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Abstract

New advances in genomic technology make it possible to address some of

the most fundamental questions in biology for the first time. They also

highlight a need for new approaches to analyze and model massive amounts

of complex data. In this thesis, I present six research projects that illustrate

the exciting interaction between high-throughput genomic experiments, new

machine learning algorithms, and mathematical modeling. This interdisci-

plinary approach gives insights into questions ranging from how variations

in the epigenome lead to diseases across human populations to how the

slime mold finds the shortest path. The algorithms and models developed

here are also of interest to the broader machine learning community, and

have applications in other domains such as text modeling.
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1

Introduction

The genomics era poses exciting opportunities and challenges. We need creative exper-

iments to harness the power of genomic technology, new machine learning algorithms

to extract robust patterns from complex data, and new mathematical models to un-

derstand the fundamental principles behind such patterns. The cross-breeding of ideas

between these disciplines is extremely exciting. My research lies at this intersection of

data modeling, mathematical analysis and biological discovery. In this thesis, I present

six projects that illustrate this fruitful interaction.

A fascinating set of biological relate to the epigenomic regulation of cellular state

and phenotype. To tackle these questions, I worked very closely with biologists to

design experiments, and, in several projects, performed my own experiments with some

successes and failures. By working in a wet lab everyday for many months, I gained a

much better understanding of biology and data, as well as an appreciation for a different

mode of problem solving. I think it’s a very valuable experience for the analyst/theorist

to design and perform some experiments. And some experiments are fun to do.

At the other end of the spectrum, I worked on developing new computational frame-

works and proved theorems about rather abstract mathematical models. New tools

and ideas are needed in computational biology. Currently a few basic tools like clus-

tering, PCA and its variants are probably used in 95% of computational analysis. The

limited toolkit might be sufficient for some problems, but it constrains the analyst’s

imagination in more complex settings. Without richer models, we fail to even ask the

interesting questions. So I developed new algorithms and models based on rather arti-

sanal techniques such as tensor decomposition and determinantal point process. They

1



1.1 Overview of the thesis

have elegant mathematical properties, which by itself is motivation enough for explo-

ration, but I hope my work is a step towards making these powerful ideas a part of

the compbio lingua. While motivated by biology, many of the algorithmic techniques

that I developed here are broadly applicable and have led to interesting advances in

domains such as text analysis and image classification.

1.1 Overview of the thesis

Chapter 2 is based on the paper (44). In it I present a novel and rigorous statisti-

cal framework to identify epigenomic changes in human populations that are potential

drivers of disease. The DNA inherited by an individual encodes instructions for hun-

dreds of distinct cell types. The cells of our brain and liver, for example, are very dif-

ferent, even though they all have identical DNA sequence. This is possible because the

same 3 billion bases of DNA are packaged differently in brain cells and liver cells. The

packaging of DNA in three-dimensions is regulated by epigenomics. Epigenomics refer

to the chemical modifications to DNA and histones, around which DNA is wrapped.

These modifications specify, in each cell, which subset of DNA sequences can be ac-

cessed and read by molecular machinery inside the cell. This in turn determines which

subset of genetic instructions are performed by different cells.

Our predisposition to certain diseases can be linked to specific mutations to the

DNA. It is now appreciated that many diseases also have epigenetic contributions.

However it has been very challenging to systematically compare the epigenome across

human population. This is because, unlike DNA, the epigenome is highly variable in

different cells, and cell-type heterogeneity in samples lead to massive false association

signals. To compound the issue, we often do not know what are the relevant cell types

present in a sample, nor do we know what fraction of the sample is composed of each

cell type. I develop a method, EWASher, which uses a linear mixed model to account

for this type of confounders. The method pinpoints changes in the packaging of DNA

that are potentially linked to disease. I apply it to discover regions of the genome that

are abnormally shut-off or accessible in people with rheumatoid arthritis, breast cancer,

or colon cancer. These regions give new insights into the progression of these diseases,

2



1.1 Overview of the thesis

and can potentially be used as diagnostic biomarkers.

Chapter 3 is based on the paper (69). Here I explore the changes in the epigenome

during the transformation of T-cell leukemia. Using statistical analysis of epigenomic

changes, I characterize an identity-theft strategy in leukemia whereby certain cancer-

causing agents hijack the normal regulatory network within the cell. I show that a mu-

tated form of a key protein, Notch1, hijack the DNA docking sites of normal proteins to

change how T cells grow and divide. In addition, I find similar patterns in mouse T-cell

leukemia, suggesting that this identity-theft strategy is conserved through evolution.

Chapter 4 is based on the paper (4). In a follow up to Chapter 3, I show that a similar

identity-theft leads to uncontrolled cell proliferation in a different model systemB cell

lymphoma caused by Epstein-Barr virus (EBV) infection. By analyzing epigenomic

data, I show that in infected B cells, components of the EBV virus hijacked the same

binding sites and regulatory elements that the mutated Notch1 co-opted in T cells.

This resulted in immortal B cells that can lead to cancer. By analyzing DNA motifs,

I identify potential proteins that partner with the viral proteins. Moreover, I present

computational and experimental evidence that the viral protein targeted key oncogenes

via 3-D DNA looping.

Chapter 5 is based on the paper (45). In the analysis of cancer above, as in many other

settings, we have multiple data sets and want to understand the differences in statistical

patterns between them. Motivated by this, I formalize a framework of contrastive

learning, and introduce a new and general algorithm based on tensor decomposition

to efficiently learn contrasts between data sets. This method learns a probabilistic,

generative model that explains the difference between the foreground and background

data. The chapter illustrates the applications of this method in contrastive epigenomics

and in contrastive text modeling.

Chapter 6 is based on the paper (89). Here I introduce the notion of diversity as an

objective in building statistical models. In many settings, we would like to have not

just one good solution to a problem, but a diverse set of solutions that are mutually

dissimilar. For example, think of the time you googled X. Google returns a set of high

3



1.1 Overview of the thesis

quality links relevant to X, but the links are very similar to each other (they might

all use similar sources). A list of high quality results from diverse sources would be

more informative. I use the determinantal point process as a prior to enforce diversity,

and presented efficient learning methods. I show that diversified probabilistic models

learned more interpretable and robust topics from corpus of texts. It also improves the

performance of image classification.

Chapter 7 is based on the paper (75). It combines mathematical and algorithmic

models to solve a fascinating mystery of the slime mold. Recent experiments observed

that if we place a slime mold at one end of a maze and a food source (e.g. corn flake)

at the other end, the slime grows over time and finds the shortest path through the

maze. How does such a simple organism find the shortest path? I develop a system of

differential equations to model the slime mold growth dynamics. By analyzing these

equations, I prove that under general conditions, the slime mold is guaranteed to find

the shortest path. Moreover, I show that a general family of optimization problems

(linear programs) can be encoded as different slimes, and by growing them, it finds the

optimal solutions. This inspires a new family of optimization solvers.

4



2

EWASher: Epigenome-Wide

Association Studies Without the

Need for Cell-Type Composition

2.1 Overview

Epigenome-wide association studies (EWAS) face many of the same challenges as

genome-wide association studies (GWAS), but face an added challenge in that the

epigenome can vary dramatically across cell types. When cell-type composition differs

between cases and controls, this leads to spurious associations that bury true associ-

ations. While the current approach is to estimate the cell-type composition in each

sample using laboriously assayed reference profiles, we propose to bypass this step al-

together with EWASher. Our method automatically corrects for cell-type composition

without explicit knowledge of it. On rheumatoid arthritis methylation data, EWASher

performs as well as the state-of-art method, which explicitly uses cell-type composi-

tion. We further validate the approach using extensive simulations. Finally, we apply

EWASher to the Cancer Genome Atlas breast and colon cancer methylation data, where

no cell-type composition is available. Our work is a step toward placing EWAS on a

solid statistical footing comparable to that of GWAS.

5



2.2 Introduction

2.2 Introduction

With the era of next generation sequencing comes high-throughput measurement not

only of the genome, but also of the epigenome, yielding complementary information that

is critical to understanding, and then tackling, disease mechanisms. Epigenetics informs

us about the structure and accessibility of DNA, which in turn yields information

about regulation and transcriptionkey drivers of disease. Thus, epigenetics is a crucial

mediating link between genetics and function. In many diseases, it is now appreciated

that epigenetic changes complement genetic mutations in driving the disease (50, 76,

80, 83).

Currently, the measurement and analysis of epigenetic data through epigenome-wide

association studies (EWAS) is a subject of much interest, as such analyses yield insights

into the role of epigenetic regulation in disease (62). The goal of EWAS, analogous to

GWAS, is to identify changes in the epigenome at particular loci that are correlated

with some phenotype of interest, by scanning along the entire epigenome. While such

analysis alone cannot establish causality, epigenetic association studies shed light on

disease pathways and drivers, and also identify candidate biomarkers for diagnostics.

The present work is a step towards placing epigenomic association studies on a more

sound statistical footing, one comparable to that of GWAS. In particular, we seek to

avoid spurious associations that arise due to cell type composition heterogeneity; to use

as much of the data as possible (i.e., to not remove samples unnecessarily); and, to do

so without the need for specialized auxiliary calibration data such as reference profiles

from individual cell types.

EWAS faces many of the same challenges as traditional GWAS in finding the needles

of signal in the haystack that is the genome. The shared challenges include confounding

by batch effects, population structure and family relatedness, the large scale of multiple

hypothesis testing, and the need to group together weak effects to find underpowered

associations (5, 40). Importantly, EWAS faces an additional, major challenge in that

the epigenome can be highly variable across different cell types, and the case and control

samples in a study typically differ in their cell-type compositions. Such heterogeneity

can give rise to spurious associations, which in turn hide the true associations. This

undesirable effect was recently illustrated in a rheumatoid arthritis (RA) methylation

study (67) (and analyzed in depth in Results). In this study, blood samples from cases
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2.2 Introduction

contained a larger fraction of myeloid cells (granulocytes and monocytes) relative to

lymphocytes (B, T and NK cell) than the controls. A naive EWAS that did not correct

for this systematic cell-type heterogeneity was flooded by spurious associations arising

from loci that were specifically methylated in either lymphocytes or myeloid cells (Fig

1), and the true disease-associated loci were not found. Including covariates for cell type

composition corrected for this heterogeneity, thereby removing spurious associations

((67) and Fig 1). The critical bottleneck of this approach was in accurately measuring

or estimating the cell-type composition of each sample; this would be the bottleneck

for all studies of this nature. We propose to bypass this bottleneck entirely, while

maintaining an accurate analysis, with the introduction of a new statistical approach

for EWAS, called EWASher.

The method of adding cell type covariates, as used in (67), is the current state of art

for tackling an EWAS in the presence of cell type heterogeneity. This approach requires

knowledge of the reference methylome (measured from purified cells) of each of the main

cell types in the sample. Given this information, it is then possible to estimate the cell

type composition of every sample a statistical deconvolution algorithm. Although this

approach worked well for the RA study, its dependence on purified reference profiles,

which is the basis of all current procedures that correct for cell-type heterogeneity

(33, 65), is problematic for several reasons:

1. For many diseases (e.g., cancer), complex mixture of many cell types are present

for which it can be extremely difficult, laborious and expensive to obtain a ref-

erence population of cells. Furthermore, there may be cases where the dominant

cell types are not known.

2. Reference cell type profiles generated in one lab or under one condition may

not accurately capture the correct information for samples collected elsewhere or

under different conditions.

3. The process of isolating cells from solid tissue is challenging and may perturb the

cells (32).

A key insight in obtaining a general, reference free solution in EWAS is to recognize

that the problem of confounding by cell-type heterogeneity is analogous to the prob-

lem of confounding due to population stratification and family relatedness in GWAS.

7



2.2 Introduction

However, as we will demonstrate, confounding by cell type in EWAS is much more

severe, because cell compositions can vary dramatically across samplesfar more so than

the extent to which SNPs vary by population or family. Motivated by methods in

GWAS, our solution makes use of the linear mixed model (LMM) (28, 36, 42), which

we extend to perform a reference-free correction for EWAS in the presence of cell type

heterogeneity.

Specifically, our new method, which we call EWASher, is a hybrid approach of

(1) a feature-selected LMM (28, 29, 40) and (2) a principal components (PC) based

approach (3, 20). As we will demonstrate on real and synthetic data, this method

successfully corrects for confounding by cell-type composition, without any dependence

on purified reference cell types, making it reference-free. Furthermore, the method

is computationally efficient, scaling up to the large data sets produced with current

technologies.

To validate our approach, we applied it to a bronze-standard RA dataset in which

the methylomes of the reference cell types and estimates of the cell-type composition

of each sample in the cohort are known. We found that our reference-free approach

performed just as well as the state-of-the art reference-based approach. Next, we further

validated our method using extensive simulations and mathematical analysis. Finally,

we applied our method to breast and colon cancer methylation data from The Cancer

Genome Atlas (TCGA) to identify candidate biomarkers and biologically significant

genes in the presence of substantial confounding.

In summary, we make the following significant contributions:

1. We show that the standard methods used in GWAS to correct for confounders

are not sufficient to remove spurious signals from EWAS.

2. We present a principled method that removes spurious associations that arise

due to cell-type heterogeneity, while yielding true associations of interest. The

approach does not require knowledge of cell-type compositions or the reference

methylome of purified cell types.

3. We provide freely-available software for the academic community that implements

our approach and is scalable to large data sets.

8



2.3 Results

2.3 Results

2.3.1 Overview of the EWASher approach

EWAS confounding by cell-type composition arises because the cell-type composition

is correlated with the phenotype, and also with many methylation loci. As a result,

loci that are indicative of cell type will appear to be associated with the phenotype

even though they are only correlated by way of cell type composition. To alleviate

this problem, we use the data set itself to implicitly estimate and correct for this

confounding. In particular, we use the genome-wide methylation data to construct a

single similarity score between every two individuals. Jointly, these similarity scores are

reflective of the relative cell type composition among individuals. Two individuals with

similar sample cell type compositions will have a high similarity score, while those with

different composition will have a low score. Together, these scores form a similarity

matrix, which is then used within the linear mixed model (LMM) to remove associations

due to cell-type compositions and to reveal true associations.

The core of EWASher is the LMM. However, when confounding by cell-type hetero-

geneity is large, the LMM is not able to fully correct for it . Therefore, we augment the

LMM with principal component (PC)-based covariates computed from genome-wide

methylation values. In particular, EWASher uses an iterative approach that identifies

the best hybrid model by automatically selecting the best loci with which to measure

similarity for the LMM, as well as the optimal number of PCs.

In line with our theoretical findings and simulations, we found that when confound-

ing due to cell type composition was not too severe, as is the case with the RA data,

the LMM alone was sufficient for correction. In solid cancer datasets that suffer from

strong confounding, EWASher found that using the top two or three PCs was advan-

tageous. Additionally, as we show, the use of PCs alone (without the LMM) is, in

general, insufficient.

2.3.2 DNA methylation association with rheumatoid arthritis

First, we investigated in detail a bronze standard rheumatoid arthritis data set that

has reference DNA methylation profiles available for each of the main cell types present

in the samples. Next, we performed simulations with synthetic data based on the real

data, serving as a gold standard. Finally, we applied our approach to two cancer
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Figure 2.1: RA methylation association study analysis. In preprocessing, data were cor-

rected for gender, batch and smoking status. (a) Quantile-quantile (qq) plot of the log10 P

values for association without additional corrections. It shows severely inflated test statis-

tics leading to many false positives. Green dashed lines show the 95% confidence intervals.

Large deviations from the diagonal are indicative of inflation. (b) qq plot resulting from

use of a bronze standard analysis in which estimated cell type composition was included

as a covariate. (c) qq plot resulting from use of EWASher, which did not use knowledge

of cell type composition. (d) Paired plot of the log10 P values from (b) and (c). The two

approaches found the exact same five significant loci (with the same rankings), even though

one required explicit knowledge of the cell type composition. (e) Paired plot of the values

from (a) and (c), showing that the correction dramatically altered the rank order of the

hypotheses, and that in the uncorrected method, the bronze standard significant loci were

swamped by spurious associations. (f) Samples from RA patients had a higher proportion

of myeloid cells (granulocytes and monocytes) and fewer lymphocytes (B, T, and NK cells)

compared with control samples.
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methylation data sets from TCGA that do not have reference profiles available, as is

typical.

The models used in this section include: (1) an uncorrected analysis that adjusts

only for standard covariates such as age, gender and batch, but does not correct for

cell-type composition, (2) a reference-based analysis that corrects for known cell type

composition by adding these as covariates to a linear regression, (3) a reference-free

PC-based analysis that corrects for cell-type composition by adding PC covariates to

the linear regression, (4) EWASher, our new reference-free hybrid LMM-PC approach.

Throughout our experiments we use quantile-quantile (qq) plots of the log10 quan-

tiles to assess inflation of the test statistic in our experiments, as is common in the

GWAS community. In these plots, the quantiles of the theoretical null distribution

are plotted against the observed quantiles. Under the assumption that no methylation

loci in the observed data are differentially expressed, the resulting plot should follow

the diagonal and lie within the 95% confidence error bars. Because we expect some,

but not too many, methylation sites to be differentially expressed, we expect to see

only small deviations from this, and interpret greater deviations as inflation of the test

statistic. We also use the genomic control factor, λ, a metric commonly used in GWAS

to quantify how much the test statistics are inflated compared to the null distribution.

A data set corrected for confounders has λ around 1, while λ significantly greater than

1 indicates confounding and potentially many false positives.

We obtained data from the recent study of DNA methylation association with

rheumatoid arthritis (RA). The study collected blood samples from 354 cases and 312

controls, which were assayed on a 450k Illumina DNA methylation chip. After filtering

out failed probes and probes that were constitutively methylated or unmethylated in

all the samples, we retained 103,638 loci. Effects due to age, gender, smoking status,

and batch were removed by regressing these factors on methylation and then using the

residuals for all further analysis. In (67), the authors estimated the cell-type composi-

tion9 for each sample by using the carefully collected five known reference methylation

profiles (CD14 monocytes, CD19 B cells, CD4 T cells, CD56 NK cells, and granulo-

cytes). We use these estimated cell types for a bronze standard analysis to which we

compare our approach.

First, we performed an uncorrected analysis to look for associations between each

methylation marker and the RA phenotype. We observed severe global inflation of the

11
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test statistic, resulting in far too many low P values (Fig. 2.1a). In the RA data, the

λ was 10.97, which is significantly more inflated than the values (λ < 1.5) observed in

typical human GWAS with population structure. The blood samples of RA patients

showed significant changes in the relative proportions of lymphocytes and myeloid cells

compared with healthy control subjects (Fig. 2.1f). Therefore, if a marker was differen-

tially methylated between blood cell types, then it also appeared to be correlated with

the phenotype. These associations are biologically uninteresting because they simply

tag known differences in cell type composition; the goal of an EWAS here is to find

changes in methylation above and beyond these cell type composition associations.

Next, we performed a reference-based cell type corrected analysis by using the esti-

mated cell-type composition as covariates in the regression model used for association

analysis. We observed that this approach adequately corrected the genome-wide infla-

tion of test statistics (Fig. 2.1b).

Finally, we applied our new reference-free approach, EWASher to these same data.

Just as adding the reference-based covariates successfully corrected for cell type com-

position, so too did our reference-free approach (Fig. 1c). At the Bonferroni threshold

of 5x10−7, the reference-based approach, and the reference-free EWASher both find

the same five significantly associated loci (Fig. 2.1d, Table 2.1). The top associated

site is in the gene body of HLA-DQA2 for which gene expression levels are associated

with RA disease severity. The other two significant loci are in the promoter of NLRC5

which has been shown to regulate inflammatory processes. In the uncorrected model,

these biologically meaningful associations were swamped by spurious associations (Fig.

2.1e). For this data set, EWASher found that no PC covariates were needed with the

LMM.

It is instructive to examine which loci were selected by the uncorrected association

analysis and to understand why they lose significance in the corrected analysis. We

selected the most significant loci from the uncorrected linear regression and plotted their

methylation level in each of the five reference cell types. These sites were all highly

methylated in B, T, and NK cells (lymphocytes) and barely methylated in monocytes

and granulocytes (myeloid cells). Given that B, T, and NK cells make up a significantly

smaller fraction of the cells in RA cases than in controls, it is not surprising that

these loci were strongly associated with the phenotype. In contrast, EWASher did

not pick up these lymphocyte-specific loci because it automatically controls for these
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systematic biases, without the need for explicit knowledge of lymphocytes and myeloid

cells. EWASher can thus be used to identify loci that are associated with the phenotype

of interest above and beyond the cell-type specific relationshipsknowledge of far greater

interest.

A possible alternative approach to our hybrid EWASher approach would be to use

only the top principal components (PCs) to adjust for confounding due to cell type

distributions, similar to the manner in which EIGENSTRAT uses PCs to correct for

population structure in GWAS, and Surrogate Variable Analysis uses PCs to correct for

expression heterogeneity in gene expression. We applied such a model, PC covariates

with linear regression, to the RA dataset, systematically varying the number of top

PC covariates used. Even when a large number of PCs were used, the test statistics

were still inflated. This result is consistent with the observation in GWAS that when

samples exhibit complex relatedness, linear corrections using PCs cannot fully capture

the confounders. In the RA data, complex structure amongst samples was caused by

heterogeneous cell-type composition, which is a structure that EWASher accounted for

by explicitly modeling the similarity between every pair of samples.

2.3.3 Simulation results

In this section, we used the real RA data as a basis for generating synthetic data sets

that could then be used as a gold standard. Briefly: using the empirical distribution of

cell types for the cases and controls in the RA dataset, in conjunction with the reference

profiles themselves, we generated methylation profiles for a set of cases and controls

that had no true associations with the case-controls status (that is, no associations

above and beyond those due to cell type composition). On this null-only simulated

data, EWASher was well-calibrated (yielded non-inflated P values) and did not pro-

duce any false positive markers (Fig. 2.2). Next, in order to examine power, we added

in methylation site-specific signals to create true associations with some sites (roughly

the same number as we believed to be present in the real data, as judged by using the

reference-based analysis). In this setting, EWASher did not produce any false posi-

tives above the Bonferroni threshold among loci generated from the null distribution.

Moreover, it was able to recover true signals just as well as a model that cheated by

using the known (generative) reference cell type composition as covariates (Fig. 2.2f).
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Figure 2.2: We generated synthetic data with cell type composition characteristics based

on the actual RA data. EWASher yielded calibrated P values (no inflation) and did not

produce any false positives. (a) qq plot of the log10 P values for association from the

uncorrected model. Green dashed lines show the 95% confidence intervals. Large deviations

from the diagonal are indicative of inflation. The test statistics were severely inflated similar

to Fig. 2.1(a). (b) qq plot resulting from the inclusion of the cell type composition used

to generate these data as covariates (with linear regression); the P values were calibrated.

(c) qq plot resulting from the use of EWASher, which does not use cell type composition.

(d) Paired plot of the values from (b) and (c). EWASher had good agreement with the

gold standard. (e) Paired plot of the values from (a) and (c). A naive analysis has no

agreement with the gold standard. (f) ROC curve demonstrating that EWASher recovered

true associations as well as the gold standard method which used the cell-type composition.
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Unsurprisingly, both our approach and the reference-based approach, significantly out-

performed the uncorrected model. Note that, if the true association signal is present

only in a relatively rare cell type, then both EWASher and the reference-based method

lose power (as compared to a less rare cell type-based association). In all of these

experiments, EWASher did not find the need for any PC covariates.

To test the model in settings with a larger number of cell types (above we used

five, as in the original RA paper), we simulated additional datasets with up to 50 cell

types. Across all these simulations, EWASher did not find any false positive associations

(those passing the Bonferroni threshold). When the confounding effects are large, our

mathematical analysis predicts that the LMM alone will be underpowered to correct for

them completely. Indeed, in simulations we found that when there are large systematic

differences in cell-type composition between cases and controls, P values were no longer

adequately calibrated by the LMM alone (i.e., large inflation of the test statistic was

observed). However, by adding top principal components to the LMM, EWASher did

correct for all the spurious associations even when the confounding effects were large.

2.3.4 TCGA breast and colon cancer methylation analysis

DNA methylation and other epigenetic marks define cellular identity through their reg-

ulation of gene expression programs, and are known to change during normal tissue

development and differentiation. Dysregulated DNA methylation is associated with

disruptions in developmental processes and can lead to unchecked cell proliferation and

oncogenesis. This is thought to occur through gains and losses of methylation that are

associated with aberrant silencing of tumor suppressor genes and activation of onco-

genes. Thus, investigation of epigenetic associations in cancers is of great importance

toward understanding these diseases.

Solid tumors are particularly likely to contain a heterogeneous mixture of many cell

types, most of which do not have reliable reference methylation profiles. Therefore,

analyses of solid tumors methylation profiles are among those analyses most likely

to benefit from application of EWASher. This difficulty with solid tumors has likely

contributed to the dearth of clinically available DNA methylation biomarkers for the

associated diseases, despite thousands of publications reporting methylation changes in

hundreds of genes.
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Figure 2.3: DNA methylation association with breast and colon cancer. Quantile-quantile

(qq) plot of the log10 P values for association for various methods, with dashed green lines

showing the 95% confidence intervals. Large deviations from the diagonal are indicative of

inflation. The top row (a-c) are from breast cancer, while the bottom row (d-f) are from

colon cancer. In pre-processing, breast cancer data were corrected for batch and breast

cancer subtypes; colon cancer data were corrected for age, gender, and anatomic position

of the sample. First column (a and d) shows the uncorrected model that did not account

for cell type composition. The second column (b and e) shows the PC-only model (with

the top 10 PCs as covariates). The test statistics were still inflated. The third column (c

and f) shows EWASher, which used the top two (breast cancer) and three (colon cancer)

PCs with the LMM.
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We analyzed the TCGA breast cancer methylation data set, comprised of 816 cases

and 124 controls. First, we performed an uncorrected EWAS analysis on this methy-

lation data. We used the case-control status for the phenotype, and controlled only

for batch and breast cancer subtypes (luminal A, luminal B, basal, and Her2). We ob-

served severe inflation of the test statistic, yielding largely useless P values (Fig. 2.3a).

Next, we investigated whether adding top PCs as covariates to a linear regression could

fully control the inflation, finding that they could not (Fig. 2.3b). Finally, we applied

EWASher, our hybrid method, which used two PCs with the LMM. This model suit-

ably corrected the inflation (Fig. 2.3c), and yielded relevant associations as discussed

below.

Two markers passed the Bonferroni threshold. The top marker, cg05127924, is in

the gene body of FBXW10, an F-box protein. The second marker, cg21504624, is in

the promoter of IL11RA, which has recently been suggested as a prognostic biomarker

in human breast cancer. In the same TCGA samples, IL11RA had significantly lower

expression in the cases, consistent with the increased methylation at its promoter. The

next most significant markers, just below the Bonferroni threshold, were in the promoter

or gene body of genes RUNX1, TAGLN, TNS1, OPRM1, and RUNX3. RUNX1 has

been recently identified as a candidate breast cancer tumor suppressor, while multiple

loss of function DNA mutations we observed in RUNX1 in the TCGA survey. OPRM1

is suggested to promote tumor growth and acts as a breast cancer tumor suppressor by

targeting estrogen receptor alpha. RUNX3 acts as a tumor suppressor in breast cancer

by targeting estrogen receptor alpha. In contrast, a similar literature search for the top

ten associated genes in the uncorrected association analysis did not reveal any obvious

connections to cancer. Note that global hypo-methylation can affect up to 50% of the

genome of certain cancer cells, and such large-scale changes can mask the associations

of biologically significant loci. EWASher was able to identify known biomarkers and

drivers of breast cancer, above these global effects. We expect that as sample size

increases in future EWAS, more loci will be associated above the Bonferroni threshold.

Finally, we used a gene ontology (GO) enrichment analysis to further validate our

method. First we identified the nearest genes associated with the top 100 markers

from both our method and the uncorrected method, and then analyzed the respective

gene sets for enriched categories. The four most enriched GO categories (each with

p < 0.002) for genes identified through EWASher were: immune response, defense
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response, induction of apoptosis, and cell proliferation. These findings are consistent

with our understanding of the role of immune response in breast cancer, as well as

with the general model of cancer-driven proliferating cells. In contrast, the four most

enriched GO categories for genes from the uncorrected analysis were not particularly

specific to cancer: disulfide bond, signal peptide, secreted, and signaling cascade.

One of the core ingredients of EWASher is the similarity matrix computed from

selected loci (and used in the LMM component). This matrix, which contains the

pairwise similarity between all individuals in a cohort, can be used to visualize the

relationship amongst samples. In a heatmap of the clustered similarity matrix of the

breast cancer data, the control samples clustered closely together, while there were

three clusters among the cases. Upon closer examination, cluster 1 was enriched for

samples diagnosed as Luminal B; cluster 2, for those diagnosed as Basal; and cluster 3,

for those diagnosed with Luminal A and B. Visualization of the similarity matrix can

thus reveal interesting biological subtypes among samples. It is interesting to note that

we still observe cancer subtypes in the similarity matrix even though we had explicitly

used the subtypes as covariates in correcting the data. This suggests breast cancer

subtypes correlate with nonlinear changes in the methylome and cell-type composition,

and cannot be fully accounted by linear covariates.

Next we analyzed the TCGA colon cancer methylation data set comprising 270

cases and 38 controls. After correcting for age, gender, and the anatomy of the sample,

we observed severe inflation of the test statistic (Fig. 3.3d). As with breast cancer,

adding PCs as covariates to a linear regression did not control all of the inflation (Fig.

3.3e). In contrast EWASher (which used the top three PCs with the LMM) was able

to fully control inflation of the test statistic (Fig. 3.3f).

The EWASher methylation analysis yielded three markers that passed the Bon-

ferroni significance threshold. These were in the gene bodies of MYBPC3, C9orf50,

and SND1. SND1 is recognized as an oncogene in many cancers, and increase in its

expression is correlated to colon cancer progression. Markers just below the Bonferroni

threshold of 3.9x10−7 were in the promoter of SALL3 and the gene bodies of ZMIZ1,

LRRC4, and NCOR2. SALL3 was recently discovered to be aberrantly methylated

and down-regulated in human hepatocellular carcinoma. ZMIZ1 is an androgen re-

ceptor and is aberrantly expressed in a large fraction of human breast, ovarian and

colon cancers. LRRC4 is a putative tumor suppressor gene, with potential to decrease
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growth rates. NCOR2 down regulates target genes by recruiting histone deacetylases,

and aberrant expression of this gene is observed in several cancers. GO analysis of

the top 100 markers did not reveal any particularly interesting categories for either

EWASher or an uncorrected analysis, perhaps owing to the smaller sample size and

consequently loss in power relative to the breast cancer data set, or to differences in

disease architecture.

As in the breast cancer analysis, we again clustered and visualized the similarity

matrix, which yielded two distinct clusters among the cases, and one cluster for the

controls). Compared with cluster 1, cluster 2 was significantly enriched for tumor

samples extracted from the right colon. This finding is consistent with previous reports

that gene methylation varies between the two sides of the colon. We also found that

cluster 2 was correlated with a higher incidence of lymphatic invasion (p < 0.01), which

is supported by the observation that cancer in the right colon correlates with poorer

prognosis.

2.4 Discussion

We have demonstrated the utility of our method on a bronze standard RA data set

annotated with cell type composition. We showed that our reference-free EWAS ap-

proach works just as well as a reference-based approach, both in controlling for false

positives and in finding associations of interest. We further validated our approach on

gold standard synthetic data sets, demonstrating that EWASher successfully removes

false positives, while maintaining just as much power as a reference-based approach.

Finally, we applied our approach to TCGA breast cancer and colon cancer data sets,

revealing relevant biological associations not obtainable by currently available analysis

methods.

The core strength and uniqueness of our method is that it does not require knowl-

edge of cell type compositions and reference cell methylation profiles, information that

is both difficult and expensive to obtain, yet performs as well as methods that use

such reference information. We believe this method can significantly expand the scope

of EWAS, making it possible to conduct EWAS on samples for which it is extremely

difficult to measure cell compositions. Additionally, the approach allows users to detect
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clusters amongst the samples and to visualize their relationships, possibly leading to

further insights about the data.

One limitation of our approach is that we cannot analyze each cell type individually,

as we do not explicitly decompose each sample into its constituent cell types. Investi-

gating how to adapt our approach for such analyses is of interest. It should be possible

to combine our method with a reference-based approach, for cases where not all (or a

sufficient number) of the references are known. For example, if one had some reference

profiles available, one could include them as covariates, and then use our approach to

model the residual confounding. Thus, our model should allow for the use of available

prior knowledge.

All experiments herein were univariate tests of one methylation site. However,

it could be useful to jointly test multiple sites at once. All of our methods directly

generalize to such a setting. Although we have applied a linear model to a binary

phenotype, these types of models have previously been applied to case-control data

with great success. Additionally, others have provided theoretical arguments for the

use of linear models with case control data.

Finally, we note that although our experiments focused on methylation data, we

believe that our method, or generalizations thereof, are likely to prove useful for other

types of data as well, such as gene expression and DNA hypersensitivity. This is an

interesting direction for future investigation.

Table 2.1: Methylation loci significantly associated with RA. - The same five loci

passed the Bonferroni threshold in both EWASher and the bronze standard method which

used cell type composition as a covariate. The two methods also gave the same estimates

of effect sizes.

ID Chr Gene Effect (EWASher) Effect (bronze standard)

cg05428452 6 HLA-DQA2 -0.11 -0.11

cg07839457 16 NLRC5 -0.11 -0.11

cg16411857 16 NLRC5 -0.10 -0.10

cg25372449 6 HLA-DRB5 -0.09 -0.09

cg20821042 6 HLA-DQA2 -0.09 -0.09
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2.5 Supplemental methods

RA data was obtained directly from the authors of (67), but is all publically available

as indicated in their paper. The TCGA breast and colon cancer DNA methylation data

was downloaded from the TCGA data portal: https://tcga-data.nci.nih.gov/tcga/. Our

suite of tools includes functionalities to cluster and visualize the similarity matrix as a

heatmap, in addition to performing the EWASher association analysis.

We deemed a site to be constitutively methylated if its average probe value across all

samples (cases and controls) is above 0.8; and we call a site constitutively unmethylated

if its average probe value across samples is below 0.2. Because we look for markers

correlated with the phenotype, we remove such constitutive loci from our association

analysis.

For GO enrichment analysis, we first had to assign markers to genes using the hg19

UCSC annotations. If a marker was in the promoter or gene-body, we assigned it to

that gene. Intergenic markers were not assigned to genes. For the GO analysis, we

collect genes associated with the top 100 markers from each method (EWASher and

the uncorrected analysis). We then performed gene set enrichment analysis on these

two sets of genes using DAVID, and report the most significantly enriched categories

based on P values.

EWASher is computationally efficient. Each of the datasets analyzed (RA, breast

and colon cancer) were analyzed by EWASher on a single laptop (Lenovo X1 Carbon

with 8Gb of RAM) in 1-5 minutes. Furthermore, the linear mixed model backbone of

EWASher has been successfully scaled to large GWAS datasets1416, and the EWASher

running time is just a constant times the LMM running time. The constant is the

number of PCs scanned (typically 1-5). Therefore as the size of EWAS approaches that

of GWAS, EWASher will be a fast and memory efficient tool performing genome-wide

analyses.

2.5.1 Simulations

To simulate null-only data in such a way as to most closely mimic the actual RA

data, we obtained the previously inferred cell type composition for each sample in

RA, as well as the reference DNA methylation maps for each of the five blood cell

types. To simulate a sample, we took the weighted average of the five reference cell
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types, with weights given by the previously inferred cell type composition from the

real data. We then we added independent and identically distributed Gaussian noise

to each marker. The relative performance of EWASher and the method which used

the reference-based cell type composition was robust to the amount of noise added (we

tried noise standard deviation in the range 0.05 to 0.3). To add synthetic locus-specific

signal, we selected a cell type (or a set of cell types) as being differentially expressed

between case and control, and then created a case reference methylation profile from the

null-only reference methylation profile by making the causal loci systematically higher

(or lower) compared to the control reference profile. The samples were then simulated

as before, only now using a weighted sum of either case, or control reference profiles,

as appropriate.

For the simulations with additional cell types and individuals:

1. We generated synthetic reference cell-types by first breaking the five blood refer-

ence methylomes (from the RA dataset) into megabase blocks and then taking random

combinations of these blocks to create a new cell type.

2. For simulation with N cell types, we set one N-dimensional Dirichlet distribution

for cases and another for the controls.

3. For each case sample, we drew a set of mixture weights from the case Dirichlet,

and then took the weighted average of the N reference cells. A similar procedure was

conducted for the control samples.

4. We next added identically and independently distributed Gaussian noise to each

marker, with a noise standard deviation of 0.1, as this matched the empirical noise

distribution. We tried varying the standard deviation from 0.05 to 0.3 and EWASher

continued to robustly control inflation of the test statistics.

The description of EWASher uses the concept of the genomic control factor, λ, which

is defined as the ratio of the median observed to median theoretical test statistic. When

there is no signal in the data, a calibrated result corresponds to λ = 1, and values of

λ substantially greater than 1.0 are indicative of inflation. Methylation values were

normalized to be between 0 and 1, and then, within the LMM, further normalized to

have mean zero and unit variance.
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2.5.2 The EWASher model

EWASher seeks to find the simplest combination of PCs and LMM that control for

inflation of the test statistics. It works as follows:

1. Filter out markers that are constitutively high or low.

2. Run the uncorrected association analysis, and rank all the methylation loci by

their significance. As in FaST-LMM-Select, we select the top K loci to construct the

methylation similarity matrix, where K is automatically determined by maximizing

cross-validation likelihood.

3. Using the similarity matrix determined from step 2 with the LMM, compute an

association P value for each site. If the genomic control factor, λ, is still inflated (see

note below), compute the PCs across all samples. Include the top PC as a covariate,

and then rerun the linear regression model to rank all the loci by significance (now

conditioned on the first PC). As in step 2, use the selected loci to construct the similarity

matrix. This gives the EWASher model comprising the LMM and one PC, which is

then used to compute association significance for each site. If λ is still inflated, use the

top 2 PCs as fixed covariates, and iterate until the inflation is controlled.

On the colon cancer data set, EWASher with 1 or 2 PCs cannot correct for inflation

of test statistics (λ = 2.1, and 1.1, respectively). With 3 PCs, EWASher sufficiently

controls the inflation. For our datasets we set the inflation threshold to be λ = 1. Note

that in GWAS studies with polygenic effects, it has been observed that λ can appear

slightly inflated due to signal in the data; thus, setting the threshold of λ = 1 might

be too conservative. In these cases λ values up to say 1.1 can be tolerated. Similarly

in EWAS, if practitioners have prior belief that many loci might be truly associated

with the phenotype beyond cell composition confounding, then they can experiment

by setting the EWASher λ threshold to be above 1(i.e., the algorithm stops after λ

falls below this threshold). In studies where controlling for all spurious associations is

absolutely crucial, we suggest using the more conservative λ = 1 threshold.

As in the GWAS applications of the LMM, it is important to select methylation sites

when constructing the similarity matrix. If we use all the methylation loci to construct

the similarity matrix, then we are likely to introduce additional noise since many loci

in the genome do not correlate with cell-type composition. When we used all loci to

compute similarity for the RA data, the resulting LMM could not sufficiently correct
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for inflation of test statistics. Similarly, it is important to re-select markers after adding

in an additional PC covariate. Combining PCs with LMM have been suggested in the

GWAS context, although, to our knowledge, it has not fully been explored. The idea of

performing feature selection for features in the LMM similarity matrix, iteratively, as

we condition on increasingly more PCs covariates, is a novel contribution of this paper,

and it significantly improves the performance of EWASher.

2.6 Mathematics of EWASher

2.6.1 Overview

EWASher uses a combination of a linear mixed model (LMM) and principal component

covariates. LMMs tackle confounders by modeling the similarity between every pair

of individuals. We first describe the LMM in Section 2. Then we discuss cell type

composition in Section 3, which is a key confounder in EWAS. In this section we

also show how our similarity score captures the similarity in cell composition between

samples. In Section 4, we discuss the limitations of the LMM, and show mathematically

that when the confounder is strong, the LMM alone does not adequately model the

confounder. This failing motivates our development of the hybrid LMM + PC model.

In Section 5, we discuss the connection between the LMM and PCA, while in Section

6, we describe EWASher.

2.6.2 Linear mixed models

In a linear mixed model (LMM), the phenotype y is expressed as a sum of fixed effects

β, βs and random effects u

y = Xβ + Xsβs +
1√
M

Gu + ε. (2.1)

• If there are N samples, then y is a N-by-1 vector. In this paper, y is a binary

phenotype corresponding to case/control status (see main paper for discussion of

application of a linear model to binary phenotypes).

• X is a matrix of known covariates, such as age, sex, batch, etc.

• Xs is a N-by-1 vector of the methylation values at site s across all samples. Site

s is being tested for its univariate association with y.
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• G is a N-by-M matrix whose (i, j) entry is the methylation value of marker j in

sample i. In practice, we assume that the markers are normalized so that the

columns of G have zero mean and unit variance.

• u is a M-by-1 vector whose entries are identically and independently distributed

(iid) samples from a Gaussian: u ∼ N(0;σ2
gIM), where IM is the M-by-M identity

matrix.

• ε ∼ N(0;σ2
eIN) is iid random noise.

We would like to estimate βs for every methylation site in the data, and compute

the P value for its significance. The null model is that βs = 0 and

y = Xβ +
1√
M

Gu + ε. (2.2)

The p value is computed by comparing the ratio of the alternative and the null likeli-

hoods to the χ2
1 distribution.

Two equivalent views of LMM. One way to think of the LMM is, as in Eqn.

2.1, a Bayesian regression that integrates over the random effect u. Equivalently, we

can also think of it as a multivariate Gaussian. The likelihood of y after integrating

over u is∫
N(y|Xβ+ Xsβs +

1√
M

Gu;σ2
eIN)N(u|0;σ2

gIM)du = N(y|Xβ+ Xsβs;σ
2
gK +σ2

eIN)

where K = 1
MGGT is the similarity matrix. The entry (i, j) of K captures how similar

the methylome of sample i is to that of sample j.

2.6.3 How the LMM captures cell type composition

Suppose there are T reference cell types for the EWAS problem on hand. Let R be the

M-by-T matrix of methylation values for each reference type. That is, R(s, t) is the

methylation of site s in cell type t. Each sample i can, in principle, be characterized by

a cell-type composition vector Wi = (wi1, ..., wiT )T (which may be known or unknown).

The fraction of sample i that is cell type t is wit and
∑

twit = 1. The methylation profile

of sample i is then Gi = RWi. The similarity between samples i and j is K(i, j) =

1
MGiG

T
i = 1

MWT
i RTRWj. We can decompose RTR using a spectral decomposition,

RTR = UΛU
T

, where Λ is diagonal and contains the eigenvectors, while U contains
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the eigenvectors. What’s important to observe is that if the cell types are equally

dissimilar to one another, then all the diagonal entries (eigenvalues) are approximately

equal. In this case, K(i, j) ∝WT
i Wj (because UUT = I), and therefore it can directly

be seen that computation of the kernel K directly models the cell type composition. In

practice, even with small deviations from this assumption, we expect the LMM to do

well in modeling cell type heterogeneity (indeed, this bears out in our experiments in

the main paper).

Note that on real and simulated data, we find that the LMM best removes spurious

signals if, instead of using all the methylation sites to compute K, we select for loci

that are highly correlated with the phenotype as columns of G. This selection tends

to pick out loci that are tagging cell-type composition.

2.6.4 Limits of the LMM

We analyze a simple example below to illustrate that the LMM alone does not ade-

quately capture strong confounders when the sample size is large. The main idea here

will be to (1) assume a particular methylation site that is strongly predictive of the

phenotype, due to confounding, (2) use the LMM to condition on just this site, while

testing this site, and (3) show that such conditioning does not entirely remove the sig-

nal, and therefore that this site would appear as significant. The consequence of this

conclusion is that conditioning on a variable by using it as a random effect (i.e. in the

similarity matrix of the LMM), does not always always fully control for that variable.

We now formally go through this argument.

Assume that we have a N-by-1 binary phenotype y, and one marker that we want

to test, x = y + δ, where, where δ ∼ N(0;σ2IN). It turns out to be more convenient

to work in a different coordinate system, so we now rotate the data in such a way

that x = [||x||, 0, ..., 0]T . (The intuition here is that x is a vector that points to one

particular direction in N -dimensional space, and therefore we can pick out this direction

as our first coordinate, so that the now rotated x becomes nothing more than a vector

with some magnitude in this one coordinate, and no magnitude in any other direction.)

When N is large, ||x||2 ≈ Ncase + Nσ2. Because δ is sampled from a spherically

symmetric Gaussian, its rotation, δ′, is also a sample from N(0;σ2IN). Thus, we now

have y = [||x||, 0, ..., 0]T − δ′.
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Suppose x is correlated with y due to very strong confounding. In this case, we

would like the LMM to learn that it is not significant. An extreme scenario is to use the

same x to construct the similarity matrix: K = xxT. The null model likelihood (assum-

ing no covariates for simplicity but without loss of generality) is N(y|0;σ2
gK + σ2

eIN).

The covariance matrix of the Gaussian is nicely diagonal diag[σ2
g ||x||2 + σ2

e , σ
2
e , ..., σ

2
e ].

When N is large, it will turn out that σ2
g ||x||2 >> σ2

e . So to keep the exposition

simple, we can approximate the covariance matrix by diag[σ2
g ||x||2, σ2

e , ..., σ
2
e ]. The

log-likelihood under the null model can be expressed in the factored form

LLnull ≈ −
1

2
log 2πσ2

g ||x||2 −
||x||2

2σ2
g ||x||2

− N

2
log 2πσ2

e −
||δ′||2

2σ2
e

. (2.3)

Solving for σ2
e and σ2

g that maximizes LLnull and plugging it in yields

LLnull ≈ −
1

2
log 2π||x||2 − N

2
log 2π||δ′||2 − 1. (2.4)

The alternative model likelihood is N(y|x;σ2
gK+σ2

eIN). Using the fact that x = y+

δ, this can be rewritten as N(δ|0;σ2
gK+σ2

eIN). Because we optimize over σ2
g and σ2

e , we

can set σ2
g = 0 and obtain a lower bound on the alternative likelihood of N(δ|0;σ2

eIN).

The log-likelihood is

LLalt ≥ −
N

2
log 2πσ2

e −
||δ||2

2σ2
e

. (2.5)

After optimizing σ2
e , we have

LLalt ≥ −
N

2
log 2π||δ||2 − 0.5. (2.6)

Since ||δ||2 = ||δ′||2 due to rotational invariance, the difference between the alternative

and null log-likelihood is

LLalt − LLnull ≥
1

2
log 2π||x||2 (2.7)

Therefore as the number of samples increases, the difference between the alternative

and null model likelihoods increases approximately as log(Ncase +Nσ2), at some point

yielding a significant likelihood ratio test statistic (twice the difference in likelihoods).

So even when we condition on x by way of including it as a random effect, we find

that testing x as a fixed effect can be significant (the larger the sample size, the more

significant). In other words, x remains a significant predictor of y even when condi-

tioning on x itself by way of the LMM (i.e., use it to build the similarity matrix in
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the LMM). While very simple, this example sheds light on the limitations of the LMM

in correcting for strong confounders when the sample size is large, and motivates our

proposed hybrid PC + LMM approach. The setting of this example can arise when

the cases all contain a significant fraction of one cell type, which is present only in low

amount in the controls. Then if x is a site that is specifically methylated in this cell

type, x will be strongly correlated with the phenotype, y, as in our example above.

2.6.5 The connection between PCs and LMM.

In this section we show that using PCs as fixed effect covariates is equivalent to using

the maximum likelihood approximation to the Bayesian LMM regression.

Recall from Eqn. 1 that the linear mixed model can be written as y = Xβ+Xsβs+

1√
M

Gu+ε, where u are the random effects that correct for confounding structure in G.

After integration of u, we’re left with the marginal form, N(y|Xβ+Xsβs;σ
2
gK+σ2

eIN),

where K = 1
MGGT is the similarity matrix. Also recall that when using PC covariates

to correct for confounding, we would add the leading principal components from GGT

to a linear regression.

Now consider the singular value decomposition of 1√
M

G given by 1√
M

G = AΛB,

where A is the N-by-N left singular matrix, B is the M-by-M right singular matrix, and

Λ is a diagonal matrix. The columns of A are the eigenvectors of GGT or, equivalently,

the principle components of G. Then we can rewrite 1√
M

Gu with u ∼ N(0;σ2gIM) as

1√
M

Gu = AΛv with v ∼ N(0;σ2gBBT). A low rank approximation is then 1√
M

Gu ≈∑L
i=1 Aiλivi, where {Ai}Li=1 are the top L principal components. If we were to take only

take the top few PCs, we could estimate vi explicitly without overfitting, and therefore

we could treat vi not as random variables to be integrated out, but instead estimate

them by way of maximum likelihood. Therefore the low-rank maximum likelihood

approximation to the linear mixed model is given by

y = Xβ + Xsβs +

L∑
i=1

Aiλivi + ε, (2.8)

which is precisely the PC-based correction that is used in GWAS and similar studies.

Note that this PC approximation is only good if G is actually low-rank. When there

are many latent cell types and when there are other hidden confounders, G is no longer

low rank. In real data sets that contain such effects, such as rheumatoid arthritis,

28



2.6 Mathematics of EWASher

breast cancer and colon cancer, we find that the top PCs do not sufficiently model the

confounders, resulting in inflated test statistics.

2.6.6 EWASher

EWASher augments the linear mixed model with top PCs as covariates so that it can

correct for confounding even when it is strong. The model is

y = Xβ + Xsβs +
L∑
i=1

Aiλivi +
1√
M

Gu + ε (2.9)

where β, βs and {vi}Li=1 are fixed effects and u is the random effect. L is the number of

top PCs used. We use an iterative procedure to find the minimum L that corrects for

test statistic inflation as captured by the genomic control factor λ. This corresponds to

finding the simplest model, i.e. one with the fewest number of parameters, that controls

the inflation. The algorithm is initialized with L = 0 which is just the standard LMM

of Eqn. 2.1. If this model has inflated test statistics (λ > 1), we then add the top one

PC to the model. If this model is still insufficient, we set L = 2 and iterate. Note that

because the LMM portion of the model does feature selection to build the similarity

matrix, K, one could choose to redo this feature selection upon addition of each new

PC. In practice, we find that such redoing of the feature selection is essential.

To compute the PCs in EWASher, we represent each sample as an M-by-1 vector,

where M is the total number of measured methylation loci, and perform the standard

PCA. As an alternative approach, we have investigated performing feature selection

for the PCA, whereby each sample is represented by a subset of loci. These loci can

be selected through univariate regression against the phenotype, as with the LMM.

Such an approach is similar to discriminative PCA. On real and simulated data, we

did not observe significant differences in results from using the standard PCA or the

feature selection PCA in EWASher, and therefore chose to go with PCA without feature

selection.
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3

Genome-wide Analysis Reveals

Conserved and Divergent

Features of Notch1/RBPJ

Binding in Human and Murine T

Lymphoblastic Leukemia Cells

3.1 Overview

Notch1 regulates gene expression by forming transcription activation complexes with

the DNA-binding factor RBPJ and is oncogenic in murine and human T cell progenitors.

We used ChIP-Seq to identify Notch1 and RBPJ binding sites in human and murine

T-LL genomes. In both species, Notch1 binds preferentially to promoters, to RBPJ

binding sites, and near imputed ZNF143, Ets and Runx sites. ChIP-Seq confirmed

that ZNF143 binds to 40% of Notch1 sites. Notch1/ZNF143 sites are characterized by

high Notch1 and ZNF143 signals, frequent co-binding of RBPJ (generally through sites

embedded within ZNF143 motifs), strong promoter bias, and lower levels of activating

chromatin marks than other classes of Notch1-binding sites. K-means clustering of

Notch1 binding sites and associated motifs identified conserved Notch1-Runx, Notch1-

Ets, Notch1-RBPJ, Notch1-ZNF143, and Notch1-ZNF143-Ets clusters with different

genomic distributions and levels of chromatin marks. Although Notch1 binds mainly to
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gene promoters, 75% of direct target genes lack promoter binding and are presumably

regulated by enhancers, which were identified near MYC, DTX1, IGF1R, IL7R and

the GIMAP cluster. Human and murine T-LL genomes also have many sites that

bind only RBPJ. Murine RBPJ only sites are highly enriched for imputed REST sites,

whereas human RPBJ only sites lack REST motifs and are more highly enriched for

imputed CREB sites. Thus, there is a conserved network of cis-regulatory factors that

interacts with Notch1 to regulate gene expression in T-LL cells, as well as novel classes

of divergent RBPJ only sites that also likely regulate transcription.

3.2 Introduction

Notch receptors participate in a highly conserved signaling pathway that regulates de-

velopment and tissue homeostasis. Signaling is mediated through a series of proteolytic

cleavages, the last carried out by γ-secretase, that permit the Notch intracellular domain

(NICD) to translocate to the nucleus and form a transcriptional activation complex with

the DNA-binding factor RBPJ (also known as CSL in vertebrates and Su(H) in flies;

for recent review, see (79)). This complex in turn recruits a Mastermind (MAML)

family member, other co-activators, and mediator complex components, leading to reg-

ulated target gene expression. NICD-containing transcription activation complexes are

believed to turn over rapidly due to transcription-coupled degradation. In the absence

of NICD, RBPJ can also bind several transcriptional co-repressors, supporting models

in which RBPJ functions like a transcriptional switch. However, genome-wide studies

of RBPJ and NICD binding have yet to be done in higher organisms and other more

complex modes of RBPJ/Notch1 interaction with genomes can be envisioned.

Notch effects are variable, depending both on dosage and the chromatin state of the

signal-receiving cell. Dysregulated Notch signaling has been implicated in human de-

velopmental disorders and cancers, most notably T lymphoblastic leukemia/lymphoma

(T-LL), in which the majority of human and murine tumors acquire somatic gain-of-

function mutations in Notch1 that increased nuclear levels of NICD1 (37). Dysregulated

RBPJ-dependent gene expression is also seen in other cancers, particularly B cell tu-

mors associated with Epstein-Barr virus (EBV), which encodes viral proteins that bind

RBPJ and modify gene expression (34, 55, 56, 71). With few exceptions, however, ac-
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tivating Notch mutations have been confined to T-LL, suggesting that high-level Notch

signaling is uniquely transforming within the epigenetic context of T cell progenitors.

Recent data indicate that transcription factors bind widely throughout genomes

and that individual transcription factor binding sites show substantial evolutionary

divergence (15, 84). To identify conserved relationships of likely fundamental impor-

tance, as well as potentially interesting points of evolutionary divergence, we performed

ChIP-Seq for Notch1 and RBPJ in human and murine T-LL cell lines.

3.3 Results

Notch1 and RBPJ binding sites in human T-LL cell genomes. Initial ChIP-Seq studies

were done with the Notch1-dependent human T-LL cell line CUTLL1 (60). Duplicate

ChIP-Seq libraries prepared with antisera to RBPJ and Notch1 showed reproducible

enrichment of DNA sequences (10x106 to 25x106 reads per library) that aligned to

the human genome. Analysis of Chip-Seq data pooled from the CUTLL1 Notch1 and

RBPJ libraries identified 3846 high confidence Notch1 binding sites and 2112 high con-

fidence RBPJ binding sites (false discovery rate (FDR)< 0.01) (Fig. 3.1A). Only 36%

of Notch1 peaks overlapped with RBPJ binding sites, while 66% of RBPJ peaks over-

lapped with Notch1 binding peaks. Most Notch1 and RBPJ binding sites were found in

promoters, defined as regions within 2 kb of annotated refseq gene transcriptional start

sites (TSSs). In line with prior studies in Drosophila suggesting that genomic RBPJ

binding is stabilized by NICD (17), RBPJ and Notch1 ChIP-Seq signals were higher at

sites where both bound (Fig. 1B) (p < 10−6 for both comparisons).

3.3.1 Transcription factor motifs enriched at sites of Notch1 and RBPJ

binding in human T-LL cells.

To gain insight into factors that influence Notch1 and RBPJ binding to T-LL genomes,

binding data for recombinant RBPJ on oligonucleotide arrays (protein binding mi-

croarrays, or PBMs) (26) were used to identify the highest affinity RBPJ binding site

within 100bp of the center of each Notch1 binding site. Both RBPJ/Notch co-sites and

Notch1 only sites were significantly enriched for high-affinity RBPJ binding sequences

compared to random genomic sequences (p < 10−10), suggesting that many Notch1

only sites also bind RBPJ. The promoter localization of RBPJ/Notch1 and Notch1
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Figure 3.1: Notch1 and RBPJ binding sites in human TLL cells. (A) Distribution and

overlap of RBPJ and Notch1 binding peaks in CUTLL1 cells. Promoter regions are defined

as sequences within 2 kb of the TSS of annotated genes. (B) Notch1 and RBPJ ChIP-Seq

signals (expressed as reads per kilobase per million aligned reads, RPKM) at Notch1-only

sites, RBPJ-only sites, and RBPJ/ Notch1 cosites. (C) Enriched transcription factor motifs

lying 250 bp of Notch1 and RBPJ binding sites. A RBPJ consensus motif embedded within

the extended ZNF143 motif is boxed.
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only sites was not significantly different (63% versus 59%, respectively). Failure to de-

tect RBPJ at sites with RBPJ consensus sequences may stem from shielding of RBPJ

epitopes within certain complexes. It is also possible that some Notch1 only sites result

from RBPJ-independent binding of Notch1 to other chromatin-associated proteins or

are an artifact of cross-linking of bona fide Notch1 sites to other regions of the genome

via chromatin looping.

Additional insights came through a search for transcription factor motifs enriched

within 250 base pairs of the center of each RBPJ and Notch1 binding site. For Notch1

sites the most enriched motif (compared to its overall genomic frequency) was that of the

zinc finger protein ZNF143, followed by those for Ets and Runx factors (p < 10−50 for

each motif) (Fig. 3.1C); these imputed factors in the same rank order were associated

with both Notch1/RBPJ co-sites and Notch1 only binding sites. ZNF143 was also the

most enriched motif associated with RBPJ binding sites, followed by the motifs for

CREB, Ets factors, and Runx factors (p < 10−50) (Fig. 3.1C). Of note, the ZNF143

consensus motif contains an embedded high-affinity site for RBPJ, providing a likely

explanation for association of RBPJ and Notch1 with these sites. Overall, the CREB

consensus motif was found in association with 46% of the RBPJ only sites, as compared

to 25% of Notch1/RBPJ co-sites (p < 10−6). Compared to RBPJ sites without CREB

motifs, the 588 RBPJ/CREB sites had lower affinity RBPJ binding sites (based on PBM

score, p < 10−10), yet also had higher RBPJ signals, suggesting that other factors (e.g.,

protein-protein interactions) contribute to RBPJ association with imputed CREB sites.

3.3.2 Confirmation of ZNF143 association with RBPJ and Notch1

binding sites.

Western blotting confirmed the presence of activated Notch1, RBPJ, ZNF143, the

Ets factors GABPA and Ets1, Runx1, and CREB in 3 human and 2 murine Notch1-

dependent T-LL cell lines. In local ChIP assays performed on 4 to 5 randomly selected

Notch1 binding elements with imputed ZNF143, GABPA, Ets1, or Runx1 sites, 17 of

17 sites tested showed significant binding by each factor, suggesting a high fraction of

imputed sites are bound by the corresponding transcription factor. This is expected

for Ets factors and Runx factors, which bind widely to the genomes of Jurkat T-LL

cells (51, 52), are required during early stages of T cell development (49), and interact

functionally with Notch1 in early hematopoiesis (9).
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Figure 3.2: Frequent association of ZNF143 and Notch1 binding sites in human TLL

cells. (A) Distribution of ZNF143 binding peaks and overlap with RBPJ and Notch1 sites

in CUTLL1 cells. (B) Enriched transcription factor motifs lying 250 bp of ZNF143 binding

sites. (C) ZNF143 and Notch1 ChIP-Seq signals (expressed as RPKM) at ZNF143 sites with

and without Notch1, and Notch1 promoter (Pro), and nonpromoter sites with and without

ZNF143. (D) Correlation of Notch1 and ZNF143 signals on individual cosites sites with or

without RBPJ signals. (E) Overlap of Notch1 sites with ZNF143 and RBPJ binding sites

in CUTLL1 cells, expressed as the distance in base pairs between the centers of Notch1 and

ZNF143 copeaks (Left) and Notch1 and RBPJ copeaks (Right). (F) EMSA done with an

oligonucleotide containing the SKP2 promoter ZNF143/Notch1 cosite. ZNF143 and RBPJ

were added at concentrations of 280 and 407 nM, respectively. In one lane, an unlabeled

probe was added in 200-fold excess over the labeled probe.
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In contrast, little is known about ZNF143. To confirm the association of ZNF143

with Notch1 and RBPJ, ZNF143 ChIP-Seq was carried out in CUTLL1 cells (Table S1),

resulting in the identification of 3684 high confidence ZNF143 binding sites (FDR¡0.01)

(Fig. 3.2A). The genome-wide distribution of ZNF143 binding was similar to that of

Notch1and RBPJ, with 60% of the binding sites located in promoters. Remarkably,

40% (n=1551) of the ZNF143 binding peaks lay within 100 bp of the center of Notch1

binding sites, and 15% (n=544) overlay RBPJ/Notch co-peaks (Fig. 3.2A). Motif anal-

ysis confirmed that the most highly enriched associated motif was that of ZNF143 (Fig.

3.2B). Among the ZNF143 sites overlapping with Notch1 peaks, 67% (n=1044) con-

tained the ZNF143 consensus motif, and of these 57% (n=591) harbored an embedded

high-affinity RBPJ binding site. ZNF143 signals were higher at sites where Notch1 also

bound, as were Notch1 signals at sites with ZNF143 co-binding (Fig. 3.2C)(p¡10-100

for each). Consistent with these associations, Notch1 and ZNF143 signals correlated

at co-sites (R2=0.66), with co-sites having high confidence RBPJ signals showing the

highest Notch1/ZNF143 co-signals (Fig. 3.2D). In line with the possibility that Notch1

is associating with these sites via RBPJ binding sequences embedded within ZNF143

motifs, on average the positions of ZNF143 and Notch1 co-peaks coincided exactly

(within 2bp), closely approximating the degree of overlap between RBPJ and Notch1

co-peaks (Fig. 3.2E). Prior in silico analysis and local ChIP studies suggest ZNF143

preferentially binds bi-directional promoters (39, 66). The ZNF143 sites identified in

CUTLL1 cells confirmed this, as out of 1048 bi-directional promoters in the genome,

285 (27%) bound ZNF143, and of these, 173 also bound Notch1. Of note, NFY1, Ets,

and YY1 motifs, each of which are enriched near ZNF143 sites (Fig. 3.2B), are all also

enriched in bi-directional promoters.

3.3.3 Identification of distinct classes of Notch1 and RBPJ binding

sites.

Cluster analysis was used to investigate whether associated transcription factors sort

Notch1 binding sites into different classes. Each Notch1 binding site in CUTLL1 cells

was represented as a five-dimensional vector corresponding to the presence or absence

of RBPJ or ZNF143 binding, or imputed Ets, Runx, and CREB sites. K-means clus-

tering of all 3846 Notch binding sites revealed 5 major clusters named Runx, Ets,

ZNF-Ets, ZNF, and RBPJ for the predominant cofactor(s) (Fig. 3.3A). The Runx

36



3.3 Results

Figure 3.3: Transcription factors associated with Notch1 binding sites define distinct

classes of putative response elements in TLL cells. (A) K-means clus- tering of Notch1

binding sites in CUTLL1 cells. In the clusters shown at the left, each red line represents

a genomic Notch1 binding site where cobinding (RBPJ, Znf143) or a motif (ETS, RUNX,

CREB) for the indicated factor is seen. The numbers at the right are the fraction of binding

sites within each cluster that are found within promoters of annotated genes and the asso-

ciated Notch1 and RBPJ ChIP-Seq signal strengths (RPKM). (B) Mean histone H3K4me3

signals (Left) and relative gene expression (Right) for genes with Notch1 promoter bind-

ing by cluster designation. Normalized gene expres- sion was determined by expression

profiling of CUTLL1 cells. (C) Distribution of H3K4me3 signals in Notch1-binding pro-

moters (Left) and H3K4me1 sig- nals in Notch1-binding intergenic sites (Right) by cluster

designation. 0 marks the center of the associated Notch1-binding peaks.
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cluster showed a bias for non-promoter sites, whereas the ZNF143 and ZNF143-Ets

clusters had a strong promoter bias and high Notch1 signals (Fig. 3.3A). To further

characterize these classes, Chip-Seq for activating H3K4me1 (enhancer) and H3K4me3

(promoter) histone marks as well as repressive H3K27me3 marks were performed in

CUTLL1 cells. Subtle but statistically significant differences in H3K4me3 signals were

noted among the various clusters at promoters, with the highest marks (Fig. 3.3B,

p < 0.01) and the greatest nucleosome displacement (Fig. 3.3C) being associated with

the Ets and Runx clusters, and the lowest marks and least nucleosome displacement

with the ZNF143 cluster. Consistent with these measurements, mean steady state gene

expression (described below) was highest for genes with Ets sites in their promoters and

lowest for genes with ZNF sites (Fig. 3.3B, p < 0.01). More striking differences were

observed at non-promoter sites, with the highest H3K4me1 signals and greatest nucle-

osome displacement being associated with the Ets and Runx clusters and the lowest

with the RBPJ, ZNF143-Ets and ZNF143 clusters (Fig. 3.3C, p < 0.001). Promoter

and intergenic ZNF143 sites that did not bind Notch had lower active chromatin marks

(p < 0.0001 for both comparisons) and higher repressive marks (H3K27me3) (Fig. S5C,

p < 10−100) compared to those that did, suggesting that ZNF143 only sites may be

associated with repressive complexes.

The chromatin marks of RBPJ only (no Notch1) binding sites were also assessed.

RBPJ sites without Notch1 had significantly lower intergenic H3K4me1 and promoter

H3K4me3 signals (p < 0.05); furthermore, RBPJ only sites associated with CREB

motifs had lower intergenic H3K4me1 and promoter H3K4me3 signals than RBPJ only

sites without CREB motifs (p < 0.05). These findings are consistent with a repressive

role for RBPJ in the absence of NICD.

3.3.4 Genomic Notch1 binding sites and gene regulation.

To identify genes that are dynamically regulated by canonical Notch1 signaling, we

depleted CUTLL1 cells of NICD1 with the γ-secretase inhibitor (GSI) compound E,

and then restored NICD1 through GSI washout, which reactivates Notch1 even in the

presence of protein synthesis inhibitors, leading to re-loading of Notch1 on dynamic

response elements and target gene activation (56). Additional controls included trans-

duction of cells with dominant negative MAML1, a specific antagonist of canonical

Notch1 signaling, prior to Notch1 reactivation, and a mock GSI washout to control for
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cycloheximide effects. High-confidence direct canonical Notch1 target genes were de-

fined by a 2-fold or greater increase in expression within 4 hrs of GSI washout that was

insensitive to cycloheximide and sensitive to dominant negative MAML1. Two hundred

forty-five genes met these criteria, including many previously identified direct target

genes such as HES1, HES4, HES5, DTX1, and MYC (45, 56). Of these 245 genes,

61 (25%) had Notch1 binding peaks in their promoters (Fig. 3.4), which is enriched

(p < 10−4, binomial test) over the total number of genes on the Affymetrix chip with

Notch1 binding in their promoters (2325 of 15,340 genes, 15.1%). The remaining direct

target genes are presumably regulated through enhancers, a possibility consistent with

the presence of at least one Notch1 binding site within 100 kb of the promoters of 127

of 179 target genes (69%) lacking Notch1 promoter binding.

For each target gene, the Notch binding site closest to the transcriptional start site

was designated the most likely regulatory element (summarized in Table S2). RBPJ

binding was detected by ChIP-Seq at 52% of these candidate regulatory sites, an enrich-

ment over the 36% overlap between RBPJ and Notch binding genome-wide (p < 10−6,

binomial test). The 179 target genes without promoter binding showed a larger expres-

sion change in response to Notch1 activation than the 66 target genes with promoter

binding (p < 0.05), indicating that Notch1-responsive enhancers are relatively potent

inducers of target gene expression.

RBPJ/Notch1 binding sites near some target genes merit comment. HES1, a gene

involved in T-LL and normal T cell development, has two high-confidence (HC) and

one low-confidence binding peaks. One HC peak is centered on a sequence-paired site

44 bp 5 of the TSS that loads Notch1/RBPJ dimers, while the second HC peak is

found in the proximal promoter 1239 bp 5 of the TSS; this second site only loads

RBPJ/Notch1 monomers (S. Blacklow, unpublished data). Mutations that disable

Notch1 dimerization prevent activation of a reporter gene containing the sequence-

paired site, yet the same mutated versions of Notch1 are fully competent to drive HES1

expression in T-LL cells (data not shown). The 5 RBPJ/Notch1 binding site near HES1

may compensate for defective Notch1 dimerization on the proximal sequence-paired

site, providing an explanation for this discrepancy. HES1 is also unusual in having

high levels of bivalent H3K4me3 and H3K27me3 chromatin marks, a combination that

in embryonic stem cells defines genes that are poised to respond to differentiation cues;
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the significance of this chromatin structure near HES1 in T-LL cells remains to be

determined.

ChIP-Seq alignments identified candidate enhancers (defined by high levels of H3K4me1

marks) near other direct Notch1 target genes of interest, including: i) the clustered

GIMAP genes, which have been implicated in T-LL cell survival; DTX1, a robust

Notch1 target gene; and IL7R, IGF1R, and MYC, all of which contribute to Notch1-

dependent T-LL cell growth. Local ChIP confirmed Notch1/RBPJ binding to the can-

didate MYC enhancer and also showed binding of the co-activators p300 and CREB

binding protein (CBP) as well as RNA polymerase II. Although a promoter binding site

for RBPJ/Notch1 has been reported in IL7R in CUTLL1 cells, we observed no binding

to the IL7R promoter in CUTLL1 cells by ChIP-Seq, whereas local ChIP confirmed

binding of Notch1 to a putative 3 IL7R enhancer in three Notch1-dependent cell lines,

CUTLL1, HPB-ALL and KOP-TK1. Similarly, Notch1 binding to a candidate IGF1R

intronic enhancer was also observed in these lines. These examples highlight the utility

of ChIP-Seq in identifying regulatory elements near target genes of interest.

Conservation of factors associated with Notch1 binding sites and divergence of fac-

tors associated with RBPJ only binding elements. To determine conserved aspects

of RBPJ/Notch1 interactions with T-LL genomes, we did Chip-Seq analyses on two

Notch1-dependent murine T-ALL cell lines; T6E, which expresses a membrane-tethered

form of human Notch1, and G4A2, which has a 5 deletion in an endogenous notch1 al-

lele leading to constitutive Notch1 signaling. We identified 1587 high confidence Notch1

sites and 2776 high confidence RBPJ sites in the T6E cell genome (FDR¡0.01). The

distribution of Notch1 binding sites was similar to that in CUTLL1 cells, with a bias

for promoters. Furthermore, the transcription factor motifs associated with Notch1

binding sites in T6E cells were the same as in CUTLL1 cells and in the same rank

order: ZNF143, Ets, and Runx (not shown). The fraction of Notch sites overlapping

with each co-factor was almost identical in mouse and human (Fig. 3.5B), and K means

clustering identified the same five classes of Notch1 binding clusters (Fig. 3.5C). For

unclear reasons, fewer high confidence Notch1 and RBPJ binding sites (548 and 668,

respectively) were identified in G4A2 cells, but the same associations were found (not

shown).

In contrast to the conservation of motifs and co-factor combinations, Notch1 binding

to orthologous elements was quite divergent; for example, of the 245 direct Notch1
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target genes identified in human CUTLL1 cells, only 50 genes (20.4%) showed Notch1

binding to orthologous elements within or flanking the same genes in murine T6E cells.

Well-characterized target genes with conserved Notch1 binding sites include HES1 and

HES5, while divergent Notch1 binding sites were observed in other conserved target

genes, such as DTX1. Conserved RBPJ binding to orthologous elements was highly

associated with conserved Notch1 binding (Fishers test, p < 10−16), while conserved

imputed ZNF143, Ets and Runx sites showed smaller, but still significant, associations

(Table 3.1A).

Unexpectedly, the distribution of RBPJ binding sites was also highly divergent be-

tween human and murine T-LL cells. Only 36% of RBPJ sites were in promoters and

only 35% of RBPJ sites overlapped with Notch1 sites in murine T6E cells (Fig. 3.5A);

similar distributions were observed in murine G4A2 cells. The motif most highly en-

riched near RBPJ binding sites in T6E cells (Fig. 3.5D) and G4A2 cells (not shown)

was that of REST, a DNA-binding transcriptional repressor originally identified as a

regulator of neurogenesis, followed by the motifs for CREB and Ets. Overall, 895

of 2776 (32%) RBPJ binding sites in T6E cells were associated with imputed REST

sites. Most RBPJ/REST sites were outside of promoters and none of these sites bound

Notch1; thus, these sites are responsible for the divergence in RBPJ binding distribu-

tions between human and murine T-LL genomes. Analyses using PBM data showed

that RBPJ/REST sites generally lack high-affinity RBPJ binding motifs, suggesting

that RBPJ binding to these sites involves protein-protein interactions. By contrast,

only 6 of 2112 (0.3%) of the RBPJ sites in human CUTLL1 cells were associated with

a REST motif. Furthermore, ChIP-Seq studies have mapped 2319 REST and 10529

RBPJ binding sites (FDR < 0.01) in EBV-transformed lymphoblastoid cell lines, only

12 of which (0.1%) overlapped. Thus, RBPJ/REST co-sites appear to be restricted

to murine cells. A second interspecies difference in RBPJ only sites was the presence

of a higher fraction of RBPJ/CREB sites in human T-LL cells (Fig. 3.5E, Fishers

test p < 10−16). Conservation of CREB motifs was strongly associated with conserved

RBPJ binding to orthologous elements (Table 1B, Fishers test p < 10−16). Thus, un-

like RBPJ/REST sites, there appears to be selective pressure favoring conservation of

RBPJ only sites associated with CREB motifs.
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Figure 3.4: Conserved and divergent features of Notch1 and RBPJ binding sites in

murine and human TLL cells. (A) Distribution and overlap of RBPJ and Notch1 binding

sites in the genome of the murine TLL cell line T6E. Promoter regions are defined as

sequences within 2 kb of the TSS of annotated genes. (B) Conservation of the proportions

of Notch1 binding sites associated with ZNF143, ETS, RUNX, and CREB motifs in the

genomes of human CUTLL1 cells and murine T6E cells. The fraction of Notch1 binding

sites that contain the indicate motif 250 bp of Notch1 peaks is shown. (C) Conservation of

RUNX, ETS, RBPJ, ZNF143-Ets, and ZNF143 clusters in murine T6E cells. (D) Enriched

transcription factor motifs lying 250 bp of RBPJ peaks in murine T6E cells. (E) Divergence

of REST and conservation of CREB motifs near RBPJ peaks in murine T6E cells and

human CUTLL1 cells. The fraction of RBPJ binding sites that contain the indicated motif

250 bp of RBPJ peaks is shown.
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3.4 Discussion

Our detailed analysis of RBPJ/Notch1 interactions with the genomes of T-LL cells has

identified conserved features with implications for transcriptional regulation by RBPJ

and Notch, as well as unexpected points of evolutionary divergence. While Notch1

binds predominantly to promoters, we find that promoter binding is a poor predictor

of Notch1 responsiveness; all told, 97% of genes with Notch1 promoter binding do not

change expression appreciably when Notch1 signaling is chemically inhibited. This

is in line with a study of 263 transcription factors in yeast, which found only 3%

overlap between promoter occupancy and measurable response to transcription factor

perturbations. Similar findings have been noted in Drosophila. In non-responsive

genes with promoters bound by Notch1, loss of Notch1 may be compensated for by

other transcription factors, or Notch1 might only affect gene expression when other

signaling pathways are also altered. The only significant positive predictor of Notch1

responsiveness in T-LL cells was RBPJ co-binding, but only a small subset of genes with

RBPJ/Notch1 promoter binding respond to Notch1 inhibition, and other determinants

of responsiveness must exist. The ChIP-Seq studies described here also revealed a

large number of Notch1 binding sites outside of promoters that have chromatin marks

consistent with enhancers, which presumably are involved in regulation of the 75% of

Notch1 target genes that lack Notch1 promoter binding. Additional studies employing

methods such as chromosome conformation capture will be necessary to definitively

link these elements to regulation of Notch1 target genes.

Another variable likely to influence the responsiveness of genes to Notch1 are co-

factors that bind to nearby sites. We identified a significant enrichment for overlapping

ZNF143 binding sites and Ets and Runx factor motifs near sites of Notch1 binding.

These co-factors occur in non-random combinations with Notch1 binding sites in both

human and murine T-LL cells, pointing to a conserved cis-regulatory transcription fac-

tor network that forms the basis for a new understanding of Notch1 function in this par-

ticular cellular context. Ets factors are known to be involved in T cell specification and

development. Similarly, Runx factors interact with Notch1 to promote hematopoietic

stem cell development, act upstream of Notch1 in early T cell development, and when

deficient predispose mice to T-LL. An important question in understanding Notch1
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roles in T cell progenitors is the identity of factors that condition the epigenome, al-

lowing NICD1 access to sites that mediate the expression of genes that are required for

T cell development or, when dysregulated, contribute to T-LL. Ets and Runx family

members, by virtue of their frequent association with Notch1 binding sites in T-LL

genomes, are candidates for such roles.

Unlike Ets and Runx factors, ZNF143 has no known role in T cell development,

T-LL, or Notch signaling. ZNF143 is a ubiquitously expressed zinc finger protein of

unknown function originally identified as a regulator of selenomethionine tRNA gene

expression. Our ChIP-Seq analyses confirm bioinformatic and local ChIP studies sug-

gesting that ZNF143 localizes to promoters, particularly those driving transcription

bi-directionally. Gene pairs regulated by bidirectional promoters are highly conserved

in vertebrates; whether this is a consequence of convergent functions necessitating coor-

dinate regulation or chance insertion of a coding sequence adjacent to a promoter with

bidirectional activity during early vertebrate evolution (promoter capture) is uncer-

tain. A motif resembling that of ZNF143 is also enriched at sites of SREBP-1 promoter

binding in hepatocytes, suggesting that ZNF143 is a general transcription factor with

functions in many contexts. A central question emerging from our work is whether sites

where RBPJ/Notch1/ZNF143 co-localize load RBPJ/Notch1/ZNF143 ternary com-

plexes, or instead are occupied sequentially by distinct RBPJ/Notch1 and ZNF143

complexes that undergo exchange on co-sites. We have recently observed that bind-

ing of purified RBPJ and ZNF143 to DNA oligonucleotides containing ZNF143/RBPJ

co-binding sequences, such as that from the promoter of the Skp2 gene, is mutually

exclusive (K. Arnett and S. Blacklow, unpublished data), a finding that supports the

exchange model, but further work is needed to test these two models in cells and to de-

termine the functional importance of this unusual and pervasive class of RBPJ/Notch1

genomic binding site in T-ALL cells.

Finally, our studies have identified major classes of genomic RBPJ sites that fail to

bind Notch1 or do so very inefficiently. Both murine and human T-LL genomes contain

numerous RBPJ only binding sites that are enriched for CREB motifs. These sites

have relatively high levels of repressive chromatin marks, tend to flank genes with low

expression levels, and often lack high-affinity RBPJ binding motifs. A second RBPJ

only site is characterized by motifs for the DNA-binding factor REST, best known

for its role in regulating neurogenesis (5) but which also has other functions, such as
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regulating herpes simplex virus latency. RBPJ/REST sites are common in murine

T-LL cells, but essentially undetectable in human T-LL cells or EBV transformed

human B cells, presumably due to divergence in factors that mediate recruitment of

RBPJ to REST sites. One important Notch-independent RBPJ-dependent function in

mammals involves the association of RBPJ with the transcription factor Ptf1a. The

identification of CREB/RBPJ only and REST/RBPJ only sites in T-LL cells suggests

that other Notch-independent RBPJ functions exist and that the RBPJ transcriptional

switch model of gene regulation is overly simplistic, at least in higher vertebrates.
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4

Epstein-Barr Virus Exploits

Intrinsic B-Lymphocyte

Transcription Programs to

Achieve Immortal Cell Growth

4.1 Overview

Epstein-Barr Virus Nuclear Antigen 2 (EBNA2) regulation through the cell RBPJ

transcription factor (TF) is essential for resting B-lymphocyte (RBL) conversion into

Lymphoblast Cell Lines (LCLs). ChIP-seq of EBNA2 and RBPJ sites in LCL DNA

found EBNA2 at 5151 and RBPJ at 10,529 sites. EBNA2 localized 72% with RBPJ, at

intergenic and intronic sites and only 14% at promoter sites. EBNA2/RBPJ sites were

enriched for Early B-cell Factor (EBF, 60%), RUNX(41%), ETS(35%), NFkB(31%),

and PU.1(17%) motifs. Using ENCyclopedia Of DNA Elements (ENCODE) LCL data,

EBF, RELA, and PU.1 were at 54%, 31%, and 17% of EBNA2 sites. K-Means clus-

tering of EBNA2 site associated RBPJ, EBF, RELA, PU.1, and ETS or RUNX motifs

identified RELA-ETS, EBF-RUNX, EBF, ETS, RBPJ, and repressive RUNX clusters,

which then ranked highest to lowest in H3K4me1 signal distribution and nucleosome

depletion around the EBNA2 site, marks of active chromatin. Surprisingly, although

quantitatively less, the same sites in RBLs exhibited high level H3K4me1 signals, with

similar nucleosome depletions. The EBV genome also has an EBF site in the LMP1
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promoter, which was critical for EBNA2 activation. LCL HiC data mapped inter-

genic EBNA2 sites to EBNA2 up-regulated genes. Fluorescence In Situ Hybridization

(FISH), Chromatin Conformation Capture, and 3C q-PCR, linked EBNA2/RBPJ en-

hancers 428 kb 5’ of MYC to MYC. These data indicate that EBNA2 evolved to

target RBL H3K4me1 modified, nucleosome depleted, non-promoter sites to drive B-

lymphocyte proliferation in primary human infection. These RBL sites likely support

antigen-induced proliferation.

4.2 Introduction

Although Epstein Barr Virus (EBV) infection is highly prevalent in all human popula-

tions, EBV is also an important cause of endemic Burkitts Lymphoma (48), Hodgkins

Lymphomas (24), and Lymphoproliferative Diseases in immune suppressed (49) and

HIV infected people (21). In early primary human infection, EBV infects peripheral

resting B lymphocytes (RBLs) and expresses 6 nuclear proteins (EBNAs) and two in-

tegral membrane proteins (LMPs). EBNAs and LMPs, principally EBNA2 and LMP1,

cause RBL proliferation, which can be malignant in the absence of effective T-cell re-

sponses. Proliferating RBLs enter tonsils and other lymphoid organs. Since EBNAs

and LMPs are encoded by over 4,000 amino acids and have many T-cell epitopes, nor-

mal T-cell immune responses eliminate these cells. Infected cells, with less complex

or absent EBV protein expression, persist and are reservoirs for reactivated infection

(21). EBV conversion of RBLs into continuously proliferating Lymphoblasts (LCLs)

(64) is a relevant and experimentally useful model for EBV proliferative effects in B-

lymphocytes.

In converting RBLs to LCLs, EBNA2 and EBNALP are expressed first. EBNA2

up-regulates EBV and cell gene expression, including EBV LMP1 and cell MYC, CD23,

and CD21 (25, 27, 35, 53). EBNA2 associates with DNA through RBPJ, a sequence

specific cell transcription factor that also mediates NOTCH DNA binding (68). The

B-lymphocyte and macrophage lineage ETS protein, PU.1, is also important in EBNA2

activation of the EBV LMP1 promoter. The EBNA2 C-terminal acidic domain recruits

basal and activating transcription factors, including p300/CBP and PCAF Histone

Acetyl Transferases. EBNA2 transactivation of MYC causes continuous cell prolif-

eration. EBNA2 transactivation of EBV LMP1 induces cell NFkB and MAP kinase
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activations, which up-regulate pro-survival BCL2 family gene expression and enable

LCL survival. Overall, EBV conversion of RBLs to LCLs mimics antigen induced RBL

clonal expansion in germinal centers, where antigen binding to surface Ig induces MYC

mediated proliferation (19) and T-cell expressed CD40 ligand activates B-lymphocyte

CD40 receptors to up-regulate NFkB, MAP kinases, and anti-apoptotic BCL2 family

protein expression.

A challenge in understanding the mechanisms through which EBNA2 and RBPJ

regulate gene expression is the finding that an RBPJ motif (G)TGGGAA(A) near a

promoter is a poor predictor of EBNA2 dependence. EBNA2 and RBPJ Chromatin

Immune Precipitation, Deep-Sequencing (ChIP-seq) and bioinformatic analyses were

therefore undertaken to identify and potentially characterize EBNA2 and RBPJ binding

sites, genome wide, in LCLs.

4.3 Results

4.3.1 EBNA2 and RBPJ Binding Sites in LCLs.

Independent, duplicate large-scale, EBNA2 and RBPJ ChIPs were deep-sequenced and

107 EBNA2 and 107 RBPJ DNA reads were mapped to the human genome (hg.18) with

36-54% efficiency. After normalization for input DNA, QUEST identified 5151 EBNA2

and 10529 RBPJ sites based on bi-directional sequence reads and FDR< 0.01. EBNA2

and RBPJ, sites were similarly distributed relative to annotated genes. Only 14% of

EBNA2 and 13% of RBPJ sites were at promoters, defined as 2kb of a transcription

start site (TSS). Instead, EBNA2 and RBPJ sites were 86% and 87%, respectively,

at more distal sites; 43% and 42% were intergenic sites, 8% and 9%, UnTranslated

Regions (UTR), 34% and 35% introns, and 1% exons. Overall, 72% (3710) of EBNA2

sites were within 100b of a significant RBPJ site (hereafter, EBNA2/RBPJ site). The

1441 EBNA2 sites lacking significant RBPJ signal are hereafter EBNA2 only sites and

the 6819 RBPJ sites lacking EBNA2 are RBPJ sites. The finding of some EBNA2 sites

without significant RBPJ signal may be due to RBPJ being occluded from antibody

recognition, less stable RBPJ DNA association, or EBNA2 tethering to DNA by another

transcription factor.

RBPJ at EBNA2/RBPJ sites is more highly DNA associated. On average, at non-

promoter EBNA2/RBPJ sites, RBPJ had 34 DNA Reads Per Kilobase per Million
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aligned reads (hereafter, signals) versus 10 signals per RBPJ site and the difference

was highly significant (p < 10−10). Similarly, albeit to a lesser extent, at promoters,

EBNA2/RBPJ sites had 24 signals versus 11 signals for RBPJ sites (p < 10−10). Over-

all, EBNA2/RBPJ had more RBPJ signals than RBPJ sites genome wide, consistent

with the previous finding that EBNA2 significantly increased RBPJ association.

EBNA2 sites are enriched for RBPJ, ETS, EBF, RUNX, PU.1, and NFkB motifs.

Analysis of a 500bp window around EBNA2 sites for Transfac database motif enrich-

ment, identified significant (p < 10−100) enrichment not only for RBPJ (78%), but also

for ETS (39%), EBF (39%), RUNX (43%), PU.1 (22%), and NFkB (22%) motifs, over

a control set of sequences with similar GC content. These data are consistent with

EBF, RELA, and Pu1, having a significant affects on EBNA2 or RBPJ binding and

transcription regulation. (Fig. 4.1A).

To evaluate the extent to which EBNA2 associated TF site predictions correlate

with TF occupancy, we used the RBPJ and ENCODE ChIP-seq GM12878 LCL EBF,

NFkB subunit RELA, and PU.1 data to evaluate RBPJ, EBF, PU.1, and RELA occu-

pancy at EBNA2 sites. EBF mapped to 27,552, RelA to 24,796, and PU.1 to 24,343

LCL sites. EBNA2 sites were 54% within 100b of an EBF site, 31% of a RELA site,

and 17% of a PU.1 site (Fig.4.1B). Overall, the EBNA2 associated TF motif analysis

correlated surprisingly well with TF presence by ChIP-Seq. Of EBNA2 sites, RBPJ

was predicted at 78% and detected at 72%. EBF was predicted at 39% and detected

at 54%. PU.1 was predicted 22% and detected 17%. NFkB was predicted at 22% and

was detected at 31%. Thus, EBNA2 and RBPJ had accessed sites that were highly

accessible to each of the associated TFs.

EBNA2/RBPJ, EBNA2 only, and RBPJ were associated with different TF com-

plexes. EBF was strongly enriched at EBNA2/RBPJ sites (60%) compared to EBNA2

only sites (36%) or RBPJ sites (37%) (p < 10−10). In contrast, ETS motifs were en-

riched at EBNA2 only sites (45%) compared to EBNA2/RBPJ or RBPJ sites (35%)

(p < 10−10). P300 sites strongly correlated with EBNA2/RBPJ and EBNA2 only sites,

but were significantly less at RBPJ sites (p < 10−10) (Table S2). The 262 EBNA2 only

sites with smallest RBPJ signals were even more enriched for ETS motifs (57%), con-

sistent with the possibility that ETS or an ETS associated factor may tether EBNA2

to these sites.
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Figure 4.1: EBNA2 binding site enriched TF motifs, K-means TF clusters, and associated

H3K4me1 signals in LCLs and at the same genome sites in RBLs. (A) EBNA2 binding site

(250 bp) enriched TF motifs are ranked by enrich- ment over random sequences controlling

for GC content from top to bottom. All had corrected p < 10−50. (B) EBNA2 binding sites

(5,151) were K-means clustered based on the presence of RBPJ, EBF, PU.1, and NFkB

subunit RELA binding by LCL ChIPseq and Homer-imputed ETS and RUNX motifs.

EBNA2 site clusters are named by the principal TF components. (C) LCL EBNA2 site

clusters have distinct H3K4me1 signal distributions (Left). H3K4me1 distributions at the

same sites in RBLs (Right). The numbers in the upper left corners of the panels are the

total signals (reads per kilobase per million mapped reads) under each curve.
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4.3.2 EBNA2 co-factors correlate with distinct chromatin footprints.

K-means clustering of the 5151 EBNA2 sites for associated factors identified six clusters

with distinct co-factor combinations of RBPJ, EBF, RELA, PU.1 and imputed ETS

and RUNX (Fig. 4.1B). EBNA2 site clusters were named by their principal co-factors.

RBPJ was a major component of all clusters. One cluster was comprised of EBNA2

sites in which RBPJ was the only dominant component and is referred to as RBPJ.

RELA-ETS, EBF-RUNX, EBF, ETS, RBPJ, and RUNX clusters correlated with most

(top) to least (bottom) ENCODE LCL H3K4me1 signals within +/- 2 Kb of EBNA2

sites (Fig. 4.1C Left Panel). Differences in H3K4me1 signals between RELA-ETS and

EBF-RUNX, EBF and ETS, ETS and RBPJ, and RBPJ and RUNX were each highly

statistically significant (p < 10−6 Mann-Whitney-U test). Importantly, H3K4me1 en-

riched clusters, characteristic of RELA-ETS, EBF-RUNX, EBF, and ETS, had fewer

H3K4me1 signals at the EBNA2 site, indicative of EBNA2 localization at nucleosome

depleted open chromatin sites (Fig. 4.1C, left panel).

Sites of significant p300 signals, indicative of active transcription, also correlated

with H3K4me1 signals, as noted. EBNA2 clusters with RelA-ETS, EBF-RUNX, EBF,

ETS, RBPJ, and RUNX had 41%, 37%, 30%, 15%, 6%, and 5% of sites with significant

p300 signals. These correlative data further support the hypothesis that RELA-ETS,

EBF-RUNX, EBF, ETS, RBPJ, and RUNX clusters are ranked from highest to lowest

in transcription activation.

The higher H3K4me1 and p300 association of EBNA2 with EBF-RUNX versus

EBF alone (Fig. 4.1C, Left Panel, upper blue and green curves) and the very low

H3K4me1 effect of RUNX alone (Fig. 4.1C, Left Panel, lower black curve) correlate

an activating-RUNX effect with EBF and a repressive-RUNX effect unassociated with

EBF, at other sites. Opposing RUNX isoforms have been described in LCLs, where

RUNX3 repression of RUNX1 is important for continued growth.

As a complement to clustering, which detected an EBF associated activating-RUNX

effect and a repressive-RUNX effect, an additive linear model was used to correlate

H3K4me1 signals levels at EBNA2 sites with the presence of EBF, RELA, PU.1, or

imputed ETS or RUNX as single factors. EBF increased H3K4me1 signals 1.68 fold,

RELA 1.22 fold, PU.1 1.21 fold, and imputed ETS 1.08 fold. Each effect was highly

significant (p < 0.0001). RUNX as a single factor had no significant overall effect,
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consistent with the positive RUNX effect with EBF being similar in magnitude to the

negative RUNX effect without EBF.

Ontogeny of H3K4me1 modifications. To understand how EBV infection alters

RBL transcription, H3K4me1 modifications at EBNA2 sites in LCLs were compared to

H3K4me1 modifications at the same sites in RBLs. Roadmap Epigenomics Mapping

Center ChIP-seq H3K4me1 signals in CD19(+) RBLs (Fig. 4.1C, Right panel) were

compared with H3K4me1 signals at EBNA2 sites in LCLs (Fig. 4.1C, Left Panel).

Although H3K4me1 signals were less elevated in RBLs, they mirrored the symmetrical

elevation with central depletion seen in LCLs and followed the LCL cofactor cluster site

hierarchy. For example, the EBNA2, RELA, and imputed ETS cluster in LCLs had

44 H3K4me1 signals, whereas the same sites in RBLs had 39 H3K4me1 signals (Fig.

4.1C Left versus Right Panels). Furthermore, the EBNA2 EBF-RUNX, EBF, and ETS

cluster sites in LCLs had 37, 36, and 28 H3K4me1 signals, whereas the same sites in

RBLs had 27, 27, and 25 H3K4me1 signals. Also, the EBNA2 RBPJ and RUNX cluster

sites in LCLs had 22 and 18 H3K4me1 signals, whereas the same sites in RBLs had 16

and 16 H3K4me1 signals. Importantly, nucleosome depletion was also evident at the

same sites in RBLs, indicating that EBNA2 targets sites of pre-existing nucleosome

depeletion. These data strongly support a model in which EBNA2 target H3K4me1

modified and nucleosome depleted RBL RELA-ETS, EBF-RUNX, EBF, and ETS sites

for transcription up-regulation.

Differences between EBNA2 Promoter and putative-enhancer effects. In contrast to

LCL putative-enhancer sites where RELA-ETS, EBF-RUNX, and EBF were associated

with higher H3K4me1 signals (p < 0.01) versus ETS, RBPJ, and RUNX, and as a single

factor EBF had the largest up-regulatory effect (Fig. 4.1C, left panel), at promoter

sites, EBNA2 and RELA-ETS, ETS, or RBPJ were associated with higher H3K4me3

signals and RUNX, EBF-RUNX, and RBPJ were associated with higher H3K27me3

signals. These data are consistent with EBF having the largest up-regulatory effects

at putative enhancer sites, and with ETS having the largest up-regulatory effects at

promoter sites. A repressive RUNX effect was also evident at promoter sites.

EBF is critical for EBNA2 activation of the EBV LMP1 promoter. EBF is essential

in B-lymphocyte development and regulates gene expression from pro-B cell through

mature B-cell stages and therefore a likely pioneering factor in EBNA2 up-regulated

B-lymphocyte gene expression, given the 54% co-localization of EBNA2 at EBF sites
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Figure 4.2: EBF is important for EBNA2 activation of the EBV LMP1 promoter. (A)

Schematic of the LMP1 promoter EBNA2 response element (?227/?137), with RBPJ, EBF,

and PU.1 binding sites underlined in the continuous se- quence. Null EBF or PU.1 point

mutations are indicated below the continu- ous sequence. (B) EBNA2 activated the LMP1

promoter-luciferase reporter eightfold, the EBF mutant site twofold, and the PU.1 mutant

site onefold in BJAB cells. Luciferase activities were normalized to cotransfected EBNA2-

independent ?-galactosidase activity. EBNA2 was expressed at similar levels in all exper-

iments as shown in the EBNA2 immune blot at the bottom of B. (C) In vitro translated

EBF bound to a 32P labeled oligonucleotide that in- cluded the EBF binding site. Binding

was completed by a 500-fold excess cold wild-type oligonucleotide (w), but not by 500-

fold cold mutant nucleotide (m). Protein-DNA complexes were separated by PAGE and

visualized by phosphoimager.

in LCLs, the embedding of RBPJ TGGGA(A) core motifs in EBF motifs, and the

similarity of H3K4me1 at EBNA2 sites in LCLs with the same sites in RBLs (Fig.

4.1C).

The putative EBF role in EBNA2 mediated transcription was evaluated in the

context of the EBV LMP1 promoter, which is EBNA2, RBPJ, and PU.1 dependent.

Since the LMP1 promoter RBPJ, PU.1, and EBF sites are non-overlapping (Fig. 4.2A),

independent null EBF, RBPJ, or PU.1 mutations could be readily evaluated. In BJAB

Lymphoma cells, EBNA2 activated the (-335 to +40) LMP1 promoter 8 fold over

control expression vector. A single point mutation in the PU.1 site reduced EBNA2

activation to background (Fig. 4.2B). Mutation of the EBF motif CCCCCCGGGG

53



4.3 Results

to CAAAACGGGG abolished EBF binding and reduced EBNA2 activation from 8 to

2 fold (Fig. 4.2B,C), similar to the RBPJ binding site mutation effect. These data

indicate that EBF is important for LMP1 promoter activation.

The hypothesis that EBF is a ”pioneer” B-lymphocyte transcription factor that

opens chromatin for EBNA2 and RBPJ binding, was further evaluated by scanning

EBNA2 ChIP-seq RBPJ binding sites through a 500bp window to identify the 8 bp

DNA sequence that has the strongest, in vitro, affinity for RBPJ, based on a RBPJ

Protein Binding Matrix. At 436 EBNA2 bound sites, the strongest binding sites for

RBPJ were in an EBF motif.

EBNA2 up-regulated genes are enriched for EBNA2 binding ¿2kbp from the TSS.

EBNA2 sites were 43% intergenic, 35% intron, and only 14% at promoter sites. In-

tergenic EBNA2 sites correlated with LCL RNA expression levels in 4 gene sets (Fig.

4.3A). A conditional EBNA2 regulated 81 gene set had 2.4 EBNA2 sites per gene within

2-152 kb of the TSS. The 2.4 sites were distributed, with 0.7 sites at 2-32kb, 0.5 at 32-

62kb, 0.5 at 62-92kb, 0.3 at 92-122kb, and 0.4 at 122-152kb from the TSS (Fig. 4.3A).

A second gene set was comprised of RNAs that are 5 fold up-regulated during RBL

conversion to LCLs. This set had 1.2 EBNA2 putative enhancer sites per gene 0.3 at

2-32kb, 0.2 at 32-62kb, 0.2 at 62-92kb, 0.3 at 92-122, and 0.2 at 122-152kb. Genes 2-5

fold up-regulated during RBL conversion to LCLs had 1.1 EBNA2 putative-enhancer

sites, evenly split within 2-152 kb from the TSS. Even genes up-regulated less than 2

fold had 0.8 EBNA2 putative-enhancer sites, evenly split 2-152 kb from the TSS. These

data indicate that EBNA2 binding to distal enhancer sites significantly correlates with

up-regulated LCL gene expression (p < 0.01).

Multiple EBNA2 sites have long range interactions with promoters of the 81 EBNA2

regulated gene set. Chromatin Conformation Capture followed by deep-sequencing

(HiC) from GM06990 LCLs revealed paired-end sequences representative of both long

range genome interaction components (36). Many of these LCL HiC sequences mapped

with one end within +/-2kb of a non-promoter EBNA2 site and the other end within -1

to +5 kb of the TSS of 1 of 56 EBNA2 regulated genes. Excluding EBNA2 sites < 5kb

from the TSS, 3.3 different long range interactions were detected per EBNA2 regulated

gene. The EBNA2 regulated gene set was significantly enriched (corrected p < 10−4)

over a control gene set, with similar expression level and distance from EBNA2 sites

to the TSS, but not conditionally EBNA2 affected (Fig. 4.3B). Overall, 61% of the
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Figure 4.3: Nonpromoter EBNA2 binding sites are enriched for long-range interactions

with EBNA2 regulated or LCL > 5 upregulated. HiC detected 3.2 long-range interactions

between intergenic EBNA2 binding sites and EBNA2 conditionally regulated genes versus

control genes (corrected p < 0.0001) and two long-range interactions between EBV > 5 up-

regulated genes (corrected p < 0.05). Control genes had similar RNA levels and distance

to EBNA2 binding sites as the 81 conditionally regulated or ¿fivefold up-regulated genes.

interactions were within the same chromosome and 39% were inter-chromosomal. For

intra-chromosome interactions, the median distance from EBNA2 enhancer to an af-

fected gene was 330kb, with 90% greater than 150kb. EBNA2 enhancer sites overlapped

66% with an EBF site and 30% had significant p300 signals, both significantly enriched

over the 54% of EBNA2 sites that have an EBF site (corrected p < 0.01) and the

22% of EBNA2 sites with p300 signals (corrected p < .05). A greater than 5 fold up-

regulated LCL RNA data set was also enriched for interactions, with 2 different HiC

interactions per gene (corrected p < 0.05) (Fig. 4.3B). Interactions of EBNA2 enhancer

sites with the EBNA2 regulated or > 5 fold up-regulated gene sets peaked within 2kb

of the EBNA2 binding site. EBNA2 binding site interactions were progressively less

frequent within neighboring 4kb windows. These data indicate that EBNA2 enhancers

are significantly enriched for distal target interactions with EBNA2 regulated or 5-

fold up-regulated genes. As an additional control, the same procedure was applied to

compute HiC interactions between RBPJ sites without EBNA2 and EBNA2 regulated

genes. The number of detected interactions was significantly fewer than interactions

with EBNA2 sites (corrected p < 0.01).
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4.3.3 EBNA2 up-regulates MYC gene expression through long range

enhancer and promoter looping.

EBNA2 and RBPJ LCL ChIP-seq failed to identify significant EBNA2 or RBPJ signals

at or near the MYC locus. However, strong PolII and H3K9ac signals were evident at

the MYC promoter, consistent with known EBNA2 up-regulated MYC expression.

Strong CTCF signals were also evident at +.2 kb, -1.9kb, and -10kb. However, the

nearest significant EBNA2 and RBPJ signals were at -168kb to -186kb of the MYC

TSS and were associated with high H3K4me1. Moreover, the strongest EBNA2 and

RBPJ signals were from 11 significant EBNA2/RBPJ sites at -428 to -556 kb of the

MYC TSS (Fig. 4.4A). These sites had high H3k4me1, H3K9ac signals and coincided

with PolII and p300 signals, indicative of highly active enhancers (Fig. 4.4A). Some

-428 to -556kb EBNA2/RBPJ sites also coincided with EBF and RELA and were near

CTCF signals. In LCLs, EBNA2 induced LMP1 substantially up-regulates canonical

and non-canonical NFkB. RELA is a major component of the -428 and -556 MYC

regulatory complexes and is second to EBF in overall H3K4me1 signal effects and

likely coordinately up-regulates MYC transcription with EBNA2. Surprisingly, RBL

H3K4me1 signals at the principal -428 and -556 MYC regulatory sites were very similar

to LCL H3K4me1, consistent with the supposition that RBLs are poised for MYC

transcription activation and are then activated by EBNA2 and RBPJ with EBF and

possibly RELA.

FISH assays with green fluorescent Bacmid probe centered around the 428-556 kb

enhancer site and an orange fluorescent Bacmid probe centered around MYC were

used to investigate interaction between the EBNA2 enhancer and MYC in LCLs versus

RBLs. Overall, 94/100 LCLs and 92/100 RBLs had both alleles discernible. Of these, 43

LCLs and 41 RBLs had 1 co-localized and 1 separated allele. In contrast, 49 LCLs and

only 1 RBL had 2 co-localized alleles, whereas 2 LCLs and 50 RBLs had 2 separated

alleles (P¡.001) (Fig. 4.4B and 4.4C). In summary, LCLs significantly differed from

RBLs in bi-allelic EBNA2 enhancer site association with MYC.

Conditional EBNA2 expressing LCLs were used to investigate the effect of EBNA2

inactivation on EBNA2 enhancer site association with MYC. After 4 days in medium

permissive (+) versus non-permissive (-) for EBNA2 expression, 96 EBNA2 (+) ver-

sus 69 EBNA2 (-) LCLs were evaluated. EBNA2 (+) LCLs significantly differed from
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Figure 4.4: EBNA2 activates MYC via long-range enhancer and promoter interactions.

(A) CTCF, EBNA2, RBPJ, EBF, RELA, H3K9ac, H3K4me1, PolII, and p300 signals and

MYC promoter (arrow) are shown. Normalized signals are at the left end of each track.

The asterisk indicates unidirectional EBNA2 reads. The three small dots at 168 kb to 186

kb indicate three significant EBNA2/RBPJ peaks. Major EBNA2/RBPJ peaks are 428 kb

to 556 kb. For enlarged view, see Fig. S5B. (B) FISH for IB4 LCL and RBLs. Fixed LCLs

or RBLs were hybridized with fluorescent labeled BACmid probes for DNA 428 to 556 kb

upstream of MYC, (green) and 150 kb cen- tered around MYC (orange). Cell DNA is

stained blue with DAPI. Mycp indicates myc promoter and myce indicates myc enhancer.

(C) One hundred LCLs or RBLs were scored for colocalization of EBNA2 up-stream sites

and MYC. Blue indicates the percentage of cells with one allele colocalized and one allele

separate. (D) Chromatin conformation capture qPCR assay using conditional EBNA2

LCLs grown under permissive or nonpermissive conditions for 4 d. Cells were cross-linked

with formaldehyde, DNA digested with Csp6I, diluted, ligated, and quantitated by Taqman

qPCR. Fold differences were determined using the Ct method with EBNA2- expressing cells

set at 1.
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EBNA(-) LCLs in having 62% versus 36% single allele co-localization and in 34% ver-

sus 63% bi-allele separation. These data support the hypothesis that the 428-556 kb

upstream EBNA2 enhancer site association with MYC is EBNA2 dependent.

Chromosome conformation capture or 3C was used to further investigate the prox-

imity of the -428 kb upstream EBNA2 enhancer site to MYC. After generating the 3C

library, PCR was used to detect the -428kb EBNA2 enhancer site ligated to the MYC

promoter or first intron. Sequencing of the PCR product revealed the -428kb EBNA2

enhancer linked through a Csp61 site to the MYC promoter and first intron.

LCLs conditional for EBNA2 expression were used to further investigate conditional

EBNA2 effects on the -428 kb EBNA2 enhancer proximity to the MYC first intron. 3C

libraries were made from EBNA2(+) and EBNA2(-) conditional LCLs. Taqman qPCR

and Taqman probe for the putative EBNA2 Enhancer and MYC intron Csp6I DNA

fragment ligation junction were used to assess product abundance. EBNA2 (+) LCLs

were 7.8 fold enriched for the -428kb EBNA2 enhancer and MYC intron Csp6I ligation

product over EBNA2 (-) LCLs (P¡.01) (Fig. 4.4D). These further support an EBNA2

dependent role for the -428 kb enhancer in MYC regulation.

4.4 Discussion

Previous studies of the molecular genetics and pathogenesis of EBV induced B-cell

growth support a model that EBNA2 and LMP1 constitutively activate RBL growth

and survival pathways that are normally regulated by RBL B-cell receptor antigen

activation and T-cell help. RBLs have rearranged surface Immunoglobulin (sIg) and

are likely programmed to proliferate in response to cognate antigen and T-cell help

in lymph node germinal centers. Antigen signaling through sIg induces MYC-driven

B-lymphocyte proliferation. B-cell MHC-class II antigen presentation to germinal cen-

ter CD4+ T-cells induces CD40-ligand expression. CD40 ligand induces B-cell NFkB

activation and anti-apoptotic BCL2 family protein expression, which prevents MYC-

proliferation induced cell death. EBNA2/RBPJ activation of MYC and of LMP1 pro-

vide similar high level MYC and NFkB activation, enabling LCL proliferation and

survival.

The investigations described here elucidate the basic mechanisms through which

EBNA2, genome-wide, exploits and enhances the RBL transcription program to cause
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continuous B-cell proliferation. EBNA2 targeted 5000 RBL open chromatin sites,

mostly through RBPJ and EBF. EBNA2, RBPJ, and EBF sites were predominantly

distal intergenic or intron enhancers. Only 14% were at promoter sites. EBNA2 asso-

ciated with six different RBPJ, EBF, ETS, RUNX, NFkB RELA, or PU.1 complexes.

Specific complex composition determined much of the EBNA2 effect on nucleosome

depletion, H3K4me1 signal, and other transcription associated effects. The key EBF,

PU.1, ETS, NFkB RELA, and activating RUNX1 roles in determining EBNA2 and

RBPJ B-cell transcription effects is consistent with their pioneering roles in developing

and mature B-lymphocyte gene expression. Component analyses detected activating

and repressive RUNX effects. RUNX1 is the likely activator since EBF, PU.1, ETS

and RUNX1 are frequently associated with active B-cell enhancers.

The most surprising finding is the extent to which EBV and particularly EBNA2

have evolved to exploit the RBL transcription regulatory framework. Indeed, uninfected

RBLs had very similar nucleosome depletion and H3K4me1 chromatin modification at

sites subsequently targeted by EBNA2. The RBL sites were poised to activate gene ex-

pression in response to antigen stimulation and T-cell help. RBL nucleosome depletion

was enabled by and efficiently enabled cell TF access. EBNA2 and RBPJ exploited effi-

cient access. EBNA2 further increased nucleosome depletion and H3K4me1 signals, and

activated gene expression. EBNA2 actuating effects were clearly evident at the MYC

locus, where EBNA2 moderately increased chromatin associated pro-transcription ef-

fects and markedly up-regulated transcription.

Not only has EBNA2 evolved to activate transcription through RBPJ and EBF,

but the EBV genome also evolved to require EBF for EBNA2 regulation of the LMP1

promoter. EBF developmentally activates PAX5 and is frequently linked to PAX5 in

transcription up-regulatory effects. PAX5 was previously shown to be important for

initial transcription from the Wp EBNA promoter in B-lymphocytes.

We were surprised to note that RBPJ and EBF share core DNA binding sequences

and that EBNA2 associated EBF sites are enriched for high affinity RBPJ sites, con-

sistent with site evolution in response to both EBF and RBPJ, at different points in

development, cell cycle, hormonal, or tissue specific effects. While the structure of EBF

dimers on DNA appears to preclude RBPJ association with the embedded EBF motif,

RBPJ occupancy with an EBF monomer might be possible.
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Since RBPJ is also downstream of Notch in regulating MYC and cell survival

gene expression in T-cell Lymphocytic Leukemia (TLL) and may have similar roles

in thymic T-cell and B-cell marginal zone development (44), comparison of EBNA2

and Notch effects will be important for improved understanding and better control of

these pathways. In contrast to EBNA2, which are most frequently distant from af-

fected genes, Notch tends to be within affected gene promoter sites. Similar to EBNA2

targeting of EBF and embedded RBPJ sites in B-cells, NOTCH frequently targeted

ZNF143 and embedded RBPJ sites in TLL cells. However NOTCH interactions with

ZNF143 sites were less associated with activated transcription than EBNA2 interactions

with EBF. While EBNA2 localized with EBF and RELA to sites 100kb, 428kb, and

556kb up-stream of MYC in LCLs, the strongest Notch site was even further up-stream

of MYC. Most interesting in terms of fundamental mechanism for EBNA2/RBPJ or

Notch/RBPJ association with MYC, the 428kb and 556kb, MYC promoter sites have

nearby CTCF binding sites that could enable upstream site association with the MYC

promoter. Long range enhancer MYC regulation is also characteristic of human colon,

prostate and breast cancer.

Interestingly, 31% of LCL EBNA2 sites had significant RELA binding, including

MYC enhancer sites. The role of LMP1 up-regulated RELA in co-regulating MYC

expression with EBNA2 requires further study. LMP1 activation of canonical and non-

canonical NFkB and related MAP kinase pathways is critical for LCL survival. The

data presented here indicate that EBNA2 and NFkB RELA have many other targets

in common. EBNA2 and LMP1 gene co-regulation creates opportunities to investigate

the extent to which these transcriptional effects are EBNA2 and/or LMP1 dependent.

Inhibitors of either pathway may have dominant or synthetic lethal effects on LCL

growth or survival.
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5

Contrastive Learning Using

Spectral Methods

5.1 Overview

In many natural settings, the analysis goal is not to characterize a single data set

in isolation, but rather to understand the difference between one set of observations

and another. For example, given a background corpus of news articles together with

writings of a particular author, one may want a topic model that explains word patterns

and themes specific to the author. Another example comes from genomics, in which

biological signals may be collected from different regions of a genome, and one wants

a model that captures the differential statistics observed in these regions. This paper

formalizes this notion of contrastive learning for mixture models, and develops spectral

algorithms for inferring mixture components specific to a foreground data set when

contrasted with a background data set. The method builds on recent moment-based

estimators and tensor decompositions for latent variable models, and has the intuitive

feature of using background data statistics to appropriately modify moments estimated

from foreground data. A key advantage of the method is that the background data need

only be coarsely modeled, which is important when the background is too complex,

noisy, or not of interest. The method is demonstrated on applications in contrastive

topic modeling and genomic sequence analysis.
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5.2 Introduction

Generative latent variable models offer an intuitive way to explain data in terms of

hidden structure, and are a cornerstone of exploratory data analysis. Popular exam-

ples of generative latent variable models include Latent Dirichlet Allocation (LDA) (9)

and Hidden Markov Models (HMMs) (7), although the modularity of the generative

approach has led to a wide range of variations. One of the challenges of using latent

variable models for exploratory data analysis, however, is developing models and learn-

ing techniques that accurately reflect the intuitions of the modeler. In particular, when

analyzing multiple specialized data sets, it is often the case that the most salient sta-

tistical structure—that most easily found by fitting latent variable models—is shared

across all the data and does not reflect interesting specific local structure. For example,

if we apply a topic model to a set of English-language scientific papers on computer

science, we might hope to identify different co-occurring words within subfields such as

theory, systems, graphics, etc. Instead, such a model will simply learn about English

syntactic structure and invent topics that reflect uninteresting statistical correlations

between stop words (88). Intuitively, what we would like from such an exploratory

analysis is to answer the question: What makes these data different from other sets of

data in the same broad category?

To answer this question, we develop a new set of techniques that we refer to as

contrastive learning methods. These methods differentiate between foreground and

background data and seek to learn a latent variable model that captures statistical

relationships that appear in the foreground but do not appear in the background.

Revisiting the previous scientific topics example, contrastive learning could treat com-

puter science papers as a foreground corpus and (say) English-language news articles

as a background corpus. As both corpora share the same broad syntactic structure, a

contrastive foreground topic model would be more likely to discover semantic relation-

ships between words that are specific to computer science. This intuition has broad

applicability in other models and domains as well. For example, in genomics one might

use a contrastive hidden Markov model to learn amplify the signal of a particular class

of sequences, relative to the broader genome.

Note that the objective of contrastive learning is not to discriminate between fore-

ground and background data, but to learn an interpretable generative model that cap-
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Background
Foreground

(a) PCA (c) Linear contrastive analysis

Figure 5.1: These figures show foreground and background data from Gaussian distri-

butions. The foreground data has greater variance in its minor direction, but the same

variance in its major direction. The means are slightly different. Different projection lines

are shown for different methods, to illustrate the difference between (a) the purely un-

supervised variance-preserving linear projection of principal component analysis, (b) the

contrastive foreground projection that captures variance that is not present in the back-

ground.

tures the differential statistics between the two data sets. To clarify this difference,

consider the difference between principal component analysis and linear discriminant

analysis. Principal component analysis finds the linear projection that maximally pre-

serves variance without regard to foreground versus background. Linear discriminant

analysis also finds a linear projection, but instead tries to maximize a measure of the

margin between foreground and background. A contrastive approach, however, would

try to find a linear projection that maximally preserves the foreground variance that is

not explained by the background. Figure 5.1 illustrates the differences between these

ideas.

Our contributions. We formalize the concept of contrastive learning for mixture

models and present new spectral contrast algorithms. We prove that by appropriately

“subtracting” background moments from the foreground moments, our algorithms re-

cover the model for the foreground-specific data. To achieve this, we extend recent

developments in learning latent variable models with moment matching and tensor

decompositions. We demonstrate the effectiveness, robustness, and scalability of our

method in contrastive topic modeling and contrastive genomics.
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5.3 Contrastive learning in mixture models

Many data can be naturally described by a mixture model. The general mixture model

has the form

p({xn}Nn=1; {(µj , wj)}Jj=1) =
N∏
n=1

[
J∑
j=1

wjf(xn|µj)

]
(5.1)

where {µj} are the parameters of the mixture components, {wj} are the mixture

weights, and f(·|µj) is the density of the j-th mixture component. Each µj is a vector

in some parameter space, and a common estimation task is to infer the component

parameters {(µj , wj)} given the observed data {xn}.
In many applications, we have two sets of observations {xfn} and {xbn}, which we

call the foreground data and the background data, respectively. The foreground and

background are generated by two possibly overlapping sets of mixture components.

More concretely, let {µj}j∈A, {µj}j∈B, and {µj}j∈C be three disjoint sets of parameters,

with A, B, and C being three disjoint index sets. The foreground {xfn} is generated

from the mixture model {(µj , wf
j)}j∈A∪B, and the background {xbn} is generated from

{(µj , wb
j )}j∈B∪C .

The goal of contrastive learning is to infer the parameters {(µj , wf
j)}j∈A, which we

call the foreground-specific model. The direct approach would be to infer {(µj , wf
j)}j∈A∪B

just from {xfn}, and in parallel infer {(µj , wb
j )}j∈B∪C just from {xfn}, and then pick out

the components specific to the foreground. However, this involves explicitly learning

a model for the background data, which is undesirable if the background is too com-

plex, if {xbn} is too noisy, or if we do not want to devote computational power to learn

the background. In many applications, we are only interested in learning a generative

model for the difference between the foreground and background, because that contrast

is the interesting signal.

In this paper, we introduce an efficient and general approach to learn the foreground-

specific model without having to learn an accurate model of the background. Our ap-

proach is based on a method-of-moments that uses higher-order tensor decompositions

for estimation (2); we generalize the tensor decomposition technique to deal with our

task of contrastive learning. Many other recent spectral learning algorithms for latent

variable models are also based on the method-of-moments (e.g., (1, 6, 11, 13, 14, 72,
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73, 85)), but their parameter estimation can not account for the asymmetry between

foreground and background.

We demonstrate spectral contrastive learning through two concrete applications:

contrastive topic modeling and contrastive genomics. In contrastive topic modeling we

are given a foreground corpus of documents and a background corpus. We want to

learn a fully generative topic model that explains the foreground-specific documents

(the contrast). We show that even when the background is extremely sparse—too

noisy to learn a good background topic model—our spectral contrast algorithm still

recovers foreground-specific topics. In contrastive genomics, sequence data is modeled

by HMMs. The foreground data is generated by a mixture of two HMMs; one is

foreground-specific, and the other captures some background process. The background

data is generated by this second HMM. Contrastive learning amplifies the foreground-

specific signal, which have meaningful biological interpretations.

5.4 Contrastive topic modeling

To illustrate contrastive analysis and introduce tensor methods, we consider a simple

topic model where each document is generated by exactly one topic. In LDA (9), this

corresponds to setting the Dirichlet prior hyper-parameter α→ 0. The techniques here

can be extended to the general α > 0 case using the moment transformations given

in (1). The generative topic model for a document is as follows.

• A word x is represented by an indicator vector ex ∈ RD which is 1 in its x-th entry

and 0 elsewhere. D is the size of the vocabulary. A document is a bag-of-words

and is represented by a vector c ∈ RD with non-negative integer word counts.

• A topic is first chosen according to the distribution on [K] := {1, 2, . . . ,K} spec-

ified by the probability vector w ∈ RK .

• Given that the chosen topic is t, the words in the document are drawn indepen-

dently from the distribution specified by the probability vector µt ∈ RD.

Following previous work (e.g., (1)) we assume that µ1, µ2, . . . , µK are linearly in-

dependent probability vectors in RD. Let the foreground corpus of documents be

generated by the mixture of |A|+ |B| topics {(µt, wf
t)}t∈A ∪ {(µt, wf

t)}t∈B, and the back-

ground topics generated by the mixture of |B|+ |C| topics {(µt, wb
t )}t∈B ∪ {(µt, wb

t )}t∈C
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(here, we assume (A,B,C) is a non-trivial partition of [K], and that wf
t, w

b
t > 0 for all t).

Our goal is to learn {(µt, wf
t)}t∈A.

5.4.1 Moment decompositions

We use the symbol ⊗ to denote the tensor product of vectors, so a ⊗ b is the matrix

whose (i, j)-th entry is aibj , and a ⊗ b ⊗ c is the third-order tensor whose (i, j, k)-th

entry is aibjck. Given a third-order tensor T ∈ Rd1×d2×d3 and vectors a ∈ Rd1 , b ∈ Rd2 ,

and c ∈ Rd3 , we let T (I, b, c) ∈ Rd1 denote the vector whose i-th entry is
∑

j,k Ti,j,kbjck,

and T (a, b, c) denote the scalar
∑

i,j,k Ti,j,kaibjck.

We review the moments of the word observations in this model (see, e.g., (1)).

Let x1, x2, x3 ∈ [D] be the first, second, and third words in a random document gen-

erated by the foreground model (the discussion here also applies to the background

model). The second-order (cross) moment matrix M f
2 := E[ex1 ⊗ ex2 ] is the matrix

whose (i, j)-th entry is the probability that x1 = i and x2 = j. Similarly, the third-order

(cross) moment tensor M f
3 := E[ex1 ⊗ ex2 ⊗ ex3 ] is the third-order tensor whose (i, j, k)-

th entry is the probability that x1 = i, x2 = j, x3 = k. Observe that for any t ∈ A ∪B,

the i-th entry of E[ex1 |topic = t] is precisely the probability that x1 = i given topic = t,

which is i-th entry of µt. Therefore, E[ex1 |topic = t] = µt. Since the words are in-

dependent given the topic, the (i, j)-th entry of E[ex1 ⊗ ex2 |topic = t] is the prod-

uct of the i-th and j-th entry of µt, i.e., E[ex1 ⊗ ex2 |topic = t] = µt ⊗ µt. Similarly,

E[ex1 ⊗ ex2 ⊗ ex3 |topic = t] = µt ⊗ µt ⊗ µt. Averaging over the choices of t ∈ A ∪B
with the weights wf

t implies that the second- and third-order moments are

M f
2 = E[ex1⊗ex2 ] =

∑
t∈A∪B

wf
t µt⊗µt and M f

3 = E[ex1⊗ex2⊗ex3 ] =
∑

t∈A∪B
wf
t µt⊗µt⊗µt.

(We discuss how to efficiently use documents of length > 3 in Section 5.6.2.) We can

similarly decompose the background moments M b
2 and M b

3 in terms of tensors products

of {µt}t∈B∪C . These equations imply the following proposition.

Proposition 1. Let M f
2, M f

3 and Mb
2 , Mb

3 be the second- and third-order moments

from the foreground and background data, respectively. Define

M2 := M f
2 − γMb

2 and M3 := M f
3 − γMb

3 .

If γ ≥ maxj∈B w
f
j/w

b
j , then
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Algorithm 1 Contrastive Topic Model estimator

input Foreground and background documents {cfn}, {cbn}; parameter γ > 0; number

of topics K.

output Foreground-specific topics Topicsf .

1: Let M̂ f
2 and M̂ f

3 (M̂b
2 and M̂b

3 ) be the foreground (background) second- and third-

order moment estimates based on {cfn} ({cbn}), and let M̂2 := M̂ f
2 − γM̂b

2 and

M̂3 := M̂ f
3 − γM̂b

3 .

2: Run Algorithm 2 with input M̂2, M̂3, K, and N to obtain {(ât, λ̂t) : t ∈ [K]}.
3: Topicsf := {(ât/‖ât‖1, 1/λ̂2

t ) : t ∈ [K], λ̂t > 0}.

M2 =

K∑
t=1

ωt µt ⊗ µt and M3 =
K∑
t=1

ωt µt ⊗ µt ⊗ µt (5.2)

where ωt = wf
t > 0 for t ∈ A (foreground-specific topic), and ωt ≤ 0 for t ∈ B ∪ C.

Using tensor decompositions. Proposition 1 implies that the modified moments

M2 and M3 have low-rank decompositions in which the components t with positive mul-

tipliers ωt correspond to the foreground-specific topics {(µt, wf
t)}t∈A. A main technical

innovation of this paper is a generalized tensor power method, described in Section 5.6,

which takes as input (estimates of) second- and third-order tensors of the form in (5.2),

and approximately recovers the individual components. We argue that under some nat-

ural conditions, the generalized power method is robust to large perturbations in Mb
2

and Mb
3 , which suggests that foreground-specific topics can be learned even when it is

not possible to accurately model the background. We use the generalized tensor power

method to estimate the foreground-specific topics in our Contrastive Topic Model es-

timator (Algorithm 1). Proposition 1 gives the lower bound on γ; we empirically find

that γ ≈ maxj∈B w
f
j/w

b
j gives good results. When γ is too large, the convergence of

the tensor power worsens. Where possible in practice, we recommend using prior belief

about foreground and background compositions to estimate maxj∈B w
f
j/w

b
j , and then

vary γ as part of the exploratory analysis.

5.4.2 Experiments with contrastive topic modeling

We test our contrastive topic models on the RCV1 dataset, which consists of ≈ 800000

news articles. Each document comes with multiple category labels (e.g., economics,
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5.4 Contrastive topic modeling

Table 5.1: Top words from representative topics: foreground alone (left); fore-

ground/background contrast (right). Each column corresponds to one topic.

USA foreground USA foreground, Economics background

lbs bond million stock play research result basketball

usda municipal week price round science hockey game

hog index sale close golf cancer nation nation

gilt year export trade open cell cap la

barrow trade total index hole study ny association

China foreground China foreground, Economics background

share billion shanghai yuan china panda earthquake china

market reserve yuan year east china china office

percent bank firm bank typhoon year office court

million balance china foreign storm xinhua richt smuggle

trade trade exchange invest flood zoo scale ship

entertainment) and region labels (e.g., USA, Europe, China). The corpus spans a large

set of complex and overlapping categories, making this a good dataset to validate our

contrastive learning algorithm.

In one set of experiments, we take documents associated with one region as the

foreground corpus, and documents associated with a general theme, such as economics,

as the background. The goal of the contrast is to find the region-specific topics which

are not relevant to the background theme. The top half of Table ?? shows the example

where we take USA-related documents as the foreground and Economics as the back-

ground theme. We first set the contrast parameter γ = 0 in Algorithm 1; this learns

the topics from the foreground dataset alone. Due to the composition of the corpus,

the foreground topics for USA is dominated by topics relevant to stock markets and

trade; representative topics and keywords are shown on the left of Table ??. Then we

increase γ to observe the effects of contrast. In the right half of Table ??, we show the

heavily weighted topics and keywords for when γ = 2. The topics involving market and

trade are also present in the background corpus, so their weights are reduced through

contrast. Topics which are very USA-specific and distinct from economics rise to the

top: basketball, baseball, scientific research, etc. A similar experiment with China-

related articles as foreground, and the same economics themed background is shown in
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Figure 5.2: (a) Relative AUC as function of γ. (b) Emission probabilities of HMM states.

the bottom of Table ??.

These examples illustrate that Algorithm 1 learns topics which are unique to the

foreground. To quantify this effect, we devised a specificity test. Using the RCV1 labels,

we partition the foreground USA documents into two disjoint groups: documents with

any economics-related labels (group 0) and the rest (group 1). Because Algorithm 1

learns the full probabilistic model, we use the inferred topic parameters to compute

the marginal likelihood for each foreground document given the model. We then use

the likelihood value to classify each foreground document as belonging to group 0 or 1.

The performance of the classifier is summarized by the AUC score.

We first set γ = 0 and compute the AUC score, which corresponds to how well a

topic model learned from only the foreground can distinguish between the two groups.

We use this score as the baseline and normalize so it is equal to 1. The hope is that by

using the background data, the contrastive model can better identify the documents

that are generated by foreground-specific topics. Indeed, as γ increases, the AUC score

improves significantly over the benchmark (dark blue bars in Figure 5.2(a)). For γ > 2

we find that the foreground specific topics do not change qualitatively.

A major advantage of our approach is that we do not need to learn a very accu-

rate background model to learn the contrast. To validate this, we down sample the

background corpus to 1000, 100, and 50 documents. This simulates settings where the

background is very sparsely sampled, so it is not possible to learn a background model

very accurately. Qualitatively, we observe that even with only 50 randomly sampled

background documents, Algorithm 1 still recovers topics specific to USA and not re-
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lated to Economics. At γ = 2, it learns sports and NASA/space as the most prominent

foreground-specific topics. This is supported by the specificity test, where contrastive

topic models with sparse background better identify foreground-specific documents rel-

ative to the γ = 0 (foreground data-only) model.

5.5 Contrastive Hidden Markov Models

Hidden Markov Models (HMMs) are commonly used to model sequence and time series

data. For example, a biologist may collect several sequences from an experiment; some

of the sequences are generated by a biological process of interest (modeled by an HMM),

while others are generated by a different “background” process—e.g., noise or a process

that is not of primary interest.

Consider a simple generative process where foreground data are generated by a

mixture of two HMMs: (1− γ) HMMA +γHMMB, and background data are gen-

erated by HMMB. The goal is to learn the parameters of HMMA, which models

the biological process of interest. As we did for topic models, we can estimate a

contrastive HMM by taking appropriate combinations of observable moments. Let

xf1, x
f
2, x

f
3, . . . be a random observation sequence in RD generated by the foreground

model (1− γ) HMMA +γHMMB, and xb1, x
b
2, x

b
3, . . . be the sequence generated by the

background model HMMB. Following (2), it suffices to estimate the following cross mo-

ment matrices and tensors: M f
1,2 := E[xf1⊗ xf2], M f

1,3 := E[xf1⊗ xf3], M f
2,3 := E[xf2⊗ xf3],

M f
1,2,3 := E[xf1 ⊗ xf2 ⊗ xf3], as well as the corresponding moments for the background

model (here, we only use the first three observations in the sequence, but it is also

justifiable to average over all consecutive observation triplets (78)). Then, an ana-

logue of Proposition 1 (with suitable non-degeneracy assumptions as discussed in (2))

implies that we can recover the foreground-specific model HMMA by using an asym-

metric generalization of Algorithm 2 (see Appendix 5.8.4) with Mu,v := M f
u,v − γMb

u,v

(for {u, v} ⊂ {1, 2, 3}) and M1,2,3 := M f
1,2,3 − γMb

1,2,3.

Application to contrastive genomics. For many biological problems, it is impor-

tant to understand how signals in certain data are enriched relative to some related

background data. For instance, we may want to contrast foreground data composed of

gene expressions (or mutation rates, protein levels, etc) from one population against
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background data taken from (say) a control experiment, a different cell type, or a dif-

ferent time point. The contrastive analysis methods developed here can be a powerful

exploratory tool for biology.

As a concrete illustration, we use spectral contrast to refine the characterization

of chromatin states. The human genome consists of ≈ 3 billion DNA bases, and has

recently been shown that these bases can be naturally segmented into a handful of

chromatin states (38, 43). Each state describes a set of genomic properties: several

states describe different active and regulatory features, while other states describe re-

pressive features. The chromatin state varies across the genome, remaining constant

for relatively short regions (say, several thousand bases). Learning the nature of the

chromatin states is of great interest in genomics. The state-of-the-art approach for

modeling chromatin states uses an HMM (38). The observable data are, at every 200

bases, a binary feature vector in {0, 1}10. Each feature indicates the presence/absence

of a specific chemical feature at that site (assumed independent given the chromatin

state). This correspond to ≈ 15 million observations across the genome, which are used

to learn the parameters of an HMM. Each chromatin state correspond to a latent state,

characterized by a vector of 10 emission probabilities.

We take as foreground data the observations from exons, introns and promoters,

which account for about 30% of the genome; as background data, we take observations

from intergenic regions. Because exons and introns are transcribed, we expect the

foreground to be a mixture of functional chromatin states and spurious states due to

noise, and expect more of the background observations to be due to non-functional

process. The contrastive HMM should capture biologically meaningful signals in the

foreground data. In Figure 5.2(b), we show the emission matrix for the foreground

HMM and for the contrastive HMM. We learn K = 7 latent states, corresponding to 7

chromatin states. Each row is a chemical feature of the genome. The foreground states

recover the known biological chromatin states from literature (38). For example, state

6, with high emission for K36me3, is transcribed genes; state 5 is active enhancers;

state 4 is poised enhancers. In the contrastive HMM, most of the states are the same

as before. Interestingly, state 7, which is associated with feature K20me1, drops from

the largest component of the foreground to a very small component of the contrast.

This finding suggests that state 7 and K20me1 are less specific to gene bodies than
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previously thought (30), and raises more questions regarding its function, which is

relatively unknown.

5.6 Generalized tensor power method

We now describe our general approach for tensor decomposition used in Algorithm 1.

Let a1, a2, . . . , aK ∈ RD be linearly independent vectors, and set A := [a1|a2| · · · |aK ].

Let M2 :=
∑K

i=1 σiai ⊗ ai and M3 :=
∑K

i=1 λiai ⊗ ai ⊗ ai, where σi = sign(λi) ∈ {±1}.
The goal is to recover {(at, λt) : t ∈ [K]} from (estimates of) M2 and M3.

The following proposition shows that one of the vectors ai (and its associated λi) can

be obtained from M2 and M3 using a simple power method similar to that from (2, 81)

(note that which of the K components is obtained depends on the initialization of the

procedure). Note that the error ε is exponentially small in 2t after t iterations, so the

number of iterations required to converge is very small. Below, we use (·)† to denote

the Moore-Penrose pseudoinverse.

Proposition 2 (Informal statement). Consider the sequence u(0), u(1), . . . in RD de-

termined by u(i+1) := M3(I,M †2u
(i),M †2u

(i)) . Then for any ε ∈ (0, 1) and almost all

u(0) ∈ range(A), there exists t∗ ∈ [K], c1, c2 > 0 such that

‖ũ(i) − at∗‖2 ≤ ε

and

|λ̃− |λt∗ || ≤ |λt∗ |ε+ max
t6=t∗
|λt|ε3/2

for ε := c1 exp(−c22i), where ũ(i) := σt∗u
(i)/‖A†u(i)‖, λ̃ := M3(M †2 ũ

(i),M †2 ũ
(i),M †2 ũ

(i)).

See below for the formal statement and proof which give explicit dependencies.

We use the iterations from Proposition 2 in our main decomposition algorithm (Algo-

rithm 2), which is a variant of the main algorithm from (2). The main difference is that

we do not require M2 to be positive semi-definite, which is essential for our application,

but requires subtle modifications. For simplicity, we assume we run Algorithm 2 with

exact moments M2 and M3 — a detailed perturbation analysis would be similar to

that in (2) but is beyond the scope of this paper. Proposition 2 shows that a single

component can be accurately recovered, and we use deflation to recover subsequent

components (normalization and deflation is further discussed in Appendix 5.8.2). As
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Algorithm 2 Generalized Tensor Power Method

input M̂2 ∈ RD×D; M̂3 ∈ RD×D×D; target rank K; number of iterations N .

output Estimates {(ât, λ̂t) : t ∈ [K]}.
1: Let M̂ †2 := Moore-Penrose pseudoinverse of rank K approximation to M̂2; initialize

T := M̂3.

2: for t = 1 to K do

3: Randomly draw u(0) ∈ RD from any distribution with full support in the range

of M̂2.

4: Repeat power iteration update N times: u(i+1) := T (I, M̂ †2u
(i), M̂ †2u

(i)).

5: ât := u(N)/|〈u(N), M̂ †2u
(N)〉|1/2; λ̂t := T (M̂ †2 ât, M̂

†
2 ât, M̂

†
2 ât); T := T − |λ̂t|ât ⊗

ât ⊗ ât.
6: end for

noted in (2), errors introduced in this deflation step have only a lower-order effect, and

therefore it can be used reliably to recover all K components. For increased robustness,

we actually repeat steps 3–5 in Algorithm 2 several times, and use the results of the

trial in which |λ̂t| takes the median value.

5.6.1 Robustness to sparse background sampling

Algorithm 1 can recover the foreground-specific {µt}t∈A even with relatively small

numbers of background data. We can illustrate this robustness under the that the

support of the foreground-specific topics S0 := ∪t∈A supp(µt) is disjoint from that of

the other topics S1 := ∪t∈B∪C supp(µt) (similar to Brown clusters (10)). Suppose that

M f
2 is estimated accurately using a large sample of foreground documents. Then because

S0 and S1 are disjoint, Algorithm 1 (using sufficiently large γ) will accurately recover

the topics {(µt, wf
t) : t ∈ A} in Topicsf . The remaining concern is that sampling errors

will cause Algorithm 1 to mistakenly return additional topics in Topicsf , namely the

topics t ∈ B ∪ C. It thus suffices to guarantee that the signs of the λ̂t returned by

Algorithm 2 are correct. The sample size requirement for this is independent of the

desired accuracy level for the foreground-specific topics—it depends only on γ and fixed

properties of the background model.1 As reported in Section 5.4.2, this robustness is

borne out in our experiments.

1For instance, if the background model consists only of one topic µ, then the analyses from (1, 2)

can be adapted to bound the sample size requirement by O(1/‖µ‖6).
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5.6.2 Scalability

Our algorithms are scalable to large datasets when implemented to exploit sparsity

and low-rank structure (each experiment we report runs on a standard laptop in a few

minutes). Two important details are (i) how the moments M2 and M3 are represented,

and (ii) how to compute execute the power iteration update in Algorithm 2. These

issues are only briefly mentioned in (2) and without proof, so in this section, we address

these issues in detail.

Efficient moment estimates for topic models. We first discuss how to represent

empirical estimates of the second- and third-order moments M f
2 and M f

3 for the fore-

ground documents (the same will hold for the background documents). Let document

n ∈ [N ] have length `n, and let cn ∈ ND be its word count vector (its i-th entry cn(i)

is the number of times word i appears in document n).

Proposition 3 (Estimator for M f
2). Assume `n ≥ 2. For any distinct i, j ∈ [D],

E[(cn(i)2 − cn(i))/(`n(`n − 1))] = [M f
2]i,i and E[cn(i)cn(j)/(`n(`n − 1))] = [M f

2]i,j.

By Proposition 3, an unbiased estimator ofM f
2 is M̂ f

2 := N−1
∑N

n=1(`n(`n−1))−1(cn⊗
cn − diag(cn)). Since M̂ f

2 is sum of sparse matrices, it can be represented efficiently,

and we may use sparsity-aware methods for computing its low-rank spectral decompo-

sitions. It is similarly easy to obtain such a decomposition for M̂ f
2 − γM̂b

2 , from which

one can compute its pseudoinverse and represent it in factored form as PQ> for some

P,Q ∈ RD×K .

Proposition 4 (Estimator for M f
3). Assume `n ≥ 3. For any distinct i, j, k ∈ [D],

E[(cn(i)3 − 3cn(i)2 + 2cn(i))/(`n(`n − 1)(`n − 2))] = [M f
3]i,i,i,

E[(cn(i)2cn(j)−cn(i)cn(j))/(`n(`n−1)(`n−2))] = [M f
3]i,i,j, E[(cn(i)cn(j)cn(k))/(`n(`n−

1)(`n − 2))] = [M f
3]i,j,k.

By Proposition 4, an unbiased estimator of M f
3(I, v, v) for any vector v ∈ RD is

M̂ f
3(I, v, v) := N−1

∑N
n=1(`n(`n − 1)(`n − 2))−1(〈cn, v〉2cn − 2〈cn, v〉(cn ◦ v) − 〈cn, v ◦

v〉cn+2cn◦v◦v) (where ◦ denotes component-wise product of vectors). Each term in the

sum takes only O(nnz(cn)) operations to compute, and each only has nnz(cn) non-zero

entries. So the time to compute M̂ f
3(I, v, v) is proportional to the number of non-zero

entries of the term-document matrix, using just a single pass over the document corpus.
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Power iteration computation. Each power iteration update in Algorithm 2 just

requires the evaluating M̂ f
3(I, v, v)−γM̂b

3 (I, v, v) (one-pass linear time, as shown above)

for v := M̂ †2u
(i), and computing the deflation

∑
τ<t λ̂τ 〈âτ , v〉2âτ (O(DK) time). Since

M̂ †2 is kept in rank-K factored form, v can also be computed in O(DK) time.

5.7 Discussion

In this paper, we formalize a model of contrastive learning and introduce efficient

spectral methods to learn the model parameters specific to the foreground. Experiments

with contrastive topic modeling show that Algorithm 1 can learn foreground-specific

topics even when the background data is noisy. Our application in contrastive genomics

illustrates the utility of this method in exploratory analysis of biological data. The

contrast identifies an intriguing change associated with K20me1, which can be followed

up with biological experiments. While we have focused in this work on a natural

contrast model for mixture models, we also discuss an alternative approach below.

5.8 Supplemental analysis

5.8.1 Proof of Proposition 1

Proof of Proposition 1. This follows from the observation that

M2 =
∑
t∈A

wf
t µt ⊗ µt +

∑
t∈B

(wf
t − γwb

t ) µt ⊗ µt +
∑
t∈C

(−γwb
t ) µt ⊗ µt

M3 =
∑
t∈A

wf
t µ
⊗3
t +

∑
t∈B

(wf
t − γwb

t ) µ
⊗3
t −

∑
t∈C

γwb
t µ
⊗3
t

and

wf
t − γwb

t ≤ 0 ∀t ∈ B ⇐⇒ γ ≥ max
t∈B

wf
t/w

b
t .

5.8.2 Generalized tensor power method

Normalization and deflation. By Proposition 2, the first for-loop iteration of Al-

gorithm 2 recovers u(N) very close to σi∗ai∗ for some i∗ ∈ [K], up to positive scaling

s := ‖A†u(N)‖. Because

1 = (σi∗〈ai∗ ,M †2ai∗〉)
1/2 = |〈ai∗ ,M †2ai∗〉|

1/2,
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this scaling s is close to |〈u(N),M †2u
(N)〉|1/2, which is the normalization used in Algo-

rithm 2. Thus, the estimates â1 and λ̂1 are close to σi∗ai∗ and λi∗ , respectively. For

the next for-loop iteration, we want to execute the power iteration with a tensor close

to T − λi∗ai∗ ⊗ ai∗ ⊗ ai∗ in order to recover a component different from ai∗ . Therefore

we use

M3 − |λ̂1|â1 ⊗ â1 ⊗ â1 ≈M3 − σi∗ |λi∗ |ai∗ ⊗ ai∗ ⊗ ai∗ = M3 − λi∗ai∗ ⊗ ai∗ ⊗ ai∗

(the crucial detail is the absolute value on λ̂1).

Convergence analysis.

Proposition 5. Let u(0) ∈ range(A), and consider the sequence determined by

u(i+1) := M3(I,M †2u
(i),M †2u

(i)).

Define

t∗ := arg max
t∈[K]

|λt〈et, A†u(0)〉|, ρ := max
t6=t∗

∣∣∣∣ λt〈et, A†u(0)〉
λt∗〈et∗ , A†u(0)〉

∣∣∣∣, ε := ρ2i+1
λ2
t∗

∑
t6=t∗

λ−2
t ,

ũ(i) := σt∗u
(i)/‖A†u(i)‖.

Then

‖A†(ũ(i) − at∗)‖2 ≤ 2ε,∣∣M3(M †2 ũ
(i),M †2 ũ

(i),M †2 ũ
(i))− |λt∗ |

∣∣ ≤ |λt∗ | · ε+ max
t6=t∗
|λt| · ε1.5.

Proof. Define ft := 〈et, A†u(0)〉, and without loss of generality, assume |λ1f1| ≥ |λ2f2| ≥
· · · ≥ |λKfK |. Then, using the definition u(1) = M3(I,M †2u

(0),M †2u
(0)) and the facts

that A has full column rank and Σ is invertible, we have

u(1) =
K∑
t=1

λt〈at,M †2u
(0)〉2at

=

K∑
t=1

λt〈at, (A>)†Σ−1A†u(0)〉2at

=
K∑
t=1

λtσ
−2
t 〈et, A†u(0)〉2at

=
K∑
t=1

λtf
2
t at,
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which implies 〈et, A†u(0)〉 = λtf
2
t . By induction, 〈et, A†u(i)〉 = λ2i−1

t f2i
t . Therefore

1−〈e1, A
†ũ(i)〉2 = 1− 〈e1, A

†u(i)〉2∑K
t=1〈et, A†u(i)〉2

= 1− |λ1|2
i+1−2f2i+1

1∑K
t=1 |λt|2

i+1−2f2i+1

t

≤ ρ2i+1
λ2

1

K∑
t=2

λ−2
t = ε.

Moreover, 〈e1, A
†ũ(i)〉 = |λ1|2

i−1f2i
1 /
√∑K

t=1 |λt|2
i+1−2f2i+1

t ∈ [0, 1], so 〈e1, A
†ũ(i)〉 ≥

〈e1, A
†ũ(i)〉2. Therefore, using the fact that ‖A†ũ(i)‖ = ‖A†a1‖ = 1, we can bound

‖A†(ũ(i) − a1)‖2 as

‖A†(ũ(i)−a1)‖2 = 2(1−〈a1, (AA
>)†ũ(i)〉) = 2(1−〈e1, A

†ũ(i)〉) ≤ 2(1−〈e1, A
†ũ(i)〉2) ≤ 2ε.

It remains to show that M3(M †2 ũ
(i),M †2 ũ

(i),M †2 ũ
(i)) is close to |λ1|. We have that

M3(M †2 ũ
(i),M †2 ũ

(i),M †2 ũ
(i)) =

K∑
t=1

λt〈at,M †2 ũ
(i)〉3

=
K∑
t=1

|λt|〈et, A†ũ(i)〉3

= |λ1|〈e1, A
†ũ(i)〉+ σ1

K∑
t=2

|λt|

(
〈et, A†u(i)〉√∑K
j=1〈ej , A†u(i)〉2

)3

.

Since (1 + 〈e1, A
†ũ(i)〉)(1− 〈e1, A

†ũ(i)〉) = 1− 〈e1, A
†ũ(i)〉2 ≤ ε and 〈e1, A

†ũ(i)〉 ∈ [0, 1],

it follows that |1− 〈e1, A
†ũ(i)〉| = (1− 〈e1, A

†ũ(i)〉) ≤ ε/(1 + 〈e1, A
†ũ(i)〉) ≤ ε. Further-

more, by Hölder’s inequality, the triangle inequality, and the fact that (
∑

t |vt|3)1/3 ≤
(
∑

t v
2
t )

1/2,∣∣∣∣∣
K∑
t=2

|λt|

(
〈et, A†u(i)〉√∑K
j=1〈ej , A†u(i)〉2

)3∣∣∣∣∣ ≤ (max
t>1
|λt|
) ∑K

t=2 |〈et, A†u(i)〉|3(∑K
j=1〈ej , A†u(i)〉2

)3/2

≤ max
t>1
|λt|

(∑K
t=2〈et, A†u(i)〉2∑K
j=1〈ej , A†u(i)〉2

)3/2

≤ max
t>1
|λt|ε3/2.

Thus, again by the triangle inequality,∣∣M3(M †2 ũ
(i),M †2 ũ

(i),M †2 ũ
(i))− |λ1|

∣∣ ≤ |λ1|ε+ max
t>1
|λt|ε3/2.

5.8.3 Moment estimators

In the proofs of Propositions 3 and 4, we let xn,1, xn,2, . . . , xn,`n ∈ [D] be the words in

document n, so cn :=
∑`n

i=1 exn,i .
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Proof of Proposition 3. For any i ∈ [D],

E
[
cn(i)2 − cn(i)

]
= E

[(
`n∑
p=1

xn,p(i)

)2

−
`n∑
p=1

xn,p(i)

]

= E

[
`n∑
p=1

xn,p(i)
2 + 2

∑
p<q

xn,p(i)xn,q(i)−
`n∑
p=1

xn,p(i)

]
= 2

∑
p<q

E
[
xn,p(i)xn,q(i)

]
(since xn,p(i)

2 = xn,p(i))

= `n(`n − 1)[M f
2]i,i.

For i 6= j,

E
[
cn(i)cn(j)

]
= E

[
`n∑
p=1

xn,p(i)

`n∑
q=1

xn,q(j)

]

= E

[
`n∑
p=1

xn,p(i)xn,p(j) +
∑
p 6=q

xn,p(i)xn,q(j)

]

=
∑
p 6=q

E
[
xn,p(i)xn,q(j)

]
(since xn,p(i)xn,p(j) = 0 for i 6= j)

= `n(`n − 1)[M f
2]i,j .

5.8.4 Asymmetric generalized tensor power method

Let {a1, a2, . . . , aK} ⊂ RDa , {b1, b2, . . . , bK} ⊂ RDb , and {c1, c2, . . . , cK} ⊂ RDc be sets

of linearly independent vectors. Let Mu,v :=
∑K

t=1 σtutv
>
t for (u, v) ∈ {a, b, c}×{a, b, c},

and Ma,b,c :=
∑K

t=1 λtat ⊗ bt ⊗ ct, where σt = sign(λt) ∈ {±1}. Given (estimates of)

Ma,b,Ma,c,Mb,c,Ma,b,c, Algorithm 3 approximates {(at, bt, ct, λt) : t ∈ [K]}. The proof

of convergence (assuming exact estimates of Ma,b,Ma,c,Mb,c,Ma,b,c) is very similar to

Proposition 2 and is thus omitted.

5.8.5 An alternative model of contrast

We consider a different generative model in which the topic of a document is a simple

(fixed) mixture of a foreground topic and a background topic (say, 0.9µft + 0.1µbt′ with

probability wt,t′ , for t ∈ [K f ] and t ∈ [Kb]). One can treat this using the previous

model with K = K fKb topics, but there are really only K f +Kb topics. Using auxiliary

background data which is modeled by a topic model over just the background topics
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Algorithm 3 Asymmetric Generalized Tensor Power Method

input M̂a,b ∈ RDa×Db ; M̂a,c ∈ RDa×Dc ; M̂b,c ∈ RDb×Dc ; M̂a,b,c ∈ RDa×Db×Dc ; target

rank K; number of iterations N .

output Estimates {(ât, b̂t, ĉt, λ̂t) : t ∈ [K]}.
1: Let M̂ †a,b := Moore-Penrose pseudoinverse of rank K approximation to M̂a,b; simi-

larly define M̂ †a,c and M̂ †b,c; let M̂ †a,a := M̂ †b,aM̂b,cM̂
†
a,c; initialize T := M̂a,b,c.

2: for t = 1 to K do

3: Randomly draw u(0) ∈ RD from any distribution with full support in the range

of M̂a,b.

4: Repeat power iteration update N times: u(i+1) := T (I, M̂ †a,bu
(i), M̂ †a,cu(i)).

5: ât := u(N)/|〈u(N), M̂ †a,au(N)〉|1/2; b̂t := M̂b,cM̂
†
a,cât; ĉt := M̂c,bM̂

†
a,bât; λ̂t :=

T (M̂ †a,aât, M̂
†
a,bât, M̂

†
a,cât); T := T − |λ̂t|ât ⊗ b̂t ⊗ ĉt.

6: end for

{µbt′ : t′ ∈ [Kb]}, it is possible to determine an orthogonal projector Π ∈ RD×D for the

range of the second-order moments, which approximately captures the span of the {µbt′}.
Then, the projection I − Π can be applied to the second- and third-order moments

of the foreground documents (which is generated by mixed topics) to annihilate the

background topic contributions: (I −Π)(0.9µft + 0.1µbt′) = 0.9(I −Π)µft. If, in addition,

the support of the foreground topics and background topics are disjoint (as in Brown

clusters), then (I −Π)µft = µft. Therefore, one can directly estimate the K f foreground

topics using the foreground data. Moreover, we do not need to fully estimate the model

for the background documents, as we only need the second-order (but not third-order)

moments to determine Π.

We used this model to conduct experiments similar to those reported in Section 5.4.2

on the RCV1 dataset, and observed qualitatively similar results, but it was less numer-

ically stable compared to Algorithm 1. Developing better estimators for this model is

a promising direction of future research.
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6

Priors for Diversity in Generative

Latent Variable Models

6.1 Overview

Probabilistic latent variable models are one of the cornerstones of machine learning.

They offer a convenient and coherent way to specify prior distributions over unobserved

structure in data, so that these unknown properties can be inferred via posterior in-

ference. Such models are useful for exploratory analysis and visualization, for building

density models of data, and for providing features that can be used for later discrimi-

native tasks. A significant limitation of these models, however, is that draws from the

prior are often highly redundant due to i.i.d. assumptions on internal parameters. For

example, there is no preference in the prior of a mixture model to make components

non-overlapping, or in topic model to ensure that co-occurring words only appear in a

small number of topics. In this work, we revisit these independence assumptions for

probabilistic latent variable models, replacing the underlying i.i.d. prior with a deter-

minantal point process (DPP). The DPP allows us to specify a preference for diversity

in our latent vari- ables using a positive definite kernel function. Using a kernel be-

tween probability distributions, we are able to define a DPP on probability measures.

We show how to perform MAP inference with DPP priors in latent Dirichlet allocation

and in mixture models, leading to better intuition for the latent variable representation

and quantitatively improved unsupervised feature extraction, without compromising

the generative aspects of the model.
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6.2 Introduction

The probabilistic generative model is an important tool for statistical learning because

it enables rich data to be explained in terms of simpler latent structure. The discovered

structure can be useful in its own right, for explanatory purposes and visualization, or

it may be useful for improving generalization to unseen data. In the latter case, we

might think of the inferred latent structure as providing a feature representation that

summarizes complex high-dimensional interaction into a simpler form.

The core assumption behind the use of latent variables as features, however, is that

the salient statistical properties discovered by unsupervised learning will be useful for

discriminative tasks. This requires that the features span the space of possible data and

represent diverse characteristics that may be important for discrimination. Diversity,

however, is difficult to express within the generative framework. Most often, one builds

a model where the feature representations are independent a priori, with the hope that

a good fit to the data will require employing a variety of latent variables.

There is reason to think that this does not always happen in practice, and that

during unsupervised learning, model capacity is often spent improving the density

around the common cases, not allocating new features. For example, in a generative

clustering model based on a mixture distribution, multiple mixture components will

often be used for a single “intuitive group” in the data, simply because the shape of the

component’s density is not a close fit to the group’s distribution. A generative mixture

model will happily use many of its components to closely fit the density of a single

group of data, leading to a highly redundant feature representation. Similarly, when

applied to a text corpus, a topic model such as latent Dirichlet allocation (31) will place

large probability mass on the same stop words across many topics, in order to fine-tune

the probability assigned to the common case. In both of these situations, we would

like the latent groupings to uniquely correspond to characteristics of the data: that a

group of data should be explained by one mixture component, and that common stop

words should be one category of words among many. This intuition expresses a need

for diversity in the latent parameters of the model that goes beyond what is highly

likely under the posterior distribution implied by an independent prior.

In this paper, we propose a modular approach to diversity in generative probabilistic

models by replacing the independent prior on latent parameters with a determinantal
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6.3 Diversity in Generative Latent Variable Models

point process (DPP). The determinantal point process enables a modeler to specify a

notion of similarity on the space of interest, which in this case is a space of possible

latent distributions, via a positive definite kernel. The DPP then assigns probabilities

to particular configurations of these distributions according to the determinant of the

Gram matrix. This construction naturally leads to a generative latent variable model

in which diverse sets of latent parameters are preferred over redundant sets.

The determinantal point process is a convenient statistical tool for constructing

a tractable point process with repulsive interaction. The DPP is more general than

the Poisson process (see, e.g., (77)), which has no interaction, but more tractable than

Strauss (86) and Gibbs/Markov (41) processes (at the cost of only being able to capture

anticorrelation). Hough et al. (70) provides a useful survey of probabilistic properties

of the determinantal point process, and for statistical properties, see, e.g., Scardicchio

et al. (22) and Lavancier et al. (82). There has also been recent interest in using the

DPP within machine learning for modeling sets of structures (18), and for conditionally

producing diverse collections of objects (19). The approach we propose here is different

from this previous work in that we are suggesting the use of a determinantal point

process within a hierarchical model, and using it to enforce diversity among latent

variables, rather than as a mechanism for diversity across directly observed discrete

structures.

6.3 Diversity in Generative Latent Variable Models

In this paper we consider generic directed probabilistic latent variable models that

produce distributions over a set of N data, denoted {xn}Nn=1, which live in a sam-

ple space X. Each of these data has a latent discrete label zn, which takes a value

in {1, 2, · · · , J}. The latent label indexes into a set of parameters {θj}Jj=1. The param-

eters determined by zn then produce the data according to a distribution f(xn | θzn).

Typically we use independent priors for the θj , here denoted by π(·), but the distribu-

tion over the latent indices zn may be more structured. Taken together this leads to

the generic joint distribution:

p({xn, zn}Nn=1, {θj}Jj=1) = p({zn}Nn=1)

[
N∏
n=1

f(xn | θzn)

]
J∏
j=1

π(θj). (6.1)
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The details of each distribution are problem-specific, but this general framework ap-

pears in many contexts. For example, in a typical mixture model, the zn are drawn

independently from a multinomial distribution and the θj are the component-specific

parameters. In an admixture model such as latent Dirichlet allocation (LDA) (31),

the θj may be “topics”, or distributions over words. In an admixture, the zn may share

structure based on, e.g., being words within a common set of documents.

These models are often thought of as providing a principled approach for feature

extraction. At training time, one either finds the maximum of the posterior distri-

bution p({θj}Jj=1 | {xn}Nn=1) or collects samples from it, while integrating out the data-

specific latent variables zn. Then when presented with a test case x?, one can construct

a conditional distribution over the corresponding unknown variable z?, which is now

a “feature” that might usefully summarize many related aspects of x?. However, this

interpretation of the model is suspect; we have not asked the model to make the zn

variables explanatory, except as a byproduct of improving the training likelihood. Dif-

ferent θj may assign essentially identical probabilities to the same datum, resulting in

ambiguous features.

6.3.1 Measure-Valued Determinantal Point Process

In this work we propose an alternative to the independence assumption of the standard

latent variable model. Rather than specifying p({θj}Jj=1) =
∏
j π(θj), we will construct

a determinantal point process on sets of component-specific distributions {f(x | θj)}Jj=1.

Via the DPP, it will be possible for us to specify a preference for sets of distributions

that have minimal overlap, as determined via a positive-definite kernel function between

distributions. In the case of the simple parametric families for f(·) that we consider

here, it is appropriate to think of the DPP as providing a “diverse” set of parameters θ =

{θj}Jj=1, where the notion of diversity is expressed entirely in terms of the resulting

probability measure on the sample space X. After MAP inference with this additional

structure, the hope is that the θj will explain substantially different regions of X —

appropriately modulated by the likelihood — and lead to improved, non-redundant

feature extraction at test time.

We will use Θ to denote the space of possible θ. A realization from a point process

on Θ produces a random finite subset of Θ. To construct a determinantal point process,
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(a) Indepen-

dent Points

(b) DPP Points

(c) Independent Gaussians

(d) DPP Gaussians

(e) Independent Multinomi-

als

(f) DPP Multinomials

Figure 6.1: Illustrations of the determinantal point process prior. (a) 25 independent

uniform draw in the unit square; (b) a draw from a DPP with 25 points; (c) ten Gaussian

distributions with means uniformly drawn on the unit interval; (d) ten Gaussian distri-

butions with means distributed according to a DPP using the probability product kernel;

(e) five random discrete distributions; (f) five random discrete distributions drawn from a

DPP on the simplex with the probability product kernel (74).

we first define a positive definite kernel on Θ, which we denote K : Θ×Θ→ R. The

probability density associated with a particular finite θ ⊂ Θ is given by

p(θ ⊂ Θ) ∝ |Kθ|, (6.2)

where Kθ is the |θ| × |θ| positive definite Gram matrix that results from applyingK(θ, θ′)

to the elements of θ. The eigenspectrum of the kernel on Θ must be bounded to [0, 1].

The kernels we will focus on in this paper are composed of two parts: 1) a posi-

tive definite correlation function R(θ, θ′), where R(θ, θ) = 1, and 2) the “prior ker-

nel”
√
π(θ)π(θ′), which expresses our marginal preferences for some parameters over

others. These are combined to form the kernel of interest:

K(θ, θ′) = R(θ, θ′)
√
π(θ)π(θ′), (6.3)

which leads to the matrix form Kθ = Π Rθ Π, where Π = diag([
√
π(θ1),

√
π(θ2), · · · ]).

Note that if R(θ, θ′) = 0 when θ 6= θ′, this construction recovers the Poisson process

with intensity measure π(θ). Note also in this case that if the cardinality of θ is
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predetermined, then this recovers the traditional independent prior. More interesting,

however, are R(θ, θ′) with off-diagonal structure that induces interaction within the

set. Such kernels will always induce repulsion of the points so that diverse subsets of Θ

will tend to have higher probability under the prior. See Fig. 6.1 for illustrations of the

difference between independent samples and the DPP for several different settings.

6.3.2 Kernels for Probability Distributions

The determinantal point process framework allows us to construct a generative model

for repulsion, but as with other kernel-based priors, we must define what “repulsion”

means. A variety of positive definite functions on probability measures have been

defined, but in this work we will use the probability product kernel (74). This kernel is

a natural generalization of the inner product for probability distributions. The basic

kernel has the form

K(θ, θ′ ; ρ) =

∫
X

f(x | θ)ρ f(x | θ′)ρ dx (6.4)

for ρ > 0. As we require a correlation kernel, we use the normalized variant given by

R(θ, θ′ ; ρ) = K(θ, θ′ ; ρ)/
√
K(θ, θ ; ρ)K(θ′, θ′ ; ρ). (6.5)

This kernel has convenient closed forms for several distributions of interest, which makes

it an ideal building block for the present model.

6.3.3 Replicated Determinantal Point Process

A property that we often desire from our prior distributions is that they have the ability

to become arbitrarily strong. That is, under the interpretation of a Bayesian prior as

“inferences from previously-seen data”, we would like to be able to imagine an arbi-

trary amount of such data and construct a highly-informative prior when appropriate.

Unfortunately, the standard determinantal point process does not provide a knob to

turn to increase its strength arbitrarily.

For example, take a DPP on a Euclidean space and consider a point t, an arbitrary

unit vector w and a small scalar ε. Construct two pairs of points using a δ > 1: a “near”

pair {t, t+ εw)}, and a “far” pair {t, t+ εδw}. We wish to find some small ε such that
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the “far” configuration is arbitrarily more likely than the “near” configuration under

the DPP. That is, we would like the ratio of determinants

r(ε) =
p({t, t+ εδw})
p({t, t+ εw)})

=
1−R(t, t+ εδw)2

1−R(t, t+ εw))2
, (6.6)

to be unbounded as ε approaches zero. The objective is to have a scaling parameter

that can cause the determinantal prior to be arbitrarily strong relative to the like-

lihood terms. If we perform a Taylor expansion of the numerator and denominator

around ε = 0, we get

r(ε) ≈
1− (R(t, t) + 2δwε

[
d
dt̃
R(t, t̃)

]
t̃=t

)

1− (R(t, t) + 2wε
[

d
dt̃
R(t, t̃)

]
t̃=t

)
= δ. (6.7)

We can see that, when near zero, this ratio captures the difference in distances, but

not in a way that can be rescaled to greater effect. This means that there exist finite

data sets that we cannot overwhelm with any DPP prior. To address this issue, we

augment the determinantal point process with an additional parameter λ > 0, so that

the probability of a finite subset θ ⊂ Θ becomes

p(θ ⊂ Θ) ∝ |Kθ|λ. (6.8)

For integer λ, it can be viewed as a set of λ identical “replicated realizations” from

determinantal point processes, leaving our generative view intact. The replicate of θ

is just θλ = {λ copies of θ} and the corresponding Kθλ is a λ|θ| × λ|θ| block diagonal

matrix where each block is a replicate of Kθ. This maps well onto the view of a prior as

pseudo-data; our replicated DPP asserts that we have seen λ previous such data sets.

As in other pseudo-count priors, we do not require in practice that λ be an integer,

and under a penalized log likelihood view of MAP inference, it can be interpreted as a

parameter for increasing the effect of the determinantal penalty.

6.3.4 Determinantal Point Process as Regularization.

In addition to acting as a prior over distributions in the generative setting, we can also

view the DPP as a new type of “diversity” regularizer on learning. The goal is to solve

θ? = argmin
θ⊂Θ

L(θ; {xn}Nn=1)− λ ln |Kθ|, (6.9)
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Figure 6.2: Schematic of DPP-LDA. We replace the standard plate notation for i.i.d topics in

LDA with a “double-struck plate” to indicate a determinantal point process.

choosing the best set of parameters θ from Θ. Here L(·) is a loss function that depends

on the data and the discrimination function, with parameters θ. From Eqn. (3),

ln |Kθ| = ln |Rθ|+
∑
θj∈θ

lnπ(θj). (6.10)

If L(·) = − ln p({xn}Nn=1|θ), then the resulting optimization is simply MAP estimation.

In this framework, we can combine the DPP penalty with any other regularizer on θ,

for example the sparsity-inducing `1 regularizer. In the following sections, we give

empirical evidence that this diversity improves generalization performance.

6.4 MAP Inference

In what follows, we fix the cardinality |θ|. Viewing the kernel Kθ as a function of θ,

the gradient ∂
∂θ log |Kθ| = trace(K−1

θ
∂Kθ
∂θ ). This allows application of general gradient-

based optimization algorithms for inference. In particular, we can optimize θ as a

modular component within an off-the-shelf expectation maximization (EM) algorithm.

Here we examine two illustrative examples of generative latent variable models into

which we can directly plug our DPP-based prior.

Diversified Latent Dirichlet Allocation Latent Dirichlet allocation (LDA) (31)

is an immensely popular admixture model for text and, increasingly, for other kinds

of data that can be treated as a “bag of words”. LDA constructs a set of topics

— distributions over the vocabulary — and asserts that each word in the corpus is

explained by one of these topics. The topic-word assignments are unobserved, but

LDA attempts to find structure by requiring that only a small number of topics be

represented in any given document.
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In the standard LDA formulation, the topics are K discrete distributions βk over a

vocabulary of size V , where βkv is the probability of topic k generating word v. There

are M documents and the mth document has Nm words. Document m has a latent

multinomial distribution over topics, denoted θm and each word in the document wmn

has a topic index zmn drawn from θm. While classical LDA uses independent Dirichlet

priors for the βk, here we “diversify” latent Dirichlet allocation by replacing this prior

with a DPP. That is, we introduce a correlation kernel

R(βk, βk′) =

∑V
v=1(βkv βk′v)

ρ√∑V
v=1 β

2ρ
kv

√∑V
v=1 β

2ρ
k′v

, (6.11)

which approaches one as βk becomes more similar to βk′ . In the application below

of DPP-LDA, we use ρ = 0.5. We use π(βk) = Dirichlet(α), and write the resulting

prior as p(β) ∝ |Kβ|. We call this model “DPP-LDA”, and illustrate it with a graphical

model in Figure 6.2. We use a “double-struck plate” in the graphical model to represent

the DPP, and highlight how it can be used as a drop-in replacement for the i.i.d.

assumption.

To perform MAP learning of this model, we construct a modified version of the

standard variational EM algorithm. As in variational EM for LDA, we define a factored

approximation

q(θm, zm|γm, φm) = q(θm|γm)

N∏
n=1

q(zmn|φmn). (6.12)

In this approximation, each document m has a Dirichlet approximation to its posterior

over topics, given by γm. φm is an N ×K matrix in which the nth row, denoted φmn,

is a multinomial distribution over topics for word wmn. For the current estimate of

βkv, γm and φm are iteratively optimized. See Blei et al. (31) for more details. Our

extension of variational EM to include the DPP does not require alteration of these

steps.

The inclusion of the determinantal point process prior does, however, effect the

maximization step. The diversity prior introduces an additional penalty on β, so that

the M-step requires solving

β? = argmax
β

{
M∑
m=1

Nm∑
n=1

K∑
k=1

V∑
v=1

φmnkw
(v)
mn lnβkv + λ ln |Kβ|

}
, (6.13)
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subject to the constraints that each row of β sum to 1. For λ = 0, this optimization

procedure yields the standard update for vanilla LDA, β?kv ∝
∑M

m=1

∑Nm
n=1 φmnkw

(v)
mn.

For λ > 0 we use gradient descent to find a local optimal β.

Diversified Gaussian Mixture Model The mixture model is a popular model

for generative clustering and density estimation. Given J components, the probability

of the data is given by

p(xn |θ) =
J∑
j=1

χj f(xn | θj). (6.14)

Typically, the θk are taken to be independent in the prior. Here we examine determi-

nantal point process priors for the θk in the case where the components are Gaussian.

For Gaussian mixture models, the DPP prior is particularly tractable. As in DPP-

LDA, we use the probability product kernel, which in this case also has a convenient

closed form. Let f1 = N(µ1,Σ1) and f2 = N(µ2,Σ2) be two Gaussians, the product

kernel is:

K(f1, f2) = (2π)(1−2ρ)D
2 ρ−

D
2 |Σ̂|

1
2 (|Σ1||Σ2|)−

ρ
2 exp(−ρ

2
(µT1 Σ−1

1 µ1 + µT2 Σ−1
2 µ2 − µ̂T Σ̂µ̂))

where Σ̂ = (Σ1 +Σ2)−1 and µ̂ = Σ−1
1 µ1 +Σ−1

2 µ2. In the special case of a fixed, isotropic

covariance σ2I and ρ = 1, the kernel is

K(f(· |µ), f(· |µ′)) =
1

(4πσ2)D/2
e−||µ−µ

′||2/(4σ2) (6.15)

where D is the data dimensionality.

In the standard EM algorithm for Gaussian mixtures, one typically introduces la-

tent binary variables znj , which indicate that datum n belongs to component j. The

E-step computes the responsibility vector γ(znj) = E[znj ] ∝ χjN(xn|µj ,Σj). This

step is identical for DPP-GMM. The update for the component weights is also the

same: χj = 1
N

∑N
n=1 γ(znj). The difference between this procedure and the standard

EM approach is that the M-step for the DPP-GMM optimizes the objective function

(summarizing {µj ,Σj}Jj=1 by θ for clarity):

θ? = argmax
θ∈Θ


N∑
n=1

J∑
j=1

γ(znj) [lnχj + lnN(xn|µj ,Σj)] + λ ln |Kθ|

 . (6.16)
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6.5 Experiment I: Diversified topic modeling.

Table 6.1: Top ten words from representative topics learned in LDA and DPP-LDA.

LDA DPP-LDA

typical ”stop words” ”Christianity” ”space” ”OS” ”politics”

the the the and jesus space file ms

to to of in matthew nasa pub myers

and and that at prophecy astronaut usr god

in it you from christians mm available president

of of by some church mission export but

is is one their messiah pilot font package

it in all with psalm shuttle lib options

for that but your isaiah military directory dee

that for do who prophet candidates format believe

can you my which lord ww server groups

Closely related to DPP-GMM is DPP-K-means. The kernel acts on the set of

centroids as in Eqn. (15), with σ2 now just a constant scaling term. Let θ = {µj} and

znj be the hard assignment indicator, the maximization step is:

θ? = argmax
θ∈Θ


N∑
n=1

J∑
j=1

znj ||xn − µj ||2 + λ ln |Kθ|

 . (6.17)

With the product kernel, the similarity between two Gaussians decays exponentially as

the distance between their means increases. In practice, we find that when the number

of mixture components |θ| is large, Kθ is well approximated by a sparse matrix.

6.5 Experiment I: Diversified topic modeling.

We tested LDA and DPP-LDA on the unfiltered 20 Newsgroup corpus, without remov-

ing any stop-words. A common frustration with vanilla LDA is that applying LDA

to unfiltered data returns topics that are dominated by stop-words. This frustrating

phenomenon occurs even as the number of topics is varied from K = 5 to K = 50. The

first two columns of Table 6.1 show the ten most frequent words from two representative

topics learned by LDA using K = 25 . Stop-words occur frequently across all docu-

ments and thus are unhelpfully correlated with topic-specific informative keywords. We

repeated the experiments after removing a list of 669 most common stop-words. How-
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6.5 Experiment I: Diversified topic modeling.
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Figure 6.3: Effect of λ on classification error.
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Figure 6.4: Effect of centroid distance on test error.

ever, the topics inferred by regular LDA are still dominated by secondary stop-words

that are not informative.

DPP-LDA automatically groups common stop words into a few topics. By finding

stop-word-specific topics, the majority of the remaining topics are available for more

informative words. Table 6.1 shows a sample of topics learned by DPP-LDA on the

unfiltered 20 Newsgroup corpus (K = 25, λ = 104). As we vary K or increase λ we

observe robust grouping of stop-words into a few topics. High frequency words that are

common across many topics significantly increase the similarity between the topics, as

measured by the product kernel on the β distributions. This similarity incurs a large
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6.6 Experiment II: Diverse clustering.

penalty in DPP and so the objective actively pushes the parameters of LDA away from

regions where stop words occupy large probability mass across many topics.

Features learned from DPP-LDA leads to better document classification. It is com-

mon to use the γm, the document specific posterior distribution over topics, as feature

vectors in document classification. We inferred {γm,train} on training documents from

DPP-LDA variational EM, and then trained a support vector machine (SVM) classifier

on {γm,train} with the true topic labels from 20 Newsgroups. On test documents, we

fixed the parameters α and β to the values inferred from the training set, and used

variational EM to find MAP estimates of {γm,test}. The mean test classification ac-

curacy for a range of λ values is plotted in Figure 6.3. The setting λ = 0 corresponds

to vanilla LDA. In each trial, we use the same training set for DPP-LDA on a range

of λ values. DPP-LDA with λ = 1 consistently outperforms LDA in test classification

(p < 0.001 binomial test). Large values of λ decrease classification performance.

6.6 Experiment II: Diverse clustering.

Mixture models are often a useful way to learn features for classification. The recent

work of Coates et al. (16), for example, shows that even simple K-means works well as

a method of extracting features for image labeling. In that work, K-means gave state

of art results on the CIFAR-10 object recognition task. Coates et al. achieved these

results using a patch-wise procedure in which random patches are sampled from images

for training. Each patch is a 6-by-6 square, represented as a point in a 36 dimensional

vector space. Patches from the training images are combined and clustered using K-

means. Each patch is then represented by a binary K-dimensional feature vector:

the kth entry is one if the patch is closer to the centroid k than its average distance to

centroids. Roughly half of the feature entries are zero. Patches from the same image

are then pooled to construct one feature vector for the whole image. An SVM is trained

on these image features to perform classification.

We reason that DPP-K-means may produce more informative features since the

cluster centroids will repel each other into more distinct positions in pixel space. We

replicated the experiments from Coates et al., using their publicly-available code for

identical pre- and post-processing. With this setup, λ = 0 recovers regular K-means,

and reproduces the results from Coates et al. (16). We applied DPP-K-means to
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6.6 Experiment II: Diverse clustering.

Table 6.2: Test classification accuracy on CIFAR-10 dataset.

training set size K K-means DPP K-means gain (%) λ

500 30 34.81 36.21 1.4 0.01

1000 30 43.32 44.27 0.95 0.01

2000 60 52.05 52.55 0.50 0.01

5000 150 61.03 61.23 0.20 0.001

10000 300 66.36 66.65 0.29 0.001

the CIFAR-10 dataset, while varying the size of the training set. For each training

set size, we ran regular K-means for a range of values of K and select the K that

gives the best test accuracy for K-means. Then we compare the performance with

DPP-K-means using the same K. For up to 10000 images in the training set, DPP-

K-means leads to better test classification accuracy compared to the simple K-means.

The comparisons are performed on matched settings: for a given randomly sampled

training set and a centroid initialization, we generate the centroids from both K-means

and DPP-K-means. The two sets of centroids were used to extract features and train

classifiers, which are then tested on the same test set of images. DPP-K-means con-

sistently outperforms K-means in generalization accuracy (p < 0.001 binomial test).

For example, for training set of size 1000, with k = 30, we ran 100 trials, each with

an random training set and initialization, DPP-K-means outperformed K-means in 94

trials. As expected given its role as a regularizer, improvement from DPP-K-means is

more significant for smaller training sets. For the full CIFAR-10 with 50000 training

images, DPP-K-means does not consistently outperform K-means.

Next we ask if there is a pattern between how far the DPP pushes apart the centroids

and classification accuracy on the test set. Focusing on 1000 training images and k = 30,

for each randomly sampled training set and centroid initialization, we compute the

mean inter-centroid distance for K-means and DPP-K-means. We compute the test

accuracy for each set of centroids. Fig. 4 bins the relative increase in inter-centroid

distance into 10 bins. For each bin, we show the 25th, 50th, and 75th percentile of

changes in test accuracy. Test accuracy is maximized when the inter-centroid distances

increase by about 14% from K-means centroids, corresponding to λ = 0.01.
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6.7 Discussion.

6.7 Discussion.

We have introduced a general approach to including a preference for diversity into

generative probabilistic models. We showed how a determinantal point process can be

integrated as a modular component into existing learning algorithms, and discussed

its general role as a diversity regularizer. We investigated two settings where diversity

can be useful: learning topics from documents, and clustering image patches. Plugging

a DPP into latent Dirichlet allocation allows LDA to automatically group stop-words

into a few categories, enabling more informative topics in other categories. In both

document and image classification tasks, there exists an intermediate regime of diver-

sity (as controlled by the hyperparameter λ) that leads to consistent improvement in

accuracy when compared to standard i.i.d. models. A computational bottleneck can

come from inverting the M ×M kernel matrix K, where M is the number of latent

distributions. However in many settings such as LDA, M is much smaller than the data

size. We expect that there are many other settings where DPP-based diversity can be

usefully introduced into a generative probabilistic model: in the emission parameters

of HMM and more general time series, and as a mechanism for transfer learning.
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7

The Physarum Solver for Linear

Programming Problems

7.1 Overview

Physarum polycephalum (true slime mold) has recently emerged as a fascinating ex-

ample of biological computation through morphogenesis. Despite being a single cell

organism, experiments have observed that through its growth process, the Physarum

is able to solve various minimum cost flow problems. This paper analyzes a mathemat-

ical model of the Physarum growth dynamics. We show how to encode general linear

programming (LP) problems as instances of the Physarum. We prove that under the

growth dynamics, the Physarum is guaranteed to converge to the optimal solution of

the LP. We further derive an efficient discrete algorithm based on the Physarum model,

and experimentally verify its performance on assignment problems.

7.2 Introduction

How do biological systems process information and solve optimization problems? There

has been a growing interest to understand these questions within a computation frame-

work. The agenda is two fold: first, can we understand and analyze biological systems

in terms of algorithms; and second, can we design new algorithms inspired by biology.

Prominent examples of such natural algorithms include flocking algorithms motivated

by the collective behavior of birds and fish, and swarming algorithms motived by ant

foraging behavior (12, 54, 87).
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7.3 Biology of Physarum

In this paper, we analyze the morphogenesis of Physarum polycephalum (true slime

mold) as a natural algorithm. The Physarum is a single cell organism with multiple

nuclei. Recent experiments have shown that it exhibits a surprising ability to solve

complex optimization problems (23, 58). In one set of experiments, researchers place

food at various places akin to cities on a map (58). As it grows, the Physarum is able to

process the input (food) in a de-centralized manner, and converge to the distance min-

imizing network connecting these food sources1. Mathematicians and biologists have

proposed a dynamical systems model that captures essential behaviors of Physarum

growth. Simulation and analysis of this model give mechanistic insight of how such a

simple organism can solve the Shortest Path Problem (47, 57, 61).

Here we show how a general Linear Programming Problem can be encoded as an

instance of a Physarum. We prove that under the Physarum growth model, the ap-

propriate quantity is guaranteed to converge to the optimal solution of the LP. Our

result draws on new analysis techniques inspired from the negative cost cycle algo-

rithm. In addition, we derive a discrete algorithm for solving LPs from the dynamical

systems. The algorithm is efficient to implement. We apply it to solve instances of the

Assignment Problem, and report simulation results.

7.3 Biology of Physarum

Physarum polycephalum is a member of the superclass Myxogastridae commonly re-

ferred to as true slime mold (63). In vegetative stage, it is a single cell containing

multiple nuclei that divide synchronously. It engulfs bacteria, amoebae and other mi-

crobes, and secretes enzymes to digest the engulfed material. Under adverse conditions,

it can reversibly transform into a sclerotium, a hardened mass that can survive for long

periods. Physarum grows as a complex of interconnected tubes made of a gel-like outer

layer enclosing the cytoplasmic fluid. The fluid oscillates back and forth across the

tubes with a period of about 100 seconds (46). This flow is shown to be driven by

cross-sectional contractions of the tubes through a peristaltic mechanism (46).
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7.4 The generalized Physarum Solver

A model of Physarum growth. A Physarum contains a network of veins that it

uses to transport nutrients across its body. The veins are modeled as a graph G (59).

The vertices V are where multiple veins meet, and an edge e ∈ E is a segment of the

vein. Each edge is a tube described by length ce and cross-sectional area σe. Vertex i is

associated with pressure pi. We assume that G is directed. So edge ij goes from vertex

i to j. The flow on ij is xij = σij
pi−pj
cij

. G may contain multi-edges. In particular, a

bidirectional edge can be modeled by two edges: ij and ji, with distinct σij and σji.

The Physarum growth model describes the time evolution of σij and pi on G. The

expansion and contraction of a vein segment is governed by:

d

dt
σij(t) = σij(t)

pi − pj
cij

− σij(t). (7.1)

The first term on the left captures the positive feedback: the greater the flow on ij, the

more the vein segment will expand. If pi < pj implying that xij < 0, then σij shrinks.

The second term reflect the natural decay of the Physarum.

The pressure pi is obtained from flow conservation: the flow into a vertex (except

for source or sink) equals the flow out from it. Let A be the |V|x|E| incidence matrix

of G. The conservation equation is Ax(t) = b, where bi = 0 for all i except for bs = 1

and bu = −1. Vertices s and u are the source and sink. The conservation equation can

be rewriten as AW(t)ATp(t) = b, where W(t) = diag(σe(t)/ce). If A has full row

rank, then p(t) can be uniquely solved for.

The Physarum growth dynamic thus has two coupled processes:

1. The vein sizes σij(t) grow according to Eqn. 1, which depends on p(t).

2. For a given set of σij(t), flow conservation uniquely determines p(t).

Under this growth model, {xij(t)} evolves on G. As t→∞, the flow x(t) converges to

1 on edges in the shortest s-u path, and to 0 on all other edges (47).

LP problems. A general linear programming (LP) problem is to min cTx sub-

ject to the contraints Ax = b and x ≥ 0. Define Φ = {x : Ax = b} and Φ+ =

{x : Ax = b,x ≥ 0}. We work in cases where Φ+ forms a bounded polytope and A

has full row rank, which are common assumptions in LP applications. We assume that
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7.5 Proof of convergence

the LP has a unique optimal solution. Any small perturbation to c leads to unique

optimum.

Keeping the graph notations, we label columns of A by e ∈ E. Each column Ae

is analogous to an edge and is associated with a “conductance ”σe ≥ 0, which is an

auxiliary variable. Every constraint equation in Ax = b corresponds to a vertex and

is associated with a pressure pi. We define the generalized Physarum Solver by the

dynamics
d

dt
σe = σe(ψe − 1) (7.2)

where ψe = (AT
e p)/ce is the “pressure gradient”and p satisfies Kirchhoff’s Law

AWATp = b with W = diag(σe/ce). (7.3)

As before, the “flow ”is given by xe(t) = σe(t)ψe(t). Note that Ax = AWATp = b,

though xe(t) could be negative if ψe < 0. So x(t) ∈ Φ.

Duality. The pressure, pi, is the dual variable associated with each constraint. If the

dynamical system reaches a stationary point, then for all e, 0 = d
dtσe = σe(

AT
e P
ce
− 1).

If xe > 0, then σe > 0 and stationarity implies AT
e P = ce. This is precisely the

complementary slackness condition. The stationary point of the Physarum Solver is

the optimal solution to the LP.

The main result of the paper is the following theorem.

Theorem 1. Suppose the LP problem has a unique optimal solution. Then from any

positive inital configuration σ(0) > 0, the flow of the Physarum Solver x(t) converges

exponentially fast to the optimal solution.

7.5 Proof of convergence

7.5.1 LP with positive costs.

We first assume that ce > 0 ∀e. In the next section we will show how to extend the

proof to general c. Here we give the outline of the proof; the technical details are below.

We multiply Eqn. 2 by et and integrate to obtain

σ(t) = (1− e−t)x̃(t) + e−tσ(0) (7.4)
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with

x̃(t)
.
=

1

1− e−t

∫ t

0
x(s)e−(t−s)ds. (7.5)

Since x̃(t) is a weighted average of x(s) for s ≤ t and each x(s) satisfies Ax(s) = b, we

also have Ax̃(t) = b.

Definition 1. A circulation is a |E| dimensional vector γ such that Aγ = 0.

There must exists e such that γe < 0, for otherwise the feasible region Φ+ would

be unbounded. Let γ−
.
= {e : γe < 0} denote the negative edges of γ. Similarly define

γ+
.
= {e : γe > 0}. We say a circulation has negative cost if cTγ < 0.

Lemma 1. In a bounded LP problem, x is an optimal solution if and only if there is

no negative cost circulation γ such that γ− ⊆ supp(x).

Our strategy is to prove that under Eqn. 2, the flow on γ− becomes exponentially

small for any negative circulation γ. We start with the following Lemma.

Lemma 2. Let γ be a negative cost circulation. Then for all ε > 0, ∃ e with γe < 0

and t such that σe(t) < ε.

Proof. Let Zγ
.
= e−

∑
e∈E γecelogσe . Since

∑
e∈E γeceψe = pTAγ = 0,

d

dt
Zγ = Zγ

∑
e∈E

γece(1− ψe) = Zγc
Tγ < 0. (7.6)

Therefore Zγ decays exponentially. On the other hand,

Zγ(t) =
Πe∈γ−σe(t)

|γe|ce

Πe∈γ+σe(t)
γece

, (7.7)

and by Lemma 4 (Appendix), all σe are bounded above for large t and hence the

denominator is bounded above as t increases. As the ratio decays exponentially, the

numerator must decay exponentially and at least one of the terms in its product must

be exponentially small.

The next lemma shows that we can clean up a solution x of Ax = b by essentially

setting xe to 0 if xe is sufficiently small.

Lemma 3. Given x ∈ Φ, and S ⊆ E. There are constants M1 and K such that if

∀e ∈ S, |xe| < ε|S|+1 < M1/2m for some ε < min{1, M1
2 ,

1
2K } , then there exists y ∈ Φ

satisfying:
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7.5 Proof of convergence

• ||x− y||∞ < Kε,

• supp(y) ⊆ supp(x)\S,

• xeye ≥ 0 ∀e.

Combining the previous two lemmas, we prove that x(t) converges to the unique

optimal solution under the Physarum dynamics.

Proof of Theorem 1 for LP with positive costs.

Consider the time-averaged solution x̃(t) defined above. Let S = {e : x̃e(t) < 0}. From

Eqn. 3 and the fact that σ(t) is bounded for large t, it follows that

x̃(t) = σ(t) +O(e−k1t) (7.8)

for some constant k1. Since σ(t) > 0, we have |x̃e(t)| ∼ O(e−k1t), ∀e ∈ S. For

sufficiently large t so that the inequality requirements of Lemma 3 are satifistied, we

obtain a y(t) such that

y(t) = x̃(t) +O(e−k2t) (7.9)

for constant k2. Moreover y(t) ≥ 0 is feasible.

Let ŷ denote the optimal feasible solution of the LP. Let e ∈ supp(y)/supp(ŷ).

Then by Lemma 6 (Appendix), there is a basic feasible solution τ such that

ye ≤ k3 min{ye′ : e′ ∈ supp(τ)} (7.10)

for constant k3. Consider γ = ŷ − τ . This is a circulation since Aγ = 0, and it has

negative cost. By Lemma 2, ∃ e′ ∈ supp(τ) such that σe′(t) decays exponentially. Eqns.

8 and 9 implies that ye′(t) ∼ O(e−k4t) for some constant k4. Combined with Eqn. 10,

this implies that ye ∼ O(e−k4t) for all e ∈ supp(y)/supp(ŷ). Applying Lemma 2 again

to remove all such e, we find ỹ ∈ Φ+ such that

ỹ = y(t) +O(e−k5t) = x̃(t) +O(e−k2t) +O(e−k5t). (7.11)

But ỹ has support contained in supp(ŷ), implies ỹ = ŷ since the optimal solution is a

unique basic feasible solution. This concludes that x̃(t) = ŷ(t) +O(e−k6t).

As x(t) is continuous, the weighted average x̃(t) converges to ŷ exponentially implies

x(t) also converges to ŷ exponentially.
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7.5.2 LP with general costs.

First we show how to deal with when ce = 0 for some e. The assumption that Φ+ is

a bounded polytope implies ∃ M such that xe < M for all e ∈ E and x ∈ Φ+. Given

{A,b, c}, consider the LP {A,b, ĉ}, where ĉe = ce if ce > 0 and ĉe = ε if ce = 0. This

problem can be solved by the Physarum Solver since ĉ > 0. Let x1 be the optimal

solution of {A,b, c} and let x2 be its second lowest cost solution. Define the gap

δ = cTx2 − cTx1 and set ε < δ
|E|M . It’s easy to see that x1 is also the optimal solution

of {A,b, ĉ}. Hence it suffices to apply the Physarum Solver to solve {A,b, ĉ}.
Now consider if ce < 0 for some e ∈ U ⊆ E. For each such e add a new variable ê and

the constraint equation xe + xê = M . Modify the costs by setting c′e = 0 and c′ê = |ce|
for e ∈ U. The new LP problem {A′,b′, c′} can by solved by the Physarum Solver.

There is a one-to-one mapping between the feasible sets of {A,b, c} and {A′,b′, c′}
that maps the optimal solutions to each other.

7.5.3 Relations to other LP solvers

The Physarum dynamics does not maintain primal feasibility. Even though Ax(t) = b

always holds, the gradient ATe p
ce

could be negative, resulting in xe(t) < 0 for some t.

Though our proof shows that x(t) stays exponentially close to the feasible polytope

Φ+. Similarly, the potentials may violate dual feasibility: AT
e p(t) > ce for some e.

In the Physarum solver, x(t) does not live on the boundary of Φ+ and in this

sense is more related to interior point methods than to the Simplex Algorithm. Unlike

interior point methods, the Physarum is not guaranteed to monotonically reduce the

cost cTx(t) or increase the dual objective pTb, and is not restricted to be inside the

polytope (8).

The Physarum is conceptually most similar to the negative cost cycle algorithm. In

this algorithm, a negative cost cycle is identified and a flow is pushed on this cycle until

one of the directed edges has flow 0 (8). As our proof shows, this is also the Physarum’s

strategy. Think of the graph case for intuition. If there is a negative cost oriented cycle

γ, such that all edges ij of γ are unsaturated: pi − pj < cij . Then σij increase for all

ij ∈ γ, and an additional negative cost flow is pushed {xij(t+4)− xij(t) : ij ∈ γ}.
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7.6 The discrete Physarum Solver

7.6.1 Finite difference approximation

The continuous dynamics of the generalized Physarum Solver makes it difficult to be

implemented and analyzed as an algorithm. We use the finite difference method to

discretize Eqn. 1

σe(t+4) ≈ σe(t) +

(
AT

e p

ce
− 1

)
σe(t)4. (7.12)

By setting 4 = 1, we obtain a simple discrete algorithm.

Algorithm 4 Discrete Physarum Solver

INPUT: LP problem instance (A,b, c)

1: Initialize {σe(0) > 0, e ∈ E}
2: while σ(t) not converged do

3: Compute p(t) by solving AWATp = b, where W = diag(σe(t)ce
).

4: if ATp(t) > 0 then

5: σe(t+ 1) = σe(t)
AT

e p(t)
ce

.
= x(t)

6: else

7: σe(t) = ε

8: end if

9: t = t+ 1

10: end while

In the algorithm, ε � 1 is a positive constant. We say σ has converged if σ(t +

1) − σ(t) is small. We check for whether the algorithm has converged to the optimal

solution by testing for approximate complementary slackness: |A
T
e p
ce
−1| < δ, ∀e for some

small δ. The most computationally intensive step is to solve Kirchhoff’s Equation for

p(t). Recent progress shows this can be done in near-linear time in |E|. Because of

the large finite difference approximation we have taken, the candidate solution x(t) is

not guaranteed to converge to the optimal. We show via simulation that the Discrete

Physarum Solver does find the optimum for the special class of Assignment problems.

7.6.2 The Assignment Problem

We test the discrete Physarum algorithm on a standard class of LP problems: the

Assignment Problem (8). In the Assignment Problem, there are N workers and N
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Figure 7.1: Number of iterations to find the optimal solution versus the size of the

Assignment Problem. N is the number of tasks. For each N, plotted are the 25th, median,

and 75th percentile of the number of iterations.

tasks. Every worker and task pair has an associated cost. The goal is to assign each

worker to a unique task such that the total cost incurred is minimal.

This can be represented by a complete bipartite graph G with worker nodes and

task nodes. Edges are directed from worker nodes to task nodes. Edge ij connecting

worker i and task j is associated a cost cij . A is the incidence matrix, and bi = 1 if i is

a worker vertex; bj = −1 for task vertex. The update is σij(t+1) = σij(t)
pi−pj
cij

= xij(t)

if pi > pj ; else σij(t + 1) = ε. To check for optimality, we derive a hard assignment

from x(t). For each i, identify ji = arg maxj{xij(t)}. Set xiji = 1 and to 0 on all other

edges. Then we test for complementary slackness.

For each N from 2 to 50, we randomly generate 1000 weighted complete bipartite

graphs. The costs are iid samples from the uniform distribution. We applied the Dis-

crete Physarum Algorithm to each of these assignment problems. After every iteration

of the algorithm, we check for optimality. If the optimal solution is found, the number

of iterations so far is recorded; otherwise the algorithm continues.

In all the assignment problem instances tested, the Discrete Physarum Solver always

converged to the optimal solution. For each N , we plot the 25th, median, and 75th
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percentile of the number of iterations the Discrete Physarum Solver took before reaching

the optimal solution. The median number of iterations grows roughly linear in the size

of the problem.

7.7 Proofs of Technical Lemmas

Proof of Lemma 1.

Suppose there exists a negative cost circulation γ. Let ε = maxe{ xe|γe|}. Then y = x+εγ

satisfies y ≥ 0, Ay = b, and y has lower cost than x. This implies x is not an optimal

solution. Conversely, suppose x is not optimal. Let y be the optimal solution and

γ = y − x. Then γ is a negative cost circulation.

Lemma 4. For all e, σe(t) is bounded for large t.

Proof. Rearranging Eqn. 3, x̃(t) > −e−tσ(0). Let S(t) = {e : x̃e(t) < 0}. Then for t

sufficiently large, the condition for Lemma 3 is satisfied and there exists y(t) such that

y(t) ≥ 0, Ay(t) = b, and ||x̃(t) − y(t)||∞ < Ce−t for some constant C. The vector

y(t) lies in the feasible region of the LP, which we assume to be a bounded polytopy,

implies ||y(t)||∞ is bounded. This implies that ||x̃(t)|| is bounded and hence σ(t) is

bounded.

Definition 2. Given A and x, a positive re-orientation of A with respect to x is

A′ and x′ such that

• x′e = |xe| for all e

• A′e = Ae for e where xe ≥ 0

• A′e = −Ae for e where xe < 0

Definition 3. A positive cycle is a vector γ indexed by e ∈ E such that Aγ = 0,

γe ≥ 0,∀e, and supp(γ) is minimal. Since γ is ambigous up to a constant, we set

mine∈supp(γ){γe} = 1. The set of positive cycles of A is denoted by pcyc(A).

Let bfs(A) denote the set of basic feasible solutions of the LP Ax = b, x ≥ 0.

Lemma 5. Given A, x ∈ Φ and e ∈ E such that |xe| < ε < M1/2. Then ∃ y ∈ Φ such

that:

• ||x− y||∞ < 3εM2
M1

,
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• supp(y) ⊆ supp(x)\e,

• xeye ≥ 0 for all e,

Here

M1 = min
A′

min
τ∈bfs(A′)∪pcyc(A′)

{τe : e ∈ E and τe > 0} (7.13)

M2 = max
A′

max
τ∈bfs(A′)∪pcyc(A′)

{τe : e ∈ E} (7.14)

where min and max are over all re-orientation A′ of A.

Proof. After re-orientation, we can assume wlog that x ≥ 0. Then x lies in the polyhe-

dron defined by A′x = b and x ≥ 0. We can express x as a convex linear combination

of basic feasible solutions and positive cycles (8): x =
∑

τ∈bfs(A′)∪pcyc(A′) cττ , such that

cτ > 0 and
∑

τ∈bfs(A′) cτ = 1. We can split the sum into two groups of τ depending on

if τe = 0 or τe > 0:

x =
∑
τ :τe=0

cττ +
∑
τ :τe>0

cττ. (7.15)

Let α =
∑

τ :τe>0 cτ . Then

αM1 ≤
∑
τ :τe>0

cττe = xe < ε <
M1

2
(7.16)

implying α < ε
M1

< 1
2 . Therefore there is at least one bfs τ such that cτ > 0 and τe = 0.

Define

y =
1

1− α
∑

τ∈bfs(A′):τe=0

cττ +
∑

τ∈pcyc(A′):τe=0

cττ. (7.17)

Then y is the convex combination of at least one bfs and positive cycles, and is also

a feasible solution. In particular xeye ≥ 0 for all e. It’s also clear that supp(y) ⊆
supp(x). Finally,

||x− y||∞ ≤
α

1− α
||

∑
τ∈bfs(A′):τe=0

cττ ||∞ + ||
∑

τ∈pcyc:τe>0

cττ ||∞. (7.18)

Since α < 1
2 , α

1−α < 2α. Moreover,

||
∑

τ∈bfs(A′):τe=0

cττ ||∞ < M2

∑
τ∈bfs(A′):τe=0

cτ < M2 (7.19)

, and ||
∑

τ :τe>0 cττ ||∞ < M2α. We have

||x− y||∞ ≤ 3αM2 < 3ε
M2

M1
. (7.20)
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We use induction to remove multiple small edges.

Proof of Lemma 3.

Let M1, M2 be the same as in the previous lemma, and set K = 3M2
M1

. Let S =

{e1, e2, ..., e|S|}. It’s clear that properties 2 and 3 are satisfied during induction, so

we focus on 1. In the base case, we apply the previous lemma to e1 to construct y1,

such that ||x− y1||∞ < ε|S|+1K. The induction claim that we will prove is: if ∃ u

that removes {e1, e2, ...el−1} from x, and ||x− u||∞ < Kεn, n ≤ |S| + 1, then we can

construct y such that y removes {e1, ..., el} from x, and ||x− y||∞ < Kεn−1. We can

then iterate |S| times to construct y such that ||x− y||∞ < Kε.

To prove the induction claim, observe that ||x− u||∞ < Kεn < εn−1

2 . Since n ≤
|S|+ 1, xel < ε|S|+1 < εn and

uel < xel +
εn−1

2
< εn−1 <

M1

2
. (7.21)

Apply Lemma to remove el from u and construct y such that ||y − u||∞ < Kεn−1.

Then

||x− y||∞ < ||x− u||∞ + ||y − u||∞ < Kεn +Kεn−1 < Kεn−1. (7.22)

Let βmin = minτ∈bfs{τe : e ∈ supp(τ)} and βmax = maxτ∈bfs{τe : e ∈ supp(τ)}.

Lemma 6. Let x ∈ Φ+ and e ∈ E be in the support of x. Then there is a basic feasible

solution τ̂ ∈ Φ+ such that

min x(supp(τ̂)) ≥ βmin
βmax

xe
|supp(x)|

(7.23)

Proof. Since Φ+ is a bounded polytope, x is a convex linear combination of basic

feasible solutions. In particular, there exists τ ∈ bfs such that supp(τ) ⊆ supp(x). Let

cτ = min{xeτe : e ∈ supp(τ)}. Then x− cττ ∈ Φ+ and has support strictly contained in

the support of x. Iterating this shows that we can write x =
∑
cττ , where the number

of positive cτ is at most |supp(x)|. Let τ̂ = argmaxτ{cττe}, then

cτ̂βmax|supp(x)| ≥ cτ̂ τ̂e|supp(x)| ≥ xe. (7.24)

Furthermore

min x(supp(τ̂)) ≥ cτ̂ min τ̂(supp(τ̂)) ≥ cτ̂ bmin (7.25)

and the desired inequality follows.
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