Identification of Immunogenic Salmonella enterica Serotype Typhi Antigens Expressed in Chronic Biliary Carriers of S. Typhi in Kathmandu, Nepal

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th>Citation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Published Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>doi:10.1371/journal.pntd.0002335</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citable link</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://nrs.harvard.edu/urn-3:HUL.InstRepos:11855754">http://nrs.harvard.edu/urn-3:HUL.InstRepos:11855754</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terms of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at <a href="http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA">http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</a></td>
</tr>
</tbody>
</table>
Identification of Immunogenic *Salmonella enterica* Serotype Typhi Antigens Expressed in Chronic Biliary Carriers of *S. Typhi* in Kathmandu, Nepal

Richelle C. Charles1,2, Tania Sultana1,3, Mohammad Murshid Alam2, Yayan Yu1, Ying Wu-Freeman1, Meagan Kelly Bufano1, Sean M. Rollins1,2,4, Lillian Tsai1, Jason B. Harris1,2, Regina C. LaRocque1,2, Daniel T. Leung1,2,3, W. Abdullah Brooks3, Tran Vu Thieu Nga5, Sabina Dongol6, Buddha Basnyat6, Stephen B. Calderwood1,2,7, Jeremy Farrar5,8, Farhana Khanam3, John S. Gunn9, Firdausi Qadri3,8, Stephen Baker5,8,10,11, Edward T. Ryan1,2,11*

1 Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 2 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America, 3 International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh, 4 Department of Biology and Chemistry, Fitchburg State University, Fitchburg, Massachusetts, United States of America, 5 Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam, 6 Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal, 7 Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America, 8 Centre for Tropical Medicine and Malaria Control, Department of Clinical Medicine, Oxford University, Oxford, United Kingdom, 9 Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America, 10 The London School of Hygiene and Tropical Medicine, London, United Kingdom, 11 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America

Abstract

**Background:** *Salmonella enterica* serotype Typhi can colonize and persist in the biliary tract of infected individuals, resulting in a state of asymptomatic chronic carriage. Chronic carriers may act as persistent reservoirs of infection within a community and may introduce infection to susceptible individuals and new communities. Little is known about the interaction between the host and pathogen in the biliary tract of chronic carriers, and there is currently no reliable diagnostic assay to identify asymptomatic *S. Typhi* carriage.

**Methodology/Principal Findings:** To study host-pathogen interactions in the biliary tract during *S. Typhi* carriage, we applied an immunoscreening technique called in vivo-induced antigen technology (IVIAT), to identify potential biomarkers unique to carriers. IVIAT identifies humorally immunogenic bacterial antigens expressed uniquely in the *in vivo* environment, and we hypothesized that *S. Typhi* surviving in the biliary tract of humans may express a distinct antigenic profile. Thirteen *S. Typhi* antigens that were immunoreactive in carriers, but not in healthy individuals from a typhoid carriage.

**Conclusions/Significance:** Further evaluation of YncE and other antigens identified by IVIAT could lead to the development of improved diagnostic assays to identify asymptomatic *S. Typhi* carriers.


Editor: Joseph M. Vinetz, University of California San Diego School of Medicine, United States of America

Received March 6, 2013; Accepted June 12, 2013; Published August 1, 2013

Copyright: © 2013 Charles et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Funding:** This work was supported by the ICDDR,B and grants from the Wellcome Trust of the United Kingdom (TVTN, SD, BB, JF, SB) and the National Institutes of Health, including the National Institute of Allergy and Infectious Diseases (AI100023 and AI077883 [ETR, FQ], AI058935 [SBC, ETR and FQ]), Training Grant in Vaccine Development and Public Health (D43 TW005572 [MMA, PK, TS, ETR, FQ]), Career Development Awards (K01 TW07409 [UBH], K01 TW07144 [RCL], K08 AI089721 [RCC], K08 AI010923 [DTL]), an American Recovery and Reinvestment Act (ARRA) Post-doctoral Fellowship in Global Infectious Diseases (TW005572 [DTL, RCC]), a Clinical Research Scholars Award (R24 TW07988 [SBC]) from the Fogarty International Center, a Physician Scientist Early Career Award from the Howard Hughes Medical Institute (RCL), a Massachusetts General Hospital Physician Scientist Development Award from Massachusetts General Hospital (RCC), a Burroughs Welcome Fund/American Society of Tropical Medicine and Hygiene Postdoctoral Fellowship in Tropical Infectious Diseases (DTL), and an iSURF Award from the Harvard Global Health Institute (LLT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

**Competing Interests:** The authors have declared that no competing interests exist.

---

1 Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 2 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America, 3 International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh, 4 Department of Biology and Chemistry, Fitchburg State University, Fitchburg, Massachusetts, United States of America, 5 Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam, 6 Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal, 7 Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America, 8 Centre for Tropical Medicine and Malaria Control, Department of Clinical Medicine, Oxford University, Oxford, United Kingdom, 9 Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America, 10 The London School of Hygiene and Tropical Medicine, London, United Kingdom, 11 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America

**Competing Interests:** The authors have declared that no competing interests exist.

1 Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 2 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America, 3 International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh, 4 Department of Biology and Chemistry, Fitchburg State University, Fitchburg, Massachusetts, United States of America, 5 Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam, 6 Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal, 7 Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America, 8 Centre for Tropical Medicine and Malaria Control, Department of Clinical Medicine, Oxford University, Oxford, United Kingdom, 9 Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America, 10 The London School of Hygiene and Tropical Medicine, London, United Kingdom, 11 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America

**Competing Interests:** The authors have declared that no competing interests exist.
**Author Summary**

*Salmonella enterica* serotype Typhi is the cause of typhoid fever and infects over 21 million individuals and causes 200,000 deaths each year. With adequate treatment, most patients recover from their acute stage of illness and clear infection. However, a small percentage of Typhi infected individuals develop a chronic but asymptomatic infection in the biliary tract that can persist for decades. Since S. Typhi is a human-restricted pathogen, chronic carriers may act as reservoirs of infection. Correctly identifying and treating asymptomatic chronic carriers could be critical for ultimate control of typhoid fever. Using an immunoscreening technique called *in vivo*-induced antigen technology (IVIAT), we have identified potential biomarkers unique to *S. Typhi* chronic carriers. Further evaluation of these antigens could lead to the development of improved diagnostic assays to detect asymptomatic *S. Typhi* carriers in typhoid endemic zones, and to an improved understanding of the pathogenesis of *S. Typhi* in the chronic carrier state.

**Introduction**

*Salmonella enterica* serovars *Typhi* (*S. Typhi*) and *Paratyphi* A (*S. Paratyphi* A) are human-specific pathogens, and the predominant cause of enteric (typhoid) fever globally. Enteric fever affects over 21 million people each year, resulting in 200,000 deaths [1]. Infection with *S. Typhi* and *S. Paratyphi* A usually begins with ingestion of contaminated water or food. The pathogens invade the gastrointestinal mucosa, translocate to the lymphoid follicles where they survive and replicate within macrophages, and then disseminate via the bloodstream to the liver, spleen, intestinal lymph nodes, bone marrow, and gallbladder [2]. With adequate treatment, most patients recover from their acute stage of illness and clear infection. However, a small percentage of *S. Typhi* (and *S. Paratyphi* A) infected individuals develop a chronic, but apparently asymptomatic, infection in the biliary tract that can persist for decades [3–6]. The likelihood of this is not known, but it is estimated that chronic carriage can complicate perhaps 1–3% of acute infections [7].

Since *S. Typhi* and *S. Paratyphi* A are human-restricted pathogens, chronic carriers may act as reservoirs of infection within a community. They contribute to the transmission cycle through the intermittent shedding of bacteria in feces (especially in areas of low transmission [8]) and may act as vehicles for introducing *S. Typhi* and *S. Paratyphi* A into previously uninfected communities. Therefore, correctly identifying and treating asymptomatic chronic carriers is critical for the long-term control of enteric fever. Currently, there is no reliable diagnostic assay to identify asymptomatic *S. Typhi* and *S. Paratyphi* A carriage. Bacterial stool culture has been used, yet is challenging due to the expense and logistics of obtaining multiple samples from patients, since shedding is typically low level and intermittent [5]. Measurement of antibody responses to the *S. Typhi* capsular Vi antigen has been previously described as a potential method to detect chronic *S. Typhi* carriers [7]. In laboratory settings, IgG to the Vi antigen has been shown to have a sensitivity of 75% and specificity of >95% and has proven to complement other strategies in outbreak investigations [7,9–11]. However, its role in detecting asymptomatic carriers in a general endemic-zone population is unclear. In Chile, anti-Vi antibody responses had a sensitivity of 75% and specificity of 92%–97% for *S. Typhi* carriage; however, due to a low prevalence rate of carriage in the general population, its positive predictive value was only 8–17% [12]. In Vietnam, a large community-based survey for anti-Vi antibodies demonstrated a 3% positivity rate in the population; however, *S. Typhi* was never detected in the stool of individuals identified by such anti-Vi screening [13].

Understanding the mechanisms involved in development and persistence of the carrier state may facilitate development of improved diagnostic assays and therapeutic approaches for *S. Typhi* carriage. Currently, little is known about host-pathogen interactions in the biliary tract of chronic human carriers. Much of what is known about biliary carriage has been extrapolated from *in vitro* and murine studies with *S. Typhimurium*, which causes an enteric fever-like illness in mice [5]. From these animal studies and a complimentary study in humans, we know that gallstones facilitate *S. Typhi* carriage [5]. In the presence of bile, the bacterium regulates the expression of genes that allow it to colonize and persist in the gallbladder through formation of biofilms that mediate resistance against host defenses [14,15]. There are likely other niches of persistent infection outside of the gallbladder, including the biliary tree, liver, and mesenteric lymph nodes. This is suggested by the observation that although cholecystectomy increases cure rates, it does not always result in clearance of the pathogen in humans [16]. In a murine model of *Salmonella* chronic infection, *S. Typhimurium* infection in Slc11a1 (Nramp1) wild-type mice demonstrated that the most common site of persistent infection was in hemophagocytic macrophages within mesenteric lymph nodes [2,17,18].

To advance our understanding of *Salmonella* pathogenesis of the chronic carrier state, and identify potential biomarkers unique to *S. Typhi* chronic carriers, we applied an immunoscreening technique called *in vivo*-induced antigen technology (IVIAT) [19–21]. IVIAT identifies humorally immunogenic bacterial antigens expressed in *in vivo* and not in bacteria grown in standard laboratory conditions. We hypothesized that *S. Typhi* surviving in the biliary tract of humans may express a proteomic profile distinct from that expressed in bacteria grown using standard *in vitro* conditions or during acute infection.

**Methods**

**Ethics statement**

This study was approved by the human studies committee of the involved research institutions: Massachusetts General Hospital, International Centre of Diarrhoeal Disease Research, Bangladesh (icddr,b), Patan Hospital, The Nepal Health Research Council, and the Oxford Tropical Research Ethics Committee. The study was conducted according to the principles expressed in the Declaration of Helsinki/Belmont Report, and informed written consent was obtained from adult participants and from guardians of children prior to study participation.

**Bacterial strains, plasmids, and media**

*Salmonella enterica* serotype Typhi strain CT18 [22] was obtained from the *Salmonella* Genetic Stock Centre (Calgary, Alberta, Canada). Genomic DNA from this strain was used to construct a genomic inducible expression library in host strain *Escherichia coli* strain BL21(DE3). Bacterial strains were grown in Luria-Bertani (LB) media (with 50 µg/ml kanamycin for clones containing pET30 constructs) and maintained at −80°C in LB broth containing 15% glycerol.

**Patient and control sera**

Individuals undergoing elective cholecystectomy in Kathmandu, Nepal were enrolled. At the time of cholecystectomy, a venous blood sample was stored and a bile sample was taken for...
microbiologic analysis as previously described [6]. Patients were
categorized as (1) S. Typhi carriers if their bile culture was positive
for S. Typhi; (2) S. Paratyphi A carriers if their bile culture was
positive for S. Paratyphi A, or (3) cholecystectomy controls if their
bile cultures were negative for any organism. Sera samples were
also obtained from the following groups: (1) healthy Bangladeshi
residents of Dhaka (a typhoid endemic area) enrolled at the
International Centre for Diarrhoeal Disease Research, Bangladesh
(icddr,b); and (2) acute (day 0–3) and convalescent sera (day 14–28)
of Bangladeshi patients who presented to icddr,b with
bacteremia [23–25].

Construction of genomic inducible expression library
Genomic DNA was purified from S. Typhi strain CT18 using a
Genomic DNA Isolation kit (Qiagen, Valencia, CA), sheared using a
Covaris sonicator (Woburn, Ma) optimized to generate 0.5–
1.5 kb DNA fragments, and resulting fragments were gel purified
using the Qiagen Qiaquick Gel Extraction kit. After terminal
overhangs were removed using End-H1 DNA end-repair kit
(Epicenter Biotechnologies, Madison, WI), the blunt-end products
were ligated into pET-30c vectors (Novagen, San Diego, CA) that
had been digested with EcoRV and treated with calf intestinal alkaline
phosphatase. The library was electroporated into E. coli
DH5α and bacteria were plated onto selective LB media
containing kanamycin. After overnight incubation at 37°C, the
plates were scraped and the plasmid DNA from collected colonies
was recovered using Qiagen Miniprep kit. E.coli and KpnI
digestion was performed on a random sample of plasmids, and
an insertion frequency greater than 80% and insert size between
500 to 1500 bp was verified. The plasmid DNA mixture was
electroporated into E. coli BL21 (DE3), and collected colonies were
stored in LB broth containing 15% glycerol.

Screening for antigens uniquely expressed in vivo in S. Typhi
carriers
Convalescent sera of 5 patients with bile cultures positive for S.
Typhi were pooled, and adsorbed with in vitro grown S. Typhi
strain CT18 and E. coli BL21 (DE3) [19]. Immunoblot techniques
were used as previously described [19]. Briefly, the genomic
library was plated on LB plates containing kanamycin to obtain a
colony density of approximately 500 to 1000 clones per plate.
After overnight incubation at 37°C, the resultant colonies were
lifted off the plate using nitrocellulose membranes, and then the
membranes were placed on LB media containing kanamycin and
1 mM isopropyl-β-D-thiogalactopyranoside for 4 hours at 37°C to
induce transcription of insert DNA. Membranes were exposed to
chloroform-soaked blotting paper to lyse bacteria, blocked for 1 hr
using 5% milk in PBS with 0.25% Tween-20 (PBS/Tween),
washed five times in PBS/Tween, and then incubated overnight
with adsorbed sera at 1:10,000 dilution. After membranes were
washed 3 times with PBS/Tween, immunoreactive clones were
detected using anti-human IgG conjugated to horseradish
peroxidase (MP Biomedicals/Cappel, Aurora, OH) at a 1:20,000
dilution, and immunoblots were developed with an enhanced
chemiluminescence (ECL) kit (Amersham, Piscataway, NJ).
Reactive clones were recovered from the master plates and saved
as frozen glycerol stocks.

To conﬁrm immunoreactive clones, secondary screening was
performed comparing IgG immunoreactivity of the clones against
E. coli BL21DE3 with an empty pET30c vector. Inserts of
conﬁrmed clones were sequenced to identify gene insert.
Constructs designed to express the full length native protein were
generated by amplifying the entire ORF of identiﬁed genes by
PCR, and cloning these amplicons into pET30c as NdeI and Nol
inserts. Immunoreactivity of these full ORF clones was compared
to E. coli BL21DE3 with an empty pET30c vector. To assess
immunoreactivity of identiﬁed antigens among the pertinent
general population, immunoreactive clones were also screened
using pooled sera of individuals living in a typhoid endemic area
(Bangladesh). These sera were pre-adsorbed against in vitro grown
E. coli BL21DE3, as described above, to reduce background
reactivity against the host strain.

Functional classiﬁcations of identiﬁed proteins were assigned
using published articles and available protein information
resources, including J. Craig Venter Institute annotations
(http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi) and
Fam 26.0 (http://pfam.sanger.ac.uk/).

Purification of YncE
YncE [STY1479] was PCR-ampliﬁed from S. Typhi strain
CT18 and the product was cloned into Gateway vector
pDONR221 using BP reaction kit according to manufacturer’s
instructions (Invitrogen). The full length sequence was veriﬁed
and transferred from pDONR221 into the Gateway expression vector
pDEST17 using LR reaction kit (Invitrogen) generating
pDEST17/His6-yncE. The reaction product was transformed ﬁrst
into E. coli DH5α, and then the recovered plasmid was
transferred into the expression strain BL21AI. To overproduce
His6-YncE, E. coli BL21AI (pDEST17/His6-yncE) was grown in
250 mL LB broth containing ampicillin at 37°C until OD600
0.6, and then expression of His6-yncE was induced by the addition
of L(+)-arabinose (0.2%). After 4 hours, the pellet was harvested
by centrifugation, and the cells were lysed by sonication after
resuspension in 15 mL lysis buffer (50 mM Tris HCl, 5% glycerol,
0.1 M NaCl pH 8) containing 100 µg/mL lysozyme. Following
centrifugation, the pellet was washed in lysis buffer with and
without 1% Triton X-100, and the pellet was resuspended in
10 mL of 8 M urea, 50 mM NaH2PO4, and 300 mM NaCl
(pH 7.4). His6-yncE was puriﬁed by HiPur Cobalt Resin
(ThermoScientiﬁc, Rockford, IL) under denaturing conditions per
the manufacturer’s instructions. His6-yncE was then refolded by
dialysis into 25 mM Tris-HCl 0.15 M NaCl, pH 8.0 using
decreasing concentrations of urea. Product purity was assessed by
polyacrylamide gel electrophoresis and Coomassie staining, and
product identity was assessed by Mass spectrometry analysis.
Protein concentration was determined via Coomassie (Bradford)
Protein Assay Kit (ThermoScientiﬁc, Rockford, IL).

Evaluation of serum IgG and IgA responses to YncE and S. Typhi
capsular Vi antigen
To further characterize immunoreactivity of the antigen with
the most prominent immunoreactivity in our initial screening,
anti-YncE [STY1479] IgG and IgA responses were measured in
the sera of 10 S. Typhi carriers, 3 S. Paratyphi A carriers, 8
patients at acute (day 0–3) and convalescent phase (day 14–28) of
typhoid fever with conﬁrmed S. Typhi bacteremia, 8 Nepalese
controls undergoing elective cholecystectomy with negative bile
cultures, and 8 healthy Bangladeshi, in duplicate. Plates were
coated with 100 ng/well of YncE and then sera were added at a
1:200 dilution. Bound antibody was detected with anti-human IgG
or IgA conjugated with horseradish peroxidase (Jackson Labora-
tories, Bar Harbor, ME) at 1:1000 dilution, and peroxidase
activity was measured with the substrate 2,2-azinobis (ethyl-
benzthiazolesulfonic acid). To compare across plates, kinetic
readings (mAb/sec) of samples were averaged, divided by kinetic
readings (mAb/sec) of an in-house pooled standard (pooled sera of
five S. Typhi carriers conﬁrmed by biliary culture), and then
multplied by 100. Results were expressed as units (U). The Mann-Whitney U test was used to compare differences between groups.

For evaluation of anti-Vi IgG and IgA responses, ELISA plates were coated with 200 ng/well of Vi antigen (Sanofi Pasteur, Lyon, France). The above sera were applied at a 1:100 dilution, and bound antibody was detected with anti-human IgG and IgA conjugated with horseradish peroxidase at a 1:1000 dilution. Peroxidase activity was measured with the substrate 2,2-azinobis(ethylbenzthiazolinesulfonic acid). To compare anti-Vi responses across plates, duplicate kinetic readings of samples were averaged, divided by average kinetic readings of an in-house pooled standard, and then multiplied by 100, as described above. Results were expressed as units (U). Differences between groups were assessed using the Mann-Whitney U test.

Results

S. Typhi antigens identified by IVIAT

In the primary screen of over 120,000 clones, 565 clones were identified as immunogenic; 210 were confirmed by secondary screening. Sequence analysis of these inserts (many of which carried multiple potentially expressible ORFs) revealed 268 genes of interest with over 20% of genes identified multiple times, supporting validity of their identification and saturation of library screening. We subsequently sub-cloned the full coding sequences of 235 genes into individual expression plasmids, and identified 56 proteins with prominent IgG immunoreactivity using S. Typhi carrier sera, comparing immunoreactivity of expression clones to a clone containing an empty vector (Supplementary Table S1). Forty-eight of the identified genes are encoded on the chromosome of S. Typhi, 5 are encoded on the drug resistance plasmid pHCM1, and 3 on cryptic plasmid pHCM2. The most highly represented functional groups included proteins of unknown function and those involved in transport and binding, synthesis or salvage of ribonucleotides, and energy metabolism.

To assess the degree of immunoreactivity of antigens identified by IVIAT within the pertinent endemic-zone population, we screened the 56 immunoreactive clones against pooled sera of individuals living in a S. Typhi endemic area (Bangladeshi residents of Dhaka) [26]. Of these 56 proteins, 13 proteins had more prominent immunoreactivity when screened with sera of S. Typhi carriers compared to sera of healthy Bangladeshi. These 13 proteins included a number of putative membrane proteins, lipoproteins, and hemolysin-related proteins (Table 1). YncE, a possible ATP-binding protein, had the overall highest differential immunoreactivity compared to healthy endemic-zone control sera in our immunoblot assay.

Anti-YncE serum responses as a diagnostic biomarker for asymptomatic S. Typhi carriage

To further characterize whether the immunoreactivity to YncE in S. Typhi carriers was specific, we also evaluated the immunoreactivity to YncE using sera of 3 groups of individuals: (1) S. Typhi carriers, (2) patients at the acute and convalescent phase of typhoid fever, (3) S. Paratyphi A carriers, (4) individuals who underwent cholecystectomy in Nepal whose bile cultures were negative for any pathogen, and (5) healthy controls from a typhoid endemic area (Dhaka, Bangladesh). We found significantly higher IgG immunoreactivity to YncE in S. Typhi carriers compared to bile culture-negative patients (p = 0.0205), healthy Bangladeshis (p = 0.0005), and patients at the acute and convalescent phases of typhoid infection (p = 0.0044 and p = 0.0266, respectively); there was a trend toward statistical significance when compared to S. Paratyphi A carriers (p = 0.21) (Figure 1A). Of the 10 S. Typhi carriers, 7 (70%) had an anti-YncE IgG response (Units >100). None of 8 bile culture negative controls (0%), 0 of 8 healthy Bangladeshis (0%), 0 of 3 S. Paratyphi A carriers (0%) and 1 of 8 (12.5%) Bangladeshis at the acute and convalescent phase of S. Typhi had an anti-YncE IgG response. Thus, in our small subset of patients, using a cut-off value of >100 Units (U), anti-YncE IgG had a sensitivity of 70%, and specificity of 100% when using endemic zone healthy individuals and cholecystectomy patients without detectable S. Typhi as controls. The specificity decreased to 95% if we included patients with acute typhoid fever.

Although, the values did not reach statistical significance, S. Typhi carriers also had a higher IgA immunoreactivity to YncE compared to our two control groups: bile culture-negative patients (p = 0.2370) and healthy Bangladeshis (p = 0.2031) (Figure 1B). There was no significant difference between the IgA immunoreactivity to YncE in S. Typhi carriers in comparison to patients.

Table 1. Proteins identified by IVIAT with higher IgG immunoreactivity in S. Typhi carriers compared to healthy typhoid-endemic zone controls.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Gene</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>STY0712</td>
<td>corC</td>
<td>Hemolysin-related protein</td>
</tr>
<tr>
<td>STY1364</td>
<td>Hypothetical periplasmic protein</td>
<td></td>
</tr>
<tr>
<td>STY1479</td>
<td>yncE</td>
<td>Possible ATP-binding protein</td>
</tr>
<tr>
<td>STY2155</td>
<td>sirA</td>
<td>Invasion response-regulator</td>
</tr>
<tr>
<td>STY2248</td>
<td>pduG</td>
<td>PduG protein</td>
</tr>
<tr>
<td>STY2386</td>
<td>Putative lipoprotein</td>
<td></td>
</tr>
<tr>
<td>STY2454</td>
<td>yejE</td>
<td>Putative binding-protein-dependent transporter</td>
</tr>
<tr>
<td>STY2657</td>
<td>xapB</td>
<td>Xanthosine permease</td>
</tr>
<tr>
<td>STY3709</td>
<td>purH</td>
<td>Phosphoribosylaminomimidazolecarboxamidofomyltransferase and IMP cyclohydrolase (bifunctional enzyme)</td>
</tr>
<tr>
<td>HCM1.137</td>
<td>repE</td>
<td>Replication initiation protein</td>
</tr>
<tr>
<td>HCM1.213c</td>
<td>Putative transposase</td>
<td></td>
</tr>
<tr>
<td>HCM2.0043</td>
<td>Hypothetical protein</td>
<td></td>
</tr>
<tr>
<td>HCM2.0069c</td>
<td>Hypothetical protein</td>
<td></td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pntd.0002335.t001
convalescing from acute typhoid infection or S. Paratyphi A carriers.

Comparison with anti-Vi serum responses

Since immune responses to S. Typhi Vi antigen have been the best characterized diagnostic method for identifying S. Typhi carriers to date, we also assessed the anti-Vi IgG and IgA responses in the same cohort of patients. We found significantly higher IgG immunoreactivity to Vi antigen in S. Typhi carriers compared to PTA carriers (p = 0.0070), bile culture negative controls (p = 0.0343), healthy Bangladeshi patients (p = 0.0021), and patients at the acute phase of typhoid infection (p = 0.0155). (Figure 2A). There was a trend toward statistical significance when the immunoreactivity of S. Typhi carriers to Vi antigen was compared to patients at the convalescent phase of typhoid infection (p = 0.0830) (Figure 2A). In our evaluation of IgA anti-Vi responses, we did find a significant difference in the immunoreactivity of S. Typhi carriers compared to healthy Bangladeshi patients (p = 0.0155), and patients convalescing from acute typhoid infection (p = 0.0266) (Figure 2B). There was no significant difference in immune responses between S. Typhi carriers and bile-culture negative patients, S. Paratyphi A carriers, or patients at the acute phase of typhoid infection. The sensitivity for anti-Vi IgG and IgA was 40% (cutoff value >1250 U) and 50% (cutoff value >1250 U), respectively. The specificity was 100% for IgG irrespective of controls. For IgA, the specificity was 97% when using endemic zone healthy individuals and cholecystectomy patients without detectable S. Typhi as controls. The specificity was 94% if patients with acute typhoid fever were included in the analysis.

Figure 1. Characterization of anti- YncE immune responses. Anti-YncE IgG (A) and IgA (B) responses in S. Typhi carriers (Typhi carrier), S. Paratyphi A carriers (PTA carrier), Nepalese controls undergoing elective cholecystectomy with negative bile cultures (GB control), healthy Bangladeschi controls (HB control), and patients at the day 0–3 acute (Typhi acute) and day 14–28 convalescent phase (Typhi conv) of typhoid fever with confirmed S. Typhi bacteremia.

doi:10.1371/journal.pntd.0002335.g001

Figure 2. Characterization of anti- Vi immune responses. Anti- Vi antigen IgG (A) and IgA (B) responses were evaluated in S. Typhi carriers (Typhi carrier), S. Paratyphi A carriers (PTA carrier), Nepalese controls undergoing elective cholecystectomy with negative bile cultures (GB control), healthy Bangladeshi controls (HB control), and patients at the day 0–3 acute (Typhi acute) and day 14–28 convalescent phase (Typhi conv) of typhoid fever with confirmed S. Typhi bacteremia.

doi:10.1371/journal.pntd.0002335.g002
Combined YncE and Vi antibody measurements for the detection of S. Typhi carriers

In our analysis, using a cut-off value of >100 U of anti-YncE IgG and/or >1250 U anti-Vi IgA, we could identify 8 out of 10 S. Typhi carriers. There was no added benefit seen when pairing anti-YncE responses with anti-Vi IgG.

Discussion

In our immunoscreen using IVIAT, we were able to identify 56 immunogenic S. Typhi proteins using the sera of S. Typhi carriers. Of these, 13 had higher immunoreactivity when screened with S. Typhi carrier sera compared to sera of endemic zone residents. These proteins represent a tracking list of candidate diagnostic biomarkers of asymptomatic S. Typhi carriage and their analysis may further our understanding of survival adaptations of S. Typhi in chronic carriers.

Human epidemiologic studies as well as murine models of S. Typhi carriage suggest that gallstones facilitate the development of the chronic carriage state [5]. In support of this, we identified SirA in our IVIAT screen, which is part of the two-component response regulator SirA-BarA [27]. In S. Typhimurium, this regulator plays a role in the down-regulation of genes involved in invasion (i.e. Salmonella Pathogenicity Island-1) when the bacterium is in the presence of bile [28], and mutations in sirA result in decreased biofilm formation on plastic surfaces [28]. The role SirA may play in human or murine Salmonella carriage, or why a cytoplasmic regulator protein generated a humoral response, has yet to be characterized. Other proteins identified in the IVIAT screen may also affect carriage in the presence of gallstones.

Although S. Typhi may persist in the gallbladder in association with gallstones [3], S. Typhi likely has other niches of infection, including the gallbladder epithelium, biliary tree, and in macrophages of mesenteric lymph nodes [2,3,5,14–16]. Proteins identified in our screen may play a role in persistence of S. Typhi within host cells or the stringent environment of bile. For instance, YejE is a putative permease that is thought to be a component of a putative ABC transporter system. YejE plays a role in survival within epithelial cells and in antimicrobial peptide resistance [29]. In both S. Typhi and S. Typhimurium, yejE expression is upregulated inside host macrophages [30,31]. PduG is a protein encoded within the pdu operon that is part of the coenzyme B12-dependent 1,2-propanediol utilization pathway [32]. This operon is upregulated during acute S. Typhi and S. Paratyphi A infection in humans [24,33], and may be associated with use of alternative carbon sources in the nutrient-limited environment of the Salmonella-containing vacuole within host cells [32]. We also identified PurH and XapB, which are proteins involved in purine biosynthesis and acquisition, respectively, by functional classification. In S. Typhimurium, PurH is associated with virulence [34], and we have previously shown that genes involved in purine synthesis are upregulated during acute typhoid infection in humans [24]. CorC is a hemolysin-related protein involved in magnesium and cobalt efflux, and is part of the CorA transporter system containing CorA-D [35]. CorA, with associated proteins, is required for efflux of Mg$^{2+}$ [35]. CorA is required for S. Typhimurium virulence [36], and corA is expressed by S. Typhi during acute human infection [24]. However, while some information is known regarding the above mentioned Salmonella carrier-specific antigens, their potential role in carriage is presently unclear.

The majority of the genes identified by IVIAT encode for proteins with putative or unknown function. For example, STY2386 is an uncharacterized lipoprotein found uniquely in Salmonella. STY1364 is a hypothetical periplasmic protein in S. Typhi and S. Paratyphi A, and is rarely found in other Salmonella spp. STY1364 belongs to the structural classification of bacterial enterotoxins and is a subtilase cytotoxin subunit B-like protein. We previously identified STY1364 in S. Typhi infected patients using a separate immunoscreening technology (immunoaffinity proteomic-based technology, IPT) [23].

In our screening, YncE (STY1479) was the most immunoreactive antigen identified, and we thus focused our more detailed analysis of immunoreactivity on this antigen. YncE has a putative N-terminal signal sequence suggestive of export, with ATP and DNA-binding domains. yncE is present in a number of Salmonella spp., and has orthologs in a number of other Gram-negative enteric organisms, including Escherichia coli, Citrobacter spp., and Shigella spp. In E. coli, YncE is secreted into the periplasm via the Sec-dependent pathway [37], and its expression is induced under iron-restricted conditions when repression by the Fur protein is relieved [38]. Its role in the pathogenesis of Salmonella infection has yet to be characterized. However, our results suggest that it may be involved in long-term persistence of the bacterium in chronic carriers.

In our analysis, we show that S. Typhi carriers have an IgG response to YncE that is not present in bile culture-negative controls in Nepal or healthy controls in Bangladesh. Although we did not reach statistical significance in this small pilot study, a similar trend was seen for IgA as well. One patient convalescing from acute typhoid infection had a detectable IgG anti-YncE response, and another had an IgA response. This may suggest that anti-YncE responses occur during acute disease; however, it should be noted that we do not know the current or future carrier status of the acute typhoid patients, and an elevated level of YncE during an episode of typhoid fever may represent an acute on chronic infection, or may be a marker of future progression to the chronic carrier state.

All of the identified genes except three (xapB and the two genes encoded on the cryptic plasmid pHCM2) are present in the genome of S. Paratyphi A sequenced strains ATCC 9150 and AKU 12601 based on <60% nucleotide identity. It is interesting then, that we did not see an IgG or IgA immune response to YncE in S. Paratyphi A carriers. This finding may suggest that S. Typhi and S. Paratyphi A use different strategies to persist in chronic carriers, that expression of YncE may be distinct in these two organisms, or that our study did not have sufficient power to examine this, as it included only three S. Paratyphi A carriers. Despite this, in our small cohort of patients, measurement of anti-YncE IgG responses did appear to be both relatively sensitive and specific for identifying asymptomatic chronic S. Typhi carriers. Further studies will be needed to evaluate the diagnostic capabilities of anti-YncE responses in a larger and different cohort of patients. Of note, if such studies demonstrate higher anti-YncE IgA levels in S. Typhi carriers than in control groups, that information could support consideration of a salivary diagnostic to facilitate community-based screening for carriage.

The other antigens identified in our IVIAT analysis may also be useful diagnostic biomarkers of S. Typhi carriage, and the sensitivity of carrier detection may be improved when responses against these or anti-Vi responses are paired with responses to YncE. For example, in our analysis, using a cut-off value of >100 U of anti YncE IgG and/or >1250 U anti-Vi IgA, we could identify 8 out of 10 S. Typhi carriers. There was no added benefit seen when pairing anti-YncE responses with anti-Vi IgG. Another potential pairing could include a marker of biliary tract inflammation such as elevated bilirubin values, since S. Typhi carriage is often associated with chronic inflammation of the gallbladder [5]. We did not assess this parameter in this study.
Our study has a number of limitations. First, the number of patients involved in our study is small, although it should be noted that our analysis is the largest study involving immunoproteomic screening and pilot confirmation of the carriage state that includes appropriate control groups. A second limitation is that IVIAT identifies protein antigens that are uniquely expressed in vivo compared to standard in vitro culturing, and that also induce an antibody response. Proteins that induce cellular responses and/or that are expressed both in vivo and in vitro may also play a role in the pathogenesis of chronic carriage and serve as useful biomarkers for asymptomatic carriage. In addition, altering in vitro culturing conditions may also change the expression profile of S. Typhi, thereby changing the comparison groups. In addition, IVIAT does not identify non-protein antigens that may also be useful in diagnostic assays. However, despite these limitations, we have used IVIAT to identify a subset of immunoreactive antigens in S. Typhi carriers, including YncE. Further evaluation of YncE and other identified antigens could lead to the development of improved diagnostic assays to detect asymptomatic S. Typhi carriers in typhoid endemic zones, and analysis of YncE, along with other identified antigens, could lead to an improved understanding of host-pathogen interactions during chronic carriage of S. Typhi in humans.

Supporting Information
Table S1 Proteins identified by IVIAT with higher IgG immunoreactivity in S. Typhi carriers compared to immunoreactivity to empty vector. (XLS)

Author Contributions
Conceived and designed the experiments: RCC J BH RCL SBC FQ SB ETR. Performed the experiments: RCC TS MMA YYYW MBK SMR LT VTVTN SD BB FK. Analyzed the data: RCC TS YYYW DTL WAB SBC JSG J BH RCL FQ SB ETR. Contributed reagents/materials/analysis tools: SBC ETR FQ FK WAB SB BF BB SD VTVTN. Wrote the paper: RCC TS MMA YYYW MBK SMR LT J BH RCL DTL WAB VTVTN SD BB SBC JF FK JSG FQ SB ETR.

References
9. Nath G, Mauryal P, Gulati AK, Singh TB, Srivastava R, et al (2010) Vi serology identifies antigens that are uniquely expressed in Typhi, thereby changing the comparison groups. In addition, IVIAT does not identify non-protein antigens that may also be useful in diagnostic assays. However, despite these limitations, we have used IVIAT to identify a subset of immunoreactive antigens in S. Typhi carriers, including YncE. Further evaluation of YncE and other identified antigens could lead to the development of improved diagnostic assays to detect asymptomatic S. Typhi carriers in typhoid endemic zones, and analysis of YncE, along with other identified antigens, could lead to an improved understanding of host-pathogen interactions during chronic carriage of S. Typhi in humans.

Supporting Information
Table S1 Proteins identified by IVIAT with higher IgG immunoreactivity in S. Typhi carriers compared to immunoreactivity to empty vector. (XLS)

Author Contributions
Conceived and designed the experiments: RCC J BH RCL SBC FQ SB ETR. Performed the experiments: RCC TS MMA YYYW MBK SMR LT VTVTN SD BB FK. Analyzed the data: RCC TS YYYW DTL WAB SBC JSG J BH RCL FQ SB ETR. Contributed reagents/materials/analysis tools: SBC ETR FQ FK WAB SB BF BB SD VTVTN. Wrote the paper: RCC TS MMA YYYW MBK SMR LT J BH RCL DTL WAB VTVTN SD BB SBC JF FK JSG FQ SB ETR.

References
9. Nath G, Mauryal P, Gulati AK, Singh TB, Srivastava R, et al (2010) Vi serology identifies antigens that are uniquely expressed in Typhi, thereby changing the comparison groups. In addition, IVIAT does not identify non-protein antigens that may also be useful in diagnostic assays. However, despite these limitations, we have used IVIAT to identify a subset of immunoreactive antigens in S. Typhi carriers, including YncE. Further evaluation of YncE and other identified antigens could lead to the development of improved diagnostic assays to detect asymptomatic S. Typhi carriers in typhoid endemic zones, and analysis of YncE, along with other identified antigens, could lead to an improved understanding of host-pathogen interactions during chronic carriage of S. Typhi in humans.

Supporting Information
Table S1 Proteins identified by IVIAT with higher IgG immunoreactivity in S. Typhi carriers compared to immunoreactivity to empty vector. (XLS)

Author Contributions
Conceived and designed the experiments: RCC J BH RCL SBC FQ SB ETR. Performed the experiments: RCC TS MMA YYYW MBK SMR LT VTVTN SD BB FK. Analyzed the data: RCC TS YYYW DTL WAB SBC JSG J BH RCL FQ SB ETR. Contributed reagents/materials/analysis tools: SBC ETR FQ FK WAB SB BF BB SD VTVTN. Wrote the paper: RCC TS MMA YYYW MBK SMR LT J BH RCL DTL WAB VTVTN SD BB SBC JF FK JSG FQ SB ETR.

