Improved Measurement of Muon Antineutrino Disappearance in MINOS

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>10.1103/PhysRevLett.108.191801</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:11870348</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Improved Measurement of Muon Antineutrino Disappearance in MINOS

We report an improved measurement of $\bar{\nu}_\mu$ disappearance over a distance of 735 km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a $\bar{\nu}_\mu$-enhanced configuration. From a total exposure of 2.95×10^{20} protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of $\Delta m^2 = [2.62^{+0.11}_{-0.08}]^{(\text{stat})} \pm 0.09^{(\text{syst})} \times 10^{-3}$ eV2 and constrain the $\bar{\nu}_\mu$ mixing angle $\sin^2(2\theta) > 0.75$ (90% C.L.). These values are in agreement with Δm^2 and $\sin^2(2\theta)$ measured...
for ν_μ, removing the tension reported in [P. Adamson et al. (MINOS), Phys. Rev. Lett. 107, 021801 (2011)].

DOI: 10.1103/PhysRevLett.108.191801

PACS numbers: 14.60.Pq, 14.60.Lm, 29.27.–a

Observations of neutrinos and antineutrinos created in the Sun, the Earth’s atmosphere, reactors, and accelerators provide strong evidence [1–9] that neutrinos undergo transitions between their flavor eigenstates (ν_α, ν_β, ν_γ, $\bar{\nu}_\alpha$, $\bar{\nu}_\beta$, $\bar{\nu}_\gamma$) as they propagate. These transitions can occur due to quantum mechanical mixing between the neutrino flavor and mass (ν_1, ν_2, ν_3) eigenstates. The mixing may be parametrized with a unitary matrix U_{PMNS} [10] which is typically expressed in terms of three mixing angles θ_{12}, θ_{23}, θ_{13} and a charge-parity (CP) violating phase δ. This interpretation, referred to as “neutrino oscillations,” requires that neutrinos have mass and motivates extensions to the standard model (SM) of particle physics. Extensions that explain the origin of right-handed sterile neutrinos ν_R [11], may also explain the baryon asymmetry [12] of the Universe.

The CP symmetry of the SM requires that ν_μ and $\bar{\nu}_\mu$ have the same masses and mixing parameters. In vacuum, the probability $P(\nu_\mu \rightarrow \nu_\mu)$ that a ν_μ is detected after a distance L as a ν_μ^c (rather than a ν_α or ν_γ) must be equal to the corresponding probability $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu)$ for antineutrinos. For a ν_μ with energy E, the probability may be written as

$$P(\nu_\mu \rightarrow \nu_\mu) = 1 - \sin^2(2\theta)\sin^2\left(\frac{1.267 \Delta m^2 [\text{eV}^2] L [\text{km}]}{E [\text{GeV}]}, \right)$$

where Δm^2 and $\sin^2(2\theta)$ are effective parameters that are functions of the angles parametrizing U_{PMNS} and the differences in the squared masses $\Delta m^2_{ij} = m_i^2 - m_j^2$ of the ν_1, ν_2, and ν_3 states. Experiments have demonstrated $|\Delta m^2_{31}| > |\Delta m^2_{21}|$ [13]. In the limiting case that $\theta_{13} = 0$ we have $\theta = \theta_{23}$ and $|\Delta m^2| = \sin^2(2\theta_{12})|\Delta m^2_{31}| + \cos^2(2\theta_{12})|\Delta m^2_{21}|$ [14,15]. Muon antineutrino oscillations are described by an equation which has the same form as Eq. (1) with parameters $\Delta \bar{m}^2$ and $\sin^2(2\bar{\theta})$. The extended SM predicts $\Delta \bar{m}^2 = \Delta m^2$ and $\sin^2(2\bar{\theta}) = \sin^2(2\theta)$ for vacuum oscillations [16,17]. Observation of $P(\nu_\mu \rightarrow \nu_\mu) \neq P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu)$ would therefore be evidence for physics beyond the SM, such as neutrino interactions in the Earth’s crust that do not conserve lepton flavor.

In this Letter, we describe a measurement of $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu)$ conducted over a baseline $L = 735$ km using a $\bar{\nu}_\mu$-enhanced beam with a peak energy of 3 GeV. The beam was produced by directing 120 GeV/c protons from the Fermilab Main Injector onto a graphite target to produce π/K mesons that decay to produce neutrinos. Two magnetic horns focus the mesons, allowing us to control the energy spectrum and $\nu/\bar{\nu}$ content of the beam.

The neutrino beam is pointed towards two detectors, referred to as near and far. The 980 ton near detector (ND) measures the ν_μ and $\bar{\nu}_\mu$ content of the beam as a function of energy at a distance of 1.04 km from the π/K production target. The 5.4 kton far detector (FD) is located in the Soudan Underground Laboratory, 734 km from the ND, and remeasures the beam composition. The neutrino detectors are steel-scintillator, tracking-sampling calorimeters optimized to identify and measure the energy of muon neutrinos and antineutrinos and reject backgrounds from neutral-current (NC) and ν_e interactions [18]. The detectors are magnetized with an average field of 1.3 T to distinguish ν_μ from $\bar{\nu}_\mu$ based on the charge of the μ produced in weak interactions.

We previously reported ν_μ oscillations with an energy dependence consistent with Eq. (1) and $\Delta m^2 = [2.32^{+0.12}_{-0.08} \text{(stat + syst)}] \times 10^{-3}$ eV2, $\sin^2(2\theta) > 0.90$ (90% C.L.) [3]. The measurements utilized 7.25×10^{20} protons on target (POT) of data collected between 2005–2009 with a ν_μ-enhanced beam [19]. Measurements made by Super-Kamiokande [4] and T2K [20] are in good agreement with our values.

In 2009–2010 we collected 1.71×10^{20} POT in a $\bar{\nu}_\mu$-enhanced beam [19] created by reversing the polarity of the horns. The magnetic fields in the FD and ND were also reversed to focus the μ^+ created in $\bar{\nu}_\mu$ interactions. These antineutrino data also exhibited oscillations in agreement with Eq. (1), but with parameters $\Delta \bar{m}^2 = [3.36^{+0.46}_{-0.40} \text{(stat) ± 0.06(syst)}] \times 10^{-3}$ eV2 and $\sin^2(2\bar{\theta}) = 0.86 \pm 0.11 \text{(stat) ± 0.01(syst)}$ [21]. We found no systematic effects which could explain the difference between the ν_μ and $\bar{\nu}_\mu$ parameters. Assuming identical true values for $(\Delta m^2, \sin^2(2\theta))$ and $(\Delta \bar{m}^2, \sin^2(2\bar{\theta}))$, we calculated that such a difference would occur by random chance about 2% of the time. To clarify the situation, we collected an additional 1.24×10^{20} POT with the $\bar{\nu}_\mu$-enhanced beam during 2010–2011. We have also updated the analysis to improve the sensitivity to $[\Delta \bar{m}^2, \sin^2(2\bar{\theta})]$, reduce uncertainties due to Monte Carlo (MC) modeling in the ND, and increase the similarity to the ν_μ oscillation analysis.

We isolate a sample of ν_μ and $\bar{\nu}_\mu$ charged-current (CC) $\nu_\mu N \rightarrow \mu X$ events by searching for interaction vertices inside our detectors with a muon track and possible hadronic activity from the recoil system X. We reject hadron tracks reconstructed in NC events by combining four topological variables describing track properties into a single discriminant variable, μID, using a k-nearest-neighbor
(kNN) technique [22]. The kNN algorithm calculates the distance in the four-variable space between each measured event and an ensemble of simulated events; the output is the fraction of signal in the \(k = 80 \) closest MC events. This discriminant was used in our previous analyses [3,21] and, as shown in Fig. 1(a), is well modeled by our MC simulation. We maximize the statistical sensitivity to \(\Delta m^2 \) by requiring \(\mu ID > 0.3 \), which results in a MC estimated efficiency (purity) of 90.7\% (99.0\%) at the ND and 91.6\% (99.0\%) at the FD. We then discriminate \(\nu_\mu \) from \(\overline{\nu}_\mu \) on an event-by-event basis by analyzing the track curvature in the detector’s magnetic field. Figure 1(b) shows the track charge/momentum \((q/p)\) divided by its uncertainty \([\sigma(q/p)]\), as determined by our track reconstruction algorithm. We select \(\overline{\nu}_\mu \) and reject \(\nu_\mu \) by requiring \(\frac{q/p}{\sigma(q/p)} > 0 \) with a MC estimated efficiency (purity) of 98.4\% (94.7\%) in the ND and 98.8\% (95.1\%) in the FD. The \(\nu_\mu \) background accepted by the selection is predominantly due to high energy muons with small curvature.

We reconstruct the neutrino energy by summing muon and hadronic shower energies. The muon energy is measured using track range and curvature. We reconstruct the hadronic shower energy using three variables: the sum of the energy deposited by showers that start within 1 m of the track vertex, the sum of the energy in the hadronic shower energies. The muon energy is measured using track range and curvature. We reconstruct the hadronic shower energy using three variables: the sum of the energy deposited by showers that start within 1 m of the track vertex, the sum of the energy in the two largest showers reconstructed in the event, and the length of the longest shower. We use these three variables in a second kNN algorithm and estimate the shower energy as the mean true hadronic energy of the \(k = 400 \) closest MC events. This technique improves the hadronic energy resolution when compared to a method which uses only the energy deposited by the largest shower, increases the statistical sensitivity to \(\Delta m^2 \) by 10\%, and was previously used to analyze the \(\nu_\mu \) disappearance [3,23].

Data from the ND are used to predict the neutrino energy distribution at the FD. Though both detectors have the same segmentation and very similar average magnetic fields, for economic reasons the ND is smaller and asymmetric about the magnetic field coil and is more coarsely instrumented with scintillator in the downstream “muon spectrometer” region [18]. In addition, the ND coil occupies a larger fractional area than the FD coil and more muons enter it. In the ND data, we observe a reconstruction failure rate of 6.1\%, mostly associated with tracks entering the coil region, but the MC simulation predicts 4.2\%. Previously, we dealt with this issue by assigning a systematic error. Now, we remove ND events with a track that ends less than 60 cm from the coil. We also remove events with a track that ends on the side of the coil opposite the beam centroid. The new event selection decreases the efficiency to 53\% in the ND, but reduces the data and MC failure rates to 1.4\% and 0.9\%, respectively. The selected sample contains the same classes of neutrino scattering processes as are present at the FD, and our results are not significantly more vulnerable to cross-section uncertainties. We applied the new selection and shower energy reconstruction to the 2009–2010 data and found that the best fit parameters shifted by only \(\delta(\Delta m^2) = [+1.0 \times 10^{-4}] \text{eV}^2 \) and \(\delta(\sin^2(2\theta)) = -3.6 \times 10^{-2} \). A total of \(2.98 \times 10^{20} \) protons were delivered to the graphite target during the data-taking periods. We impose a series of data and beam quality [2,24,25] requirements which reduce the analyzable exposure to 2.95 \times 10^{20} \text{POT} (99.0\% live time) at the FD, and 2.73 \times 10^{20} \text{POT} (91.8\% live time) at the ND. The uncertainty in the live time is negligible, and the high and largely overlapping live time in both detectors assures that our results are not sensitive to beam effects that would cause the number of events per POT to vary.

Under normal conditions, the ND measures about 2400 \(\overline{\nu}_\mu \)-CC events per day in the oscillation energy region \((E_\nu < 6 \text{ GeV})\). These data are essential for monitoring the neutrino beam and the quality of the experiment. Figure 2 shows the reconstructed \(\overline{\nu}_\mu \) energy distribution measured in each month during the data-taking periods. With the exception of Feb. 2011 (the last point in each bin in Fig. 2), all months are in statistical agreement, and we expect a constant counting rate per POT at the FD. Part of the February dataset was taken after the neutrino target’s cooling system had failed, leaking water into the target canister. This resulted in a decrease in the neutrino flux of 4\% from 0–6 GeV when integrated over the entire month.

![Graph showing event selection and discrimination](image-url)
Oscillations are incorporated into the prediction according to the unified procedure of [32] and incorporated according to the unified procedure of [32] and incorporate both statistical and systematic uncertainties. Contours for the larger ν_μ-CC backgrounds, the relative FD to ND energy calibration, the absolute muon energy scale, and the absolute hadronic energy scale, including final state hadronic interactions. The input uncertainties are as in our previous analyses [3,31] and were derived from in situ data, bench tests of detector and beam components, a test beam experiment, and published neutrino and hadron cross sections [2,30]. We increased the uncertainty in the axial-vector mass from 15% to 30% to account for additional uncertainties in ν_μ quasielastic scattering [31].

The $\bar{\nu}_\mu$ confidence regions shown in Fig. 4 were calculated according to the unified procedure of [32] and incorporate both statistical and systematic uncertainties. Contours for the larger ν_μ-CC backgrounds, the relative FD to ND energy calibration, the absolute muon energy scale, and the absolute hadronic energy scale, including final state hadronic interactions. The input uncertainties are as in our previous analyses [3,31] and were derived from in situ data, bench tests of detector and beam components, a test beam experiment, and published neutrino and hadron cross sections [2,30]. We increased the uncertainty in the axial-vector mass from 15% to 30% to account for additional uncertainties in ν_μ quasielastic scattering [31].

The $\bar{\nu}_\mu$ confidence regions shown in Fig. 4 were calculated according to the unified procedure of [32] and incorporate both statistical and systematic uncertainties. Contours for the larger ν_μ-CC backgrounds, the relative FD to ND energy calibration, the absolute muon energy scale, and the absolute hadronic energy scale, including final state hadronic interactions. The input uncertainties are as in our previous analyses [3,31] and were derived from in situ data, bench tests of detector and beam components, a test beam experiment, and published neutrino and hadron cross sections [2,30]. We increased the uncertainty in the axial-vector mass from 15% to 30% to account for additional uncertainties in ν_μ quasielastic scattering [31].
and $\bar{\nu}_\mu$ MC experiments generated at the joint best fit. The joint fit had a larger likelihood than $p = 42\%$ of the four-parameter fits, indicating consistency between ν_μ and $\bar{\nu}_\mu$.

In conclusion, we have used a $\bar{\nu}_\mu$-enhanced Fermilab accelerator beam and detectors that discriminate ν_μ from $\bar{\nu}_\mu$ to make the most precise measurement of Δm^2. Our results remove the tension reported in [21] and establish consistency between ν_μ and $\bar{\nu}_\mu$ oscillations at $L/E = 200 \text{ km/GeV}$.

This work was supported by the U.S. DOE; the United Kingdom STFC; the United States NSF; the State and University of Minnesota; the University of Athens, Greece; Brazil’s FAPESP, CNPq and CAPES; and the Jefferson Memorial Trust. We are grateful to the Minnesota Department of Natural Resources and the personnel of the Soudan Laboratory and Fermilab.

*Deceased.

[16] In matter, $P(\nu_\mu \rightarrow \nu_\tau)$ and $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\tau)$ can differ by as much as 0.1% due to $\nu_\mu \rightarrow \nu_\tau$ mixing and $\bar{\nu}_\mu$ and $\bar{\nu}_\tau$ scattering on electrons. This effect is too small to be observed in our experiment.
[19] Accounting for flux and cross sections, the $\nu_\mu(\bar{\nu}_\mu)$-enhanced beam consists of $91.7\%(58.1\%) \nu_\mu$, $7.0\%(39.9\%) \bar{\nu}_\mu$, and $1.3\%(2.0\%) \nu_\tau + \bar{\nu}_\tau$.
[26] A zero field is expected due to symmetry around the beam axis. We measure a 1×10^{-2} mrad deflection of the primary proton beam, corresponding to $B \cdot d\ell = 43 \text{ Gm}$.
[27] The window is defined by GPS time stamping each beam extraction and transmitting the time stamp over the internet to the FD, which buffers data to cope with latency.
[28] ν_μ are assumed to oscillate with $\Delta m^2 = 2.32 \times 10^{-3} \text{ eV}^2$ and $\sin^2(2\theta) = 1$.
[29] The $``p \text{ value}'', p$, is the probability, assuming our fit hypothesis is true, of obtaining data more incompatible with our hypothesis than the data we actually observe. See the discussion in Sec. 33.2.2 of [13].