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Neocortical gamma (30–80 Hz) rhythms correlate with attention, movement and
perception and are often disrupted in neurological and psychiatric disorders. Gamma
primarily occurs during alert brain states characterized by the so-called “desynchronized”
EEG. Is this because gamma rhythms are devoid of synchrony? In this review we take
a historical approach to answering this question. Richard Caton and Adolf Beck were the
first to report the rhythmic voltage fluctuations in the animal brain. They were limited
by the poor amplification of their early galvanometers. Thus when they presented light
or other stimuli, they observed a disappearance of the large resting oscillations. Several
groups have since shown that visual stimuli lead to low amplitude gamma rhythms and
that groups of neurons in the visual cortices fire together during individual gamma cycles.
This synchronous firing can more strongly drive downstream neurons. We discuss how
gamma-band synchrony can support ongoing communication between brain regions, and
highlight an important fact: there is at least local neuronal synchrony during gamma
rhythms. Thus, it is best to refer to the low amplitude, high frequency EEG as an
“activated”, not “desynchronized”, EEG.
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RICHARD CATON: THE FIRST EEG
It seems appropriate that a review of the history of rhythms
should begin in the city of Liverpool. Long before the guitars,
drums and microphones of the Beatles, there was the galvanome-
ter of Richard Caton, a local physician who went on to become
Lord Mayor of Liverpool. In 1875, Caton published what is
thought to be the first account of the oscillatory activity of the
brain (Caton, 1875; Brazier, 1961; Niedermeyer and Lopes da
Silva, 2005). His description of recordings made from rabbits, cats
and monkeys was all of nine sentences long. The 5th sentence read
(Caton, 1875):

Feeble currents of varying direction pass through the multiplier
when the electrodes are placed on two points of the external sur-
face, or one electrode on the gray matter, and one on the surface
of the skull.

Caton elaborated on his observations 2 years later (Caton,
1877):

The current is usually in constant fluctuation; the oscillation of
the index being generally small . . . At other times, great fluctua-
tions are observed, which in some instances coincide with some
muscular movements or change in the animal’s mental condition.

Caton went further. He attempted to explore the functional cor-
relates of these electric currents and found that shining a bright
light on the retina led to “variations in currents” in the “poste-
rior and lateral parts” of the brain (Caton, 1877). Thus Caton
not only documented the first electroencephalographic (EEG)

recordings, but he was also among the first to report sensory
evoked potentials in the brain.

Caton’s work built upon the observations of Luigi Galvani,
who, in 1791, used the notion of “animal electricity” to explain
why frog leg muscles twitched in response to sciatic nerve stimula-
tion (Galvani, 1791; Swartz and Goldensohn, 1998). The “multi-
plier” mentioned in Caton’s papers was a reflecting galvanometer,
named after Galvani, but invented by Johann Schweigger and
improved by William Thompson (Durgin, 1912). Caton used
non-polarizable electrodes similar to those employed by Emil
du Bois-Reymond, who had used them to show electrical “neg-
ative variations” (action potentials) in active peripheral nerves
(Brazier, 1961; Niedermeyer and Lopes da Silva, 2005). In 1870,
Fritsch and Hitzig discovered that the brain could be electrically
stimulated to evoke movements (O’Leary et al., 1976). David
Ferrier built upon this work by stimulating the cortex of mon-
keys (Ferrier, 1876; Niedermeyer and Lopes da Silva, 2005), and
Caton explicitly cited the influence of Ferrier’s thinking on his
work (Brazier, 1961). Of course, none of this electrophysiologi-
cal work would have been possible without the pioneering work
of Giovanni Aldini, Alessandro Volta, Georg Ohm and others in
understanding the basic principles of electricity (Durgin, 1912).

ADOLF BECK: THE DESYNCHRONIZED EEG
In 1891, Polish physiologist Adolf Beck, without knowledge of his
predecessor’s work, reproduced many of Caton’s results, observ-
ing “continuous waxing and waning variation(s)” in electrical
recordings from the brains of rabbits and dogs (Beck, 1891;
Brazier, 1961). Beck, however, made a new, important observa-
tion relating to these oscillations (Beck, 1891; Brazier, 1961):
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In addition to the increase in the original deviation during stimu-
lation of the eye with light, rhythmic oscillations . . . disappeared.
However this phenomenon was not the consequence of light stim-
ulation specifically for it appeared with every kind of stimulation
of other afferent nerves.

Thus Beck provided the first account of the so-called desyn-
chronized EEG. This desynchronized activity was characterized
by the “disappearance” of oscillations during arousal or sensory
stimulation.

Was this desynchronized state truly devoid of any rhythmic
oscillations? Or, as Mircea Steriade was to put it over a cen-
tury later, was the desynchronization “more apparent than real”
(Steriade, 1996)? Even if there were systematic oscillations during
the desynchronized state, one thing was obvious: their amplitude
was significantly decreased compared to those observed in the
resting state. Technical improvements of the recording equipment
were thus a prerequisite to answering these questions.

VLADIMIR NEMINSKY AND NAPOLEON CYBULSKI: THE
FREQUENCY OF OSCILLATIONS
The electrophysiologists of the 19th century were limited by
the poor amplification and limited temporal resolution of their
galvanometers, and by the fact that they were not yet able to
record and store the oscillatory brain activity they observed.
This changed at the turn of the century when, in 1901,
Willem Einthoven invented a more sensitive string galvanome-
ter that recorded on photographic paper the shadows created
by electrically-induced deflections of a string (Einthoven, 1901;
Swartz and Goldensohn, 1998). Einthoven’s galvanometer was
intended for, and first applied to, recordings of heart electrocar-
diograms, but it would eventually be used by Vladimir Neminsky
to study the frequencies of EEG rhythms. In 1913, Neminsky pub-
lished the first paper to include photographic EEG reproductions
(Pravdich-Neminsky, 1913). In the same paper, he described the
frequency of EEG oscillations (Pravdich-Neminsky, 1913; Brazier,
1961):

“Spontaneous” fluctuations led from the surface of the brain (and
from the dura mater) varied fairly significantly from 12 to 20 up
to approximately 35 per second.

He also noted that the frequency of these oscillations fell to 4–7
per second during asphyxia (Brazier, 1961). In 1914, Napoleon
Cybulski, Beck’s mentor, reported the results of his own experi-
ments using the string galvanometer. Recording from monkeys,
he found that the frequency of the “spontaneous” oscillations
ranged from 15 to 20 per second, but increased to 18 to 22 per
second after peripheral nerve stimulation (Cybulski and Jelenska-
Macieszyna, 1914; Brazier, 1961). In the same paper Cybulksi also
documented, for the first time, the EEG correlates of epileptic
seizures in dogs.

Thus a rich picture of rhythmic activity in the brain was
already beginning to emerge. The exact frequency of oscilla-
tions was not fixed, but “spontaneously” fluctuating over wide
ranges. In addition, Beck, Neminsky and Cybulksi’s afferent
nerve stimulation experiments suggested that active processing
of sensory information was accompanied by reduced amplitude,
desynchronized EEG signals. However, these active EEG states

could still be rhythmic, and in fact, were sometimes accompanied
by an increase in oscillation frequency.

HANS BERGER: THE HUMAN EEG, ALPHA AND BETA
RHYTHMS
In the first of his 23 papers published between 1929 and 1938,
Hans Berger reported the first EEG recordings from humans
(Berger, 1929; Gloor, 1969). Working at the University of Jena,
Berger used platinum needle electrodes, attached on one end
to the scalp of his 15-year-old son, Klaus (among others), and
on the other end to a double-coil Siemen’s galvanometer. Berger
placed the electrodes at the frontal and occipital poles of the
head, thus sampling non-local voltage differences spanning prac-
tically the whole brain. Berger reproduced many features seen in
the earlier EEG animal recordings. In particular, he observed an
8–12 Hz rhythm while his son sat passively with his eyes closed.
Since this was the first, most prominent rhythm he observed, he
named it the alpha rhythm. However, in spite of Berger’s sug-
gested terminology, this medium-frequency rhythm was referred
to as the Berger rhythm for many years to come. When his sub-
jects opened their eyes, Berger noticed a suppression of the alpha
rhythm, replaced by a lower amplitude, higher frequency, and
14–30 Hz rhythm. Berger called this the beta rhythm. Berger
also replaced Neminsky’s hybrid Greek-Latin term “electrocere-
brogram” with the entirely Greek name, electroencephalogram
(Brazier, 1961). Despite the substantial efforts of those pre-
ceding him, Berger is widely credited as being the “Father of
Electroencephalography” (O’Leary, 1970), although “Father of
Human Electroencephalography” is perhaps more appropriate.

HERBERT JASPER: GAMMA RHYTHMS AND THE 1/F
POWER-FREQUENCY RELATIONSHIP
The first mention of the gamma-rhythm appears to have come
in a 1938 paper by Herbert Jasper, then at Brown University, and
Howard Andrews (Jasper and Andrews, 1938):

In some of these records this irregularity is due to still higher fre-
quencies present simultaneously with the alpha and beta frequen-
cies . . . These higher frequencies (from 35 to 45 per second, which
might be called gamma waves) have not as yet been observed with
sufficient regularity for analysis.

Jasper was also one of the first to explicitly point out a general
relationship between EEG amplitude and frequency: “It appears
as a general rule that the amplitude of brain potentials decreases
with their frequency” (Jasper, 1936). In subsequent years, as
Fourier analysis was more commonly applied to EEG signals
to generate power spectra, this decrease in amplitude or power
with increasing frequency became known as the 1/f relationship
(Pritchard, 1992). The underlying neural or artifactual origins
of this 1/f relationship are still heavily debated (Buzsáki, 2006;
Logothetis et al., 2007; Bedard and Destexhe, 2009).

GIUSEPPE MORUZZI AND HORACE MAGOUN: THE ROLE OF
THE RETICULAR FORMATION
Giuseppe Moruzzi and Horace Magoun originally intended to
stimulate the superior cerebellar peduncle to study its inhibitory
effects on the motor cortex (Siegel, 2002). However, these fibers
ran through the midbrain reticular formation (RF), and Moruzzi
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and Magoun ended up stimulating cells in the RF (Moruzzi and
Magoun, 1949). They found that RF stimulation had profound
effects on the EEG of anesthetized cats: there was a clear shift from
low frequency high amplitude oscillations to what they called an
“activated” EEG (but was previously, and subsequently, referred
to as the “desynchronized” EEG). This activated EEG was accom-
panied by higher frequency oscillations, normally seen in aroused,
active waking states. Using increased stimulation strengths they
also showed that the high frequency state would persist after
the stimulation had stopped. This effect was seen in all corti-
cal regions (Moruzzi and Magoun, 1949), thus suggesting that
the RF was responsible for mediating the desynchronized corti-
cal states seen by Beck, Neminsky and Cybulski in response to
afferent nerve stimulation. The role of the RF in generating sleep-
wake cycles has been explored in detail over the years (Steriade,
1996; Jones, 2008). In particular, it is believed that the generation
of “activated” high-frequency states is mediated by projections
from the RF to the non-specific nuclei of the thalamus, which
then project to a wide range of cortical areas. It is worth point-
ing out here that the neuromodulator acetylcholine can also
induce the desynchronized, high frequency cortical states associ-
ated with wakefulness and alertness. Cholinergic projections from
the nucleus basalis of the basal forebrain are thought to mediate
this effect (Buzsaki and Gage, 1989).

EEG has developed into an invaluable tool in clinical settings
(Niedermeyer and Lopes da Silva, 2005), and hundreds of labs
have analyzed the behavioral and cognitive correlates of EEG in
both humans and laboratory animals using an ever-more sophis-
ticated set of analytical techniques (Fries et al., 2001; Bokil et al.,
2006). This has led to significant advances in our understanding
of the neuronal underpinnings of oscillations.

THE SOURCE OF EEG AND LFP SIGNALS

“Field potentials, although easy to record, are difficult to
interpret.”

—Ulla Mitzdorf (Mitzdorf, 1985)

So far, we have used “EEG” as the umbrella term to describe extra-
cellular electrical recordings from the brain. More accurately, the
use of the term EEG should perhaps be limited to non-invasive
recordings from the scalp, with the term electrocorticogram
(ECoG) used to describe recordings made from electrodes placed
directly on the cortical surface. Local field potential (LFP) refers
to the signal recorded using deeper microelectrodes, located in
specific cortical or subcortical layers. LFP signals are typically an
order of magnitude larger than their EEG counterparts. This is
because the currents are attenuated as they pass through various
cortical layers and through the entire thickness of the skull before
being recorded as EEG signals, a disparity that had been noted by
both Caton and Beck (Caton, 1877; Beck, 1891; Brazier, 1961).

It is generally believed that the LFP signal reflects the electri-
cal currents associated with synaptic activity in a local population
of neurons around the electrode (Renshaw et al., 1940; Mitzdorf,
1985, 1991; Niedermeyer and Lopes da Silva, 2005). An excita-
tory synaptic input generates a sink, as positively charged ions
leave the extracellular space and flow into the cell. This should
result in a negative deflection of the LFP on an electrode located

near the synapse. Similarly, an inhibitory post-synaptic potential
should lead to a source, resulting in a positive deflection of the
LFP. However, shunting inhibition should result in zero net cur-
rent flow, and should therefore be associated with no changes in
the LFP.

This, however, is a gross oversimplification, and the situation
becomes very complicated very quickly as additional details are
considered. Each synaptic sink is accompanied by sources at other
points on the neuron, as positive ions flow down the dendrites,
cell body and axon and eventually exit the cell as leak conduc-
tances. Thus the exact location of the electrode with respect to the
synapse will determine the magnitude and polarity of the asso-
ciated LFP deflection. The presence of multiple excitatory and
inhibitory synapses along the extent of a pyramidal cell presents
another confound. If multiple synapses are activated at different
points in time and space, the resulting distribution of sinks and
sources becomes difficult to predict, and is likely to underestimate
the excitatory activity due to various cancellation effects between
the positive and negative current flows around the synapses. The
presence of additional cells in the vicinity of the electrode, each
with their own unique morphology, synapses, sinks and sources
increases the complexity dramatically.

NEURONS FIRE SYNCHRONOUSLY DURING LFP RHYTHMS,
EVEN FAST RHYTHMS
In the face of this overwhelming geometric and electrical com-
plexity around an electrode, the LFP and EEG signals still reveal
systematic oscillations. How is this possible? This brings us to the
importance of synchrony. It is a concept that has been appreciated
for many years, and was elegantly summarized by Adrian as early
as 1935 (Adrian, 1935):

Fortunately, however, the cortex need not be regarded as a sys-
tem of several million independent units. The cells act in groups,
small or large, and sometimes there is a fairly simple co-ordinated
wave spreading over a wide area. Activity of this kind occurs only
in special conditions, but it gives rise to relatively simple poten-
tial changes, and if very many units are involved the potentials are
large–large enough to record in man through the unopened skull.

Thus, when cells are synchronously active they are expected to
give rise to larger, more easily detectable oscillations. However,
this statement needs an immediate clarification. As stated ear-
lier, LFP is thought to arise from the currents generated by active
synapses. Thus it would be more accurate to state that large,
detectable extracellular oscillations are more likely when synapses
are synchronously active. Synchronously active synapses are then
expected to lead to the synchronous activation (spiking) of local
neurons. The historical findings discussed earlier thus reveal the
relative synchrony of neurons during different brain states: sleep
is characterized by slow delta oscillations reflecting the rhythmic
and very synchronous activation of neurons; alert wakefulness
is characterized by the so-called “desynchronized” state, where
more cells are active overall, but smaller groups are synchronously
active. Despite the continued use of the term “desynchronized,”
it is perhaps a misnomer. Mercia Steriade was strongly dismis-
sive of the term (Steriade, 1996), referring to those who use it
as “epigones” (dictionary definition: “A second rate imitator or
follower, especially of an artist or philosopher”). The offense may
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not be worthy of the term, but Steriade’s goal was to point out that
active, waking states are associated with oscillations of their own
(Steriade and Amzica, 1996). These oscillations may be faster and
of lower amplitude, but they are still the result of synchronous and
rhythmic activation of cells. We now discuss the rich evidence that
has been accumulated over the last few decades linking gamma
oscillations with the synchronous activation of cells.

GAMMA-BAND SYNCHRONY: LOCAL vs. DISTANT
By 1989 cells in the olfactory system had already been shown to
oscillate at gamma frequencies in response to appropriate olfac-
tory cues by Walter Freeman and his colleagues (Freeman, 1978;
Di Prisco and Freeman, 1985). Gray and Singer (1989) extended
these findings to the visual system. They found that, in response
to moving bars of light, the multi-unit activity in cat visual cortex
showed synchronous and rhythmic activity at gamma frequen-
cies. This unit activity was accompanied by, and phase locked
to, prominent gamma oscillations in the LFP. Later that year,
the same group showed that the multi-unit activity at two loca-
tions of the visual cortex separated by 2–7 mm could also be
synchronous, with almost no phase lag (Gray et al., 1989). Cells
that showed such long range synchrony could have very different,
non-overlapping receptive fields, but often had almost identi-
cal orientation tuning. Contiguous bars of light that spanned
both disparate receptive fields resulted in the highest levels of
synchrony. In subsequent experiments, similar synchrony with
little to no phase lag was seen between regions of V1 and V2
(Engel et al., 1991b), and also across hemispheres (Engel et al.,
1991a). Common input, top-down inputs, long-range horizon-
tal corticocortical connections and gap junctions have all been
suggested as possible mechanistic explanations for this long-range
synchrony, but it remains an area of active research (Engel et al.,
2001; Uhlhaas et al., 2009).

These observations have led to what is known as the tempo-
ral binding by gamma-band synchrony hypothesis (Singer, 1993).
The binding hypothesis states that neurons in anatomically dis-
tinct regions can synchronously encode different features of a
stimulus (such as color, shape and location) by firing together in
a single gamma cycle. This synchronous firing across regions is
thought to “bind” the encoded features together into a unified
percept of the object, although this theory has proved diffi-
cult to test directly (Shadlen and Movshon, 1999). However,
there is growing evidence that there are clear behavioral advan-
tages of increased gamma-band synchrony. Recent work suggests
that increased gamma-band power is correlated with increased
attention (Fries et al., 2001), precedes movement initiation
(Pesaran et al., 2002) and is associated with faster reaction times
(Womelsdorf et al., 2006).

COMMUNICATION VIA GAMMA-BAND SYNCHRONY?
What are the mechanistic benefits of synchrony? The exact tim-
ing of spikes controls how well information is transmitted from
one brain region to another (Abeles, 1982; Softky and Koch, 1993;
Konig et al., 1996; Riehle et al., 1997). Synchronous presynaptic
inputs can summate more effectively and lead to an action poten-
tial in a postsynaptic neuron (Bernander et al., 1994). Thus, when
cells in a local brain region spike synchronously during a single

gamma cycle, is the information encoded by these cells more likely
to be transmitted to downstream brain regions? This is an area
of active research. The communication-by-coherency hypoth-
esis, popularized by Pascal Fries and colleagues (Fries, 2009),
states that communication between regions that have similar
gamma phase is more efficacious than communication between
regions that are out of phase (Womelsdorf et al., 2007). However,
the amplitude and frequency of gamma oscillations can change
rapidly, both spontaneously and in response to changing variables
such as visual contrast or running speed (Ray and Maunsell, 2010;
Burns et al., 2011; Ahmed and Mehta, 2012). The precise nature
of the behavior or stimulus determines whether these gamma fre-
quencies are coherent across different parts of the same brain
region. For example, gamma frequencies change together across
the hippocampus as a rat runs faster (Ahmed and Mehta, 2012),
but different gamma frequencies are observed in different parts
of V1 in response to large stimuli with multiple contrasts (Ray
and Maunsell, 2010). Thus gamma-band synchrony is only likely
to help with the communication of information between regions
whose frequency changes coherently. Indeed, a recent study has
shown that gamma-band frequencies in V1 and V2 change rapidly
but coherently, allowing gamma-band synchrony to play a poten-
tially important role in information transfer between the two
regions (Roberts et al., 2013).

ROLE OF LOCAL INHIBITION IN GENERATING GAMMA
Neurons prefer to fire near the trough of local extracellular
gamma oscillations. This finding is remarkably consistent across
different species, brain regions and stimuli (Gray and Singer,
1989; Murthy and Fetz, 1992; Bragin et al., 1995; Hasenstaub
et al., 2005; Ray et al., 2008; Atallah and Scanziani, 2009; Cardin
et al., 2009; Ahmed, 2010; Ray and Maunsell, 2010). Fast-spiking
(FS) inhibitory interneurons are thought to play a central role
in forcing pyramidal cells to fire in these restricted time win-
dows within gamma cycles. Network models and in vitro studies
have shown that mutual inhibition between FS interneurons is
sufficient to give rise to gamma oscillations (Whittington et al.,
1995; Wang and Buzsaki, 1996; Traub et al., 1999; Tiesinga
and Sejnowski, 2009). However, there are important differences
between the two main FS interneuron-based models of gamma
generation, as discussed below.

Theories that propose that interneurons are solely responsi-
ble for the generation of gamma are called InterNeuron Gamma
models (ING) (Wang and Buzsaki, 1996; White et al., 1998; Traub
et al., 1999; Borgers and Kopell, 2003; Borgers et al., 2005; Cardin
et al., 2009; Tiesinga and Sejnowski, 2009). In such models,
feedback activation of interneurons by pyramidal cells is not nec-
essary: interneurons are driven by external inputs, get inhibited
by other interneurons, and then fire again once they have recov-
ered from inhibition. Key parameters that determine the resulting
frequency of interneuron firing include the synaptic and mem-
brane time constants, as well as the amount of external excitatory
drive of interneurons (Traub et al., 1996). Gap junctions between
networks of FS interneurons facilitate their synchronized firing
(Traub, 1995; Gibson et al., 1999; Beierlein et al., 2000; Deans
et al., 2001), while the mutual inhibition facilitates their gamma
rhythmicity. Synchronous, rhythmic interneuron firing then
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provides periodically inhibited pyramidal cells with a very narrow
time window to fire a spike in each cycle, after the previous round
of inhibition wears off and just before the next bout of inhibition
arrives. Thus inhibition synchronizes the spike times of pyrami-
dal cells, giving rise to gamma-band synchrony among both cell
types.

The second class of gamma models is the Pyramidal-
InterNeuron Gamma model (PING) (Traub et al., 1999; Borgers
et al., 2005; Tiesinga and Sejnowski, 2009). In this model, feed-
back excitation from pyramidal cells is thought to excite the FS
interneurons. The FS interneurons then inhibit the pyramidal
cells, and the cycle repeats. This particular class of models does
not always include mutual inhibition among FS cells. Which of
these two models, if any, provides the most accurate mechanis-
tic description of the neurophysiological mechanisms underlying
gamma remains to be fully established (Tiesinga and Sejnowski,
2009).

CONCLUSION
As our historical review has shown, the term “desynchronized
EEG” was used primarily because larger, slower oscillations such
as delta and alpha disappeared when subjects were awake, alert
and active. However, as instrumentation improved over the
decades, it became clear that even when alpha or other slow oscil-
lations are not present in the waking EEG, there are still faster
gamma components (Jasper and Andrews, 1938). As discussed
in the second half of this review, there is strong, converging evi-
dence showing that the presence of gamma rhythms in the LFP
is accompanied by the synchronous firing of local neurons at the
trough of each extracellular gamma cycle, corresponding to the
peak of intracellular gamma (Gray and Singer, 1989; Murthy and
Fetz, 1992; Bragin et al., 1995; Hasenstaub et al., 2005; Ray et al.,

2008; Atallah and Scanziani, 2009; Cardin et al., 2009; Fries, 2009;
Tiesinga and Sejnowski, 2009; Adesnik and Scanziani, 2010; Ray
and Maunsell, 2010; Buzsaki and Wang, 2012). Thus, given the
fact that gamma oscillations are also the result of synchronous
activity, the term “desynchronized EEG” is perhaps best per-
manently replaced by “activated EEG,” as used by Moruzzi and
Magoun over 60 years ago (Moruzzi and Magoun, 1949). Unlike
the clear local neuronal synchrony during gamma-band oscilla-
tions, the extent of long-range gamma-band synchrony and its
role in gamma-band communication between areas continues to
be worked out and remains an active area of research (Fries, 2009;
Ray and Maunsell, 2010; Buzsaki and Wang, 2012; Siegel et al.,
2012; Roberts et al., 2013). The high resolution recording tech-
niques and computational power available to today’s researchers
are a far cry from the simple galvanometers used by Richard
Caton and Adolf Beck. But their pioneering work, as well as that of
thousands of researchers over the last century, has paved the way
toward a better understanding of gamma oscillations. Continuing
to work out the detailed mechanisms via which gamma rhythms
modulate neuronal synchrony and inter-areal communication
promises to help us better understand both the healthy and patho-
logical brain (Fries, 2009; Uhlhaas and Singer, 2010; Buzsaki and
Wang, 2012; Siegel et al., 2012).
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