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Abstract

Knowledge of spatial chromosomal organizations is critical for the study of transcriptional regulation and other nuclear
processes in the cell. Recently, chromosome conformation capture (3C) based technologies, such as Hi-C and TCC, have
been developed to provide a genome-wide, three-dimensional (3D) view of chromatin organization. Appropriate methods
for analyzing these data and fully characterizing the 3D chromosomal structure and its structural variations are still under
development. Here we describe a novel Bayesian probabilistic approach, denoted as ‘‘Bayesian 3D constructor for Hi-C data’’
(BACH), to infer the consensus 3D chromosomal structure. In addition, we describe a variant algorithm BACH-MIX to study
the structural variations of chromatin in a cell population. Applying BACH and BACH-MIX to a high resolution Hi-C dataset
generated from mouse embryonic stem cells, we found that most local genomic regions exhibit homogeneous 3D
chromosomal structures. We further constructed a model for the spatial arrangement of chromatin, which reveals structural
properties associated with euchromatic and heterochromatic regions in the genome. We observed strong associations
between structural properties and several genomic and epigenetic features of the chromosome. Using BACH-MIX, we
further found that the structural variations of chromatin are correlated with these genomic and epigenetic features. Our
results demonstrate that BACH and BACH-MIX have the potential to provide new insights into the chromosomal
architecture of mammalian cells.
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Introduction

The spatial organization of a genome plays an important role in

gene regulation, DNA replication, epigenetic modification and

maintenance of genome stability [1–5]. Understanding three-

dimensional (3D) chromosomal structures and chromatin interac-

tions is therefore essential for decoding and interpreting functions

of the genome. Traditionally, the 3D organization of chromo-

somes has been studied by microscopic and cytogenic methods

such as florescent in situ hybridization (FISH). Several FISH

studies have shown that the global 3D chromosomal structures are

highly dynamic [6–8]. However, due to the limitation of low

throughput, low resolution FISH data, the 3D chromosomal

structures at the fine scale are not fully understood. In particular,

whether chromatin exhibits a consensus local 3D chromosomal

structure is still under debate. More recently, higher throughput,

higher resolution approaches based on chromosome conformation

capture (3C) such as Hi-C [9] and TCC [10] allow genome-wide

mapping of chromatin interactions. The chromatin interactions

captured by Hi-C and TCC experiments, which are represented

by the contact matrix in the original Hi-C study [9], provide an

unprecedented opportunity for inferring 3D chromosomal struc-

tures at the fine resolution scale.

Much progress has been made in recent years to reconstruct 3D

chromosomal structures from the Hi-C data by translating the

observed chromatin contact frequency between two genomic loci

to the population average spatial distance between them. Bau and

colleagues [11] translated the read counts in the contact matrix to

spatial constraints of 3D chromosomal structures and used the

software Integrated Modeling Platform (IMP) [12] to solve a

constrained optimization problem. Duan et al. [13] devised a set of

constraints for all loci of the genome, and solved a similar

constrained optimization problem using an open-source software

IPOPT [14]. Similar optimization-based approaches have also

been used in studies of the fission yeast genome [15]. Kalhor et al.

[10] proposed another optimization-based approach which

correlates contact frequencies with the presence or absence of

chromatin contacts instead of average spatial distances. More

recently, Rousseau et al. [16] developed a probabilistic model

linking Hi-C data to spatial distances and designed a Markov-

chain Monte Carlo-based method named MCMC5C. Different

from the optimization-based approaches, MCMC5C models the
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uncertainties of spatial distances between two loci by assuming that

the number of reads spanning those two loci follows a Gaussian

distribution.

However, all the existing methods have several limitations. First,

as pointed out by Yaffe and Tanay [17], the raw data obtained

from Hi-C experiments exhibit multiple layers of systematic biases,

such as restriction enzyme cutting frequencies, GC content and

sequence uniqueness. None of the existing methods take these

systematic biases into consideration. Second, optimization-based

methods are prone to be trapped in local modes due to the ultra-

high dimensionality and the prohibitively large search space.

Third, MCMC5C suffers from the difficulty in estimating the

Gaussian variance of each read count since the single Hi-C contact

matrix does not provide enough information for variance

estimation. Furthermore, except for MCMC5C, none of these

existing methods comes with a stand-alone software [16].

More importantly, all of the existing methods focus on

reconstructing consensus 3D chromosomal structures, but pay

little attention to evaluating magnitudes of structural variations of

chromatin at different resolution scales. To quantify structural

variations of chromatin, the optimization-based methods usually

require a large number of parallel runs, which is computationally

intensive and not directly interpretable. Similarly, the Gaussian

model in MCMC5C is derived from a consensus 3D chromosomal

structure, which cannot be used to measure structural variations of

chromatin either.

Since chromatin interactions captured by Hi-C experiments

come from a cell population instead of a single cell, it is

challenging to study structural variations of chromatin from the

Hi-C data. When the cell population consists of multiple sub-

populations, of which each corresponds to a distinct 3D

chromosomal structure, the Hi-C data can only be interpreted

as a measurement of the population average effect. The Hi-C data

of mammalian genomes is further complicated by the fact that the

pair of homologous chromosomes cannot be distinguished from

each other without genotype information. Without fully charac-

terizing structural variations of chromatin in a cell population, the

consensus 3D chromosomal structure inferred from the Hi-C data

is not directly interpretable or even misleading.

Although the global 3D chromosomal structure is indeed quite

dynamic in a cell population, the local 3D chromosomal structure

could be homogeneous. A recent study [18] on a high resolution

Hi-C dataset has discovered that mammalian genomes are

composed of thousands of mega-base-sized, evolutionarily conser-

vative topological domains, which appear to serve as units of

genomic organization and perhaps function. These findings

motivate the hypothesis that each topological domain may share

a consensus 3D chromosomal structure in order to keep its

conservative functional forms. For local genomic regions where

this hypothesis holds true, the mixture of cell populations and the

ambiguity of homologous chromosomes will no longer be major

barriers for 3D modeling based on Hi-C data.

In this work, we test the hypothesis of consensus 3D structure at

the topological domain scale via rigorous statistical analysis of Hi-

C data. To achieve this goal, we propose two integrated

probabilistic approaches called BACH (which is the short name

for ‘‘Bayesian 3D Constructor for Hi-C data’’) and BACH-MIX.

It should be noted that our approach is closely related to

inferential structure determination (ISD) [19], a Bayesian

approach developed to study macromolecular structure. In the

BACH algorithm, we assume that the local genomic region (i.e., a

topological domain) of interest exhibits a consensus 3D chromo-

somal structure in a cell population, and employ efficient Markov

chain Monte Carlo (MCMC) computational tools to infer the

underlying consensus 3D chromosomal structure. In the BACH-

MIX algorithm, we assume that the genomic region of interest

consists of multiple distinct 3D chromosomal structures, and

explicitly model structural variations of chromatin using a mixture

component model. By comparing the goodness of fit of BACH and

BACH-MIX for the same genomic region via statistical model

selection principles, we provide a quantitative approach to

evaluate structural variations of chromatin for any given local

genomic region.

Applying BACH and BACH-MIX to a high resolution Hi-C

dataset, we found that BACH, instead of BACH-MIX, is preferred

in about half of the topological domains. Of the topological

domains in which BACH-MIX fits the data better, most contain

one dominant sub-population, whose 3D chromosomal structure

can be reconstructed by the BACH algorithm. These results

suggest that most topological domains exhibit homogeneous 3D

chromosomal structures in a cell population. We also found that

geometrical properties of these topological domains, particularly

the shape and the structural variations, are associated with several

genomic and epigenetic features. Furthermore, we found signif-

icantly lower structural variations at domain center regions than at

domain boundary regions.

Results

The BACH algorithm
The BACH algorithm takes the chromosomal contact matrix

generated by Hi-C or TCC experiments and local genomic

features [17,20] (restriction enzyme cutting frequencies, GC

content and sequence uniqueness) as input, and produces, via

MCMC computation, the posterior distribution of 3D chromo-

somal structures (Methods). In the BACH algorithm, we assume

that there exists a consensus 3D chromosomal structure in a cell

population (this assumption will be relaxed later in the BACH-

MIX algorithm). Furthermore, we assume that the number of

sequencing reads spanning two genomic loci follows a Poisson

distribution, where the Poisson rate is negatively associated with

the corresponding spatial distance between them and is also

affected by a few other factors. BACH can be used to reconstruct

Author Summary

Understanding how chromosomes fold provides insights
into the complex relationship among chromatin structure,
gene activity and the functional state of the cell. Recently,
chromosome conformation capture based technologies,
such as Hi-C and TCC, have been developed to provide a
genome-wide, high resolution and three-dimensional (3D)
view of chromatin organization. However, statistical
methods for analyzing these data are still under develop-
ment. Here we propose two Bayesian methods, BACH to
infer the consensus 3D chromosomal structure and BACH-
MIX to reveal structural variations of chromatin in a cell
population. Applying BACH and BACH-MIX to a high
resolution Hi-C dataset, we found that most local genomic
regions exhibit homogeneous 3D chromosomal structures.
Furthermore, spatial properties of 3D chromosomal struc-
tures and structural variations of chromatin are associated
with several genomic and epigenetic features. Noticeably,
gene rich, accessible and early replicated genomic regions
tend to be more elongated and exhibit higher structural
variations than gene poor, inaccessible and late replicated
genomic regions.

Spatial Organizations of Chromosomes
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consensus 3D chromosomal structures from the Hi-C contact

matrix, and infer the uncertainties of the spatial distance between

any two genomic loci from the corresponding posterior distribu-

tion. Simulation studies have shown that the BACH algorithm

works well under the posited model (Text S1).

Compared to other published methods, BACH has the

following advantages: (1) It explicitly models and corrects known

systematic biases associated with Hi-C data, such as restriction

enzyme cutting frequencies, GC content and sequence uniqueness

[17,20]; (2) It utilizes a Poisson model that better fits the count

data generated from Hi-C experiments than the Gaussian model

used in MCMC5C, and performs more robustly when applied to

several experimental datasets (see the following RESULTS section

for validation); (3) It employs advanced MCMC techniques, such

as Sequential Monte Carlo and Hybrid Monte Carlo (see Text S1

for details), that significantly improve the efficiency in exploring

the vast space of possible models [21].

The BACH-MIX algorithm
In the BACH algorithm, we assume that chromosomal regions

of interest exhibit a consensus 3D chromosomal structure in a cell

population. However, this assumption may not be true, because

chromosomal regions may exist in multiple inter-convertible

configurations. To test the consensus 3D chromosomal structure

assumption and study structural variations of chromatin in a cell

population, we propose a variant algorithm called BACH-MIX

(Methods). In BACH-MIX, we assume that the genomic region of

interest is composed of two adjacent sub-regions, each with a rigid

consensus 3D structure, but the spatial arrangement of the two

sub-structures can vary in a cell population. BACH-MIX models

the uncertainty of the spatial arrangement between the two sub-

structures by a mixture component model, where each component

corresponds to one specific spatial arrangement. The weight of

each component represents the proportion of that component in a

cell population. Clearly, BACH is a special case of BACH-MIX, in

which the number of the mixture component is one. We use the

statistical model selection criterion, the Akaike information

criterion (AIC) [22], to determine whether BACH or BACH-

MIX fit the data better, so as to infer whether the structure is

homogeneous (having a consensus) or variable.

BACH-MIX contains two types of parameters: the parameters

to determine the local consensus 3D chromosomal structures of

the two adjacent sub-regions, and the parameters to determine the

spatial arrangement of the two adjacent sub-regions. In practice,

the local 3D chromosomal structures of the two adjacent sub-

regions can be estimated by applying BACH twice separately,

each to the contact map of one sub-region. The main computation

in BACH-MIX is to estimate the parameters corresponding to

each spatial arrangement of the two adjacent sub-structures.

A spatial arrangement of the two adjacent sub-structures can be

represented by a rotation matrix with three Euler angles [23]. We

also take into account mirror symmetry structures that cannot be

explained by rotations. To simplify the computation, we discretize

the range of each Euler angle into four bins of equal sizes, and

approximate the collection of distinct 3D chromosomal structures

in a cell population by 104 spatial arrangements of two adjacent

sub-regions (Text S1). The BACH-MIX algorithm takes 3D

chromosomal structures BACH predicted for two adjacent sub-

regions and the corresponding local genomic features [17]

(restriction enzyme cutting frequencies, GC content and sequence

uniqueness) as input, and produces the posterior distribution of the

spatial arrangement of the two sub-regions, quantified by the

proportion of each of the 104 orientations between the two.

Simulation studies have shown that the BACH-MIX algorithm

works well under the posited model (Text S1).

In practice, a majority of the 104 spatial arrangements of the

two adjacent sub-regions are insignificant in terms of having very

low proportions. To overcome over-fitting, we adopt a two-step

procedure to achieve sparsity: first, we apply the full BACH-MIX

model with 104 spatial arrangements to estimate the proportion

for each of them; second, we remove insignificant spatial

arrangements whose proportion is less than 1%, and re-estimate

the proportion for the significant spatial arrangements.

Most topological domains exhibit homogeneous 3D
chromosomal structures

We applied BACH and BACH-MIX to a dataset recently

generated in our lab [18] from a mouse embryonic stem cell

(mESC) line. The dataset includes 476 million reads obtained from

two biological replicates processed with the use of the restriction

enzyme HindIII (referred to as the HindIII sample); and 237

million reads in another biological replicate processed with the use

of the restriction enzyme NcoI (referred to as the NcoI sample). To

the best of our knowledge, this dataset provides the highest

sequencing depth of a mammalian genome to date. Previous

analysis of this dataset showed that the mouse genome is composed

of 2,200 topological domains characterized by high frequencies of

intra-domain interactions but infrequent inter-domain interactions

[18].

We conducted a genome-wide analysis by applying BACH and

BACH-MIX to this high-resolution mESC Hi-C dataset. Both

BACH and BACH-MIX were applied to the 40 KB resolution Hi-

C contact matrices. In the preprocessing procedure, we filtered out

300 topological domains whose length is less than 400 KB or do

not contain known mouse gene (13.64% out of total 2,200

domains). We also filtered out a subset of 40 KB genomic loci

within each topological domain according to restriction enzyme

cutting frequencies (number of fragment end , = 5), GC content

(, = 0.3) and sequence uniqueness (mappability score , = 0.8)

(Figure S1), and created the 40 KB resolution Hi-C contact matrix

for each topological domain. We then applied BACH to each of

the remaining 1,900 topological domains to infer its 3D

chromosomal structure.

To validate the spatial distances inferred by the BACH

algorithm, we compared the spatial distances BACH predicted

(referred to as the BACH distances) to the spatial distances

measured by FISH [24] (referred to as the FISH distances). In the

HindIII sample, the Pearson correlation coefficient between the

BACH distances and the FISH distances is 0.88 (95% credible

interval is [0.83, 0.92]). In the NcoI sample, the Pearson

correlation coefficient between the BACH distances and the FISH

distances is 0.83 (95% credible interval is [0.67, 0.93]). These

results suggest that the spatial distances BACH predicted are

consistent with the spatial distances measured by FISH (Text S1

and Figure S2). As a comparison, we applied MCMC5C and

obtained the corresponding predictions of spatial distances

(referred to as the MCMC5C distances). The Pearson correlation

coefficients between the MCMC5C distances and the FISH

distances are 0.79 and 0.11 in the HindIII sample and the NcoI

sample, respectively, which are much worse than those of the

BACH’s results (z-test p-values ,2.4e-5). In addition, we applied a

modified BACH algorithm without bias correction and found it

still achieved higher correlation with the FISH distances than

MCMC5C (Text S1).

In the previous analysis, we obtained the 3D chromosomal

structure predicted by BACH for each topological domain. Next,

we divided each topological domain into two sub-regions of equal

Spatial Organizations of Chromosomes
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sizes, and applied BACH-MIX to infer the spatial arrangement of

the two sub-regions. We evaluated the goodness of fit of the BACH

model and the BACH-MIX model for each of these 1,900

topological domains in terms of AIC, which penalizes the log-

likelihood of a model with the number of parameters in the model.

A smaller AIC indicates a better model fitting. In the HindIII

sample, BACH achieved smaller AIC than BACH-MIX in 875

out of 1,900 (46.05%) topological domains. For the rest 1,025

topological domains where BACH-MIX fits the data better than

BACH, 487 topological domains have one dominant spatial

arrangement of the two sub-regions with proportion greater than

80%. In 482 out of these 487 topological domains, the dominant

3D chromosomal structure can be captured by BACH. Therefore,

BACH can reconstruct the consensus structure or the dominant

structure in 1,357 topological domains (71.42% of 1,900

topological domains). We obtained consistent results in the NcoI

sample. In the NcoI sample, BACH achieved smaller AIC than

BACH-MIX in 1,156 out of 1,900 (60.84%) topological domains.

For the rest 744 topological domains where BACH-MIX fits the

data better than BACH, 394 topological domains have one

dominant spatial arrangement of the two sub-regions with

proportion greater than 80%. In 393 out of these 394 topological

domains, the dominant 3D chromosomal structure can be

captured by BACH. Therefore, BACH can reconstruct the

consensus structure or the dominant structure in 1,549 topological

domains (81.53% of 1,900 topological domains).

Structural properties of topological domains correlate
with genomic and epigenetic features

In the following analysis, we focus on 1,199 (the overlap

between 1,357 topological domains in the HindIII sample and

1,549 topological domains in the NcoI sample, 63.11% out of

1,900) topological domains in which BACH can reconstruct the

consensus 3D chromosomal structure or the 3D chromosomal

structure of the dominant sub-population in both HindIII sample

and NcoI sample. To summarize the structural properties of

topological domains, we approximated each 3D chromosomal

structure BACH predicted (40 KB resolution) by a cylinder, and

computed the ratio between its height and diameter, abbreviated

as HD ratio (Methods). Domains with higher HD ratios are more

elongated. HD ratios of the structures inferred from the HindIII

sample and the NcoI sample are highly reproducible (Pearson

correlation coefficients = 0.76, p-value,2.2e-16).

To evaluate the relationship between structural properties of

chromatin (measured by HD ratio) and its functional forms at the

topological domain scale, we collected genomic and epigenetic

features for each topological domain, including gene density

(UCSC reference genome mm9), gene expression [25], five histone

modification marks (H3K36me3 [26], H3K27me3 [27],

H3K4me3 [25], H3K9me3 [28] and H4K20me3 [27]), RNA

polymerase II [25], chromatin accessibility [29], genome-nuclear

lamina interaction [30] and DNA replication time [31]. By

computing the correlation between the HD ratio and each of the

genomic and epigenetic features, we found that the HD ratio is

highly significantly and positively correlated with gene density,

gene expression, transcription elongation histone modification

mark H3K36me3, repressive histone modification mark

H3K27me3, promoter mark H3K4me3, RNA polymerase II,

accessible chromatin and early replicated genomic regions, and

negatively associated with heterochromatin marks H3K9me3,

H4K20me3 and lamina associated domains (Table S1). These

correlations are similarly computed based on either the HindIII

sample or the NcoI sample. Two illustrative examples are shown

in Figure 1 and Table S2. Consistent with other existing biological

evidences, these results demonstrate that the gene rich, actively

transcribed, accessible, and early replicated chromatin tends to be

more elongated than the gene poor, lowly transcribed, inaccessible

and late replicated chromatin, which is consistent with previous

FISH experiments [32].

The original Hi-C study [9] has shown that chromatin

interactions closely correlate with the genomic and epigenetic

features. By applying the principle component analysis (PCA)

method to the Hi-C data, Lieberman-Aiden et al. [9] demonstrated

that two compartments (compartment A and compartment B) in the

mammalian genome can be obtained, where compartment A is

strongly associated with open, accessible, and actively transcribed

chromatin [33]. Following their strategy, we also applied the PCA

method to the mESC Hi-C dataset [18] and obtained the

compartment label (A or B) for each topological domain. The

compartments A and B represent a high level interpretation of the

Hi-C data, but do not inform us on the details of chromatin folding.

Recently, we and others showed that compartments A and B could

be further partitioned into topological domains, which are mega-

base-sized, self-interacting genomic regions [18,34]. Using BACH,

we generated 3D models of topological domains, and found that

topological domains in compartment A are significantly more

elongated than those in compartment B. In the HindIII sample,

mean HD ratios for domains in compartment A and compartment

B are 1.81 and 1.34, respectively (two sample t-test p-value,2.2e-

16). Similarly, in the NcoI sample, mean HD ratios for domains in

compartment A and compartment B are 1.76 and 1.26, respectively

(p-value,2.2e-16). Two illustrative examples are shown in Figure 1

and Table S2. These results suggest that the HD ratio obtained in

the BACH algorithm provides an intuitive visual interpretation of

the Hi-C data.

Structural variations of topological domains correlate
with genomic and epigenetic features

We further study the structural variations of chromatin in a cell

population. We first selected 562 topological domains with size larger

than 1 MB, and applied BACH and BACH-MIX to the 1 MB

region around the center of each selected domain center region.

Additionally, we used 985 domain boundaries with size shorter than

40 KB as the control group, and applied BACH and BACH-MIX to

the 1 MB region around each selected domain boundary region. We

divided each 1 MB genomic region (domain center/boundary

region) into two 500 KB adjacent sub-regions, predicted the 3D

structure of each sub-region by BACH, and then inferred the spatial

arrangements of the two sub-structures. Both BACH and BACH-

MIX were applied to the 40 KB resolution Hi-C contact matrices.

Among all the possible spatial arrangements of two adjacent

genomic regions, we defined the effective structures as those with

their posterior mean proportions greater than 5%, and report the

number of effective structures at each locus. A locus with a smaller

number of effective structures exhibits lower structural variations

than a locus with a larger number of effective structures. In the

HindIII sample, the average number of effective structures is 2.20

for the domain center regions, and 2.82 for the domain boundary

regions (Figure S3A, two sample t-test p-value,2.2e-16). Similar-

ly, in the NcoI sample, the average number of effective structures

is 2.07 for the domain center regions, and 2.54 for the domain

boundary regions (Figure S3B, two sample t-test p-value = 5.2e-

13). We changed the threshold for the effective structure to 10%

and 1%, and observed consistent results (Figure S3 and Table S3).

These results suggest that domain center regions exhibit lower

structural variations than domain boundary regions.

Figure 2 shows two illustrative examples in the HindIII sample,

one for the domain center region (Chromosome 2,

Spatial Organizations of Chromosomes
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117,580,000,118,580,000, Figure 2A), and one for the domain

boundary region (Chromosome 1, 135,540,000,136,540,000,

Figure 2B). Under threshold 5%, BACH-MIX identified one

effective structure for the domain center region with proportion

99% (Figure 2C), and three effective structures for the domain

boundary region, with proportions 77% (Figure 2D), 14%

(Figure 2E) and 8% (Figure 2F), respectively.

Next, we evaluated the relationship between structural varia-

tions of topological domains and its functional forms. We divided

the 562 selected domain center regions into two groups, regions

with high structural variations (i.e., containing multiple effective

structures, threshold = 5%) and regions with low structural

variations (i.e., containing one effective structure, threshold = 5%),

and compared the genomic and epigenetic features between these

two groups (Table S4). We observed significant enrichment of gene

density, transcription elongation histone modification mark

H3K36me3, repressive histone modification mark H3K27me3,

promoter mark H3K4me3, RNA polymerase II, accessible chro-

matin and early replicated genomic regions in regions with high

structural variations, and significant enrichment of heterochromatin

marks H3K9me3, H4K20me3 and genome-nuclear lamina inter-

action in regions with low structural variations. Noticeably, we did

not observe statistically significant association between gene

expression levels and structural variations. These results suggest

that gene rich, accessible and early replicated chromatins are more

likely to exhibit multiple structural configurations than gene poor,

inaccessible and late replicated chromatins.

A two-step procedure to quantify the structure variations
of the whole chromosome

Although it is widely accepted that the chromatin structure is

highly dynamic, it is unclear whether the cell population contains

Figure 1. Two illustrative examples of 3D models for two topological domains using BACH. Two illustrative examples in the HindIII
sample: one for a more elongated 1 MB domain (chromosome 18, 33,960,000,34,960,000) belonging to compartment A, the other for a less
elongated 1 MB domain (chromosome 7, 62,040,000,63,040,000) belonging to compartment B. In Figure 1B and Figure 1D, each sphere represents a
40 KB genomic region. All spheres are of equal size. In Figure 1B and Figure 1D, the x axis is the direction of the first principle component. The
diameters of two fitted cylinders (grey) are set to be one. The height of the fitted cylinder in Figure 1B is 1.89 times larger than that in Figure 1D. The
rank in descending order among the selected 1,199 domains was used to measure the relative magnitudes of genomic and epigenetic features (Table
S2). The more elongated 1 MB domain has a high gene density, high gene expression, high H3K36me3, high H3K4me3, high RNA polymerase II, high
chromatin accessibility, early DNA replication time, low H3K9me3, low H4K20me3 and low genome-nuclear lamina interaction. The 3D chromosomal
structure BACH predicted for this domain (Figure 1B) has a high HD ratio (HD ratio = 2.16, rank = 146). The less elongated 1 MB domain has a low
gene density, low gene expression, low H3K36me3, low H3K4me3, low RNA polymerase II, low chromatin accessibility, late DNA replication time, high
H3K9me3, high H4K20me3 and high genome-nuclear lamina interaction. The 3D chromosomal structure BACH predicted for this domain (Figure 1D)
has a low HD ratio (HD ratio = 1.14, rank = 842). The more elongated 1 MB domain has median H3K27me3 signal, while the less elongated 1 MB
domain has low H3K27me3 signal. These results can be partially explained by the weak correlation between the HD ratio and H3K27me3 (Table S1,
Pearson correlation coefficients = 0.14, p-value = 4.9e-7). They are also consistent with the results in the human Hi-C study demonstrating weak
enrichment of H3K27me3 in compartment A [9]. (A) 40 KB resolution Hi-C contact matrix of a more elongated domain belonging to compartment A.
The color scheme is proportional to Log2 read counts. (B) The 3D chromosomal structure BACH predicted for the domain described in Figure 1A. HD
ratio = 2.16. (C) 40 KB resolution Hi-C contact matrix of a less elongated domain belonging to compartment B. The color scheme is proportional to
Log2 read counts. (D) The 3D chromosomal structure BACH predicted for the domain described in Figure 1C. HD ratio = 1.14.
doi:10.1371/journal.pcbi.1002893.g001

Spatial Organizations of Chromosomes

PLOS Computational Biology | www.ploscompbiol.org 5 January 2013 | Volume 9 | Issue 1 | e1002893



Spatial Organizations of Chromosomes

PLOS Computational Biology | www.ploscompbiol.org 6 January 2013 | Volume 9 | Issue 1 | e1002893



one dominant chromosomal structure, or multiple distinct

chromosomal structures with comparable mixture proportions.

To quantify structural variations of the whole chromosome in the

cell population, we designed the following two-step procedure. In

the first step, we applied BACH to the whole chromosome scale

Hi-C contact matrix and obtained a predicted 3D chromosomal

structure (the mode of the first BACH posterior distribution,

referred to as S1). Then, we computed the expected Hi-C contact

matrix based on this predicted structure S1. In the second step, we

defined the residual matrix as the difference between the original

Hi-C contact matrix and half of the expected Hi-C contact matrix,

and applied BACH again to the residual matrix to obtain another

predicted 3D chromosomal structure (the mode of the second

BACH posterior distribution, referred to as S2). In order to avoid

the possibility of algorithmic artifacts, we ran 100 parallel chains

for our two-step procedure using a large variety of initial structures

and chose the structures with the highest posterior probabilities.

If there exists a dominant chromosomal structure (referred to as

Sd ) in the cell population, we will expect that S1 and S2 are close

to each other, since Sd is still the dominant chromosomal structure

in the residual matrix. On the other hand, if there is no such

dominant chromosomal structure in the cell population, we will

expect that S1 and S2 are quite different from each other since the

original contact matrix and the residual matrix should have little in

common. In practice, the similarity between S1 and S2 can be

measured by the normalized root mean square deviations, i.e.,

RMSD(S1,S2) (Methods). Simulation results (Text S1, Figure S4

and Table S5) confirmed that both S1 and S2 are close to Sd

(which also means that RMSD(S1,S2) is small) if Sd is indeed the

dominant chromosomal structure.

In practice, however, we need a reference probability distribu-

tion in order to claim that the observed RMSD(S1,S2) is small

enough. Previous studies [35,36] have shown that the random

walk backbone model can be used to approximate the chromatin

3D structure. In this work, we use the empirical distribution of the

RMSD between two 3D structures independently generated from

the random walk scheme as the reference distribution to judge

whether an observed RMSD(S1,S2) is small enough (Text S1). If

the observed RMSD(S1,S2) falls within the lower 5% of the

reference distribution, we claim that S1 and S2 are close enough to

each other.

Long chromosomes may exhibit a dominant 3D structure
in the cell population

We applied the above two-step procedure to the real Hi-C data

to generate 3D chromosomal structure for each mouse chromo-

some by treating each topological domain as a basic unit. Figure

S5 lists the alignment of two 3D chromosomal structures BACH

predicted in the two stages, S1 and S2, from 20 mouse

chromosomes in both HindIII sample and NcoI sample. Tail

probabilities of RMSD S1,S2ð Þ for each chromosome are reported

in Table S6. Figure S6 displays the box plots of the twenty RMSD

empirical distributions, each corresponding to that between two

independently generated random walks of the same length as each

mouse chromosome. We found that in long chromosomes (chr 1 to

chr 14 and chr X), S1 and S2 are similar (i.e., RMSD(S1,S2) is

small, within the tail probability,0.05), suggesting the existence of

a dominant 3D chromosomal structure in the cell population. It is

worth noting that all these long chromosomes adopt helical

structures (Figure S7A), which is unlikely to be coincidental. For

short chromosomes, however, RMSD(S1,S2) is comparable to that

of two independently simulated random walks (tail probability

$0.05). We conducted similar analysis at different resolution scales

by treating two domains or half of a domain as a basic unit, for

both the HindIII sample and the NcoI sample. The results were

almost identical to the original analysis (Text S1). These results

suggest that the whole chromosome scale 3D modeling could be

meaningful, especially for long chromosomes (chr 1 to chr 14 and

chr X). We did not obtain consistent overall structures in the two-

step procedure for short chromosomes. It is likely that such

inconsistencies are caused by a lack of ‘‘leveraging’’ information of

the Hi-C data when a chromosome is short. By further examining

the differences between the two structures obtained by our two-

step procedure for these short chromosomes, we observed that the

large RMSD is caused by the existence of a few mirror reflections

of local structures, implying that, although the local structures can

be determined rather well in these chromosomes, there is not

enough information to pin down the orientation of these local

parts.

To further understand why shorter chromosomes appeared

variable in our two-step procedure at the whole chromosome level,

we also conducted a local-level structural comparison. In detail, we

used a sliding window of ten domains to scan along each

chromosome. For each local region of a chromosome covered by

the sliding window, we evaluated the structural similarity between

S1 and S2 locally (Figure S8), resulting in K - 9 RMSDs for each

chromosome, where K is the number of domains of the

corresponding chromosome. Now, for all the 20 chromosomes,

we found that the local structures in S1 and S2 are significantly

more similar than those generated from the random walk scheme.

More precisely, the distribution of the K - 9 RMSDs for each

chromosome is significantly and stochastically smaller than that

generated from the random walk scheme (Figure S8), supporting

the existence of a dominant structure in the cell population for all

chromosomes, at least at a relatively local level (about 10 MB).

A competing method, MCMC5C, has been proposed to

generate whole chromosome level 3D models for the human

chromosomes [16]. This method, however, does not correct the

systematic biases in the Hi-C data. Here we compared whole

Figure 2. Domain center regions exhibit lower structural variations than domain boundary regions. Two illustrative examples in the
HindIII sample: one for the domain center region (Chromosome 2, 117,580,000,118,580,000) with low structural variations, and the other for the
domain boundary region (Chromosome 1, 135,540,000,136,540,000) with high structural variations. In Figure 2C,Figure 2F, each sphere represents
a 40 KB genomic region. All spheres are of equal size. (A) 40 KB resolution Hi-C contact map of a 1 MB domain center region in the HindIII sample.
The color scheme is proportional to Log2 read counts. Two yellow lines divide the Hi-C contact map of a 1 MB region into two 500 KB adjacent sub-
regions. (B) 40 KB resolution Hi-C contact map of a 1 MB domain boundary region in the HindIII sample. The color scheme is proportional to Log2
read counts. Two yellow lines divide the Hi-C contact map of a 1 MB region into two 500 KB adjacent sub-regions. (C) The effective structure BACH-
MIX predicted (proportion = 0.99) for the domain center region. Red spheres and lines represent the bottom left region in Figure 2A, blue spheres and
lines represent the top right region in Figure 2A. (D) The first effective structure BACH-MIX predicted (proportion = 0.77) for the domain boundary
region. Red spheres and lines represent the bottom left region in Figure 2B, blue spheres and lines represent the top right region in Figure 2B. (E) The
second effective structure BACH-MIX predicted (proportion = 0.14) for the domain boundary region. Red spheres and lines represent the bottom left
region in Figure 2B, purple spheres and lines represent the top right region in Figure 2B. (F) The third effective structure BACH-MIX predicted
(proportion = 0.08) for the domain boundary region. Red spheres and lines represent the bottom left region in Figure 2B, green spheres and lines
represent the top right region in Figure 2B.
doi:10.1371/journal.pcbi.1002893.g002
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chromosome level 3D models produced by BACH and MCMC5C

for the mouse chromosomes. We used BACH and MCMC5C to

generate spatial models of each long chromosome (chr 1 to chr 14

and chr X) by treating each topological domain as a basic unit

(Figure S7). The 3D chromosomal structures predicted by BACH

from the HindIII sample and NcoI sample are significantly more

consistent (measured by RMSD) than those predicted by

MCMC5C (paired t-test p-value = 1.4e-7). A modified BACH

algorithm without bias correction also outperformed MCMC5C

(Text S1). We also conducted the same analysis using a published

human Hi-C dataset [9] and found that BACH consistently

outperformed MCMC5C (data not shown). The significant

improvement of BACH over MCMC5C is likely due to the fact

that BACH explicitly integrates the correction of known systematic

biases [17], and the Poisson model used in BACH fits the count

data of the Hi-C experiment better than the Gaussian model used

in MCMC5C. Since other published 3D reconstruction methods

do not provide stand-alone software, we were not able to conduct

similar comparative studies for them.

Structural properties of long chromosomes correlate
with genomic and epigenetic features

We applied the BACH algorithm to the whole chromosome Hi-

C contact matrix, and obtained the predicted 3D chromosomal

structures for the 15 long chromosomes (chr 1 to chr 14 and chr

X). We first investigated how compartments labeled ‘‘A’’ versus

those labeled ‘‘B’’ are distributed spatially in the whole chromo-

some model. Among all the 1,835 topological domains in chr 1 to

chr 14 and chr X, 848 belong to compartment A, 633 belong to

compartment B, and the remaining 354 straddle domains contain

genomic regions from both compartment A and compartment B.

For each 3D chromosomal model that BACH predicted, we fitted

a plane through the straddle domains using the least square

method, and then counted the numbers of topological domains

belonging to compartment A and compartment B, respectively, at

each side of the fitted plane. The results can be represented by a

two-by-two contingency table. Fisher’s exact test was then used to

measure the magnitude of spatial separations between two types of

compartments. Among the 15 selected mouse chromosomes (chr 1

to chr 14 and chr X), we found that the compartment label (A or

B) of topological domains is significantly correlated with the spatial

location of these domains relative to the fitted plane (on the left

side or on the right side) in 14 chromosomes in both HindIII

sample and NcoI sample (Table S7). As shown in Figure 3A,

topological domains with the same compartment label tend to

locate on the same side of the structure, consistent with their

interaction frequencies, and the observation that compartment B

tends to be associated with nuclear membrane [37,38].

We further study how genomic and epigenetic features are

distributed spatially in the whole chromosome model. Similar to

the previous analysis for compartment labels (A or B), we

conducted the same analysis for each of the eleven genomic and

epigenetic features in consideration (Table S7). We used 33rd and

67th percentiles as the thresholds and divided all the 1,835

topological domains in chr 1 to chr 14 and chr X into three

groups: domains with low value, with median value, and with high

value of a particular feature. For each 3D chromosomal structure

BACH predicted, we fitted a plane through domains with median

value of the feature using the least square method. Next, we used

the Fisher’s exact test p-value to measure the magnitude of

association between the group label (low value group or high value

group) and spatial location of topological domains relative to the

fitted plane (on the left side or on the right side). Table S7 lists the

number of chromosomes with significant spatial separation

patterns for each genomic and epigenetic feature in both HindIII

sample and NcoI sample (threshold for Fisher’s exact test p-value is

0.05). We observed that the gene density, transcription elongation

histone modification mark H3K36me3, repressive histone modi-

fication mark H3K27me3, promoter mark H3K4me3, RNA

polymerase II, chromatin accessibility, DNA replication time,

heterochromatin marks H3K9me3 and H4K20me3 and genome-

nuclear lamina interaction of topological domains are significantly

associated with the spatial location of topological domains relative

to the fitted plane (on the left side or on the right side) among more

than nine chromosomes (Table S7 and Figure 3B,Figure 3L).

Discussion

We have described BACH and BACH-MIX, two Bayesian

statistical models, to study 3D chromosomal structures and

structural variations of chromatins from the Hi-C data. The

benefits of using a probabilistic approach are two-folds: first,

rigorous statistical inference can be carried out to properly remove

systematic biases and account for observational noise sources;

second, sequencing depth variations can be explicitly modeled by

Poisson distributions. Our results demonstrate that BACH is

significantly more reproducible and achieves higher consistency

with the FISH data than an existing algorithm (MCMC5C).

Application of BACH to a recently published Hi-C dataset from the

mouse ES cells reveals interesting structural properties of mamma-

lian chromosomes. Specifically, we found that geometric shapes of

topological domains are strongly correlated with several genomic

and epigenetic features. For example, gene rich, actively tran-

scribed, accessible and early replicated chromatins tend to be more

elongated than gene poor, lowly transcribed, inaccessible and late

replicated chromatins. Furthermore, by using a variant BACH-

MIX algorithm, we found that structural variations of a chromatin

are also correlated with several genomic and epigenetic features.

There are several issues that we have not addressed in this

paper, such as biophysical properties of chromatin fiber [39,40]

and the low sequencing depth of inter-chromosomal chromatin

interactions. In principle, biophysical properties can be accom-

modated directly in our Bayesian model as spatial constraints

through an informative prior on spatial distances. With more

experimental work and additional data, the BACH and BACH-

MIX algorithms can be applied to study the spatial arrangement of

multiple chromosomes simultaneously. With the rapid accumula-

tion of high throughput genome-wide chromatin interaction data,

the BACH and BACH-MIX algorithms could be valuable tools for

understanding higher order chromatin architecture of mammalian

cells.

Methods

The BACH algorithm
To reconstruct the underlying consensus 3D chromosomal

structure, we develop the following probabilistic model, similar to

the ‘‘beads-on-a-string’’ model (Figure S9) that has been used

extensively in chemistry. The genomic region of interest is divided

into n consecutive, disjoint loci of equal size (L1,L2,:::,Ln), and

each locus Li is represented by a bead in the 3D space, whose

location is given by the Cartesian coordinates Pi~(xi,yi,zi)
T . The

Euclidean distance dij between loci Li and Lj represents the

average spatial distance between these two loci Li and Lj :

dij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi{xj)

2z(yi{yj)
2z(zi{zj)

2
q

:
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Figure 3. Spatial organization of genomic and epigenetic features. We used the 3D chromosomal structure BACH predicted for chromosome
2 in the HindIII sample as an illustrative example. In Figure 3A,Figure 3L, each sphere represent a topological domain. The volume of each sphere is
proportional to the genomic size of the corresponding topological domain. In Figure 3A, the red, white and blue colors represent topological
domains belonging to compartment A, straddle region and compartment B, respectively. Topological domains with the same compartment label
tend to locate on the same side of the structure. In Figure 3B,Figure 3L, the red, white and blue colors represent topological domains with high
value of features, median value of features and low value of features, respectively. The color scheme is proportional to the magnitude of the
continuous measurement of genetic and epigenetic features. We also report the odds ratio (OR) of the two by two contingency table and the p-value
of Fisher’s exact test. (A) Spatial organization of compartment label. OR = 39.20, p-value = 4.4e-16. (B) Spatial organization of gene density. OR = 13.21,
p-value = 2.2e-8. (C) Spatial organization of gene expression. OR = 4.00, p-value = 0.0012. (D) Spatial organization of chromatin accessibility.
OR = 26.88, p-value = 5.9e-12. (E) Spatial organization of genome-nuclear lamina interaction. OR = 40.00, p-value = 4.9e-13. (F) Spatial organization of
DNA replication time. OR = 32.00, p-value = 1.1e-10. (G) Spatial organization of H3K36me3. OR = 10.91, p-value = 1.0e-7. (H) Spatial organization of
H3K27me3. OR = 2.17, p-value = 0.0706. (I) Spatial organization of H3K4me3. OR = 24.43, p-value = 2.1e-11. (J) Spatial organization of H3K9me3.
OR = 15.71, p-value = 6.7e-8. (K) Spatial organization of H4K20me3. OR = 45.10, p-value = 1.0e-13. (L) Spatial organization of RNA polymerase II.
OR = 5.47, p-value = 0.0001.
doi:10.1371/journal.pcbi.1002893.g003
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Under this representation, reconstructing the 3D chromosomal

structure is equivalent to placing these beads in the 3D space, i.e.,

specifying the Cartesian coordinates Pi~(xi,yi,zi)
T of these loci.

Let U~fuijg1ƒi,jƒn be the n|n symmetric contact matrix

generated by the Hi-C experiment, where each entry uij represents

the number of paired-end reads spanning two loci Li and Lj . The

variations of uij can be explained by several factors. Lieberman-

Aiden et al. [9] first reported the negative association between the

number of paired-end reads spanning two loci (uij ) and the

corresponding spatial distance (dij ). Recently, Yaffe and Tanay

[17] identified some systematic biases, including restriction

enzyme cutting frequencies, GC content and sequence uniqueness

of fragment ends, which substantially affect Hi-C data. Taking all

these unique features into consideration, we propose the following

Poisson model.

Let ei, gi and mi represent the number of fragment ends within

locus Li, the mean GC content of fragment ends within locus Li,

and the mean mappability score of fragment ends within locus Li,

respectively [17]. We assume that the off-diagonal count uij(i=j)

in the contact matrix U follows a Poisson distribution with rate hij ,

where:

log(hij)~b0zb1 log(dij)zbenz log(eiej)z

bgcc log(gigj)zbmap log(mimj):

In this model, b1 measures the magnitude of negative association

(b1v0) between uij and dij . benz, bgcc and bmap are the coefficients

for the enzyme effect, GC content effect and mappability effect,

respectively. The link function in this Poisson model provides the

relationship between the linear predictors (i.e., the spatial distance,

the number of fragment ends, the mean GC content of fragment

ends and the mean mappability score of fragment ends) and the

mean of Poisson distribution, which can be used to translate the

number of paired-end reads spanning two loci into the average

spatial distance between them.

Let P~(P1,:::,Pn)T (n|3 matrix) represent the Cartesian

coordinates of the n loci of interest, and let

b~(b0,b1,benz,bgcc,bmap) be the collection of all nuisance param-

eters. The joint likelihood is of the form:

P(U DP,b)~ P
1ƒivjƒn

P(uij Dhij)~ P
1ƒivjƒn

e
{hij h

uij
ij

uij !
:

We adopt a fully Bayesian approach with non-informative priors

for all model parameters, and obtain the following joint posterior

distribution:

P(P,bDU)!P(U DP,b)! P
1ƒivjƒn

e{hij h
uij
ij :

Due to the high dimensionality of the parameter space, designing

an efficient computational tool to draw samples from P(P,bDU) is

essential for the statistical inference of our model. To achieve this

goal, we propose a three-stage statistical inference procedure

(Figure S10). First we assign initial values for the nuisance

parameters using a Poisson regression approach [41]. We then use

sequential importance sampling (SIS) [42] to generate an initial

3D chromosomal structure. At the end, we apply Gibbs sampler

[43] with hybrid Monte Carlo [21,44] and adaptive rejection

sampling (ARS) [45] to further refine the 3D chromosomal

structure and the nuisance parameters. More details of three-stage

statistical inference procedure can be found in Text S1.

HD ratio
Let PA~(PA

1 ,:::,PA
n )T represent the Cartesian coordinates of

the genomic region A with n loci, where PA
i ~(xA

i ,yA
i ,zA

i )T : First

we shift the genomic region A such that its weight center is at the

original point (0,0,0). We then conduct the principle component

analysis on the n by 3 matrix PA, and rotate matrix PA to matrix

PB~(PB
1 ,:::,PB

n )T , PB
i ~(xB

i ,yB
i ,zB

i )T , such that the x-axis is the

direction of the first principle component (the one explains most

variability) and the y-axis and the z-axis are the directions of the

second and the third principle components, respectively. We use a

cylinder to approximate the 3D chromosomal structure of the

genomic region A. The height of the cylinder is defined as the

difference between the 90% quantile of xB
i and the 10% quantile

of xB
i . The radius of the cylinder is defined as two times the

median of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yB2

i zzB2

i

q
We further define HD ratio of the genomic

region A as the ratio between the height of the cylinder and the

diameter of the cylinder, and then normalized by the size of

genomic region A. By the definition, genomic regions with higher

HD ratios are more elongated.

The BACH-MIX algorithm
We propose the BACH-MIX algorithm to study the spatial

arrangement of two adjacent genomic regions. Here we assume

that each genomic region exhibits a unique consensus 3D

chromosomal structure, but the spatial arrangement of two

adjacent genomic regions has certain level of flexibility, and varies

according to a probabilistic distribution. More precisely, let

PA~(PA
1 ,:::,PA

n )T and QB~(QB
1 ,:::,QB

m)T represent the 3D

chromosomal structures of two adjacent genomic region A and

B, respectively, where PA
n ~QB

1 ~(0,0,0)T : The spatial arrange-

ment of the genomic region B with respect to the genomic region

A is determined by three Euler angles [23]

w[½0,2p),h[½{p=2,p=2),y[½0,2p) and an index I[f0,1g for

mirror symmetry. Let H~(w,h,y,I) be the collection of these

four parameters, and define the rotation matrix R(H) and the

mirror symmetry matrix M(H) as:

R(H)~

cos h cos y {cos w sin yzsin w sin h cos y sin w sin yzcos w sin h cos y

cos h sin y cos w cos yzsin w sin h sin y {sin w cos yzcos w sin h sin y

{sin h sin w cos h cos w cos h

2
664

3
775,

M(H)~

1 0 0

0 1 0

0 0 ({1)I

2
64

3
75:

The spatial arrangement of the genomic region B with respect to

the genomic region A, denoted PB(H)~(PB
1 ,:::,PB

m)T , can be

calculated by:

PB(H)~QBM(H)R(H):

Therefore, each H corresponds to a 3D chromosomal structure of

two adjacent genomic regions A and B, and a probabilistic

distribution p(H) defines a mixture of distinct spatial arrangements

between the two adjacent genomic regions A and B. To further

simplify the statistical inference problem on p(H), we discretize the

four dimensional space of H, and use a multinomial distribution

pH to approximate p(H).
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Let Umix~fuijg1ƒiƒn{1,2ƒjƒm be the n{1 by m{1 dimen-

sional contact matrix for inter-region chromatin interactions,

where uij represent the number of reads spanning the i th locus

in the genomic region A and the j th locus in the genomic region

B: We assume that uij follow Poisson distribution with rate lij ,

where

lij~
X
H

lij(H)eqH ,

log lij(H)~b0zb1 log dij(H)
� �

zbenz log(eiej)zbgcc log(gigj)z

bmap log(mimj):

Here eqH is the Poisson offset for the spatial arrangement PB(H),
which is proportional to pH. The statistical inference problem on

the multinomial distribution pH is equivalent to infer qH. dij(H)

is the spatial distance between the i th locus in the genomic

region A and the j th locus in the genomic region B with rotation

matrix R(H) and mirror symmetry matrix M(H). ei, gi and mi

are local genomic features which follow the previous definitions.

The joint likelihood is of form:

P(UmixDqH)~P
n{1

i~1
P
m

j~2

e{lij l
uij
ij

uij !
:

We adopt a fully Bayesian approach with non-informative priors

for all model parameters, and obtain the following joint posterior

distribution:

P(qHjUmix)!P
n{1

i~1
P
m

j~2
e{lij l

uij
ij ~

P
n{1

i~1
P
m

j~2
exp {

X
H

lij(H)eqH

( )
|

X
H

lij(H)eqH

( )uij

:

We use hybrid Monte Carlo to jointly update the parameters qH
(Figure S10). The first order partial derivatives with respect to qH
is of the form:

L log P(qHjUmix)

LqH
~

{
Xn{1

i~1

Xm

j~2

lij(H)eqHz
Xn{1

i~1

Xm

j~2

uij

lij(H)eqHP
H0 lij(H

0)eq
H0
:

Normalized Root Mean Square Deviation (RMSD)
Assuming PA~(PA

1 ,:::,PA
n )T and PB~(PB

1 ,:::,PB
n )T are the

Cartesian coordinates of two genomic regions A and B,

respectively, where PA
i ~(xA

i ,yA
i ,zA

i )T and PB
i ~(xB

i ,yB
i ,zB

i )T : We

first remove the scaling effect by a regression procedure. Let dA
ij

and dB
ij be the Euclidean distance between loci i and j in A and B,

respectively. We regress dA
ij against dB

ij and obtain the slope l.

Define PC~(PC
1 ,:::,PC

n )T , where PC
i ~lPB

i ~(lxB
i ,lyB

i ,lzB
i )T :

Assume (PA)T PC has the singular value decomposition USVT ,

and then the optimal rotation matrix R~VUT can minimize the

sum of square error tr (PA{PCR)T (PA{PCR)
� �

[46]. The

normalized RMSD is defined as:

Normalized RMSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr (PA{PCVUT )T (PA{PCVUT )
� �

=n
q

99% quantile of dA
ij

:

Empirically, normalized RMSD less than 0.1 indicates high

similarity, normalized RMSD between 0.1 and 0.2 indicates

moderate similarity, while normalized RMSD larger than 0.2

indicates low similarity.

Model implementation
Under the default setting of BACH, we draw 100 3D

chromosomal structures at each step of sequential importance

sampling. We further enrich each 3D chromosomal structure ten

times when we implement the rejection control technique. In the

Gibbs sampler of BACH and BACH-MIX, we run three parallel

chains with 5,000 MCMC iterations in each chain. The first 1,000

samples are dropped as the burn-in stage, and then every 50th

sample in the last 4,000 samples are used for the posterior

inference. We use the Gelman-Rubin statistic [43] to measure the

mixing of three parallel chains. Empirically, the Gelman-Rubin

statistics less than 1.1 indicates that three parallel chains converge

to the same posterior distribution.

Computation time
The computation time of BACH and BACH-MIX depends

on the number of MCMC iterations and the number of loci in

the genomic region of interest. All MCMC calculations are

conducted on computing nodes in Harvard Linux cluster

‘‘Odyssey’’, each with dual Xeon E5410 2.3 GHz quad core

processors and 32 GB RAM. Under the default setting, BACH

takes 81 seconds to predict a 3D chromosomal structure with

25 loci; BACH-MIX takes 8 minutes to predict the proportion

of 104 distinct 3D chromosomal structures for two 13 loci

adjacent genomic regions. The computation time increases

almost quadratically with the number of loci in the genomic

region of interest.

URL
BACH and BACH-MIX can be freely downloaded at http://

www.fas.harvard.edu/,junliu/BACH/.

Supporting Information

Figure S1 Local genomic features of the mouse genome
at 40 KB resolution. (A) Distribution of the number of fragment

end within each 40 KB locus in the HindIII sample. (B)

Distribution of the GC content within each 40 KB locus in the

HindIII sample. (C) Distribution of the mappability score within

each 40 KB locus in the HindIII sample. (D) Distribution of the

number of fragment end within each 40 KB locus in the NcoI

sample. (E) Distribution of the GC content within each 40 KB

locus in the NcoI sample. (F) Distribution of the mappability score

within each 40 KB locus in the NcoI sample.

(DOCX)

Figure S2 Comparison between the spatial distances
BACH predicted with the FISH distances using the high
resolution Hi-C dataset on mouse embryonic stem cells.
(A) 40 KB resolution Hi-C contact matrices of four domains in the

HindIII sample and the NcoI sample. (B) The 3D chromosomal

structures BACH predicted. In domain 1, red, blue, green and

purple dots represent gene GCR, gene Lnp, gene Evx2 and gene
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Hoxd3, respectively. In domain 2, red and blue dots represent

gene Rcn1 and gene 1550J22, respectively. In domain 3, red and

blue dots represent gene Il9r and gene Hbq1, respectively. In

domain 4, red, blue and green dots represent gene Calcoco2, gene

Hoxb9 and gene Hoxb1, respectively. (C) Comparison between

the spatial distances BACH predicted in the HindIII sample with

FISH distances. Each dot represents the posterior mean, and each

bar represents the 95% credible interval. We treat the FISH

distances as the gold standard, and use a linear regression

procedure to adjust the scale parameter. (D) Comparison between

the spatial distances BACH predicted in the NcoI sample with

FISH distances. Each dot represents the posterior mean, and each

bar represents the 95% credible interval. We treat the FISH

distances as the gold standard, and use a linear regression

procedure to adjust the scale parameter.

(DOCX)

Figure S3 The structural variations of chromatin at the
domain center region and at the domain boundary
region. (A) The number of 3D chromosomal structures with

proportion larger than certain threshold (10%, 5% and 1%) in the

HindIII sample. (B) The number of 3D chromosomal structures

with proportion larger than certain threshold (10%, 5% and 1%)

in the NcoI sample.

(DOCX)

Figure S4 Simulation studies for the BACH algorithm
when the input Hi-C contact matrix is simulated from
a mixture population. Black: RMSD(A, B), red: RMSD(S1,

A), blue: RMSD(S1, B), green: RMSD(S2, A), yellow:

RMSD(S2, B), purple: RMSD(S1, S2). (A) Distribution of six

RMSDs across 100 simulated datasets, when the mixture

proportion of the dominant sub-population is 50%. Black line

represents the 5% quantile of RMSD calculated from the empirical

distribution RMSD(A, B). (B) Distribution of six RMSDs across 100

simulated datasets, when the mixture proportion of the dominant

sub-population is 60%. Black line represents the 5% quantile of

RMSD calculated from the empirical distribution RMSD(A, B). (C)

Distribution of six RMSDs across 100 simulated datasets, when the

mixture proportion of the dominant sub-population is 70%. Black

line represents the 5% quantile of RMSD calculated from the

empirical distribution RMSD(A, B). (D) Distribution of six RMSDs

across 100 simulated datasets, when the mixture proportion of the

dominant sub-population is 80%. Black line represents the 5%

quantile of RMSD calculated from the empirical distribution

RMSD(A, B). (E) Distribution of six RMSDs across 100 simulated

datasets, when the mixture proportion of the dominant sub-

population is 90%. Black line represents the 5% quantile of RMSD

calculated from the empirical distribution RMSD(A, B).

(DOCX)

Figure S5 The alignment of two 3D chromosomal
structures BACH predicted in the two stages, S1 and
S2, from 20 mouse chromosomes in both HindIII sample
and NcoI sample. Red lines represent the first BACH

prediction S1. Blue lines represent the second BACH prediction

S2. (A) The HindIII sample (B) The NcoI sample.

(DOCX)

Figure S6 The empirical distributions of RMSD for 20
mouse chromosomes with different lengths. We generated

two structures with the same size of each chromosome from the

random walk scheme, and calculate the RMSD between them. We

repeated this procedure 1,000 times for each chromosome to get

the empirical distribution of RMSD, which is represented by a

boxplot in Figure S6. The empirical distributions of RMSD for

different chromosomes are similar, which are independent of

chromosome size.

(DOCX)

Figure S7 Comparison of reproducibility between
BACH, BACH-SUB (a modified BACH algorithm without
bias correction) and MCMC5C using the high resolution
Hi-C dataset on mouse embryonic stem cells. We focus on

long chromosomes (chr 1 to chr 14 and chr X). (A) 3D

chromosomal structures predicted by BACH using the mouse

Hi-C data. Red lines and blue lines represent the HindIII sample

and the NcoI sample, respectively. (B) 3D chromosomal structures

predicted by BACH-SUB using the mouse Hi-C data. Red lines

and blue lines represent the HindIII sample and the NcoI sample,

respectively. (C) 3D chromosomal structures predicted by

MCMC5C using the mouse Hi-C data. Red lines and blue lines

represent the HindIII sample and the NcoI sample, respectively.

(D) The normalized RMSDs of 3D chromosomal structures

predicted from the HindIII sample and the NcoI sample, using

BACH, BACH-SUB and MCMC5C. BACH achieved signifi-

cantly higher reproducibility than MCMC5C (paired t-test p-

value = 1.4e-7). BACH-SUB also achieved significantly higher

reproducibility than MCMC5C (paired t-test p-value = 0.0465).

(DOCX)

Figure S8 The local alignment of two 3D chromosomal
structures BACH predicted in the two stages, S1 and S2,
from 20 mouse chromosomes in both HindIII sample
and NcoI sample. (A) The local alignment results in the HindIII

sample. (B) The local alignment results in the NcoI sample. We

used a sliding window of ten domains to scan along each

chromosome. For each possible position of the window, we aligned

the two local structures from S1 and S2 and calculated the RMSD

between them. Thus, a series of RMSDs were obtained for a

chromosome, each for one possible position of the sliding window.

We summarized these RMSDs generated from each chromosome

into a boxplot. We used the empirical distribution of the RMSD

between two structures of ten loci generated from the random walk

scheme as the reference for similarity evaluation. The red line

represents the 5% lower quantile of the reference distribution. We

observed that the median of RMSDs between S1 and S2 (black

line in the middle of each box) have tail probabilities less than 0.05

in all 20 chromosomes. Therefore, S1 and S2 align well locally at

the window size of ten domains. (C) The local alignment results

measured by the median of the RMSDs in the HindIII sample. (D)

The local alignment results measured by the median of the

RMSDs in the NcoI sample. To be conservative, we used a

different reference distribution. Instead of using two structures of

ten loci, we generated two structures with the same size of each

chromosome from the random walk scheme, conducted local

alignment for them via the same sliding window strategy (window

size is ten), and reported the median of the series of RMSDs

obtained from this way. We repeated this procedure 1,000 times

for each chromosome to get the empirical distribution of the

median of the RMSDs, which is represented by a boxplot in

Figure S8C and Figure S8D. The red dots represent the median of

RMSDs obtained from S1 and S2 for different chromosomes. We

observed that all red dots are located below the boxplots,

indicating that S1 and S2 still align well locally measured by the

median of the RMSDs.

(DOCX)

Figure S9 The ‘‘beads-on-a-string’’ model: an illustra-
tion of the 3D chromosomal structure with five loci. The

lengths of solid lines and dashed lines represent the spatial
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distances between two adjacent loci and two non-adjacent loci,

respectively.

(DOCX)

Figure S10 The flow chart of the BACH and BACH-MIX
algorithm.
(DOCX)

Figure S11 Simulation study for the BACH algorithm.
(A) The hypothetical 3D chromosomal structure generated from a

random walk scheme (red lines) and the posterior mode of the

BACH predicted 3D chromosomal structure (white lines). (B) The

trace plot of log likelihood of three parallel chains in 5,000 MCMC

iterations. Chain 3 achieves the highest log likelihood among three

parallel chains. (C) ACF plot of the log likelihood of the chain 3.

(DOCX)

Figure S12 Simulation study for the BACH-MIX algo-
rithm. (A) The BACH predicted 3D chromosomal structure for

the human chromosome 22 in a human lymphoblastic cell line

with restriction enzyme HindIII. We divide the whole chromo-

some into two genomic regions: genomic region A (red dots and

lines) and genomic region B (white dots and lines). (B) The trace

plot of log likelihood of three parallel chains in 5,000 MCMC

iterations. Chain 3 achieves the highest log likelihood among three

parallel chains. (C) ACF plot of the log likelihood of the chain 3.

(D) The posterior distribution of 12 3D chromosomal structures.

(DOCX)

Table S1 Pearson correlation coefficients between HD
ratios and genomic and epigenetic features.
(DOCX)

Table S2 The value and the rank of genomic and
epigenetic features for a more elongated domain
(chromosome 18, 33,960,000,34,960,000, in the HindIII
sample) and a less elongated domain (chromosome 7,
62,040,000,63,040,000, in the HindIII sample).
(DOCX)

Table S3 The number of structures with proportion
larger than 10% and 1%.
(DOCX)

Table S4 The structural variations of chromatin corre-
late with genetic and epigenetic features. (A) In the HindIII

sample, the structural variations correlate with genetic and

epigenetic features. (B) In the NcoI sample, the structural

variations correlate with genetic and epigenetic features.

(DOCX)

Table S5 The mean of six RMSDs across 100 simulated
datasets and the number of RMSDs below 5% quantile
with different mixture proportions. The 5% quantile of

RMSD is calculated from the empirical distribution of RMSD,

which is the empirical distribution of 100 RMSD(A, B).

(DOCX)

Table S6 Applying the two-step procedure to the real
Hi-C data, treat each topological domain as an individ-
ual unit. The RMSD between two 3D chromosomal structures

BACH predicted in the two stages, S1 and S2, from 20 mouse

chromosomes in both HindIII sample and NcoI sample. The tail

probabilities less than 0.05 are highlighted in bold font.

(DOCX)

Table S7 Fisher’s exact test to quantify the magnitude
of spatial separations of genomic and epigenetic fea-
tures. We focus on long chromosomes (chr 1 to chr 14 and chr

X). Each number represents the number of chromosome with

significant spatial separation pattern. The p-value threshold is

0.05.

(DOCX)

Table S8 Eleven FISH probes used in a study of the
mESC (supplementary reference).

(DOCX)

Table S9 The normalized FISH distances between six
probe pairs.

(DOCX)

Table S10 The annotations of four topological domains
containing eleven FISH probes.

(DOCX)

Table S11 Posterior mean and 95% credible interval for
parameters in the simulation study with single consensus
3D chromosomal structure. We use the posterior samples in chain

3 (after burn-in and thin) for statistical inference. The true values for b0,

b1, benz, bgcc and bmap are 4, {1, 0:1, {0:1 and 0:1, respectively.

(DOCX)

Table S12 The true value, posterior mean and 95%
credible interval for the 12 dimensional multinomial
distribution pH used in the simulation study with
multiple distinct 3D chromosomal structures.

(DOCX)

Table S13 Applying the two-step procedure to the
zoomed-in real Hi-C data (equally split one topolog-
ical domain into two sub-domains), treat each sub-
domain as an individual unit. The RMSD between two

3D chromosomal structures BACH predicted in the two stages,

S1 and S2, from 20 mouse chromosomes in both HindIII

sample and NcoI sample. The tail probabilities , = 0.05 are

highlighted in bold font.

(DOCX)

Table S14 Applying the two-step procedure to the
zoomed-out real Hi-C data (combine two adjacent
topological domains into one super-domain), treat each
super-domain as an individual unit. The RMSD between

two 3D chromosomal structures BACH predicted in the two

stages, S1 and S2, from 20 mouse chromosomes in both HindIII

sample and NcoI sample. The tail probabilities , = 0.05 are

highlighted in bold font.

(DOCX)

Table S15 The RMSD between the 3D chromosomal
structure inferred from the zoomed-in Hi-C contact
matrices and the 3D chromosomal structure inferred
from the original Hi-C contact matrices. The tail

probabilities , = 0.05 are highlighted in bold font.

(DOCX)

Table S16 The RMSD between the 3D chromosomal
structures inferred from the zoomed-out Hi-C contact
matrices and the 3D chromosomal structures inferred
from the original Hi-C contact matrices. The tail

probabilities , = 0.05 are highlighted in bold font.

(DOCX)

Table S17 Applying the two-step procedure to the
subset of real Hi-C data (equally split one chromo-
some into two halves), treat each topological domain
as an individual unit. The RMSD between two 3D

chromosomal structures BACH predicted in the two stages,

S1 and S2, from 20 mouse chromosomes in both HindIII
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sample and NcoI sample. The tail probabilities , = 0.05 are

highlighted in bold font.

(DOCX)

Table S18 The RMSD between the 3D chromosomal
structures inferred from the subset of Hi-C contact
matrices (equally split one chromosome into two halves)
and the 3D chromosomal structures inferred from the
original Hi-C contact matrices. The tail probabilities

, = 0.05 are highlighted in bold font.

(DOCX)

Text S1 Description of the computational protocol [10].

(DOCX)
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