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Abstract

Factorial designs have been widely used in many scientific and industrial settings, where

it is important to distinguish “active” or real factorial e↵ects from “inactive” or noise fac-

torial e↵ects used to estimate residual or “error” terms. We propose a new approach to

screen for active factorial e↵ects from such experiments that utilizes the potential outcomes

framework and is based on sequential posterior predictive model checks. One advantage of

the proposed method lies in its ability to broaden the standard definition of active e↵ects

and to link their definition to the population of interest. Another important aspect of this

approach is its conceptual connection to Fisherian randomization tests. As in the literature

in design of experiments, the unreplicated case receives special attention and extensive sim-

ulation studies demonstrate the superiority of the proposed Bayesian approach over existing

methods. The unreplicated case is also thoroughly explored. Extensions to three level and

fractional factorial designs are discussed and illustrated using a classical seat belt example

for the former and part of a stem-cell research collaborative project for the latter.
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Chapter 1

Introduction and importance of

unreplicated experiments

Two-level full factorial designs have been used extensively in engineering and industrial

applications. In many situations, where the unit-to-unit variation is reasonably assumed

negligible, unreplicated factorial designs are used to reduce expenses. Screening factorial ef-

fects into active and inactive from such designs has been extensively studied by researchers.

Hamada and Balakrishnan (1998) o↵er an extensive review and comparison of many of the

methods, most of which rely on the assumption that the estimated factorial e↵ects are in-

dependently and identically distributed (iid) normal random variables (e.g., the commonly

used Lenth (1989) approach and Dong’s (1993) method). Loughin and Noble (1997), pro-

posed a method based on permutation tests, which is not included in the Hamada and

Balakrishnan (1998) review. Focusing on the control of the false discovery rate (FDR) in-

stead of the experimentwise error rate (EER), Tripolski et al. (2008) proposed modifications

of the Lenth (1989) and Dong (1993) methods, and they performed a comparative study
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with the unmodified methods. Bayesian approaches have also been proposed for screening

factorial e↵ects, for example Box and Meyer (1986) and Chipman et al. (1997). The former

was included in the Hamada and Balakrishnan (1998) study but did not perform as well as

Lenth’s (1989) method. The approach proposed by Chipman et al. (1997) is, in principle,

similar to the one proposed by Box and Meyer (1986), but has greater flexibility in terms

of incorporating prior information through the e↵ect heredity and e↵ect hierarchy principles

(Wu and Hamada (2009), Ch. 4).

Discriminating between active and inactive e↵ects is the crucial goal of any screening

experiment. In all the aforementioned frequentist methods, hypotheses regarding factorial

e↵ects are stated in terms of regression coe�cients in the classical linear model. On the other

hand, in the Bayesian approaches, active and inactive e↵ects are distinguished in terms of

their variance; whereas all e↵ects are assumed to be normally distributed with mean zero,

the standard deviation of active e↵ects is assumed to be at least k times larger than the

standard deviation of inactive e↵ects, where k is a pre-set integer (both Box and Meyer

(1986) and Chipman et al. (1997) suggest using k ⇡ 10).

Our motivation for proposing a new approach stems from the fact that the definition of

an “active” e↵ect is somewhat vague because it is not related to the experimental units or

the population of units of interest to an experimenter but to model parameters. Consider, for

example, experiments involving growth of nanostructures on substrates of silicon (Dasgupta

et al., 2008), which is somewhat analogous to the yield of crops on plots of lands. Suppose

that we are interested in assessing the e↵ect of temperature on yield; whether a change of

temperature increases or decreases the yield on one or more substrates. Considering the fact

that the inference made from a small population of substrates in a particular laboratory can
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hardly be extended and generalized to a larger population, a natural question is whether

the temperature a↵ects the yield of at least one of the substrates used for experimentation.

Further, if we visualize a potential yield of each substrate for each level of temperature, then

we may be interested in a summary of the distribution of these potential yields across units,

e.g., the median or a percentile, rather than the average. None of the existing methods

permit such an analysis.

The essential idea that develops from the foregoing discussion is that making an attempt

to assess significance of factorial e↵ects, without first defining both (a) the population of

experimental units for which the inference is made and (b) the estimand, is not the right way

to address causal inference questions, which is the sole objective of conducting a screening

two-level factorial experiment. Here, we propose a Bayesian approach for screening active

factorial e↵ects from such designs, which addresses the limitations of current procedures.

The proposed approach utilizes the concept of potential outcomes that lies at the center

stage of causal inference Rubin (1974, 1980). Although such a framework for single-factor

experiments with two levels is well-developed and popularly known as the Rubin Causal

Model (Holland, 1986), RCM, it is not yet fully exploited for multiple-factor experiments. A

theoretical framework for causal inference from two-level factorial designs has recently been

proposed by Dasgupta et al. (2012).

In the next Section, we provide a brief historical review of the potential outcomes frame-

work and the RCM, and describe how it can be applied to two level factorial designs. In

Section 3, we describe the Fisher randomization test (Fisher, 1925, 1935) using the potential

outcomes framework, extend it to the setting of two level factorial designs, and establish

its connection to the permutation tests proposed by Loughin and Noble (1997). In Section
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4, we show how the Fisherian approach to causal inference can be naturally extended to a

Bayesian approach to screening factorial e↵ects and propose a method based on sequential

posterior predictive checks. In Section 5, we demonstrate the usefulness of our method in

a super population setting by first calibrating the proposed algorithm to achieve the de-

sired experimentwise error rate (EER), and then by comparing its performance with that of

existing methods for screening factorial e↵ects. Some concluding remarks are presented in

Section 6.

1.1 A brief review of potential outcomes, evolution of

RCM and extension to two-level factorial designs

As noted by Dasgupta et al. (2012), in the context of randomized experiments, Neyman

(1923; 1990) introduced the first explicit notation for potential outcomes for randomization-

based inference. Subsequently, Kempthorne (1955) and Cox (1958) continued its use for

causal inference in randomized experiments. Later, Rubin (1974, 1975, 1977, 1978) formal-

ized the concept and extended it to other forms of causal inference, including observational

studies. An exposition of this transition appears in Rubin (2010).

The RCM was motivated by the need for a clear separation between the object of inference

– the science – and what researchers do to learn about it (e.g., randomly assign treatments

to units). In the context of causal inference, the science is usually represented by a matrix

where the rows represent N units, which are physical objects at a particular point in time,

and the columns represent every unit’s potential outcomes under each possible exposure.

Thus, for a study with one outcome variable Y and one experimental factor at two levels,
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represented by 1 and -1, each row of the science can be written as [Y
i

(1), Y
i

(�1)], where Y
i

(z)

is the potential outcome of unit i if unit i receives treatment z, z 2 {�1, 1}, indicated by

W
i

(z) = 1. This representation of the science is adequate under the stable unit treatment

value assumption (SUTVA, Rubin (1980)).

The causal e↵ect of Treatment 1 versus Treatment -1 for the ith unit is the comparison of

the corresponding potential outcomes for that unit: Y
i

(1) versus Y
i

(�1) (e.g., their di↵erence

or their ratio). The “fundamental problem facing inference for causal e↵ects” (Rubin, 1978)

is that only one of the potential outcomes can ever be observed for each unit. Therefore,

unit-level causal e↵ects cannot be known and must be inferred. The RCM permits predic-

tion of unit-level causal e↵ects from either the Neymanian (1923/1990) perspective or from

the Bayesian perspective (Rubin, 1978), although such estimations are generally imprecise

relative to the estimation of population or subpopulation causal e↵ects.

Although the average causal e↵ects Ȳ (1)� Ȳ (�1) are common estimands in many fields

of application, other summaries of unit-level causal e↵ects may also be of interest in specific

scientific studies. As has been emphasized by Rubin (1974, 1975, 1977, 1978, 1980, 1984,

1990, 2008, 2010), there is no reason to focus solely on average causal e↵ects, although this

quantity is especially easy to estimate unbiasedly in randomized experiments under simple

assumptions using standard statistical tools .

Rubin (2010) describes the RCM in terms of three legs – the first being to define causal

e↵ects using potential outcomes (define the science), the second being to describe the process

by which some potential outcomes will be revealed (the assignment mechanism), and the

third being the Bayesian posterior predictive distribution of the missing potential outcomes.
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1.1.1 RCM for two-level factorial designs

For simplicity, an unreplicated 22 design is used to introduce the concepts, even though

such a design is usually not of much use in practice. In this design, each of the two treatment

factors can take one of two levels, typically denoted by -1 and 1, and thus, there are four

treatment combinations denoted by z = (1, 1), (1,�1), (�1, 1) and (�1,�1), and four exper-

imental units. Let Y
i

(z), i = 1, . . . , 4, denote the potential outcome of the ith unit if exposed

to treatment combination z . Note that when introducing this notation, we accept SUTVA,

which means that the potential outcome of a particular unit depends only on the treatment

combination it is assigned, and NOT on the assignments of the other units, and that there

are no hidden versions of treatments not represented by the four combinations. Thus the

ith unit has four potential outcomes Y
i

(1, 1), Y
i

(1,�1), Y
i

(�1, 1), Y
i

(�1,�1), which comprise

the 1 ⇥ 4 row vector Y
i

. Finally, we define the Science as the 4 ⇥ 4 matrix Y of potential

outcomes in which the ith row is the 4-component row vector Y
i

, i = 1, . . . , 4 as shown in

Table 1.1. Only one potential outcome in each row of the Science is actually observed from

an experiment, and the remaining three are missing, making the causal inference problem

essentially a missing data problem.

Table 1.1: The Science for the full experiment.
Unit Potential outcome for treatment combination Unit-level factorial e↵ects
(i) (1, 1) (1,�1) (�1, 1) (�1,�1) ✓

i,0

✓
i,1

✓
i,2

✓
i,3

1 Y
1

(1, 1) Y
1

(1,�1) Y
1

(�1, 1) Y
1

(�1,�1) ✓
1,0

✓
1,1

✓
1,2

✓
1,3

2 Y
2

(1, 1) Y
2

(1,�1) Y
2

(�1, 1) Y
2

(�1,�1) ✓
2,0

✓
2,1

✓
2,2

✓
2,3

3 Y
3

(1, 1) Y
3

(1,�1) Y
3

(�1, 1) Y
3

(�1,�1) ✓
3,0

✓
3,1

✓
3,2

✓
3,3

4 Y
4

(1, 1) Y
4

(1,�1) Y
4

(�1, 1) Y
4

(�1,�1) ✓
4,0

✓
4,1

✓
4,2

✓
4,3

Average Y (1, 1) Y (1,�1) Y (�1, 1) Y (�1,�1) ✓
0

✓
1

✓
2

✓
3

6



For each unit, all levels of every factor (e.g., 1 or -1) appear on half of its potential

outcomes. Therefore, at the unit-level we are generally interested in contrasting one half of

the unit’s potential outcomes with the other half. For example, the di↵erence of the averages

of the potential outcomes when factor 1 is at its high level (1) and at its low level (-1), is

the so-called “main e↵ect of factor 1”. Of course, other definitions could be the di↵erence

in medians, or the di↵erence in the logarithm of the averages, but the tradition in the study

of factorial experiments is to deal with the di↵erence of averages, and we adhere to this

focus here. A factorial e↵ect for each unit is the di↵erence in the averages between one

half of the potential outcomes and the other half. Consequently, we define three unit-level

factorial e↵ects representing the main e↵ects of the two factors and their interactions as

three contrasts (denoted by ✓
i,1

, ✓
i,2

and ✓
i,3

respectively) of elements of the vector Y
i

. These

contrasts are:

✓
i,1

=
Y
i

(1, 1) + Y
i

(1,�1)

2
� Y

i

(�1, 1) + Y
i

(�1,�1)

2
=

1

2
Y

i

g
1

,

✓
i,2

=
Y
i

(1, 1) + Y
i

(�1, 1)

2
� Y

i

(1,�1) + Y
i

(�1,�1)

2
=

1

2
Y

i

g
2

,

✓
i,3

=
Y
i

(1, 1) + Y
i

(�1,�1)

2
� Y

i

(1,�1) + Y
i

(�1, 1)

2
=

1

2
Y

i

g
3

, (1.1)

where g
1

, g
2

and g
3

are the three mutually orthogonal contrast column vectors (1, 1,�1,�1)0,

(1,�1, 1,�1)0 and (1,�1,�1, 1)0, where each element of g
3

is obtained by multiplying the

corresponding elements of g
1

and g
2

. For completeness, we label the vector generating the

ith unit’s mean potential outcome as g
0

= (1, . . . , 1)0, which is orthogonal to g
1

, g
2

and g
3

,

so that this average potential outcome is

✓
i,0

=
Y
i

(1, 1) + Y
i

(1,�1) + Y
i

(�1, 1) + Y
i

(�1,�1)

4
=

1

4
Y

i

g
0

.
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Defining

✓
i

= (✓
i,0

, ✓
i,1

/2, ✓
i,2

/2, ✓
i,3

/2),

as the 1 ⇥ 4 row vector of unit-level factorial e↵ects, as shown in the last four columns of

Table 1, and denoting by G the 4 ⇥ 4 matrix whose columns are the vectors g
0

, g
1

, g
2

and

g
3

, from (1.1), it immediately follows that

Y
i

= ✓
i

G0, (1.2)

implying that Y
i

and ✓
i

are linear transformations of each other. The matrix G is often

referred to as the model matrix in the literature (Wu and Hamada (2009), Ch. 4).

Consistent with the traditional definition of causal e↵ects in the factorial design literature,

the causal estimands at the population level could be the averages of the unit level factorial

e↵ects. These quantities, denoted by ✓
1

, ✓
2

and ✓
3

, are the population level main e↵ects of

each treatment factor and their interaction respectively, and can be expressed in terms of

potential outcomes as:

✓
j

=

P
4

i=1

✓
i,j

4
=

1

2
Y g

j

, j = 1, 2, 3, (1.3)

where

Ȳ =
1

4

4X

i=1

Y
i

. (1.4)

As in the case of unit-level e↵ects, denoting by ✓
0

=
P

N

i=1

✓
i,0

/4 = 1

4

Y g
0

, and the row

vector of population-level estimands by ✓ = (✓
0

, ✓
1

/2, ✓
2

/2, ✓
3

/2), it immediately follows that

Y = ✓G0. (1.5)
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As mentioned earlier, for each unit only one potential outcome is observed: the one that

corresponds to the treatment the unit is assigned to receive; the other outcomes are missing.

The treatment assignment mechanism selects the subset of potential outcomes that will be

revealed and observed. The following assignment mechanism can be defined for a 22 factorial

design

W
i

(z) =

8
><

>:

1 if the ith unit is assigned to z

0 otherwise.

For an unreplicated completely randomized 22 factorial experiment, Pr(W
i

(z) = 1) = 1/4,

where the probability Pr(·) is implicitly conditional on the science. Also,
P

z

W
i

(z) = 1

for i = 1, . . . , 4, and
P

i

W
i

(z) = 1 for all z. Let w
i

=
P

z

zW
i

(z) be the treatment

combination that the ith subject receives. Let W be the generic treatment assignment

vector of random variables, and let w be a specific realization of W , i.e., a vector that

contains all the individual treatment assignments after randomization. Hence, each W
i

is a

random variable, and their joint probability distribution defines the treatment assignment

mechanism of W , implicitly conditional on the science. The vector of post randomization

treatment assignments, w, is a draw from this distribution.

Denote the observed outcome corresponding to the ith experimental unit by Y obs

i

, i =

1, . . . , 4, so that

Y obs

i

=
X

z

W
i

(z)Y
i

(z), (1.6)

and by Y obs = (Y obs

i

, . . . , Y obs

4

)0, the 4⇥ 1 column vector of observed outcomes. For a given

treatment assignmentw =
�
(1, 1), (�1,�1), (�1, 1), (1,�1)

�0
, the table of observed potential

outcomes looks analogous to the one displayed in Table 1.2. The missing potential outcomes

are represented by question marks.
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Table 1.2: Observed Outcomes for the full experiment with w =
�
(1, 1), (�1,�1), (�1, 1), (1,�1)

�0
.

Unit Observed outcome for treatment combination w
( i) (1, 1) (1,�1) (�1, 1) (�1,�1)
1 Y obs

1

? ? ? (1, 1)
2 ? ? ? Y obs

2

(�1,�1)
3 ? ? Y obs

3

? (�1, 1)
4 ? Y obs

4

? ? (1,�1)

Let Y obs(z) denote the observed outcome for treatment combination z, and let

Ỹ obs =
�
Y obs(1, 1), Y obs(1,�1), Y obs(�1, 1), Y obs(�1,�1)

�0

denote the vector of observed outcomes arranged according to the natural order of the

treatment combinations. By natural order we refer to ordering the treatment combinations

by specifying the levels of factors 1 through K, starting with the value 1 and then -1. That

is, corresponding to factor j, the vector g
j

is constructed by defining the first N/2j entries

to be 1, the next N/2j entries to be -1, and repeating 2j�1 times (until the N entries of g
j

are defined). The first treatment combination corresponds to the vector z defined by the

first entry of each g
j

, the second treatment combination corresponds to the second entries,

and so on.

Therefore, Ỹ obs is simply a permutation of Y obs. Then, the same one to one relationship

defined by the matrix G can be used, together with Ỹ obs to obtain unbiased estimators of

population-level factorial e↵ects ✓
j

given by (1.3) are:

✓̂
j

=
1

2
Ỹ obsg

j

, j = 1, 2, 3. (1.7)
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The unbiasedness and other sampling properties of the estimators ✓̂
j

under its random-

ization distribution for a general 2K factorial design have been studied in details by Dasgupta

et al. (2012), also a proof of unbiasedness appealing to symmetry arguments is given in the

Appendix. Finally, denoting the vector of estimators by ✓̂ = (Ȳ obs, ✓̂
1

/2, ✓̂
2

/2, ✓̂
3

/2), as in

(1.5), it follows that

(Ỹ obs)0 = ✓̂G0, or equivalently Ỹ obs = G✓̂0,

from which, using the identity G0G = 4I, we have

✓̂0 = (G0G)�1G0Ỹ obs. (1.8)

This establishes the fact that the unbiased point estimators of the estimands defined in

this Section are the same as those obtained by ordinary least squares in the classical linear

model with an additive iid error. However, to perform inference, such as interval estimation

or significance tests using the least squares formulation, we need to justify the assumption

of additive errors and asymptotic normality of the estimators. In the set-up described so far

in this section, the potential outcomes are considered fixed, and the estimands are functions

of a finite population of size four. Therefore the only sampling distribution of the estimators

that arises is the one induced by randomization.

It is now evident that inferential methods such as Lenth’s test, that are based on asymp-

totic normality, cannot distinguish between the following two situations: (i) the four units

considered here are the only ones that constitute the population of interest and the esti-

mands ✓
j

’s are those defined by (1.3), versus (ii) the four units are randomly sampled from

11



an infinitely large super-population and the estimands are counterparts of ✓
j

’s for this super

population. Methods that rely on asymptotic normality typically aim at addressing situation

(ii).

There are two standard inferential methods that address situation (i) under the potential

outcomes framework: (a) the Neymanian approach and (b) the Fisherian approach. We will

not discuss the Neymanian approach here (see Dasgupta et al. (2012) for details), but we

will discuss the Fisherian approach for two reasons. First, it has a natural connection to

permutation tests, proposed by Loughin and Noble (1997) for the analysis of unreplicated

two-level factorial experiments. Second, it has a natural Bayesian justification, which will

be used to define the Bayesian approach that we eventually propose.

We conclude this chapter by noting that the framework illustrated using a 22 design can

easily be extended to a 2K design. For such a design, we have K factors labeled 1, . . . , K,

N = 2K experimental units and N � 1 mutually orthogonal vectors g
j

, each representing a

factorial e↵ect ✓
j

. The first K vectors (and the corresponding ✓
j

’s) represent the K main

e↵ects, the next
�
K

2

�
vectors the two-factor interactions, and eventually the (N�1)-th vector

represents the K-factor interaction. Thus, for example, for a 24 design, the factorial e↵ect

✓
3

represents the main e↵ect of factor 3, ✓
5

the interaction between factors 1 and 2, ✓
10

the two-factor interaction between factors 3 and 4, and ✓
15

the four factor interaction. The

model matrix G is an N ⇥N orthogonal matrix with an N -vector g
0

= (1, . . . , 1)0 as its first

column, and such that G0G = 1/2KI
2

K = 1/NI
2

K where I
2

K is the 2K identity matrix.
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Chapter 2

The Unreplicated Case:

Randomization tests for sharp null

hypotheses

In the context of unreplicated factorial designs, we first present the permutation test

in the potential outcomes framework. This discussion is key to understanding the proposed

randomization-based methods. This is the most natural permutation test and it illustrates

fundamental ideas of the potential outcomes framework in the Fisherian testing context. We

then propose a sequential randomization-based method to screen active e↵ects. This method

initially presented an attempt to understand the method proposed in Loughin and Noble

(1997) in the potential outcomes framework. However, our choice of test statistic was taken

from the adaptive Lenth method (Ye et al., 2001): the estimated maximum absolute e↵ect,

scaled by the pseudo standard error, where both of these quantities are calculated using the
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e↵ects assumed null for that step. That is:

T
L,i

=
|✓̂

i

|
PSE

i

,

where PSE
i

is the PSE of ✓̂
(2

k�1)

, ✓̂
(2

k�2)

, . . . , ✓̂
(2

k�i)

, as defined in Chapter 4. Nevertheless,

other scalings might yield better results.

2.1 The Fisherian approach: randomization tests for

sharp null hypothesis

Randomization tests (Fisher 1925,1935) are useful tools because they assess statistical

significance of treatment e↵ects from randomized experiments without making any assump-

tion whatsoever about the distribution of the test statistic. Such tests can be used to test

Fisher’s sharp null hypothesis (see Fisher (1925) and Rubin (1980)) of no factorial e↵ect at

the unit levels, which is a much stronger hypothesis than the traditional one of no average

factorial e↵ects. Randomization tests have rarely been studied in the context of factorial

experiments, except for the work by Loughin and Noble (1997), who studied such tests in

the framework of a linear regression model for the observed response with additive error (in

other words, invoking the assumption of strict additivity).

The plausibility of the sharp null hypothesis can be tested by using a randomization test.

A suitable test statistic is chosen, and its observed value is compared with the statistic’s

sampling distribution induced by the randomization under the sharp null hypothesis. To

obtain such a distribution, typically referred to as the “randomization distribution”, we
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enumerate all possible treatment assignments under the actual assignment mechanism (if the

number of such assignments is very large, a sample can be considered). The assumption that

the sharp null hypothesis is true permits us to complete the table of all missing potential

outcomes using only the observed data. For example, if the sharp null hypothesis of no

treatment e↵ect on any unit is true, then all the missing potential outcomes in the ith row of

Table 1.2 are equal to Y obs

i

. Consequently, under the sharp hypothesis, the table of potential

outcomes would look like Table 2.1, where the missing potential outcomes for each unit,

Ymis

i

, are shown in a light gray, but under the sharp null hypothesis they take the same

value as the observed one, Y obs

i

.

Table 2.1: Imputed Table of Potential Outcomes using the observed data and the sharp null
hypothesis of absolutely no treatment e↵ects

Unit Observed outcome for treatment combination w
(i) ( 1, 1) ( 1,�1) (�1, 1) (�1,�1)
1 Y obs

1

Y obs

1

Y obs

1

Y obs

1

( 1, 1)
2 Y obs

2

Y obs

2

Y obs

2

Y obs

2

(�1,�1)
3 Y obs

3

Y obs

3

Y obs

3

Y obs

3

(�1, 1)
4 Y obs

2

Y obs

4

Y obs

4

Y obs

2

( 1,�1)

For each possible assignment, the value of the test statistic that would have been observed

under that assignment is calculated. The proportion of such computed values (with respect

to the total number of possible randomizations) that are as large or larger than the actual

observed test statistic is the p value (i.e., significance level) of the test statistic under the

null hypothesis. The smaller the p-value, the greater is the degree of belief that the null

hypothesis is not true, because the probability of the one observed result, even when that

probability is combined with all more extreme results, would be a rare event.

There are many possible test statistics that could be used. A commonly used statistic
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in the presence of replicates is the F -statistic associated with the decomposition of the

total sum of squares of the observed outcomes. For the unreplicated case, the estimated

factorial e↵ect ✓̂
(N�1)

that has the largest absolute value among all the N � 1 estimated

e↵ects ✓̂
j

, j = 1, . . . , N � 1 defined by (1.7) can be considered. A scaled version of ✓̂
(N�1)

can also be considered.

Therefore, for a completely randomized treatment assignment mechanism, the Fisher

randomization test with the test statistic ✓̂
(N�1)

involves the following steps:

1. Compute ✓̂
(N�1)

from the observed data and denote it by ✓̂obs
(N�1)

.

2. Fill in the table of missing potential outcomes using the observed values Y obs

i

for

i = 1, . . . , N , and the sharp null hypothesis.

3. For each of the N ! possible treatment assignments of N units to N treatment combi-

nations, generate the observed outcomes, implied by step 2.

4. Compute ✓̂
(N�1)

for each of the N ! assignments. The set of values of ✓̂
(N�1)

are its

realizations across the randomization distribution under the sharp null hypothesis.

5. Compute the p-value as the proportion of values of ✓̂
(N�1)

that are equal to or exceed

✓̂obs
(N�1)

.

Because the execution of steps (2)-(3) described above essentially entails generating all

possible permutations of the vector of observed outcomes, the test described above is the

same as the first step of the permutation test proposed by Loughin and Noble (1997). We

would like to re-emphasize the point that the procedure described above is more general and

flexible because it permits generating the randomization distribution of any test statistic

under any treatment assignment mechanism, under any sharp null hypothesis.

16



It is imperative that once the sharp null hypothesis described above is rejected and so

✓
(N�1)

is considered active, one needs to adopt a sequential approach for further screening

of factorial e↵ects. At every step, however, a new null hypothesis, that must take into

consideration the e↵ects already identified as active, needs to be defined. We illustrate such

a strategy again with a 22 design. The first step involves testing the sharp null hypothesis,

H
00

: Y
i

(1, 1) = Y
i

(1,�1) = Y
i

(�1, 1) = Y
i

(�1,�1), i = 1, . . . , N

which is equivalent to

H
00

: ✓
i,1

= ✓
i,2

= ✓
i,3

= 0, i = 1, . . . , N

To test this hypothesis, we can use the procedure described above in Steps 1–5. If the p-value

is small enough to lead to the rejection of the null hypothesis, we move on to the next step.

Without loss of generality (WLOG), assume that the factorial e↵ect identified as active is

✓
1

, the main e↵ect of factor 1. Assuming that the e↵ect of factor 1 is additive (the same for

each unit), we temporarily define the second sharp null hypothesis as:

H
01

: ✓
i,1

= ✓⇤
1

, ✓
i,2

= ✓
i,3

= 0, i = 1, . . . , N

where ✓⇤
1

is the estimated value of ✓
1

. This hypothesis can be tested using ✓̂
(2)

, the estimated

e↵ect having the second largest absolute value, as the test statistic and using steps 1–5 as

before. Again, assuming WLOG that the second largest active e↵ect is identified as ✓
2

, and

the p-value for H
02

is small enough to lead to its rejection, we define the third and final sharp

17



null hypothesis as:

H
02

: ✓
i,1

= ✓⇤
1

, ✓
i,2

= ✓⇤
2

, ✓
i,3

= 0, i = 1, . . . , N

where ✓⇤
2

is the estimated value of ✓
2

.

One important aspect about the aforementioned sequential procedure is to fill in the

missing potential outcomes at each step, i.e., under each sharp null hypothesis. Defining ✓̇
i

as the (N � 1)-vector ✓
i

without its first element ✓
i0

(i.e., all the unit level factorial e↵ects),

we can express the sequence of sharp null hypotheses as

H
0s

: ✓̇
i

= ✓̇(s)

i

8 i = 1, . . . , N,

where ✓̇(s)

i

is an (N � 1)-component row vector with s non-zero entries that correspond to

the s factorial e↵ects largest in magnitude for s = 0, . . . , N�2. Note that we do not consider

the case when all factorial e↵ects take non zero values.

Recall that for the ith experimental unit, the experimenter observes only one potential

outcome Y obs

i

. As exemplified in Table 2.1, let Y mis

i

denote the (N�1)-component row vector

of the missing potential outcomes. Note that the rows of the N ⇥K submatrix formed by

columns 2 to K + 1 of G represent the N treatment combinations, which is usually referred

to as the design matrix (i.e., the column w in Table 2.1). Denote by g
0
obs

i

the column of G0

that contains the treatment combination z assigned to unit i, and let the submatrix formed

by the remaining N � 1 columns be G
0
mis

i

. Then from (1.2) we can write

(Y obs

i

,Y mis

i

) =

 
✓
i,0

,
✓̇(s)

i

2

!
(g

0
obs

i

: G
0
mis

i

) (2.1)
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Imputation of the vector of missing potential outcomes Y mis

i

under H
0s

requires two

simple steps:

1. Estimate ✓
i0

as ✓̂
i0

= Y obs

i

�(1/2)✓̇(s)

i

g̃
0
obs

i

, where g̃
0
obs

i

is the column vector g
0
obs

i

without

its first element (which is unity).

2. Impute the missing potential outcomes for the ith unit using

Y mis

i

=

 
✓̂
i0

,
✓̇(s)

i

2

!
G

0
mis

i

.

Two important drawbacks of this imputation-based approach involving testing a sequence

of sharp-null hypotheses are, (i) it assumes a constant additive e↵ect and (ii) it ignores

uncertainty of the estimate. Rubin (1984) provided the following Bayesian justification

of the Fisherian approach to inference: it gives the posterior predictive distribution of the

estimand of interest under a model of constant treatment e↵ects and fixed units with fixed

responses. Thus, a natural extension of the Fisherian approach is the Bayesian inferential

procedure described in the following section.

2.2 Comparison of Loughin & Noble and Single Impu-

tation

The L&N approach does not use the usual randomization based p value to calculate the

probability of observing something as extreme or more extreme than what was observed.

They correct the p-value because the obtained randomization distribution using all factorial

e↵ects is an approximation of the one they actually want: the distribution of all the e↵ects
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that are null, completely excluding those that are assumed active. Therefore their target

distribution does not have the e↵ects that were previously tested. However, the actual

distribution they get does include them as noise because the residuals only ensure that the

average e↵ect is zero. We do not believe this is appropriate for the randomization tests

in the potential outcomes framework, hence we use the usual randomization based p value

(i.e., the direct p value obtained from comparing the observed value to the re-randomization

distribution).

Given all of the di↵erences mentioned above, even though this method came about by

trying to understand Loughin and Noble (1997) in the potential outcomes framework, they

lead to di↵erent results. The following theorem together with the observation that for the

Single Imputation method the bound can be exceeded show that these two methods can in

fact lead to di↵erent results.

Theorem 2.2.1. For a 2k unreplicated factorial experiment there are at most

�
2

k

2

k�1

�

2
� 2k + 2

distinct values that the maximum absolute e↵ect, |✓̂|
(2

k�1)

, can take across randomizations.

Proof:

✓̂
1

is the di↵erence in means between two distinct halves of the finite population in the

experiment. Assuming each partition leads to a di↵erent value, then there are
�

2

k

2

k�1

�
distinct

values ✓̂
1

can take. Now, because of the symmetry of the ✓̂
1

we know that |✓̂
1

| can only take

N =
�

2

k

2

k�1

�
/2 values. Let S denote the set of these values.
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Due to the symmetry between factorial e↵ect estimators, for a given randomization the

observed absolute factorial e↵ects are a sample of 2k�1 values of the S set. Let S = {|✓̂|
i

:

|✓̂|
(1)

< |✓̂|
(2)

< · · · < |✓̂|
(N)

}.

Hence, the maximum in this sample will be equal to |✓̂|
(N+1�j)

for
�
N�j

2

k�2

�
randomizations,

for j = 1, 2, . . . , N � 2k + 2.

This theorem is relevant for every step in the Loughin and Noble procedure, because

every step consists of a permutation test all 2K values used to calculate the value of the test

statistic (i.e., the maximum absolute value of all factorial e↵ects). The di↵erence between

steps is the 2K residuals in ỹ that are permuted. However, this theorem only applies to the

first step in the Single Imputation approach.

For Yobs = (1, 2, 3, 4)0, the comparison of results obtained using the Loughin & Noble

and Sequential Single Imputation methods is displayed in Figure 2.1. Note that the the first

step is equivalent in both sequential procedures for the 22 case because PSE
1

is the same for

every randomization, therefore the result in the Theorem above follows for both procedures.

Now, as in the L&N approach, for any k, the smallest absolute e↵ect cannot be tested. In

the Single Imputation approach, this happens because the p value obtained will be 1 due to

the fact that all randomizations will lead to the same value of the test statistic, T
L,i

= 2/3

since PSE
2

k�1

= 1.5 ⇤ |✓̂|
(2

k�1)

. Therefore in this simple case, the only step where we can

see the di↵erences is the second one.
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(b) Single Imputation

Figure 2.1: Results of Two Sequential Testing Procedures for Yobs = (1, 2, 3, 4)0
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Chapter 3

The Unreplicated Case: Sequential

Posterior Predictive Checks

In this chapter we propose a Bayesian approach that is di↵erent from both Box and Meyer

(1986) and Chipman et al. (1997), which have been proposed to screen for active e↵ects.

3.1 A Bayesian approach to screening factorial e↵ects

using Sequential Posterior Predictive Checks

We now propose a Bayesian approach for screening active factorial e↵ects from an un-

replicated 2K design that overcomes the drawbacks of the Fisherian and Loughin and Noble

(1997) approaches and makes the inferential procedure more flexible. Our method extends

the Bayesian framework proposed by Dasgupta et al. (2012) to a sequential screening pro-

cedure using posterior predictive checks (PPC) proposed by Rubin (1984) and investigated
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by Meng (1994), Gelman et al. (1996) and, from a randomization perspective, Rubin (1998).

The use of PPC is motivated by an additional intuitive appeal: in hypothesis testing, it is

common practice to stop once we have a p-value that is “small enough”. Ironically, we stop

when we find a model that does not fit (the null model). We believe that a better, cleaner

and more principled strategy is one that stops when we find a model that does fit the data.

Rubin (1984), wrote “Although the frequentist can stop with a rejection of the null hypothesis,

I believe that the Bayesian is obliged to seek and build a model that is acceptable to condi-

tion on”. The proposed Bayesian procedure does make use of distributional assumptions in

contrast to the Fisherian approach, making it more general than the randomization-based

approach, which can be derived as a special case of the former by putting point-mass prior

distributions on the potential outcomes and the unit-level factorial e↵ects.

The key steps in the proposed approach are: (i) postulating a suitable “null model” (a

probabilistic model specifying the active e↵ects) for the potential outcomes; (ii) obtaining

an imputation model for the missing potential outcomes Y mis, conditional on the observed

outcomes Y obs and the observed assignment vector W ; and (iii) using the imputation model

to obtain the posterior predictive distribution of a suitable test statistic (or discrepancy

measure) T , and consequently to compute the posterior predictive p value. For example, for a

one-sided assessment of certain test statistics, the posterior predictive p value, Pr(T > T obs),

is the posterior probability of observing a value of T at least as large as the value observed,

T obs, given the observed data, the model being assumed, and the assignment mechanism.

To implement the sequential posterior predictive check (S-PPC), the aforementioned

three steps are iterated either through a “step-down” or a “step-up” approach. The former

approach starts with the sharp null model of no active e↵ect, i.e., Fisher’s sharp null hy-
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pothesis of no treatment e↵ects and then creates a sequence of non-sharp null models by

including e↵ects to the set of postulated active e↵ects one by one, starting with the largest

estimated e↵ect. We stop as soon as we find the most parsimonious model that is consistent

with the data. In contrast, the latter procedure starts with the saturated model (all e↵ects

active) as a default, and then tests whether more parsimonious models are consistent with

the data by eliminating the factorial e↵ects one by one, starting with the smallest estimated

one. We then stop when we find a model that is inconsistent with the data, keeping the last

one that seemed adequate. In the following three subsections, we describe this procedure in

detail, starting with the definition of “active” e↵ects.

3.1.1 Definition of inactive e↵ects and their related notation

As before, we assume that the N experimental units are fixed. Under the potential

outcomes perspective there are di↵erent definitions of active e↵ects that we could use (see

page 17). We now give a sharp definition of activeness of an e↵ect as follows. However, at

the end of this section we mention di↵erent ways to relax the definition, although we do not

explore these any further in this paper. For j = 1, . . . , N � 1, we call the jth factorial e↵ect

(indexed by the vector g
j

) inactive if ✓
ij

= 0 for all i = 1, . . . , N and active otherwise. Thus,

a factorial e↵ect is active if it is non-zero for at least one unit of the finite population. Let

A denote the set of active e↵ects with cardinality a where 0  a  N � 1. Note that for the

individual level definition, a = 0 is equivalent to the sharp null hypothesis of no treatment

e↵ects. Also, let I denote the set of e↵ects that are “inactive”, having cardinality N �1�a.

It is therefore possible to partition the unit-level vector of factorial e↵ects ✓
i

as (✓A
i

: 0),

where ✓A
i

is an (a + 1)-component row vector that includes the mean term and 0 is a null
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vector with N � 1� a components. Therefore (✓A
i

: 0) is a permutation of ✓
i

. Each row of

G0 represents a factorial e↵ect, hence G0 can also be rearranged to form the matrix

0

B@
G

0A

G
0I

1

CA ,

so that G
0A and G

0I are matrices of order (a+ 1)⇥N and (N � a� 1)⇥N corresponding

to the active and inactive e↵ects respectively.

Consequently, it follows from (1.2) that

Y
i

= (✓A
i

: 0)

0

B@
G

0A

G
0I

1

CA = ✓A
i

G
0A. (3.1)

To express the observed and missing outcomes in terms of the active e↵ects, we partition

the vector g
0
obs

i

and the matrix G
0
mis

i

, defined in Section 2, as

0

B@
g

0
obs,A
i

g
0
obs,I
i

1

CA and

0

B@
G

0
mis,A
i

G
0
mis,I
i

1

CA ,

respectively, just as we partitioned G0. Therefore, from (2.1) we can write

Y obs

i

= ✓
i

g
0
obs

i

= (✓A
i

: 0)

0

B@
g

0
obs,A
i

g
0
obs,I
i

1

CA = ✓A
i

g
0
obs,A
i

, (3.2)

Y mis

i

= ✓
i

G
0
mis

i

= (✓A
i

: 0)

0

B@
G

0
mis,A
i

G
0
mis,I
i

1

CA = ✓A
i

G
0
mis,A
i

. (3.3)
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Note that the potential outcomes framework also permits us to define active/inactive

e↵ects in terms of the finite population factorial e↵ects and super-population factorial e↵ects.

For example, although we do not do this here, the jth factorial e↵ect could be called inactive

at the finite population level if ✓̄
.j

= 0, and at the super population level if µ
j

= 0, where

✓
ij

is assumed to be, say, N(µ
j

, �2) for i = 1, . . . , N . In Section 5, we show that the current

approach (see page 16) is robust enough to perform well in super-population settings, where

inferences are more uncertain.

3.1.2 The imputation model and computation of the posterior pre-

dictive distribution of T

Throughout this section, we assume that the units are fixed, but the potential outcomes

can be random. Also, we assume that the potential outcomes are conditionally independent

across units, given the values of the hyperparameters. Whereas this assumption is not

necessary for the developments that follow, it is a reasonable assumption in many realistic

situations.

Let p(✓
i

|⌘A) denote a null probabilistic model for ✓
i

, where ⌘A is a vector of parameters

having a suitable prior distribution for the set of active e↵ects A. Because of the identity

Y
i

= ✓
i

G, the model can also be specified through Y
i

. Then, following Rubin (1978), for a

completely randomized factorial experiment, we have the following lemma

Lemma 1. The conditional distribution of Y mis

i

given Y obs and W is given by

p(Y mis

i

|Y obs,W ) /
Z Z

p(Y mis

i

|⌘A,✓
i

,Y obs,W )p(✓
i

|⌘A,Y obs)p(⌘A|Y obs)d⌘Ad✓
i

(3.4)

Then, obtaining the posterior predictive p-value for the null model involves the following
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steps:

1. Obtain the imputation model p(Y mis

i

|Y obs,W ) using Lemma 1.

2. Repeat the following steps M times:

(a) Impute a draw of the missing potential outcomes using the model obtained in

step 1.

(b) Re-randomize the N units to the N treatment combinations (i.e., generate a draw

from W ) and generate a new set of observed data.

(c) Compute the discrepancy measure T rep, given this specific imputation and re-

randomization.

3. Compute the posterior predictive p-value for the null model as the proportion of cases

(out of M) in which T rep equals or exceeds T obs.

In principle, the steps described above can be carried out for any model. However, here

we restrict ourselves to a simple normal hierarchical model described below, where � denotes

an indicator function such that �(A) = 1 if A is true and zero otherwise.

p(Y
i

|✓
i

) = �(Y
i

= ✓A
i

G
0A), i = 1, . . . , N,

p(✓A
i

|µA, �2) = N(µA, �2I
a

), i = 1, . . . , N,

p(✓I
i

) = �(✓I
i

= 0), i = 1, . . . , N,

p(µA, �2) / 1

�2

. (3.5)

Also, we assume each unit’s ✓
i

is independent of the other units conditional on the hyperpa-

rameters, and hence that of Y
i

’s for i = 1, . . . , N . The hierarchical normal model specified
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by (3.5) permits a fair comparison of the proposed approach with the standard approaches.

Such a comparative study is conducted in Section 5.

We now discuss how Steps 1 and 2, described earlier, can be implemented under model

(3.5). Substituting (µA, �2) for ⌘A in (3.4), and after some minor manipulations, we obtain

the imputation model for missing outcomes as:

Z Z Z
p(Y mis

i |µA,�2,✓i,Y
obs,W )p(✓i|µA,�2,Y obs)p(µA|�2,Y obs)p(�2|Y obs)dµAd�2d✓i, (3.6)

where

p(�2|Y obs,A) = Inv�2(N � a� 1,MSA
res

), where MSA
res

is the

residual mean square of the model that

corresponds to the regression of Y obs on G
0A,

p(µA|�2,Y obs) = N(✓̂A, �2I
a

/N), where ✓̂A is the posterior

mean of µA (and ✓A
i

), which is also

its unbiased OLS estimator. (3.7)

For the unreplicated case, MSA
res

is well defined except for the saturated model. The

imputation of missing potential outcomes, i.e., step 2(a), can be executed using the following

simulation procedure based on (3.6) and (3.7):

Step 1. Draw �2

⇤ from p(�2|Y obs).

Step 2. With �2 set to �2

⇤, draw µA
⇤ from p(µA|�2

⇤,Y
obs).

Step 3. For each unit,
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(a) With �2 = �2

⇤ and µA = µA
⇤ , draw ✓̇A

i,⇤ from N(µA
⇤ , �

2

⇤I).

(b) Complete ✓A
i,⇤ by calculating ✓

i,0

= Y obs

i

� ✓̇
i,⇤ġ

0
obs

i

/2, where ġ
0
obs

i

excludes the first

entry of g
0
obs

i

.

(c) Fill in missing potential outcomes for unit i as Y mis

i,⇤ = ✓A
i,⇤G

0
mis,A
i

. draw ✓
i,⇤ from

p(✓
i

|µA
⇤ , �

2

⇤).

More precisely,

• For every ✓
i,j

2 I, the posterior distribution equals the prior distribution (i.e.,

point mass at zero):

p(✓
i,j

|µ, �) = �(✓
i,j

= 0).

• For the active set of ✓
ij

, set �2 = �2

⇤ and µA = µA
⇤ to draw ✓A

i,⇤ from the

normal distribution N(µA
⇤ , �

2

⇤).

• The missing potential outcomes for this unit are filled in as Y mis

i,⇤ = ✓A
i,⇤G

0
mis,A
i

.

3.1.3 Discrepancy measures and definitions of extremeness

As in most statistical inference problems, the choice of discrepancy measure T and defi-

nition of extremeness (e.g., P (T � T obs)) are fundamental, and should be determined before

the experiment is performed. In unreplicated experiments, zero degrees of freedom are avail-

able to estimate the standard deviation of the estimated factorial e↵ects ✓̂
j

in the usual

way, i.e., using the residual mean squared error. In this context, Lenth (1989) proposed the

pseudo standard error as an estimate of the standard deviation of the ✓̂
j

’s. This estimate

was presented in Equation 4.1 in Chapter 4.

Here we consider three discrepancy measures. In the proposed sequential procedure, at
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each step we compare the observed value of T to its posterior predictive distribution, where

a specific set of e↵ects are assumed active,A, and the rest are assumed inactive, I. Let

PSEI denote the pseudo standard error of the factorial e↵ects in I. The three discrepancy

measures we study are the maximum absolute value of the e↵ects in I in the current prior

distribution with and without standardizing by the pseudo standard error, i.e., max
j2I

���
ˆ

✓j

PSEI

���

and max
j2I

���✓̂
j

���, and the PSEI .

In particular, the use of the order statistics in the Loughin and Noble method motivated

the inclusion of discrepancy measures involving max
j2I

���✓̂
j

��� in our study. Extremeness for

these statistics is defined by the right tail of the distribution of T because, given the assumed

prior distribution is correct, it is unlikely that a null e↵ect would be as large or larger than

the observe value, T obs.

On the other hand, the interpretation of PSEI as a measure of what is not explained

by the model motivated its use as a discrepancy measure here. Thus, a small value of the

PSEI indicates that the assumed model is not consistent with the data because there is a

smaller variability between the factorial e↵ects assumed null than what would be expected

under the assumed prior model. Hence, extremeness for this discrepancy measure is based

on a one sided assessment focusing on the lower tail of the posterior predictive distribution

of T .
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Chapter 4

The Unreplicated Case: Brief

overview of related existing methods

In this chapter we review a subset of the existing methods that are relevant to our work.

In 1959, Daniel proposed a graphical method to visually screen for active e↵ects in two-

level designs. He wrote “Plotting the empirical cumulative distribution of the usual set of

orthogonal contrasts computed from a 2k experiment on a special grid may aid in its criticism

and interpretation.[...] The half-normal plot can be used to estimate the error standard

deviation and to make judgements about the reality of the observed e↵ects.” Hamada and

Balakrishnan (1998) mention that Daniel (1959) did provide an objective method that for

the most part has been ignored. It has been the subjective assessment of the plot that has

withstood the test of time, continuing to make his half normal probability plot a standard

approach in the screening of non replicate factorial experiments. A figure from the original

paper is replicated in Figure 4.1. The idea behind it is that many e↵ects are inactive and

plotting them this way will suggest an inactive distribution (variance) and will highlight
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those e↵ects that don’t follow this trend to identify them as active.

Lenth (1989) gave a formalization of Daniel’s halfnormal probability plots, making it

a popular analytical tool for screening in unreplicated experiments. Ye et al. (2001) and

Tripolski et al. (2008) gave extensions of Lenth’s method; the former from a sequential

perspective and the latter motivated by the need to control the false discovery rate (FDR).

Finally, we review two existing Bayesian methods because our proposal follows a Bayesian

perspective. However, unlike the rest of the presented methods, the Bayesian ones were not

included in our simulation study because of the reported sensitivity to the specification of

the hyperparameters in the prior distributions.

4.1 Lenth Method (1989)

Lenth (1989) defined an estimator for the the standard error of the factorial e↵ects, which

he called the pseudo standard error (PSE),

PSE = 1.5 ·median|ˆ✓j |2.5s0
|✓̂

j

| (4.1)

where s
0

= 1.5 · median|✓̂
j

|, and ✓̂
j

is the estimate of the j-th factorial e↵ect. He then

proposed the calculation of the statistic

T
L,j

=
✓̂
j

PSE

to test the e↵ects. He proposed to use a t distribution with I/3 degrees of freedom for

controlling the individual error rate (IER), where I corresponds to the number of mutually
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(a) Screenshot of Daniel (1959) original paper proposing the use of
half-normal probability plots to screen for active e↵ects in two level
factorial designs.

0.0 0.5 1.0 1.5 2.0

0
10
00

20
00

30
00

half-normal quantiles

ab
so

lu
te

 e
ffe

ct
s

(b) A modern halfnormal probability plot. The y-axis corre-
sponds to the absolute value of the factorial e↵ects and the
x-axis corresponds to the halfnormal quantiles. Here, the sub-
jectiveness of the results is clear. This plot was produced by
pretending the seat belt example (see section 7.1.3) in Chap-
ter 7 was unreplicated, and only using the first value for each
treatment combination to screen for active e↵ects.

Figure 4.1: Halfnormal probabiltiy plots
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orthogonal estimated factorial e↵ects (e.g. 2K-1 in a 2K full factorial design). He proposed

to set the critical value to (1 � (1 � ↵)1/I) to control for the experiment-wise error rate

(EER). Loughin (1998) and Ye and Hamada (2000) derived calibrated critical values for

Lenth’s method in terms of |T
L,j

|. In this paper we use the critical value that Ye, Hamada

and Wu (2001) reported, which was based on Ye and Hamada (2000). In the Hamada and

Balakrishnan study, Lenth’s method was shown to be, not only simple, but one of the most

powerful approaches. Multiple testing, or equivalently the experiment-wise error rate (EER)

or false discovery rate (FDR), is an issue in this context. There are two ways in which

this is handled. The most common one is to use a modified critical value. The Bonferroni

correction is an example of this type of solution, in which an EER of ↵ is obtained by using

the critical value found by modifying the individual significance levels to ↵/n, where n is

the number of tests performed. Therefore, in a 2-level factorial experiment with k factors

n = 2K � 1. Daniel’s and Lenth’s methods are of the this type. Zahn (1975) was the

first to propose sequential procedures to control the EER. In the following sections common

sequential procedures for controlling the EER are reviewed. The total number of treatment

combinations 2K will henceforth be replaced by m for notational convenience.

4.2 Step Down Lenth Method (2001)

The method proposed by Ye et al. (2001) is a sequential version of Lenth’s approach that

uses the order statistics of the factorial e↵ects, |✓̂|
(j)

. The method proceeds as follows, let

m = 2K . Then, at step s calculate the test statistics T
L,s

=
|ˆ✓|(m�s)

PSEs
, where PSE

s

is the PSE

of ✓̂
(1)

, ✓̂
(2)

, . . . , ✓̂
(m�s)

. Let Cj

↵

denote the EER critical value at the ↵ significance level of

the original Lenth method with j contrasts. If T
L,j

> Cj

↵

for all j > m� s then the largest s
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factorial e↵ects are declared active. The simulation study in Ye et al. (2001) shows that it

is slightly more powerful than Lenth’s method and has a closer value to the nominal level of

the EER.

4.3 FDR corrected Lenth Method (2008)

Tripolski et al. (2008) propose a method that targets controlling the False Discovery

Rate (FDR), instead of the Experiment-wise Error Rate. As the name suggests, the FDR

refers to the proportion of true null e↵ects that are declared active. The authors, using the

Benjamini and Hochberg (1995) controlling procedure, propose adaptive and non-adaptive

versions of Lenth (1989) and Dong (1993) methodologies to screen for active e↵ects. The

authors proposed regular and adaptive versions of their methods, but did not find a significant

improvement in the use of the adaptive ones. In this paper, the the FDR procedure refers to

the non-adaptive proposal that is based on Lenth’s method. All estimated absolute e↵ects

are standardized by the pseudo standard error, and then converted to “raw” p values using a

t distribution with I/3 degrees of freedom, were I is the number of e↵ects being tested. Then,

these p values are arranged in ascending order, and e↵ects for which the p value is smaller

than the largest p value that upholds p
(i)

 iq/I are identified as active. In Tripolski et al.

(2008) the original t-distribution proposal was used, instead of the Ye and Hamada (2000)

calibrated version that was mentioned above and that was implemented for Lenth’s method

in our simulation studies. Therefore, for the FDR procedure we use the t distribution that

Tripolski et al. (2008) used in their implementation of their method. Hence, the two Lenth

methods are not identical, but both are calibrated. Relevant to this, Tripolski et al. (2008)

note that their calibration leads to similar results to those reported by Ye and Hamada
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(2000).

4.4 Loughin and Noble (1997) Permutation Approach

To our knowledge, this method is the main randomization-based approach for sequential

testing. It was proposed in the context of unreplicated factorial experiments. The key idea

behind it is to sequentially redefine the response variable used for the permutation test by

eliminating the orthogonal projection of the Y obs vector on to the space generated by the

largest factorial e↵ects. An outline of the method is:

1. Compute ✓̂ from y = Yobs and order the e↵ects and columns of G to correspond to

|✓̂|
(m)

� |✓̂|
(m�1)

� · · · � |✓̂|
1

.

2. At step s, set Ŵ
s

= |✓̂|
(s)

and obtain

ỹ
s

= y � ✓̂
(m)

g
(m)

� · · ·� ✓̂
(m�s+1)

g
(m�s+1)

; (ỹ
1

= y).

3. Do a permutation test on ỹ
s

• Repeat nsim (large) times:

(a) Permute ỹ
s

(b) Calculate the discrepancy measure W ⇤
s

=
�
m�1

m�s

�
1/2 | ˆ̃✓⇤|

(1)

.

• Compute the p value as P
s

= 1�
h
#W

⇤
s <

ˆ

Ws

nsim

im�s
m�1

.

4. Repeat steps 2 and 3 for as many e↵ects as desired.
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They propose a step up procedure, starting with the smallest absolute e↵ect. This approach

is does not impose either the sparsity or the normality assumptions. However, this procedure

is unable to identify as active any e↵ects with magnitude equal to that of the smallest e↵ect.

4.5 Two Bayesian Options

These methods distinguish between active and inactive e↵ects through di↵erent variances.

There are two main ones, which we now describe.

4.5.1 Box and Meyer (1986)

To our knowledge, this is the first Bayesian method proposed to screen for active e↵ects.

The active e↵ects have a N(0, �2

active

) distribution and inactive e↵ects have a N(0, �2

inactive

)

distribution, where �
inactive

<< �
active

= K�
inactive

. Hence, the prior distribution of factorial

e↵ects is a mixture of the active and inactive normal distributions (centered at zero), where

the proportion of active e↵ects (↵
active

) is small, assuming e↵ect sparsity. There are many

hyperparameters that need to be set (also referred to as tuning parameters) for which the

authors recommend ↵
active

= 0.2, K = 10 and marginal posterior probability threshold

to identify as active of 0.5. It was the only Bayesian method compared in Hamada and

Balakrishnan (1998), where it performed best for small number of active e↵ects but not that

much better than Lenth’s method. It performed poorly for large number of active e↵ects

(with a considerable underperformance relative to Lenth’s method). Therefore, on average,

it was found to be less powerful than Lenth’s method.
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4.5.2 Chipman et al. (1997)

This method was proposed to deal with complex aliasing structures. Therefore, we review

it in more detail in Chapter 7 where we believe it is more relevant because we discuss

fractional factorial designs. However, a short description is relevant at this point because of

the Bayesian motivation of the method proposed. A key idea of this procedure (originally

proposed in Chipman (1996) as a Bayesian variable selection procedure) was to include a

vector of latent variables, �, indicating the activeness for each e↵ect, such that conditional

on it, the e↵ects have normal distributions. That is, the conditional prior distribution of the

factorial e↵ects is

p(✓
j

) =

8
><

>:

N(0, �2⌧ 2
j

) if �
j

= 0,

N(0, �2(c
j

⌧
j

)2) if �
j

= 1.

An inverse gamma prior is given for �2. Two main options are given for the priors of

�. The first option assumes independence between these latent variables, such that p(�) =

Q
p+1

j=1

p
�j

j

(1 � p
j

)1��j , independence prior on �, where p
j

is the probability that �
j

= 1,

looks like this where p
j

is the prior probability that �
j

= 1. The second option is to use

hierarchical priors that incorporate design of experiments principles. For example, factor the

prior distribution of �, p(�), using the e↵ect heredity principle into

p(�) = p(�
1

)p(�
2

)p(�
3

|�
1

, �
2

),

and model the probability that �
3

= 1 as being higher the more parent factorial e↵ects are

active. This is further explained in Chapter 7.

The hyperparameters of the inverse gamma, in addition to c
j

and ⌧
j

for every j, are tuned
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to give reasonable posterior probabilities to the models. The recommendation is, following

Box and Meyer (1986) c
j

= 10, high sensitivity to ⌧
j

4.6 Why are these relevant?

All of the non Bayesian methods presented in this review were implemented in our simula-

tion study for the unreplicated case for comparison with our proposals. We also implemented

the permutation test based on Fisher’s sharp null hypothesis of absolutely no treatment ef-

fect, which we explain in detail in Chapter 2. To our knowledge, Loughin and Noble (1997)

is the standard permutation based method. Hence, including it is not only natural but nec-

essary, and even more so because it was not included in the extensive comparative study

performed in Hamada and Balakrishnan (1998). All the other non Bayesian methods are

standard in the literature and serve as reference points.

The relevance of the Bayesian procedures stems from the fact that our main proposal

has a Bayesian motivation and uses that framework. However, these Bayesian options were

not included in the simulation study. The reasons behind excluding these are that 1) Box

and Meyer (1986) did not outperform Lenth (1989) in comparative study carried out in

Hamada and Balakrishnan (1998), and 2) both Bayesian procedures have hyperparameters

that need to be specified. Chipman et al. (1997) point out that their results are sensitive

to the specification of ⌧
j

, so implementing this method needs some thought about each of

the situations being tested (i.e., subject matter expertise). It is unclear how to implement

this approach, taking into account this sensitivity to prior specification, in simulation studies

like those we pursue. These “tuning” parameters are not something our current Bayesian

proposal requires.
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Chapter 5

The Unreplicated Case: Simulation

study

In this chapter we present results from a simulation study comparing the Single Imputa-

tion method presented in Chapter 2 and the Sequential Posterior Predictive Checks of 3.1

to the methods reviewed in 4.

The general framework presented in Section 3.1 o↵ers flexibility for estimands, discrep-

ancy measures and sequences of models to be assessed other than those explored here, which

may be more relevant to the study at hand. However, we believe it is fundamental to compare

its performance relative to standard approaches in the literature to evaluate what benefits

our approach can have, even in the usual setting. As already mentioned in 3.1.2, the specific

hierarchical normal model given by (3.5) was proposed with this goal in mind. To agree

with the traditional setting, the simulation is done using the superpopulation definition of

an active e↵ect, which in our procedure can be understood as µI = 0 and µA consists of

non-zero elements. Nevertheless, as explained in Section 3.1.2, the S-PPC does fill in the
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missing data, assuming ✓
ij

= 0 for e↵ects in I and all units. We believe this simulation

allows for a fair comparison of the frequency properties of the di↵erent methods.

5.1 Calibration Study - Under the Null Hypothesis

Tukey (1953) coined the term experimentwise error rate (EER) to refer to the probability

of making one or more false discoveries when testing multiple factors. It is standard practice

in the literature to calibrate proposed methods to thresholds that are most frequently used in

screening. We calibrate our proposals to satisfy a 0.05 experimentwise error rate to be able

to compare them to other methods in the literature, using the cuto↵ values reported in their

papers for an EER of 0.05. Two other error rates that are commonly used in the literature

are compared here but not calibrated. One is the individual error rate (IER), which is the

probability of incorrectly identifying a null e↵ect as active, but does not account for the

other e↵ects being assumed null. The other one is the false discovery rate (FDR), which

corresponds to the expected proportion of false positives among all the e↵ects declared active.

For the null model (A = ;), the FDR is equivalent to the EER.

The calibration study was performed under the null hypothesis of all individual level

factorial e↵ects being inactive in a 24 full factorial design (i.e. µ
j

= 0 for all i = 1, . . . , 16 and

j > 1, . . . , 15, where µ
j

= E(✓
ij

). We calibrated the sequential posterior predictive checks,

using the three discrepancy measures described in Section 3.1.3 and the di↵erent screening

rules (i.e., “step-down” or “step-up”). The procedure we followed in the simulations is

described below, and satisfies the classic assumptions of the existing methods.

We simulated 1000 di↵erent science tables assuming the null hypothesis. Each science
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table was obtained by simulating ✓
ij

’s from a N(0, 1) distribution, and transforming them to

the potential outcomes Y
i

(z). For each method, the following two summary measures were

recorded.

(i) The proportion of null e↵ects incorrectly declared significant.

(ii) The indicator of whether there was at least one null e↵ect incorrectly declared signifi-

cant for this data set.

The IER and EER were estimated by averaging summary measures (i) and (ii) respectively

over the 1000 di↵erent simulations.

The calibration results for the Single Imputation and S-PPC are shown in Figure 5.1.

The points correspond to the EER observed using di↵erent cut o↵ values (↵). The greyscale

denotes the two screening rules. The dashed line represents the identity line, and each con-

tinuous line denote the OLS fit of the observed EER on the ↵ level used for the corresponding

screening rule. Each subfigure corresponds to a di↵erent discrepancy measure. For every

selection of a cut o↵ we looked at the ↵ value that lead to an observed EER closest to

and below 0.05. For each method, discrepancy measure and screening rule combination, we

corroborated the selection of ↵ by fitting a linear model of the observed EER values to the

di↵erent ↵ cuto↵s.

The calibration study results of the Single Imputation approach are displayed below, in

Figure 5.1(a). The test statistic used for this approach is max{j:j2I}
���

ˆ

✓j

PSEs

���. For the step-

down approach the OLS fit is EER = �0.013 + 2.21↵. However the the observed values

suggest a cut o↵ of 0.026, this is the value we used. For the step-up approach both the

observed values and the OLS (i.e., EER = �0.001 + 1.055↵) agree on a cut o↵ of 0.048.
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The rest of the subfigures in Figure 5.1 correspond to the calibration results of the

S-PPC. As shown in Figure 5.1(b), to achieve an EER of 0.05 with the max{j:j2I}
���✓̂

j

���

discrepancy measure, a 0.043 cut o↵ (↵) should be used for each test to identify the active

e↵ects when using the step-up procedure. This 0.043 value corresponds to the observed

EER of 0.049 and a predicted 0.05 for the OLS fit. The linear regression of the observed

EER on ↵ resulted in this expression EER = �0.006 + 1.303↵. Furthermore, when the

step-down procedure is used with this discrepancy measure, then a 0.05 cut o↵ should be

used. Again, this value agrees with both the observed simulation results and the OLS fit,

which is EER = �0.005 + 1.093↵.

Figure 5.1(c) shows that the use of the max{j:j2I}
���

ˆ

✓j

PSEI

��� discrepancy measure appears

to eliminate the di↵erence in the results between the explored screening rules, which might

be an attractive feature. In this case, the OLS fits for both screening rules are practically

identical. The OLS results are EER = �0.002 + 1.06↵ and EER = �0.001 + 1.06↵ for the

step-down and step-up procedures, respectively. Observed values from the simulation, with

both screening rules and the step-up OLS fit, suggest the 0.048 value as cut o↵ (the first one

below 0.05). The OLS fit for the step-down procedure suggests a 0.049 cut o↵. We chose to

use 0.048. Although it is not shown here, the screening rules do lead to di↵erent IER values

for this discrepancy measure

Figure 5.1(d) displays the results for the PSEI as a discrepancy measure. Clearly, the

step-up procedure is not viable for this statistic. Henceforth we will only use the step-down

procedure for this measure, for which the OLS fit is EER = 0.008 + 0.988↵. The cut o↵

that the OLS fit suggests (0.043) is not the same as that suggested by the observed rates in

the simulation, which is 0.049. In the comparative study we use the latter.
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Figure 5.1: Scatter plot of the Calibration Study for the Single Imputation and for the
Sequential Posterior Predictive Checks. The greyscale denotes the two screening rules. The
dashed line represents the identity line, and each continuous line denotes the OLS fit of
the observed EER on the ↵ level used for the corresponding screening rule. Each subfigure
corresponds to a di↵erent discrepancy measure. In the label of each subfigure the first
element corresponds to the method and the second one to the discrepancy measure used.
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Table 5.1: Cuto↵s obtained in the calibration of the Single Imputation and Sequential Pos-
terior Predictive Checks methods using 24 factorial designs for the di↵erent methods, dis-
crepancy measures and screening rules proposed.

Method Discrepancy Measure Screening Rule ↵

SI max{j:j2I}
���

ˆ

✓j

SEI

��� step-down 0.048
step-up 0.026

S-PPC
max{j:j2I}

���✓̂
j

��� step-down 0.050
step-up 0.043

max{j:j2I}
���

ˆ

✓j

PSEI

��� both 0.048

PSE
s

step-down 0.049

5.2 Simulation across Alternative Hypotheses

A similar simulation was used to compare the performance of the proposed S-PPC to the

Permutation Test (also called the Fisher’s sharp Null approach) as described in Chapter 2

with and without the Bonferroni correction; the Loughin and Noble (1997) approach (L&N);

the Lenth (1989) method; the Step Down Lenth method, as described in Ye et al. (2001);

and the FDR corrected Lenth method described in Tripolski et al. (2008). The methods of

Box and Meyer (1986) and Chipman et al. (1997) are not included in this study; we excluded

the former because it performs poorly for large numbers of active e↵ects, and, although it

performed well for low numbers of active e↵ects, on average, it is less powerful than Lenth’s

method (Hamada and Balakrishnan, 1998); we excluded the latter because of the sensitivity

of the results to the choice of some hyperparameter values (Wu and Hamada, 2009).

We simulated potential outcomes repeatedly (1000 times) from alternatives defined by

setting max{j:j2A} |µj

| to 4, and di↵erent levels of noise (� = 0.5, 1, 2), number of active e↵ects

(a = 1, 2, 4, 6), and the range, ⇢ between active e↵ects (defined as ⇢ = max{j:j2A} |µj

| �

min{j:j2A} |µj

| = 1, 2, 3). Each combination of these simulation factors determines a true
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value of µ by selecting a factorial e↵ects at random to be active, and letting the corresponding

µ
j

’s assume the value 4 � ⇢ if a = 1, and the values 4 � ⇢
�
1� t

a�1

�
for t = 0, . . . , a � 1 if

a > 1. The remaining µ
j

’s are set at zero. Finally, the potential outcomes for each unit are

drawn from Y
i

⇠ N(µG0, �2I).

We compare these methods using five summary measurement based on averages across

1000 simulated data sets: IER (average proportion of false positives), EER (proportion of

data sets with at least one false positive), FDR (average proportion of false positives among

all the e↵ects declared active), RR (average proportion of true positives), andANP (average

number of positives e↵ects declared active). In this context, positives are the factorial e↵ects

declared active, false positives are inactive e↵ects incorrectly identified as active, and true

positives are active e↵ects that are correctly identified.

The results of the simulation study are shown in Table 5.2. Although the expressions

for the test statistic for the step-down Lenth and FDR-corrected Lenth methods in Table

5.2 appear to be di↵erent from those in Ye et al. (2001) and from those in Tripolski et al.

(2008), respectively, they are essentially the same. The values obtained in the calibration

study in Section 5.1 are used as threshold p-values in the proposed S-PPC methods. For the

existing methods, we used the values reported in the literature, which were also determined

via calibration studies. We include the results for the permutation test, which does not

account for multiple comparisons, as a reference point where it achieves an IER of 0.05 but

a very high EER of 0.661. The Step Down Lenth method has a very high EER under the

null hypothesis (0.109). The levels for the remainder of the methods are reasonably close to

the intended 0.05.

Table 5.2 shows that the sequential posterior predictive checks step-up procedure using
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the maximum of the absolute e↵ects assumed null as the discrepancy measure has the best

performance. It has an EER below 0.049 under the null hypothesis, as well as low IER and

ANP values relative to the other methods. Averaging across the alternative hypotheses, it

has the highest RR, achieving 0.637, with the closest competitors achieving 0.560 (L&N,

Step Down Lenth and Lenth-with 0.551), the highest ANP (2.146) and all the error rates

are below 0.05. This last statement is true for the S-PPC variations, unlike the Step Down

Lenth (EER = 0.095, FDR = 0.052) and the FDR corrected Lenth (EER = 0.082). The

Single Imputation approach using the step-down procedure performs better than using the

step-up procedure. This is probably due to the large di↵erence between the cuto↵s of the

two screening rules obtained from the calibration.

Both step-up and step-down procedures for the Single Imputation approach are domi-

nated by the Loughin and Noble (1997) method.

In Figure 5.2 we display the RR, FDR, and EER, across the di↵erent simulation alter-

native hypotheses settings for the previously established methods and compare them to the

S-PPC with the best performance. This figure clearly shows that the step-up S-PPC with

discrepancy measure max{j:j2I}
���✓̂

j

���, the best S-PPC (BS-PPC), is much better than the rest

with clear and distinct modes around 1 for the RR, and 0 for the FDR and EER. For our

proposal, there are no combinations with an FDR above 0.05. However, there are eight com-

binations with EER above 0.05. In contrast, the L&N and Lenth methods have none above

this threshold, at the cost of lower rejection rates. In contrast, the Lenth method with the

FDR correction leads to EER values above 0.05 for 30 of the 36 settings for the alternative

hypotheses, which is not surprising because the goal is to control the FDR. Nevertheless,

their method has 5 combinations with FDR above 0.05.
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Table 5.2: Summary of results of the simulation study. Average rates and number of e↵ects
declared active, as well as the standard errors of these quantities are displayed for all methods
and screening rules under the null (� = 1) and across alternative hypotheses.

null hypothesis average across alternative hypotheses
Method Discrepancy Screening IER EER ANP RR IER EER FDR ANP

Measure Rule (SE) (SE) (SE) (SE) (SE) (SE) (SE) (SE)

Permutation |✓̂|
j

-
0.050 0.660 0.750 0.487 0.004 0.049 0.042 1.200
(0.001) (0.015) (0.019) (0.006) (<0.001) (0.006) (0.005) (0.014)

Bonferroni |✓̂|
j

-
0.003 0.048 0.048 0.251 0.000 0.002 0.002 0.400

(<0.001) (0.007) (0.007) (0.006) (<0.001) (0.001) (0.001) (0.009)

Lenth |✓̂
j

|/PSE -
0.007 0.057 0.099 0.551 0.004 0.031 0.014 1.862
(0.001) (0.007) (0.016) (0.008) (0.001) (0.005) (0.003) (0.030)

FDR corrected |✓̂
j

|/PSE step-up
0.011 0.059 0.168 0.403 0.012 0.082 0.033 1.778

Lenth (0.002) (0.007) (0.024) (0.008) (0.001) (0.009) (0.004) (0.037)

Step Down
max{j:j2I}

���
ˆ

✓j

PSEI

��� step-down
0.015 0.110 0.228 0.560 0.016 0.095 0.052 2.050

Lenth (0.002) (0.010) (0.026) (0.008) (0.002) (0.009) (0.006) (0.037)

L&N
⇣

N�1

N�|I|

⌘
1/2

max{j:j2I}
���

ˆ

✓j

PSEI

��� step-up
0.006 0.053 0.086 0.560 0.002 0.023 0.011 1.744
(0.001) (0.007) (0.015) (0.009) (0.001) (0.005) (0.002) (0.034)

Single Imputation max{j:j2I}
���

ˆ

✓j

PSEI

���
step-down

0.007 0.052 0.051 0.538 0.005 0.033 0.013 1.839
(0.001) (0.007) ( 0.017) (0.009) (0.001) (0.006) (0.003) (0.033)

step-up
0.016 0.051 0.236 0.480 0.014 0.043 0.024 1.780
(0.003) (0.007) (0.042) (0.009) (0.002) (0.006) (0.004) (0.047)

S-PPC

PSEI step-down
0.008 0.053 0.122 0.436 0.013 0.029 0.018 1.664
(0.002) (0.007) (0.029) (0.008) (0.003) (0.005) (0.003) (0.046)

max{j:j2I}
���✓̂

j

���
step-down

0.003 0.050 0.050 0.327 0.001 0.009 0.005 0.594
(< 0.001) (0.007) (0.007) (0.008) (0.003) (0.005) (0.003) (0.046)

step-up
0.004 0.049 0.058 0.637 0.003 0.028 0.012 2.146
(0.001) (0.007) (0.009) (0.009) (0.001) (0.005) (0.002) (0.035)

max{j:j2I}
���

ˆ

✓j

PSEI

���
step-down

0.006 0.050 0.086 0.527 0.003 0.026 0.012 1.768
(0.001) (0.007) (0.015) (0.008) (0.001) (0.005) (0.003) (0.029)

step-up
0.006 0.049 0.085 0.531 0.003 0.026 0.012 1.788

(0.001 ) (0.007) (0.015) (0.008) (0.001) (0.005) (0.003) (0.029)
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Figure 5.2: Distributions of the Rejection (RR), the False Discovery (FDR), and Experiment-
wise Error (EER) Rates across the di↵erent alternative hypotheses.

Figures 5.3, 5.4, and 5.5 display the marginal e↵ects of (i) the number of active e↵ects

(ii) the standard deviation � and (iii) the range r of mean active e↵ects respectively, on

average RR, EER and FDR. Figure 5.3 shows the average number of e↵ects declared active

for each of the true numbers of active e↵ects in the set of alternative hypotheses explored

(i.e., 1, 2, 4, 6). Again, the step-up S-PPC approach with max{j:j2I}
���✓̂

j

��� as the discrepancy

measure is the one with best overall performance. This figure agrees with the finding of

Tripolski et al. (2008), that the L&N approach has good performance for a low number of

active e↵ects (1,2,4), but that its performance dramatically falls for higher numbers of active

e↵ects (this fall reportedly happened for 4 in their simulations). In contrast, the Tripolski

et al. (2008) method performs best for higher number of true active e↵ects. Their results

are comparable to the Step Down Lenth approach and slightly worse than the S-PPC ones.
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Figure 5.3: Average number of e↵ects declared active for the di↵erent values of true active
e↵ects = 1,2,4,6.

As shown in Figure 5.4, the Lenth FDR controls the FDR better, not surprisingly because

it is designed to do so. The false discovery rates across combinations are below, but closer

to the 0.05 threshold, and only for this method the average FDR decreases as � increases.

Figure 5.4 reveals that � has a bigger impact on the BS-PPC than for any other method

because of the higher variance it shows for di↵erent values of �. The BS-PPC improvement

on the RR relative to the other methods increases with �.

Figure 5.5 shows that the BS-PPC is less sensitive to variation in ⇢ than to variation in

�. Nevertheless, the BS-PPC is preferred because its RR is higher for all levels, and its error

rates are below 0.05.
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Figure 5.4: Comparison of RR, EER, and FDR across simulations settings with the same
value of � = 0.5, 1, 2. The standard errors of these values range from 0.005 to 0.011 for the
RR, from 0.001 to 0.010 for the EER, and from 0.001 to 0.007 for the FDR.
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Figure 5.5: Comparison of RR, EER, and FDR across simulations settings with the same
range between the absolute values of the factorial e↵ects, r = 1, 2, 3. The standard errors
of these values range from 0.008 to 0.009 for the RR, from 0.004 to 0.009 for the EER, and
from 0.002 to 0.006 for the FDR.
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5.3 Additional Graphs of Simulation Results

Figure 5.6 displays the distributions of average rejection, false discovery and experiment-

wise error rates for all explored existing methods and optimal versions of our proposals. Note

that due to the range of values taken for di↵erent methods, this plot does not have the same

scales for FDR and EER.
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Figure 5.6: Histograms showing the Rejection (RR), the False Discovery (FDR), and
Experiment-wise Error Rates (EER), across the di↵erent simulation settings. Improve this
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Chapter 6

The Replicated Case

In this chapter we explore the replicate case of the two randomization based approaches

proposed for the unreplicated case: Single Imputation (SI) and Sequential Posterior Pre-

dictive Checks (S-PPC). The extensions of these methods to the replicated case is straight

forward, only slight modifications have to be made.

The exploration of the replicate case is relevant because of its broader applicability, for

example in social sciences, when the assumption of small variation between units relative to

the magnitude of treatment e↵ects, is not plausible. The unreplicated case is a much more

challenging setting where the usual tools are not useful because of the inability to use the

traditional estimates of variation. In the replicate case, linear regression is a viable analytical

tool, although it does not directly account for multiple comparisons. Most of the ideas of

the methods proposed in the previous chapter for the unreplicated case are still applicable

for the replicated case. In this chapter, we highlight the few di↵erences that do exist and

perform an analogous comprehensive simulation study.
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We go over an example, that has been slightly modified from it’s original form to be

a balanced design, in the simple 22 full factorial case. While doing that, we will review

and exemplify some concepts introduced in the previous chapter, as well as highlight the

di↵erences between the unreplicated and the replicated cases. We continue assuming fixed

units, SUTVA and balanced designs. As in the previous chapter, let N denote the total

number of experimental units and K the number of treatment factors. Now, let r denote

the number of replicates such that N = 2Kr.

6.1 An Example: e↵ect of exercise and androgenic steroids

on strength.

An experiment was designed to test whether the use of androgenic steroids increases

strength. Fourty-four men, between 19 and 40 years, all experienced in weight lifting and

weighing between 90 to 115 percent of their ideal weight were recruited through advertise-

ments.1 There are two treatment factors, exercise and testosterone use. Both factors have

two levels: on or o↵. The subjects were randomly assigned to one of four groups: placebo

with no exercise, testosterone with no exercise, placebo plus exercise, testosterone plus no

exercise. Strength was measured as the di↵erence of one-repetition maximal weight lifted

before and after a 10 week treatment period.

The first step of an experiment is to have a goal in mind. In this case the goal is to assess

the e↵ect of the use of androgenic steroids on strength compared to the e↵ect of exercise.

This goal guides the choice of estimands. That is, the quantities that are functions of the

1The actual experiment can be found in Bhasin et al. (1996). There were more participants and due to
compliance and scheduling issues seven dropped out.
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individual responses and are related to the goal of the experiment. The estimands that are

most commonly used are linear combinations of averages and for illustration purposes those

will be used. Nevertheless, the potential outcome approach allows the use of other functions

that are usually overlooked but could be of more interest, such as quantiles.

This is a 22 full factorial design, where any subject can be assigned to any one of four

treatment combinations. Let exercise be the first factor and steroids the second factor,

with levels -1 and 1 denoting that the factor is o↵ and on, respectively. If the i-th subject

is assigned to no exercise (first factor) and steroids (second factor), the observed gain in

strength for this individual is denoted by Y
i

(�1, 1). Four potential outcomes correspond to

this man, one for each treatment combination:

Y
i

= (Y
i

(1, 1), Y
i

(1,�1), Y
i

(�1, 1), Y
i

(�1,�1)).

The SCIENCE, the true table of potential outcomes, for the full experiment is shown in

Table 6.1.

Table 6.1: The science for the full experiment with four treatment conditions and forty-four
men.

Unit Potential outcome for treatment combination Unit-level factorial e↵ects
(i) (1, 1) (1,�1) (�1, 1) (�1,�1) ✓

i,0

✓
i,1

✓
i,2

✓
i,3

1 Y
1

(1, 1) Y
1

(1,�1) Y
1

(�1, 1) Y
1

(�1,�1) ✓
1,0

✓
1,1

✓
1,2

✓
1,3

2 Y
2

(1, 1) Y
2

(1,�1) Y
2

(�1, 1) Y
2

(�1,�1) ✓
2,0

✓
2,1

✓
2,2

✓
2,3

...
...

...
...

...
...

...
...

...
43 Y

43

(1, 1) Y
43

(1,�1) Y
43

(�1, 1) Y
43

(�1,�1) ✓
43,0

✓
43,1

✓
43,2

✓
43,3

44 Y
44

(1, 1) Y
44

(1,�1) Y
44

(�1, 1) Y
44

(�1,�1) ✓
44,0

✓
44,1

✓
44,2

✓
44,3

Average Y (1, 1) Y (1,�1) Y (�1, 1) Y (�1,�1) ✓
0

✓
1

✓
2

✓
3

The unit level estimands and potential outcomes remain the same as in the unreplicated
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case. That is, we have the four potential outcomes (Y
i

) and the 4-dimensional row vector

✓
i

containing the unit level factorial e↵ects, and the same one to one relationship between

these:

✓
i,0

⌘ Y
i

(1, 1) + Y
i

(1,�1) + Y
i

(�1, 1) + Y
i

(�1,�1)

4
,

✓
i,1

⌘ Y
i

(1, 1) + Y
i

(1,�1)

2
� Y

i

(�1, 1) + Y
i

(�1,�1)

2
,

✓
i,2

⌘ Y
i

(1, 1) + Y
i

(�1, 1)

2
� Y

i

(1,�1) + Y
i

(�1,�1)

2
,

✓
i,3

⌘ Y
i

(1, 1) + Y
i

(�1,�1)

2
� Y

i

(1,�1) + Y
i

(�1, 1)

2
.

represented in a summarized way by the G matrix defined in the previous chapter:

✓
i

=
1

2K
Y

i

G

where

G =

0

BBBBBBBB@

1 �1 �1 1

1 �1 1 �1

1 1 �1 �1

1 1 1 1

1

CCCCCCCCA

,

is the model matrix at the unit level.

Similarly, the estimands at the population level are analogous to those of the unreplicated

case: the population level main e↵ects of each of the treatment factors and their interaction,

which are denoted by ✓
1

, ✓
2

and ✓
3

, respectively. That is, the population level vector of

estimands is

✓ ⌘ (✓
0

, ✓
1

/2, ✓
2

/2, ✓
3

/2).
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Now, assuming complete randomization, the treatment assignment for the replicate case

is a generalization of the one defined for the unreplicated case. Analogous to 1.1.1 in Chapter

1, we can define the assignment mechanism for a 2K full factorial design with r replicates.

Let z, a K dimensional row vector with entries -1 and 1, denote a treatment combination,

then the treatment assignment mechanism can be defined as

W
i

(z) =

8
><

>:

1 if the ith unit is assigned to z

0 otherwise,

and it consists of randomly selecting r di↵erent units for every treatment combination,

such that Pr(W
i

(z) = 1) = r/N (implicitly conditional on the science). Also
P

i

W
i

(x) = 1

for i = 1, 2, . . . , N , and
P

z

W
i

(z) = r for all z. As in the previous chapter, let

w
i

=
X

z

zW
i

(z)

be the treatment combination that the ith subject receives, let W be the generic treatment

assignment vector of random variables, and let w be a specific realization of W , i.e., a

vector that contains all the individual treatment assignments after randomization. Hence,

for a given treatment assignment the table of observed potential outcomes looks analogous

to the one displayed in Table 6.2 where again the missing potential outcomes are represented

by question marks.

The averages of the observed values within each column are unbiased estimates2 of the

averages of the columns of potential outcomes (see Tables 6.1 and 6.2). We can use con-

2The proof can be found in the appendix of Chapter 1 for a general randomization setting using symmetry
arguments, and for the one used in fractional factorial designs in Dasgupta et al. (2012).
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Table 6.2: Observed Outcomes for the full experiment with w =
�
(1, 1), (�1,�1), (�1, 1), (1,�1)

�0
.

Unit Observed outcome for treatment combination w
( i) (1, 1) (1,�1) (�1, 1) (�1,�1)
1 Y obs

1

? ? ? (1, 1)
2 ? ? ? Y obs

2

(�1,�1)
...

...
...

...
...

...
43 ? ? Y obs

43

? (�1, 1)
44 ? Y obs

44

? ? (1,�1)

trasts of these estimates of average potential outcomes of each treatment combination to get

unbiased estimates of the factorial e↵ects defined as contrasts of the treatment group means:

✓̂
1

⌘ Y
obs

(1, 1) + Y
obs

(1,�1)

2
� Y

obs

(�1, 1) + Y
obs

(�1,�1)

2
,

✓̂
2

⌘ Y
obs

(1, 1) + Y
obs

(�1, 1)

2
� Y

obs

(1,�1) + Y
obs

(�1,�1)

2
,

✓̂
12

⌘ Y
obs

(1, 1) + Y
obs

(�1,�1)

2
� Y

obs

(1,�1) + Y
obs

(�1, 1)

2
,

together with the overall average potential outcome,

✓
0

⌘ Y
obs

(1, 1) + Y
obs

(1,�1) + Y
obs

(�1, 1) + Y
obs

(�1,�1)

4
,

to define the vector of estimands ✓ = (✓
0

, ✓
1

/2, ✓
2

/2, ✓
3

/2).

The model matrix for the estimates at the population level, X, identifies the one to one

relationship between the observed averages and the estimates of the factorial e↵ects at the
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population level

X =

0

BBBBB@

G

...

G

1

CCCCCA
, (6.1)

where, assuming a balanced design, G is repeated as many times as units in every treatment

group. In the exercise and steroid experiment r = 11. A fundamental di↵erence with the

unreplicated case is that for the replicate case the potential outcomes approaches will require

both G and X to run. The matrix G is required to fill in the missing outcomes at the unit

level to run the final randomization-based assessment of each model, and the mattrix X is

required to get the posterior estimates of the estimands of interest.

As noted in the previous chapter, for this definition of the estimands the corresponding

estimates agree with those obtained by ordinary least squares in the classical set up for the

additive linear model Yobs = X✓+ ✏, where Yobs is the vector of observed outcomes for each

unit. And

✓̂0 = (X0X)�1X0Yobs =
1

r22
X0Yobs.

6.2 Example: Results with Fisher Randomization Test

The randomization test remains practically the same for the replicate case relative to the

unreplicated case, except that in this case we use the t like test statistic. In other words,

we standardize by the estimate of the variance whereas in the unreplicated case we used the

absolute factorial e↵ects (although we could have used the PSE and increase the similarity

between these two cases). The symmetry between the factorial e↵ects is preserved.
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The results for the steroid and exercise example using the Fisher randomization test are

displayed in figure 6.1.

Randomization distribution

θ̂i se(θ̂)
-10 -5 0 5 10 15

θ̂1:  p value < 0.0001
θ̂2:  p value = 0.001
θ̂12:  p value = 0.436

Figure 6.1: Results using the simple randomization test on all factorial e↵ects.

It is worth noting that the main weaknesses of this approach mentioned in Chapter 2

continue to be the main weaknesses here. First, all e↵ects are tested using the same null

hypothesis of absolutely no treatment e↵ect. However, if one of the e↵ects is clearly not

inactive, what is the point of assessing the importance of the rest of the factorial e↵ects

against the null of absolutely no treatment e↵ect? Second, this method does not account for

multiple testing. One possible solution is to use the Bonferroni correction, which is known

to be too conservative for cases with a high number of factors. Recall from Chapter 2 that

sequential methods have been proposed to control for the experiment-wise error rate and

account for multiple testing. The proposed sequential methods have also that goal in mind,

and they essentially remain unchanged from their unreplicated versions.
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6.3 Example: Results with Sequential Single Imputa-

tion Randomization Tests

In the steroid and exercise experiment described above we have |✓̂
1

| � |✓̂
2

| � |✓̂
12

|3. The

assessment procedure goes as follows:

1. To assess the largest absolute e↵ect we use the same randomization test described in the

previous section, but with a di↵erent test statistic T, the largest absolute standardized

e↵ect. The null at this step is

H
0

1

: Y
i

(�1,�1) = Y
i

(�1, 1) = Y
i

(1,�1) = Y
i

(1, 1).

2. To test the second largest e↵ect, it makes no sense to assume that the largest one is

null. One option is to assume that it has a constant additive e↵ect across all units, say

✓i
1

= ✓⇤
1

for all i. This corresponds to a di↵erent sharp null:

H
0

2

: ✓i
1

= ✓⇤
1

, ✓i
2

= 0, ✓i
12

= 0.

3. The last step is analogous to the previous one, however a new e↵ect is added to the set

of active e↵ects. For the exercise and steroid example the sequence of null hypothesis

is:

H
0

3

: ✓i
1

= ✓⇤
1

, ✓i
2

= ✓⇤
2

, ✓i
12

= 0.

3This ordering is shown in Figure 6.1
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We use the point estimates of the factorial e↵ects to determine the values of the ✓⇤s at

each step. In these balanced 2-level full factorial designs, due to the orthogonality of X,

the estimate of each factorial e↵ect is the same regardless of which other e↵ects are assumed

inactive. This is desirable because the ✓⇤ values given in a certain step will be the same for

subsequent ones. However, this is not fundamental for the procedure to work.

Furthermore, given that the imputation is done at the unit level, all missing potential

outcomes are filled in using the procedure described in the previous chapter. That is, the

same G matrix is used for the unreplicated and replicated versions.

The nature of the sequence of sharp null hypotheses result in distinct randomization

distributions for the maximum of all e↵ects assumed null at each step. The randomization

distribution corresponding to the first step is identical to the absolute value of the one

described in the previous section for the Fisher randomization test.

Applying this to the exercise and steroid experiment we get the results displayed in Figure

6.2(a).

Regardless of the presence of replicates, there are two main concerns with this approach.

First, the non null factorial e↵ects at each step are assumed constant across individuals and,

second, the uncertainty of the estimate used to impute the missing potential outcomes is

ignored.

6.3.1 Extending Loughin and Noble (1997) to the Replicate Case

In Chapter 2 we discussed the relationship between this method and that proposed in

Loughin and Noble (1997). We showed that although they have a similar motivation behind
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p value < 0.0001

0 2 4 6 8

θ̂1 se(θ̂1)

p value = 0.0026

0 1 2 3 4 5 6 7

θ̂2 se(θ̂2)

p value = 0.4346

0 1 2 3 4

θ̂12 se(θ̂12)

(a) Single Imputation Approach

p value < 0.0001

0 2 4 6 8

θ̂1 se(θ̂1)

p value = 4e-04

0 1 2 3 4

θ̂2 se(θ̂2)

p value = 0.6663

0 1 2 3 4

θ̂12 se(θ̂12)

(b) Loughin and Noble Extension

Figure 6.2: Results for the Exercise and Steroid Experiment using the Single Imputation
(Sequential Randomization Tests) approach and the Loghin and Noble extension.
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them, the use of the potential outcomes framework does result in di↵erent methodologies.

However, because Loughin and Noble (1997) performed quite well in the unreplicated case

it was appealing to explore the performance of a straight forward extension of it to the

replicate case. The key idea of projecting the response to a subspace (increasingly large)

generated by the e↵ects assumed active at each step and then using a permutation test on

the residuals, remains the same. However, the scaling and p value calculation used in their

paper are unnecessary here because of the presence of replicates. Therefore, the discrepancy

measure used is the same as in the single imputation method: max{j:j2I}
���

ˆ

✓j

SEI

���, and the

usual randomization based p value calculation can be performed by direct comparison to

the re-randomization distribution. The results of analyzing the exercise and testosterone

example with this extension are shown in Figure 6.2(b).

6.4 Example: Results with Sequential Posterior Pre-

dictive Checks

To overcome the draw backs of the previous approaches we proposed the use of sequen-

tial posterior predictive checks (SPPC), that work both in the unreplicated and replicated

cases. This procedure does makes use of distributional assumptions; in contrast to the

randomization tests which are non parametric.

As previously stated, one major di↵erence between the unreplicated and replicated case

for this method is that for the replicated case the model matrix that is used to fit the model,

X is not the same as the unit level matrix that is used to fill in the missing potential

outcomes, G.
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Analogous to the other methods, the choice of discrepancy measure and definition of

extremeness are fundamental, and should be determined before the experiment is performed.

For the replicate case we explore the use of slightly di↵erent discrepancy measures relative to

those used in the unreplicated case but their motivation in both cases are vary similar. The

two discrepancy measures explored for this example are the mean square residual of the full

(or saturated) model, MS
res

, and the maximum absolute value of the e↵ects assumed inactive

in the current prior, max
j2I

���
ˆ

✓j

SE(

ˆ

✓j)

���. However, in the bigger simulation and motivated by

the results of the unreplicated case we also included the unstandardized maximum absolute

e↵ect of I, max
j2I

���✓̂
j

���. Unlike the PSE in the unreplicated case, one motivation to choose

MS
res

when there are replicates is that it is the same across all models in the sequence of

models being assessed. Because the MS
res

is a measure of what is not explained by the

model, at each step we aim to compare the observed value of T to its posterior predictive

distribution where a specific set of e↵ects are active. Hence, it is a one sided test because we

are looking for the first model for which the MS
res

is not “too high” relative to the posterior

predictive distribution. One important thing to keep in mind when using the MS
res

as the

discrepancy measure is that it is a su�cient statistic for the model that includes all the

e↵ects. Hence, the full model (which includes all factorial e↵ects) will not be rejected with

the posterior predictive checks. This discrepancy measure is similar to the PSEI used for the

unreplicated case but they are fundamentally di↵erent. The PSEI for the saturated model

is not defined and therefore, for the unreplicated case the discrepancy measure related to

unexplained variation from the model did change from one step of the process to the next

unlike the MS
res

in the replicated case. Nevertheless, in neither case this measure displayed

the best performance.
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The max
j2I

���
ˆ

✓j

SE(

ˆ

✓j)

��� option for discrepancy measure was considered because it is a useful

statistic to find outliers which is the ultimate goal when screening for e↵ects (i.e., to find the

outliers among all factorial e↵ects). Furthermore, the use of this statistic in the methods

proposed in the literature for the unreplicated case (which use the PSE to standardize) was

very e↵ective. In addition, it is expected to be less sensitive to the normality assumption.

However, recall that using the PSE did not improve the performance of the S-PPC in the

unreplicated case. Regardless of the presence of replicates, the saturated model can’t be

tested with this approach because the active set is empty.

The results for the exercise and steroid experiment with this method and with both

discrepancy measures are displayed in figures 6.3(a) and 6.3(b). Using a cut o↵ value of

0.05, the third model is the first one that seems consistent with the data observed. This

corresponds to the model with only the two main e↵ects present.

6.5 Simulation Study

Although all methods lead to the same conclusion in the exercise and testosterone ex-

ample, it is clear that there are di↵erences in the methodologies behind them. Furthermore,

the results in the unreplicated case highlight these di↵erences and suggest the further explo-

ration of their relative performances in the replicate case. A simulation study analogous to

the one performed for the unreplicated case is now presented.
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(a) Results using MSres as the discrepancy measure.
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(b) Results using maxj2I
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SE(
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��� as the discrepancy measure.

Figure 6.3: Posterior predictive distributions of discrepancy measures for the steroid and
exercise experiment. The title of each subplot reflects the last factorial e↵ect that was
identified as active. Therefore all the factorial e↵ects that were previously assessed are also
deemed active.
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6.5.1 Calibration Study-Under the Null Hypothesis

The calibration study results of the single imputation approach for the replicate case are

displayed below, in Figure 6.4. Note that the EER values obtained from di↵erent screening

rules and the statistics using either estimate of the variance are the same. The OLS fit,

EER = �0.008 + 1.076↵, suggests a cut o↵ of 0.054, whereas the observed EER values

suggest a cut o↵ of 0.055. As before, we will continue to choose the one suggested by the

observed values. Interestingly, for the single imputation approach the choice of the variance

estimate does not seem to have an e↵ect, in contrast to the results for the S-PPC.

0.03 0.04 0.05 0.06 0.07
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0.
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0.
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step-up

(a) Unpooled Estimate of the Variance
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(b) Pooled Estimate of the Variance

Figure 6.4: Scatter plots of the Calibration Study for the Single Imputation Approach. The
dashed line represents the identity line. The continuous lines denote the OLS fits of the
observed EER on the ↵ level used for each screening rules.

The results of the calibration of the S-PPC with all four discrepancy measures and the

two screening rules are displayed in Figure 6.5. In this part of the study we explore further

whether the di↵erent screening rules continue to have a strong e↵ect on the results, and if

this depends on the statistic used.

Keeping in mind that these simulations were performed for 2 replicates, it is expected
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that the unpooled estimate of the variance is very unstable which is confirmed by these

results. In Figure 6.5(b) and because of the noise in this estimation, it is clear that neither

screening rule has an acceptable performance. It is expected that the performance would

improve as the number of replicates increases. However, it was excluded in the subsequent

stage of this simulation study.

Figure 6.5(a) shows that for the absolute value of the usual t statistic, max{j:j2I}
���

ˆ

✓j

SE

���,

both screening rules lead to basically the same results, which are very close to the relationship

↵ = EER. In fact, the OLS fit for both screening rules is approximately EER = 0.001 +

0.983(2)↵ leading to a cut o↵ value of 0.052, and the observed EER values in the calibration

lead to a same cut o↵ value.

Given the superior performance of the raw scale factorial e↵ect max{j:j2I}
���✓̂

j

��� over the

standardized in the unreplicated case, we decided to include this discrepancy measure in

the study of the replicate case. As seen in Figure 6.5(c), the step-up procedure leads to

a higher slope, but the di↵erence is negligible for values of ↵ below 0.06. The observed

EER values suggest the use of 0.51 as the cut o↵ for both screening rules because it is the

last value of ↵ that leads to an EER below 0.05. The OLS fits are EER = 0.958↵ and

EER = �0.001 + 1.001↵ for the step-down and step-up screening rules respectively. These

fits suggest the corresponding cut o↵s of 0.051 and 0.052. We chose 0.051 for both.

For the MSE discrepancy measure both procedures lead to the same results. The ob-

served EER values and the OLF fits (EER = �0.004 + 1.035↵) suggest a cut o↵ value of

0.055 for ↵.

We display the cuto↵s used for the simulation across alternative settings in Table 6.3.
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Figure 6.5: Scatter plot of the Calibration Study for Sequential Posterior Predictive Checks.
The greyscale denotes the two screening rules. The dashed line represents the identity line,
and each continuous line denotes the OLS fit of the observed EER on the ↵ level used for the
corresponding screening rule. Each subfigure corresponds to a di↵erent discrepancy measure.
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Table 6.3: Cuto↵s obtained in the calibration of the Sequential Posterior Predictive Checks
using 24 factorial designs for the di↵erent methods, discrepancy measures and screening rules
proposed.

Method Discrepancy Measure Screening Rule ↵

SI
max{j:j2I}

���
ˆ

✓j

SEI

��� both 0.055

max{j:j2I}
���

ˆ

✓j

SE

Ney
I

��� both 0.055

S-PPC
max{j:j2I}

���✓̂
j

��� both 0.051

max{j:j2I}
���

ˆ

✓j

SEI

��� both 0.052

MSE
sat

step-down 0.055

6.5.2 Simulation across Alternative Hypotheses

Following the same reasoning as Tripolski et al. (2008), we included in the simulation

of the alternative hypotheses the Benjamini and Hochberg (1995) method applied to the

regression p values as an interesting and widely used method to compare our results to.

However, there is a slight di↵erence in the screening rule suggested for the unreplicated

case and the general one given in Benjamini and Hochberg (1995), which states that letting

“p
(1)

, . . . , p
(m)

be the ordered p-values and denote by H
(i)

the null hypothesis corresponding

to p
(i)

. Define the following Bonferroni-type multiple testing procedure: let k de the largest i

for which p
(i)

 i/mq⇤; then reject all H
(i)

i=1,. . . ,k.” Therefore, as summarized in Tripolski

et al. (2008), the BH procedure declares the biggest k e↵ects as active. In contrast, for the

unreplicated case they suggest “For controlling the FDR, [...] declare as active all e↵ects that

have a p-value smaller than the largest p-value that upholds the inequality p
(i)

 i/mq⇤.”
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For the replicate case, we implemented the Benjamini and Hochberg (1995) procedure.

Similar to the previous chapter, we simulated potential outcomes repeatedly (1000 times)

from a total of 108 alternative hypotheses defined by setting max{j:j2A} |µj

| to 4, and di↵erent

levels of noise (� = 0.5, 1, 2), number of active e↵ects (a = 1, 2, 4, 6), the range between active

e↵ects (defined as ⇢ = max{j:j2A} |µj

|�min{j:j2A} |µj

| = 1, 2, 3), and the number of replicates

r = 3, 5, 10. Each combination of these simulation factors determines a true value of µ by

selecting a factorial e↵ects at random to be active, and letting the corresponding µ
j

’s assume

the value 4 � ⇢ if a = 1, and the values 4 � ⇢
�
1� t

a�1

�
for t = 0, . . . , a � 1 if a > 1. The

remaining µ
j

’s are set at zero. Finally, the potential outcomes for each of the r24 units are

drawn from Y
i

(z)|µ, �2 ⇠ N(µ, �2).

We compare these methods based on five summary measurement based on averages across

1000 simulated data sets: IER (average proportion of false positives), EER (proportion of

data sets with at least one false positive), FDR (average proportion of false positives among

all the e↵ects declared active), RR (average proportion of true positives), andANP (average

number of positive e↵ects declared active). In this context, positive e↵ects are the factorial

e↵ects declared active, false positives are inactive e↵ects incorrectly identified as active, and

true positives are active e↵ects that are correctly identified as such.

The averages across all 108 alternative settings are displayed on Table 6.4. To better

understand the ANP measure, note that the average number of true active e↵ects across

the simulation settings is 3.25. The performance of the methods is a lot closer than it was

for the unreplicated case. This is not surprising because of the increase in the information

available in the data and the ability to better estimate the variance parameter.

In this case, where we have replicates, the additional information allows us to estimate
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the error and mostly eliminate the masking e↵ect that active e↵ect incorrectly identified as

inactive can have by blowing up the variance. Therefore the RR for the basic procedures

like the permutation test and linear regression are higher that the other methods as would

be expected but not observed in the unreplicated case (see 5.2) because of the masking e↵ect

that can be so strong. Interestingly, the standardized discrepancy measure, max{j:j2I}
���✓̂

j

���,

does allow for some of this masking to be identified leading to a di↵erence between the step

up and step down procedures. However, these procedures lead to the same solution if we use

the standardized discrepancy measure. This increase in rejection rate comes at the cost of

increased sensitivity to the noise in the data (as seen in Figure 6.9).

As in the unreplicated case, the MSE
res

underperforms but it is a lot closer to the

discrepancy measures involving the maximum absolute factorial e↵ect.

Several figures are now displayed to illustrate the performances of the di↵erent methods.

For the correct interpretation of these plots it is important to keep in mind the scales on the

y-axis because the plots are made to emphasize the di↵erences but, taking in to account the

scale, the practical di↵erences between these methods might still be small in the alternative

settings explored.

Among all the methods that do account for multiple comparisons, the FDR is best in

terms of the RR and the FDR (because it is closest to 0.05). However, the average EER

across all alternatives is 0.137, and Figure 6.6 shows that for some settings the EER can

exceed 0.2.

In terms of identifying the permutation versions of the commonly used procedures, note

that the permutation test agrees with the results obtained by linear regression. Interestingly

enough, our extension of the Loughin and Noble procedure to the replicate ca agrees with
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Table 6.4: Summary of results of the simulation study. Average rates and number of e↵ects
declared active, as well as the standard errors of these quantities are displayed for all methods
and screening rules under the null (� = 1 and r = 3) and across alternative hypotheses. The
single imputation method we only report the results obtained using the Neyman - unpooled
- estimate of the variance. The calibration for the pooled estimate of the variance has an
error which still needs to be resolved (e.g. leads to an EER under the null of 0.018 and,
across the alternatives, an RR of 0.907, EER of 0.016 and FDR of 0.006).

null hypothesis average across alternative hypotheses
Method Discrepancy Screening IER EER ANP RR IER EER FDR ANP

Measure Rule (SE) (SE) (SE) (SE) (SE) (SE) (SE) (SE)

Linear Regression
ˆ

✓j

SE

-
0.049 0.496 0.739 0.966 0.050 0.425 0.158 3.762
(0.002) (0.016) (0.029) (0.003) (0.002) (0.016) (0.006 0.027)

Permutation |✓̂
j

| -
0.049 0.494 0.738 0.966 0.050 0.425 0.157 3.760
(0.002) (0.016) (0.029) (0.003) (0.002) (0.016) (0.006 0.027)

Linear Regression - Bonferroni
ˆ

✓j

SE

-
0.003 0.043 0.043 0.918 0.003 0.037 0.013 3.087

(< 0.001) (0.006) (0.006) (0.004) (0.001) (0.006) (0.002) (0.012)

Linear Regression - FDR
ˆ

✓j

SE

-
0.004 0.044 0.06 0.951 0.015 0.137 0.039 3.312
(0.001) (0.006) (0.010) (0.004) (0.001) (0.011) (0.004) (0.016)

L&N

⇣
N�1

N�|I|

⌘
1/2

max{j:j2I}
���

ˆ

✓j

SEI

��� step-up
0.003 0.039 0.039 0.908 0.001 0.016 0.007 3.020

(< 0.001) (0.006) (0.006) (0.004) (< 0.001) (0.004) (0.002) (0.011)

max{j:j2I}
���

ˆ

✓j

SEI

��� step-up
0.003 0.039 0.039 0.917 0.003 0.035 0.012 3.081

(< 0.001) (0.006) (0.006) (0.004) (0.001) (0.006) (0.002) (0.012)

Single Imputation max{j:j2I}
���

ˆ

✓j

SEI

��� both
0.004 0.051 0.053 0.924 0.005 0.055 0.018 3.128

(< 0.001) (0.007) (0.007) (0.004) (0.001) (0.007) (0.003) (0.013)

S-PPC

max{j:j2I}
���✓̂

j

���
step-up

0.003 0.049 0.050 0.928 0.005 0.051 0.016 3.132
(< 0.001) (0.007) (0.007) (0.004) (0.001) (0.007) (0.003) (0.013)

step-down
0.003 0.048 0.048 0.889 0.007 0.049 0.017 2.934

(< 0.001) (0.007) (0.007) (0.005) (0.002) (0.007) (0.003) (0.027)

max{j:j2I}
���

ˆ

✓j

SEI

���
step-up

0.004 0.050 0.053 0.923 0.005 0.053 0.017 3.123
(< 0.001) (0.007) (0.007) (0.004) (0.001) (0.007) (0.003) (0.013)

step-down
0.004 0.050 0.053 0.923 0.005 0.053 0.017 3.122

(< 0.001) (0.007) (0.007) (0.004) (0.001) (0.007) (0.003) (0.013)

MSE
sat

step-up
0.004 0.052 0.063 0.884 0.151 0.174 0.120 4.888
(0.001) (0.007) (0.010) (0.005) (0.008) (0.009) (0.006) (0.106)

step-down
0.004 0.052 0.063 0.883 0.007 0.042 0.017 3.038
(0.001) (0.007) (0.010) (0.005) (0.002) (0.006) (0.003) (0.023)
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Figure 6.6: Distributions of the Rejection (RR), the False Discovery (FDR), and Experiment-
wise Error (EER) Rates across the di↵erent alternative hypotheses.

the results obtained with the Bonferroni correction.

In Figure 6.6 we display the RR, FDR, and EER, across the di↵erent simulation alter-

native hypotheses settings for a subset of the previously established methods and compare

them to the S-PPC with the best performance. As expected because of the increase in in-

formation about the variability in the data due to the presence of replicates, most rejection

rates are close to 1 across the 108 simulation settings. Therefore, to better visualize the

di↵erences between the methods, we truncated the frequency axis (y-axis) for the rejection

rate at 15. This patterns displayed in this figure are very di↵erent to what was observed

for the unreplicated case in Figure 5.2. Here, the step-up S-PPC with discrepancy measure

max{j:j2I}
���

ˆ

✓j

SEI

���, the best S-PPC settings (BS-PPC), does have distinct modes around 1 for

the RR (like the unreplicated case), but the modes are not at 0 for the FDR and EER. It
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is hard to compare the distributions of RRs, but the tail for the FDR correction seems to

be slightly lighter. Specifically, the FDR correction hast 2 combinations with RR below 0.4

whereas all other methods have at least 4. The EER distribution for the FDR correction

method is all over the place. It is not surprising that it is not close to 0.05 because that is

not their goal. The distribution of FDRs is a clear illustration of their goal because their

method aims to push the false discovery rates towards 0.05. Note, however, that there are

still some combinations that are above that 0.05 threshold. All other methods are skewed

towards zero and do not have values above 0.05.

For the replicate case our method is in fact a trade o↵ between controlling the EER and

increasing the RR. Regarding the EER, it is not as good as some other methods (our version

of replicate L&N and Bonferroni) but much better at it than the FDR correction. Regarding

the RR, it is better than our version of replicate L&N and Bonferroni but not as powerful

as the FDR correction.

For our proposal, there are no combinations with an FDR above 0.05. However, there

are eight combinations with EER above 0.05. In contrast, the L&N and Lenth methods have

none above this threshold, at the cost of lower rejection rates. On the other hand, the Lenth

method with the FDR correction leads to EER values above 0.05 for 30 of the 36 settings for

the alternative hypotheses, which is not surprising because the goal is to control the FDR.

Nevertheless, their method has 5 combinations with FDR above 0.05.

Furthermore, Figure 6.7 shows that for larger number of active e↵ects (slightly for a = 2

but much more evident for a = 4, 6) the average number of e↵ects declared active with the

FDR correction is higher than the true number of active e↵ects. An interesting questions is

whether it is more worrisome that these quantities are above the truth than below.
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Figure 6.7: Average number of e↵ects declared active for the di↵erent values of true active
e↵ects = 1,2,4,6.

Figure 6.8 compares the RR, EER and FDR average values across di↵erent number of

active e↵ects. In terms of the proposed methods it is clear that the standardized discrepancy

measure, max{j:j2I}
���

ˆ

✓j

SEI

���, has the best performance with a slightly higher RR while keeping

lower values of EER and FDR. Again, the FDR correction method is shown to have a better

overall performance in the RR and FDR. However, it is clear that its behavior in terms of

the EER depends heavily on the true number of active e↵ects, Figure 6.7 shows that this

method tends to declare more e↵ects active that there actually are. In contrast, for this

method the FDR decreases as the number of active e↵ects increases

Like in the unreplicated case, Figure 6.9 shows that the best performing BS-PPC is

sensitive to the noise factor unlike most other methods. The FDR corrected method also

shows sensitivity to � in terms of the EER, but lower than that of the BS-PPC. In contrast,
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Figure 6.8: Comparison of RR, EER, and FDR across simulations settings with the same
value of active e↵ects = 1,2,4,6. The standard errors of these values range from 0.005 to
0.011 for the RR, from 0.001 to 0.010 for the EER, and from 0.001 to 0.007 for the FDR.
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all methods, but the FDR corrected method are sensitive to sigma in terms of the FDR,

with the BS-PPC being the most sensitive one.
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Figure 6.9: Comparison of RR, EER, and FDR across simulations settings with the same
value of � = 0.5, 1, 2. The standard errors of these values range from 0.0001 to 0.0063 for
the RR, from 0.005 to 0.011 for the EER, and from 0.002 to 0.0037 for the FDR.

Figure 6.11 displays the e↵ect of the number of replicates on the performance on the

di↵erent methods. The comparative advantage of the FDR decreases with the number of

replicates although it continues to be higher for all values of r. This simulation factor does

not have an e↵ect on the performances on EER and FDR for the BS-PPC and the FDR

corrected methods.

The interaction plots presented in Figure 6.12 allow us to take a closer look at what factors

play an important role in the di↵erent performances of the methods. Only three methods

are compared: the OLS with the Bonferroni and FDR corrections, and the BS-PPC.
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Figure 6.10: Comparison of RR, EER, and FDR across simulations settings with the same
value of ⇢ = 1, 2, 3. The standard errors of these values range from 0.001 to 0.0057 for the
RR, from 0.0057 to 0.011 for the EER, and from 0.002 to 0.0036 for the FDR.
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Figure 6.11: Comparison of RR, EER, and FDR across simulations settings with the same
value of r = 3, 5, 10. The standard errors of these values range from 0.003 to 0.0057 for the
RR, from 0.0057 to 0.011 for the EER, and from 0.0021 to 0.0036 for the FDR.
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Figure 6.12: Interaction Plots showing the relationship between the number of replicates,
⇢, and noise, � for three methods: OLS with the Bonferroni and FDR corrections, and the
BS-PPC.
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Perhaps the gains in using the unstandardized maximum e↵ect assumed null with the

step-up procedure are not enough to justify the loss in e�ciency that can be gained by

using the standardized version where both procedures lead to the same results. Therefore,

it might be appealing to use max{j:j2I}
���

ˆ

✓j

SEI

��� as the discrepancy measure for either direction

for assessing the sequences.

In preliminary simulation studies we used two replicates r = 2. However, that value of

r is not included in this more comprehensive simulation study. In our initial exploration of

the method we did not include the FDR approach so we had no initial idea of the relative

power the FDR to that of the SPPC. However, we did expect it to be more powerful than

all the existing methods given the results reported in the literature.

Other interesting steps are to test these procedures when the underlying distribution of

the potential outcomes does not satisfy the classical assumptions, such as di↵erent variances

of potential outcomes across treatment combinations or a nonnormal distribution. For this

last point, it is relevant to consider what the classical approaches are in this setting. The

use of Box-Cox transformations have withstood the test of time and a closer look into them

might be of interest. However, a more appealing approach would be to tackle it directly

from a fully Bayesian model, for example, using conjugate priors.

An appealing direction is the search of alternative discrepancy measures or stopping rules

regarding the observed patterns of the posterior predictive p values of the di↵erent measures,

perhaps distinguishing the active and inactive e↵ects in better ways than cuto↵s. An initial

exploration of bivariate options when the alternative hypothesis is symmetric (i.e., when all

active factors have the same magnitude) was performed, something that would be desirable

to pursue further.
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The simulation results show that, simulating from the setting assumed by the traditional

approaches, the most power method is to use the FDR correction on the OLS results. This

has the additional benefit of computational e�ciency. One major drawback of this approach

though is the high experiment-wise error rates that the experimenter can be getting (above

0.1 usually). The advantage of the FDR correction in terms of RR decreases as the number

of replicates increase, but its EER remains much higher than other methods.

We still believe that our method adds value to the existing methodologies because, unlike

all other methods, it is proposed with the finite population in mind. Further exploration of

the performance of other methods when actually simulating from the setting we are assuming

is a necessary future step to better understand the properties of our proposal. The BS-PPC

performs between the Bonferroni and FDR corrections of OLS, in the sense that it sacrifices

some of the power that FDR achieves in order to have a better control of the EER. In general,

our method is performing well on all three major outcome measures, the FDR, the EER and

the RR.

Moreover, to practically interpret the results shown in the previous section one should

keep in mind the scales of the y-axis because they were chosen to highlight the di↵erences

between the methodologies being compared. For example, the maximum di↵erence on the

RR between the FDR corrected OLS and the BS-PPC is in Figure 6.11 and is under 0.07,

and in all other plots it is below 0.05. However, the di↵erence between these methods in

terms of the EER is consistently higher, usually above 0.05 and in some cases above 0.1 (see

Figure 6.9).
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Chapter 7

Extensions, Future Steps &

Conclusions

Given the work that we have presented up to now, there are two natural extensions:

fractional factorial and three level designs. The exploration of these additional settings has

also been motivated by an applied project on stem cell research related to direct di↵erenti-

ation of stem cells into pancreatic � cells. Another extension motivated by this project is

to unbalanced designs, where the particular question of interest is whether SPPC performs

better that existing methods for analysis of unbalanced designs.

7.1 Three level designs

Three level designs are commonly used when there is a belief of a curvature in the

relationship between the response and quantitative factors, because such a question cannot

be addressed using a two level design. These designs are also employed when a treatment
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factor is qualitative and can take one of three possible levels (for example, three machines,

three flavors or three experimenters). Furthermore, when there is an interest in studying

the e↵ect of modifying a current dose or setting in a manufacturing process, it is common

to explore two additional values around the current one using three level designs.

7.1.1 RCM for three-level factorial designs

As in the two-level case, an unreplicated 32 full factorial design is used to introduce the

concepts. In this design, each of the two treatment factors can take one of three levels,

typically denoted by 0, 1 and 2. Thus, there are nine treatment combinations denoted by

z = (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) and (2, 2) and nine experimental units.

Let Y
i

(z), i = 1, . . . , 9, denote the potential outcome of the ith unit if exposed to treatment

combination z. The ith unit has nine potential outcomes, which comprise the 1 ⇥ 9 row

vector Y
i

. That is,

Y
i

= (Y
1

(0, 0), Y
1

(0, 1), Y
1

(0, 2), Y
1

(1, 0), Y
1

(1, 1), Y
1

(1, 2), Y
1

(2, 0), Y
1

(2, 1), Y
1

(2, 2)).

Finally, we define the Science as the 9 ⇥ 9 matrix Y of potential outcomes in which the

each row corresponds to the 9-component row vector of each unit’s potential outcomes Y
i

,

i = 1, . . . , 9 as shown in Table 7.1, and like 1.1 this table could be extended to include all the

unit level factorial e↵ects ✓
i

. Again, only one potential outcome in each row of the Science

is actually observed from an experiment, and the remaining eight are missing, making the

causal inference problem a missing data problem.

For each unit, all levels of every factor appear on a third of its potential outcomes.
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Table 7.1: The Science for the full experiment.

Unit Potential outcome for treatment combination
(i) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
1 Y

1

(0, 0) Y
1

(0, 1) Y
1

(0, 2) Y
1

(1, 0) Y
1

(1, 1) Y
1

(1, 2) Y
1

(2, 0) Y
1

(2, 1) Y
1

(2, 2)
2 Y

2

(0, 0) Y
2

(0, 1) Y
2

(0, 2) Y
2

(1, 0) Y
2

(1, 1) Y
2

(1, 2) Y
2

(2, 0) Y
2

(2, 1) Y
2

(2, 2)
...

...
...

...
...

...
...

...
...

...
9 Y

9

(0, 0) Y
9

(0, 1) Y
9

(0, 2) Y
9

(1, 0) Y
9

(1, 1) Y
9

(1, 2) Y
9

(2, 0) Y
9

(2, 1) Y
9

(2, 2)

Average Y (0, 0) Y (0, 1) Y (0, 2) Y (1, 0) Y (1, 1) Y (1, 2) Y (2, 0) Y (2, 1) Y (2, 2)

Therefore, at the unit-level we are generally interested in contrasts of these thirds of the

unit’s potential outcomes. Each factor has two degrees of freedom associated with it, and

hence, it would be desirable to split each treatment factor with levels 0, 1 and 2 into two

orthogonal contrasts, each associated with one degree of freedom because in such a case the

methods proposed for the two level designs can be easily applied to the three level designs.

Furthermore, the use of such a breakup might ease the interpretation of the results. Splitting

the treatment factor into two orthogonal contrasts makes the most sense when we are dealing

with quantitative factors. This is commonly referred to as the linear and quadratic (LQ)

system (Wu and Hamada 2009, Chapter 5).

7.1.2 Linear and Quadratic Contrasts

We now describe a way of splitting a quantitative treatment factor with levels 0, 1 and

2 (which ideally are equally spaced) into one linear and one quadratic contrasts presented

as an alternative analysis method in Wu and Hamada (2009). The linear e↵ect is defined as

Y
i

(2)� Y
i

(0) and the quadratic e↵ect as (Y
i

(2) + Y
i

(0))� 2Y
i

(1), which can be re-expressed

as the di↵erence between two consecutive linear e↵ects (Y
i

(2) � Y
i

(1)) � (Y
i

(1) � Y
i

(0)).
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Mathematically these contrasts correspond to the following vectors:

l =

0

BBBBB@

�1

0

1

1

CCCCCA
, q =

0

BBBBB@

1

�2

1

1

CCCCCA
.

However, we need to relate this decomposition to the g vectors which make up the G

matrix for the two level case described in previous chapters. Unlike those, these orthogonal

vectors do not have the same norm. The squared norm of the linear component is 2, whereas

the squared norm of the quadratic component is 6. Therefore, to ensure a fair comparison of

these contrasts, they need to be scaled to have the same norm (i.e. equal variance, which is

an assumption in all of the methods), something that we get automatically in the two level

case.

We now show how to define the interaction factorial e↵ects in a 3-level factorial design

using the 32 design as an example. We define the linear main e↵ects of factors 1 and 2 to be

normalized contrasts (i.e. ||g·,·|| = 1) of the unit level potential outcomes as follows:

✓
i1,L

=
Y
i

(2, 0) + Y
i

(2, 1) + Y
i

(2, 2)p
6

� Y
i

(0, 0) + Y
i

(0, 1) + Y
i

(0, 2)p
6

= Y
i

g
1,L

=

r
2

3

�
Ȳ
i

(2, ·)� Ȳ
i

(0, ·)
�
/ Ȳ

i

(2, ·)� Ȳ
i

(0, ·)

and

✓
i2,L

=
Y
i

(0, 2) + Y
i

(1, 2) + Y
i

(2, 2)p
6

� Y
i

(0, 0) + Y
i

(1, 0) + Y
i

(2, 0)p
6

= Y
i

g
2,L

=

r
2

3

�
Ȳ
i

(·, 2)� Ȳ
i

(·, 0)
�
/ Ȳ

i

(·, 2)� Ȳ
i

(·, 0).
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Likewise, the quadratic main e↵ects of factors 1 and 2 are

✓
i1,Q

=
Y
i

(0, 0) + Y
i

(0, 1) + Y
i

(0, 2) + Y
i

(2, 0) + Y
i

(2, 1) + Y
i

(2, 2)p
18

�Y
i

(1, 0) + Y
i

(1, 1) + Y
i

(1, 2)p
18

= Y
i

g
1,Q

/ Ȳ
i

(2, ·)� 2Ȳ
i

(1, ·) + Ȳ
i

(0, ·),

and

✓
i2,Q

=
Y
i

(0, 0) + Y
i

(1, 0) + Y
i

(2, 0) + Y
i

(0, 2) + Y
i

(1, 2) + Y
i

(2, 2)p
18

�Y
i

(0, 1) + Y
i

(1, 1) + Y
i

(2, 1)p
18

= Y
i

g
2,Q

/ Ȳ
i

(·, 2)� 2Ȳ
i

(·, 1) + Ȳ
i

(·, 0).

Finally, the two factor interaction can be split up into the two way interaction of the

linear and quadratic terms of factor 1 with the linear and quadratic terms of factor 2, and

re-normalizing each of these. This corresponds to defining the following 4 components of the

two factor interaction:

✓
i3,LL

=
Y
i

(2, 2) + Y
i

(0, 0)

2
� Y

i

(0, 2) + Y
i

(2, 0)

2
= Y

i

g
3,LL

,

✓
i3,LQ

=
Y
i

(2, 2)� 2Y
i

(2, 1) + Y
i

(2, 0)p
12

� Y
i

(0, 0)� 2Y
i

(0, 1) + Y
i

(0, 0)p
12

= Y
i

g
3,LQ

,

✓
i3,QL

=
Y
i

(2, 2)� 2Y
i

(1, 2) + Y
i

(0, 2)p
12

� Y
i

(0, 0)� 2Y
i

(1, 0) + Y
i

(2, 0)p
12

= Y
i

g
3,QL

,

✓
i3,QQ

=
Y
i

(2, 2)� 2Y
i

(2, 1) + Y
i

(2, 0)

6
� 2

Y
i

(1, 0)� 2Y
i

(1, 1) + Y
i

(1, 0)

6

+
Y
i

(0, 0)� 2Y
i

(0, 1) + Y
i

(0, 0)

6
= Y

i

g
3,QQ

.
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Specifically, for a 32 full factorial design the eight g vectors that correspond to the linear

and quadratic terms of the main e↵ects of factors 1 and 2 respectively are:

g
1,L

=
1p
6

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

�1

�1

�1

0

0

0

1

1

1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

, g
1,Q

=
1p
18

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

1

1

1

�2

�2

�2

1

1

1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

, g
2,L

=
1p
6

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

�1

0

1

�1

0

1

�1

0

1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

, g
2,Q

=
1p
18

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

1

�2

1

1

�2

1

1

�2

1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

,

and the two factor interaction can be split into:

g
j,ll

=
1

2

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

1

0

�1

0

0

0

�1

0

1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

, g
j,lq

=
1p
12

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

�1

2

�1

0

0

0

1

�2

1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

, g
2,ql

=
1p
12

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

�1

0

1

2

0

�2

�1

0

1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

, g
j,qq

=
1p
36

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

1

�2

1

�2

4

�2

1

�2

1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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Following the format presented in 1.1, the potential outcomes table 7.1 can be written up

in terms of the unit level factorial e↵ects of interest, broken up into their linear and quadratic

terms. For every unit we have nine (32) unit level estimands: an average and eight factorial

e↵ects expressed in the LQ system. That is, let ✓
i0

= 1

3

1
9

, where 1
9

is the 9 dimensional

column vector of ones, we define ✓ to be the vector of normalized factorial e↵ects to be

✓
i

= (✓
i0

, ✓
i1,l

, ✓
i1,q

, ✓
i2,l

, ✓
i2,q

, ✓
i3,ll

, ✓
i2,lq

, ✓
i2,ql

, ✓
i2,qq

) .

Then the one to one relationship between these is again summarized by G by

✓
i

= Y
i

G,

where G is an orthogonal matrix (i.e., G0G = Diag(9, 1, 1, 1, 1, 1, 1, 1, 1)). Specifically,

G =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 �1/
p
6 1/

p
18 �1/

p
6 1/

p
18 1/2 �1/

p
12 �1

p
12 1

p
36

1 �1/
p
6 1/

p
18 0 �2/

p
18 0 2

p
12 0 �2

p
36

1 �1/
p
6 1/

p
18 1/

p
6 1/

p
18 �1/2 �1

p
12 1

p
12 1

p
36

1 0 �2/
p
18 �1/

p
6 1/

p
18 0 0 2

p
12 �2

p
36

1 0 �2/
p
18 0 �2/

p
18 0 0 0 4

p
36

1 0 �2/
p
18 1/

p
6 1/

p
18 0 0 �2

p
12 �2

p
36

1 1/
p
6 1/

p
18 �1/

p
6 1/

p
18 �1/2 1

p
12 �1

p
12 1

p
36

1 1/
p
6 1/

p
18 0 �2/

p
18 0 �2

p
12 0 �2

p
36

1 1/
p
6 1/

p
18 1/

p
6 1/

p
18 1/2 1

p
12 1

p
12 1

p
36

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

In general, when referring to a 3K design with K factors, all factorial e↵ects involving

m 2 {1, 2, . . . , K} factors have 2m degrees of freedom associated to them. Using the LQ
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system each factorial e↵ect can be broken up into 2m orthogonal contrasts (depending on

the number of factors involved in it) that correspond to the products of some combination

of linear and quadratic e↵ects, one for each of the m factors involved. For example, each two

factor interaction is associated to 4 = 22 degrees of freedom, the four mutually orthogonal

contrasts are related to the four two way interactions between the linear and quadratic

contrasts of both factors involved like in the 32 design used to illustrate above. In the

r replicate case the norm of the linear and quadratic components of the main e↵ects are
p

2 · (3k�1) · r and
p

6 · (3k�1) · r, respectively. For any such m factor interaction, let l and

q denote the number of linear and quadratic factors involved (such that l + q = m), then

the norm of this interaction is
p
2l · 6q · 3K�m · r for every m  K.

Again, consistent with the traditional definition of causal e↵ects in the factorial design

literature, the causal estimands at the population level could be the averages of the unit level

factorial e↵ects. These quantities, denoted by ✓
1,L

, ✓
1,Q

, ✓
2,L

, ✓
2,Q

, ✓
3,LL

, ✓
3,LQ

, ✓
3,QL

and ✓
3,QQ

,

are the population level main e↵ects of each treatment factor decomposed into its linear and

quadratic components and the interactions of these across factors, and can be expressed in

terms of potential outcomes as:

✓
j,b

=

P
N

i=1

✓
i,j,b

N
= Y g

j

, j = 1, 2, 3, b 2 B, (7.1)

where

Ȳ =
1

N

NX

i=1

Y
i

, (7.2)

and B is the set of all interactions expressed in the LQ system format. For example, for the

32 case

B = {L,Q, LL, LQ,QL,QQ}.
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After setting up the problem this way we are practically in the same scenario to that

discussed in previous chapters: the two level factorial designs. Now, in the implementation

of the SI and SPPC methods the only practical di↵erence is that we now have no further

scaling in the definition of ✓, unlike the 2-level case when all the factorial e↵ects were scaled

by 1/2. However, the symmetry is lost in the sense that in the 2 level case all factorial e↵ects

were di↵erences between two halves of the potential outcomes, and that ceases to be true

for the LQ system in three level designs. This does not a↵ect the procedure for filling in

the missing outcomes stated in Section 3.1.2 and the proposed methods still work in this

setting. But, this loss of symmetry in the problem is reflected in the fact that the reference

distribution for the randomization test will no longer be the same for all estimated factorial

e↵ects.

7.1.3 Seat Belt Experiment (Wu and Hamada, 2009)

We now illustrate the method in an example that is a simplification of a 34�1 fractional

factorial experiment (see Section 7.2) found in Wu and Hamada (2009). Consider an exper-

iment that aims to study the e↵ect of four factors on the pull strength of seat belts. Each

of these four factors are at three levels. For illustration purposes, we focus on three factors

and pretend we have a 33 full factorial design with three replicates. Table 7.1.3 displays the

treatment factors and the three levels defined for each of these.

Table 7.2: Definition of treatment factors and levels
Level

Factor 0 1 2
1. Pressure(psi) 1100 1400 1700
2. Die flat (mm) 10.0 10.2 10.4
3. Crimp length (mm) 18 23 27
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The OLS results are shown in Table 7.3 for all factorial e↵ects. The corrections for multi-

ple comparisons are also made. In this case we display the factorial e↵ects identified as active

using Bonferroni and FDR corrected OLS, as well as S-PPC. In this case, Bonferroni and

S-PPC lead to the identification of the same factors as active, namely the linear components

of factors 1 and 3, together with the linear-linear interaction between factors 1 and 3.

Table 7.3: Results displayed for the simplified Seat Belt experiment (Wu and Hamada, 2009).
The results using procedures that control for multiple comparisons are displayed in the last
three columns and mark with a “yes” those rows that correspond to e↵ects identified as
active by each method.

Estimate Std. Error t value Pr(>|t|) Bonferroni S-PPC FDR
(Intercept) 6223.4074 50.0434 124.3602 < 0.0001 - - -

X1.L 3346.7364 260.0331 12.8704 < 0.0001 yes yes yes
X3.L -1768.6312 260.0331 -6.8016 < 0.0001 yes yes yes

X5.LL 1087.6317 260.0331 4.1827 0.0001 yes yes yes
X4.QQ 762.1986 260.0331 2.9312 0.0049 yes

X7.LQQ 595.0304 260.0331 2.2883 0.0261
X7.LLL -573.8172 260.0331 -2.2067 0.0316

X1.Q -569.5064 260.0331 -2.1901 0.0329
X7.QQL 566.1961 260.0331 2.1774 0.0338

X2.L 536.0655 260.0331 2.0615 0.0441
X4.QL 509.7222 260.0331 1.9602 0.0551
X4.LL -503.5457 260.0331 -1.9365 0.0581

X7.QLQ 497.3711 260.0331 1.9127 0.0611
X7.QLL 407.7720 260.0331 1.5682 0.1227
X7.LQL 384.5018 260.0331 1.4787 0.1450
X7.QQQ -367.4915 260.0331 -1.4132 0.1633
X5.QQ -323.2199 260.0331 -1.2430 0.2192
X6.LL 292.3317 260.0331 1.1242 0.2659
X6.QQ -237.4834 260.0331 -0.9133 0.3652
X3.Q -237.1923 260.0331 -0.9122 0.3657

X7.LLQ -168.2663 260.0331 -0.6471 0.5203
X2.Q -162.0746 260.0331 -0.6233 0.5357

X6.LQ -63.7778 260.0331 -0.2453 0.8072
X5.LQ -63.5000 260.0331 -0.2442 0.8080
X4.LQ -46.5000 260.0331 -0.1788 0.8587
X6.QL 43.2222 260.0331 0.1662 0.8686
X5.QL -2.6111 260.0331 -0.0100 0.9920
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7.2 Fractional Factorial Designs

Fractional Factorial Designs are used when there are limitations to the number of runs

in an experiment (for example, for economical reasons) and there are reasons to believe that

the higher order e↵ects are not important (e↵ect hierarchy and e↵ect heredity principles).

In these cases, fractional factorials allow us to cut down the number of runs and still test

those e↵ects which are believed to be important. However, this comes at a price. Fractional

factorial designs split all the e↵ects that would be relevant in a full factorial design into

groups that cannot be disentangled (i.e., they are indistinguishable) in the analysis. Each

such group is called an aliasing group, and the properties of the fractional factorial design

are determined by its aliasing structure. The factorial e↵ects of interest are made estimable

by making strong assumptions about the higher order e↵ects in each aliasing group.

A 2K�p fractional factorial design has K factors, each with 2 levels, 2K�p runs, and is

a 1/2p-th fraction of a 2K full factorial design. The fraction is defined by p independent

defining words. The group formed by these p words is called the defining contrast subgroup.

The defining contrast subgroup has 2p�1 words plus the identity element I.

7.2.1 How is this di↵erent from what we’ve previously done?

Again, for illustration purposes let us think of the simplest fractional factorial design: a

23�1 unreplicated design. In this case, we have 4 units and 3 treatment factors, each at 2

levels. Hence, only a 1/2 fraction of the treatment combinations in the full 23 design (eight)

are assigned to the experimental units. In a 23�1 design there is one generator, for example

3 = 1⇤2 which means that the main e↵ect of factor 3 is aliased with the two factor interaction
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of factors 1 and 2. Another consequence of this design is that the three factor interaction is

aliased with the mean. The aliasing structure of this design is:

1 = 2 ⇤ 3, 2 = 1 ⇤ 3, 3 = 1 ⇤ 2.

Meaning, for example, that in the design matrix the column that correspond to factor 1 is

the same as the one that corresponds to the interaction of factors 2 and 3, such that ✓̂
1

= ✓̂
2⇤3

where 2 ⇤ 3 = 6 in the notation we used in previous chapters.

Note that an implicit assumption being made when using fractional factorial designs is

that the factorial e↵ects aliased within a group will not cancel each other out. If that were

not the case then such a design will be unreliable for the assessment of the treatment factors.

An undeniable feature of fractional factorials is that, because of the perfect aliasing, there

is no information that can be obtained from the data that allows us to disentangle the e↵ects

within an aliasing group. A way to think about this problem is that each aliased group is

related to a parameter in the model, whose prior distribution is a mixture of the e↵ects in the

group. However, without any additional prior information there is nothing we can say about

the individual e↵ects in the group. That is why traditionally, the assumption of inert higher

order interactions is made. Specifically, in the 23�1 design discussed earlier this assumption

implies that only the main e↵ects are believed to be active. Without such an assumption,

this design can still be useful if it is reasonable to assume that the e↵ects within an aliased

group are not canceling each other out and there are resources to run follow up experiments

to disentangle the e↵ects. Some options for follow up experiments are adding orthogonal

runs or to use the fold over technique.

Details of fractional factorial designs, their properties, construction and analysis can
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be found in most standard textbooks on experimental design. These include Kempthorne

(1952), Kempthorne and Hinkelmann (1984), Wu and Hamada (2009),Box et al. (2005),

Montgomery et al. (1984) and Mukerjee and Wu (2006).

An interesting issue that arises in this context is the specification of the potential out-

comes that we are interested in. That is, how do we visualize the science table for this

problem and define the estimands of interest? Our initial thoughts on this matter have lead

us to believe that there are two main options, which we describe in more detail below.

7.2.2 Random Selection of Fraction

Maybe we are interested in all eight potential outcomes. Therefore we should consider

that there is positive probability of observing any of each unit’s eight potential outcomes.

This is only possible if we can think of the problem as a two level randomization in which we

first randomly choose the fraction of treatment combinations to apply in the experiment from

the set of plausible fractions, and then randomly assign the subset of treatment combinations

present in the selected fraction to the units at hand. A sketch of the science table for this

setting is shown in Table 7.4.

Table 7.4: The science for the full experiment.
Unit Potential outcome for treatment combination
(i) (1, 1, 1) (1, 1,�1) (1,�1, 1) (1,�1,�1) (�1, 1, 1) (�1, 1,�1) (�1,�1, 1) (�1,�1,�1)
1 Y

1

(1, 1, 1) Y
1

(1, 1,�1) Y
1

(1,�1, 1) Y
1

(1,�1,�1) Y
1

(�1, 1, 1) Y
1

(�1, 1,�1) Y
1

(�1,�1, 1) Y
1

(�1,�1,�1)
2 Y

2

(1, 1, 1) Y
2

(1, 1,�1) Y
2

(1,�1, 1) Y
2

(1,�1,�1) Y
2

(�1, 1, 1) Y
2

(�1, 1,�1) Y
2

(�1,�1, 1) Y
2

(�1,�1,�1)
3 Y

3

(1, 1, 1) Y
3

(1, 1,�1) Y
3

(1,�1, 1) Y
3

(1,�1,�1) Y
3

(�1, 1, 1) Y
3

(�1, 1,�1) Y
3

(�1,�1, 1) Y
3

(�1,�1,�1)
4 Y

3

(1, 1, 1) Y
4

(1, 1,�1) Y
4

(1,�1, 1) Y
4

(1,�1,�1) Y
4

(�1, 1, 1) Y
4

(�1, 1,�1) Y
4

(�1,�1, 1) Y
4

(�1,�1,�1)

Average Y (1, 1, 1) Y (1, 1,�1) Y (1,�1, 1) Y (1,�1,�1) Y (�1, 1, 1) Y (�1, 1,�1) Y (�1,�1, 1) Y (�1,�1,�1)

Now, we only get to observe an outcome for four of the eight potential treatment com-

binations. Clearly, stronger prior information or assumptions have to be made to be able to
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fill in all the missing outcomes by only observing outcomes on a fraction of the treatment

combinations. We should keep in mind that Chipman et al. (1997) (see Section 7.2.4) points

out the inadequacy of the vague prior used in the S-PPC when the number of factorial e↵ects

(or potential outcomes as we’ve seen previously) is higher than the number of units because

it will likely result in too many factors identified as active in the model.

7.2.3 Deterministic Selection of Fraction

Alternatively we can deterministically select the fraction of treatment combinations that

can be possibly assigned to the experimental units. This occurs when there are certain

combinations of factors that are intentionally avoided, for example having all factors on

level 1 might be too aggressive for the experimental units, or receiving none of the treatment

factors (i.e., all are at level -1) might be unacceptable for the units. Therefore we restrict the

potential outcomes that can possibly be observed for any unit to only the subset of plausible

treatment combinations in the selected fraction. In this case, the science table consists of

fewer rows because for each unit there are only 2k�p potential outcomes that could possibly

be observed. For the 23�1 design these tables are shown in Tables 7.5 and 7.6.

Table 7.5: The fraction of the potential outcomes that corresponds to the defining relation
1 = 2 ⇤ 3.

Unit Potential outcome for treatment combination Unit-level factorial e↵ects
(i) (1, 1, 1) (1,�1,�1) (�1, 1,�1) (�1,�1, 1) ✓

i,0

✓
i,1

✓
i,2

✓
i,3

1 Y
1

(1, 1, 1) Y
1

(1,�1,�1) Y
1

(�1, 1,�1) Y
1

(�1,�1, 1) ✓
1,0

✓
1,1

✓
1,2

✓
1,3

2 Y
2

(1, 1, 1) Y
2

(1,�1,�1) Y
2

(�1, 1,�1) Y
2

(�1,�1, 1) ✓
2,0

✓
2,1

✓
2,2

✓
2,3

3 Y
3

(1, 1, 1) Y
3

(1,�1,�1) Y
3

(�1, 1,�1) Y
3

(�1,�1, 1) ✓
3,0

✓
3,1

✓
3,2

✓
3,3

4 Y
4

(1, 1, 1) Y
4

(1,�1,�1) Y
4

(�1, 1,�1) Y
4

(�1,�1, 1) ✓
4,0

✓
4,1

✓
4,2

✓
4,3

Perhaps in many cases, once that fraction is deterministically chosen, we can think of the
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Table 7.6: The fraction of the potential outcomes that corresponds to the defining relation
1 = �2 ⇤ 3.

Unit Potential outcome for treatment combination Unit-level factorial e↵ects
(i) (1, 1,�1) (1,�1, 1) (�1, 1, 1) (�1,�1,�1) ✓

i,0

✓
i,1

✓
i,2

✓
i,3

1 Y
1

(1, 1,�1) Y
1

(1,�1, 1) Y
1

(�1, 1, 1) Y
1

(�1,�1,�1) ✓
1,0

✓
1,1

✓
1,2

✓
1,3

2 Y
2

(1, 1,�1) Y
2

(1,�1, 1) Y
2

(�1, 1, 1) Y
2

(�1,�1,�1) ✓
2,0

✓
2,1

✓
2,2

✓
2,3

3 Y
3

(1, 1,�1) Y
3

(1,�1, 1) Y
3

(�1, 1, 1) Y
3

(�1,�1,�1) ✓
3,0

✓
3,1

✓
3,2

✓
3,3

4 Y
4

(1, 1,�1) Y
4

(1,�1, 1) Y
4

(�1, 1, 1) Y
4

(�1,�1,�1) ✓
4,0

✓
4,1

✓
4,2

✓
4,3

full potential outcome table displayed in 7.4 as the result of a combination of an observational

and an experimental study where the assignment mechanism to chose a fraction is unknown

but the assignment mechanism for the second level randomization is completely known.

Now that we have reviewed the concept of aliasing, we take a deeper plunge into the

Bayesian method proposed in Chipman et al. (1997). This procedure takes advantage of the

hierarchical structure that is assumed in the e↵ect hierarchy and e↵ect heredity principles in

the design of experiments literature. Going forward, it would be appealing to explore the use

of this modeling approach to fill in the potential outcomes table and perform a randomization

based posterior predictive check. It would also be relevant for the considerations in follow

up experiments.

7.2.4 A closer look at Chipman et al. (1997)

Chipman et al. (1997) proposed a model search procedure done in a Bayesian framework

when complex aliasing is present. Some of the advantages of using the Bayesian framework

stated by the authors (Wu and Hamada, 2009, page 363) are that the Gibbs sampler necessary

to search across the models is easy to implement and its computational e�ciency (they wrote:

“the search moves from one model to another in the model space and visits the most likely
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models the most often”), as well as the fact that the e↵ect sparsity and e↵ect heredity

principles can be easily incorporated through the priors.

They consider the Bayesian variable selection procedure proposed by George and McCul-

loch (1993) in the classical general linear model setting with

Y obs = X✓0 + ✏,

whereX is the model matrix and ✓ 2 Rp is the population level row vector of factorial e↵ects,

as we defined in the previous chapters, and ⌘ ⇠ MN(0, �2I
N⇥N

). Their contribution was to

define a vector � of 0’s and 1’s to indicate the significance of the e↵ects. The j-th entry �
j

= 0

indicates that ✓
j

is small and therefore not significant. Alternatively, if �
j

= 1 that indicates

that ✓
j

is large and therefore significant. For variable selection, the parameter vector is

⌘ = (✓, �, �). The posterior of � is of particular interest because it specifies the model. In

this context, the models with the highest posterior probabilities are identified as important.

The full Bayesian formulation is obtained by specifying the priors. A normal mixture prior

for ✓ is used (note that our proposal is a degenerate version of this that imposes point mass

prior if �
j

= 0):

p(✓
j

) =

8
><

>:

N(0, �2⌧ 2
j

) if �
j

= 0,

N(0, �2(c
j

⌧
j

)2) if �
j

= 1.

As it was mentioned in Chapter 4, it is through the variance that this method distinguishes

between active and inactive e↵ects. In that regard, the constants ⌧
j

and c
j

are chosen to

represent a “small” e↵ect and how large a “large” e↵ect should be. Specifically, when �
j

= 0,

the constant ⌧
j

helps tighten ✓
j

around zero and therefore does not have a large e↵ect. The

constants c
j

are chosen to be much larger than 1 to indicate the possibility of a large e↵ect
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when �
j

= 1. Moreover, an inverse gamma distribution is used for the prior of �2, that is

p(�2) ⇠ Inv � gamma(⌫/2, ⌫�/2).

Note that this is di↵erent from the prior that we assumed in the S-PPC methodology. An

independence prior on �, where p
j

is the probability that �
j

= 1, looks like this

p(�) =
p+1Y

j=1

p
�j

j

(1� p
j

)1��j .

However, this prior does not take into account the e↵ect heredity principle therefore the

hierarchical priors defined in Chipman (1996) were used. This kind of prior breaks up the

the probability p(�) into the conditionals allowing for the incorporation of the desired DOE

principles. For example, recalling that in a 22 full factorial design j = 3 corresponds to the

interaction e↵ect, then we could break p(�) up as follows

p(�) = p(�
1

)p(�
2

)p(�
3

|�
1

, �
2

).

There is an implicit inheritance assumption because the significance of the term depends only

on those terms from which it is formed. In the general case, there is another assumption

being made which refers to the conditional independence of interactions of m factors given
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all lower order terms. The inheritance assumption is explicitly made in the prior given to

p(�
3

|�
1

, �
2

) =

8
>>>>>>>><

>>>>>>>>:

p
00

if (�
1

, �
2

) = (0, 0),

p
01

if (�
1

, �
2

) = (0, 1),

p
10

if (�
1

, �
2

) = (1, 0),

p
11

if (�
1

, �
2

) = (1, 1).

In Wu and Hamada (2009), the authors provide examples of how to choose these values.

They suggest 0.001 ⇡ p
00

< p
01

= p
10

⇡ 0.01 < p
11

⇡ 0.25 representing weak heredity.

Related to infusing the prior with the e↵ect heredity principle, they assume the significance

of a term depends only on its parents, defined as “those terms of the next smallest order

which can form the original term when multiplied by a main e↵ect”. This assumption is

called the immediate inheritance principle.

The traditional approach to evaluate the posterior distribution of ⌘ is to implement a

Gibbs sampler using full conditional distributions of the parameters. In this problem the

joint distribution of Y obs and ⌘ is

p(⌘,Y obs) = p(Y obs|✓,�2)p(✓|�2, �)p(�2)p(�).

From here the full conditionals can be derived and consist of a multivariate normal draw for

✓|�2, �, an inverse gamma draw for �2|✓, � and p + 1 Bernoulli draws for �
j

|✓, �2, {�
v

}
v 6=j

.

One of the attractive features of this approach, as the authors mention, is that it has a

straightforward extension to nonnormal data.

Another feature of this approach is that it involves constants c, ⌧ , ⌫,� which the authors
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view mainly as tuning constants. In agreement with Box and Meyer (1986), they suggest

c
j

= 10. They report high sensitivity of the posterior to the choice of ⌧ and argue it is an

advantage of the procedure because “the appropriateness of a given value may be judged

by the models (or posterior model probabilities) it generates” and the experimenter is more

likely to have good prior knowledge on the number of truly active e↵ects than the values of

⌧ . Their suggestion for ⌧
j

follows the observations of George and McCulloch (1993) and is

⌧
j

=
SE(Y obs)/5

3(max(X
j

)�min(X
j

))
.

Here, X
j

refers to the column in the model matrix that is associated to the factorial e↵ect

j (see equation 6.1). We are using X and not G to use the notation defined in Chapter 6 for

the replicate case that still works for the unreplicated case if we consider r = 1. Recall that

the S-PPC procedure uses an improper prior for �. However, the author argue that in this

context it is inappropriate because it allows it to be too close to zero. They recommend a

proper prior specially for cases where the number of covariates (in our case factorial e↵ects) is

higher than the number of units which will likely result in a lot factors in the model. Whereas

the choice of such a proper prior may play in important role in unbalanced designs where

partial aliasing is present, it may not be very relevant for the designs that we’re considering

in this thesis.

7.2.5 Implementing S-PPC for fractional factorial designs

It is possible to apply the S-PPC methodology to fractional factorial designs by thinking

about the science in this second context. Everything that was mentioned for both the
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replicated and unreplicated cases would follow where each of the factorial e↵ects in ✓ is a

hidden mixture of the factorial e↵ects defined in a full factorial design. To be able to draw

conclusions about the particular e↵ects in each aliased group we would need to use either

prior information, design of experiments principles or follow up runs to disentangle between

them. The example discussed in the next section uses this approach for the analysis of

fractional factorial designs. The procedure is basically the same as analyzing a full factorial

design for f = K � p treatment “factors”, but where instead of individual factors we are

assessing aliased groups of factorial e↵ects.

7.3 A Case Study: Directed Di↵erentiation of Stem

Cells to Pancreatic � Cells

We now exemplify the use of S-PPC in a large fractional factorial design that is part

of an ongoing collaborative project. The objective of this project is to design and analyze

multifactor experiments to identify novel pathway interactions in the directed di↵erentiation

of embryonic stem cells into pancreatic � cells, a goal that is relevant for potential treatment

alternatives for type 1 diabetes.

7.4 Background

Stem cells can di↵erentiate into diverse specialized cell types, and can self-renew to

produce more stem cells. There are two main types of stem cells: embryonic and adult stem

cells. Embryonic stem cells are formed in early gestation, as opposed to adult stem cells
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which are found in various tissues. Also, embryonic stem cells have the ability to form nearly

all cell types in the body, including the � cells that diabetics lack. The main function of

� cells (the target cells), which are found in the pancreas, is to store and release insulin.

Insulin is a hormone that brings about e↵ects which reduce blood glucose concentration.

Type 1 diabetes is an autoimmune disease that consists in the destruction of insulin-

producing � cells of the pancreas. The subsequent lack of insulin leads to increased blood

and urine glucose. Eventually, type 1 diabetes is fatal unless treated. The current treatment

is insulin replacement therapy, which does not recapitulate � cell function. The success of

this directed di↵erentiation would potentially help in finding an alternative treatment for

type 1 diabetes. However, the exploration of these molecular pathways leading to e↵ective

di↵erentiation of stem cells into � cells is very challenging. There are 30 small molecule

pathway modulators that could be used (in some order) in these multi-stage di↵erentiation

process to produce the desired outcome.

The first experiment, reported in Zemplenyi (2013), was exploring eight of these com-

pounds. It was run following a 38�3 fractional factorial design suggested by Hongquan Xu

in Xu (2005). Three protein related responses were the focus of this experiment: C-peptide,

Nkx6.1 and their co-expression. These responses were chosen from a wide range of proteins

that pancreatic � cells express to determine a small subset that define the � cell type proteins

in the sense that they enable � cells to produce insulin in response to high glucose levels.

C-peptide is a component of the proinsulin protein from which mature insulin is produced.

Nkx6.1 is a member of a class of proteins called transcription factors, which help transcribe

genes. As a transcription factor, Nkx6.1 helps regulate which genes are being expressed in a

cell and can thereby direct and maintain � cell type. Because cells with high levels of Nkx6.1
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are more likely to di↵erentiate toward � cell lineage, one of the goals of our experiment was

to find compounds that induce Nkx6.1 expression. Of the eight compounds used in this

experiment, the main e↵ects of compounds ALK 5 inhibitor, DAPT, and DEAB indicated

that higher concentrations of these lead to low levels of Nkx6.1 expression and high levels of

C-peptide expression. Whereas the main e↵ect of ISX9 indicates that a higher concentration

leads to low levels of both Nkx6.1 and C-peptide levels. Other higher order factorial e↵ects

involving these modulators were found significant. However, no treatment combination led

to particularly high levels of Nkx6.1 and C-peptide co-expression. Nevertheless, the results

of this experiment suggested that further investigation with cyclopamine may increase levels

of co-expression. Detailed explanations and results can be found in Harvard’s undergraduate

thesis Zemplenyi (2013).

7.4.1 The Second Design

The goal for this second round of experiments was to test a higher number of compounds.

As in the first design, we are interested in the third order and lower interactions as well as

the main e↵ects. In that regard, the advantages of 2 level design relative to the previously

used 3 level designs was discussed. A 2-level design was preferred because no benefit was

obtained in the first experiment by using three levels and it would allow the testing of more

treatment factors. The number of runs (wells) was restricted to be 2000 ± 200. There was

a need for replication, 2 or 3 replicates were thought to be acceptable. Our collaborators

expressed interest in testing between 10 and 30 compounds. Hence, the design chosen was

a 224�14 fractional factorial design of resolution IV, with two replicates for each treatment

combination. Let the modulators be denoted by A,B,..., Z (excluding X and I to avoid
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notational ambiguity), then the generators of the design are:

L = ABCDEFG M = ABCGHJK

N = ACDGH O = ACEGJ

P = ADEHJ Q = �ADEFG

R = �ABFHJ S = �ABDEF

T = �ABCDH U = �ADEFK

V = �ABCDEJK W = �ABCEG

Y = �ACFGH Z = �ADGHK.

The defining contrast subgroup has 213 words (here 16,383) plus the identity element

I.Noting that there are no words of odd number length, the word length pattern of this

design is displayed in Table 7.7.

Table 7.7: Word length pattern of design used. Note that there are no words of odd number
length.

word length 4 6 8 10 12 14 16 18 20
number of words 18 279 1397 3859 5283 3845 1406 273 23

As stated previously, this is a resolution IV design, which means that some two factor

interactions are aliased with other two factor interactions. However, the main e↵ects are

clear (not aliased with two factor interactions or other main e↵ects), and some are strongly

clear (in addition to other main e↵ects and two factor interactions, not aliased with three

factor interactions).
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A concern was that large numbers of treatment factors in the “on” setting could have a

detrimental e↵ect on the cell causing the death of more cells. To address this question we

asses whether the average cell count of the wells changes (e.g. decreases) as the number of

active factors increases. Figure 7.1 shows that that is not the case. The overlaid scatter

plot corresponds to the total cell counts for each treatment combination associated with a

certain number of factors present (i.e., the number of factors set at level 1). The black line

corresponds to the OLS fit of the total number of cells on the number of factors present (set

at level 1), for which a slope of zero is quite feasible.

Frequency of number of factors at level 1
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Figure 7.1: The grey histogram displayed in the background corresponds to the distribution
of the number of factors at level 1 across the 1024 treatment combinations. The overlaid
scatter plot corresponds to the total cell counts for each treatment combination associated
with a certain number of factors present (i.e., the number of factors set at level 1 for each
treatment combination). The black line corresponds to the OLS fit of the total number of
cells on the number of factors present (set at level 1).

There were multiple responses of interest but, for illustration purposes, in this chapter

we focus on one: the proportion of the total number of imaged cells that expressed C-

Peptide. The clarification of the “imaged” cells is given because, although the care put into
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the experimental process makes it reasonable to assume that the initial number of cells in

each well is close to 200,000, the imaging does not cover the entire well, and we were told

that it is not reasonable to assume that the distribution of cells within each well is spatially

homogenous. Nevertheless, the area covered by the imaging is comparable for each well.

Therefore, the response we are focusing on is relative to the imaged portion of the well

defined as:

Y
C�pep

=
total number of imaged cells expressing C-Peptide

total imaged cell count
.

Recall that running the S-PPC for the replicated case requires the use of the matrices G

and X defined in Chapter 2. Hence, in this example as well as the seat belt one (7.1.3) we

use both matrices. The X matrix is used to get the posterior draws of the hyperparameters

and the G is used to impute all missing outcomes at the unit level.

Figure 7.2 and Table 7.8 display the results of the experiment obtained through OLS.

Table 7.8 includes all the e↵ects deemed significant if using a 0.05 cuto↵. However, this

problem is a natural candidate for multiple comparisons correction given the large number

of factorial e↵ects that we are dealing with. This table also displays which factorial e↵ects

would be deemed as active using the FDR and Bonferroni multiple comparisons corrections

on the OLS results. The values with “yes” denote those factorial e↵ects that would still be

significant after using either Bonferroni (a cut o↵ of p
value

< 0.05/1023 ⇡ 0.00005, because

the number of aliased groups being tested is 1023) or FDR (using q = 0.05).

To increase e�ciency when analyzing this experiment using the SPPC we decreased the

number of models to be tested by reducing the set of factorial e↵ects that form the active

and inactive sets, A and I respectively. In other words, we eliminated most columns of G

and X. Specifically, knowing that the usual OLS does not account for multiple comparisons
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Figure 7.2: Plots for the model on the response variable: Proportion of cells that express
C-Peptide.
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we know that our method is more conservative than just using the ↵ cuto↵ on the direct p

values. Therefore, we reduced the number of models to be assessed from 1023 to 73 because

using ↵ = 0.05 leads to only 73 factorial e↵ects found to be significant for an IER = 0.05.

Note that the S-PPC identified more e↵ects than the other two multiple comparisons

methods. Together with the results shown for the seat belt experiment in Section 7.1.3 these

particular examples show that there is no specific ordering in the e↵ects found by the S-PPC

and the FDR corrected OLS.

Figure 7.3 show the posterior predictive distributions and p values of the results obtained

using the SPPC in this example. A couple of three factor interactions are identified as

active agreeing with the the belief expressed by our collaborator that higher order e↵ects are

relevant in this problem.

The fact that the S-PPC finds more active e↵ects than the FDR method is surprising

given the results in the previous chapter, but it indicates that there is no ordering between

the SPPC and the FDR methods in terms of which one identifies more active e↵ects for a

particular setting. Further exploration of what gives rise to these di↵erences is left for future

work.
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Table 7.8: Results of the model on the Y
C�Pep

response (proportion of cells that express C-
Peptide). The adjusted R2 is 0.192. For practical reasons, only e↵ects with p values < 0.02
are displayed.

Factorial E↵ect Estimate Std. Error t value Pr(>|t|) Bonferroni S-PPC FDR
(Intercept) 0.00460 0.00003 153.90509 < 0.00001 - - -
X1 -0.00037 0.00003 -12.33970 < 0.00001 yes yes yes
X2 0.00023 0.00003 7.58014 < 0.00001 yes yes yes
X18 -0.00021 0.00003 -6.96266 < 0.00001 yes yes yes
X4 -0.00020 0.00003 -6.57477 < 0.00001 yes yes yes
X1.2.14 -0.00012 0.00003 -3.97882 0.00007 yes yes
X16 -0.00012 0.00003 -3.88315 0.00011 yes yes
X9.13 -0.00010 0.00003 -3.39746 0.00071 yes
X1.4.11 -0.00010 0.00003 -3.32140 0.00093 yes
X21 -0.00010 0.00003 -3.23298 0.00126
X17 -0.00010 0.00003 -3.20214 0.00141
X1.4.8 0.00009 0.00003 3.12049 0.00186
X9.24 0.00009 0.00003 3.08579 0.00208
X2.5.6 0.00009 0.00003 3.07147 0.00219
X1.9.12 -0.00009 0.00003 -2.95438 0.00320
X2.12 0.00009 0.00003 2.94253 0.00333
X2.5.20 -0.00009 0.00003 -2.92037 0.00357
X3.12 -0.00009 0.00003 -2.89905 0.00382
X7.8.9.11 -0.00009 0.00003 -2.88235 0.00403
X4.6 0.00008 0.00003 2.75610 0.00595
X1.2.23 -0.00008 0.00003 -2.74926 0.00608
X2.3.6.10 -0.00008 0.00003 -2.70231 0.00700
X4.7.12 0.00008 0.00003 2.67504 0.00759
X1.5.10 -0.00008 0.00003 -2.60480 0.00933
X12.17 0.00008 0.00003 2.59163 0.00969
X7.11.24 0.00008 0.00003 2.58620 0.00984
X2.5.10 -0.00008 0.00003 -2.53745 0.01131
X7.8.10.11 0.00008 0.00003 2.53372 0.01143
X1.8.10.11 -0.00008 0.00003 -2.51929 0.01191
X10.23 -0.00008 0.00003 -2.51410 0.01209
X5.9.24 0.00007 0.00003 2.48497 0.01311
X2.14 0.00007 0.00003 2.47102 0.01363
X3.11 0.00007 0.00003 2.46002 0.01406
X2.3.6 0.00007 0.00003 2.44755 0.01455
X14.24 0.00007 0.00003 2.43520 0.01505
X1.4.7.12 -0.00007 0.00003 -2.42605 0.01544
X1.2.10.11 0.00007 0.00003 2.39775 0.01667
X1.3.6.12 -0.00007 0.00003 -2.38053 0.01747
X4.5.6.9 -0.00007 0.00003 -2.37791 0.01759
X3.5.6.12 0.00007 0.00003 2.33348 0.01982
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Figure 7.3: Posterior predictive distributions and p values obtained for the max{j:j2I}
���
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SEI

���
discrepancy measure and step down procedure.

114



7.5 Conclusions

The potential outcomes framework gives a more flexible and goal-oriented approach to the

design and analysis of experiments. This set up of the problem allows di↵erent definitions of

estimands compared to the restriction to contrasts of means in the traditional approach, and

the inclusion of prior information in the assessment of factorial e↵ects. Our approaches are

the only ones that have been proposed with the finite population in mind. However, further

study of the relative performance of these methods simulating from the finite population

setting is left for future work.

In order to account for the exploration of multiple factors, two sequential procedures are

proposed. The single imputation approach is non parametric, assumes additivity of treat-

ment e↵ects and ignores the uncertainty of the point estimates of the factorial e↵ects for

subsequent steps in the sequential procedure. In contrast, the sequential posterior predic-

tive checks require the modeling of the response variable, here assumed Normal to fit the

traditional assumptions of classical screening methods.

Without any doubt the best proposal was the Bayesian sequential method based on

posterior predictive checks. We believe that this Bayesian procedure is the correct way

to approach the analysis of such experiments because it accounts for the uncertainty of

estimation and does not assume a constant treatment e↵ect. Furthermore, relative to all

methods compared, we are convinced that the S-PPC give a more intuitive approach into

screening by selecting a parsimonious model that is consistent with the data, instead of

finding a null model that is not consistent with the observed data, as does the traditional

p value approach. For screening in the unreplicated case we recommend the use of step up

posterior predictive checks with max{j:j2I}
���✓̂

j

��� as the discrepancy measure. It is an e↵ective
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and principled Bayesian procedure with good frequency operating characteristics. At the

moment, that suggestion holds for the replicate case too, but might change after rerunning

the simulation study.

In the unreplicated case our simulation results show that our BS-PPC approach balances

rejection rates (the finding of true positives) and the error rates in a very appealing way.

It was also the most powerful of all methods compared. For the replicate case our method

seems to be a trade o↵ between controlling the EER and increasing the RR. Focusing on the

EER, it is not as good at controlling it as some other methods (our version of replicate L&N

and Bonferroni) but much better at it than the FDR correction. Regarding the RR, it is

better than Bonferroni and our extension of the L&N method for the replicate case, but not

as powerful as the FDR corrected OLS (the examples presented in this chapter suggest that

this might change with the ). Overall, the comparison of the methods is more complicated

for the replicate case because the advantages of one versus the other can be very small.

However for the replicated case, the FDR corrected OLS has the best performance in terms

of RR (highest value) and FDR (closes to 0.05). An additional advantage of this method is

that it is easy to scale to larger number of factors, whereas the sequential posterior predictive

checks require much longer computational time. After running these simulation studies, an

appealing idea is to compare the performance of the FDR correction on the permutation test

for the unreplicated test using the traditional Benjamini and Hochberg (1995) procedure to

the Tripolski et al. (2008) proposed approach.

Interestingly, for the single imputation method in the unreplicated case, the unstandard-

ized test statistic did not perform well, but standardizing using the pseudo standard error

showed significant improvement in the method’s performance. Perhaps surprisingly, the op-
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posite occurs for the S-PPC method although the impact was relatively small. We believe

that this behavior is due to the fact that the S-PPC is already accounting for the uncertainty

in the estimates and including the PSE in the discrepancy measure only increases the noise

in the posterior predictive distribution. Whereas, in the single imputation approach this

standardizing is, in some way, including the magnitudes of the other e↵ects that are being

assumed inactive by throwing them into the inactive poll and hence in the error and therefore

allowing the procedure to better identify outliers. This phenomenon is related to the obser-

vation of Ding and Miratrix’s paper in preparation, in a context where the design matrix is

not orthogonal. They’ve shown that the permutation test only works if the randomization

distribution of the factor tested is obtained by recording the estimated coe�cients that re-

sult of fitting the full model. In our case, because of the orthogonality the estimate for a

factorial e↵ect does not change regardless of what other factors are in the model. However,

we believe that when standardizing by the PSE we are including the additional information

in the other factors making the randomization distribution useful.

Further theoretical exploration and simulation studies for the 3-level and fractional fac-

torial designs is left for future work. We cannot conclude this work without mentioning

nonnormal data. For this case we can consider two paths to explore. First, a common

approach to deal with nonnormal data is to use the Box-Cox family of transformations. It

would be appealing to dig a little deeper into this idea. Is there a related two parameter

transformation that works well to transform the data? The motivation for this exploration

is the fact that there are two objectives when attempting to achieve normality: symmetry

and tail behavior. In this direction, an extensive literature review is necessary. A second

approach, that is more aligned with the Bayesian motivation of this thesis is to approach

it from a hierarchical perspective for other kinds of data, such as counts. The relationship
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between factorial e↵ects and potential outcomes fitted beautifully in the simplicity of the

normal-normal mixture model. Initial attempts on this regard, using an example where

the potential outcomes are counts, suggest that setting up the relationship between model

parameters, factorial e↵ects (as usually defined - i.e., contrasts of treatment group means)

and potential outcomes to fill in the missing potential outcomes will not be as simple for

nonnormal data.

Studying the e↵ect of design imbalances in the performance of our methodology is some-

thing we are interesting in pursuing. We are curious about whether the potential outcome

framework will make the method more robust or more sensitive to this situation. Related to

this notion, the main advantage of these factorial designs is the orthogonality of the model

matrices, making the estimates of any particular factorial e↵ect the same regardless of which

other factorial e↵ects are included in the model. This property is lost in the general setting.

For a more general applicability of the S-PPC we can explore its viability for non orthog-

onal treatment factors. In general, to be able to order the sequence of models to test, we

have to be able to get these data into a framework similar to that presented in this thesis.

Specifically, scaling considerations should be made. All factors should be normalized (like in

the three level design case) to make them all comparable. How far would it take us to chose

to create the sequence of models based on some sort of orthogonalization of the treatment

factors by using the residuals of the previous model in the sequence?

Another interesting direction is to explore the scalability of our method. However, one

major drawback is the computational ine�ciency of our method because it requires many

posterior predictive draws from the distribution of the discrepancy measure. Each of these

need the posterior draws of µ,� and ✓
i

for all the units in the experiment to fill in the
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missing outcomes for every draw of the randomization distribution. A way of making this

procedure more e�cient is highly desirable. In the context of big data, given the computa-

tional burden that the randomization based posterior predictive checks can have perhaps a

particular screening rule would be more desirable over the other. For example, if the step-

down approach were more appropriate the scaled versions of the discrepancy measures would

be preferred both in the replicate and unreplicated cases. Moreover, it would be unfeasible

to test all of the models in the sequence perhaps tracking a drop on the posterior predictive

p values would be a better indication of when to stop the procedure. Even in the stem cell

example discussed earlier in this chapter, we used the fact that the 0.05 cut o↵ for OLS does

not account for multiple comparisons to limit the sequence of models to test.

The S-PPC methodology uses a natural framework that allows for the use of covariates.

Although it is true that in randomized settings “controlling for” background covariates by

including them in the regression generally performs well because of the initial balance on

background covariates, this framework opens the door to use more sophisticated match-

ing methods to adequately control for covariates when this balance is not achieved for the

particular randomization at hand.
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Chapter 8

Appendix

8.1 Unbiased estimates of averages of potential out-

comes in randomized experiments using symmetry

arguments

E(y(z)) = E

 
P

i WiYi(z)P
k Wk

!
= Y (z).

Proof:

Assume that
P

k

W
k

> 0, then the ratio is well defined (which is not the case for the regular

Bernoulli case). Let V
i

= WiP
k Wk

. Hence, the V
i

’s are not independent, but they are identically

distributed because of the symmetry. Therefore
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From the symmetry and the linearity of the expectation, we know that E(V
i

) = 1/n for all

i. Therefore

E
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i
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i
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i

(z)P
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W
s

!
=
X

i

E

 
W

iP
s

W
s

!
Y
i

(x) =
X

i

Y
i

(z)/n = Y (z).

Hence, the unbiasedness holds if
P

s

W
s

> 0. In other words, the unbiasedness of any

linear combination of averages holds as long as there is at least one unit in every treatment

group, which is a reasonable assumption because a randomization that violated this is unac-

ceptable. It is possible to make it fully true by defining the estimate of linear combinations of

mean potential outcomes when a treatment has no units assigned to it such that the average

with those allocations equals the population treatment e↵ect. For example, in some cases

with two treatments defining (Y )obs(j) = 0 when no units were assigned to treatment j will

make the estimate of the di↵erence unbiased. However, this seems to be a very artificial

patch because the assumption made in the above proof is quite reasonable, especially when

designing an experiment.

Let C =
P

z

c(z)Y (z) is a contrast of interest where c(z) is a constant corresponding to

the z combination. Note that C
i

=
P

z

c(z)Y
i

(z) is the same contrast at the unit level. By

linearity of the expectation, the unbiasedness extends to any contrast.
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