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Differential Innate Immune Stimulation Elicited by Adenoviral and Poxviral Vaccine Vectors 

 

Abstract 

Vaccines are one of the most effective advances in medical science and continue to be 

developed for applications against infectious diseases, cancers, and autoimmunity. A common strategy 

for vaccine construction is the use of viral vectors derived from various virus families, with Adenoviruses 

(Ad) and Poxviruses (Pox) being extensively used. Studies utilizing viral vectors have shown a broad 

variety of vaccine-elicited immune response phenotypes. However, innate immune stimulation elicited 

by viral vectors and its possible role in shaping these vaccine-elicited adaptive immune responses 

remains unclear. Here we show that Ad and Pox vectors display profound intra- and inter-group 

differences in innate immune cytokine and chemokine elicitation. The CD46-utilizing vectors Ad35, 

Ad26, and Ad48 induced greater anti-viral and proinflammatory cytokines and chemokines relative to 

Ad5 in vaccinated rhesus monkeys and stimulated human PBMC. Ad fiber protein, as well as other 

capsid components, influenced resultant Ad vector innate stimulatory phenotypes. Analysis of human 

sera from Ad26-vaccinated volunteers showed similar anti-viral and proinflammatory cytokine and 

chemokine elicitation. Mechanistic analysis of Ad innate immune stimulation showed greater amounts 

Ad35 and Ad26, and small amounts of Ad5, traffic to the late endosome following infection. Innate 

immune stimulation by all three was reduced by inhibition of endosomal acidification, Cathepsin B, and 

Caspase-1, suggesting a common set of innate immune sensors triggered by Ads between 0-6 hours 

post-infection, in agreement with trafficking data showing Ad vector colocalization in the late endosome 

at similar time points. These data suggest a model mechanism explaining differences in observed Ad 

vector innate immune stimulation phenotypes. Similar to results obtained with Ad vectors, analysis of 
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innate cytokine and chemokine responses elicited by Pox vectors ALVAC, MVA, and NYVAC showed that 

all three were distinct, with the canarypox-based vector ALVAC eliciting a unique potent 

proinflammatory response. Together these results reveal surprising and pronounced differences in 

innate immune stimulatory properties of viral vectors. Furthermore, these results could lead to possible 

strategies for targeted construction of vaccines for desired innate immune phenotypes, and have 

profound implications on vaccine design against infectious diseases and cancers, as well as gene 

therapy. 
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Chapter 1: Introduction  
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The scale and scope of HIV’s medical and social impact has motivated the search for several 

approaches to treat or prevent HIV infection. Strategies to prevent HIV infection have included a broad 

variety of approaches such as antiretroviral drugs for pre-exposure prophylaxis (1), antibody expression 

via vectored immunoprophylaxis (2), penile circumcision (3–5), intravaginal microbicides (6), or anti-HIV 

vaccination (7, 8). Of these preventative approaches, a protective global vaccine against HIV holds the 

greatest promise of curtailing the pandemic due to low relative cost of and simplified public health 

implementation relative to other intervention strategies. Unfortunately, early attempts at vaccine 

design focusing on classical vaccine-production techniques such as surface protein immunization (9, 10) 

and viral attenuation (11–13)  were found to be insufficiently immunogenic or unacceptably dangerous 

due to the possibility of viral reversion or neonatal pathogenicity. Additionally, viral inactivation of HIV 

virions for vaccine derivation is widely accepted to carry unacceptable risk due to the possibility of 

incomplete inactivation. Furthermore, HIV vaccine design has been frustrated by biological properties of 

HIV which make it recalcitrant to classical vaccine-elicited immune responses such as extensive viral 

diversity, the early establishment of a persistent cellular reservoir, and resistance to antibody-mediated 

neutralization. While the scope and timescale of difficulties in making an HIV vaccine is disconcerting, 

the unique challenge posed by making a protective vaccine against HIV has ushered in a new age of 

vaccine design with researchers searching for new ways to elicit stronger or unconventional immune 

responses against HIV. Despite a large number of pre-clinical and clinical studies having conducted for 

HIV vaccine design however, no correlates of immune protection against HIV infection are currently 

known. Characteristics which predict effective versus non-efficacious and which would further inform 

vaccine improvement therefore remain unclear (7). Investigation of possible mechanisms of vaccine-

elicited immunity in pre-clinical and clinical trials and their subsequent influence on pathogenic HIV 

challenge is therefore needed to both uncover correlates of protection from HIV acquisition and to 

assist in the formulation of iteratively improved HIV vaccine candidates.  



 

3 
 

To date, the majority of HIV vaccine trials have utilized, either in part or completely, viral vectors 

(7). Viral vectors are viruses which are re-engineered to carry a given antigenic stimulus into the body 

and theoretically stimulate a host’s immune system to respond more strongly against their carried 

antigen by virtue of the immune system’s inherent ability to recognize virally-contained Pathogen-

Associated Molecular Patterns (PAMPs). Viral vectors are attractive as vaccine candidates due to the 

relative ease and cost efficiency of producing them to high quantities compared to other vaccine 

modalities.  Moreover, coupling an antigen of choice with viral PAMPs theoretically serves as a self-

adjuvanting vaccine (14, 15). Due to these attractive properties, vaccine vectors are widely used as 

platforms for the elicitation of immune protection not just for HIV but also for infections such as Ebola, 

Rabies, and Canine distemper as well as therapeutic agents for several tumor types (16–21). 

Interestingly, it has been observed by several groups that the choice of viral vector for a given vaccine 

platform may have an influence on the quality of the adaptive immune response elicited (20, 22–24). It 

is therefore possible that viral vectors may not simply be passive shuttles, but play an active role beyond 

simple adjuvanting in influencing vaccine-elicited immune responses.  As such, the identity of the virus 

utilized in vaccine construction and its biological properties may be relevant for understanding vaccine-

elicited immune responses. While viral vectors have been constructed from broadly divergent viral 

families such as Flaviviruses, Alphaviruses, Poxviruses, Adenoviruses, Herpesviruses, Parvoviruses, and 

others, vectors based on Adenoviruses (Ad) and Poxviruses (Pox) have been most extensively utilized in 

the HIV vaccinology field (25). Importantly and as will be discussed below, these vectors have displayed 

pronounced differences in the magnitude and phenotype of adaptive immune responses they elicit. 

Furthermore, many of the Ad and Pox vectors used within HIV vaccine studies are replication-

incompetent in human cells and several studies which have described their differential adaptive 

phenotypes used identical antigen transgenes. These points suggest that the nature of viral vector 

stimulus on the immune system at the time of vaccination may have an influential role on vaccine-
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elicited immune responses. Therefore, a clear understanding of basic vector biology and its influence on 

vector-elicited innate and adaptive immune responses will be instrumental in understanding HIV 

vaccine-elicited immune responses and protection. 

 

ADENOVIRAL VACCINE VECTORS – DEVELOPMENT AND CHARACTERISTICS 

Fundamental Characteristics of Adenoviral Biology 

 Adenoviruses are a well-characterized viral family and have been utilized as model systems for 

many original discoveries of cellular biological processes such as transcription factor biology, RNA 

transcript splicing, and virus-host interactions (26–34). While Ad can differ in several basic biological 

properties relevant when considering them in their vectorized form, characteristics of their infectious 

life cycle are roughly similar. The genetic material of Ad is encoded on a linear double-stranded DNA 

genome encased within a non-enveloped icosahedral protein shell approximately 90 nm in diameter. 

This shell contains 11 structural proteins, which are responsible for mediating virus attachment to host 

cell receptors as well as viral entry into the cytoplasm (35). Ad initiates its infectious cycle by gaining 

entry into the cell by ligation of its fiber protein with its cognate cellular attachment receptor (36). The 

binding of the fiber protein then allows close association of RGD peptide motifs contained within the 

penton base proteins, which are found at the vertices of the viral capsid icosahedron, to associate with 

host cell αV integrins (36–40). Ligation of αV integrins signals for viral endocytosis via receptor-mediated 

endocytosis (40–44). Following endocytosis, Ad vectors lyse their containing endosome, and utilize host 

intracellular machinery to traffic along microtubules to the nuclear pore, where their genome is 

transferred into the host cell nucleus via a protein-complex association with cellular importins (45–50). 

As mentioned above, most Ad vectors follow these general life cycle parameters, but many variations on 

these basic biological parameters generate substantial diversity in Ad vectors, a wealth from which 

vaccinologists can select desirable strains upon which to base vaccine platforms. 
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 Adenoviruses are a diverse group, infecting most known taxa of vertebrates and with currently 

69 Human Ad known (51–56). These viruses are subcategorized into subgroups, or “Species”, classically 

based upon serotype cross-neutralization profiles which have been further supported by analysis of 

sequence homology. Importantly, Ad Species can differ in several key aspects of viral biology which may 

influence resultant innate and adaptive immune phenotypes when used as vaccine vectors. First, Ad 

vectors can utilize a variety of primary and secondary cellular attachment receptors to mediate cellular 

attachment and entry. As mentioned above, Ad use a two receptor system, with the distal knob domain 

of the Ad fiber protein binding with high affinity to its primary cellular attachment receptor. Several 

primary cellular attachment receptors have been identified or suggested for Ad vectors, such as 

Desmoglein 2, CD80/86, Heparin Sulfate Proteogylcans, or sialic acids, with the most thoroughly 

described being the tight junction component Coxsackievirus B and Adenovirus Receptor (CAR), or the 

complement receptor CD46 (57–68). Of these receptors, CAR has been shown to be the cellular 

attachment receptor for Species A, C, D, E, and F while CD46 has been shown to be utilized by the 

Species B and Species D Ad’s. These differences in primary receptor usage are important in that they 

influence Ad vector cellular tropism and therefore may influence the immune cell repertoire Ad vectors 

have access to or the target cell population which serves as the production site(s) for their transduced 

antigen (69–74).  

A second way in which Ad vectors differ from one another are their intracellular trafficking 

patterns. Following their attachment to and endocytosis into their target cell populations, several Ad 

serotypes such as the Species C Ad’s  Ad2 and Ad5 have been observed to enter their target cells and 

rapidly exit the endosomal space at the early endosome, with a half-life residence time in the endocytic 

pathway of approximately 3-15 minutes (75–78). Other Ads have been observed to be retained in the 

endocytic pathway for a much longer times, allowing them to gain access to the late endosomal 

compartment (79–83). This property has been observed with the Species B Ad’s Ad7 and Ad35 and 
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chimeric viruses containing their fiber proteins, but likely extends to other species B and D Adenoviruses 

as well. Interestingly, the differences outlined above in intracellular trafficking patterns correspond to 

primary cellular attachment receptor usage, with the Species C Ad’s utilizing CAR and the Species B Ad’s 

utilizing CD46 as their primary cellular attachment receptor. Furthermore, these differences in vector 

intracellular trafficking may influence subsequent Pattern Recognition Receptor (PRR) access as 

evidenced by differential abilities of Ad to stimulate TLR9, a late endosomal resident PRR (84). 

Differences between Ad vectors and and their usage of cellular attachment receptors and endocytic 

trafficking patterns may therefore have a resultant influence on their ability to stimulate innate immune 

responses in a diverse array of immune cell subsets. These differences in Ad biological properties may 

therefore yield valuable insights into the mechanisms by which they stimulate innate and adaptive 

immune responses when utilized as vaccine vectors. 

Derivation of Adenoviral Vectors 

Unique aspects of Ad transcriptional regulation make them particularly amenable to 

vectorization in replication-incompetent formats. Following import into the nucleus, Ad genome 

transcription is initiated in a coordinated, program-wise manner. Ad genome length can range from 26-

35kbp depending on the Ad serotype, and transcription from this dsDNA genome is controlled in two 

main phases. The first phase consists of the “early” proteins, which serve to hijack host cellular 

transcription factor machinery to facilitate viral transcription and to block host cell anti-viral defenses 

for augmented viral replication (85–87). This early phase ends with the induction of viral genome 

copying. The second phase consists of transcription mainly from the Major Late Promoter (MLP) from 

which a large number of the Ad structural proteins are coded by means of differential RNA splicing (88–

91). Transcription through the early gene regions, in particular E1, is required by Ad vectors for full 

replication capacity and deletion of this region renders an Ad vector replication-incompetent except in 

cells which are able to provide E1 in trans (92–94). Deletion of the E1 and/or E3 region has the added 



 

7 
 

benefit of increasing the transgene coding capacity in Ad vectors to approximately 4,000 base pairs, 

enabling them to carry medium-sized protein transgenes (95). These properties, coupled with the ability 

of Ad to effectively transduce a broad array of tissues and their vastly reduced probability of malignant 

complications relative to lentiviral vectors, led to their initial development as gene therapy vectors (96). 

Initial studies seeking to derive Ad vectors for usage in gene therapy applications focused 

predominantly on the Species C Ad5 (97). These vectors were used for transduction of several different 

tissues with genes supplementing genetic disorders such as cystic fibrosis and ornithine 

transcarbamylase deficiency as well as induction of angiogenesis through transduction of VEGF or FGF 

(98–101). Though initial studies utilizing these vectors were marred by cases of unacceptable levels of 

hepatotoxicity, these vectors remain widely used for many applications of gene therapy in several 

ongoing clinical trials (102). Furthermore, several groups have reported methods of Ad5 modification to 

circumvent possible hepatotoxicity such as receptor-mediated liver de-targeting, vector PEG-ylation, or 

Hexon protein HVR replacement with those from a non-serum factor-binding Ad (71, 103–107). While 

there have been difficulties in adapting Ad vectors for gene therapy applications, the ability of 

Adenoviruses to carry and express heterologous gene products, coupled with their ability to stimulate 

immune responses, have made them ideal platforms for further derivation for use as vaccines. 

Ad vector utility and safety for vaccination by the intramuscular route has been extensively 

established by the low rate of adverse events observed in vaccination of thousands of military recruits 

with live Ad4 and Ad7 vaccines, as well as the many Phase I, II, and III clinical trials using Ad vectors 

which have shown high degree of vector tolerance and absence of severe adverse events (108–110). 

However, replication-competent unmodified Ad vectors can only carry approximately 2kb of external 

genetic information, limiting the available space for transgenes to single, small products (111). 

Replication-competent Ad vectors also carry with them the risk of replication and spread to 

immunocompromised individuals, such as those with clinical AIDS and cancer patients undergoing 
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chemotherapy. Generation of attenuated or replication-incompetent Ad vectors circumvented these 

concerns through deletion of the Ad E1, E3, and parts of the E4 protein segments. These “next 

generation” Ad vectors are able to carry multiple transgene products while also being unable to 

replicate except for in E1-complimenting immortalized cell lines, increasing their safety for use in 

immunocompromised individuals and making them useful platforms for vaccine design (111). The ability 

of the expanded utility and safety of Ad vaccine vectors while also possessing a large transgene coding 

capacity, coupled with their relative lack of expense to produce at high quantities, has made them 

attractive platforms for vaccination against a variety of infections and cancers, and in particular as 

platforms for HIV vaccine design (112–115). 

Adenoviral HIV Vaccines 

Similar to efforts to derive Ad vectors for gene therapy, Initial efforts at HIV vaccine design 

utilizing Ad vectors again focused largely on Ad5-based vectors. In several pre-clinical and clinical 

studies, Ad5-based vectors were shown to be highly immunogenic relative to vaccine regimens utilizing 

DNA constructs or the poxviral vector Modified Vaccinia Ankara (MVA) either as a single injection or as 

part of a DNA-primed heterologous boost regimen. These measures of initial immunogenicity related to 

Ad5’s ability to induce potent IFN-γ ELISpot responses as well as protect vaccinated Rhesus monkeys 

from potent peak SHIV 69.6P or SIVmac239 viral loads and subsequent depletion of CD4+ T cells (116–

119). The potent immunogenicity of Ad5-containing vaccine-regimens, coupled with their protection of 

rhesus monkeys from pathogenicity in an SIV challenge model led to the development of Ad5 in Phase I 

and Phase IIb proof of concept clinical trials. These studies, culminating in the STEP/Phambili trials, were 

unfortunately terminated prior to their planned endpoint for futility (120, 121). While disappointing due 

to the vaccine’s failure to provide protection and therefore immunological correlates of vaccine-elicited 

protection from infection, a more concerning observation from these studies was the trend toward 

increased HIV acquisition in vaccinated individuals who were Ad5 seropositive at the time of vaccination, 
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and in particular in uncircumcised men with high preexisting Ad5 antibody titers (122). The proposed 

mechanism of enhancement of HIV acquisition was postulated to occur via CD4+ memory T-cell 

reactivation and enhanced trafficking to the mucosa, where these cells would serve as an increased 

susceptible target cell reservoir for HIV infection. This “enhancement effect” has been actively 

investigated by several groups, yet several studies have reported that Ad5 seropositivity does not lead 

to marked induction of CD4+ T cell activation and trafficking upon vaccination (123–128). While this 

hypothetical effect remains an active concern for Ad5-based vaccines, a more important observation 

from this study was the possibility of pre-existing humoral immunity against an Ad5-based vector can 

potentially blunt elicited adaptive immune responses following vaccination rending Ad5 a vector with 

limited clinical applicability as an HIV vaccine platform (122).  

Concerns surrounding putative enhancement effect and reduced immunogenicity of Ad5 in the 

face of pre-existing humoral immunity motivated the derivation of immunogenic Ad vectors based on 

Adenoviruses against which a large proportion of the population does not have high levels of pre-

existing humoral immunity. These studies have utilized a variety of strategies such as vectorization of 

non-human Adenoviruses such as those from Chimpanzee, Bovine, or other sources , “alternative 

serotype” human Adenoviruses vectors against which global seropositivity was less prevalent, or 

alteration of the Ad5 hexon hypervariable regions (HVR’s) to circumvent pre-existing humoral immune 

responses (107, 129–133). Vectors based on alternative serotype Species B and Species D Ad’s such as 

Ad35, Ad26, and Ad48 were found to elicit comparable immune responses relative to Ad5 in terms of 

antigen-specific systemic CD8+ T cell responses and IFN-γ ELISpot levels (133). Possible widespread utility 

of these vectors was shown by neutralization titers against these vectors in 200 volunteers in sub-

Saharan Africa, as measured reciprocal serum neutralization titers of >1,000, was reported as 48% for 

Ad5 relative to 1%, 0%, and 0% for Ad35, Ad26, and Ad48, respectively. This result was further 

supported by a study of seroprevalence in 4,381 individuals from several geographic locations indicating 
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that high levels humoral immune responses against Ad5 were found in 14.2-43.2% of study populations, 

while those against Ad35, Ad26, and Ad48 were 0-1.0%, 0-2.5%, and 0-2.1%, respectively (134). 

Importantly, these “alternative serotype” vectors were found to retain significant immunogenicity in the 

presence of pre-existing Ad5 immunity, highlighting their applicability as vaccine vectors for further pre-

clinical development (22, 133, 135). Of note, several groups have reported conserved cross-reactive T 

cell epitopes present within the Adenovirus hexon genes of many serotypes indicating that Ad 

serostatus may not be the only immunological influence on Ad vector cross-reactivity following 

vaccination (136–138). Whether this pre-existing T-cell cross-reactivity in Ad vectors also influences Ad 

vector-elicited vaccine responses remains to be described.   

The observation that Ad vectors based on alternative serotypes were immunogenic and stable 

prompted their further characterization as possible vaccine platforms. Interestingly, initial 

characterization of alternative serotype Ad’s indicated that, while many of these constructs resembled 

Ad5 in terms of the magnitude of their elicited cytotoxic T cell responses and levels of induced 

neutralizing antibodies, several alternative serotype human Ad’s induced phenotypically distinct T cell 

responses comparitively (22, 131, 139). In particular rhesus monkeys boosted Ad35 or Ad26 following 

and Ad5 prime were found to elicit a greater breadth of anti-SIV Gag protein IFNγ ELISpot responses, 

greater magnitudes of anti-Gag antibodies, and more polyfunctional T lymphocyte responses relative to 

homologous prime-boost of animals with an Ad5 vector. These observations are especially important 

given that T-cell responses targeted to the Gag protein and T-cell polyfunctionality have previously been 

described as correlated with lowered pathogenicity during HIV/SIV infections (140–142). The 

importance of these immune responses was further shown by vaccination with Ad35- and Ad26-based 

vectors conferring increased protection against CD4+ T cell depletion and lowered set-point viral loads in 

SIV-infected rhesus monkeys relative to Ad5/Ad5 homologous prime-boost vaccination. These results 

suggest that while Ad5 and alternative serotype Ad vectors may elicit cytotoxic T cell and antibody 
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responses of similar magnitudes, their phenotypes may differ markedly, having a pronounced influence 

on disease acquisition and progression. Understanding the source of these differences is therefore 

crucially important for the further optimization and construction of novel Ad vectors with the goal of 

improving protection against HIV acquisition and disease.  Of note, the vectors utilized in the protective 

study above were deleted for their E1 and E3 genes, rendering them replication incompetent. 

Furthermore, they carried identical transgene products. This suggests that the protective properties of 

Ad35- and Ad26-containing regimens may be in part due to differences in vector biology of Ad35 and 

Ad26 relative to Ad5, potentially due to induction of differential innate immune milieus following 

vaccination, leading to differences in formation of resultant vaccine-elicited adaptive immune 

phenotypes. 

 The increased efficacy against SIV infection and pathogenesis of Ad26 vaccine regimens in the 

Rhesus monkey pre-clinical model has led to their further development for pre-clinical and Phase I 

clinical studies of immunogenicity in humans, either alone or in combination with Poxviral vectors or 

proteins and continues to yield exciting and novel insights into the methods by which HIV acquisition 

and pathogenesis can be prevented (143–145). Further studies to characterize and probe the 

mechanisms by which alternative serotype Ad vectors are able to elicit distinct immune responses 

relative to Ad5, and the influence of viral vector biological properties on these responses will yield 

crucial insights into vaccine design not only for HIV but for a variety of other pathogens and cancers as 

well.  

 

POXVIRAL VECTOR DERIVATION AND USAGE IN HIV VACCINE TRIALS 

Smallpox, caused by the Variola major and Variola minor viruses and which killed the most 

individuals of any infectious disease in recorded human history, was confirmed eradicated on the globe 

by the World Health Organization in 1979 (146–148). This was due in large part to the usage of 
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prophylactic vaccination against Smallpox using Vaccinia virus. Vaccination with Vaccinia virus, though 

highly effective at preventing infection with one of the two viral agents of Smallpox, in the absence of 

the risk of Smallpox infection also carries an unacceptable risk of complications such as fever, rash, 

progressive Vaccinia infection, and eczema vaccinatum (149). Due to this undesirably high rate of 

possible complications following Vaccinia virus vaccination global vaccination with Vaccinia has been 

halted. However the possible emergence of novel orthopoxvirus pathogens such as Monkeypox as well 

as amenable genetic and molecular characteristics of the poxvirus family, such as the ability to express 

large transgene inserts under native poxviral protein transcriptional levels and comparably high virion 

stability, have made poxvirus vectors attractive platforms for the generation of virally-vectored vaccines 

against a variety of pathogens (21, 150). 

 The risk of adverse reactions to Vaccinia virus-vaccination and the possibility of pre-existing 

immunity against Vaccinia virus in a large, albeit diminishing, proportion of the population with 

immunity to the virus blunting vectored immune responses have led to the generation of several 

Poxviral vectors which were further attenuated or antigenically-distinct relative to Vaccinia (151). One 

such derived vector is Modified Vaccinia Ankara (MVA). MVA is derived from the Chorioallantoid 

Vaccinia Ankara vaccine strain of Vaccinia Virus, and was attenuated by serial passage in chicken embryo 

fibroblasts 570 times (152). This process generated a virus strain which has lost approximately 30% of its 

genome, much of it in six regions containing genes commonly referred to as host-range genes such as 

intracellular signaling cascade antagonists and decoy cytokine receptors which serve the purpose of 

blunting host immune responses against viral infection (153). Importantly, attenuation of MVA through 

serial passage rendered it unable to replicate in most mammalian cell types as well as replication 

incompetent in human tissues while retaining the ability to express exogenous proteins to high levels 

(154–156). A second, more targeted approach was taken by another laboratory which specifically 

deleted 18 Open Reading Frame’s (ORF) from the Copenhagen strain of Vaccinia virus, creating the New 
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York Vaccinia Virus, or NYVAC (157). Although this vector retains much of the host range genes originally 

contained in its parental Copenhagen strain, it displays a vastly attenuated phenotype similar to that of 

MVA, being unable to complete replication in human tissues (158). A third strategy aiming to utilize a 

poxvirus vector to stimulate potent immune responses while circumventing pre-existing Vaccinia virus 

immunity Avipoxviruses, which are poxviruses which cause disease in several species of birds. Of these, 

the Canarypox-virus based vector ALVAC widely used in vaccinology (159). Avipoxvirus vectors such as 

ALVAC and Fowlpox-based vectors are extremely attenuated in mammals and are unable to replicate in 

mammalian cells (160).  

 As mentioned above, poxviruses contain an arsenal of host range or “security” proteins which 

serve to block host immune responses against viral infection via antagonism of innate immune viral 

sensing, cytokine signaling interference, downregulation of antigen presentation, as well as other 

mechanisms (161–165). Deletion or host-virus mismatch of these proteins renders the virus more 

vulnerable to immune attack, leading to a more attenuated viral phenotype. Genetic sequencing and 

comparison of the poxviral vectors MVA and NYVAC has shown that MVA, despite having lost 

approximately 30% of its original genome, retains some of its ORF’s which antagonize pro-inflammatory 

responses while NYVAC retains many of its proteins which counteract interferon-signaling (153, 157). 

Interestingly, several studies have indicated that this difference in security protein arsenals was made 

apparent in immune gene transcriptional responses in MVA or NYVAC infected HeLa and dendritic cell 

populations, with MVA inducing a greater interferon-related transcriptional response than NVYAC, and 

NYVAC inducing a more proinflammatory response relative to MVA responses which matched the 

previously-observed deletion in security protein arsenals in these vectors (166–168). The importance of 

Poxviral security protein arsenals in viral attenuation was further shown when modification of MVA or 

NYVAC for further attenuation by removal of additional security proteins increased their 

immunogenicity in several in vitro and in vivo systems (24, 169–171). These observations together 
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suggest a large role for poxviral security protein arsenals in the influencing of poxvirus vector-elicited 

innate immune responses. While similar characterization of the Avipoxvirus ALVAC security protein 

arsenal has not been performed, it is important to note that, as mentioned above, ALVAC is unable to 

replicate in mammalian cells. This suggests that while ALVAC’s security protein arsenal remains 

genetically intact, mismatch between these proteins and mammalian host targets may render them 

functionally inert. This hypothesis is further supported by the observation that ALVAC is able to induce 

several cytokines in vivo in response to vaccination, indicating that it is unable to at least control host 

innate immune sensing of it (160). Together, these studies suggest that while Pox vectors may be 

structurally similar they may be immunologically distinct from one another, likely depending on the 

degree and identity of security protein ORF’s which have been deleted and/or mismatched relative to 

their host.  

 Similar to Ad vectors, the outstanding safety profile of the attenuated Poxviral vectors MVA, 

NYVAC, and ALVAC has led to their extensive usage in HIV vaccine design. All three vectors have been 

utilized extensively in pre-clinical clinical models in which they as have shown a pronounced ability to 

elicit polyfunctional CD4+ T cell responses as well as robust antibody titers against their carried 

transgene, both in isolation in addition to as part of heterologous prime-boost regimens. These studies 

are extensively reviewed elsewhere (7, 21, 172, 173). Of note however is the RV144 “Thai trial.” In this 

trial approximately 16,000 individuals in Thailand received an ALVAC-based vector prime followed by 

sequential boosting with HIV Env gp120 recombinant protein (174). This study is currently the only HIV 

vaccine trial in which a putative protective effect on HIV acquisition was seen, with an observed 31.2% 

protection from HIV acquisition in vaccinees. While it is a major breakthrough to the field of HIV 

vaccinology that this trial showed lowered risk of acquisition, it is also important to note that those 

individuals who were infected displayed no control of HIV viral replication, with vaccinated and sham-

vaccinated individuals showing no difference in peak or setpoint viral loads. As will be discussed below, 
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this study was also the first in which correlates vaccine-elicited immune responses on risk of HIV 

infection were observed in a clinical trial in humans (175). In light of this observation, it becomes 

increasingly important to understand the mechanisms by which adaptive immune responses are elicited 

by vaccine modalities. As with Ad vectors, the pronounced differences in pox vector biology outlined 

above may influence resultant immune responses against their carried transgenes. It remains to be 

determined however, whether the differences in security protein arsenals of ALVAC, MVA, and NYVAC 

play a role in initial immune activation and subsequent adaptive immune phenotype stimulation. 

Understanding their phenotypes and function in the elicitation of vaccine-elicited immune responses is 

therefore critical for the further improvement of pox vectors for HIV vaccine development. 

 

HIV VACCINE TRIALS AND THE SEARCH FOR PROTECTIVE CORRELATES 

 While many promising vaccine modalities are currently in development, HIV vaccine design to 

date has been unable to produce a vaccine of sufficient efficacy for global application (178,179).  As 

mentioned above, factors which serve to make the search for an effective HIV vaccine difficult include 

extensive viral global diversity, the rapidity with which a virus can evade immune pressure owing to an 

extremely fast mutation rate, and the likely requirement of mucosal immune responses much stronger 

or of a different phenotype than those that are induced with previously-developed vaccine modalities 

(178–181). This search is further hampered by the point that correlates of protection from HIV 

acquisition are still not known (184,185). In contrast to many other viral pathogens, exposure to and 

infection with HIV does not confer immunity against subsequent exposures, as evident by common 

occurrences of HIV super-infection with secondary strains (184). However, despite the common 

occurrence of super-infection with HIV, immune responses which are able to protect against HIV 

infection or pathogenesis can be elicited during natural infection. For example, both in pre-clnical and 

clinical settings, breadth and magnitude of cytotoxic CD8+ T cell responses against the HIV Gag protein 
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were found to influence viral control (143, 185, 186). Additionally, genetic factors such as MHC and KIR 

haplotype have been found to influence infection trajectory (187–189). Antibodies have also been 

observed by several groups to arise late in infection and which can neutralize a large proportion of HIV 

global isolates (190–192).  Cellular and humoral immune responses which can protect against HIV 

acquisition and pathogenesis therefore are able to be generated by the human immune system. A major 

focus of HIV vaccine research centers on how these rare responses can be specifically generated or 

enhanced with a vaccine. 

To date, over 60 pre-clinical and clinical studies have been performed with the goal of 

developing an HIV vaccine (7, 8). Vaccine preparations have utilized a wide variety of components such 

as recombinant HIV protein formulations, viral vectors containing segments of HIV proteins, cladal or 

global consensus sequence recombinant proteins, as well as mosaic vector transgenes aimed at best 

covering global T cell epitope diversity. While many vaccine modalities have been tested in the Rhesus 

monkey SIV infection preclinical model, to date only four have progressed to large scale Phase IIb/III 

clinical trials in humans with three showing futility for efficacy. The first of these studies focused on 

utilizing recombinant proteins meant to elicit HIV neutralizing antibodies through vaccination with either 

a Clade B or a Circulating Recombinant Form (CRF) AE antigen, and are commonly known as the 

VAX003/004 studies (9, 193). The second set of studies, as mentioned above, were the Step/Phambili 

trials, in which DNA and Ad5 prime/boost regimens targeted the HIV Gag, Pol, and Nef proteins of Clade 

B (121). The most recent vaccine trial conducted, known as the HVTN 505 study, consisted of a DNA 

prime, Ad5 boost immunogen set expressing HIV Gag, Pol, and Env consensus sequences from clades A, 

B, and C. Similar to the STEP/Phambili trials, this study was recently halted due to futility (194). Notably, 

these studies were found to elicit their targeted vaccine immune responses, namely anti-immunogen 

antibody responses in the case of VAX studies, and cytotoxic CD8+ T cell responses in the STEP/PHAMBILI 

and HVTN505 studies. However, the lack of efficacy of these responses elicited by these vaccines 
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suggests that classically-defined immune responses elicited by vaccine modalities previously used for 

other diseases may be insufficient to confer protection against HIV infection, and therefore mechanisms 

of alternative immune response elicitation will be important for understanding future vaccine trial 

successes. 

The fourth large-scale HIV vaccine trial was the above-mentioned RV144 “Thai trial”. In this 

study, vaccinees were injected with an ALVAC vector expressing the CRF-AE Gag, Pol, and Env genes and 

subsequently boosted with HIV gp120 B/E recombinant protein. As mentioned above, this study was the 

first to observe a reduction in HIV acquisition risk in vaccinees which had a 31.2% lowered chance of 

acquisition through 3.5 years following vaccination (174). Importantly, correlates of risk analysis on this 

study indicated for the first time two particular immunological correlates which may have had an 

influence on HIV acquisition risk (175). This clinical trial is of special importance for two reasons. The 

first is that it demonstrated for the first time that it is possible to elicit immune responses in a large 

human population which lower the risk of HIV acquisition. Secondly, it provided two correlates of 

lowered risk for HIV acquisition, giving researchers clues as to the possible means by which protection 

against HIV infection might be conferred by a vaccine. The first finding was that IgG binding, but not 

neutralizing, antibodies to the Env V1/V2 region was negatively associated with HIV acquisition. The 

second correlate observed was that IgA binding antibodies to HIV Env were positively associated with 

HIV acquisition. These findings are interesting given that antibody recognition but not neutralization of 

HIV suggests previously unknown effector mechanisms which may be relevant and important for 

protection from HIV infection. Interestingly, the correlates of lowered risk in the RV144 trial are unique 

from those suggested by the pre-clinical model, mainly breadth and magnitude of Gag-specific T cell 

responses and neutralizing antibody titers. This suggests that there may be several different 

mechanisms by which a vaccine could confer protection against HIV infection, and that combination of 

these different mechanisms may synergize for increased protection.  
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 While the RV144 immunological analysis indicates the importance of including an Env 

immunogen in vaccine formulations for the prevention of acquisition, it still does not inform methods of 

HIV virological control, suppression, or clearance. Furthermore, many of the immunological 

measurements for the determination of correlates of protection focus on adaptive immune phenotypes 

generated weeks or months following vaccination, and many focus on classically defined parameters of 

vaccines which have previously been observed to not confer significant protection against HIV/SIV. As 

suggested above, it is possible that there are several different means by which protection from HIV can 

be induced. In the over 60 clinical trials done to date, many have utilized Ad and/or Pox vectors, and 

these vectors continue to be used extensively in pre-clinical and clinical development (7). However, 

despite their widespread usage, the means by which immune responses, and in particular innate 

immune responses, elicited by these biologically distinct vectors influence resultant adaptive immune 

responses remains poorly characterized. The importance of innate immune responses in shaping 

adaptive immune phenotypes through cell-cell interactions and cytokine communication has been 

previously shown (195–198). Therefore, putative differential stimulation of innate immune responses by 

Ad and Pox vectors and the means by which it shapes vaccine-elicited immune responses may be of 

critical importance for understanding and putting into immunological context protective vaccine 

responses elicited in future HIV vaccine trials. Furthermore, using these vectors as a model system to 

understand the means by which adaptive immune phenotypes are established will yield important 

insight into future rational immunogen and vector design. 
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Chapter 2: Vaccination with Adenovirus Serotypes 35, 26, and 48 Elicits Greater Innate Cytokine 
Responses Than Adenovirus Serotype 5 in Rhesus Monkeys 
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ABSTRACT 

 Adenovirus (Ad) vaccine vectors have proven highly immunogenic in multiple experimental 

models, but the innate immune responses induced by these vectors remain poorly characterized. Here 

we report innate cytokine responses to 5 different Ad vectors in 26 rhesus monkeys. Vaccination with 

Ad35, Ad26, and Ad48 induced substantially higher levels of anti-viral (IFN-γ, IP-10) and proinflammatory 

(IL-1RA, IL-6) cytokines as compared with Ad5 on day 1 following immunization. In vitro studies with 

capsid chimeric vectors and receptor blocking monoclonal antibodies suggested that fiber-receptor 

interactions as well as other capsid components were critical for triggering these innate responses.  

Moreover, the innate immune profiles likely involved multiple cell populations, including dendritic cells, 

monocytes/macrophages, and T lymphocytes. These data demonstrate that Ad35, Ad26, and Ad48 that 

utilize CD46 as their primary receptor induce significantly greater innate cytokine responses than Ad5, 

which uses the coxsackievirus and adenovirus receptor (CAR). These differences in innate triggering 

result in markedly different immunologic milieus for the subsequent development of adaptive immune 

responses by these vaccine vectors. 
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INTRODUCTION 

 Adenovirus (Ad) vectors are widely used for vaccination due to their immunogenicity, relatively 

large transgene coding capacity, and multiple available serotypes with diverse biological properties. 

While considerable data have been generated regarding adaptive immune responses elicited by Ad 

vectors, much less is known about innate immune responses induced by these vectors. As innate 

immune induction is critical for understanding both reactogenicity and adaptive immunity, it is 

important to define the innate pathways triggered by Ad vectors from various serotypes. Accumulating 

evidence suggests that different serotype Ad vectors induce qualitatively different adaptive immune 

response phenotypes (1–4). In particular, vaccine studies using the simian immunodeficiency virus (SIV) 

infection model in rhesus monkeys have shown qualitative differences in immune responses elicited by 

various serotype Ad vectors (3), which translated into different levels of protective efficacy against SIV 

challenges (5–7). However, innate immune profiles of different alternative serotype Ad vectors have not 

previously been studied in nonhuman primates. 

 Adenoviruses are a diverse group of double stranded DNA viruses with at least 65 known human 

serotypes, which are subdivided into species A-G based upon sequence homology (8–11). Vectors 

constructed using these viruses have been shown to differ significantly in terms of primary receptor 

usage (1, 12–15), intracellular trafficking patterns (16–19), transduction and activation of dendritic cells 

(20–25), utilization of secondary receptors (26, 27), cellular tropism (28–33), and interaction with 

pattern recognition receptors (PRR) (34–36). Notably, Ad5 utilizes CAR as its primary cellular receptor, 

whereas Ad35, Ad26, and Ad48 utilize CD46 (37). The species C adenovirus 5 (Ad5), the species B2 Ad35, 

and the species D Ad26 are currently being evaluated as vaccine candidates in clinical trials, yet 

relatively little is known about the possible differences in innate immunity induced by these vectors.   
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 In this study, we describe the innate cytokine profiles induced in vivo by Ad vectors from 5 

serotypes in 26 rhesus monkeys. We then assessed the mechanism of differential viral triggering of 

these innate responses using capsid chimeric vectors and receptor blocking monoclonal antibodies in 

vitro in human PBMC. Our studies demonstrate that Ad35, Ad26, and Ad48 vectors that utilize CD46 as 

their primary cellular receptor trigger profoundly different innate cytokine profiles characterized by 

higher levels of anti-viral and proinflammatory cytokines and chemokines compared with Ad5 vectors 

that utilize CAR.  
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RESULTS 

Ad35, Ad26, and Ad48 induce more potent anti-viral and proinflammatory cytokines and chemokines 

compared with Ad5 following vaccination of rhesus monkeys. We initiated studies by assessing serum 

cytokine levels in rhesus monkeys following vaccination with 5 different serotype Ad vectors in 26 

rhesus monkeys. Rhesus monkeys (n=4-8/group) were immunized i.m. with 3x1010 vp Ad5, Ad35, Ad26, 

Ad48, or chimeric Ad5 with the hexon hypervariable regions (HVR) replaced with those of Ad48 

(Ad5HVR48) expressing SIV Env/Gag/Pol (38)(1). All vectors were replication-incompetent E1/E3-deleted 

Ad vectors that were prepared similarly and exhibited comparable characteristics, specific infectivity, 

and purity (1). Sera were collected on days 0, 1, 3, 7, 10, 14 and 28 following vaccination, and cytokine 

levels were assessed by luminex assays.  

Longitudinal analysis of cytokine responses following vaccination with Ad5 revealed only low 

levels of anti-viral and proinflammatory cytokine and chemokine induction on day 1 following 

vaccination (Figures 2.1A & 2.1B). In contrast, animals vaccinated with Ad35, Ad26, and Ad48 displayed 

pronounced induction of multiple cytokines and chemokines on day 1 following vaccination. Increased 

induction by Ad35, Ad26, and Ad48 as compared with Ad5 was observed for the inflammatory markers 

IL-1RA (17.7-, 8.2-, 26.2-fold greater induction than Ad5, respectively; p=0.006, p=0.009, p=0.02, 

respectively, Mann-Whitney U Test) and IL-6 (8.3-, 4.0-, and 3.4-fold greater induction than Ad5, 

respectively; p=NS, p=0.04, and p=0.03, respectively). Additionally, significant induction of IFN-γ (1.4-, 

1.7-, and 1.5-fold greater induction than Ad5; p=NS, p=NS, p=0.02, respectively), and its downstream-

signaled chemokines IP-10 (8.3-, 6.0-, and 4.9-fold greater induction than Ad5; p=0.03, p=0.009, p=0.03, 

respectively) and I-TAC (2.8-, 1.1-, and 3.6-fold greater induction than Ad5; p=0.03, p=NS, p=0.03, 

respectively) was observed in animals that received Ad35, Ad26, or Ad48. These data demonstrate that 
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Ad35, Ad26, and Ad48 trigger substantially greater anti-viral and proinflammatory cytokine responses 

than Ad5 following vaccination. 
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Figure 2.1. Serum concentrations of cytokines and chemokines in rhesus monkeys following vaccination 
with Ad vectors. Rhesus monkeys (n=4-8/group) were injected IM with 3x1010 vp Ad5, Ad35, Ad26, Ad48 
or Ad5HVR48 vectors. Sera were collected on days 0, 1, 3, 7, 10, 14 and 28 following vaccination, and 
systemic levels of cytokines and chemokines were measured by luminex and ELISA assays. (A) Systemic 
levels of selected cytokines are shown in colored lines with means in black lines. Groups are compared 
by fold changes over baseline compared with Ad5 *p<0.05, **p<0.01.   
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Figure 2.1., continued. (B) Mean fold induction of all cytokine responses relative to baseline by the 
various Ad vectors in rhesus monkeys one day (left) and seven days (right) following immunization with 
the indicated adenoviral vector. Data are represented as fold change over averaged baseline. 
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Interestingly, on day 7 following vaccination, animals that received Ad48 or the chimeric 

Ad5HVR48 vectors also displayed a temporally distinct peak of cytokine induction characterized by the 

proinflammatory cytokines IL-1RA, IL-6, IL-1β and TNF-α (Figures 2.1A & 2.1B). This cytokine peak was 

not observed with Ad5, Ad35, or Ad26 vectors. Since Ad48 and Ad5HVR48 only share common hexon 

HVR sequences, we speculate that this day 7 cytokine peak may be triggered by hexon rather than fiber-

receptor interactions. These data suggest that both fiber and hexon may contribute to triggering innate 

immune responses. 

 

Cytokine induction following heterologous boost immunization. We next assessed whether innate 

cytokine responses following an Ad26 boost immunization would be impacted by previous priming with 

a heterologous Ad vector. Systemic cytokine levels were assessed in rhesus monkeys (n=4/group) 

primed with Ad35, Ad48, or Ad5HVR48 vectors as described above and then boosted 24 weeks later i.m. 

with 3x1010 vp Ad26 expressing SIV Env/Gag/Pol. Sera were collected and analyzed as described above. 

Longitudinal analysis of animals revealed cytokine profiles on day 1 following the boost immunization 

(Figure 2.2) that appeared similar to the cytokine profiles induced following priming with Ad26 (Figure 

2.1A), including IFN-γ, IL-6, IP-10, and IL-1RA (Figure 2.2). These data suggest that the innate cytokine 

profiles following a boost immunization are dictated primarily by the vector utilized for the boost and 

are not substantially imprinted by the heterologous vector utilized for priming. 
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Figure 2.2. Serum concentrations of cytokines and chemokines in rhesus monkeys following boost 
vaccination with Ad26 vector. Rhesus monkeys (n=4/group) were boosted IM with 3x1010 vp Ad26 
vector 24 weeks after priming with 3x1010 vp of Ad35, Ad48, or Ad5HVR48 vectors. Sera were collected 
on days 0, 1, 3, 7, 14, and 28 following vaccination and systemic levels of cytokines and chemokines 
were measured by luminex assays. Systemic levels of selected cytokines are shown in colored lines with 
group means in black lines. 
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Ad35, Ad26, and Ad48 induce higher levels of anti-viral and proinflammatory cytokines and 

chemokines compared with Ad5 in vitro. We next sought to probe the mechanism by which Ad vectors 

elicit differential innate immune cytokine profiles. We therefore assessed the capacity of Ad5, Ad35, 

Ad26, and Ad48 to trigger secretion of innate cytokines in vitro in freshly isolated human PBMC. Human 

PBMC (n=8-13/group) were stimulated with Ad5, Ad35, Ad26, or Ad48 at a multiplicity of infection (MOI) 

of 103 viral particles (vp) per cell. Cytokine and chemokine responses were measured in culture 

supernatant 24 hours post-infection by luminex assays.  

Compared with the CAR-utilizing vector Ad5, the CD46-utilizing vectors Ad35 and Ad26 induced 

substantially higher levels of IFN-α2 (128- and 96-fold higher levels, p<0.001 and p<0.01, respectively, 

Kruskal-Wallis test with Dunn’s correction for multiple comparisons), IFN-γ (38- and 24-fold higher 

levels, respectively, p<0.001), IL-1β (10-and 5-fold higher levels, p<0.001and p<0.01, respectively), and 

TNF-α (10- and 4-fold higher levels, p<0.001 and p<0.01, respectively) (Figure 3A). Ad35 and Ad26 also 

induced higher levels of MIP-1α (18- and 8-fold, respectively, p<0.001), MIP-1β (16- and 9-fold, 

respectively, p<0.001), IL-6 (2.4- and 1.4-fold higher levels, p<0.001 and p=NS, respectively) and IL-1RA 

(3- and 3-fold higher levels, respectively, p<0.001) (Figure 2.3A). The species D vector Ad48 displayed an 

intermediate phenotype of cytokine and chemokine induction relative to Ad5 and those induced by 

Ad35 and Ad26. A complete analysis of all cytokines and chemokines measured in the luminex assays 

demonstrated that Ad35, Ad26, and Ad48 induced higher levels of multiple anti-viral and 

proinflammatory cytokines, as well as chemokines including MCP-1 and IP-10 as compared with Ad5 

(Figure 2.3B). These in vitro data are largely consistent with the in vivo data from vaccinated rhesus 

monkeys with a few notable exceptions, such as the high levels of IFN-α2 induced in vitro compared 

with in vivo.  
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Figure 2.3. Cytokine and chemokine responses induced in vitro in human PBMC following Ad vector 
stimulation. (A) Individual PBMC (n=8-13/group) were stimulated with 103 vp/cell of Ad5, Ad35, Ad26, or 
Ad48 vectors and cytokine responses measured after 24h by luminex assays. LPS (1 ng/mL) was used as 
the positive control. Data are represented as individual measurements with mean responses indicated 
by a solid line ± SEM. Bars indicate p<0.05 (dotted line), p<0.01 (dashed line), and p<0.001 (solid line) 
using Kruskal-Wallis tests with Dunn’s correction for multiple comparisons.   
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Figure 2.3., continued. (B) Mean group fold induction of all cytokine responses relative to media by 
various Ad vectors in human PBMC.  
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Both fiber and capsid components contribute to innate immune stimulation by Ad vectors. We next 

explored the role of the key structural proteins of the adenovirus capsid on innate immune stimulation. 

We utilized a panel of chimeric Ad5/Ad35 (39) vectors and stimulated human PBMC (n=8/group) as 

described above. Chimeric Ad vectors included Ad5 with the Ad35 fiber (Ad5f35) or Ad35 fiber and 

penton (Ad5p35f35), and Ad35 with the Ad5 fiber (Ad35f5) or Ad5 fiber knob (Ad35k5). Replacement of 

the Ad5 fiber with the Ad35 fiber, or Ad35 fiber and penton, resulted in an increased induction of 

multiple cytokines relative to Ad5, including IFN-α2 (126- and 184-fold higher levels, p<0.01 and 

p<0.001, respectively), IFN-γ (16- and 9-fold higher levels, p<0.05 and p<0.01, respectively), IL-1β (2.5- 

and 1.6-fold higher levels, respectively p=NS), TNF-α (12- and 11-fold higher levels, respectively, 

p<0.001), MIP-1α (52- and 40-fold higher levels, p<0.01 and p<0.001, respectively), MIP-1β (30- and 25-

fold higher levels, respectively, p<0.001), IL-6 (7- and 7-fold higher levels, respectively, p<0.001) and IL-

1RA (4.4- and 3.5-fold higher levels, p<0.05 and p<0.01, respectively) (Figure 2.4). 

 A corresponding decrease in stimulatory capacity was observed with Ad35 vectors containing 

the Ad5 fiber or fiber knob as compared to Ad35, suggesting the importance of the Ad35 fiber for innate 

cytokine stimulation. For example, Ad35f5 and Ad35k5 induced lower levels relative to Ad35 of IFN-γ 

(4.7- and 7.1-fold lower levels, p<0.05 and p<0.01, respectively), IL-1β (2.7- and 10.6-fold lower levels, 

p<0.05 and 0<0.001, respectively), TNF-α (5.5- and 7.1-fold lower levels, respectively, p<0.01), MIP-1α 

(13.0- and 23.6-fold lower levels, p<0.01 and p<0.001, respectively), MIP-1β (6.0- and 9.4-fold lower 

levels, respectively, p<0.05) and IL-6 (3.4- and 5.2-fold lower levels, p<0.05 and 0<0.01, respectively) 

(Figure 2.4). However Ad35f5 and Ad35k5 still induced most cytokines to a greater level than did Ad5, 

indicating that other capsid components in addition to fiber also likely contribute to innate cytokine 

stimulation. Taken together, these results suggest that both fiber and other capsid components such as 

hexon influence innate immune induction. 
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Figure 2.4. Cytokine and chemokine responses elicited by chimeric Ad5/Ad35 vectors in human PBMC. 
Normal human PBMC (n=8/group) were stimulated for 24h in the presence of chimeric Ad5/Ad35 
vectors, and cytokine and chemokine levels were measured by luminex assays. LPS (1 ng/mL) was 
included as the positive control. Data are represented as individual measurements with mean responses 
± SEM. Bars indicate p<0.05 (dotted line), p<0.01 (dashed line), and p<0.001 (solid line) using Kruskal-
Wallis tests with Dunn’s correction for multiple comparisons. 
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Fiber-receptor interactions are required for Ad35 and Ad26 stimulation of human PBMC. We next 

assessed whether fiber interactions with the CD46 receptor triggered the robust innate immune 

stimulation by Ad35 and Ad26 vectors. Human PBMC (n=4-8/group) were pre-incubated with 10 μg/mL 

of the anti-CAR monoclonal antibody RmcB (40) or the anti-CD46 monoclonal antibodies 13/42 and 

M177 (41, 42) and were then stimulated with Ad35 and Ad26 as described above. As expected, IFN-α2 

and IFN-γ levels induced by Ad35 and Ad26 vectors were not affected by RmcB. In contrast, Ad35 

induced lower levels of IFN-α2 and IFN-γ in the presence of 13/42 (p<0.05), and Ad26 elicited 

dramatically lower levels of IFN-α2 and IFN-γ following preincubation of cells with either 13/42 (p<0.05) 

or M177 (p<0.05) (Figure 2.5). No cytokine responses were observed following incubation of cells with 

the mAbs alone (data not shown).  These results support previous reports from our laboratory and 

others showing that CD46 is a primary cellular receptor for Ad35 and Ad26 (1, 12). These data 

demonstrate that fiber-receptor binding contributes substantially to the innate immune stimulation by 

these vectors. The greater effect of CD46 blockade on innate responses triggered by Ad26 as compared 

with Ad35 may reflect subtle differences in primary receptor interactions and/or secondary receptor 

usage by these vectors. 

 

Multiple cellular subsets are stimulated by Ad35 and Ad26. To explore the contributions of various 

cellular subsets to innate cytokine secretion following Ad35 and Ad26 stimulation, we depleted specific 

cell subsets from healthy human PBMC (n=6/group) and repeated the cytokine assays as shown in Figure 

3. T cells, B cells, NK cells, monocytes/macrophages (MonoMac), myeloid dendritic cells (mDC), or 

plasmacytoid dendritic cells (pDC) were depleted by magnetic bead separation, and effective depletion 

was confirmed by flow cytometry (data not shown). PBMC depleted of these various cell subsets were 

then incubated with Ad35 or Ad26 vectors, and cytokine and chemokine responses were assessed. 
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Depletion of T cells resulted in complete abrogation of IFN-γ induction and partial reduction of IL-1RA, 

whereas depletion of pDC led to substantial reduction of IFN-α2, TNF-α and IL-1RA (Figure 2.6). 

Depletion of monocytes and macrophages resulted in a pronounced reduction of proinflammatory 

markers IL-1RA, MIP-1α and MIP-1β (Figure 2.6). These data suggest that multiple cellular subsets 

contribute to the overall milieu of innate cytokines triggered by Ad vectors. 
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Figure 2.5. Interferon induction by Ad35 and Ad26 in the presence of anti-CAR or anti-CD46 blocking 
mAbs. Normal human PBMC (n=4-6/group) were preincubated with 10 μg/mL anti-CAR (RmcB) or anti-
CD46 (13/42, M177) for 1 h and then stimulated with 103 vp/cell Ad35 or Ad26 vectors. IFN-α2 and IFN-γ 
levels were measured 24h following stimulation by luminex assays. LPS (1 ng/mL) was included the 
positive control. Data are represented as mean responses ± SEM. Bars indicate p<0.05 (dotted line), 
p<0.01 (dashed line), and p<0.001 (solid line) using Kruskal-Wallis tests with Dunn’s correction for 
multiple comparisons.  
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Figure 2.6. Cytokine and chemokine responses elicited by Ad vectors in normal human PBMC depleted 
of various cell populations. Normal human PBMC (n=6/group) were depleted of the indicated cell 
subsets by magnetic bead separation, and depletion was confirmed by flow cytometry (data not shown). 
PBMCs were then stimulated with 103 vp/cell of Ad35 or Ad26 vectors and cytokine and chemokine 
responses were measured after 24 h stimulation by luminex assays. LPS (1 ng/mL) was included as 
positive control. Data are represented as means ± SEM, and unseparated versus depleted cell 
populations were compared. Bars indicate p<0.05 (dotted line), p<0.01 (dashed line), and p<0.001 (solid 
line) Kruskal-Wallis tests with Dunn’s correction for multiple comparisons.  
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DISCUSSION 

 The innate immune profiles induced by various serotype Ad vaccine vectors remain poorly 

understood and have not previously been characterized in nonhuman primates. Here we demonstrate 

that the alternative serotype vectors Ad35, Ad26, and Ad48 induce substantially greater innate cytokine 

responses than Ad5 following vaccination of rhesus monkeys. In particular, Ad35, Ad26, and Ad48 

induce higher levels of anti-viral and proinflammatory cytokines than Ad5, characterized by higher levels 

of IFN-γ, IP-10, I-TAC, IL-1RA, and IL-6.  

 Previous reports have characterized innate cytokine profiles of Ad vectors in mice (23, 30, 43) 

and in vitro (20, 21, 24, 25, 34, 44, 45). For example, several studies have reported that Ad35 induces 

higher levels of the co-stimulatory markers CD80 and CD40 and interferons than Ad5 in vitro in human 

DCs (25), as well as higher levels of IL-10 and reduced proliferation in T cells co-cultured with DCs (20). 

Studies in mice have suggested increased proinflammatory cytokine induction by Ad5 relative to CD46-

utilizing vectors (22) which differs substantially from our findings in rhesus monkeys. Moreover, a recent 

study demonstrated that Ad35 and Ad28 induce high levels of IFN-α following immunization of mice 

(21). In contrast, we observed only minimal IFN-α secretion by Ad35 and Ad26 in rhesus monkeys. Taken 

together, these results demonstrate the importance of studying innate immune profiles of Ad vectors in 

primates rather than mice, which lack the cellular receptor CD46 distribution found in primates (37).  

This is particularly important for evaluating the innate cytokine responses elicited by Ad35, Ad26, and 

Ad48 that appear to be triggered largely by fiber-receptor binding (Figures. 2.4 & 2.5).  

 Fiber-receptor interactions are critical but do not fully explain the observed differences in innate 

immune triggering. In addition to its role as a receptor to certain species B and D adenoviruses, CD46 

has a role in the binding complement components C3b and C4b (46, 47), and due to differential splicing 

may be immunosuppressive or immunostimulatory upon ligand binding (48, 49). Additionally, the 



 

58 
 

degree of CD46 binding may influence ligand endocytic trafficking fate, as well as the induction of 

autophagy (50, 51). As such, Ad35, Ad26, and Ad48 binding to CD46 may target them to endosomal 

compartments rich in pattern recognition receptors that could then influence innate immune responses 

differently from those induced by Ad5. The mechanism by which CD46 binding influences Ad vector 

innate stimulation thus warrants further exploration.  

Our results also suggest that Ad capsid components such as hexon also contribute to innate 

stimulation. In particular, we observed a distinct day 7 peak of cytokine secretion in monkeys that 

received Ad48 and Ad5HVR48, which only share common hexon HVRs. The ability of the hexon HVRs to 

influence innate immune stimulation may reflect their role in binding serum factors (27), endocytic 

localization of virus (52), or other possible mechanisms. 

 In summary, our data demonstrate for the first time that the innate cytokine responses 

triggered by Ad35, Ad26, and Ad48 are substantially greater than those induced by Ad5 in rhesus 

monkeys. Specifically, the alternative serotype vectors that utilize CD46 as a primary cellular receptor 

induce more potent anti-viral and proinflammatory cytokine responses following vaccination than Ad5 

that utilizes CAR. The in vivo characterization of these innate cytokine profiles contributes substantially 

to our understanding of these Ad vectors, which are currently being evaluated as candidate vaccine 

vectors in human clinical trials. Further studies assessing the impact of these profoundly different innate 

immunologic milieus on the subsequent generation of adaptive immune responses are therefore 

warranted.  

 

  



 

59 
 

MATERIALS AND METHODS 

Viruses: E1/E3 deleted vectors Ad5, Ad35, Ad26 and Ad48 vectors expressing SIV antigens no transgene 

were produced as previously described (1, 39).  

Cells: Normal human blood was collected in the presence of sodium heparin and processed by Ficoll-

hypaque gradient method as previously described (53). Cells were resuspended in R10 medium (RPMI, 

10%FCS, 50 u/mL Penicillin, 50 μg/mL Streptomycin) at a concentration of 1x106 cells/mL and utilized in 

in vitro assays. All studies involving human subjects were approved by the Beth Israel Deaconess 

Medical Center Institutional Review Board (IRB). 

Antibodies: Anti-CAR mAb RmcB (Millipore, Billerica, MA) and anti-CD46 mAbs 13/42 (LifeSpan 

Biosciences, Seattle, WA) and M177 (Hycult Biotechnology, Plymouth Meeting, PA), as well as anti-KLH 

Mouse IgG isotype control (R&D Systems, Minneapolis, MN) were washed 3x with 1 mL 

unsupplemented DPBS and concentrated to 1 μg/μL by centrifugation at 3,000 rpm in Amicon Ultra-4 

Centrifugal Filters (30kD MW) (Millipore, Billerica, MA) and stored at 4°C for immediate use. Flow 

cytometry antibody panels included CD3-allophycocyanin (UCHT1), CD16-fluorscein isothiocyanate 

(3G8), CD123-peridinin chlorophyll protein-Cy5.5 (9F5), CD11c-phycoerythrin (B-ly6), CD56-

phycoerythrin-Cy7 (B159), CD19-V450 (HlB19), CD14- allophycocyanin-Cy7 (MφP9) (BD Biosciences, San 

Diego, CA) and HLA-DR-AlexaFluor700 (LN3) (eBioscience, San Diego, CA).  

In Vitro Cytokine Stimulation Assay: 1x106 PBMC were incubated with 1,000 vp/cell of the indicated 

adenovirus vector. In certain experiments, cells were pre-incubated with mAbs for 1 hr prior to 

infection. Cells were cultured at 37°C and supernatants were harvested 24 h following infection by 

centrifugation at 1,400 rpm for 5 minutes. Supernatants were analyzed utilizing Millipore Milliplex Map 

Human Cytokine/Chemokine magnetic luminex (Millipore, Billerica, MA) and Life Technologies Cytokine 

Human 30-Plex Panel (Life Technologies, Grand Island, NY) as per the manufacturer’s protocols. Luminex 
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data were analyzed on BioPlex 200 instrument running Bioplex Manager 4.1 (Bio-Rad, Hercules, CA) with 

80%-120% standard acceptance range. Data were graphed using Graph Pad Prism v5.0 (GraphPad 

Software, Inc., La Jolla, CA). Means between groups were compared using Kruskal-Wallis tests with 

Dunn’s correction for multiple comparisons and plotted as mean ± SEM. 

Magnetic Cell Separation: PBMC were depleted of CD3, CD14, CD19, CD56, CD1c, or BDCA-1 positive 

cell fractions by use of Magnetic MicroBeads according to manufacturer’s protocol (Miltenyi Biotec, 

Auburn, CA). Depleted populations were confirmed by flow cytometry on LSRII and BD FACSDiva v.6.1.1 

(BD Biosciences). Results were analyzed using FlowJo v.8.8.6 (Tree Star, Inc., Ashland, OR). 

Non-Human Primate Ad Vector Vaccination: Rhesus monkeys (n=4-8/group) were immunized with 

3x1010 vp Ad5, Ad35, Ad26, Ad48, or Ad5HVR48 expressing SIV Gag/Pol/Env antigens. Serum was 

collected on days 0, 1, 3, 7, 10, 14 and 28 following vaccination, thawed on ice, and inactivated with 

0.05% Tween-20 for 15min at room temperature. Samples were then run on Milliplex Non-Human 

Primate 23plex Premix (Millipore) or Invitrogen Monkey Cytokine 28plex (Life Technologies), VeriKine 

Cynomolgus/Rhesus Interferon-Alpha Serum ELISA (PBL InterferonSource, Piscataway, NJ), and Human 

CXCL10/IP-10 Quantikine ELISA (R&D Systems, Minneapolis, MN) according to manufacturer’s protocols, 

analyzed and graphed as described above. All studies involving rhesus monkeys were approved by the 

Harvard Medical School Institutional Animal Care and Use Committee (IACUC). 

Data Analysis and Statistical Methods: Concentrations of cytokines and chemokines were obtained 

from luminex assays using a 5 parameter logistic model. Results of in vitro PBMC studies were compared 

by Kruskal-Wallis tests with Dunn’s correction for multiple comparisons. Total cytokine induction in vitro 

was assessed by group average fold induction versus media controls. Cytokine induction in vivo was 

assessed as fold change of cytokine over average baseline level of all monkeys. Group fold change over 

averaged baseline was compared to monkeys vaccinated with Ad5 by Mann-Whitney U tests.   
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Chapter 3: Vaccination with an Adenovirus 26 Vector in Humans Induces a Robust but Transient 

Systemic Antiviral and Proinflammatory Cytokine and Chemokine Response 
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INTRODUCTION 

 Adenoviral vectors have found wide utility in vaccinology as a platform for vaccination against 

many infections and cancers (1, 2). In particular, Adenovirus (Ad) 5 as well as “alternative serotype” Ad’s 

such as Ad35 and Ad26 vectors have been utilized in pre-clinical and clinical studies with the goal of 

generating vectors capable of eliciting protective immunity against HIV (3). Several studies in murine and 

non-human primate pre-clinical models have indicated that Ad vectors can differ substantially in their 

ability to elicit cellular and humoral immune responses (4–6). In particular, Ad35 and Ad26 have been 

shown to elicit more polyfunctional CD8+ T-cell responses relative to Ad5 vectors. Furthermore, these 

differences in adaptive immune phenotype formation are likely important for determining the construct 

efficacy at inducing protective immune responses against HIV, as suggested by the finding that 

heterologous vaccination with an Ad5 prime and either Ad35 or Ad26 boost reduced peak and setpoint 

viral loads in an SIVmac329 infection model in Rhesus monkeys as compared to a homologous Ad5/Ad5 

regimen. Understanding the means by which these differential adaptive immune phenotypes are 

generated and their influence on resultant protection from pathogenic challenge will be instrumental in 

further vaccine design optimization.  

Ad vectors can differ substantially in their basic biological properties such as primary receptor 

usage, dendritic cell transduction, and usage of Pattern Recognition Receptor (PRR) stimulation (7–9). 

Previous studies from our lab and others have indicated that Ad vectors can differ not only in their 

ability to elicit adaptive immune phenotypes following vaccination, but also substantially differ in their 

innate immune stimulatory profiles (6, 10). Results obtained both murine and non-human primate 

model systems indicated that the CD46-utilizing vectors Ad35, Ad26, and Ad28 induce a markedly higher 

level of systemic antiviral and proinflammatory cytokines and chemokines relative to Ad5 following 

vaccination. This difference in innate immune stimulation may influence elicited adaptive immune 



 

69 
 

phenotypes and protection, and as such are an important component in understanding the relative 

immunogenicity of these vectors. However, despite the relative importance of innate immune 

stimulation in determining adaptive immune phenotypes, the innate stimulatory properties of these 

vectors, in particular Ad35 and Ad26, remain to be well characterized in a human vaccination setting. 

Characterization of the innate stimulatory properties of a CD46-utilizing Ad vector in human volunteers 

would confirm pre-clinical observations of Ad vector elicited innate immune stimulation phenotypes and 

extend their utility to understanding vaccine-elicited adaptive immune responses. 

In this study, we characterized the innate immune stimulatory properties of an Ad26.HIVEnvA 

vector in 18 Human volunteers. Systemic cytokine and chemokine profiles were utilized as a surrogate 

marker for innate immune activation. Vaccination of both Ad26 seronegative and seropositive 

individuals with an Ad26.HIVEnvA vector resulted in a transient but robust induction of several antiviral 

and proinflammatory cytokines and chemokines 1 day following vaccination, which largely subsided by 

day 3 following vaccination. Volunteer Ad26 serostatus at the time of vaccination was not found to alter 

the identity of cytokines induced, but Ad26 seropositive individuals displayed a trend toward reduced 

induction of elicited cytokines and chemokines at peak levels. These studies indicate that Ad26 induces a 

systemic antiviral and proinflammatory cytokine milieu immediately following vaccination, in agreement 

with our previous findings in the rhesus monkey pre-clinical model. Further evaluation as to the 

influence of this cytokine milieu on elicited adaptive immune phenotypes may yield important insights 

into vaccine elicited adaptive immune phenotypes and protection from subsequent pathogenic 

challenge.  
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RESULTS 

 We initiated studies by assessing systemic cytokine and chemokine responses in 24 Human 

volunteers. Volunteers were separated into 3 groups. The first group consisted of 12 individuals who 

were Ad26 seronegative at the time of vaccination and who received 5x1010  vp Ad26 expressing 

HIV.EnvA intramuscularly (i.m.). The second group consisted of 6 individuals who were Ad26 

seropositive at the time of vaccination and who similarly received 5x1010  vp Ad26 expressing HIV.EnvA 

i.m. A third group was composed of 6 individuals who received a sham vaccination. Sera were collected 

on days 0, 1, 3, 7, and 28 following vaccination and then systemic levels of 72 cytokines and chemokines 

were assessed utilizing Luminex protocols as previously described (10). Analysis of systemic cytokine and 

chemokine responses in both groups of volunteers who received the Ad26.HIVEnvA immunization 

revealed a robust but transient increase in systemic levels of many antiviral and proinflammatory 

cytokines and chemokines at 1 day following vaccination (Figure 3.1A). This transient increase in 

systemic cytokine and chemokine levels largely subsided by day 3, and completely by day 7, following 

vaccination (Figure 3.1A). This increase in systemic cytokine and chemokine levels was most pronounced 

in those donors who were Ad26 seronegative at the time of vaccination. Relative to aggregate baseline 

levels for all donors, volunteers who were Ad26 seronegative at the time of vaccination with 

Ad26.HIVEnvA displayed a pronounced induction of several antiviral and proinflammatory cytokines and 

chemokines such as interferon gamma (IFN-γ) (2.1x fold greater levels relative to aggregate day 0 

baseline; p=0.0148, Kruskal-Wallis Tests), interferon gamma Induced Protein 10 (IP-10) (11.7x fold 

greater; p<0.0001), interferon-inducible T-cell alpha chemoattractant (I-TAC) (9.9x fold greater; 

p<0.0001), interleukin-1 receptor antagonist (IL-1RA) (2.9x fold greater; p=0.0023), tumor necrosis 

factor alpha (TNFα) (1.5x fold greater; p=0.0034), and monocyte chemotactic protein-1 (MCP-1) (2.2x 

fold greater; p=0.0086) (Figure 3.1A). Similar trends were observed with donors who were Ad26 
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seropositive at the time of Ad26.HIVEnvA vaccination for antiviral cytokines and chemokines, though 

many of these trends failed to reach statistical significance. Vaccination of Ad26 seropositive volunteers 

with Ad26.HIVEnvA resulted in systemic increases relative to baseline aggregate levels of IFN-γ (1.6x fold 

greater induction relative to aggregate day 0 baseline; p=0.1024, Kruskal-Wallis Tests), IP-10 (5.2x fold 

greater induction; p=0.0004), I-TAC (1.3x fold greater induction; p=0.2040) (Figure 3.1A). Analysis of 

median fold change over aggregate baseline levels for all cytokines analyzed for each group showed a 

broad and robust induction of many antiviral and proinflammatory cytokines and chemokines for both 

Ad26 seronegative and Ad26 seropositive vaccinnees at 1 day following immunization (Figure 3.1B). 

Both groups of volunteers who received an Ad26 immunization displayed induction of IFN-γ, interleukin-

10  (IL-10), IL-1RA, Interleukin 1 alpha (IL-1α), MCP-1, TNFα, monocyte chemoattractant protein 2 (MCP-

2), TNF-related apoptosis-inducing ligand (TRAIL), monokine induced by gamma interferon (MIG), I-TAC, 

and macrophage inflammatory protein-3-beta (MIP-3β) (Figure 3.1B). Overall, Ad26 serostatus had no 

influence on the identity of cytokines and chemokines elicited, with donors possessing Ad26 

seropositivity at the time of vaccination displaying reduced median fold induction for a subset of 

cytokines and chemokines, including IFN-γ, TRAIL, and I-TAC (Figure 3.1B). These data indicate that 

intramuscular vaccination with an Ad26 vector leads to a pronounced but transient induction of many 

antiviral and proinflammatory cytokines and chemokines, in agreement with previously reported results 

following intramuscular vaccination of Rhesus monkeys with an Ad26 construct. 
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Figure 3.1. Serum concentrations of cytokines and chemokines in human volunteers following Ad26 
vaccination. Human volunteers (n=6-12/group) were vaccinated i.m. with 3x1010 Ad26 vector encoding 
HIV.EnvA antigen. An additional group (n=6) was placebo vaccinated. Sera were collected on days 0, 1, 3, 
7 and 28 following vaccination, and systemic levels of cytokines and chemokines were analyzed by 
Luminex assays. (A) Systemic levels of selected cytokines and chemokines following vaccination with 
Ad26 or placebo, with individual levels shown as colored lines and group median over time shown with 
black lines. Stars indicate cytokine peak detected (d1 vs. d0 Wilcoxon Rank-Sum Tests;*P<0.05, 
**P<0.01, ***P<0.001) 
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Figure 3.1., continued. (B) Median fold induction for all cytokines and chemokines at day 1 post 
vaccination with Ad26 or placebo vaccination in rhesus human volunteers. Values shown are group 
mean fold induction over the averaged aggregate baseline.  
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We next sought to analyze the influence of Ad26 serostatus at the time of vaccination on the 

levels of elicited cytokines and chemokines following immunization. Fold induction over averaged 

aggregate baseline levels at day 0 was calculated for each donor and cytokine and elicited levels 

compared between groups. Similar to our findings above, vaccination of Ad26 seronegative volunteers 

induced a robust increase in systemic levels relative to the sham vaccinated group for several antiviral 

and proinflammatory cytokines and chemokines such as IFN-γ (2.1x vs. 0.7x fold induction relative to day 

0 aggregate baseline; p=.011, Kruskal-Wallis Tests), I-TAC (9.4x vs. 1.4x; p=0.0056), IL-1RA (3.0x vs. 0.5x; 

p=0.0017), IL-1α (3.1x vs. 0.5x; p=0.003), TNF-α (1.5x vs. 0.8x; p=0.0002) and MIP-3β (1.9x vs. 1.0x; 

p=0.0002) (Figure 3.2). Significantly greater fold induction was observed for both Ad26 seronegative and 

Ad26 seropositive vaccinnees relative to sham vaccines for a subset of cytokines and chemokines 

including IP-10 (11.7x & 5.2x vs. 0.7x, respectively; p=0.0002 & p=0.0022, respectively), MCP-2 (3.0x & 

2.5x vs. 1.0x, respectively; p=0.003 & p=0.041, respectively), TRAIL (3.7x & 3.6x vs. 0.9x, respectively; 

p=0.0047 & p=0.0043, respectively), and MIG (2.3x & 1.1x vs. 0.6x, respectively; p=0.0047 & p=0.0087, 

respectively) (Figure 3.2). As observed above, lower elicitation of cytokines and chemokines was 

observed in the Ad26 seropositive vaccinnees relative to Ad26 seropositive vaccinnees for IL-1RA (0.9x 

vs. 3.0x fold induction over day 0 aggregate baseline, respectively; p=0.031) and I-TAC (1.3x vs. 9.4x, 

respectively; p=0.011), with a similar trend being observed for several other cytokines and chemokines 

such as IL-1α, IP-10, MCP-1, TNF-α, and MIG (Figure 3.2). These results indicate that Ad26 serostatus of 

vaccinnees prior to Ad26 vaccination does not alter the identity of cytokines and chemokines elicited, 

but that serostatus may influence the magnitude of this induced response.  
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Figure 3.2. Peak cytokine and chemokine levels of Ad26 sero-positive/sero-negative volunteers 
following Ad26 vaccination. Peak cytokine and chemokine levels for selected analytes at day 1 following 
vaccination for Ad26- and placebo-vaccinated human volunteers. Data are shown as mean ± SEM. Bars 
indicate P values of <0.05 (dotted lines), <0.01 (dashed line), or <0.001 (solid line) using Kruskal-Wallis 
tests. 
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DISCUSSION 

 Our results here show that the CD46-utilizing vector Ad26 was able to elicit a potent antiviral 

and proinflammatory cytokine and chemokine induction following intramuscular immunization in 18 

human volunteers independent of an individual’s Ad26 serostatus at the time of vaccination. This 

induction was transient, peaking at day 1 following vaccination and subsequently subsiding by day 3 

post-vaccination. Furthermore, the identity of cytokines and chemokines elicited was unaltered by the 

presence of pre-existing humoral immune responses against Ad26. However, pre-existing neutralizing 

antibodies against Ad26 were able to reduce the overall fold induction over baseline for several 

cytokines and chemokines analyzed. Whether this reduction is proportional to the titer of pre-existing 

neutralizing Ad26 antibodies at the time of vaccination remains to be determined. Importantly, the 

observed peaks in cytokine and chemokine levels in vaccinated levels closely match both the kinetics 

and identity of cytokines and chemokines previously observed to be induced by Ad26 immunization in 

Rhesus monkeys (10). In both humans and Rhesus monkeys, intramuscular immunization with Ad26 

induced a peak in systemic levels at day 1 post-vaccination of IFN-γ, IP-10, I-TAC, and IL-1RA. 

Additionally, similar to observations in the Rhesus monkey model, systemic increases of several 

cytokines such as IFN-α2 and TNF-α were not detected. Together these data indicate that systemic 

cytokine and chemokine induction elicited by immunization with Ad26 in both humans and Rhesus 

monkeys are congruent. A complimenting analysis of innate cytokine and chemokine responses in Ad35 

seronegative and seropositive human volunteers following Ad35 immunization would additionally 

enable correlation of innate immune stimulation capacity by Ad vectors with serostatus. The role of 

innate immune cytokine and chemokine responses in the formation of adaptive immune phenotypes 

elicited by Ad26 also warrants further investigation. 
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 Innate immune cytokine signatures elicited by Ad26 following immunization likely play an 

influential role in the generation of vaccine-elicited adaptive immune responses. As mentioned above 

Ad26 has been previously been shown in pre-clinical non-human primate as well as clinical human 

studies, to elicit high numbers of polyfunctional CD8+ T cells, a phenotype which has been correlated 

with lower viral loads in SIV model infection of rhesus monkeys (11, 12). Furthermore, it has been 

demonstrated that vaccination with Ad26 induces mucosal trafficking of effector memory T cells, 

potentially seeding the mucosal periphery with cells able to immediately extinguish an HIV infection 

(13). The systemic cytokine milieu described in this study is likely spill-over of a localized stimulatory 

event, as evidenced by a broader array of cytokines previously shown to be elicited in a human PBMC in 

vitro model system compared to in vivo levels. Various PBMC subsets primed in such an 

immunostimulatory local milieu may be imprinted with distinct adaptive phenotypes. For example, it has 

been previously demonstrated that CD8+ T cells primed in the presence of IFN-α display enhanced 

cytotoxic potential upon recognition of their cognate antigen (14). It is furthermore likely that the 

cytokine and chemokine responses presented here have several means by which they alter induced 

adaptive responses beyond these hypothetical mechanisms.  

The results presented in these studies are important in light of prior studies suggesting immune 

activation following Ad5 vaccination to be influential in negatively shaping adaptive immune 

phenotypes, in particular conferring a statistically non-significant increase in HIV acquisition risk (15, 16). 

However, reports from several groups have indicated that pre-existing immunity to an Ad5 vector does 

not lead to increased CD4+ T cell target populations in the distal mucosa and likely does not account for 

any observed enhancement phenotype (17–22). As indicated by studies from our group as well as 

others, significant differences exist between Ad vectors in their immunological properties (4, 6, 10, 23). 

Therefore, the innate immune stimulatory signature observed in these studies may potentially influence 
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adaptive immune response formation differently than innate immune influences on adaptive immunity 

suggested by prior studies utilizing Ad5, and these differences on resultant vaccine-elicited immune 

responses in humans warrants further investigation. 

These studies indicate that Ad26 induces a potent antiviral and proinflammatory cytokine and 

chemokine milieu following vaccination of human volunteers, regardless of volunteer Ad26 serostatus at 

the time of vaccination. Importantly, these observations closely mirror previous observations from our 

group showing similar cytokine and chemokine responses following Ad26 vaccination of rhesus monkeys 

and in vitro stimulation of human PBMC (10). Therefore, pre-clinical rhesus monkey model vaccination 

studies offer a congruent system in which to probe the links between innate immune activation elicited 

immediately following vaccination and subsequent development of adaptive immune responses. 

Greater understanding of the mechanisms and consequences of these links between vector elicited 

innate immune responses and vaccine-elicited adaptive immune phenotypes will be important for 

further vector optimization as well as understanding the means by which possible correlates of vaccine-

induced protection are elicited. 
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MATERIALS AND METHODS 

Viruses: E1/E3 deleted Ad26 was produced as previously described (4).  

Human Ad Vector Vaccination: Human volunteers (6-12/group) were immunized with 5x1010 vp Ad26 

expressing HIV.EnvA. Serum was collected on days 0, 1, 3, 7 and 28 following vaccination, thawed on ice, 

and inactivated with 0.05% Tween-20 for 15min at room temperature. Samples were then analyzed with 

Milliplex Human Cytokine/Chemokine panels I, II, and III (Millipore, Billerica, MA, USA) according to 

manufacturer’s protocols. Luminex data were analyzed on BioPlex 200 instrument running Bioplex 

Manager 4.1 (Bio-Rad, Hercules, CA) with 80%-120% standard acceptance range. Data were graphed 

using Graph Pad Prism v5.0 (GraphPad Software, Inc., La Jolla, CA). All studies involving human 

volunteers were approved by the Beth Israel Deaconess Medical Center Institutional Review Board (IRB) 

Data Analysis and Statistical Methods: Concentrations of cytokines and chemokines were obtained 

from luminex assays using a 5 parameter logistic model. Day one cytokine levels were compared to 

baseline levels on a per group basis and fold change induction over baseline comparisons between 

groups were analyzed using Kruskall-Wallis Tests.  
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ABSTRACT 

Adenovirus (Ad) vaccine vectors have found widespread use as vaccine platforms against 

multiple infections and cancers, and multiple serotypes have been shown to differ significantly in their 

biologic properties and immune phenotypes. Our laboratory and others have previously described 

differential innate immune stimulation elicited by various Ad serotypes. Here we show that Ad5 traffics 

rapidly to the nucleus following infection, whereas Ad35 and Ad26 accumulate in late endosomes 

between 2-8 hours post-infection. Innate immune cytokine elicitation by all Ad serotypes was abrogated 

by blockade of endosomal acidification, Cathepsin B and Caspase-1, suggesting that virus interactions 

with acid-dependent TLR sensors and inflammasome activation in late endosomes may trigger innate 

immunity. These data suggest a mechanism by which Ad vectors from various serotypes differentially 

trigger innate antiviral pathways via distinct intracellular trafficking to late endosomes.  
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INTRODUCTION  

Given the limitations that have become evident with adenovirus serotype 5 (Ad5) vectors, 

alternative serotype Ad vectors have been developed from serotypes against which high-level humoral 

responses are less common in the global population, including Ad35 and Ad26 (1–3). Interestingly, in 

addition to circumventing high levels of Ad5 neutralizing antibodies, alternative serotype Ad vectors 

differ substantially from Ad5 in the phenotypes of innate and adaptive immune responses elicited by 

vaccination (1, 4, 5). Moreover, several alternative serotype Ad vector-based vaccines confer increased 

protection relative to Ad5 against pathogenic SIVmac251 challenges in rhesus monkeys (4, 6, 7).  

 Innate immune stimulation is a critical determinant for establishing the magnitude and 

phenotype of adaptive immune responses (8–11). Previously, our group and others have shown that Ad 

vectors differ markedly in their innate immune stimulatory properties (12, 13). In particular,  Ad35 and 

Ad26 induce significantly higher levels of antiviral and proinflammatory cytokines and chemokines in 

serum from vaccinated rhesus monkeys and in fresh human PBMC as compared with Ad5 (12). However, 

the mechanism underlying these observed differences has not previously been determined.  

Results from several groups have suggested that Toll-like receptor 9 (TLR9), late endosomal lysis, 

and/or differences in tropism may contribute to innate stimulation by Ad vectors (14–17). Previous 

reports utilizing a variety of cell systems have also shown that Ad vectors can utilize different endosomal 

trafficking pathways such as clathrin-mediated endocytosis or macropinocytosis, and they may exit 

either early or late endosomes (18–24). We therefore hypothesized that differential Ad vector trafficking 

and access to late endosomal pattern recognition receptors (PRR) might account for the differential 

innate stimulation elicited by these vectors. 

 In this study, we show that Ad35 and Ad26 accumulate in the late endosomal compartment 

more extensively than Ad5 at 2-8 hours following infection. Innate immune stimulation by all Ad vectors 
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was sensitive to inhibitors of endosomal acidification, Cathepsin B, and Caspase-1. Thus, whereas Ad 

vectors stimulate common innate immune sensing pathways in the late endosome, marked differences 

in intracellular trafficking and access to this late endosomal compartment likely account for the different 

innate immune phenotypes elicited by these Ad vectors.  

  



 

88 
 

RESULTS 

  Ad35 and Ad26 accumulate to higher levels than Ad5 in the late endosomal compartment at 

2-8 hours following infection. To assess the intracellular trafficking pathways for Ad5, Ad35, and Ad26, 

vectors were covalently labeled with the NHS-ester of Atto633 and tested for viability as previously 

described (20). Briefly, A549 cells were infected with an MOI of 5,000-50,000 viral particles (vp)/cell of 

fluorescently-labeled Ad vector, and colocalization was measured over time by confocal microscopy for 

the early endosome marker Early Endosome Antigen 1 (EEA1) or the late endosomal markers Lysosomal-

Associated Membrane Protein 1 (LAMP1) or Mannose-6-Phosphate Receptor (M6P) by 

immunofluorescence histochemistry, and nuclei were labeled by DAPI (25–27). Viruses were measured 

for colocalization in a given endosomal/nuclear compartment by calculation of Manzel correlation 

coefficient, and differences between vector localization at a given time point were determined by 

Student’s t tests. 

Ad5 virions rapidly accumulated in the peri-nuclear region, with 72.6% of virions colocalizing 

with nuclear staining by 2 h post-infection (Figures 4.1A & 4.1B). Colocalization of Ad5 with the early 

endosomal marker EEA1 occurred only minimally and never exceeded 7% at any timepoint measured 

(Figure 4.1A). Ad5 virions also only minimally localized with late endosomes, as indicated by low levels of 

colocalization with LAMP1 or M6P at 2 h post infection (4.0% and 2.7% colocalization, respectively) 

(Figures 4.1A & 4.1B). These results indicate that Ad5 rapidly trafficked to the nucleus and only 

minimally accumulated in early and late endosomal compartments. 
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Figure 4.1. Ad35 and Ad26 accumulate more extensively than Ad5 in the late endosomal 

compartment. A549 cells were cold-synchronized for endocytosis and infected with 5,000-50,000 

vp/cell of Atto633-labeled Ad5, Ad35, or Ad26. Cells were fixed in 4% Paraformaldehyde at various time 

points post infection and stained for Nucleus by DAPI and Early Endosomal Antigen 1 (EEA1), Lysosomal-

associated membrane protein 1 (LAMP1), or Mannose-6-phosphate receptor (M6P) by 

immunofluorescence histochemistry. Cells were imaged at 630x magnification by confocal microscopy 

with z-stack slice depth of 0.5 μm and slice interval of 0.3μm. A.) Percentage Ad5, Ad35, and Ad26 

virions colocalized with Nuclei, EEA1, LAMP1, and M6P per cell following synchronized infection. Z-stack 

images (n=2-7 replicate experiments) analyzed for colocalization utilizing Volocity image analysis 

software. Compartments identified as >3x image standard deviation, and virions identified as particles 

>0.078 μm3 with intensity >3x image standard deviation. Virions colocalization with compartments 

measured using Manzel correlation coefficients of >0.5. Symbols indicate timepoints where both Ad35 

and Ad26 colocalization values were both significantly different than Ad5, with the less significant value 

indicated (*p<0.01, +p<0.001; Student’s t tests).  
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Figure 4.1., continued. B) Representative images of Ad5, Ad35, and Ad26 subcellular localization 2 h 

post-infection, with subpanel region indicated by gray outline. Indicated virus shown in green and 

indicated endosomal compartment or nucleus shown in red, with areas of overlap shown as yellow. 

Images processed using Fiji, scale bar = 20μm.   
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Ad35 and Ad26 exhibited marked differences in intracellular trafficking pathways as compared 

with Ad5. Ad35 and Ad26 displayed substantial but transient colocalization with the early endosomal 

marker EEA1 at 30 min (18.5% and 45.5% colocalization, respectively) and at 1 h (18.9% and 19.9% 

colocalization, respectively) post infection (Figure 4.1A). The colocalization of Ad35 and Ad26 with early 

endosomes was greater than that observed for Ad5 at both 30 min (3.2x and 7.8x fold greater 

colocalization, respectively; p=0.0001, p<0.0001, respectively; Student’s t tests) and at 60 min (2.8x and 

4.6x fold greater colocalization, respectively; p=0.0082, p=0.0048, respectively). At later time points, 

both Ad35 and Ad26 demonstrated substantial colocalization with the late endosomal marker LAMP1, 

with 12.6% and 25.7% of virions colocalizing with late endosomes at 2 h post-infection, respectively 

(Figures 4.1A & 4.1B). Ad35 and Ad26 also colocalized with the late endosomal marker M6P at 2 h post-

infection (15.4% and 26.2% of virions, respectively) (Figures 4.1A & 4.1B). Both Ad35 and Ad26 

accumulated in the late endosomal compartment to significantly higher levels than Ad5 at 2 h post 

infection as measured by both LAMP1 (3.1x and 6.4x fold greater colocalization, respectively; p=0.0088, 

p=0.0001, respectively) and M6P (5.8x and 9.8x fold greater colocalization, respectively; p<0.0001, both) 

colocalization. This association of Ad35 and Ad26 late endosomes persisted for all time points observed 

between 2-8 h post-infection. Taken together, these results indicate that Ad35 and Ad26 display a 

markedly different intracellular trafficking pattern as compared with Ad5, characterized by substantially 

greater association with late endosomes 2-8 hours post-infection. 

 

Ad Innate immune stimulation is blocked by inhibitors of late endosomal acidification. Ad35 and Ad26 

induce markedly higher levels of antiviral and proinflammatory cytokines and chemokines, including IFN-

α, IFN-γ, IP-10, IL-6, and IL-1RA, than Ad5 in rhesus monkeys and human PBMC (12). Interestingly, these 

differences in innate immune cytokines and chemokines corresponded with the observed levels of Ad 
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vector trafficking to the late endosome. To probe the possible late endosomal innate sensing pathways 

the different Ad vectors may activate, we assessed the dependence of innate triggering by these vectors 

to late endosomal acidification. Fresh human PBMC (n=4/group) were isolated by ficoll-hypaque density 

gradient centrifugation and pre-incubated with the endosomal acidification inhibitors Bafilomycin A1 

(BafA), Chloroquine, or Ammonium chloride for 1 h prior to infection with 1,000 vp/cell of Ad5, Ad35, or 

Ad26 (28, 29). Cytokine induction was measured 24 h following infection by Luminex assays as 

previously described (12).  

Pre-incubation of human PBMC with BafA, Chloroquine, or Ammonium chloride markedly 

decreased induction of innate cytokines and chemokines by all the Ad vectors studied (Figure 2). This 

inhibition was most pronounced for IFN-α2, with  pre-incubation of PBMC with BafA, Chloroquine, or 

Ammonium chloride leading to reduced levels of IFNα2 upon stimulation with Ad5, Ad35, or Ad26 

(Figure 4.2). Together, these data indicate that innate stimulation by all three vectors was sensitive to 

inhibitors of late endosomal acidification. 
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Figure 4.2. Ad innate immune stimulation is blocked by inhibitors of late endosomal acidification. 
Fresh human PBMC (n=4/group) were pre-incubated for 1 h with Bafilomycin A1 (BafA) (1 μM), 
Chloroquine (200 μM), or Ammonium chloride (1 mM) prior to infection with 1,000 vp/cell of Ad5, Ad35, 
or Ad26. Induced cytokines and chemokines were measured 24 h post-infection by Luminex assays. Bars 
indicate p=0.0286, Kruskal-Wallis Tests. High Molecular Weight (HMW) Poly I:C (Poly I:C) (10 μg/mL) and 
Lipopolysaccharide (LPS) (1 ng/mL) included as positive controls.  
 

  



 

94 
 

Innate immune stimulation by Ad5, Ad35, and Ad26 is sensitive to Cathepsin B, Cathepsin L, and Pan-

Cathepsin inhibition. We next evaluated the role of specific cathepsins in Ad innate sensing. Cathepsins 

are a group of late endosomal papain-like proteases which serve several important roles in late 

endosomal cargo processing as well as autophagy and apoptosis (30). Fresh human PBMC (n=4/group) 

were pre-incubated for 1h with the Cathepsin B inhibitor Ca074-Me, Cathepsin L inhibitor CAA0225, a 

Cathepsin G inhibitor, the pan-Caspase inhibitor Z-VAD, the pan-Cathepsin inhibitor Z-FA, or a DMSO 

vehicle control. Cells were then stimulated with 1,000 vp/cell of Ad5, Ad35, or Ad26. Elicited cytokine 

and chemokine levels were analyzed 24 h post-infection by Luminex assays as described above.  

 Human PBMC pre-incubated with Ca074-Me, CAA0225, or Z-FA showed reduced levels of many 

cytokines and chemokines produced in response to all Ad vectors. In particular, levels of IFN-γ were 

reduced following pre-incubation of human PBMC with these cathepsin inhibitors in response to Ad5, 

Ad35, and Ad26 (Figure 4.3). Interestingly, pre-incubation of PBMC with the pan-Caspase inhibitor Z-VAD 

also reduced levels of elicited MIP-1β by both Ad35 and Ad26. Pre-incubation with a Cathepsin G 

inhibitor or DMSO vehicle control had no significant effect on elicited levels of cytokines and 

chemokines by Ad35 and Ad26 (Figure 4.3). These results indicate that Ad5, Ad35, and Ad26 are all 

inhibited by these Cathepsin inhibitors, including blockade of Cathepsin B and pan-Cathepsin inhibition, 

and to a lesser extent Cathepsin L, thus supporting the functional relevance of late endosomal 

localization of Ad to triggering innate immunity. 
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Figure 4.3. Ad innate immune stimulation is sensitive to Cathepsin B, Cathepsin L, and pan-Cathepsin 
inhibition.  Fresh human PBMC (n=4/group) were isolated as described above and pre-incubated for 1 h 
with the Cathepsin B inhibitor Ca074-Me (10 μM), the Cathepsin L inhibitor CAA0225 (10 μM), a 
Cathepsin G inhibitor (10 μM), the pan-Caspase inhibitor Z-VAD (100 μM), the pan-Cathepsin inhibitor Z-
FA (100 μM), or a DMSO vehicle control. Cells were stimulated with 1,000 vp/cell of Ad5, Ad35, or Ad26 
and cytokines measured 24h post-infection by Luminex assays. Bars indicate p=0.0286, Kruskal-Wallis 
Tests.  
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Inhibition of Caspase-1 reduces innate immune stimulation elicited by Ad5, Ad35, and Ad26. Caspases 

are proteases that serve as major components of pro-apoptotic and pro-inflammatory pathways (31). To 

assess the role of caspases in Ad innate stimulation, fresh human PBMC (n=3-4/group) were stimulated 

with Ad5, Ad35, or Ad26 following pre-incubation for 1 h with the Caspase-9 inhibitor Z-LEHD, the 

Caspase-1 inhibitor Z-WEHD, the Caspase-4 inhibitor Z-YVAD, or DMSO vehicle control. Pre-incubation of 

human PBMC with the Caspase-1 inhibitor Z-WEHD reduced elicited levels of IFN-α2 and IFN-γ elicited 

by Ad5. Pre-incubation of human PBMC with Z-WEHD also led to a marked reduction of IFN-α2 and IFN-γ 

elicited by Ad35 and Ad26 (Figure 4.4). In contrast, pre-incubation of human PBMC with the Caspase-9 

inhibitor Z-LEHD or the Caspase-4 inhibitor Z-YVAD had little to no effect on the innate cytokine 

stimulation by Ad5, Ad35, and Ad26. These data suggest a role for Caspase-1 for Ad5, Ad35, and Ad26 

induced innate immune responses. 
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Figure 4.4. Ad innate immune stimulation is reduced by inhibition of Caspase-1. Fresh human PBMC 
(n=3-4/group)  were isolated by the Ficoll-hypaque density gradient method and pre-incubated for 1 h 
with the Caspase-9 inhibitor Z-LEHD (100 μM), the Caspase-1 inhibitor Z-WEHD (100 μM), the Caspase-4 
inhibitor Z-YVAD (100μM), or DMSO vehicle control. PBMC were then stimulated with 1,000vp/cell of 
Ad5, Ad35, or Ad26 and elicited cytokine and chemokine levels were measured 24h following infection 
by Luminex assays. Bars indicate p=0.0286, Kruskal-Wallis tests.  
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Innate stimulation by Ad5, Ad35, and Ad26 is initiated between 0-6 hours post infection. To determine 

the timing of the initial triggering of the innate sensing pathways by Ad vectors, fresh human PBMC 

were stimulated with 1,000 vp/cell of Ad5, Ad35, or Ad26. At 0, 4, 6, 8, or 12 h post-infection, cells were 

treated with chloroquine, ammonium chloride, Ca074-Me, CAA0225, or Z-FA at the concentrations 

described above. Cytokine and chemokine levels were assessed 24 h following infection by Luminex 

assays and compared to infected cells with mock inhibition.  

 Addition of inhibitors at the time of infection (0 h) effectively inhibited induction of IFN-α2, IFN-

γ, and TNF-α (Figure 4.5), in agreement with the previous experiments (Figures 4.2-4.4). For all three 

vectors, the majority of inhibition of innate sensing by chloroquine and Z-FA occurred earlier than 6 h 

post-infection, with the most prominent inhibition caused by Z-FA occurring up to 12 h post-infection 

(Figure 4.5). Interestingly, inhibition of cytokine responses elicited by Ad26, and to a lesser extent by 

Ad5, was sensitive to inhibition up to 6 h post infection, while those elicited in response to Ad35 were 

able to be significantly inhibited up to 4 h post infection. Together these data indicate that innate 

immune sensing of Ad5, Ad35, and Ad26 was initiated between 0-6 h post-infection. These findings are 

consistent with the possibility that localization of Ad vectors to the late endosome is important for Ad 

innate sensing, as inhibition of innate immune sensors reduced Ad innate immune stimulation during 

times at which Ad vectors were observed to be present in late endosomes. 
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Figure 4.5. Ad innate immune stimulation occurs with similar kinetics and is sensitive to chemical 
inhibitors from 0-6 hours post-infection. Fresh human PBMC (n=4/group) were isolated as described 
above and stimulated with 1,000 vp/cell of Ad5, Ad35, or Ad26. Chemical inhibitors Chloroquine, 
Ammonium chloride, Ca074-Me, CAA0225, or Z-FA were added at the indicated times following 
infection. Levels of elicited cytokines and chemokines were measured 24 h following infection by 
Luminex assays and compared to an infected, mock-inhibited control (Media).  
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Chemical inhibition of innate immune stimulation does not perturb transduction efficiency. We next 

investigated whether chemical inhibition of Ad innate immune stimulation was simply due to blockade 

of Ad infectivity. To test whether chemical inhibitors had an effect on Ad35 or Ad26 transduction 

efficiency, human PBMC (n=4/group) were treated at the time of infection with chloroquine, ammonium 

chloride, Ca074Me, CAA0225, Z-FA, or DMSO vehicle control as described above. These cells were then 

stimulated with 1,000 vp/cell of Ad35 or Ad26 expressing eGFP. Levels of elicited cytokines and 

chemokines were measured 24 h post infection by Luminex assays, and levels of transduced cells were 

measured by flow cytometry.  

 Similar to our results above, chloroquine, ammonium chloride, Ca074-Me, CAA0225, and Z-FA 

reduced cytokine and chemokine induction in human PBMC elicited by Ad35 or Ad26 expressing eGFP at 

24 h post infection (data not shown). Flow cytometry on stimulated cells showed no inhibition of 

transduction of PBMC by either Ad35 or Ad26 for any of the chemical inhibitors analyzed, as measured 

by %eGFP positive cells 24 h post-infection (Figure 4.6). These results confirm that chemical inhibition of 

Ad35 and Ad26 innate sensing did not substantially reduce vector infectivity.  
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Figure 4.6. Chemical inhibition of Ad5, Ad35, or Ad26 innate immune signaling does not block Ad 
transduction. Fresh human PBMC (n=4/group) were synchronously inhibited with Chloroquine, 
Ammonium chloride, Ca074-Me, CAA0225, Z-FA, or DMSO vehicle control at same concentrations as 
above, and stimulated with 1,000 vp/cell of Ad35 or Ad26 expressing eGFP 24 h following infection 
percent eGFP cellular transduction was measured by flow cytometry.  
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Both Ad fiber and capsid components influence intracellular trafficking pathways. Both fiber and 

capsid components of Ad5 and Ad35 can influence innate stimulatory properties of Ad vectors (12). In 

particular, both Ad35 fiber and capsid components were required to confer the increased innate 

stimulatory properties of Ad35 relative to Ad5. We sought to determine the influence of Ad fiber and 

capsid components on access to the late endosomal compartment and the associated Ad innate sensing 

mechanisms. To explore the influence of the Ad fiber and capsid on Ad intracellular trafficking, we 

utilized Ad35k5, a chimeric Ad35 with its fiber knob domain replaced with that of Ad5, and Ad5f35, a 

chimeric Ad5 with its fiber protein replaced with that of Ad35. A549 cells were infected with Ad35k5 and 

Ad5f35 vectors and subsequently processed for immunofluorescence histochemistry and confocal 

microscopy as described in Figure 4.1.  

 Ad5f35 and Ad35k5 both displayed an initial colocalization with the EEA1 compartment at 30 

min (32.9% and 20.2%, respectively) and 60 min (21.4% and 22.4%, respectively), similar to that 

observed with Ad35. Furthermore, both Ad5f35 and Ad35k5 displayed increased late endosomal 

trafficking beginning at 2 h post infection, as indicated by higher colocalization relative to Ad5 at 2 h for 

both LAMP1 (2.8x and 5.9x fold greater colocalization relative to Ad5, respectively; p=0.0215 and 

p<0.0001, respectively; Students’ t tests) and M6P (5.6x and 8.8x higher colocalization, respectively; 

p=0.0003 and p<0.0001, respectively) (Figure 4.7). These data indicate that both fiber and capsid 

components of Ad vectors influence intracellular trafficking patterns.  
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Figure 4.7. Both fiber and capsid components influence Ad vector intracellular trafficking patterns. 
A549 cells were incubated with 50,000 vp/cell of Atto-633 labeled Ad35k5 or Ad5f35 and fixed at 
indicated times post infection by immersion in 4% Paraformaldehyde. Cells were stained for the 
indicated markers by immunohistochemistry and virion colocalization assessed as described above. 
Graphs indicate virions/cell colocalized with the indicated compartment at indicated timepoints with 
Ad5 and Ad35 data from Figure 1D shown as dashed lines for reference. Symbols indicate timepoints 
where both Ad35k5 and Ad5f35 colocalization values were both significantly different than Ad5, with 
the less significant value indicated (*p<0.01, +p<0.001; Student’s t tests). 
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DISCUSSION 

 In this study, we show that Ad5, Ad35, and Ad26 differ substantially in their intracellular 

trafficking patterns, with Ad35 and Ad26 accumulating to a greater degree than Ad5 in late endosomes, 

and Ad5 rapidly trafficking to the nucleus. All three vectors were sensitive to chemical inhibitors of late 

endosomal innate immune sensing, in particular endosomal acidification, cathepsin B, and caspase-1. 

These studies suggest a mechanism that could account for the differential innate immune stimulatory 

phenotypes of Ad vectors in which intracellular trafficking to the late endosome contributes to these 

observed differences in innate immunity (12, 13) (Figure 4.8). In the late endosome, virions stimulate 

stereotypical innate immune pathways that require endosomal acidification, cathepsins, and caspase-1 

(Figure 4.8). Taken together, these data suggest that intracellular Ad vector trafficking critically 

influences innate immune stimulation by various Ad serotypes. 
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Figure 4.8. Proposed model of differential innate immune stimulation elicited by Ad5, Ad35, and 
Ad26. Ad5, Ad35, and Ad26 virions enter the cell through an EEA-positive early endosomal 
compartment. Upon entry to this location, the majority of Ad5 rapidly exits the endocytic pathway into 
the cytosol where it subsequently traffics to the peri-nuclear space by 60 min post-infection. Ad35 and 
Ad26, as well as a small subset of Ad5 virions, accumulate in the late endosomal compartment 2-6 h 
following infection. At approximately 2-6 h post-infection, late endosomal Ad virions exit the late 
endosome and traffic to the nucleus. Accumulation of Ad virions in a late endosomal compartment as 
well as their release into the cytosol stimulates both an endosomal acidification-dependent as well as a 
Cathepsin-dependent sensor.  
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Innate immune stimulation elicited in response to all three Ad vectors was sensitive to inhibition 

of acidification, cathepsins, and caspase-1, suggesting that accumulation in late endosomes, rather than 

differential Pattern Recognition Receptor (PRR) stimulation per se, may be responsible for the observed 

differences in innate immune phenotypes elicited by these vectors. The requirement of endosomal 

acidification for innate sensing suggests that late endosomal TLR’s may be the endosomal acidification-

dependent portion of the sensing pathway (Figures 4.2 & 4.8).For example, TLR9 has been previously 

implicated in Ad vector dsDNA genome sensing, and TLR9 requires endosomal acidification for its 

function (14, 32–35). Additionally, late endosomal lysis and Cathepsin B release into the cytosol 

activates the NALP3 inflammasome, and Cathepsin B activity is required for this process (36). The 

sensitivity of Ad vector innate stimulation to both the Cathepsin B inhibitor Ca074-Me as well as the 

pan-Cathepsin inhibitor Z-FA for an extended period following Ad endocytosis temporally is consistent 

with our observation that Ad35 and Ad26 vectors potentially begin exiting the late endosome at 2-6 

hours post-infection (Figures 4.1A & 4.5). Additionally, the fact that Ad vector sensing was sensitive 

Cathepsin inhibitors for up to 6 h following infection indicates that a defect in endosomal TLR processing 

is unlikely to account for the reduced innate immune stimulation observed. Of note, recent studies have 

suggested the importance of the cytosolic DNA sensor cGAS for innate sensing of Ad5 in murine cells 

(37). The potential influence of cGAS on Ad innate immune sensing as well as putative differences 

between Ad5, Ad35, and Ad26 on cGAS stimulation will therefore be of interest for further 

understanding of Ad innate immune sensing. Our data also confirm prior observations of the importance 

of acid-dependent innate immune sensors and inflammasome activation, and extends these findings by 

suggesting that differential trafficking of Ad serotypes to late endosomal compartments contributes to 

their innate immune stimulatory phenotypes. Importantly, these data also suggest, in agreement with 
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previous studies showing Ad vector innate sensing is redundant in vivo, that several pattern recognition 

receptors are likely important for Ad vector sensing (13, 16, 38).  

Both the fiber as well as other capsid components appear to contribute to the innate 

stimulatory properties of Ad vectors, suggesting roles of receptor-binding proteins as well as acid-

dependent capsid protease components in determining Ad innate immune stimulatory phenotypes (12). 

Interestingly CD46-binding by fiber protein appears to be sufficient to confer late endosomal trafficking 

on Ad vectors (22). These data suggest that Ad innate immune stimulation phenotypes observed in 

previous studies may be reflective of increased late endosomal trafficking conferred by Ad fiber protein, 

rather than primary receptor usage (15, 17, 34). Furthermore, the increased innate stimulatory capacity 

of Ad5f35 relative to Ad35k5, despite their roughly equivalent ability to access late endosomal 

compartments, suggests an active role of CD46 in influencing Ad vector innate immune stimulation, a 

possibility which warrants further investigation. 

In summary, our data suggest a potential mechanism by which Ad5, Ad35, and Ad26 vectors 

differentially stimulate innate immunity. These vectors trigger similar innate immune pathways, but the 

extent of stimulation is driven by differential intracellular trafficking to late endosomes, resulting in 

profound differences in innate immunity. These results have important implications for the 

development of vectors for vaccines and gene therapy and could lead to strategies for rational vector 

design that specifically tune desired innate immune phenotypes.  
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MATERIALS AND METHODS 

Viruses. E1/E3-deleted replication incompetent Ad5, Ad35, Ad26, Ad35k5, and Ad5f35 vectors 

expressing no transgene and eGFP were generated as previously described (39)(1). Briefly, viruses were 

produced in E1-complimenting PER.55K cells and purified by CsCl gradient ultracentrifugation.  

Cells. A549 cells (ATCC) were serially passaged in Dulbecco’s Eagle’s Modified Medium supplemented 

with 10% Fetal Calf Serum (FCS) and grown at 37°C, 5% CO2. Normal human blood was collected in the 

presence of sodium heparin and PBMC isolated by the Ficoll-hypaque density gradient method (40). 

Cells were resuspended at a concentration of 1x106 cells/mL in R10 medium (RPMI, 10% Fetal Calf 

Serum (FCS), 50U/mL penicillin, 50μg/mL streptomycin) and further utilized in in vitro assays.  

Chemicals. The endosomal inhibitor Bafilomycin A1 (Enzo Life Sciences, Farmingdale, NY), Cathepsin 

inhibitors Ca074-Me, CAA0225, Cathepsin G Inhibitor (Millipore, Billerica, MA), and Z-FA (R&D Systems, 

Minneapolis, MN), and the Caspase inhibitors Z-LEHD, Z-WEHD, Z-YVAD, and Z-VAD (R&D Systems, 

Minneapolis, MN) were dissolved in sterile DMSO. Endosomal acidification inhibitors Chloroquine 

(Sigma-Aldrich, St. Louis, MO), and Ammonium chloride (Sigma-Aldrich, St. Louis, MO) were 

reconstituted in sterile deionized water. Concentrations of inhibitors utilized were determined from 

prior literature or by titration for function. 

In Vitro Stimulation Assay. For all reactions 1x106 PBMC were stimulated with 1,000 vp/cell of the 

indicated Ad vectors. Cells were treated with various chemical inhibitors prior to or following stimulation 

with Ad vectors. Cells were cultured at 37°C, 10% CO2, and culture supernatants were harvested 24 

following Ad vector stimulation by centrifugation at 1,400 rpm for 5 minutes. Supernatants were 

analyzed using the Millipore Milliplex MAP Magnetic Human Cytokine/Chemokine Panel (Millipore, 

Billerica, MA) according to manufacturer’s protocol. Luminex data were acquired on a BioPlex 200 

instrument running BioPlex Manager v4.1 (Bio-Rad, Hercules, CA) with an 80% to 120% standard 
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acceptance range. Data were analyzed using GraphPad Prism v5.0. Means were compared between 

groups using Kruskal-Wallis Tests and plotted as means and standard error of the mean (S.E.M.). 

Fluorescent Labeling of Adenoviral Vectors. Adenoviral vectors were fluorescently labeled with the 

NHS-ester of Atto633 (Atto-tec GmbH, Siegen, Germany) as previously described (20). Briefly, Ad vectors 

were incubated for 10-20 minutes at RT with Atto633 and washed 3x at 4°C with ice-cold PBS containing 

5% Sucrose (w/v) by centrifugation at 3,000 rpm for 30 min in Amicon 10,000kDa molecular weight 

centrifuge concentration vials (Millipore, Billerica, MA). Atto633:Capsomere ratio was determined using 

the extinction coefficient of Atto633 and Abs260. All preparations had ratios between 0.5 and 1.8 and 

displayed no defect in cellular binding or trafficking. 

Infection of A549 Cells with Atto633-Labeled Ad Vectors. 15,000 A549 cells were plated onto No.1 

German Glass 15mm Coverslips (BD Biosciences, San Jose, CA) and incubated O/N at 37°C, 5% CO2. Cells 

were placed on ice, washed 2x with ice-cold Phosphate Buffered Saline (PBS), and overlaid with 5,000-

50,000 vp/cell of indicated Atto633-labeled Ad vectors diluted in unsupplemented DMEM. Cells were 

incubated on ice with Ad vector for 90 min, with gentle rocking every 15 min. Cells were washed 2x with 

ice-cold PBS and viral infection induced with overlay of 37°C pre-warmed DMEM supplemented with 

10% FCS. Cells were cultured at 37°C, 10% CO2. At indicated timepoints, cells were fixed by immersion 

into ice-cold 4% Paraformaldehyde diluted in PBS for 10 min. Cells were washed 2x with ice-cold PBS 

and permeabilized by immersion in 0.01%Saponin diluted in PBS supplemented with 5% FCS for 15min. 

Cells were washed 3x in ice-cold PBS and stored for further use.  

Immunofluorescence Histochemistry. Cells were stained by overlay onto a drop of the indicated 

antibodies at the indicated concentrations diluted in PBS supplemented with 5% FCS in a humidified 

chamber protected from light. Primary antibodies were incubated for 1 hour and secondary antibodies 

were incubated for 30 min. All staining steps were followed by 3x washes with 1 mL ice-cold PBS 
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supplemented with 5% FCS. Antibodies and concentrations used were Rabbit anti-LAMP1 (1:1000) 

(Abcam, Cambridge, MA), Mouse anti-EEA1 (1:500) (BD Biosciences, San Jose, CA), Mouse anti M6P 

(1:100) (Abcam, Cambridge, MA), Goat anti-Mouse IgG (2μg/mL), and Donkey anti-Rabbit IgG (2μg/mL) 

(Life Technologies, Grand Island, NY). Following staining, coverslips were inverted onto a drop of 

ProLong Gold containing DAPI mounting medium (Life Technologies, Grand Island, NY) on microscope 

slides, were allowed to cure overnight at room temperature, and were stored at -20°C for future use. 

Confocal Microscopy. Slides were analyzed at the Beth Israel Deaconess Medical Center Imaging Core 

on a Zeiss LSM Meta with a 10x optical magnification and a Zeiss 63x oil-immersion lens. Images were 

acquired using Zeiss LSM 510(Carl Zeiss GmbH, Jena, Germany) in the Z-stack setting with optical slices 

taken at a width of 0.5μm and an interval of 0.3μm. For each virus, timepoint, and endosomal marker, at 

least 3x coverage of 2-7 independent experiments were performed.  

Image Processing and Analysis. Images were processed utilizing Volocity Software (Perkin-Elmer, 

Waltham, MA). Virions were detected as particles of intensity >3x standard deviation of image at least 

0.078 μm3. Endosomal compartments were measured as positive by signal >3x standard deviation of 

image. Cells were drawn manually as Regions of Interest (ROI) and virion colocalization within ROI’s was 

measured by Manzel correlation coefficient of 0.5 or greater. Virion colocalization with a given 

compartment was calculated on a per ROI basis as a percentage of total individual ROI virions. Image 

figures were generated using Fiji package for ImageJ. All images for a given endosomal marker or virus 

were adjusted identically for brightness and contrast for the purpose of image printing, and images 

utilized for Volocity analysis were unaltered prior to analysis. Colocalization of viruses with a given 

compartment was analyzed by GraphPad Prism 5.0 (GraphPad Software, Inc., La Jolla, CA), and 

differences in colocalization between viruses was assessed by Student’s t tests. 
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Data Analysis and Statistics. Cytokine and chemokine levels were assessed from Luminex assays as 

determined using a 5-parameter logistic model. Levels of cytokines and chemokines for inhibitor treated 

and untreated cells was assessed by Kruskal-Wallis tests. Colocalized virions/cell was calculated for each 

endosomal marker and virus analyzed and colocalization amounts were compared between viruses by 

Student’s t tests.  
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Chapter 5: The Canarypox Vector ALVAC Induces Distinct Cytokine Responses Compared to the 

Vaccinia-Based Vectors MVA and NYVAC in Rhesus Monkeys 
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INTRODUCTION 

Poxviral vectors are utilized for vaccination against multiple pathogens, including HIV-1 and 

cancer (1–3). A recent study utilizing the canarypox-based vector ALVAC with an HIV-1 gp120 protein 

boost showed 31.2% efficacy against HIV-1 infection in a Phase III trial in Thailand (RV144) (4). While 

analysis of data from the RV144 trial has indicated several possible correlates of vaccine-induced 

protection (5), the innate immune stimulatory properties of ALVAC vectors and how they might 

influence adaptive immune responses remain poorly described. In this study, we compared innate 

immune stimulation as measured by serum cytokine and chemokine levels following vaccination of 

rhesus monkeys with ALVAC and two vaccinia-based vectors Modified Vaccinia Ankara (MVA) (6) and 

New York Vaccinia Virus (NYVAC)(7).  
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RESULTS 

We initiated studies by assessing serum cytokine and chemokine levels following vaccination 

with replication-incompetent ALVAC, MVA, or NYVAC vectors in 32 rhesus monkeys. Rhesus monkeys 

(Macaca mulatta) (n=8-12/group) were injected intramuscularly (i.m.) with 1x108 pfu of ALVAC, MVA, or 

NYVAC vectors expressing SIV Gag, Pol, and Env (8–10). All vectors used in these studies displayed 

similar purity and infectivity. Sera were collected on days 0, 1, 3, 7 and 14 following vaccination. 

Systemic cytokine and chemokine levels were assessed by Luminex and ELISA analyses as previously 

described (11).  Longitudinal analysis of systemic cytokine and chemokine levels following ALVAC 

vaccination revealed potent but transient induction of proinflammatory cytokines and chemokines on 

day 1 post-immunization (Figures 5.1A & 5.1B). In contrast, lower induction of proinflammatory 

cytokines and chemokines was observed in monkeys vaccinated with MVA or NYVAC (Figures 5.1A & 

5.1B). Animals that received ALVAC displayed greater fold induction over averaged group baseline than 

those that received MVA or NYVAC for interleukin 1 beta (IL-1β) (411- and 408-fold greater induction, 

respectively; p=0.0002, p<0.0001, respectively; Mann-Whitney U Test), interleukin 6 (IL-6) (83- and 6.3-

fold greater induction, respectively; p=0.0003, p=0.0043, respectively), tumor necrosis factor alpha 

(TNF-α) (48- and 29-fold greater induction, respectively; p=0.0002 and p<0.0001, respectively), 

monocyte chemotactic protein-1 (MCP-1) (4- and 3-fold greater induction, respectively; p=0.0002 and 

p<0.0001, respectively), macrophage inflammatory protein alpha (MIP-1α) (37- and 79-fold greater 

induction, respectively; p=0.003 and p=0.0004, respectively), and macrophage inflammatory protein 

beta (MIP-1β) (9- and 10-fold greater induction, respectively; p=0.0002 and p<0.0001) at d1 following 

vaccination. These data show that ALVAC induced a distinct proinflammatory response compared to 

MVA and NYVAC in rhesus monkeys.  
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Figure 5.1. Serum concentrations of cytokines and chemokines in rhesus monkeys following poxvirus 
vector vaccination. Rhesus monkeys (n=8-12/group) were inoculated i.m. with 1x108 pfu of ALVAC, 
MVA, or NYVAC expressing SIV Gag, Pol, and Env. Sera were collected on days 0, 1, 3, 7 and 14 following 
vaccination, and systemic levels of cytokines and chemokines were analyzed by Luminex and ELISA 
assays. (A) Systemic levels of selected cytokines and chemokines following vaccination with the various 
poxvirus vectors, with individual levels shown as colored lines and group mean over time shown with 
black lines. (B) Mean fold induction for all cytokines and chemokines at day 1 post vaccination with 
poxvirus vectors in rhesus monkeys. Values shown are group mean fold induction over the averaged 
group baseline. 
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Figure 5.1., continued. (C) Cytokine fold induction over grouped baseline for ALVAC, MVA, and NYVAC 
vaccinated rhesus monkeys following vaccination. Monkeys are clustered in an unsupervised 
hierarchical analysis based upon individual fold induction over baseline values for all cytokines. 
Clustering analysis performed in Gene-E. Values indicate log individual fold induction over grouped 
baseline of indicated cytokines and chemokines at day 1 following vaccination with the various poxvirus 
vectors. 
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Unsupervised hierarchical clustering of animals based upon fold induction at day 1 post-

vaccination over individual baseline for all cytokines and chemokines analyzed indicated further that 

responses elicited by ALVAC, MVA, and NYVAC are all distinct from one another (Figure 5.1C). ALVAC 

induced a distinct proinflammatory cytokine milieu, but differences were also observed between MVA 

and NYVAC for several cytokines such as IL-6, transforming growth factor alpha (TGF- α), TNF-α, and 

MIP-1α, MIP-1β (Figure 5.1C). Together, these data indicate that ALVAC, MVA, and NYVAC all induce 

qualitatively distinct cytokine profiles following vaccination. 

We next analyzed the impact of priming with a heterologous vector on elicited cytokines 

following boosting with ALVAC, MVA, or NVYAC. Rhesus monkeys (n=12/group) were injected 

intramuscularly (i.m.) with 3x1010 vp adenovirus serotype 26 (Ad26) vector expressing SIV Gag, Pol, and 

Env. Twenty-four weeks following priming vaccination, animals were boosted i.m. with 1x108pfu ALVAC, 

MVA, or NYVAC expressing SIV Gag, Pol, and Env. Longitudinal analysis of serum cytokines and 

chemokines following the boost immunization with ALVAC, MVA, or NYVAC revealed clear induction of 

proinflammatory and antiviral cytokines such as IL-1β, IL-6, gamma interferon (IFN-γ), and interferon 

gamma-induced protein 10 (IP-10), on day 1 following the boost (Figure 5.2A). However, cytokine levels 

elicited following boosting were lower than those observed following priming for all the vectors, and 

particularly for ALVAC (Figures 5.1A & 5.2A). Analysis of average fold induction over group average 

baseline indicated that boosting with ALVAC, MVA, or NYVAC induced comparable cytokine profiles, 

characterized by IL-1β, IL-6, IL-1RA, IFN-γ, and IP-10 (Figure 5.2B).  These data suggest that Ad26 priming 

attenuated innate cytokine induction as measured by serum cytokine profiles of ALVAC, MVA, or NYVAC 

boosted animals. We suspect this may be related to enhanced vector clearance as a result of the 

adaptive immune responses elicited by the priming immunization, though other factors may play a role. 
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Furthermore, this highlights the unique proinflammatory response elicited following ALVAC priming 

immunization.   
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Figure 5.2. Serum concentrations of cytokines and chemokines in rhesus monkeys following poxvirus 
vector boosting. Rhesus monkeys (n=12/group) were primed im with 3x1010 vp Ad26 expressing SIV 
Gag, Pol, and Env and then boosted i.m. with 1x108 pfu of ALVAC, MVA, or NYVAC expressing 
transgenes. Sera were collected on days 0, 1, 3, 7 and 14 following vaccination and systemic levels of 
cytokines and chemokines were analyzed by Luminex and ELISA assays. (A) Systemic levels of selected 
cytokines and chemokines following boosting with the various poxvirus vectors, with individual levels 
shown as colored lines and group mean over time shown with black lines. (B) Mean fold induction for all 
cytokines and chemokines at day 1 post boosting with poxvirus vectors in rhesus monkeys. Values 
shown are group mean fold induction over the averaged group baseline prior to boosting by the various 
poxvirus vectors. 
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We next sought to assess cytokine and chemokine induction by ALVAC, MVA, and NYVAC in vitro 

in freshly isolated human PBMC. Fresh human PBMC (n=4/group) were isolated by ficoll-hypaque 

density gradient centrifugation (12). In order to include all possible cell types shown to be infectable by 

poxviral vectors, whole PBMC were infected with ALVAC, MVA, or NYVAC vectors at a multiplicity of 

infection (MOI) of 10 pfu/cell (13). Culture supernatant was analyzed for cytokine and chemokine levels 

24 hours post infection by Luminex assays. Similar to our in vivo results, stimulation of human PBMC 

with ALVAC resulted in higher levels of proinflammatory and interferon-related antiviral cytokines and 

chemokines than with MVA or NYVAC (Figures 5.3A & 5.3B). Stimulation of human PBMC with ALVAC 

elicited greater levels than with MVA or NYVAC for IFN-γ (41- and 334-fold greater levels, respectively; 

p=0.0286, both; Mann-Whitney U Test), IL-1β (37- and 315-fold greater levels, respectively; p=0.0286, 

both), IL-6 (3- and 15-fold greater levels, respectively; p=0.0571 and p=0.0286, respectively), and TNF-α 

(7- and 17-fold greater levels, respectively; p=0.0286, both). These in vitro results are comparable with 

our in vivo findings with a few notable exceptions, such as a lack of difference observed in the elicitation 

of IFN-α2 in vitro. 

 We sought to assess the contribution of various PBMC subsets, some of which previously shown 

to be readily transduced by Vaccinia virus, to the production of cytokines and chemokines elicited by the 

ALVAC, MVA, and NYVAC vectors (13). Human PBMC (n=2-6/group) were isolated as described above 

and depleted of T cells, monocytes and macrophages (MonoMac), myeloid dendritic cells (mDC), or 

plasmacytoid dendritic cells (pDC) by magnetic separation as previously described (11). Depletion was 

confirmed by flow cytommetry (data not shown). Cells were then infected with an MOI of 10 pfu/cell of 

ALVAC, MVA, or NYVAC. Supernatants were analyzed 24 hours post infection for elicited cytokines and 

chemokines by Luminex analyses. Depletion of plasmacytoid dendritic cells (pDC) led to a marked 

reduction in elicited levels of IFN-α2 (16-fold lower induction; p=0.0022) elicited in response to ALVAC 
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stimulation relative to unseparated cells (Figure 5.4). Depletion of monocytes and macrophages 

(MonoMac) resulted in reduced induction of IL-1β and TNF-α (117- and 37-fold lower induction; 

p=0.0043, both) in response to ALVAC stimulation. Depletion of T cells markedly decreased levels of 

elicited IFN-γ (15-fold lower induction; p=0.0087) upon stimulation with ALVAC. A similar trend was 

observed with lowered levels of elicited IFN-γ in response to MVA or NYVAC stimulation in PBMC’s 

depleted T cells prior to stimulation (Figure 5.4). Interestingly, depletion of single PBMC subsets was not 

observed to dramatically alter elicited levels of IFN-α2 or TNF-α in response to MVA or NYVAC 

stimulation. This result suggests that there may be redundancy of PBMC subsets in the production of 

these cytokines in response to MVA or NYVAC vectors. Together these results indicate that multiple 

PBMC subsets likely contribute to the overall cytokine milieu elicited by ALVAC, MVA, and NYVAC 

vectors.  
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Figure 5.3. Induction of cytokines and chemokines by poxvirus vector stimulation of human PBMC. (A) 
Fresh whole human PBMC (n=4/group) were stimulated with an MOI=10 pfu/cell of ALVAC, MVA, or 
NYVAC vectors expressing no transgene. Cytokine and chemokines were measured 24h post infection by 
Luminex assays. LPS (1ng/mL) included as the positive control. Data are mean and SEM. Bars indicate p 
values of <0.05 by Kruskal-Wallis Tests. (B) Mean fold induction for all cytokines and chemokines at 24 
hours post infection with poxvirus vectors in human PBMC. Values shown are group mean fold induction 
over the averaged group baseline of unstimulated PBMC control. 
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Figure 5.4. Cytokine and chemokine responses elicited by ALVAC in human PBMC depleted of various 
cell populations. Fresh whole human PBMC (n=2-6/group) were depleted of the indicated PBMC 
populations and depletion confirmed by flow cytommetry (data not shown). Unseparated and depleted 
cell populations were stimulated with MOI=10 pfu/cell of ALVAC, MVA, or NYVAC and cytokine and 
chemokine responses were measured 24h post infection by Luminex assays. Data shown as means and 
SEM. Lines indicate p<0.01 by Kruskal-Wallis tests. 
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DISCUSSION 

In this study, we show that innate immune profiles elicited by ALVAC, MVA, and NYVAC are all 

distinct. ALVAC elicited a qualitatively and quantitatively different innate immune response compared to 

MVA and NYVAC both in vivo in rhesus monkeys and in vitro in human PBMC, characterized by a distinct 

induction of proinflammatory and interferon-related antiviral cytokines and chemokines. Moreover, 

MVA and NYVAC also proved different, although these differences were less striking. The stimulatory 

phenotypes observed following priming with ALVAC, MVA, or NYVAC were reduced when these pox 

vectors were utilized as a boost. Furthermore, ALVAC’s distinct stimulatory phenotype was influenced by 

several PBMC subsets such as T cells, monocytes and macrophages, and plasmacytoid dendritic cells. 

These data suggest potentially important biological differences among these three clinically relevant 

poxvirus vectors. Additional studies will be required to evaluate the correlation between these different 

innate signatures and subsequent adaptive immune responses and protective efficacy. 

 A possible source of the observed differences in innate stimulatory phenotypes among ALVAC, 

MVA, and NYVAC involves their different arsenals of immune regulatory genes. Poxviruses possess a 

wide array of proteins which serve to block host anti-viral immune responses (14–18). Importantly, 

ALVAC differs significantly from both Vaccinia virus-derived vectors MVA and NYVAC in terms of 

extensive phylogenetic divergence as well as genome size (approx. 365kbp vs. approx. 178kbp, 

respectively) (14, 19) and number of ORF’s (7, 19, 20).  As stated above, ALVAC, MVA, and NYVAC 

vectors are replication incompetent when used in vivo, and many of ALVAC’s ORF’s may not be 

functional in mammalian cells, as evidenced by Avipoxviruses’ inability to replicate in mammalian cells 

(21). Previous reports have indicated increased innate immune gene upregulation following MVA and 

NYVAC infection relative to vaccinia virus Western Reserve (VV-WR) infection in HeLa cells (22–24), 

highlighting that attenuation of these vectors by removal of viral immune regulatory genes confers a 
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stronger innate stimulatory phenotype. These studies reported that MVA elicited a stronger interferon 

stimulatory phenotype and NYVAC induced a more proinflammatory phenotype, congruent with our 

results in the present study.  Differences in immune gene upregulation were additionally seen following 

MVA and NYVAC infection in monocyte-derived dendritic cell populations (25). Further studies showed 

increased innate stimulation by these vectors following expanded deletion of their immune regulatory 

gene repertoire, highlighting the role of immune gene repertoire of poxvirus vectors on their innate 

stimulatory phenotypes (26–28). However, far less is known about the innate immune profile of ALVAC 

and its immune regulatory genes.  Our findings suggest that ALVAC stimulation of innate immunity 

requires multiple several PBMC cellular subsets, which is consistent with prior studies that have 

suggested that monocyte tropism to be a key difference in innate triggering by ALVAC, MVA, and NVYAC 

(29). The unique innate immune profile of ALVAC may also relate to its avian origin, as opposed to MVA 

and NYVAC. The molecular basis of this innate stimulatory phenotype and whether it is unique to ALVAC 

or extends to other Avipoxviruses warrants further study. 

Our results indicate that innate immune profiles elicited by the leading poxviral vaccine vectors 

are different, suggesting potentially important biological differences.  In particular, ALVAC induced a 

unique proinflammatory cytokine and chemokine response following vaccination in rhesus monkeys and 

infection in human PBMC. The extent to which these properties are advantageous to vaccines, however, 

remains to be determined.  We previously reported substantial differences in innate immune profiles 

among various serotypes of adenovirus vectors (11). Taken together, these data suggest that vectors 

from the same family can differ markedly in their biological and innate stimulatory properties, which 

may potentially impact the resultant adaptive immune responses and protective efficacy of vector-

based vaccines. 
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Viral Vectors Differ Substantially in Their Innate Stimulatory Phenotypes 

 The results from these studies show that viral vectors differ significantly from one another in 

their innate stimulatory phenotypes.  Importantly, substantial differences in innate stimulatory cytokine 

and chemokine elicitation were observed not only between  Adenovirus (Ad) and Poxvirus (Pox) vector 

classes, but also marked differences in innate stimulatory properties were observed between members 

within each class. The observation that viral vectors differ significantly in their innate stimulatory 

properties both between and within viral families further suggests that viral vectors may possess an 

ability to influence resultant vaccine-elicited adaptive immune phenotypes through formation of 

different innate immune stimulatory milieus. Therefore, rather than being passive shuttles used to 

stimulate adaptive immune responses against a heterologous antigen, vaccine vectors may play an 

active role in the determination of vaccine-elicited immune responses and protection. While distinct 

connections between elicited innate and adaptive immune responses induced by vaccines remain 

unclear, it is possible to hypothesize putative connections between them by analyzing vaccine vectors in 

broader groupings based upon their cytokine and chemokine elicitation profiles. Ad and Pox vectored 

vaccines are well described in their adaptive immune phenotypes and broad differences in their 

observed adaptive immune phenotypes in previous studies may be explained in part by the differences 

in innate immune cytokine and chemokine responses elicited by their particular vectors (1–5). 

 Examination of cytokine and chemokine profiles elicited by Ad and Pox vectors in the studies 

above suggests at least three broad categories of innate immune cytokine and chemokine responses 

were elicited following vaccination of rhesus monkeys in vivo or stimulation of human PBMC in vitro in 

these studies. The first category primarily consists of the low elicitation of cytokines and chemokines 

elicited by Ad5 and the chimeric vector Ad5HVR48. Following vaccination in rhesus monkeys, Ad5 and 

Ad5HVR48 failed to induce systemic peaks of most cytokines analyzed at day 1 following vaccination, 



 

136 
 

the common vector-induced cytokine peak time point observed in these studies (6). However, as 

revealed by in vitro studies in Human PBMC, Ad5 and Ad5HVR48 are both able to elicit both IFN-α2 and 

IFN-γ to a relatively low level. However, these vectors were largely unable to stimulate detectable 

release of proinflammatory markers such as IL-1β and TNF-α in vitro indicating that these vectors either 

do not induce their expression, or that the producing cell population is absent to a functional degree in 

whole PBMC. The low levels of cytokines and chemokines commonly elicited by Ad5 and Ad5HVR48 in 

vivo following vaccination relative to those observed in vitro first suggests that systemic cytokine levels 

in the periphery following vaccination reflect “spill over” from a localized reaction within the body, an 

observation which is further seen with the other viral vectors analyzed. Whether this localized 

immunostimulatory environment occurs at the site of vaccination, draining lymph node, or potentially 

other locations remains to be determined. Secondly, the differences observed between the in vivo and 

in vitro model sytems for Ad5 and Ad5HVR48 suggests that these vectors may elicit relatively little 

cytokines even in a localized reaction following vaccination. The observed low induction of innate 

immune cytokines and chemokines following vaccination in rhesus monkeys or human PBMC 

stimulation is additionally intriguing given observation by several groups that Ad5 and Ad5HVR48 are 

able to elicit robust CD8+ T-cell responses following immunization in mice, non-human primates, and 

humans (1, 3, 7, 8). The low level of cytokines induced by Ad5 vector are additionally surprising in light 

of previous observations of enhanced inflammatory responses following direct IV administration in mice 

and following intramuscular immunization in humans, yet may reflect a dose and/or route dependence 

for Ad vector innate immune cytokine and chemokine elicitation (9–13). Furthermore, these results 

suggest that robust cytotoxic CD8+ T cell responses may not necessarily predict innate immune cytokine 

and chemokine elicitation, and vice versa. Results from these studies with Ad5 stimulation therefore 

suggest that while Ad5 is able to potently induce CD8+ T-cell responses in vivo, it does not elicit a 
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correspondingly strong innate immune cytokine and chemokine signature, which may influence elicited 

cell phenotypes. 

 The second broad class of innate immune stimulation observed in these studies was elicited by 

the CD46-utilizing vectors Ad35, Ad26, and Ad48. The innate cytokine and chemokine profiles elicited by 

these vectors were characterized by increased stimulation of IFN-α2 and IFN-γ and downstream 

chemokines such as MCP-1, IP-10, and I-TAC relative to Ad5 and Ad5HVR48, with an additional cytokine 

and chemokine module consisting of several proinflammatory cytokines such as IL-1β, IL-1RA, and TNF-α 

(6). Interestingly, the elicited in vitro levels of proinflammatory cytokines and chemokines in response to 

stimulation with the CD46 Ads was lower relative to the robust induction of IFN-α2 and IFN-γ elicited by 

these vectors, highlighting that the innate cytokine and chemokine response elicited by these vectors is 

primarily interferon-based, a phenotype classically defined as “anti-viral”. This suggests that the levels of 

cytokines elicited by the CD46 Ads are not uniformly upregulated and that levels of anti-viral and 

proinflammatory cytokines are not directly correlated. While the CD46 Ad’s elicit equivalent or slightly 

lower magnitude CD8+ T cell responses relative to Ad5,  the distinct adaptive immune phenotypes such 

as increased CD8+ T-cell polyfunctionality and enhanced anamnestic potential elicited by Ad35 and 

Ad26, relative to Ad5 additionally suggest that elicited cytokines and chemokines may influence T cell 

phenotype rather than response magnitude (1, 3, 14, 15). Further studies to assess whether cytokines 

and chemokines elicited by the CD46-utilizing Ad vectors have a direct role in shaping such responses in 

cytotoxic CD8+ T cells as well influences on other immune cell types will be of great interest.  

 The third class of innate immune stimulation observed in these studies is the unique robust 

proinflammatory cytokine milieu elicited both in vivo following priming vaccination in rhesus monkeys 

and in vitro following stimulation of human PBMC with the Canarypox-based vector ALVAC. The unique 

cytokine signature elicited by ALVAC vaccination displayed the greatest extent of proinflammatory 
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cytokines of any of the vectors tested (6, 16). Interestingly, antiviral cytokine and chemokine elicitation 

such as IFN-α2 and IFN-γ was similar for all three poxviral vectors analyzed, suggesting that the unique 

stimulatory milieu of ALVAC is primarily proinflammatory in nature. Several possible mechanisms could 

underlie the potent proinflammatory nature of ALVAC such as tropism differences for monocytes and 

macrophages or security protein arsenal activity of avipoxvirus vectors versus those of the Vaccinia 

virus-based vectors MVA and NYVAC (17–23). The mechanism by which this proinflammatory milieu is 

induced and its influence on possibly unique subsequent adaptive immune response formation is 

important in light of the protective efficacy shown in the RV144 trial (24). Furthermore, the whether this 

inflammatory response can be attenuated by inclusion of functional security proteins, perhaps from 

Vaccinia virus, may further optimize this vector for vaccination applications, and warrants further 

research.  

 The innate cytokine and chemokine stimulatory phenotypes of the Pox vectors were observed 

to be distinct from one another. However, characteristics of the innate immune cytokine and chemokine 

profiles elicited by the Vaccinia-based vectors MVA and NYVAC enable them to be clustered with 

groupings described above. As noted in these studies as well as in the literature, MVA induces a 

primarily interferon-based cytokine response following vaccination in rhesus monkeys or stimulation of 

human PBMC (16, 25). When unsupervised clustering is performed of in vivo cytokine responses 

following vaccination of rhesus monkeys, the similarity of this response to the highly anti-viral milieu 

induced following CD46-utilizing Ad vector vaccination is made apparent. Similarly, NYVAC has been 

observed both previously by other groups as well as in these studies to induce a cytokine and chemokine 

response skewed toward proinflammatory responses (16, 26, 27). This response, while less robust, 

resembles in part the potent elicitation of proinflammatory cytokines and chemokines by ALVAC. This 

similarity is additionally shown in unsupervised clustering of cytokine and chemokine responses 
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following vaccination in rhesus monkeys. Interestingly, when a similar clustering is performed on 

cytokine and chemokine responses elicited in human PBMC in response to the various Ad and Pox 

vectors, Ad5/Ad5HVR48, CD46-utilizing Ads, and ALVAC remain distinct. However, MVA and NYVAC 

cluster with one another, and together cluster with ALVAC as a separate branch from Ad vectors. This 

result indicates that the localized reactions to MVA and NYVAC at the site of vaccination or a draining 

lymph node may be similar, and that alterations in systemic cytokine and chemokine responses to them 

may reflect broader skewing external to the site of induction by security protein arsenals. The influence 

of security proteins which differ between MVA and NYVAC on resultant innate and adaptive immune 

responses will be of interest for further optimization and adaptation of these vectors.  

The distinct cytokine responses elicited in vivo and in vitro by Pox vectors relative to those 

elicited by either Ad5 or the CD46-utilizing vectors Ad35, Ad26, or Ad48 suggest that the quality of 

innate immune stimulation elicited by Pox vectors is distinct from those elicited by the Ad vectors. This 

observation is somewhat unexpected given the extensive differences in viral biology and structure 

between Adenoviruses and Poxviruses. The observation that innate immune cytokine and chemokine 

phenotypes differ not only within Ad and Pox vectors, but between them as well, further suggests that 

viral vectors currently in development based upon Herpesviruses, Alphaviruses, Flaviviruses, and 

Parvoviruses may additionally have unique innate stimulatory properties which could influence vaccine-

elicited immune responses (28–33). 

   

Sources and Mechanisms of Differential Innate Immune Stimulation by Adenoviral and Poxviral 

Vaccine Vectors 

 As shown in these studies, viral vectors can differ substantially in their phenotypes of innate 

immune activation, both within and between viral families. This differential innate immune cytokine and 
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chemokine elicitation likely occurs through several possible means such as differences in viral structure, 

cellular tropism, pattern recognition receptor (PRR) access/triggering, and host immune response 

antagonism. While innate immune stimulation elicited by Ad and Pox vectors described above share 

some common antiviral characteristics as shown through common induction of IFN-γ and its 

downstream-signaled chemokines IP-10 and I-TAC, a clear broad bifurcation of responses elicited by Ad 

and Pox vectors suggests differential mechanisms of innate immune activation between these vector 

families. This observation is unsurprising given the broad scope of biological differences between Ad and 

Pox vectors, but it is intriguing that such differences in viral biology would be made dramatically 

apparent following immunization and stimulation in several systems. While it is possible that non-

equivalent innate stimulation elicited by the Ad and Pox regimens on a per-particle basis could play a 

role in these observed differences, the identities of downstream-signaled chemokines such as IP-10, IL1-

RA, MCP-1, …etc. suggest that the quality and not merely the quantity of innate immune stimulation by 

Ad and Pox vectors are distinct.  

Intriguingly, while innate immune activation elicited by Ad and Pox vectors varied in phenotype 

relative to the identity and scale of cytokines and chemokines induced, cytokine responses in vivo and in 

vitro displayed remarkably similar kinetics for both vector classes (6, 16). For all vectors analyzed, innate 

immune cytokine responses peaked at approximately 24 hours following vaccination or infection. While 

it is possible that individual peaks of Ad or Pox vector cytokine levels may occur before or after 24h and 

not have been observed due to sampling frequency, the general timeframe for cytokine and chemokine 

responses elicited by these vectors is unlikely to be markedly different than the general 24 h timepoint. 

This observation suggests that the identity of innate immune cytokines and chemokines elicited 

following vaccine vector stimulation is influenced largely by the viral vector, while the temporal kinetics 

of the response are largely determined by the host immune system. Studies which assess the 
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mechanistic sources of the differences in this early elicitation of cytokines and chemokines are therefore 

critically important for understanding early adaptive immune response imprinting for future anamnestic 

recall. 

 Despite the broad differences in vector biology between Ad and Pox vectors, it is possible to 

gain insights into the mechanisms by which they elicit innate immune responses though comparison of 

the sources of differences in innate immune stimulation within each vector family. The vector families 

utilized in these studies were generated via viral attenuation achieved through several different means 

(1, 21, 34–37). Ad vectors, as described above, are widely utilized in their replication incompetent form 

via deletion of Early transcriptional products, in particular the E1A/E1B and E3 proteins. Due to this 

process, replication-incompetent Ad vector genomic products are largely untranscribed in vivo, and do 

not play a large role in vector biology (38–40). That is to say, Ad vectors likely are largely genetically 

inert in the process of vaccination. This attenuation essentially creates fully-formed mature Ad particle 

with all the innate stimulatory PRR’s such as dsDNA, but which lack any transcribed products which 

serve to block host immune induction.  

The results shown above provide a model mechanism explaining the differences in innate 

immune stimulation elicited by Ad vectors, which largely reflect differences in these broad structural 

properties such as fiber-mediated receptor usage or capsid preference for endosomal escape location. 

Ad vectors were shown to differ markedly in their innate cytokine and chemokine elicitation profiles, 

with the CD46-utilizing Ad vectors Ad35 and Ad26 eliciting greater levels of antiviral and 

proinflammatory cytokines and chemokines than Ad5 (6). This difference largely coincided with primary 

receptor usage, which is mediated by the Ad fiber protein, as best illustrated by results indicating that 

switching of viral structural moieties such as fiber or capsid components between Ad5 and Ad35 was 

able to alter the vectors’ resultant innate immune stimulatory phenotypes (41, 42). Importantly, the 
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pronounced induction of antiviral and proinflammatory cytokines and chemokines by Ad35 and Ad26 

was dependent on several PBMC subsets, suggesting that tropism differences mediated by CD46 usage 

cannot account fully for their observed phenotypes and that a cellular mechanism likely establishes 

differences in Ad vector innate immune stimulation. Subsequent results showed clear differences in 

intracellular trafficking patterns between Ad5, Ad35, and Ad26, with Ad35 and Ad26 accumulating to a 

greater extent in the innate immune sensor-rich late endosome. Although Ad5, Ad35, and Ad26 reached 

the late endosomal compartment to different degrees, all three were sensitive to a common set of 

innate immune sensor inhibitors against endosomal acidification, Cathepsin B, and Caspase-1. These 

differences in intracellular trafficking corresponded to the observed hierarchies of innate immune 

cytokine and chemokine elicitation observed both in vaccinated rhesus monkeys and humans, as well as 

in human PBMC (6). These observations suggest a mechanism linking clinically-relevant differences in 

innate immune cytokine and chemokine elicitation by Ad vectors with vector biological properties 

influencing the degree to which they access late endosomal innate immune sensors. Furthermore, these 

results suggest that the means by which Ad vectors can be altered for optimization of their innate 

stimulatory properties for a given system likely lie in structural alteration of the capsid and fiber 

proteins, rather than genetic alterations. Additional stimuli may therefore be required to augment Ad 

vector innate immune stimulation past that observed for the most stimulatory vector. That is to say, 

that the structural moieties of the CD46-utilizing Ad vectors may represent a “ceiling” of Ad innate 

stimulatory properties. This point is intriguing and warrants further study through analysis of other Ad 

vectors for their innate stimulatory properties. 

Similar to the replication-incompetent to the Ad vectors, the Pox vectors ALVAC, MVA, and 

NYVAC are unable to complete their replication cycle in mammalian cells (43). However, these vectors 

retain the ability to express large portions of their genome during their abortive replication cycles. Due 
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to many poxviral proteins still being produced during during ALVAC, MVA, or NYVAC vaccination or 

infection, genetic elements in these vectors may contribute to and help shape resultant innate and 

adaptive immune responses (44)(45)(46). As mentioned above, these vectors possess many intact ORF’s 

encoding decoy cytokine receptors, intracellular signaling inhibitors. Differences in these security 

protein arsenal functions between Pox vectors, rather than differences in Poxviral structural properties, 

have been previously shown by several groups to be influential in Poxvirus attenuation and 

immunogenicity, and likely contribute to the observed differences in innate immune stimulation elicited 

by ALVAC, MVA, and NYVAC observed in these studies (25–27). This point suggests that the differences 

in innate stimulation between Pox vectors is due in large part to a genetic component, in contrast to the 

structural differences being important for Ad vectors. Furthermore, if innate stimulatory properties of 

Pox vectors are determined by their array of available security proteins, it suggests that the innate 

stimulatory properties of them are malleable and are able to be further optimized through 

complementation and/or deletion of security proteins.  

 

Viral Vector Innate Immune Stimulation as Biologic Adjuvants 

 Adjuvants are substances used to enhance the immune system’s response to a desired antigen 

through stimulation of host immune sensing pathways. However, a challenge to bringing novel 

adjuvants to use in the clinic is the anticipated cost, regulatory mechanisms, and possible legal liability 

making their development financially prohibitive (47, 48). As such, a means of adjuvanting immune 

responses with currently approved biologics would potentially harness the wealth of adjuvanting 

signaling pathways available while circumventing existing regulatory hurdles. Viral vectors, through 

stimulation of innate immune danger-sensing pathways are able to serve such an adjuvanting role in 

vaccines, as has been previously observed in several studies (49, 50). Viral vectors of several different 
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families and modifications have a long-standing excellent safety profile as shown in both clinical studies 

as well as ongoing vaccination regimens. Furthermore, biological agents derived from live viruses which 

inherently possess several PAMP’s, viral vectors are inherently immunostimulatory to many PRR’s 

spread throughout the immune system (50–52). The studies presented herein indicate that viral vectors 

are not only able to serve as basic adjuvants to elicit innate immune stimulation in the proximity of a 

carried transgene, but may have a greater utility in vaccine-design through their ability to induce several 

phenotypically distinct types of innate immune activation. They therefore may be able to serve as 

specific adjuvants to skew adaptive immune responses toward an antigen to a specific set of adaptive 

immune phenotypes. That is to say, it is possible that viral vectors may serve as a novel class of 

adjuvants which can be consciously selected to be paired with their cognate antigen to elicit a targeted 

immune response of a desired phenotype.  

 As mentioned above, the innate cytokine and chemokine profiles shown in these studies are 

likely important as they potentially influence/reflect adaptive immune response phenotype formation. 

Ad5 and Ad5HVR48 vectors have been demonstrated to induce a robust CD8+ T-cell response in the 

peripheral circulation following vaccination as well as efficiently transduce and express large amounts of 

a desired transgene (1, 8). However, despite the relatively high magnitude of CD8+ T-cell responses 

elicited by Ad5 vectors, these elicited T cells are unable to efficiently control pathogenic HIV/SIV 

infection, as shown in several studies (3, 53). In particular, the cytotoxic CD8 T cells induced by Ad5 

vaccination have been shown to possess a more anergic/exhausted phenotype, suggesting that a robust 

CD8+ T cell response may not necessarily correspond to functional vaccine-elicited immunity against a 

pathogen (14). In the studies presented herein, Ad5 and Ad5HVR48 were observed to induce relatively 

little innate immune cytokine and chemokine responses following both vaccination of rhesus monkeys 

and infection of human PBMC.  This lack of innate cytokine elicitation has been independently 
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reproduced and further shown to allow transgene expression for a greater period relative to Ad35 and 

Ad28 in a mouse vaccination system (54). Therefore, a possible source of this decreased cellular 

functionality may be comparatively strong transgene expression and stimulation of T cells without the 

cognate innate immune activation providing dendritic cell activation and licensing. Particularly, the 

relatively low levels of antiviral signals via IFN-α2 and IFN-γ signaling following potent transgene 

production by an Ad5 vector may serve as a tolerizing, rather than a stimulatory vaccination through 

lack of sufficient “Signal 3” for efficient memory T cell formation (55). This process would lead to 

induction of T cell responses which had not received sufficient licensing for cytotoxic potential and 

therefore become comparatively anergic and exhausted.  While perhaps detrimental for vaccination 

against intracellular pathogens, the tolerizing effect of an Ad5 vaccine however could make it useful for 

other applications where immune anergy is desired, such as vaccination against allergens or against 

antigens targeted in autoimmunity. 

 Similar to Ad5, the CD46-utilizing vectors Ad35 and Ad26 induce a numerically robust CD8+ T-cell 

response following vaccination. However, in contrast to Ad5, these T-cells have a largely more functional 

phenotype centered on anti-viral immunity (14). Relative to Ad5-induced T-cell responses, they display 

greater polyfunctionality, expanded anamnestic recall potential, and are more of the effector memory 

phenotype, corresponding to what is classically thought to represent a predominantly anti-viral adaptive 

immune response. Importantly, CD8+ T cell polyfunctionality and killing potential have also been 

observed to be important for the control of pathogenic SIV infection, and the increased protection 

conferred by Ad35 and Ad26 relative to Ad5 in the SIV infection model may reflect their expanded ability 

to elicit these CD8+ T-cell phenotypes (2, 3, 56–58). As shown in these studies Ad35, Ad26, and Ad48 all 

induce a cytokine milieu of greater anti-viral character relative to Ad5 predominantly centered around 

IFN-α2 and IFN-γ and their downstream-signaled cytokines and chemokines . Anti-viral cytokine 
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signaling, such as through IFN-α has been shown to increase cytotoxic potential by CD8+ T cells (59). 

Therefore, the robust anti-viral character of cytokine and chemokine responses elicited by the CD46-

utilizing Ad vectors may play a role in the induction of more functional anti-viral adaptive immune 

responses by these vectors. Additionally, the role of proinflammatory cytokines in this stimulatory milieu 

is also possibly important for attracting and activating antigen presenting cells to the site of vaccination 

and/or draining lymph node, further bolstering the anti-viral stimulatory environment. Importantly, it is 

unlikely that the anti-viral cytokine and chemokine milieu elicited by Ad35 and Ad26 only influences 

resultant CD8+ T cell phenotypes, and as such its influence on other important cell populations such as T 

follicular helper cells (TFH), other CD4+ T-cell subsets, B cells, and NK cells remains to be determined. The 

potent anti-viral cytokine and chemokine induction by CD46 Ad’s may make them most useful for 

applications where potent intracellular immunity is required, such as for viral diseases as well as 

malignancies, and means by which this capacity of the vectors can be augmented warrants further 

investigation 

 In contrast to the Ad vectors and as noted above, the poxviral vectors ALVAC, MVA, and NYVAC 

have been previously shown to induce a balanced CD4+/CD8+ T cell response following vaccination, 

rather than a predominantly CD8+ response (4, 60). The elicitation of a greater breadth of pro-

inflammatory cytokines and chemokines by these vectors in vivo may be influential in eliciting this 

phenotype, however the connections between specific classes of cytokine responses induced by the 

vectors and the more general immune responses which arise following vaccination with them are less 

clear than those with Ad vectors. The induction of CD4+ helper responses following vaccination is 

potentially important given the results of the correlations study of the RV144 trial indicating that 

antibody responses are important in lowering or increasing risk of HIV-1 acquisition (61). The means by 

which poxviral vectors may stimulate TH2 immunity or other TH phenotypes and the possible roles of the 
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expanded pro-inflammatory cytokine and chemokine repertoire elicited by poxviral vectors in vivo may 

potentially influence this process. Additionally, understanding whether the influence of the observed 

differences between Poxviral innate cytokine and chemokine responses are made apparent in 

differential induction of antibody or T-cell phenotypes will be important for future vaccine construction. 

 Viral vectors represent a potential novel class of biologic adjuvants which may be able to be 

utilized to skew immune responses towards desired phenotypes. However, the connection between 

vector-elicited innate immune phenotypes immediately following vaccination and subsequent adaptive 

immune response formation are complex and currently poorly understood (62). Future experiments 

focusing on utilizing different vaccine vectors with identical vaccine transgenes and common route of 

vaccination would allow the exploration and correlation of innate immune cellular and adaptive immune 

phenotypes to be established. The results presented in these studies are a logical starting point for the 

exploration of vector influence on vaccine-elicited immune responses. Moreover, these studies suggest 

that vectors based on viral families other than Ad and Pox may possess distinct innate stimulatory 

properties. This putative variability in vector family innate immune stimulation, coupled with the 

observed differences in innate immune stimulation elicited within vector families, could potentially 

allow both the broad selection and fine tuning of vector innate immune properties for a desired vaccine. 

Studies in vivo utilizing vectors with identical transgenes and comprehensive post-immunization innate 

and adaptive immune phenotyping would allow such a comprehensive characterization of vaccine 

vector responses to be obtained, and would be broadly applicable for many applications of viral vector 

technology.  

The results presented herein indicate that viral vectors both within and between viral families 

can differ profoundly in their innate immune stimulatory properties. Additionally, the mechanisms by 

which they differ in their innate stimulatory properties can be rooted in different facets of vector 
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biology such as vector structure or genomic content. These data indicate that viral vectors, rather than 

being passive shuttles, may play an active role in determining the innate and adaptive immune 

phenotypes elicited against a target antigen. Moreover, viral vectors can potentially be thought of as a 

novel class of adjuvanting biologics with a long-standing safety profile which can be modified in a variety 

of ways to take advantage of the various immune stimulatory phenotypes which have been shown here 

to exist for Ad and Pox vectors, and which likely exist for other viral vector systems as well. This broad 

diversity of innate immune stimulatory phenotypes has the potential to allow the adaptation and 

optimization of viral vectors for a wealth of uses against viral, bacterial, and parasitic diseases as well as 

applications for targeting of malignancies or induction of allergen tolerance. Further exploration as to 

the connections between innate stimulatory phenotypes of these vectors and resultant adaptive 

immune phenotypes will yield exciting insights not only into questions of fundamental immunology, but 

also into the means why which vaccines elicit immune-mediated protection from disease. 
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