The Methanol Dehydrogenase Gene, mxaF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1371/journal.pone.0056993</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:11807572</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
The Methanol Dehydrogenase Gene, *mxaF*, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments

Evan Lau¹,²*, Meredith C. Fisher², Paul A. Steudler³, Colleen M. Cavanaugh²

¹ Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America, ² Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, ³ The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America

Abstract

The *mxaF* gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the *pmoA* and *mmoX* genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the *mxaF* gene as a functional and phylogenetic marker for methanotrophs. *mxaF* and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that *mxaF* and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiaceae. However, known methanotrophs generally formed coherent clades based on *mxaF* gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the *mxaF* gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental *mxaF* gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of *mxaF* as a biomarker for methanotrophic proteobacteria.

Introduction

Atmospheric methane contributes to ∼20% of the total radiative forcing by long-lived greenhouse gases globally. Due to the relatively short lifetime of atmospheric methane (∼9 yrs) compared to CO₂, reductions in atmospheric methane flux would have an immediate impact on global warming [1]. Microbial methane oxidation is the only major biological sink of methane [2]. With the exception of members of the phylum Verrucomicrobia [3], and the yet to be cultured anaerobic methane-oxidizers (ANME) [4,5], and denitrifying methanotrophs of the ‘NC10’ phylum, aerobic proteobacterial methanotrophs are the only known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that *mxaF* and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiaceae. However, known methanotrophs generally formed coherent clades based on *mxaF* gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the *mxaF* gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental *mxaF* gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of *mxaF* as a biomarker for methanotrophic proteobacteria.
monophyletic methanotroph clades are indeed methanotrophic [17,19]. In comparison, functional genes for enzymes found in methanotroph metabolic pathways are directly related to physiology [19]. The initial step of methane oxidation to methanol by proteobacterial methanotrophs is mediated by particulate and/or soluble methane monooxygenases (MMOs) [15,20]. Genes in this step, such as pmxA [encoding a subunit of the particulate methane monooxygenase pMMO] and mxaF [encoding a subunit of the soluble methane monooxygenase sMMO] have been used for describing methanotroph diversity [17]. However, the pmxA gene is not present in the genera Methylocella and Methyloferula [21,22,23], and the mxaF gene is present only in a few strains of methanotrophs [15,24]. Hence, the use of both pmxA and mxaF genes in PCR-based studies results in the underestimation of methanotroph diversity and suggests that an alternative is needed.

The mxaF gene was first proposed as a functional gene probe for methanotrophs by McDonald and Marrelli [19]. Methane oxidation gene cluster Δ(mxaF) encodes the α-subunit of the enzyme methanol dehydrogenase (MDH), an enzyme containing a pyrroloquinoline quinone (PQQ) cofactor that oxidizes methanol to formaldehyde in the second step of the methane oxidation pathway, following oxidation of methane to methanol [20,25,26,27,28]. Methanol dehydrogenase is common to all methanotrophs in the Proteobacteria [15,19], but is absent in members of the phylum Verrucomicrobia, which possess a homolog of the mxaF gene, called xoxF gene, a gene of unknown function [29,30,31,32]. Sequences of the mxaF gene are highly conserved in methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria, reflecting 16S rDNA phylogeny [19,32,33]. In studies thus far based on the mxaF gene, a limited number of representative methanotrophs (<15 taxa) have been placed in generally distinct and coherent clades separate from the other methylotrophs [15,19,24,32]. These studies indicate the mxaF gene can be a useful phylogenetic marker for the classification of methanotrophs.

However, the extent to which mxaF gene sequences of all known proteobacterial methanotrophs can be placed in separate distinct phylogenetic clades has yet to be determined. This may affect its accuracy as a reliable functional biomarker and potentially lead to incorrect inferences when determining phylogenetic relationships, notably if horizontal gene transfer has occurred across these taxa. To date, no extensive phylogenetic comparisons of proteobacterial methylotroph (including methanotroph) mxaF gene sequences have been conducted. In the only study of mxaF phylogeny of the family Methylocystaceae (genera Methylosinus and Methylocystis), representative mxaF genes sequences from this family clustered within a distinct clade, but did not separate according to genus-specific subclades, suggesting that horizontal transfer of this gene may have occurred across this family. However the study did not indicate the extent of horizontal gene transfer in other proteobacterial methanotrophs, and which taxa were involved [17]. Previous studies of mxaF revealed that it is related to quinone alcohol dehydrogenases (ADHs), which utilize a variety of primary substrates [33], and that mxaF is related to xoxF [32].

Here, we examined whether the mxaF and 16S rDNA gene phylogenies of methanotrophs from the GenBank [35] database reflect congruent evolutionary histories. Though Candidatus M. oxyfera (and members of NC10 phylum) possesses an mxaF-like gene, it is placed outside of known proteobacterial mxaF gene clusters (data not shown). Candidatus M. oxyfera’s genome lacks any known PQQ-biosynthesis pathways and thus may not be able to oxidize methanol on its own [8]. Hence it was not included in our analyses.

This study addresses the following questions, (a) Does the extensive mxaF gene phylogeny discriminate between methanotrophic and other methylotrophic sequences available in genetic databases? (b) Are the mxaF and 16S rDNA gene phylogenies congruent for methanotroph in the families Methylocystaceae, Methyloococaceae, and Beijerinckiaee? (c) Can we tell whether mxaF gene retrieved from the environment belong to methanotrophs or methylotrophs? These questions are addressed using phylogenetic analyses involving sequences from published databases, as well as mxaF sequences obtained in this study from surveys of diverse environments (forest soils, peat and Sphagnum moss, and symbiont-hosting mussel gills) and from methanotroph cultures. Overall, these analyses advance the study of methanotroph diversity by showing that the mxaF gene consistently places methanotroph sequences in resolved phylogenetic clusters for all known members of the families Methylocystaceae and Methyloococaceae, and has the potential to elucidate the roles methanotrophs play in natural environments.

Materials and Methods

Cultures

Two mxaF gene sequences were determined in this study for cultured species of the Methylococaceae, Methylococcus rubra and Methylobacter latus, provided by J. Semrau and R. Knowles, respectively. Positive control cultures used in this study included two members of the Methylocystaceae and a member of the Methyloococaceae for which mxaF gene sequences are already available; Methylosinus trichosporium OB3b, Methylocystis parvus OBBP, Methylococccus album BG8, respectively.

Collections and Site Descriptions

Samples for DNA extraction or bacterial isolation were collected from four distinct habitats for DNA extraction or bacterial isolation: (a) Four soil samples, weighing ~15 g, from the organic horizon of long-term nitrogen-amended and control pine and hardwood forest soils of the Harvard Forest Long-Term Ecological Research (LTER) site, previously shown to oxidize methane at atmospheric levels, in Petersham, Massachusetts (42°30’N, 72°10’W) in 2004 [18,36], (b) Sphagnum recurvum peat and peat from Crystal Bog (Villas county, Wisconsin), a 7 ha poor fen enclosing a 2.5 m deep, 0.54 ha, dystrophic lake on the North Temperate Lakes LTER site in 2005 in 46°00’30”N 89°36’30”W [37], (c) two species of methanotroph-hosting mussels (n = 3 per site) from the Mid-Atlantic Ridge (MAR) deep-sea vent sites sampled in 2003 using DSV Alvin: Bathymodiolus azoricus from Lucky Strike (LS; 37°17’N, 32°16’W; 1693 m deep) and Rainbow (RB; 36°13’N, 33°54’W, 2300 m deep), and Bathymodiolus puteoserpentis from Logachev (LO; 14°45’N, 44°58’W; 3027 m deep) [38,39], and (d) the Halls Brook Holding Area (HBHA), an artificial lake in the Aberjona Watershed, sampled in 2004, near Boston, MA, which remains stratified during the summer months, whereby the bottom depths become anoxic [40]. No specific permissions were required for collecting samples in these locations because samples did not involve endangered or protected species, Harvard Forest is owned by Harvard University and permission is granted to research employees, and Crystal Bog and Halls Brook Holding Area are located on public land.

Methanotroph Isolation, DNA Extracion, and Purification

Methanotrophic HBHA isolate 1 and HBHA isolate 2 were isolated from water collected at the oxic-anoxic interface at HBHA (~1 m depth) using sterile Tygon® tubing connected to a peristaltic pump, and injected into sterile flasks containing Nitrata...
Mineral Salts (NMS) minimal medium [41], under 90:10 air:methane headspace, and incubated with shaking at room temperature. Both isolates failed to grow in the absence of methane and oxygen. Purified DNA from methanotroph cultures was obtained using the Wizard® Genomic DNA Purification Kit (Promega Inc.). DNA from endosymbiont-containing mussel gill tissue and forest soils was obtained as previously described [18,30]. DNA was extracted from HBHA isolates, peat and Sphagnum moss following the method as previously described [10].

Primer Design, PCR Amplification, Cloning, and Sequencing

Methylo troph mxAF-specific PCR primers F1003 and R1561 (Table 1) sequences were verified through BLAST [42] to determine their specificity to proteobacterial methanotrophs in the GenBank [35] database, and used to amplify partial mxAF gene sequences from soils, peat, Sphagnum moss, methanotrophic HBHA isolates 1 and 2, and control methanotroph cultures. The amplified region encompasses three amino acid residues (out of eight) in the MDH active sites – Asn-261, Asp-303 and Arg-331 – based on the amino acid sequence of Methylomonas extorquens MDH [26]. BLAST searches of the primer pair F1003 and R1561 retrieved only proteobacterial mxAF genes, but not that of Candidatus ‘Methylomirabilis oxyfera.’ Additionally, degenerate primers F1003degen and R1561degen (Table 1) were created after comparing amino acid sequences of MDH retrieved from the GenBank database and identifying degenerate base positions where more than one nucleotide codon specified the same amino acid residue. The degenerate primers were used to PCR amplify mxAF genes from DNA extracts of mussel tissues, as primers F1003 and R1561 failed to PCR amplify mxAF genes from the same DNA extracts. The same primers were also used to PCR amplify mxAF genes from Sphagnum moss in order to verify these primers also PCR amplify mxAF sequences outside of the Methylococcaceae. All PCR reaction mixtures contained 1× PCR buffer (Qiagen Inc.), 2.5 mM MgCl₂, 300 mM final concentration of each dNTP, a 1.0 μM final concentration of each primer, 1.0 U of Taq polymerase, and approximately 300–800 ng of template DNA in a final volume of 25 μL. PCR conditions were: denaturation at 94°C for 1 min, primer annealing at 60°C for 1 min, and extension at 72°C for 1.5 min for 30 cycles, and a final 10 min extension at 72°C. PCR products of the expected size (~550 bp for mxAF gene) were purified, cloned, and sequenced (>3 clones per sample).

Cloning and Sequencing

PCR products of the expected size (~550 bp for mxAF) were purified (QiAquick PCR Purification Kit, Qiagen Inc.), cloned (pCR®2.1-TOPO vector from the TOPO TA Cloning Kit, Invitrogen Corp.), using chemical method on TOP 10 competent cells, and plated on LB agar plates containing 50 μg ml⁻¹ kanamycin, and 40 mg ml⁻¹ X-Gal (5-bromo-4-chloro-3-indolylo-β-D-Galactopyranoside). Colonies were screened for inserts using the respective primers via PCR. Plasmid DNA was isolated from positive clones using the QiAprep® Spin Miniprep Kit (Qiagen Inc.). Sequencing reactions were performed using the ABI PRISM® Big Dye Terminator Cycle Sequencing kit (version 3.1, Applied Biosystems®) and an ABI model 3100 automated sequencer (Applied Biosystems®) according to the manufacturer’s instructions. Recombinants were sequenced in both directions using M13 forward and reverse primers. For environmental DNA extracts, at least five clones were sequenced from each PCR reaction. For Bathymodulus mussels, three clones each were sequenced from frozen gill tissue of three B. azoricus mussels from LS, three B. azoricus mussels from RB, and three B. putrescentis mussels from LO, for a total of 27 sequences.

Phylogenetic Analyses of Methylo trophic Bacterial Sequences from GenBank Database

The ADH gene and/or 16S rRNA gene sequences of Solobacter usitatissimum Ellin 6076 (GenBank Accession no. NC_000536/CP000473, Phylum Acidobacteria) were used as outgroup in all phylogenetic analyses. mxAF gene sequences were aligned using ClustalW2 [http://www.ebi.ac.uk/Tools/msa/clustalw2/] and manually inspected in MacClade 4.06 (Sinauer Associates Inc., Sunderland, MA). Phylogenetic reconstruction was implemented using PAUP 4.0B10 [43] and Geneious 4.85 [http://www.geneious.com/] with PAUP plug-in. Unless stated otherwise, statistical support for all trees were obtained from 1,000 bootstrap replicates under the same initial settings (only bootstrap values >50% are reported). Pairwise base comparisons of mxAF nucleotide sequences within and between phylogenetic groups were determined using ClustalW2 and reported as % identity values.

(a) Congruency tests between mxAF and 16S rRNA gene tree topologies. The program Modeltest [44] was used to determine the best substitution model under Maximum Likelihood (ML) analysis (from PAUP software) for each dataset, and searched heuristically for the best model of nucleic acid sequence evolution that best fits our data. The topology of the best tree from ML analyses of each dataset was saved and then enforced as a topological constraint during subsequent paired ML phylogenetic analyses for each dataset. One-tailed Templeton and Shimodaira-Hasegawa (SH) tests were used to compare the constrained and unconstrained topologies using reestimated log likelihoods (RELL) simulation [45,46] and full optimization distributions using 10,000 bootstrap replicates under the likelihood tree scores menu. Uncorrected and Bonferroni-corrected P-values were reported for one-tailed Templeton and SH tests [45]. Confidence intervals were determined for the null hypotheses: the unconstrained and constrained ML tree of each dataset tested have significantly different likelihood scores. The data consisted of nineteen methanotroph taxa spanning three families (Methylolyctaceae, Beijerinckiacae, and Methylococcaceae) and one outgroup for which both genes were available: (a) seven members of the Methylolyctaceae – Methyllosinus trichosporum BF1, M. trichosporum O19/1, M. trichosporum KS21, Methyllosinus sporium F10/1b, Methylolyctis echnaoides IMET10491, Methylolyctis sp. IMET10490, and Methylolyctis sp. IMET10494, (b) four members of the methanotrophic Beijerinckiacae – Methylocella silvestris, M. tundra, M. palustris, and Methylocapsa acidiphila, and (c) eight members of the Methylococcaceae – Methylolycaoccus capsulatus Bath, Methylolycoedium sp. E10a, Methylomonas methanicola, M. albus, M. rubra, Methylolyctis tatus, Methylolyctis sp. 5FB, and Methylomicrobium sp. For the Methylolyctaceae, there are insufficient mxAF sequences in GenBank,
hence the mxaF of *Methylimonium album* str. BG8 (GenBank Accession no. L33682) was matched to the 16S rRNA gene sequence of *Methylimonium sp.* (GenBank Accession no. D89279). Separate ML phylogenetic analyses were conducted on three datasets: (a) *mxaF* gene sequences (~513 bp) of these methanotrophs, (b) the corresponding 16S rDNA gene sequences (~1471 bp) of the same taxa and (c) the concatenated *mxaF* and 16S rDNA gene sequences (~1984 bp).

Phylogenetic analyses of cultured methanotrophs and other related methylo- tropes. Maximum parsimony (MP) phylogenies of known methylotrophs (including methanotrophs), and related *mxaF* POQ-linked dehydrogenase genes, which have recently been described [32] and were included to verify their phylogenetic placement relative to *mxaF* genes, were constructed based on nucleotide and on inferred amino acid sequences (n = 145) available in GenBank [35]. Alignments for *mxaF* nucleotide sequences included sequences with and without third nucleotide positions. Phylogenetic analyses (MP) implemented in Phylop [58] were used to generate phylogenetic trees from the nucleotide alignments. The resulting tree was obtained via random stepwise addition of sequences, as consensus of 9 saved, most parsimonious trees, obtained from a heuristic search.

Phylogenetic Analyses of Environmental mxaF Gene Sequences

All environmental *mxaF* nucleotide sequences detected in this study were verified through BLAST searches, and *mxaF* nucleotide sequences of their closest relatives (identified through homologous nucleotide searches) were included in the assembly. The final alignments for *mxaF* nucleotide sequences, *mxaF* sequences without third nucleotides and inferred *mxaF* amino acid sequences comprised 513, 342, and 171 characters, respectively, for 85 taxa. Maximum parsimony (MP) methods (implemented as described above) were used to generate phylogenetic trees from the nucleotide alignments. The resulting tree was obtained as consensus of 4 saved, most parsimonious trees obtained from a heuristic search, with random stepwise addition of sequences.

Nucleotide Sequence Accession Numbers

The *mxaF* gene nucleotide and inferred amino acid sequences of *Methylomonas rubra* and *Methyllobacter luteus*, HBHA isolates 1 and 2, and uncultured clones have been deposited in GenBank, under accession numbers JX312966-JX313018.

Results

Congruency Tests

Congruency tests showed that the *mxaF* and 16S rRNA genes of representative methylotroph species do not share congruent tree topologies. Topology tests failed to reject the null hypothesis that *mxaF* and 16S rRNA gene trees, when each was constrained to match the topology of the other gene, have significantly different likelihood scores. The SH test examines the topology, but does not indicate specific nodes or taxa causing incongruence [47]. Trees for *mxaF* gene, 16S rRNA gene, and combined *mxaF*-16S rRNA genes were observed to be incongruent, with incongruencies for representative taxa from the Methylomonadaceae and Methylodocaceae, and the methanotrophic Beijerinckiacaeae (Fig. 1).

mxaF Gene Phylogeny

The simplified *mxaF* gene tree (based on all codon positions) for known proteobacterial methylotrophs is shown in Fig. 2. Trees resulting from analyses of 1st and 2nd codon positions and inferred *mxaF* amino acid sequences of methylotrophs were identical in branching order of major taxa (not shown). Figure 2 indicates five distinct clusters of methylotrophs: (a) cluster 1 encompassing the Methylocystaceae, (b) cluster 2 containing mostly methylotrophic *Methylomobacterium* sp. and methanotrophic Beijerinckiacaeae (*Methylomomas* sp. and *Methylocelella*), (c) cluster 3 containing mostly *Hyphomonas* sp., (d) cluster 4 consisting solely of the monophyletic family Methyllococaceae, including sequences obtained in this study for the cultured members *Methylomonas rubra* and *Methylobacter luteus*, and (e) cluster 5 containing betaproteobacterial methylotroph genera. In addition, a well-supported monophyletic cluster 6 falls outside of other *mxaF* clusters and consists of *xoxF* gene sequences, which are distantly related to methylotroph *mxaF* sequences [32]. The list of taxa comprising the non-methanotrophic methylotrophs and *xoxF/xoxF*-like clusters in Fig. 2 is shown in Table 2. The complete tree with all taxa (n = 145) is shown in Supplement S1.

Cluster 1 includes all members of the Methylocystaceae, forming two separate sub-clusters. Both sub-clusters are polyphyletic for the two genera *Methylomonas* and *Methylocystis*. The methanotrophic Beijerinckiacaeae (genera *Methylocapsa*, *Methylocelella* and *Methyloferula*) are placed polyphyletically within cluster 2 with other methylotrophs (Fig. 2). There is a lack of distinction in the placement of species of methanotrophic Beijerinckiacaeae in cluster 2: *Methylocapsa* is most closely related to the non-methanotrophic genus *Acidomonas* [48], while the close relatives *Methylocella palustris* strain K and *Methylcella tundrae* cluster with the methylotrophic *Methyloferula polaris*, gen. nov. Yu-22 and V-22 [49], *Methylcella silvestris* clusters with the non-methanotrophs, *Beijerinckia mobilis* DSM 2326, and *Methyloferula stellata* clusters with the methylotrophic *Methylomomas silvestris* strain BW363 and BW872 [50]. Based on the *mxaF* gene tree (Fig. 2), the alphaproteobacterial groups – the *Methylcocaceae* (cluster 1), alphaproteobacterial methylotrophs including the methanotrophic Beijerinckiacaeae (clusters 2 and 3) – are more closely related to one another than to betaproteobacterial methylotrophs (cluster 5) and gammaproteobacterial methanotrophs (cluster 4). This pattern is also reflected in the 16S rDNA phylogeny.

Pairwise nucleotide sequence variations within the families *Methylcocaceae* and *Methylodocaceae* and between methanotrophic Beijerinckiacaeae were ≥87%, ≥75%, and ≥78%, respectively. In contrast, the *xoxF* cluster shared ≤69% identity with all *mxaF* genes, and *Solibacter wisatus* Ellin 6076 ADH (outgroup) shared ≤55% identity with all *mxaF* genes.

Phylogenetic Analyses of PCR-amplified Environmental mxaF Gene Sequences

All inferred amino acid sequences translated from *mxaF* genes amplified in this study possessed the three amino acid residues involved in the interactions of the active site. MP phylogenetic trees based on all nucleotides, 1st and 2nd codon positions, and *mxaF* amino acid sequences were identical in topology; the tree based on all three nucleotides is shown in Fig. 3. Of the *mxaF* clones amplified from Harvard Forest soils (labeled P_C, P_F, and H_F), one was placed in the Methylcovaceae and five were placed in the Methylodocaceae, with the remaining three (P_F_#1; #2; #3; #6; #10, P_F_#4, and P_F_#5) closely related to environmental clones detected in other soils. Three sequences detected in *Sphagnum* moss (labeled Sphag, Fig. 3) clustered with the methylotroph *Methylonorhabdus multivorans*, although this clade lacked bootstrap support. Of the four sequences detected in peat (labeled Peat) in the northern WI bog, one (Peat_#4) clustered with *mxaF* sequences from clones detected in acidic forest and acidic
Figure 1. Congruency tests between mxaF and 16S rRNA gene nucleotide sequences of methanotrophs from GenBank database. Phylogenetic trees for congruency tests based on maximum likelihood (ML) analysis of mxaF (~513 bp) and 16S rRNA gene nucleotide sequences (~1471 bp) from methanotrophs in GenBank, including the mxaF nucleotide sequences of *Methylomonas rubra* and *Methylobacter luteus* sequenced in this study. The ADH gene of *Solibacter usitatus* Ellin 6076 was used as outgroup. Methanotrophs (in the Methylococcaceae, Methylocystaceae and Beijerinckiaceae) are indicated by shaded clusters. Accession numbers of mxaF and 16S rRNA gene sequences downloaded from GenBank are indicated in parentheses. Bootstrap values from 1,000 replicates are indicated at the nodes of branches (if >50). The scale bar represents the number of nucleotide changes.
doi:10.1371/journal.pone.0056993.g001
Figure 2. Simplified phylogenetic tree of methanotrophs and their close relatives based on mxaF nucleotide sequences from GenBank database. Unrooted phylogenetic tree based on maximum parsimony (MP) analysis of known proteobacterial partial mxaF and xoxF/xoxF-like nucleotide sequences (~513 bp) from GenBank and the mxaF nucleotide sequences (in bold) of Methylomonas rubra and Methylobacter luteus sequenced in this study. The ADH gene of Solibacter usitatus Ellin 6076 was used as outgroup. Accession numbers of sequences downloaded
from GenBank are indicated in parentheses. Bootstrap values from 1,000 replicates are indicated at the nodes of branches (if >50). The three bacterial families containing methanotrophs (Methylococcaceae, Methylocystaceae and methanotrophic members of the Beijerinckiaceae) are indicated by shaded clusters and the other alphaproteobacterial and betaproteobacterial methanotrophs are delineated by lines. The identity of mxaF and mxaF-like sequences from the “Methylbacterium cluster (within cluster 2),” “Mainly Hypomicrobium (Cluster 3),” “(l)-proteobacterial methylothrophs (Cluster 5),” and “mxaF/mxaF-like genes” is shown in Table 2. The scale bar represents the number of nucleotide changes. The complete phylogenetic tree of methanotrophs and their close relatives based on mxaF nucleotide sequences is shown in Supplement S1.

doi:10.1371/journal.pone.0056993.g002

Discussion

Establishing the link between microbial phylogeny and physiology is complicated by the high level of physiological diversity in most microbial taxa (e.g., many microbes utilizing several carbon sources), and the potential for horizontal gene transfers – the movement of microbial genes between divergent genomes. Consequently, it is necessary to evaluate the accuracy of candidate functional genes as a diagnostic of key metabolic processes, as well as being accurate markers of evolutionary history. Doing so requires evaluating the result of phylogenetic reconstruction of gene sequences from all cultured organisms possessing the gene, before analyses of sequences from uncultured environmental clones. Methanotrophs are unique due to their preference for methane as a metabolic substrate and their possession of functional genes involved in this process. Here, we investigated the phylogeny, based on the mxaF gene, of all known proteobacterial methanotrophs from GenBank database and highlighted the mxaF gene’s ability to detect most methanotrophic bacteria and describe their molecular diversity in natural environments.

mxaF and 16S rRNA Gene Phylogenies

In this study, the topological differences between 16S rRNA and mxaF gene trees, as seen in incongruencies between both trees (Fig. 1), suggest multiple occurrences of horizontal gene transfer in the mxaF genes of many methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. Phylogenetic analyses based on mxaF genes placed the vast majority of cultivated proteobacterial methanotrophs, excluding members of the genera Methylocapsa, Methylocella, and Methyloferula, in distinct and coherent clades representing the Methylococcaceae and Methylocystaceae, with higher nucleotide identity between taxa within these clades than between members of different clades. These family-level clade distinctions are consistent with patterns evident in the 16S rDNA phylogeny. However, below the family level, mxaF-based analyses failed to differentiate between distinct subclades based on genera.

The mxaF gene has poor resolving power for methanotrophs within the Beijerinckiaceae. Our mxaF gene tree (Fig. 2) indicates that these methanotrophs, composed of the genera Methylocapsa, Methylocella, and Methyloferula, are polyphyletic, sharing common ancestry with other alphaproteobacterial methylothrophs. This pattern corroborates previous studies, which assessed fewer methylothroph taxa [23,49,53], and showed different topologies between mxaF and 16S rDNA genes, for example, in the genus Methylocella [22,50,53]. The more extensive mxaF gene phylogeny inferred here (compared to previous studies) suggests that
methanotrophy (a) arose once in the Beijerinckiaceae and was lost by some methylotrophic taxa, (b) arose separately in more than one taxon in the Beijerinckiaceae, and/or (c) multiple occurrences of horizontal gene transfers have occurred in the common ancestor

Table 2. Taxa included (but not shown) in the phylogenetic analyses for Fig. 2.

<table>
<thead>
<tr>
<th>Cluster name</th>
<th>Taxa and GenBank Accession number (in parentheses)</th>
</tr>
</thead>
</table>
| Methylbacterium cluster (within cluster 2) | Methylbacterium nodulans strain ORS2060 (AF220764)
Methylbacterium aquaticum DSM1371 (EF562464)
Methylbacterium sp. MP3 (EF030549)
Methylbacterium lusitanum strain MP2 (EF030548)
Methylbacterium rhodesianum strain DSM5687 (EF562473)
Methylbacterium hispanicum strain DSM16372 (EF562468)
Methylbacterium jeotgalii strain 52R03-9 (EF031552)
Methylbacterium sp. MPS (EU047511)
Methylbacterium orgonophilum DSM760 (EF562471)
Methylbacterium radiotolerans JCM2831 1819 (EF562472)
Methylbacterium fujisawaense strain KACC10744 (EF562467)
Methylobacterium oryzae strain CBMB20 (EF562478)
Methylobacterium fujisawaense strain MP1 (EF030547)
Methylobacterium oryzae strain CBMB110 (EF562476)
Methylbacterium suomiense strain DSM11490 (EF562474)
Afipia felis strain 25E-1 (AY848826)
Afipia felis strain RD1 (AY848827)
Methylbacterium podarium strain FM4 (AY683666)
Methylbacterium extorquens strain DSM1337 (EF562466)
Methylbacterium dichloromethanicum strain DSM6343 (AJ878068)
Methylbacterium dichloromethanicum strain DSM11490 (EF562475)
Methylobacterium suomiense strain CBMB130 (EF562479)
Methylobacterium suomiense strain CBMB120 (EF562477)
Methylobacterium thiocyanatum strain DSM11490 (EF562472)
Methylobacterium fujisawaense strain MP1 (EF030547)
Methylobacterium oryzae strain CBMB110 (EF562476)
Methylbacterium radiotolerans JCM2831 1819 (EF562472) |
| Mainly Hyphomicrobium (Cluster 3) | Hyphomicrobium sp. strain B 314 (HSMXAF314)
Hyphomicrobium sp. strain B 327 (HSMXAF327)
Hyphomicrobium sp. strain DPB 2c (HSMXAF2C)
Hyphomicrobium aestuarii (HMXAF)
Hyphomicrobium sp. strain B 583 (HSMXAF583)
Hyphomicrobium sp. strain B 520 (HSMXAF520)
Hyphomicrobium sp. strain B 294 (HSMXAF294)
Hyphomicrobium sp. strain P 324 (HSMXAF324)
Hyphomicrobium sp. strain B 294 (HSMXAF294) |
| β-proteobacterial Methylotrophs (Cluster 5) | Flavisobacter sp. Vu-144 (EU912489)
Duganella sp. B41 (EU439303)
Methylophilus methylotrophus (MMU41040)
Methylobacillus glycogenus ATCC29475 (AJ878073)
Methyloversatilis universalis strain ATCC29475 (AJ878073)
Methyloversatilis universalis strain ATCC29475 (AJ878073) |
| xoxF/xoxF-like genes | Paracoccus denitrificans (U34346)
Rhodobacter sphaeroides 2.4.1 (CP000143)
Methylbacterium radiotolerans JCM 2831 Mrad 2831 1932 (NC_010505)
Methylbacterium radiotolerans JCM2831 Mrad 2831 1932 (NC_010505)
Burkholderiales bacterium RZ18-153 (EU548065)
Methylbacterium extorquens PA1 Mext 1809 (NC_010511)
Methylbacterium chloromethanicum CM4 Mchl2145 (NC_011757)
Methylbacterium extorquens AM1 MexAM1 META1p1740 (NC_012808)
Methylbacterium sp. 4–46 M446 5752 (NC_010511)
Methylbacterium radiotolerans JCM 2831 Mrad 2831 0508 (NC_010505)
Methylbacterium sp. 4–46 M446 2082 (NC_010511) |

doi:10.1371/journal.pone.0056993.t002
MxaF as BioMarker for Methanotrophic Bacteria

- 10 changes
of methanotrophic Beijerinckiaceae. It is therefore difficult to ascertain whether microorganisms with mxaF gene sequences placed near the polyphyletic Beijerinckiaceae genera Methylocapsa, Methylocella, and Methylofarula are indeed methanotrophic.

Overall, our data suggest that the partial mxaF gene (~550 bp) amplified by the primer set mentioned is a useful phylogenetic marker and provides sufficient resolution to broadly discriminate between known proteobacterial methanotroph families via the Methylococcaceae and Methylocystaceae clusters, which together encompass the vast majority of known methanotrophs. However, it has poor resolution at the sub-family level across the Methylococcaceae (not shown in previous studies) and Methylocystaceae, and ambiguities exist between the methanotrophic Beijerinckiaceae and other methylo trophs in the Alphaproteobacteria, due possibly to horizontal transfers of the mxaF gene.

mxaF Sequences from Diverse Environments, Isolates and Endosymbiotic Methanotrophs

The mxaF gene was used here to examine the phylogenetic placement and diversity of over fifty novel sequences of putative methanotrophs from a range of natural environments and from cultured isolates in light of evolutionary information from the mxaF gene phylogeny determined above. The mxaF datasets from Harvard Forest soil, peat and Sphagnum moss from northern Wisconsin, and the HBHA water column contained diverse sequences that clustered primarily in the Methylococcaceae and Methylocystaceae, as well as sequences related to methanotrophic Beijerinckiaceae and other alphaproteobacterial methylo trophs. Notably, the sample of Sphagnum moss contained three sequences (Sphag#1, Sphag#2, and Sphag#3), suggestive of three strains, most closely related to the methylotrophy Methylobacterium multivorans. However, these three sequences are also closely related to the methanotrophic Beijerinckiaceae genus Methylofarula (Fig. 3). Given the uncertainty with which mxaF discriminates between methanotrophic Beijerinckiaceae and certain alphaproteobacterial methylotrophs discussed above, the sequences detected in peat, forest soils and Sphagnum moss could represent methanotrophic bacteria.

Our analyses also provide the first insights into the phylogenetic placement and biogeography of the previously unknown mxaF genes from putative methanotrophic endosymbionts of deep-sea hydrothermal vent Bathymodiolid mussels. Bathymodiolus azoricus and B. puteoserpentis are the dominant species of mussels within the two spatially separate mussel hybrid zones of Lucky Strike and Rainbow, and Logatchev on the Mid-Atlantic Ridge [54]. Here, dual bacterial endosymbionts provide nutrition to the mussel hosts through thiotrophy and methanotrophy, but the mode of methanotrophic symbiont transmission, whether vertical (symbionts are passed from parent to offspring) or horizontal (symbionts are taken up from the environment, or from co-occurring hosts) is not known [38,39,53,56]. Here, we show that these novel mxaF gene sequences of putative endosymbiotic methanotrophs belong to the Methylococcaceae, in agreement with their placement in the Gammaproteobacteria with other methanotrophs based on 16S rDNA phylogeny [6]. B. azoricus mussels at the adjacent Lucky Strike and Rainbow vent sites harbored closely related putative methanotrophic symbionts, with most mussels possessing a heterogeneous population of putative endosymbionts, based on the closely-related but unique mxaF gene sequences we detected. This result is consistent with the hypothesis of environmental acquisition of mussel symbionts [38,55,57,58], where each mussel may be expected to contain multiple genetic variants.

In contrast, B. puteoserpentis mussels at Logatchev, a vent site over 2600 km away, harbored a separate monophyletic group of closely related putative methanotrophic symbionts. The phylogenetic clustering of B. azoricus and B. puteoserpentis symbionts in two distinct clades suggests either taxon-specific differences in the specificity of the symbiont-host relationship (i.e., each host species associates with a unique symbiont strain) or that B. azoricus mussels at Lucky Strike and Rainbow acquire putative symbionts from an environmental pool that is genetically distinct from that available to B. puteoserpentis mussels at Logatchev vent site. Our phylogenetic analyses of mxaF gene sequences indicate that the putative endosymbiotic methanotrophs have diverged from an ancestral sequence into two monophyletic groups, either in response to host-symbiont co-speciation or to geographic separation. Indeed, the fragmented distribution of deep-sea hydrothermal vents may promote spatial isolation that acts as a barrier to symbiont dispersal [59].

With more information, the extent to which symbiont diversification is driven by either geographic isolation and symbiont-host specificity and co-evolution, can be assessed.

Proteobacterial methanotrophs currently constitute the vast majority of known aerobic methane oxidizing bacteria. In this study, we demonstrate the usefulness of the mxaF gene in studying proteobacterial methanotroph diversity in non-anoxic environments. Studying the evolutionary history of this gene from known methanotrophs extensively may provide insights into the placement of novel taxa detected in different environments and avoid incorrect inferences from their phylogenetic placement.

Our results indicate the mxaF gene can be a functional and phylogenetic marker for proteobacterial methanotrophs, providing more information about an important group of microorganisms involved in the global biogeochemical methane cycle.

Supporting Information
Supplement S1

Acknowledgments

We thank J. Semrau and R. Knowles for providing the methanotroph cultures, M. rubra and M. lblans, respectively, G. King, J. Poindexter, C. Murrell for providing methanotroph reference and control cultures, P. Dunfield for providing DNA of M. silvestris BL2 and M. acidophila B2, S. Jones for collecting peat soil and Sphagnum moss samples, A. Chan for assistance in collecting Harvard Forest soils samples, E. DeChaine for DNA extraction from B. azoricus and B. puteoserpentis, A. Ahmad for
providing the protocol for cleaning community DNA, C. Linnen for assistance with tests of congruency, J. Nolan, S. Cohen, M. Ruvolo, and F. Stewart for assistance with phylogenetic and statistical analyses, and F. Stewart, K. Fontaine, L. Chistoserdova, K. Scott, and T. Auchtung for helpful information and for reading and commenting on the manuscript.

References

Author Contributions

Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.