horizontal grid and for the INTEX-A period. The 

resulting model-observation RMSD weighted by the number of INTEX-A observations in 

each 8°x10° grid cell decreases 23.2 to 12.3 ppb when using optimized instead of a priori 
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emissions. The correlation coefficient R increases from 0.69 to 0.88. 

 We performed sensitivity inversions to investigate the effects of a priori 

constraints on emissions and model bias. A native-resolution inversion without a priori 

constraints on emissions shows similar signs and patterns of emission corrections to the 

inversion with a priori constraints, but the magnitudes of corrections are larger. 

Evaluation using INTEX-A data averaged into 8°x10° regions as above does not show as 

good a fit to observations, with an RMSD of 14.5 ppb and R of 0.77. This indicates that  

Figure 3.7: Optimized North American methane emissions from the 1000-cluster 
inversion. The annual emission rate for 2004 (Tg a-1) is shown inset for the North America 
domain as encompassed by the figure. 
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the a priori inventory contributes useful information. A sensitivity inversion including a 

uniform positive bias correction of 15 ppb in GEOS-Chem on the basis of INTEX-A free 

tropospheric data shows negligible effect on the correction factors to emissions because 

most of the bias is absorbed by correction to the boundary conditions. 

 

3.4 Optimized Methane Emissions 

The optimized correction factors in Figure 3.5 show patterns of increases and 

decreases relative to the a priori emissions in Figure 3.3. There is a large decrease in 

emissions from natural wetlands in northern Ontario and western Canada. There is also a 

broad decrease in the eastern US, particularly in Appalachia, suggesting an overestimate 

of emissions from coal mining and waste management. Emissions in the central US 

Figure 3.8: Independent evaluation of the SCIAMACHY inversion of methane emissions 
using INTEX-A aircraft data. The panels show the mean differences between GEOS-
Chem and INTEX-A observations below 850 hPa and for 8ox10o grid squares in the 
simulation with a priori emissions (left) and with optimized emissions from the 1000-
cluster inversion (right). A priori and optimized emission maps are shown in Figures 3.2 
and 3.7. The model-observation root mean square difference (RMSD) and weighted 
correlation coefficient (R) are inset. 
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increase, suggesting an underestimate of livestock emissions and also possibly from 

natural gas and oil extraction. We elaborate on source attribution below. 

  Table 3.1 shows US anthropogenic emission estimates from EPA, EDGAR v4.2, 

and this work. Optimized US anthropogenic emissions are 32.0 ± 1.3 Tg a-1, where our 

best estimate is from the 1000-cluster inversion and our error standard deviation is from 

the ensemble of inversions with different numbers of clusters in Figure 3.6 excluding the 

3-cluster inversion. Our best estimate is 24% higher than EDGAR v4.2, and 13% higher 

than EPA (2013), within the stated EPA 95% confidence interval of 14%.  

Our inversion optimizes the geographic distribution of emissions without a priori 

information on source type. It is of interest to determine whether the corrections can be 

attributed to the particular source types of Figure 3.3. To do so, we multiply the 

optimized emission correction factors by the a priori source estimates for each source 

type and grid cell. This approach assumes that the relative a priori source distribution in 

each grid cell is correct. It does not assume that a priori spatial distributions of sources 

are correct because spatial patterns will change after applying the correction factors.  We 

estimate uncertainties on the basis of the ensemble of values for the inversions with 

different clusters, recognizing that they are likely underestimates as all inversions make 

the same assumption about correctness of the a priori source distribution. 

 Results in Table 3.1 show that our emission estimate for livestock is 60% higher 

than the EDGAR v4.2 and EPA inventories and represents the largest US source. Our 

gas/oil source is intermediate between EDGAR v4.2 and EPA and is only half of the 

livestock source. Other sources are smaller, across all inventories. Our landfills source is 

consistent with both EDGAR v4.2 and EPA while our coal mining source is smaller than 
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EDGAR v4.2 but consistent with EPA.  

However, the patterns of correction factors from our inversion in Figure 3.5 reveal 

structure that cannot be simply explained by the EDGAR v4.2 source types. A multiple 

linear regression of absolute corrections on the distributions of individual EDGARv4.2 

and natural a priori emissions yields an R2 of only 0.21. For example, our correction 

factors in Figure 3.5 indicate a large EDGAR underestimate of livestock emissions in 

Iowa, where hog manure is important, but a decrease in eastern North Carolina where hog 

manure is important too. This could reflect differences in manure management practices. 

Our inversion also calls for a large increase in emissions from the Permian Basin in 

western Texas, a major gas/oil production region, but the EDGAR v4.2 inventory is very 

low there. This suggests that gas/oil emissions in EDGAR are too heavily weighted by 

the distribution and end use sectors relative to the production sector. 

 

3.5 Comparison to previous studies 
 
A number of previous studies have used methane observations from surface sites 

and aircraft as top-down constraints on methane emissions in North America. We discuss 

here the consistency of our results. 

There has been much interest in quantifying wetland emissions from in the 

Hudson Bay Lowlands (HBL) of northern Ontario, as this is the second largest area of 

boreal wetlands in the world after western Siberia. Pickett-Heaps et al. (2011) reviewed 

previous studies and estimated an HBL source of 2.3 Tg a-1 from aircraft and surface 

observations. Miller et al. (2013b) estimated a source of 2.4 Tg a-1 using tall tower 

observations. We find here a consistent estimate of 2.1 Tg a-1, accounting for the 
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seasonality given by Pickett-Heaps et al. (2011) with strong peak in June-August. This 

calls for downward revision of the Kaplan et al. (2002) source used as a priori in GEOS-

Chem. 

The CalNex aircraft campaign in May-June 2010 provided constraints on methane 

emissions from California through a series of boundary layer flights across the state. 

Inverse analyses of the CalNex data by Santoni et al. (submitted) and Wecht et al. (in 

prep) indicate statewide emissions of 2.4-2.8 Tg a-1, Los Angeles Basin emissions of 0.3-

0.4 Tg a-1, and a factor of 2-4 underestimate of livestock emissions in the EDGAR v4.2 

inventory for the Central Valley. Our inversion of the SCIAMACHY data is closely 

consistent with these results indicating a statewide emission of 2.1 Tg a-1 in California, 

0.2 Tg a-1 in the Los Angeles Basin, and a factor of 2.6 underestimate in livestock 

emissions relative to EDGAR v4.2. The livestock underestimate is larger for California 

than the national underestimate of 60% reported earlier, and provides further evidence of 

spatial errors in emission factors in the EDGAR inventory.  

Miller et al. (2013a) estimated methane emissions across the US using a network 

of surface and aircraft data from 2007-2008. Their optimal estimate for US anthropogenic 

emissions is 44.5 Tg a-1, much higher than our value of 32.0 Tg a-1.They increase 

emissions in the central US relative to EDGAR and decrease emissions in Appalachia, 

similar to the spatial patterns reported here. Their observations, however, are relatively 

sparse east of the Great Plains and may not adequately characterize the emissions 

reductions throughout Appalachia and the northeast that are required by SCIAMACHY 

and consistent with the INTEX-A data. Miller et al. (2013a) estimate a factor of 2.3 

increase relative to EDGAR v4.2 for the northern plains (Nebraska, Iowa, Wisconsin, 
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Minnesota, and South Dakota), a region of high livestock density and few other sources 

of methane. This compares well to our factor of 2.5 increase for the region, again higher 

than the national average for livestock emissions.  

Katzenstein et al. (2003) measured methane concentrations on a road survey 

across Texas, Oklahoma, and Kansas. Assuming a mean boundary layer height and a 

characteristic ventilation time for the region, they estimated a methane emission of 4-6 

Tg a-1 for that tri-state region. Assuming that these emissions are mainly from natural gas 

and oil, they concluded that EPA emission estimates are too low by a factor of 2.5. Our 

inversion indicates a methane emission of 9.4 Tg a-1 for the region, greater than the 

Katzenstein et al. (2003) estimate and possibly reflecting their oversimplified ventilation 

model. In any case, their assumption that gas/oil dominate sources in the region may not 

be valid as the EDGAR v4.2 inventory for the region (4.0 Tg a-1) assigns 52% of methane 

emissions to livestock and only 29% to gas/oil. Miller et al. (2013a) estimate emissions of 

10.8 Tg a-1 for the region and attribute the underestimate to both livestock and gas/oil. 

Most of the emission correction for the region in our inversion is from livestock.  

Xiao et al. (2008) derived a US ethane emission of 2.4 Tg a-1 from analysis of 

INTEX-A observations and combined this with independent estimates of ethane-to-

methane emission ratios to deduce a US fossil fuel methane emission of 16 Tg a-1. This 

would include contributions from natural gas, oil, and coal mining. By comparison, EPA 

and EDGAR v4.2 estimate US fossil fuel emissions of 11.7 and 10.1 Tg a-1, respectively. 

Using the source-type distributions provided by EDGAR, we calculate a fossil fuel 

methane source of 9.6 Tg a-1. Uncertainty on ethane-to-methane emission ratios may have 

affected the Xiao et al. (2008) estimate.  
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 Kort et al. (2008) used Lagrangian modeling of observations from the COBRA-

NA aircraft campaign across North America in 2003 to evaluate US and Canada 

emissions. From a single linear regression of modeled vs. observed methane they 

estimated US anthropogenic emissions of 41±6 Tg a-1, larger than our best estimate of 

32.0 Tg a-1. Their observations, however, are only sensitive to emissions from a relatively 

small fraction of the US and Canada.  

Petron et al. (2012) and Karion et al. (2013) used in situ observations to estimate 

methane leak rates of 4% and 6-12% of total natural gas production Weld County, CO 

and Uintah County, UT, respectively. In contrast, the EDGAR v4.2 and EPA inventories 

assume a national average leak rate of 1.0-1.4%. Our inversion of the SCIAMACHY data 

does not indicate higher-than-expected natural gas emissions from these two counties but 

this would not account for post-2004 growth. Methane leakage rates can vary 

considerably by basin (US Government Accountability Office, 2010). 

 

3.6 Conclusions 

We used SCIAMACHY satellite observations in a high-resolution continental-

scale inversion of methane emissions in North America driven by the GEOS-Chem 

chemical transport model (CTM) and its adjoint at 1/2ox2/3o horizontal resolution. The 

inversion focused on summer 2004, when concurrent observations from the INTEX-A 

aircraft observations are available to both validate the SCIAMACHY data and 

independently evaluate the inversion. The high density of observations available from 

SCIAMACHY enables higher spatial detail in constraining methane emissions on the 

continental scale than had been achievable before.  
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Removal of observational bias is essential for a successful inversion. Our 

validation of the SCIAMACHY observations (IMAP v5.5) with INTEX-A vertical 

profiles identified a systematic bias correlated with water vapor, consistent with previous 

studies.  We found that we could successfully correct for this bias, and the residual error 

is consistent with the theoretical error estimate from the IMAP v5.5 retrieval. 

Continental-scale inversion for methane required accurate specification of the 

boundary conditions in GEOS-Chem. This was accomplished by optimizing both the 

North American emissions and the boundary conditions as part of the inversion.  We 

found that the information content from the SCIAMACHY data was insufficient to 

constrain emissions at the native 1/2ox2/3o horizontal resolution of GEOS-Chem. We 

solved this problem by using a hierarchical clustering algorithm to identify 1000 

geographical clusters for which the inversion provides optimal results. The optimized 

emissions obtained from the 1000-cluster inversion were independently evaluated by 

GEOS-Chem simulation of the INTEX-A aircraft data. This demonstrated a major 

improvement over the simulation driven by a priori emissions. 

Our optimized methane emissions for the Canadian wetlands are lower than the a 

priori but consistent with recent studies.  Our optimized methane emissions for the US 

are lower than the EDGAR v4.2 inventory for the eastern US but higher for the central 

US. Our best estimate of US anthropogenic emissions is 32.0 ± 1.3 Tg a-1, compared to 

25.8 Tg a-1 and 28.3 Tg a-1 in the EDGAR v4.2 and EPA inventories respectively. Source 

attribution of our optimized methane emissions on the basis of the EDGAR patterns 

suggests that the above inventories underestimate livestock emissions by 60-70%, with 

smaller discrepancies for other sources. We find that livestock emissions in the US are 
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twice higher than gas/oil emissions, whereas the EPA inventory reports these two sources 

to be of comparable magnitude. However, we find in a regression analysis that the 

EDGAR patterns can account for only 21% of the variability in the source correction 

from the inversion. This implies large inventory errors in the geographic variability of 

emission factors (e.g., livestock management practices) and activity rates (e.g., gas/oil 

production in the West).   

Our finding that US livestock emissions are underestimated in current inventories 

is consistent with previous regional studies. The degree of underestimate seems highly 

variable for different parts of the country, suggesting large variability in emission factors. 

Our finding that gas/oil emissions are not underestimated in current inventories is at odds 

with previous studies and may partly reflect assumptions in these studies and local 

variability in leakage rates.  

Emissions of methane in North America may be rapidly changing in the future as 

a result of increasing gas/oil production, changes in recovery practices, hydrofracking, 

and climate change affecting wetlands. The GOSAT satellite observations (2009-present) 

may be useful to track recent trends but are relatively sparse. The TROPOMI instrument 

to be launched in 2015 will provide global daily coverage with 7x7 km2 nadir spatial 

resolution and precision of 0.6% (Veefkind et al. 2012; Butz et al. 2012). This will 

provide a tremendous boost to monitoring methane emissions from space.  
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Chapter 4. Spatially resolving methane emissions in California: 

constraints from the CalNex aircraft campaign and from 

present (GOSAT, TES) and future (TROPOMI, geostationary) 

satellite observations 

 

[Wecht, K.J., Jacob, D.J., Sulprizio, M., Santoni, G.W., Wofsy, S.C., Parker, R., Bösch, 

H., and Worden, J.R., in preparation for submission] 

 

Abstract 

We apply a continental-scale inverse modeling system for North America based 

on the GEOS-Chem model to optimize California methane emissions at 1/2ox2/3o 

horizontal resolution using atmospheric observations from the CalNex aircraft campaign 

(May-June 2010) and from satellites. Inversion of the CalNex data yields a best estimate 

for total California methane emissions of 2.86 ± 0.21 Tg a-1, compared with 1.92 Tg a-1 in 

the EDGAR v4.2 emission inventory used as a priori and 1.51 Tg a-1 in the California Air 

Resources Board (CARB) inventory used for state regulations of greenhouse gas 

emissions. These results are consistent with a previous Lagrangian inversion of the 

CalNex data. Our inversion provides 12 independent pieces of information to constrain 

the geographical distribution of emissions within California. Attribution to individual 

source types indicates dominant contributions to emissions from landfills/wastewater (1.1 

Tg a-1), livestock (0.87 Tg a-1), and gas/oil (0.64 Tg a-1).  EDGAR v4.2 underestimates 

emissions from livestock while CARB underestimates emissions from 
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landfills/wastewater and gas/oil. Current satellite observations from GOSAT can 

constrain methane emissions in the Los Angeles Basin but are too sparse to constrain 

emissions quantitatively elsewhere in California (they can still be qualitatively useful to 

diagnose inventory biases). An observation system simulation experiment (OSSE) shows 

that the future TROPOMI satellite instrument (2015 launch) will be able to constrain 

California methane emissions at a detail comparable to the CalNex aircraft campaign. 

Geostationary satellite observations offer even greater potential for constraining methane 

emissions in the future. 

 

4.1 Introduction 

 Quantifying greenhouse gas emissions at the national and state level is essential 

for climate policy. The state of California Assembly Bill 32 (AB32) legislates that state 

greenhouse gas emissions be brought down to 1990 levels by 2020. The California Air 

Resources Board (CARB) has identified the importance of reducing methane for 

complying with AB32 (CARB, 2013). It provides a statewide methane emission 

inventory for enforcement of AB32 (CARB, 2011). However, atmospheric observations 

from surface sites and aircraft suggest that this inventory may be too low by a factor of 2 

or more (Wunch et al. 2009; Jeong et al. 2012; Peischl et al. 2012; Wennberg et al. 2012; 

Santoni et al. 2013). This is problematic in terms of designing a credible emissions 

control strategy. 

 Atmospheric observations play a critical role in measurement, reporting and 

verification (MRV) of greenhouse gas emission inventories (NRC, 2010). Surface 

measurements are limited in space, and aircraft campaigns are limited in time. Satellite 
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observations have the potential for continuous monitoring of emissions if their sensitivity 

and coverage is sufficient. In Wecht et al. (2013), we present a new capability developed 

under the NASA Carbon Monitoring System (CMS) to constrain methane emissions at 

high spatial resolution over North America by inversion of satellite observations in an 

Eulerian framework (GEOS-Chem chemical transport model). Here we apply this 

capability to estimate the fine-scale distribution of emissions in California by using 

observations from the CalNex aircraft campaign (May-June 2010) as well as from current 

and future satellite instruments. 

 Santoni et al. (2013) previously used the CalNex aircraft observations in a 

Lagrangian inversion of methane emissions for California, optimizing a total of 8 source 

types/regions within the state. They derived an optimized statewide emission of 2.4 Tg 

a!1, as compared to 1.5 Tg a-1 in the CARB inventory, and attributed most of the 

underestimate to livestock emissions. Here we use the same CalNex observations as 

Santoni et al. (2013) but optimize emissions on the 1/2ox2/3o (~50x50 km2) grid of 

GEOS-Chem, without prior assumption on source types, thus providing a different 

perspective and a check on the use of different inversion methodologies. 

 We then apply our CMS framework to examine the constraints on California 

methane emissions achievable from satellite observations in comparison to the CalNex 

observations. Satellites measure methane from solar backscatter spectra in the short-wave 

infrared (SWIR) and terrestrial radiation spectra in the thermal infrared (TIR). A number 

of satellite instruments have the capability to observe methane (Table 4.1). SWIR 

retrievals are available from SCIAMACHY (2003-2012) and GOSAT (2009-present).  
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TIR retrievals are available from AIRS (2002-present), TES (2004-2011), and IASI 

(2007-present). SWIR retrievals provide total atmospheric methane columns. TIR 

retrievals provide vertical profiles but have limited sensitivity to the lower troposphere 

due to lack of thermal contrast, and this limits their value for detecting regional sources 

(Wecht et al., 2012). 

Our initial CMS application described in Wecht et al. (2013) focused on 

optimizing methane emissions on the continental scale of North America using 

SCIAMACHY observations for summer 2004. SCIAMACHY provided high-quality 

observations with high density until 2005, after which the sensitivity of the instrument 

degraded (Frankenberg et al., 2011). Current satellite observations are available from 

GOSAT and TES. As we will see, they are too sparse to usefully constrain the 

distribution of emissions within California. Drastic improvement in our ability to observe 

methane from space is expected in 2015 with the launch of the SWIR TROPOMI 

instrument (Veefkind et al., 2012; Butz et al., 2012). TROPOMI will provide daily global 

coverage with 7x7 km2 nadir resolution. There are also several current proposals for 

geostationary SWIR observation of methane over North America, drawing on plans for 

the NASA GEO-CAPE mission (Fishman et al., 2012). Here we will evaluate the 

potential of these future instruments to constrain the spatial distribution of emissions at 

the state level by using observation system simulation experiments (OSSEs) for 

California anchored by our CalNex results. 

 

4.2 GEOS-Chem inverse modeling system for methane emissions 
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4.2.1 Forward model and optimization procedure 

We use the GEOS-Chem chemical transport model (CTM) with 1/2ox2/3o 

horizontal resolution as forward model in the inversion to optimize methane emissions on 

the basis of observed atmospheric concentrations. The inversion seeks an optimal 

solution for the spatial distribution of methane emissions consistent with both 

atmospheric observations and a priori knowledge. The a priori is from existing emission 

inventories. The forward model F relates emissions to methane concentrations. 

Optimization is done by minimizing the Bayesian least-squares cost function, J: 

J(x) = (F(x) – y)T SO
-1 (F(x) – y) + (x – xA)T SA

-1 (x – xA)  (4.1) 

Here y is the ensemble of observations arranged in a vector, SO is the error covariance 

matrix of the observation system, SA is the error covariance matrix of the a priori 

emissions, x is a vector of emission scale factors on the 1/2°x2/3° GEOS-Chem grid, and 

xA is the corresponding a priori. x has as elements xi = Ei / EA,i, where Ei and EA,i are 

respectively the true and a priori methane emissions for grid square i.  

Analytical solution of (4.1) yields the following expression for the optimal 

estimate , its associated error covariance matrix , and the averaging kernel matrix A 

that describes the sensitivity of the retrieved emissions to true emissions (Rodgers, 2000): 

! 

ˆ x = xA + SAKT (KSAKT + SO)"1(y "KxA )    (4.2) 

! 

ˆ S "1 = KTSO
"1K + SA

"1      (4.3) 

! 

A = In " ˆ S Sa
"1        (4.4) 

Here K is the Jacobian matrix for the sensitivity of concentrations to emissions calculated 

with GEOS-Chem, In is the identity matrix, and n is the dimension of x. 

We use GEOS-Chem version 9-01-02 
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(http://acmg.seas.harvard.edu/geos/index.html), driven by GEOS-5 meteorological data 

from the NASA Global Modeling and Assimilation Office (GMAO). The GEOS-5 data 

have 1/2° x 2/3° horizontal resolution, 72 vertical levels (including 14 in the lowest 2 

km), and 6-h temporal resolution (3-h for surface variables and mixing depths). The 

simulations are for a nested version of GEOS-Chem with native 1/2ox2/3o resolution for 

western North America and the adjacent Pacific (26-70°N, 110-140°W) and 3-h dynamic 

boundary conditions from a global simulation with 4° x 5° resolution. The transport time 

step is 10 minutes. In our previous inverse analysis of SCIAMACHY observations for 

North America (Wecht et al., 2013), we used a larger nested domain (10-70oN, 40-

140oW). Simulations using the two domains show negligible differences over California. 

The trimmed domain used here makes it computationally feasible to construct the 

Jacobian matrix K and from there to obtain the analytical solution (4.2)-(4.4) with full 

characterization of error statistics, unlike the numerical solution relying on the GEOS-

Chem adjoint as implemented by Wecht et al. (2013). Boundary conditions are treated 

here by correcting the free tropospheric background to match the CalNex aircraft 

observations as described in section 3. 

The main sink for atmospheric methane is oxidation by OH in the troposphere, 

and this is computed using a 3-D archive of monthly average OH concentrations from a 

GEOS-Chem simulation of tropospheric chemistry (Park et al. 2004). Additional minor 

sinks in GEOS-Chem include soil absorption (Fung et al. 1991) and stratospheric 

oxidation computed with archived loss frequencies from the NASA Global Modeling 

Initiative (GMI) Combo CTM (Considine et al. 2008, Allen et al. 2010). Tropospheric 

loss of methane is inconsequent here since ventilation from the western US window 
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domain is fast in comparison. Stratospheric loss provides a realistic stratospheric profile 

of methane and Wecht et al. (2012) pointed out that this is important for the inversion of 

satellite observations. 

 

4.2.2 A priori emissions for the inversion 

A priori anthropogenic emissions in GEOS-Chem are from the EDGAR v4.2 

global inventory at 0.1ox0.1o resolution for 2008, the most recent year available (EC-

JRC/PBL 2009). CARB only reports statewide totals. A gridded version of the CARB 

inventory is available from the California Greenhouse Gas Emissions Measurement 

(CalGEM) Project, described by Zhao et al. (2009) and Jeong et al. (2012). The EDGAR 

v4.2 inventory on the scale of the US agrees well with the US Environmental Protection 

Agency (EPA, 2013) national inventory (Wecht et al., 2013). EDGAR emissions are 

aseasonal but we apply seasonality to California rice emissions following McMillan et al. 

(2007) with emissions in the growing season (June-September) six times higher than in 

the rest of the year. Natural emissions include open fires from GFED-3 with daily 

resolution (van der Werf et al. 2010; Mu et al. 2010) and wetlands with dependence on 

local temperature and soil moisture (Kaplan et al. 2002; Pickett-Heaps et al. 2011). They 

account for only 3% of total a priori methane emissions in California. 

Table 4.2 shows the statewide emissions in the EDGAR and CARB inventories, 

with the contributions from different sources. EDGAR emissions are 1.92 Tg a-1, 27% 

higher than CARB emissions of 1.51 Tg a-1. There are larger discrepancies in 

contributions from different source types. EDGAR landfills/wastewater and gas/oil  
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Table 4.2: Methane emissions in Californiaa 
 
 CARB EDGAR 

v4.2b 
Santoni et al. 
(2013)c 

This studyd Other 
Studiese 

State Total  1.51 1.92 2.37±0.27 2.86±0.21  
    Landfills/ 
    Wastewaterf 

0.39 0.82 0.42g 1.05  

    Gas/oil 0.18 0.51 footnote c 0.64  
    Livestock 0.86 0.46 1.29 0.87  
    Rice 0.027 0.033 0.069 0.08 0.078-0.093h 
    Otheri 0.05 0.10 footnote c 0.13  
    Naturalj    0.08  
Los Angeles 
Basin 

 0.54 0.28-0.39 0.42±0.08 
0.31±0.08k 

0.6±0.1l 
0.38±0.1m 
0.44±0.15n 

0.41±0.04o 
 
a Units are Tg a-1. Estimates from the CARB and EDGAR v4.2 inventories are compared 
to inversion results from this work and other studies. Values are for 2010 unless 
otherwise noted. 
b For 2008, the latest year available. 
c Lagrangian inversion using CalNex observations and resolving 8 source types/regions. 
They give a total emission estimate of 0.59 Tg a-1 from the sum of wastewater, gas/oil, 
and other sources without a further source breakdown.  
d Inversion at 1/2ox2/3o resolution using CalNex observations unless otherwise indicated; 
source type attribution is inferred by mapping optimized emissions to the EDGAR source 
type distributions. 
e Estimates constrained by atmospheric observations from surface or aircraft 
f These two sources are combined here because of the similarity of their geographical 
distributions in EDGAR v4.2. Landfills account for 80% of this combined source 
according to both CARB and EDGAR v4.2. 
g Landfills only.  
h McMillan et al. (2007), Peischl et al. (2012). 
i Including biofuels and other minor sources. 
j Including wetlands, termites, and open fires. 
k From inversion of GOSAT observations during CalNex. 
l Wunch et al. (2009) estimate for 2007-2008. 
m Hsu et al. (2010) estimate for 2007-2008. 
n Wennberg et al. (2012) estimate for both 2008 and 2010. 
o Peischl et al. (2013). 
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emissions are higher than CARB by more than a factor of 2. EDGAR livestock 

emissions, on the other hand, are lower than CARB by a factor of 2. The CalNex 

observations can arbitrate on these discrepancies as will be discussed in section 3.3. 

Figure 4.1 shows the distribution of EDGARv4.2 emissions across California. 

Landfill/wastewater and gas/oil emissions closely follow population distribution. 

Landfill/wastewater includes landfills (79%) and wastewater treatment (21%) with 

similar spatial patterns in EDGAR. The gas/oil source is dominated by natural gas 

emissions (94%) and the correlation with population in EDGAR suggests that it is mostly 

from distribution rather than extraction, which is concentrated in the southwestern end of 

the Central Valley. Livestock emissions are mostly in the Central Valley and include both 

enteric fermentation and manure management. 

 

4.3. Inversion of CalNex Observations 

 

4.3.1 Observations and error characterization 

 Santoni et al. (2013) measured methane concentrations aboard the CalNex aircraft 

with a Quantum Cascade Laser Spectrometer (QCLS) (Kort et al. 2012), and derived 

methane emissions from these observations with an inversion using the Stochastic Time-

Inverlted Lagrangian Transport (STILT) model. Methane was also measured aboard the 

CalNex aircraft with a Cavity Ring-Down Spectrometer (CRDS) (Peischl et al. 2012), 

and Santoni et al. (2013) used these observations to fill gaps in the QCLS record after 

correcting for bias between the two instruments. They used observations between 2-4 km  
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Figure 4.1: EDGAR v4.2 methane emissions for 2008 used as a priori for our inversion. 
Panels show total emissions and contributions from the three major source types. 
California totals in Tg a-1 are inset. Values are averaged over the 1/2ox2/3o- GEOS-Chem 
grid. 
 

for each flight to constrain the free tropospheric background, and the observations below 

2 km to constrain California emissions. We follow the same approach here, correcting the 

GEOS-Chem concentrations for the observed free tropospheric background on individual 

days. This effectively accounts for boundary conditions. Data selection criteria are 

described by Santoni et al. (2013). 

Total: 1.97

Gas/Oil: 0.51

10
1010 molecules cm-2 s-1

Landfills/
Wastewater: 0.82

Livestock: 0.46

1 100 1000



 84 

Figure 4.2 (left) shows the mean observed methane concentrations below 2 km 

from the 11 daytime CalNex flights used by Santoni et al. (2013) in their inversion. 

Values are highest over the Central Valley and the Los Angeles Basin. We use the same 

observations for our inversion after averaging horizontally, vertically, and temporally 

over the GEOS-Chem grid. The resulting observation vector y has 1993 elements. We 

use it to optimize emissions (state vector x) from the 157 1/2ox2/3o model grid squares 

that comprise California. The middle panel of Figure 4.2 shows the GEOS-Chem 

simulation with a priori EDGAR emissions and after correcting for the free tropospheric 

background. There is a general underestimate and discrepancies in patterns that point to 

errors in the EDGAR emissions. 

 

Figure 4.2: Mean methane concentrations below 2 km altitude during CalNex (May-June 
2010). Aircraft observations averaged on the 1/2ox2/3o GEOS-Chem grid (left) are 
compared to the GEOS-Chem simulation using EDGAR v4.2 a priori emissions (Figure 
4.1) and adjusted free tropospheric background (see text). The optimized correction 
factors to the EDGAR v4.2 emissions from inversion of the CalNex observations are 
shown on the right. DOFS from the inversion is inset Gray grid squares in the right panel 
are excluded from the optimization. 
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 We use the residual error method of Heald et al. (2004) to estimate the 

observational error variances (diagonal elements of SO). This involves partitioning of the 

observation vector into coherent subsets within which the error statistics can be assumed 

homogeneous. The subsets are defined here by altitude and geographical region: Central 

Valley, Los Angeles Basin, San Francisco Bay Area, rest of California, and Pacific 

Ocean. For each subset we assume that the mean difference between observations and the 

model with a priori sources is caused by error on the a priori sources. The residual 

standard deviation (RSD) is then assumed to represent the standard deviation of the 

observational error. RSD is largest (50-70 ppb) in the lowest 1 km over the Central 

Valley and the Los Angeles Basin, reflecting small-scale transport and spatial variability 

in emissions not resolved by the model. RSD below 1 km in other regions is typically 20-

40 ppb. RSD in all regions decreases with altitude to 15-20 ppb at 2 km. For each 

element of y in the subset we populate the diagonal of SO with the observational error 

variance, RSD2. Variograms show no significant temporal or horizontal error correlations 

between observations on the GEOS-Chem grid. We therefore take SO to be diagonal.  

The a priori error covariance matrix, SA, is constructed by assuming a uniform 

75% uncertainty on a priori emissions from every grid square. This magnitude of 

uncertainty is consistent with the discrepancies between CARB and EDGAR and with the 

results of Santoni et al. (2013). We assume no error correlations so that SA is diagonal. 

Sensitivity of the inversion results to specification of SA is examined in section 3.3. 

Care is required to account for model errors in planetary boundary layer (PBL) 

height. High Spectral Resolution Lidar (HSRL) aircraft observations during CalNex 

indicated mean midday PBL heights of 1.0 km in the Central Valley and the Los Angeles 
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Basin (Fast et al. 2012). The GEOS-5 meteorological data used in GEOS-Chem are 

biased high by 0.3 km in both regions. This would be of no consequence if the 0-2 km 

column was evenly sampled by the observations, but most of the observations are in fact 

below 1 km altitude and the PBL bias would cause a model underestimate unrelated to 

emissions. To address this we weigh the individual CalNex observations in the inversion 

to enforce even sampling of the 0-2 km column. 

 

4.3.2 Inversion Results  

Figure 4.2 (right) shows optimized correction factors to the EDGAR v4.2 a priori 

emissions from the inversion and Figure 4.3 shows the optimized emissions. The 

optimized state total emission in California is 2.86 ± 0.21 Tg a-1, compared with 1.92 Tg 

a-1 for EDGAR and 1.51 Tg a-1 for CARB. The uncertainty on the optimized estimate is 

provided by the error covariance matrix computed from (3). Emissions increase relative 

to EDGAR v4.2 primarily over the Central Valley, by up to a factor of 4.5. The increase 

largely follows the pattern of livestock emissions. Emissions decrease over the Los 

Angeles Basin and the area around Sacramento. Source type allocation is further 

discussed in section 3.3. 

Table 4.2 compares the statewide emissions calculated here and by Santoni et al. 

(2013). Our state total is larger than their 2.37 ± 0.27 Tg a-1 but this appears to reflect 

their use of a lower a priori inventory. When they use the EDGAR v4.2 inventory as a 

priori in a sensitivity inversion they obtain an optimized emission of 2.8 Tg a-1, consistent 

with ours. We conducted sensitivity inversions assuming 50% and 100% uncertainties in 

the EDGAR v4.2 a priori emissions for individual grid squares (instead of 75% in the 
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standard inversion) and found optimized statewide emissions of 2.59 and 3.10 Tg a-1, 

respectively. This illustrates the sensitivity of the optimization to the choice of a priori, 

although the result that the a priori is too low is robust. 

 

Figure 4.3: Optimized methane emissions from our inversion using CalNex observations. 
Total California emissions are inset. See Table 4.2 for source type attribution. 
 

A number of previous studies have used atmospheric observations to estimate 

methane emissions in the Los Angeles Basin and find values in the range 0.38-0.6 Tg a-1 

(Table 4.2). Santoni et al. (2013) estimate a range of 0.29-0.38 Tg a-1. Our inversion 

yields an optimized estimate of 0.42 ± 0.08 Tg a-1 for the Los Angeles Basin, in the range 

of these previous studies.  
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The extent to which the inversion can constrain the spatial distribution of 

emissions in California can be measured by the degrees of freedom for signal (DOFS), 

calculated as the trace of the averaging kernel matrix A (Rodgers, 2000). DOFS is a 

measure of the number of independent elements in the retrieved emission field. Higher 

DOFS means that more information is available to constrain the spatial distribution of 

emissions. In an ideal inversion where all n state vector elements (emissions in individual 

grid squares) are fully constrained by the observations, A would be the identity matrix 

and we would have DOFS = n. 

Figure 4.4 (top left) shows a map of the diagonal elements of A in each grid 

square for the CalNex inversion. Values represent the degrees of freedom associated with 

each grid square. i.e., the ability of the observations to constrain emissions in that grid 

square (1 = fully, 0 = not at all), or in other words the relative contributions of the 

observations and the a priori in constraining the inverse solution. We find values 

approaching 1 in the Los Angeles Basin and the San Francisco Bay area, and typically 

0.2-0.8 in the Central Valley. Low values are associated with areas that were either not 

adequately covered by the CalNex aircraft (Figure 4.2) or have low emissions (Figure 

4.1) and thus little influence on the inversion. Overall our inversion has a total DOFS for 

California of 12.2, indicating that we can constrain 12 independent pieces of information. 

 

4.3.3 Attribution to Source Types  

Our inversion optimizes methane emissions on a geographical grid without a 

priori consideration of source type. This can be contrasted to the Santoni et al. (2013) 

inversion, which optimized emissions by source type assuming that the a priori pattern  
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Inversion Degrees of Freedom per Grid Square

0.0 1.00.5

DOFS = 12.2

CalNex

DOFS = 10.5 DOFS = 25.6

TROPOMI GEO-CAPE

DOFS = 1.3

GOSAT

Figure 4.4: Degrees of freedom in each grid square from our inversions using 
CalNex (top, left) and GOSAT (top, right) observations and from our OSSEs using 
TROPOMI (bottom, left) and geostationary (bottom, right) synthetic observations. 
Values are the diagonal elements of the averaging kermel matrix for the inversion 
and represent the ability of the observations to constrain local emissions (see text). 
The sum of these degrees of freedom (trace of the average kernel matrix) represents 
the degrees of freedom for signal (DOFS) of the inversions, inset. Gray grid squares 
are excluded from the optimization. 
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for each source type was correct. Ultimately, our spatial correction factors need to be 

related to source types in order to guide the improvement of inventories. This can be done 

by mapping the results onto the a priori source patterns of Figure 4.1, with the caveat that 

the patterns may not be correct.  

We conducted the mapping of our optimized emissions to source types by 

applying the optimized total emissions for each grid square (right panel of Figure 4.2) to 

the relative contributions from each major source type in that grid square, as given by the 

EDGAR v4.2 inventory and plotted in Figure 4.1. This method assumes that EDGAR 

correctly identifies the relative contributions of each source type to the total emissions in 

a given grid square. Results in Table 4.2 show that livestock emissions increase statewide 

by 92% relative to EDGAR, landfill/wastewater by 28%, and gas/oil by 26%.  

To examine the degree to which our inversion results can be explained by the 

patterns in the EDGAR a priori inventory, we performed a multiple linear regression 

(MLR) to fit the inversion corrections in each California grid square of Figure 4.3 (n = 

157) to the a priori spatial patterns from each source type (landfill/wastewater, gas/oil, 

livestock, other anthropogenic, rice, wetlands, and biofuel; n = 7). The MLR best fit has 

an R2 of 0.54, indicating that the a priori source patterns can explain about half of the 

correction. These patterns are too spatially correlated  (e.g., landfill/wastewater and 

gas/oil in Figure 4.1) for the MLR coefficients to provide meaningful attribution to 

individual source types. The residual not explained by the MLR points to spatial 

variability in activity rates and emissions factors not accounted for in EDGAR.  

We pointed out above the large discrepancies between CARB and EDGAR for different 

source types (Table 4.2). Our livestock estimate is much higher than EDGAR but agrees 
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with CARB, in contrast to Santoni et al. (2013) who concluded that livestock emissions 

in CARB are 50% too low. On the other hand, our emissions from landfills/wastewater 

and gas/oil are higher than CARB by factors of 2.7 and 3.6, respectively, and are in closer 

agreement with EDGAR. Rice emissions, although small, are underestimated by a factor 

of 2-3 in the CARB and EDGAR inventories, consistent with the previous findings of 

McMillan et al. (2007) and Peischl et al. (2012). 

 

4.4 Utility of Current Satellites (GOSAT, TES) for Constraining California 
Emissions 
 
 Satellite observations of atmospheric methane from GOSAT and TES were 

operational during CalNex and we examine their combined value for constraining 

emissions from California over that period. GOSAT is in a sun-synchronous polar orbit 

with an equator overpass local time of ~10:00. It retrieves methane from nadir SWIR 

spectra near 1.6 µm. Measurements consist of five across-track points separated by ~100 

km, with footprint diameters of 10.5 km. Observations are limited to daytime and land. 

We use the University of Leicester GOSAT Proxy XCH4 v3.2 data described by Parker 

et al. (2011) (available from http://www.leos.le.ac.uk/GHG/data/) to populate our 

observation vector y. These data are for methane column mixing ratios XCH4 [v/v] 

retrieved by the CO2 proxy method: 

(!A + aT(! - !A))   (4.5) 

where ! is the true vertical profile of methane consisting of 20 partial columns, !A is the 

a priori profile provided by the TM3 chemical transport model, !A is the corresponding a 

priori column concentration of methane [molecules cm-2], a is an averaging kernel vector 
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that describes the sensitivity as a function of altitude, !CO2 is the vertical column 

concentration of CO2, and XCO2 is a modeled column mixing ratio of CO2. The sensitivity 

characterized by a is nearly uniform in the troposphere and decreases with altitude in the 

stratosphere. The normalization by CO2 corrects for aerosol and partial cloud effects as 

described by Frankenberg et al. (2006).  

 TES is in a sun-synchronous polar orbit with an equator overpass local time of 

~13:45. It retrieves methane from nadir TIR spectra at 7.58 – 8.55 µm. It makes nadir 

observations with a pixel resolution of 5.3x8.3 km2 every 182 km along the orbit track. 

Successive orbit tracks are separated by about 22° longitude. We use the most recent 

V005 Lite product (Worden et al., 2012; http://tes.jpl.nasa.gov/data/). Vertical methane 

profiles are retrieved as: 

ln  = ln zA + A’(ln z – ln zA)   (4.6) 

where  is the retrieved vertical profile vector consisting of mixing ratios on a fixed 

pressure grid, A’ is the averaging kernel matrix that represents the sensitivity of the 

retrieved profile to the true profile z, and zA is an a priori profile from the MOZART 

CTM. TES is mostly sensitive to the middle-upper troposphere and insensitive to the 

boundary layer. We use it to characterize the free tropospheric background against which 

the boundary layer enhancements detected by GOSAT can be measured.  

We use GOSAT and TES observations for the CalNex period, 1 May to 22 June 

2010, and for the domain  (32o-42o N, 125o-114o W), as shown in Figure 4.5. There are 

257 and 133 GOSAT and TES observations on the GEOS-Chem grid. We subtract biases 

from GOSAT (-7.5 ppb) and TES (28 ppb) based on validations of Parker et al. (2011) 

and Wecht et al. (2012), respectively. We subtract a mean bias of 1.5 ppb from GEOS- 
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Chem based on comparison with TES as measure of the tropospheric background.  

Figure 4.5 (right) shows the optimized correction factors to the a priori EDGAR 

v4.2 emissions for an inversion using the GOSAT observations. Observational errors for 

the inversion are determined using the residual error method described above and indicate 

RSD values in the range 10-12 ppb. The inversion has 1.3 DOFS, compared to 12.2 

DOFS for the inversion using the CalNex observations. The correction factors have a 

pattern similar to those from the CalNex inversion, showing that the constraints from 

GOSAT on methane emissions are qualitatively consistent with CalNex. However, 

Central Valley correction factors are driven by just three observations located at the 

southern end of the Valley, apparent in Figure 4.5. Overall, correction factors are much 

Figure 4.5: Mean methane mixing ratios measured by GOSAT (left) and TES (center) 
for the CalNex period of 1 May – 22 June 2010, and optimized correction factors 
(right) to the a priori EDGAR v4.2 methane emissions from the GOSAT inversion. 
Observations are plotted on the GEOS-Chem grid. The total number m of observations 
is inset. The TES data are vertical averages of tropospheric levels, while the GOSAT 
data are average column mixing ratios including the stratosphere, which explains the 
lower values. DOFS from the GOSAT inversion is inset in the right panel. Gray grid 
squares in the right panel are excluded from the optimization. 
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weaker than in the CalNex inversion, reflecting the low DOFS. A map of the degrees of 

freedom associated with each grid square is shown in Figure 4.4 (top, right). 1.1 of the 

DOFS from GOSAT are for the Los Angeles Basin and the optimization of emissions 

there should be quantitative: we find 0.31 ± 0.08 Tg a-1, at the lower end of values in 

Table 4.2. Outside of the Los Angeles Basin the DOFS sum to just 0.2.  

 

4.5 Potential of future satellites (TROPOMI, geostationary) 

The TROPOMI satellite instrument (2015 launch) will measure atmospheric 

methane with far greater coverage than either GOSAT or TES (Table 4.1). There are in 

addition several proposals to measure methane from geostationary orbit and the GEO-

CAPE instrument described by Fishman et al. (2012) presents such a possibility. We 

conducted OSSEs to evaluate the potential of these future satellite instruments for 

constraining California methane emissions. For this purpose, we take the CalNex 

optimized emissions in Figure 4.3 as the “true” emissions to be retrieved by the inversion, 

and use these emissions in GEOS-Chem to generate a “true” atmosphere We sample this 

“true”atmosphere with the observation frequency of TROPOMI and GEO-CAPE, apply 

the corresponding averaging kernels for the instruments, and add random Gaussian noise 

of the expected magnitude. Instrument specifications are in Table 4.1. We then conduct 

an inversion of these synthetic observations exactly as described above, using the a priori 

emissions described in section 2.2 and shown in Figure 4.1, and diagnose the potential 

value of the satellite instruments by their ability to constrain a priori sources as measured 

by the DOFS. A caveat is that the OSSE uses the same forward model to generate 

synthetic observations and to invert these observations, and this may lead to 
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overoptimistic inversion results.  

We perform OSSEs for the CalNex period of 1 May – 22 June 2010 and using 

synthetic observations for the land domain  (32o-42o N, 125o-114o W) in the same way as 

for GOSAT. TROPOMI observations provide complete coverage daily and GEO-CAPE 

hourly. Both TROPOMI and GEO-CAPE are SWIR instruments and we use a single 

averaging kernel from GOSAT to generate synthetic observations for both; this is of little 

consequence as the averaging kernel for SWIR observations is near unity in the 

troposphere in any case. We randomly remove 80% of synthetic observations to simulate 

the effect of cloud cover. Each element of the observation vector y represents the average 

methane column mixing ratio observed over a GEOS-Chem grid square. When multiple 

synthetic observations exist in the same 0.5ox0.67o GEOS-Chem grid square, we average 

them into one single observation with square root decrease of the measurement error 

following the central limit theorem.  

Observational error for the OSSE is estimated as the sum of measurement and 

model error, since the measurements are dense enough that representation error can be 

neglected. We specify the model error standard deviation to be 12 ppb, a conservative 

estimate based on the observational error for GOSAT. Measurement error (Table 4.1) and 

model error are added in quadrature to populate the diagonal of SO and off-diagonal 

terms are ignored. Model error dominates measurement error because of the averaging of 

the measurements over GEOS-Chem grid squares described above. The a priori error 

covariance matrix is populated in the same way as above. We assume no background bias 

in the model or observations as this could be corrected through other observations such as 

a TIR instrument (e.g., TES for GOSAT) or by iterative adjustment of emissions and 
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boundary conditions in the inversion (Wecht et al., 2013).  

Figure 4.4 (bottom) summarizes the OSSE results. The TROPOMI inversion has 

10.5 DOFS (Figure 4.4, bottom, left), comparable to the CalNex inversion (12.2 DOFS), 

and it accurately captures the spatial pattern of a priori emission errors. Optimized 

statewide emissions are 2.60 Tg a-1, compared with 2.86 Tg a-1 from the “true” emissions. 

We conclude that TROPOMI may perform just as well as a dedicated aircraft campaign 

(CalNex), and is thus superbly positioned to constrain emissions at the state level. The 

GEO-CAPE inversion has 26.5 DOFS (Figure 4.4, bottom, right), much higher than 

CalNex and TROPOMI, reflecting the greater density of observations. Optimized 

statewide emissions are 2.79 Tg a-1, close to the “true” emissions of 2.86 Tg a-1. This 

reveals the considerable potential of geostationary observations for monitoring methane 

emissions on fine scales.  

 

4.6 Conclusions 

 We applied an inverse modeling system based on the GEOS-Chem Eulerian 

chemical transport model (CTM) to optimize methane emissions from Califonia with 

1/2ox2/3o horizontal resolution using observations from the May-June 2010 CalNex 

aircraft campaign. The system is designed to optimize emissions on the continental scale 

using satellite observations (Wecht et al., in prep) and here we evaluated its potential to 

constrain the spatial distribution of emissions at the state level. We compared the 

constraints achievable with the CalNex aircraft observations to those achievable from 

current (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations of 

methane. We also compared the Eulerian GEOS-Chem inversion of CalNex observations 
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to a Lagrangian (STILT) inversion of methane emissions using exactly the same 

observations (Santoni et al., 2013), thus providing a perspective on the use of different 

inversion methodologies. Because the inversion was conducted over a limited spatial 

domain, we could obtain analytical solutions with full error characterization to compare 

the different observing systems.  

 Our inversion of CalNex observations yields a best estimate of 2.86 ± 0.21 Tg a-1 

for total California emissions, compared to 1.92 Tg a-1 in the EDGAR v4.2 inventory 

used as a priori for the inversion, 1.51 Tg a-1 in the California Air Resources Board 

(CARB) inventory used as basis to regulate greenhouse gas emissions in California, and 

2.37 ± 0.27 Tg a-1 in the Santoni et al. (2013) inversion. Our results are consistent with 

Santoni et al. (2013) considering that they used a lower a priori emission estimate for 

their inversion. An important distinction between the two inversions is that we optimize 

emissions geographically in 157 grid squares whereas they optimize emissions for 8 

source types. Error statistics on our inversion indicates that it provides 12 independent 

pieces of information (measured by degrees of freedom for signal or DOFS). We have 

particularly strong constraints on emissions in the Los Angeles Basin where our emission 

estimate (0.42 ± 0.08 Tg a-1) is consistent with previous studies. 

 The CARB and EDGAR v4.2 emission inventories show factor of 2 differences 

between each other in their state total estimates of emissions from livestock, 

landfills/wastewater, and gas/oil. Our results provide guidance for resolving these 

discrepancies.  Mapping our optimized estimate of the spatial distribution of California 

methane emissions onto individual source types indicates a state total livestock emission 

of 0.87 Tg a-1, in close agreement with CARB but much higher than EDGAR and lower 
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than the 1.29 Tg a-1 estimate of Santoni et al. (2013). On the other hand, our best estimate 

of emissions from landfills/wastewater (1.05 Tg a-1) and gas/oil (0.64 Tg a-1) is 20% 

higher than EDGAR but much higher than CARB or Santoni et al. (2013). Our results 

suggest that the CARB inventory should correct its landfills/wastewater and gas/oil 

emission estimates by upward correction to the EDGAR v4.2 values. About half of our 

correction to emissions cannot be mapped onto a priori source types, implying inventory 

errors in the geographic variability of emission factors (e.g. livestock and manure 

management practices) and activity rates (e.g. landfill locations and gas/oil production).  

 We find that current satellite observations of methane from GOSAT and TES are 

too sparse to quantitatively constrain California emissions. TES is only useful for 

constraining the free tropospheric background. GOSAT provides quantitative constraints 

on emissions in the Los Angeles Basin but not elsewhere. However, the qualitative 

corrections to a priori emissions from the GOSAT observations across the state are 

consistent with those from the CalNex observations. They consistently point to a large 

underestimate of livestock emissions in the EDGAR v4.2 inventory. In the absence of a 

dedicated aircraft study such as CalNex, GOSAT can be useful as a qualitative indicator 

of biases in methane emission inventories.  

The TROPOMI satellite instrument to be launched in 2015 has considerable 

potential for improving our capability to monitor methane emissions from space. 

TROPOMI will provide global daily coverage of methane columns with 7x7 km2 nadir 

resolution. We find in an observation system simulation experiment (OSSE) that the 

observing power of TROPOMI for constraining methane emissions in California will be 

comparable to that of the CalNex aircraft campaign. Geostationary observations of 
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methane proposed for the coming decade have even more potential for constraining 

methane emissions. These satellite measurements will provide monitoring, reporting, and 

verification (MRV) for the development of methane emission control strategies in the 

context of climate policy. This will be particularly important in a world of rapidly 

changing methane emissions from natural gas exploitation, hydrofracking, and 

agricultural management practices.  
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