Efficient photon detection from color centers in a diamond optical waveguide

D. Le Sage, L. M. Pham, N. Bar-Gill, C. Belthangady, M. D. Lukin, A. Yacoby, and R. L. Walsworth

1Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
2Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
3School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 24 December 2011; published 23 March 2012)

A common limitation of experiments using color centers in diamond is the poor photon collection efficiency of microscope objectives due to refraction at the diamond interface. We present a simple and effective technique to detect a large fraction of photons emitted by color centers within a planar diamond sample by detecting light that is guided to the edges of the diamond via total internal reflection. We describe a prototype device using this “side-collection” technique, which provides a photon collection efficiency ≈ 47% and a photon detection efficiency ≈ 39%. We apply the enhanced signal-to-noise ratio gained from side collection to ac magnetometry using ensembles of nitrogen-vacancy (NV) color centers, and demonstrate an ac magnetic field sensitivity ≈ 100 pT/√Hz, limited by added noise in the prototype side-collection device. Technical optimization should allow significant further improvements in photon collection and detection efficiency as well as subpicotesla NV-diamond magnetic field sensitivity using the side-collection technique.

DOI: 10.1103/PhysRevB.85.121202

A wide variety of fluorescent point defect centers in diamond have been identified, with possible applications toward quantum information and biological imaging. One such color center that has attracted considerable attention is the negatively charged nitrogen-vacancy center (NV) [Fig. 1(a)], which has an electronic structure that allows for optical initialization and detection of the electronic spin, and coherent manipulation of the spin state, with long room-temperature spin coherence times. Demonstrated applications of NVs include single photon generation, quantum information processing, super-resolution microscopy, nanoscale magnetometry using a single NV, and vector magnetic field imaging using ensembles of NVs. For all of these applications, the photon collection efficiency is critically important.

Conventionally, photons emitted from NVs in a bulk diamond substrate are collected using a microscope objective with a large numerical aperture (NA). However, refraction at the flat diamond interface reduces the effective NA of the objective by a factor equal to the refractive index of diamond (n_d = 2.4), resulting in a photon collection efficiency (η_c) ≈ 10% (assuming a maximum objective NA of 1.49). Photon detection efficiencies (η_d) < 2% are typical when detector coupling and quantum efficiencies are taken into account.

We note that NVs in diamond nanostructures can avoid the η_c degradation caused by a bulk diamond interface. For example, NVs in subwavelength-size diamond nanocrystals can be approximated as point emitters in the medium surrounding the nanocrystal, yielding higher η_c but lower emission rates due to increased excited-state lifetime. Light from NVs inside fabricated diamond nanowires is primarily emitted along the nanowire symmetry axis, allowing η_c ≈ 40%. However, NVs in diamond nanostructures typically have much shorter spin coherence times than those in bulk diamond. One approach to increase η_c for NVs in bulk diamond is to construct a solid-immersion lens (SIL) out of the diamond substrate, using either macroscopic or microscopic fabrication techniques. Light from NVs at the center of a hemispherical diamond SIL passes through the surface at normal incidence, allowing 20% < η_c < 30%. However, this improved photon collection efficiency is limited to NVs lying < 30 μm from the center of a macroscopic SIL. For a larger field of view, or for large-volume ensemble measurements in bulk diamond, a different collection-enhancement technique is required.

Here we demonstrate an efficient fluorescence detection technique that uses the planar diamond chip containing the color centers as an optical waveguide. For this “side-collection” technique, photons emitted by the color centers are confined between the two parallel diamond chip surfaces by total internal reflection (TIR) and guided to the sides (edges) of the diamond chip, where they pass through a filter onto a detector [Figs. 1(b) and 1(c)]. This technique avoids complicated fabrication procedures and allows efficient photon detection from color centers located anywhere within the diamond volume.

We estimated the expected efficiency of the side-collection technique using theoretical models of the average NV emission pattern and realistic approximations of the diamond chip geometry and acceptance angles of the detectors. We find that ≈ 91% of the NV fluorescence is confined by TIR between the polished (100) planar surfaces of the diamond chip, and ≈ 29% reaches the detectors on first incidence of the photons with the diamond chip sides (edges). Much of the light also undergoes TIR off the sides, but may reach the detectors after many reflections within the diamond. We therefore expect 29% < η_c < 91% for the side-collection technique, depending on details of the experimental geometry, diamond chip surface properties, etc. Note that this estimate neglects reabsorption of NV fluorescence by other NVs in the diamond, which is a negligible effect for the diamond sample used in the measurements described below, but may be significant for diamonds with much larger NV concentrations.

We constructed a prototype device to compare the side-collection technique to fluorescence detection using a microscope objective [Figs. 2(a)–2(c)]. This prototype instrument employed a [100]-oriented diamond chip (4.3 mm ×
532-nm laser beam passes through its center. Demonstrations reported here. Guiding of NV fluorescence light is photographed of NV fluorescence from the diamond chip used in the reflection above the critical angle (the four primary sides of the diamond chip. (c) Ray diagrams illustrate experiments reported here, four photodetectors are arranged around one or more sides of the diamond waveguide. In the demonstration and much of the resulting fluorescence is detected after it exits beam excites color centers in a specific volume within the diamond, diamond lattice. (b) In the side-collection technique, a focused laser substitutional nitrogen atom (N) adjacent to a vacancy (V) in the experiments. (a) The NV color center consists of a substitutional nitrogen atom (N) adjacent to a vacancy (V) in the diamond lattice. (b) In the side-collection technique, a focused laser beam passes through its center. (c) Side-collection box (d) side-collection signal amplifier (Cremat Inc. CR-112) to the photodiode(s) of the two collection paths, and recording the average signal amplitude [Fig. 2(c)]. We found that the side-collection signal had a 100 ± 5 times larger photon count than the microscope objective signal under identical experimental conditions. The theoretically estimated collection efficiency for the microscope objective was 0.59%. Transmission losses through the objective, dichroic, and filter reduced the fraction of light reaching the detector to $\eta_d \approx 0.47\%$. The average quantum efficiency of the photodiode within the NV emission band at near-normal incidence $\approx 83\%$, indicating $\eta_d \approx 0.39\%$. This implies that the NV fluorescence detection efficiency of the side-collection prototype device $\approx 39\%$, while the fraction of photons reaching the four side-collection photodiodes (over a wide range of incidence angles) was $\geq 47\%$. Note that this is ≈ 5 times larger than the ideal collection efficiency of a microscope objective with NA ≈ 1.49, neglecting losses between the objective and detector. We also confirmed that the optical signals in the two detection paths were due to NV fluorescence by sweeping the frequency of a microwave field across the characteristic NV electron spin resonance at 2.87 GHz, with zero magnetic field. The fluorescence signal in both detection paths decreased on resonance by a similar amount $\approx 17\%$, indicating that the side-collection filters selected NV fluorescence as effectively as conventional fluorescence microscopy.
detectable magnetic field b_{min} from a single measurement with duration t_m, assuming that T/t_m measurements are made during an averaging interval T:

$$\eta = b_{\text{min}} \sqrt{t_m} \approx \frac{\pi \hbar}{4 \mu_B} \frac{\sqrt{T}}{(S/\sigma) \beta \tau},$$

where μ_B is the Bohr magneton, S/σ is the signal-to-noise ratio (SNR) of a single measurement, and β is the measurement contrast (amplitude divided by mean of the ac magnetometry curve).22 For magnetometry measurements at zero ac field amplitude with $t_m = 57 \mu s$, we found $S/\sigma = 1.4 \times 10^3$ [see Fig. 3(c)], corresponding to a sensitivity $\approx 100 \text{ pT}/\sqrt{\text{Hz}}$.3,23 For an ideal measurement, $t_m \approx \tau \approx T_2$, and the SNR is limited by photon shot noise, $S/\sigma = \sqrt{N}$, where N is the number of photons detected in a single measurement, so that $\eta \propto 1/(\beta \sqrt{NT_2})$. The best previously reported NV magnetometer sensitivity was 4 nT/$\sqrt{\text{Hz}}$, using a single NV in an isotopically pure diamond with $T_2 = 1.8 \mu s$,3 where typically $\beta \approx 0.15$ and $N \approx 0.024$ for such measurements.11 For our ac magnetometry measurement, $N \approx 2 \times 10^8$, illustrating the improved SNR that can be obtained by making ensemble measurements with enhanced collection efficiency. From Eq. (1) and the shot-noise-limited SNR ($\sqrt{N} = 1.4 \times 10^6$), we would have expected an ideal sensitivity $\approx \text{pT}/\sqrt{\text{Hz}}$, but our magnetometer sensitivity was instead limited by electrical noise in the detection circuitry of the prototype side-collection device.14 We expect that this added noise can be significantly reduced in future, optimized side-collection instruments, and that shot-noise-limited sensitivities below 1 pT/$\sqrt{\text{Hz}}$ could be achieved by increasing the measurement volume, and lengthening the NV T_2 through diamond engineering3 or dynamic decoupling techniques.24

The photon detection enhancement of the side-collection technique has many other potential applications. For example, magnetometry may be extended to magnetic field imaging by using a thin layer of NVs near the diamond chip surface13 by scanning the laser focus while making time-resolved side-collection fluorescence measurements. The high SNR provided by side collection also greatly increases the speed of NV ensemble measurements, which may be used to study decoherence processes and develop NV spin manipulation protocols for magnetometry and quantum information. For example, the NV decoherence and magnetometry data shown in Fig. 3 was generated with $<0.3 \text{ s}$ of signal averaging time per data point, which is orders of magnitude shorter than the time that would be required to achieve comparable SNR using a microscope objective. The side-collection technique should also be applicable to single NV measurements using a tightly focused laser beam for NV excitation. However, because side collection accepts out-of-focus light, a thin, pure diamond would likely be required to isolate single NVs in the excitation volume. Using side collection to increase the photon count rate from a single NV could increase the speed and precision of NV super-resolution imaging9 and magnetometry.16 It would also improve NV quantum-state readout fidelity, and may be used in conjunction with existing techniques to achieve single-shot readout of the NV spin for quantum information applications.7
We gratefully acknowledge the provision of diamond samples by Apollo Diamond and Element Six; and also informative discussions with Patrick Doering, David Glenn, and Alexei Trifonov. This work was supported by NIST, NSF, and DARPA (QuEST and QuASAR programs).

20V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, Phys. Rev. B 80, 115202 (2009).