The Methanol Dehydrogenase Gene, mxAF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments

Evan Lau1,2*, Meredith C. Fisher2, Paul A. Steudler3, Colleen M. Cavanaugh2

1 Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America, 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, 3 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America

Abstract

The mxAF gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxAF gene as a functional and phylogenetic marker for methanotrophs. mxAF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxAF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiales. However, known methanotrophs generally formed coherent clades based on mxAF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxAF gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxAF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxAF as a biomarker for methanotrophic proteobacteria.

Introduction

Atmospheric methane contributes to ~20% of the total radiative forcing by long-lived greenhouse gases globally. Due to the relatively short lifetime of atmospheric methane (~9 yrs) compared to CO₂, reductions in atmospheric methane flux would have an immediate impact on global warming [1]. Microbial methane oxidation is the only major biological sink of methane [2]. With the exception of members of the phylum Verrucomicrobia [3], and the yet to be cultured anaerobic methane-oxidizers (ANME) [4,5], and denitrifying methanotrophs of the ‘NC10’ phylum, aerobic proteobacterial methanotrophs are the only currently known groups of microorganisms capable of oxidizing methane as their sole carbon source [6,7,8], thus reducing atmospheric methane flux.

Aerobic proteobacterial methanotrophs are unique among the larger group of methylotrophic bacteria (which are able to utilize C₁ or one-carbon compounds) in that they oxidize methane to methanol, before subsequent metabolic reactions that are shared with other methylotrophs. In contrast, non-methanotrophic methylotrophs are unable to utilize methanol, but can grow on other C₁ compounds (e.g., methanol, methylated amines, formate, or formamide) [9,10]. The vast majority of known aerobic methanotrophs belong to the Proteobacteria. Known exceptions include the phylum Verrucomicrobia, whose pathways for methanotrophy are still poorly understood [3,11,12], and enrichments of the uncultured methanotrophs such as Candidatus ‘Methylomirabilis oxyfera’ affiliated with the ‘NC10’ phylum, which appear to be incapable of oxidizing methane at low (~8%) oxygen levels in the laboratory [7,8,13]. Proteobacterial methanotrophs are placed in the families Methylococcaceae and Methylocystaceae in the Gammaproteobacteria, and Methylocystaceae and Beijerinckiales in the Alphaproteobacteria [14,15].

The similarities in physiological characteristics, and the generally highly conserved nature of the 16S rRNA and functional gene sequences of proteobacterial methanotrophs, have enabled the use of targeted PCR primers for gene amplification to describe methanotroph diversity [15,16]. However, the 16S rRNA gene is non-protein coding (i.e., not linked directly to methanotroph physiology), and therefore does not directly determine function. For example, it cannot be determined whether 16S rDNA environmental sequences placed close to, but outside of, known
monophyletic methanotroph clades are indeed methanotrophic [17,19]. In comparison, functional genes for enzymes found in methanotrophic metabolic pathways are directly related to physiology [19]. The initial step of methane oxidation to methanol by proteobacterial methanotrophs is mediated by particulate and/or soluble methane monoxygenases (MMOs) [15,20]. Genes in this step, such as pmoaA [encoding a subunit of the particulate methane monoxygenase pMMO] and mxaX [encoding a subunit of the soluble methane monoxygenase sMMO] have been used for describing methanotroph diversity [17]. However, the pmoaA gene is not present in the genera Methylocella and Methylofera [21,22,23], and the mxaX gene is present only in a few strains of methanotrophs [15,24]. Hence, the use of both pmoaA and mxaX genes in PCR-based studies results in the underestimation of methanotroph diversity and suggests that an alternative is needed.

The mxaF gene was first proposed as a functional gene probe for methyloths by McDonald and Marrelli [19]. Methane oxidation gene cluster \(\text{mxaF}\) encodes the \(\alpha\)-subunit of the enzyme methanol dehydrogenase (MDH), an enzyme containing a pyrroloquinoline quinone (PQQ) cofactor that oxidizes methanol to formaldehyde in the second step of the methane oxidation pathway, following oxidation of methane to methanol [20,25,26,27,28]. Methanol dehydrogenase is common to all methanotrophs in the Proteobacteria [15,19], but is absent in members of the phylum Verrucomicrobia, which possess a homolog of the mxaF gene, called xoxF gene, a gene of unknown function [29,30,31,32]. Sequences of the mxaF gene are highly conserved in methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria, reflecting 16S rDNA phylogeny [19,32,33]. In studies thus far based on the mxaF gene, a limited number of representative methanotrophs (\(<15\) taxa) have been placed in generally distinct and coherent clades separate from the other methyloths [15,19,24,32]. These studies indicate the mxaF gene can be a useful phylogenetic marker for the classification of methanotrophs.

However, the extent to which mxaF gene sequences of all known proteobacterial methanotrophs can be placed in separate distinct phylogenetic clades has yet to be determined. This may affect its accuracy as a reliable functional biomarker and potentially lead to incorrect inferences when determining phylogenetic relationships, notably if horizontal gene transfer has occurred across these taxa. To date, no extensive phylogenetic comparisons of proteobacterial methyloths (including methanotroph) mxaF gene sequences have been conducted. In the only study of mxaF phylogeny of the family Methylocystaceae (genera Methylosinus and Methylocystis), representative mxaF genes sequences from this family clustered within a distinct clade, but did not separate according to genus-specific subclades, suggesting that horizontal transfer of this gene may have occurred across this family. However the study did not indicate the extent of horizontal gene transfer in other proteobacterial methanotrophs, and which taxa were involved [17]. Previous studies of mxaF revealed that it is related to quinone alcohol dehydrogenases (ADHs), which utilize a variety of primary and secondary alcohols, but not methanol, as substrates [34], and that mxaF is related to xoxF [32].

Here, we examined whether the mxaF and 16S rRNA gene phylogenies of methanotrophs from the GenBank [35] database reflect congruent evolutionary histories. Though Candidatus M. oxyfera (and members of NC10 phylum) possesses an mxaF-like gene, it is placed outside of known proteobacterial mxaF gene clusters (data not shown). Candidatus M. oxyfera’s genome lacks any known PQQ-biosynthesis pathways and thus may not be able to oxidize methanol on its own [8]. Hence it was not included in our analyses.

This study addresses the following questions, (a) Does the extensive mxaF gene phylogeny discriminate between methanotrophic and other methylotrophic sequences available in genetic databases? (b) Are the mxaF and 16S rRNA gene phylogenies congruent for methanotrophs in the families Methylocystaceae, Methylococcaceae, and Beijerinckia? (c) Can we tell whether mxaF gene retrieved from the environment belong to methanotrophs or methylotrophs? These questions are addressed using phylogenetic analyses involving sequences from published databases, as well as mxaF sequences obtained in this study from surveys of diverse environments (forest soils, peat and Sphagnum moss, and symbiosis-hosting mussel gills) and from methanotroph cultures. Overall, these analyses advance the study of methanotroph diversity by showing that the mxaF gene consistently places methanotroph sequences in resolved phylogenetic clusters for all known members of the families Methylocystaceae and Methylococcaceae, and has the potential to elucidate the roles methanotrophs play in natural environments.

Materials and Methods

Cultures

Two mxaF gene sequences were determined in this study for cultured species of the Methylococccaceae, *Methylobomas rubra* and *Methylobacter latus*, provided by J. Semrau and R. Knowles, respectively. Positive control cultures used in this study included two members of the Methylocystaceae and a member of the Methylococcaceae for which mxaF gene sequences are already available; *Methylosinus trichosporium OB3b*, *Methylocystis parus OBBP*, *Methylomicrobium album BG8*, respectively.

Collections and Site Descriptions

Samples for DNA extraction or bacterial isolation were collected from four distinct habitats for DNA extraction or bacterial isolation: (a) Four soil samples, weighing \(\sim 15\) g, from the organic horizon of long-term nitrogen-amended and control pine and hardwood forest soils of the Harvard Forest Long-Term Ecological Research (LTER) site, previously shown to oxidize methane at atmospheric levels, in Petersham, Massachusetts (42°30’N, 72°10’W) in 2004 [18,36], (b) *Sphagnum recurvum* peat and peat from Crystal Bog (Vilas county, Wisconsin), a 7 ha poor fen enclosing a 2.5 m deep, 0.54 ha, dystrophic lake on the North Temperate Lakes LTER site in 2005 (46°00’30”N 89°36’30”W) [37], (c) two species of methanotrophic-hosting mussels (n = 3 per site) from the Mid-Atlantic Ridge (MAR) deep-sea vent sites sampled in 2003 using DSV Alvin: *Bathydromos azoreus* from LItucky Strike (LS; 37°17’N, 32°16’W; 1693 m deep) and Rainbow (RB; 36°13’N, 33°54’W, 2300 m deep), and *Bathydromus puteoserpentis* from Logatchev (LO; 14°45’N, 44°58’W; 3027 m deep) [38,39], and (d) the Halls Brook Holding Area (HBHA), an artificial lake in the Aberjona Watershed, sampled in 2004, near Boston, MA, which becomes stratified during the summer months, whereby the bottom depths become anoxic [40]. No specific permissions were required for collecting samples in these locations because samples did not involve endangered or protected species, Harvard Forest is owned by Harvard University and permission is granted to research employees, and Crystal Bog and Halls Brook Holding Area are located on public land.

Methanotroph Isolation, DNA Extraction, and Purification

Methanotrophic HBHA isolate 1 and HBHA isolate 2 were isolated from water collected at the oxic-anoxic interface at HBHA (~1 m depth) using sterile Tygon® tubing connected to a peristaltic pump, and injected into sterile flasks containing Nitrato
Mineral Salts (NMS) minimal medium [41], under 90:10 air:methane headspace, and incubated with shaking at room temperature. Both isolates failed to grow in the absence of methane and oxygen. Purified DNA from methanotroph cultures was obtained using the Wizard® Genomic DNA Purification Kit (Promega Inc.). DNA from endosymbiont-containing mussel gill tissue and forest soils was obtained as previously described [18,30]. DNA was extracted from HBHA isolates, pea and Sphagnum moss following the method as previously described [10].

Primer Design, PCR Amplification, Cloning, and Sequencing

Methylophath mxaF-specific PCR primers F1003 and R1561 ([33]; Table 1) sequences were verified through BLAST [42] to determine their specificity to proteobacterial methanotrophs in the GenBank [35] database, and used to amplify partial mxaF gene sequences from soils, peat, *Sphagnum* moss, methanotrophic HBHA isolates 1 and 2, and control methanotroph cultures. The amplified region encompasses three amino acid residues (out of eight) in the MDH active sites – Asn-261, Asp-303 and Arg-331– based on the amino acid sequence of *Methyllobacterietum extorquens* MDH [26]. BLAST searches of the primer pair F1003 and R1561 retrieved only proteobacterial mxaF genes, but not that of *Candidatus ‘Methylomirabilis oxyfera’.*

Additionally, degenerate primers F1003degen and R1561degen (Table 1) were created after comparing amino acid sequences of mxaF genes from the same DNA extracts. The same primers were also used to PCR amplify mxaF genes from *Sphagnum* moss in order to verify these primers also PCR amplify mxaF sequences outside of the Methylococcales. All PCR reaction mixtures contained 1× PCR buffer (Qiagen Inc.), 2.5 mM MgCl₂, 300 mM final concentration of each dNTP, a 1.0 μM final concentration of each primer, 1.0 U of Taq polymerase, and approximately 300–800 ng of template DNA in a final volume of 25 μL. PCR conditions were: denaturation at 94°C for 45 sec, primer annealing at 60°C for 1 min, and extension at 72°C for 1.5 min for 30 cycles, and a final 10 min extension at 72°C. PCR products of the expected size (~550 bp for mxaF gene) were purified, cloned, and sequenced (≥3 clones per sample).

Cloning and Sequencing

PCR products of the expected size (~550 bp for mxaF) were purified (QIAquick PCR Purification Kit, Qiagen Inc.), cloned (pCR®2.1-TOPO vector from the TOPO TA Cloning Kit, Invitrogen Corp.), using chemical method on TOP 10 competent cells, and plated on LB agar plates containing 50 μg ml⁻¹ kanamycin, and 40 mg ml⁻¹ X-Gal (5-bromo-4-chloro-3-indolyl-β-D-Galactopyranoside). Colonies were screened for inserts using the respective primers via PCR. Plasmid DNA was isolated from positive clones using the QIAprep² Spin Miniprep Kit (Qiagen Inc.). Sequencing reactions were performed using the ABI PRISM® Big Dye Terminator Cycle Sequencing kit (version 3.1, Applied Biosystems®) and an ABI model 3100 automated sequencer (Applied Biosystems®) according to the manufacturer’s instructions. Reombinants were sequenced in both directions using M13 forward and reverse primers. For environmental DNA extracts, at least five clones were sequenced from each PCR reaction. For *Bathynella* mussels, three clones each were sequenced from frozen gill tissue of three *B. azoricus* mussels from LS, three *B. azoricus* mussels from RB, and three *B. putrosetenitis* mussels from LO, for a total of 27 sequences.

Phylogenetic Analyses of Methylophath Bacterial Sequences from GenBank Database

The ADH gene and/or 16S rRNA gene sequences of *Solobacter ustitatus* Ellin 6076 (GenBank Accession no. NC_005536/ CP000473, Phylum Acidobacteria) were used as outgroup in all phylogenetic analyses. mxaF gene sequences were aligned using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and manually inspected in MacClade 4.08 (Sinauer Associates Inc., Sunderland, MA). Phylogenetic reconstruction was implemented using PAUP 4.0B10 [43] and Geneious 4.85 [http://www.geneious.com/] with PAUP plug-in. Unless stated otherwise, statistical support for all trees were obtained from 1,000 bootstrap replicates under the same initial settings (only bootstrap values >50% are reported). Pairwise base comparisons of mxaF nucleotide sequences within and between phylogenetic groups were determined using ClustalW2 and reported as % identity values.

(a) **Congruency tests between mxaF and 16S rRNA gene tree topologies.** The program Modeltest [44] was used to determine the best substitution model under Maximum Likelihood (ML) analysis (from PAUP software) for each dataset, and searched heuristically for the best model of nucleic acid sequence evolution that best fits our data. The topology of the best tree from ML analyses of each dataset was saved and then enforced as a topological constraint during subsequent paired ML phylogenetic analyses for each dataset. One-tailed Templeton and Shimodaira-Hasegawa (SH) tests were used to compare the constrained and unconstrained topologies using reestimated log likelihoods (RELL) simulation [45,46] and full optimization distributions using 10,000 bootstrap replicates under the likelihood tree scores menu. Uncorrected and Bonferroni-corrected *P*-values were reported for one-tailed Templeton and SH tests [45]. Confidence intervals were determined for the null hypotheses: the unconstrained and constrained ML tree of each dataset tested have significantly different likelihood scores. The data consisted of nineteen methanotroph taxa spanning three families (Methyloctacketsae, Beijerinckiacae, and Methylococcales) and one outgroup for which both genes were available: (a) seven members of the Methyloctacketsae – *Methyloctatus trichosporum* BF1, *M. trichosporum* O19/1, *M. trichosporum* KS21, *Methylosorus sporum* F10/1b, *Methyloctatus ehnados* IMET10491, *Methyloctatus* sp. IMET10490, and *Methyloctatus* sp. IMET10489, (b) four members of the methanotrophic Beijerinckiacae – *Methyllobacteriella silvestris*, *M. tundra*, *M. palustris*, and *Methyllobacter epidermatis*, and (c) eight members of the Methylococcales – *Methylococcus capsulatus* Bath, *Methylococcus* sp. E10a, *Methyloctatus* methanicus, *M. album*, *M. rubra*, *Methyllobacter luteus*, *Methyllobacter* sp. 5FB, and *Methylmicromorium* sp. For the Methyloctacketsae, there are insufficient mxaF sequences in GenBank, Table 1. PCR Primers sets used in this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5' → 3')</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1003</td>
<td>GCGGGCACAAGTGGGTGGCTGAT</td>
<td>33</td>
</tr>
<tr>
<td>R1561</td>
<td>GGGACCCTGCCATGCTGCC</td>
<td>33</td>
</tr>
<tr>
<td>F1003degen</td>
<td>GGCCANACGCTGGGTGGT</td>
<td>This study</td>
</tr>
<tr>
<td>R1561degen</td>
<td>GGARCCNTYATGCTNCC</td>
<td>This study</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0056993.t001
hence the mxaF of *Methylomicrobium album* str. BG8 (GenBank Accession no. L33682) was matched to the 16S rRNA gene sequence of *Methylomicrobium* sp. (GenBank Accession no. D89279). Separate ML phylogenetic analyses were conducted on three datasets: (a) mxaF gene sequences (–513 bp) of these methanotrophs, (b) the corresponding 16S rRNA gene sequences (–1471 bp) of the same taxa and (c) the concatenated mxaF and 16S rRNA gene sequences (–1984 bp).

(b) Phylogenetic analyses of cultured methanotrophs and other related methylotrophs. Maximum parsimony (MP) phylogenies of known methylotrophs (including methanotrophs), and related *mxaF* PQQ-linked dehydrogenase genes, which have recently been described [32] and were included to verify their phylogenetic placement relative to *mxaF* genes, were constructed based on nucleotide and on inferred amino acid sequences (n = 145) available in GenBank [35]. Alignments for *mxaF* nucleotide sequences included sequences with and without third nucleotide positions. Phylogenetic analyses (MP) implemented included alignments for *mxaF* nucleotide sequences with and without third nucleotides to assess third codon position bias) and random stepwise addition of sequences, as consensus of 9 saved, respectively) for 145 taxa. The resulting tree was obtained via random stepwise addition of sequences, as consensus of 9 saved, most parsimonious trees, obtained from a heuristic search.

Phylogenetic Analyses of Environmental mxaF Gene Sequences

All environmental *mxaF* nucleotide sequences detected in this study were verified through BLAST searches, and *mxaF* nucleotide sequences of their closest relatives (identified through homology searches) were included in the assembly. The final alignments for *mxaF* nucleotide sequences, *mxaF* sequences without third nucleotides and inferred *mxaF* amino acid sequences (513, 342, and 171 characters, respectively) for 145 taxa. The resulting tree was obtained via random stepwise addition of sequences, as consensus of 9 saved, most parsimonious trees, obtained from a heuristic search.

Nucleotide Sequence Accession Numbers

The *mxaF* gene nucleotide and inferred amino acid sequences of *Methylomonas rubra* and *Methyllobacter luteus*, HBBHA isolates 1 and 2, and uncultured clones have been deposited in GenBank, under accession numbers JX312966–JX313018.

Results

Concruency Tests

Concruency tests showed that the *mxaF* and 16S rRNA genes of representative methanotrophic species do not share congruent tree topologies. Topology tests failed to reject the null hypothesis that *mxaF* and 16S rRNA gene trees, when each was constrained to match the topology of the other gene, have significantly different likelihood scores. The SH test examines the topology, but does not indicate specific nodes or taxa causing incongruence [47]. Trees for *mxaF* gene, 16S rRNA gene, and combined *mxaF*–16S rRNA genes were observed to be incongruent, with incongruencies for representative taxa from the Methylomonadales and Methyllococcaceae, and the methanotrophic Beijerinckiaceae (Fig. 1).

mxaF Gene Phylogeny

The simplified *mxaF* gene tree (based on all codon positions) for known proteobacterial methylotrophs is shown in Fig. 2. Trees resulting from analyses of 1st and 2nd codon positions and inferred *mxaF* amino acid sequences of methylotrophs were identical in branching order of major taxa (not shown). Figure 2 indicates five distinct clusters of methylotrophs: (a) cluster 1 encompassing the Methylocystaceae, (b) cluster 2 containing mostly methylophrophic *Methylobacterium* sp. and methanotrophic *Beijerinckia* (Methylomonadales and *Methyllobacter*), (c) cluster 3 containing mostly *Hyphomicrobium*, (d) cluster 4 consisting solely of the monophyletic family Methyllococcaceae, including sequences obtained in this study for the cultured members *Methylomonas rubra* and *Methyllobacter luteus*, and (e) cluster 5 containing betaproteobacterial methylotroph genera. In addition, a well-supported monophyletic cluster 6 falls outside of other *mxaF* clusters and consists of *xoX* gene sequences, which are distantly related to methylotroph *mxaF* sequences [32]. The list of taxa comprising the non-methanotrophic methylotrophs and *xoX*/*xoF*-like clusters in Fig. 2 is shown in Table 2. The complete tree with all taxa (n = 145) is shown in Supplement S1.

Cluster 1 includes all members of the Methylcystaceae, forming two separate sub-clusters. Both sub-clusters are polyphyletic for the two genera *Methylosinus* and *Methylocystis*. The methanotrophic *Beijerinckia* (genera *Methylocapsa*, *Methyllobacter* and *Methylolferula*) are placed polyphylogenetically within cluster 2 with other methylotrophs (Fig. 2). There is a lack of distinction in the placement of species of methanotrophic *Beijerinckia* in cluster 2: *Methylcapsa* is most closely related to the non-methanotrophic genus *Acidomonas* [48], while the close relatives *Methyllobacteria palustris* strain K and *Methyllobacteria tandem* cluster with the methylotrophic *Methylorosula polaris*, gen. nov. Yu-22 and V-22 [49], *Methyllobacteria silvestris* clusters with the non-methanotrophs, *Beijerinckia mobilis* DSM 2326, and *Methylolferula stellata* clusters with the methylotrophic *Methylorosula ligni* strain BW363 and BW872 [50]. Based on the *mxaF* gene tree (Fig. 2), the alphaproteobacterial groups – the Methyllocystaceae (cluster 1), alphaproteobacterial methylotrophs including the methanotrophic *Beijerinckia* (clusters 2 and 3) – are more closely related to one another than to betaproteobacterial methylotrophs (cluster 5) and gammaproteobacterial methanotrophs (cluster 4). This pattern is also reflected in the 16S rDNA phylogeny.

Pairwise nucleotide sequence variations within the families Methyllocystaceae and Methylceccaceae and between methanotrophic *Beijerinckia* were ≥87%, ≥75%, and ≥78%, respectively. In contrast, the *xoX* cluster shared ≤69% identity with all *mxaF* genes, and *Solibacter usitatus* Ellin 6076 ADH (outgroup) shared ≤55% identity with all *mxaF* genes.

Phylogenetic Analyses of PCR-amplified Environmental mxaF Gene Sequences

All inferred amino acid sequences translated from *mxaF* genes amplified in this study possessed the three amino acid residues involved in the interactions of the active site. MP phylogenetic trees based on all nucleotides, 1st and 2nd codon positions, and inferred *mxaF* amino acid sequences were identical in topology; the tree based on all three nucleotides is shown in Fig. 3. Of the *mxaF* clones amplified from Harvard Forest soils (labeled P_C, P_F, and H_F), one was placed in the Methyllocystaceae and five were placed in the Methylcocaceae, with the remaining three (P_F#1; #2; #3; #6; #10, P_F#4, and P_F#5) closely related to environmental clones detected in other soils. Three sequences detected in *Sphagnum* moss (labeled Sphag, Fig. 3) clustered with the methylotroph *Methylorosula multicornis*, although this clade lacked bootstrap support. Of the four sequences detected in peat (labeled Peat) in the northern WI bog, one (Peat#4) clustered with *mxaF* sequences from clones detected in acidic forest and acidic
Figure 1. Congruency tests between \(mxAF \) and 16S rRNA gene nucleotide sequences of methanotrophs from GenBank database. Phylogenetic trees for congruency tests based on maximum likelihood (ML) analysis of \(mxAF \) (~513 bp) and 16S rRNA gene nucleotide sequences (~1471 bp) from methanotrophs in GenBank, including the \(mxAF \) nucleotide sequences of \textit{Methylomonas rubra} and \textit{Methylobacter luteus} sequenced in this study. The ADH gene of \textit{Solibacter usitatus} Ellin 6076 was used as outgroup. Methanotrophs (in the Methylococcaceae, Methylocystaceae and Beijerinckiaceae) are indicated by shaded clusters. Accession numbers of \(mxAF \) and 16S rRNA gene sequences downloaded from GenBank are indicated in parentheses. Bootstrap values from 1,000 replicates are indicated at the nodes of branches (if \(>50 \)). The scale bar represents the number of nucleotide changes.

doi:10.1371/journal.pone.0056993.g001
Figure 2. Simplified phylogenetic tree of methanotrophs and their close relatives based on mxaF nucleotide sequences from GenBank database. Unrooted phylogenetic tree based on maximum parsimony (MP) analysis of known proteobacterial partial mxaF and xoxF/xoxF-like nucleotide sequences (~513 bp) from GenBank and the mxaF nucleotide sequences (in bold) of Methylobacterium luteus sequenced in this study. The ADH gene of Solibacter usitatus Ellin 6076 was used as outgroup. Accession numbers of sequences downloaded...
from GenBank are indicated in parentheses. Bootstrap values from 1,000 replicates are indicated at the nodes of branches (if >50). The three bacterial families containing methanotrophs (Methylcocaceae, Methylocystaceae and methanotrophic members of the Beijerinckiacae) are indicated by shaded clusters and the other alphaproteobacterial and betaproteobacterial methanotrophs are delineated by lines. The identity of mxaF and mxaF-like sequences from the "Methylobacterium cluster (within cluster 2)" and "Mainly Hyphomicrobiaceae (Cluster 3)" as "(p)-proteobacterial methanotrophs (Cluster 5)" and "mxaF/mxaF-like genes" is shown in Table 2. The scale bar represents the number of nucleotide changes. The complete phylogenetic tree of methanotrophs and their close relatives based on mxaF nucleotide sequences is shown in Supplement S1.

doi:10.1371/journal.pone.0056993.g002

Discussion

Establishing the link between microbial phylogeny and physiology is complicated by the high level of physiological diversity in most microbial taxa (e.g., many microbes utilizing several carbon sources), and the potential for horizontal gene transfers – the movement of microbial genes between divergent genomes. Consequently, it is necessary to evaluate the accuracy of candidate functional genes as a diagnostic of key metabolic processes, as well as being accurate markers of evolutionary history. Doing so requires evaluating the result of phylogenetic reconstruction of gene sequences from all cultured organisms possessing the gene, before analyses of sequences from uncultured environmental clones. Methanotrophs are unique due to their preference for methane as a metabolic substrate and their possession of functional genes involved in this process. Here, we investigated the phylogeny, based on the mxaF gene, of all known proteobacterial methanotrophs from GenBank database and highlighted the mxaF gene’s ability to detect most methanotrophic bacteria and describe their molecular diversity in natural environments.

mxaF and 16S RNA Gene Phylogenies

In this study, the topological differences between 16S rRNA and mxaF gene trees, as seen in incongruencies between both trees (Fig. 1), suggest multiple occurrences of horizontal gene transfer in the mxaF genes of many methanotrophic taxa in the Methylococaceae, Methylocystaceae, and Beijerinckiace. Phylogenetic analyses based on mxaF genes placed the vast majority of cultivated proteobacterial methanotrophs, excluding members of the genera Methylocapsa, Methylocella, and Methylferula, in distinct and coherent clades representing the Methylococaceae and Methylocystaceae, with higher nucleotide identity between taxa within these clades than between members of different clades. These family-level clade distinctions are consistent with patterns evident in the 16S rDNA phylogeny. However, below the family level, mxaF-based analyses failed to differentiate between distinct subclasses based on genera.

The mxaF gene has poor resolving power for methanotrophs within the Beijerinckiace. Our mxaF gene tree (Fig. 2) indicates that these methanotrophs, composed of the genera Methylocapsa, Methylocella, and Methylferula, are polyphyletic, sharing common ancestry with other alphaproteobacterial methylofrs. This pattern corroborates previous studies, which assessed fewer methylofr taxa [23,49,53], and showed different topologies between mxaF and 16S rRNA genes, for example, in the genus Methylocella [22,50,53]. The more extensive mxaF gene phylogeny inferred here (compared to previous studies) suggests that
methanotrophy (a) arose once in the Beijerinckiaceae and was lost by some methylotrophic taxa, (b) arose separately in more than one taxon in the Beijerinckiaceae, and/or (c) multiple occurrences of horizontal gene transfers have occurred in the common ancestor.

Table 2. Taxa included (but not shown) in the phylogenetic analyses for Fig. 2.

<table>
<thead>
<tr>
<th>Cluster name</th>
<th>Taxa and GenBank Accession number (in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylobacterium cluster</td>
<td>Methylobacterium nodulans strain ORS2060 (AF220764)</td>
</tr>
<tr>
<td>(within cluster 2)</td>
<td>Methylobacterium aquaticum DSM1371 (EF562464)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium sp. MP3 (EF030549)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium lusitanum strain MP2 (EF030548)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium rhodesianum strain DSM5667 (EF562473)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium hispanicum strain DSM16372 (EF562468)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium jeotgali strain S2R03-9 (EF031552)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium sp. MPS (EU047511)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium mesophilicum strain DSM1708 (EF562470)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium organophilum DSM1262 (EF562471)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium radiotolerans JCM2831 1819 (EF562472)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium fusaiwaense strain KACC10744 (EF562467)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium oryzae strain CBMB20 (EF562478)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium sp. MP3 (EF030547)</td>
</tr>
<tr>
<td>Mainly Hyphomicrobium</td>
<td>Methylobacterium fujisawaense strain DSM1371 (EF562470)</td>
</tr>
<tr>
<td>(Cluster 3)</td>
<td>Methylobacterium aquaticum DSM1371 (EF562464)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium sp. MP3 (EU047511)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium mesophilicum strain DSM1708 (EF562470)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium organophilum DSM1262 (EF562471)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium radiotolerans JCM2831 1819 (EF562472)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium fusaiwaense strain KACC10744 (EF562467)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium oryzae strain CBMB20 (EF562478)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium sp. MP3 (EF030547)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium fujisawaense strain DSM1371 (EF562470)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium aquaticum DSM1371 (EF562464)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium sp. MP3 (EU047511)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium mesophilicum strain DSM1708 (EF562470)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium organophilum DSM1262 (EF562471)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium radiotolerans JCM2831 1819 (EF562472)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium fusaiwaense strain KACC10744 (EF562467)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium oryzae strain CBMB20 (EF562478)</td>
</tr>
<tr>
<td></td>
<td>Methylobacterium sp. MP3 (EF030547)</td>
</tr>
</tbody>
</table>

xoxF/xoxF-like genes

Paracoccus denitrificans (U34346)
Rhodobacter sphaeroides 2.4.1 (CP000143)
Methylobacterium radiotolerans JCM 2831 Mrad 2831 1932 (NC_010505)
Methyloversatilis universalis strain FAMS (EU548068)
Burkholderiales bacterium RZ18-153 (EU548065)
Methylobacterium extorquens PA1 Mext_1809 (NC_012808)
Methylobacterium sp. 4–46 M446 2082 (NC_010511)
Methylobacterium radiotolerans JCM 2831 Mrad 2831 0508 (NC_010505)
Methylobacterium extorquens AM1 MexAM1 META1p1740 (NC_012808)
Methylobacterium sp. 4–46 M446 2082 (NC_010511)

MxaF as BioMarker for Methanotrophic Bacteria

PLOS ONE | www.plosone.org 9 February 2013 | Volume 8 | Issue 2 | e56993
of methanotrophic Beijerinckiaceae. It is therefore difficult to ascertain whether microorganisms with \textit{mxaF} gene sequences placed near the polyphyletic Beijerinckiaceae genera \textit{Methylocystis}, \textit{Methylocella}, and \textit{Methyloenula} are indeed methanotrophic.

Overall, we can see that the data of the \textit{mxaF} gene (>550 bp) amplified by the primer set mentioned is useful in the phylogenetic marker and provides sufficient resolution to broadly discriminate between known proteobacterial methanotroph families via the Methylococcaceae and Methylocystaceae clusters, which together encompass the vast majority of known methanotrophs. However, it has poor resolution at the sub-family level across the Methylococcaceae (not shown in previous studies) and Methylo-
cystaceae, and ambiguities exist between the methanotrophic Beijerinckiaceae and other methylo-
trphs in the Alphaproteobacteria, due possibly to horizontal transfers of the \textit{mxaF} gene.

\textbf{mxaF Sequences from Diverse Environments, Isolates and Endosymbiotic Methanotrophs}

The \textit{mxaF} gene was used here to examine the phylogenetic placement and diversity of over fifty novel sequences of putative methanotrophs from a range of natural environments and from cultured isolates in light of evolutionary information from the \textit{mxaF} gene phylogeny determined above. The \textit{mxaF} datasets from Harvard Forest soil, peat and \textit{Sphagnum} moss from northern Wisconsin, and the HBHA water column contained diverse sequences that clustered primarily in the Methylococcaceae and Methylocystaceae, as well as sequences related to methanotrophic Beijerinckiaceae and other alphaproteobacterial methylo-
trphs. Notably, the sample of \textit{Sphagnum} moss contained three sequences (\textit{Sphag}#1, \textit{Sphag}#2, and \textit{Sphag}#3), suggestive of three strains, most closely related to the methylo-
trph \textit{Methylorhabdus multivorans}. However, these three sequences are also closely related to the methanotrophic Beijerinckiaceae genus \textit{Methylocella} (Fig. 3). Given the uncertainty with which \textit{mxaF} discriminates between methanotrophic Beijerinckiaceae and certain alphaproteobacterial methylo-
trphs discussed above, the sequences detected in peat, forest soils and \textit{Sphagnum} moss could represent methanotrophic bacteria.

Our analyses also provide the first insights into the phylogenetic placement and biogeography of the previously unknown \textit{mxaF} genes from putative methanotrophic endosymbionts of deep-sea hydrothermal vents Bathymodiolid mussels. \textit{Bathymodiolus azoricus} and \textit{B. puteoserpentis} are the dominant species of mussels within the two spatially separate mussel hybrid zones of Lucky Strike and Rainbow, and Logatchev on the Mid-Atlantic Ridge [54]. Here, dual bacterial endosymbionts provide nutrition to the mussel hosts through thiotrophy and methanotrophy, but the mode of methanotrophic symbiont transmission, whether vertical (symbionts are passed from parent to offspring) or horizontal (symbionts are taken up from the environment, or from co-occurring hosts) is not known [38,39,55,56]. Here, we show that these novel \textit{mxaF} gene sequences of putative endosymbiotic methanotrophs belong to the Methylococcaceae, in agreement with their placement in the Gammaproteobacteria with other methanotrophs based on 16S rDNA phylogeny [6]. \textit{B. azoricus} mussels at the adjacent Lucky Strike and Rainbow vent sites harbored closely related putative methanotrophic symbionts, with most mussels possessing a heterogeneous population of putative endosymbionts, based on the closely-related but unique \textit{mxaF} gene sequences we detected. This result is consistent with the hypothesis of environmental acquisition of mussel symbionts [38,55,57,58], where each mussel may be expected to contain multiple genetic variants.

In contrast, \textit{B. puteoserpentis} mussels at Logatchev, a vent site over 2600 km away, harbored a separate monophyletic group of closely related putative methanotrophic symbionts. The phylogenetic clustering of \textit{B. azoricus} and \textit{B. puteoserpentis} symbionts in two distinct clades suggests either taxon-specific differences in the specificity of the symbiont-host relationship (i.e., each host species associates with a unique symbiont strain) or that \textit{B. azoricus} mussels at Lucky Strike and Rainbow acquire putative symbionts from an environmental pool that is genetically distinct from that available to \textit{B. puteoserpentis} mussels at Logatchev vent site. Our phylogenetic analyses of \textit{mxaF} gene sequences indicate that the putative endosymbiotic methanotrophic species have diverged from an ancestral sequence into two monophyletic groups, either in response to host-symbiont co-
speciation or to geographic separation. Indeed, the fragmented distribution of deep-sea hydrothermal vents may promote spatial isolation that acts as a barrier to symbiont dispersal [59]. With more information, the extent to which symbiont diversification is driven by either geographic isolation and symbiont-host specificity and co-evolution, can be assessed.

Proteobacterial methanotrophs currently constitute the vast majority of known aerobic methane oxidizing bacteria. In this study, we demonstrate the usefulness of the \textit{mxaF} gene in studying proteobacterial methanotroph diversity in non-anoxic environments. Studying the evolutionary history of this gene from known methanotrophs extensively may provide insights into the placement of novel taxa detected in different environments and avoid incorrect inferences from their phylogenetic placement. Our results indicate the \textit{mxaF} gene can be a functional and phylogenetic marker for proteobacterial methanotrophs, providing more information about an important group of microorganisms involved in the global biogeochemical methane cycle.

\textbf{Supporting Information}

\textbf{Supplement S1 (DOCX)}

\textbf{Acknowledgments}

We thank J. Semrau and R. Knowles for providing the methanotroph cultures, \textit{M. rubra} and \textit{M. luteus}, respectively, G. King, J. Poinoexter, C. Murrell for providing methanotroph reference and control cultures, P. Dunfield for providing DNA of \textit{M. silvestris} BL2 and \textit{M. acidophilus} B2, S. Jones for collecting peat soil and \textit{Sphagnum} moss samples, A. Chan for assistance in collecting Harvard Forest soils samples, E. DeChaine for DNA extraction from \textit{B. azoricus} and \textit{B. puteoserpentis}, A. Ahmad for...
Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

Author Contributions
Conceived and designed the experiments: EL MCF. Performed the experiments: EL MCF. Analyzed the data: EL MCF PAS CMC. Contributed reagents/materials/analysis tools: EL MCF PAS CMC. Wrote the paper: EL MCF PAS CMC.

References

