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ORIGINAL ARTICLE

Loss of the xeroderma pigmentosum group B protein binding site
impairs p210 BCR/ABL1 leukemogenic activity
NL Pannucci1, D Li1, S Sahay1, EK Thomas2, R Chen1, I Tala1, T Hu1, BT Ciccarelli1, NJ Megjugorac1, HC Adams III1, PL Rodriguez1,
ER Fitzpatrick1, D Lagunoff1, DA Williams3 and IP Whitehead1

Previous studies have demonstrated that p210 BCR/ABL1 interacts directly with the xeroderma pigmentosum group B (XPB)
protein, and that XPB is phosphorylated on tyrosine in cells that express p210 BCR/ABL1. In the current study, we have constructed
a p210 BCR/ABL1 mutant that can no longer bind to XPB. The mutant has normal kinase activity and interacts with GRB2, but can no
longer phosphorylate XPB. Loss of XPB binding is associated with reduced expression of c-MYC and reduced transforming potential
in ex-vivo clonogenicity assays, but does not affect nucleotide excision repair in lymphoid or myeloid cells. When examined
in a bone marrow transplantation (BMT) model for chronic myelogenous leukemia, mice that express the mutant exhibit
attenuated myeloproliferation and lymphoproliferation when compared with mice that express unmodified p210 BCR/ABL1.
Thus, the mutant-transplanted mice show predominantly neutrophilic expansion and altered progenitor expansion, and have
significantly extended lifespans. This was confirmed in a BMT model for B-cell acute lymphoblastic leukemia, wherein the majority
of the mutant-transplanted mice remain disease free. These results suggest that the interaction between p210 BCR/ABL1 and XPB
can contribute to disease progression by influencing the lineage commitment of lymphoid and myeloid progenitors.
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INTRODUCTION
BCR/ABL fusion proteins are the products of reciprocal transloca-
tions that are causally associated with Philadelphia chromosome-
positive leukemias.1 Depending upon the position of the breakpoint
within the BCR locus, different fusion proteins are generated,
resulting in different clinical outcomes. Thus, p210 BCR/ABL1 is
responsible for virtually all cases of chronic myelogenous leukemia
(CML), whereas p190 BCR/ABL is associated with a subset of ALL.1

Although there is a general agreement that the tyrosine kinase
activity residing within the ABL component of BCR/ABL is the
principle driving force behind Philadelphia chromosome-positive
leukemias, domains that are contained within the BCR sequences
are also required for transformation.2–5

Efforts to understand the genetic instability, which usually
accompanies progression of CML from the chronic phase to the
blast phase, indicate that DNA repair pathways, such as homologous
recombination repair, non-homologous end joining and mismatch
repair, may be altered in hematopoietic cells expressing p210 BCR/
ABL1.6–8 Such cells are resistant to apoptosis induced by
chemotherapeutic agents and g-irradiation,9–13 despite exhibiting
a tendency to accumulate more DNA damage.14 Although the
pathways downstream of p210 BCR/ABL1 responsible for this
phenotype have not been clearly defined, there is evidence
suggesting that p210 BCR/ABL1-positive cells may have enhanced
DNA repair capability.14 Some of the DNA damage observed may
therefore actually represent intermediates in an accelerated process
of repair.

Independent studies have also revealed a role for p210 BCR/
ABL1 in the regulation of nucleotide excision repair (NER),15,16 a

mammalian DNA repair system that removes a wide range
of structurally unrelated lesions, including those induced by
UV radiation and alkylating agents.17 In myeloid cells, the
overexpression of p210 BCR/ABL1 increases NER activity and
decreases UV electromagnetic radiation subtype C (UVC)-mediated
cytotoxicity,15,16 whereas in lymphoid cells the overexpression
results in decreased NER activity and increased UVC-mediated
cytotoxicity.15 Although an exact mechanism for these changes in
NER is not known, it has been shown that both BCR and p210 BCR/
ABL1 bind to an essential protein in the repair process: xeroderma
pigmentosum group B (XPB).18,19 XPB is a 30–50 DNA helicase with
associated ATPase activity that forms part of the core subunit of
the transcription factor TFIIH,20,21 and is required for NER and
transcriptional initiation.22

Whether or not the interaction between XPB and p210 BCR/
ABL1 is responsible for altered NER and whether it supports
disease progression has not yet been determined. In this study we
show that a p210 BCR/ABL1 mutant lacking the XPB-binding site is
attenuated in its ability to drive myeloproliferation and lympho-
proliferation in murine models for CML and B-cell acute
lymphoblastic leukemia (B-ALL), but not in its ability to regulate
NER.

MATERIALS AND METHODS
Molecular constructs and yeast two-hybrid analysis
The pAX142 mammalian expression vector and pAX142-bcr-abl have
been previously described.23 pAX142-xpb contains a full-length cDNA
for human XPB. pAX142-bcr-abl(D674–695) encodes full-length,
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hemagglutinin-epitope-tagged p210 BCR/ABL1, with an internal deletion
of residues 674–695. The yeast two-hybrid constructs pGBT9-bcr(1–1271),
pGBT9-bcr(1–413), pGBT9-bcr(491–880) and pGBT9-bcr(871–1271) have been
previously described.24 pGBT9-bcr(491–668), pGBT9-bcr(491–681), pGBT9-
bcr(491–691), pGBT9-bcr(491–700) and pGBT9-bcr(491–727) contain cDNAs
that encode the indicated residues of BCR. pGBT9-bcr(D674–695) encodes
full-length BCR with an internal deletion of residues 674–695. pGBT9-dbs
and pGBT9-ect2 contain full-length cDNAs for murine Dbs and Ect2,
respectively. The yeast two-hybrid constructs for full-length MYC
(pGAD-myc), XPB (pGAD-xpb) and ubiquitin (pGAD-ubq) have been
previously described.23,24 The MSCV-IRES-gfp retroviral vector has been
previously described (Addgene, Cambridge, MA, USA).25 MSCV-bcr-abl/p210-
IRES-gfp and MSCV-bcr-abl/p210(D674–695)-IRES-gfp contain full-length
p210 BCR/ABL1 and the p210 BCR/ABL1 XPB-binding mutant, respectively.
The pCL-Eco helper plasmid26 was kindly provided by Dr Saghi Ghaffari.
All yeast two-hybrid analysis was performed as previously described.24

Cell culture
NIH 3T3, 293T and Phoenix-Ecotropic cells were maintained in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal calf serum (NIH
3T3; Sigma, St Louis, MI, USA) or fetal bovine serum (Phoenix-Ecotropic,
293T; Gemini, Woodland, CA, USA). Ba/F3 cells were maintained in
RPMI1640 media supplemented with 10% fetal bovine serum (Gemini) and
10% WEHI-conditioned media. High-titer retrovirus was generated
using Phoenix-Ecotropic packaging cells (ATCC, Manhassas, VA, USA) as
previously described.27

Protein expression and coimmunoprecipitation
Western blot analysis and coimmunoprecipitation assays were performed
as previously described.28 The following antibodies were used: anti-XPB
(Abcam, Cambridge, MA, USA); anti-TFIIH p89, anti-HA and anti-c-MYC (S-
19, HAF7 and N-262, respectively; Santa Cruz, Santa Cruz, CA, USA); anti-c-
ABL, anti-BCR, anti-GRB2, anti-phospho-c-ABL (Tyr-245), anti-CRKL (32H4),
anti-phospho-CRKL (Tyr207) (Cell Signaling, Danvers, MA, USA); and anti-
phospho-tyrosine (PY20; BD Biosciences, Franklin Lakes, NJ, USA).

COMET assays
Murine bone marrow cells were collected as previously described.27 Cells
were cultured in media supplemented with granulocyte colony-stimulating
factor, stem cell factor and thrombopoietin (100 ng/ml each; Peprotech,
Rocky Hill, NJ, USA) to promote myeloid growth. Myeloid cells (or Ba/F3
cells) were infected by retroviral particles that encode MSCV-bcr-abl/p210-
IRES-gfp, MSCV-bcr-abl/p210(D674–695)-IRES-gfp or cognate vector. At
48 h post infection, cells that express green fluorescent proteins (GFPs)
were sorted on a FACSVantage SE (FACSDiVA; BD Biosciences). Sorted cells
were plated (2� 105) in 35-mm dishes and were spun at 1000 r.p.m. for
10 min. Media was removed and cells were irradiated with 10 J/m2 of UVC
light (254 nm), using a germicidal lamp (American Ultraviolet Company,
Lebanon, IN, USA). After irradiation, media was replaced and cells were
incubated for the indicated time points. Cells were then collected, washed
in phosphate-buffered saline and then COMET assays were performed
according to the manufacturer’s instructions (Trevigen, Gaithersburg, MD,
USA). Results were analyzed using comet score 15 software (TriTek,
Sumerduck, VA, USA).

Ex-vivo analysis of murine hematopoietic progenitor cells
MethoCult GF M3434, M3630 and M3534 (StemCell Technologies,
Vancouver, BC, Canada) were used to detect and quantify mouse
hematopoietic progenitors in the bone marrow, following the manufac-
turer’s instructions.

Bone marrow transduction and transplantation
For CML induction, primary bone marrow transplantation (BMT) was done
as previously described.27 For B-ALL induction, cells from non-5-
fluorouracil-treated donor mice were used. All experiments were
performed on 12-week-old, female, BALB/c mice (Jackson Laboratories,
Bar Harbor, ME, USA). All animal care, housing and experimentation was
conducted in accordance with protocols approved by the Institutional
Animal Care and Use Committee of UMDNJ–New Jersey Medical School.
Evaluation of disease progression by histopathology and flow cytometry
was performed as previously described.27

RESULTS
Localization of the docking site for XPB within BCR and p210 BCR/
ABL1
In a previous report, yeast two-hybrid analysis was used to
demonstrate an interaction between full-length XPB and a
fragment of BCR (residues 413–789).19 We used a similar
approach to more precisely map the docking site for XPB to
residues 681–691 of BCR (Figure 1a). A full-length BCR(D674–695)
mutant still interacts with two other BCR-binding partners, MYC24

and ubiquitin, 23 thus confirming its structural integrity (Figure 1b).
XPB does not interact with two other RhoGEF family members
(Ect2 and Dbs, Figure 1c), confirming the specificity of the
interaction. As the docking site for XPB is retained within p210
BCR/ABL1,19 a mutant lacking the putative XPB-binding site (p210
BCR/ABL1(D674–695)) was constructed in a mammalian
expression vector. Both mutant and wild-type p210 BCR/ABL1
were then co-expressed with XPB in 293T cells, and a
coimmunoprecipitation assay was performed (Figure 1d). Whereas
we are readily able to detect an interaction between XPB and
p210 BCR/ABL1, only a weak interaction is observed between XPB
and the mutant.

XPB binding is not required to support p210 BCR/ABL1 auto- and
trans-kinase activity
To determine whether the tyrosine kinase activity of p210 BCR/
ABL1 requires XPB binding, we expressed both wild-type and
mutant proteins in 293T cells and performed western blot
analyses to examine the phosphorylation levels of known
substrates of p210 BCR/ABL1 tyrosine kinase activity.29 An
equivalent level of phosphorylated CRKL was observed in cells
that express p210 BCR/ABL1 and the mutant when compared with
vector controls, suggesting that the trans-kinase activity is
unaffected by loss of XPB binding (Figure 1e). Similarly, when
we examined lysates with an antibody that recognizes the Tyr-245
autophosphorylated form of p210 BCR/ABL1, an equivalent level
of auto-kinase activity was observed (Figure 1e). Next we
determined whether p210 BCR/ABL1 and the mutant have
an equivalent ability to interact with GRB2. It has been
previously shown that p210 BCR/ABL1 autophosphorylates on
Tyr-177, creating a docking site for GRB2.5 As shown by
coimmunoprecipitation assays (Figure 1f), both p210 BCR/ABL1
and the mutant interact with GRB2 to an equivalent level. This
indicates that the interaction with GRB2 does not require XPB
binding and confirms that the auto-kinase activity of the mutant is
unchanged.

p210 BCR/ABL1 can phosphorylate XPB on tyrosine in vivo
It has been previously shown that XPB is tyrosine phosphory-
lated in cells expressing p210 BCR/ABL1.19 To determine
whether this requires a direct interaction, we expressed full-
length XPB along with either p210 BCR/ABL1 or the XPB-binding
mutant in 293T cells. We then immunoprecipitated XPB and
performed a western blot with antibodies that recognize the
total or phosphorylated form of the protein. As shown in Figures
1g, a high level of phosphorylated XPB is detected in lysates
that contain p210 BCR/ABL1, but not in cells that express the
mutant.

The interaction with XPB does not influence the effects of p210
BCR/ABL1 on NER
In myeloid cells, overexpression of p210 BCR/ABL1 has been
shown to increase NER activity and decrease UVC-mediated
cytotoxicity,15,16 whereas in lymphoid cells the overexpression
results in decreased NER activity and increased UVC-mediated
cytotoxicity.15 We examined whether the XPB-binding mutant can
similarly influence NER. For this analysis, we cloned both p210
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BCR/ABL1 and the mutant into MSCV-IRES-gfp. Retrovirus was
then produced and was used to infect Ba/F3 cells. Consistent with
the 293T cells, an equal and elevated level of phosphorylated CrkL
is detected in lysates that contain p210 BCR/ABL1 or the mutant
(Figure 2a), suggesting that the tyrosine kinase activity is
unaltered. Cells that express p210 BCR/ABL1 also show elevated
levels of endogenous, phosphorylated XPB and this is not seen in
cells expressing the binding mutant. Cells were then irradiated
with UVC (10 J/m2) and Comet assays were performed (Figure 2b).
In control cells, a significant increase in NER is observed by 1 h
post irradiation. Cells that express p210 BCR/ABL1 exhibit
significantly reduced NER relative to control cells, which is
consistent with previous observations.15 Cells that express the
mutant have levels of repair equivalent to cells that express p210
BCR/ABL1 at both 1 h and 3 h post irradiation. To examine NER in
myeloid cells, bone marrow cells were collected from BALB/C mice
and infected with retrovirus that contain p210 BCR/ABL1, p210
BCR/ABL1(D674–695), or cognate vector. Myeloid cells were
selected by culturing in the presence of granulocyte colony-
stimulating factor, stem cell factor and thrombopoietin. Cells were
then irradiated with UVC (10 J/m2) and Comet assays were
performed (Figure 2c). In control cells, a significant increase in
NER was observed at 1 h post irradiation and, consistent with
previous results, repair was significantly enhanced in cells that
express p210 BCR/ABL1.15 An equivalent and significant increase
in repair activity was also observed in cells infected with the
binding mutant.

Loss of XPB binding is associated with reduced expression of
c-MYC
It has been shown previously that c-MYC is stabilized by
p210 BCR/ABL1(ref.30) and is required for p210 BCR/ABL1
transformation.31 As c-MYC expression is known to be directly
regulated by XPB,32,33 we also examined c-MYC expression in the
Ba/F3 cells that stably express p210 BCR/ABL1, or the mutant
(Figure 2d). As expected, the c-Myc levels were elevated in cells
expressing p210 BCR/ABL1 relative to vector controls. In contrast,
c-MYC levels were significantly diminished relative to vector
controls in cells that express the mutant.

The interaction with XPB influences transformation in murine
bone marrow ex-vivo assays
To explore the role of the XPB interaction in the transformation of
murine hematopoietic progenitor cells, bone marrow was
collected from BALB/C mice and infected with retrovirus that
contain p210 BCR/ABL1, p210 BCR/ABL1(D674–695), or cognate
vector. Bone marrow colony formation was assessed on media
that supports growth of granulocyte–macrophage progenitors
(GMP) (M3534), erythroid progenitors (BFU-E) (M3434) and B-cell
progenitor cells (CFU-preB) (M3630). When we compare p210 BCR/
ABL1, and the mutant, with vector on the M3434 media, we
observe an equivalent number of BFU-E colonies (Figure 3a). In
contrast, whereas p210 BCR/ABL1 shows enhanced growth of
GMPs on M3534 media, the mutant is impaired in its ability to
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(d) p210 BCR/ABL1(D674-695) is impaired in XPB binding. Cells were transiently co-transfected with full-length XPB and the indicated
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transform GMP. In the CFU-preB cell assay, both constructs exhibit
transformation, but transformation by the mutant is significantly
less than transformation by p210 BCR/ABL1. No colonies were
observed on the vector control plates.

XPB binding contributes to disease progression in a BMT model
for CML
We next determined whether the mutant was impaired in its
ability to drive myeloproliferation in a murine model for CML.
Consistent with previous reports,34–36 all the mice transplanted
with p210 BCR/ABL1 became moribund within 28–35 days of
transplantation (Figure 3b), displaying cachexia, increased respira-
tions and a mottled coat. Examination of peripheral blood smears
revealed massive leukocytosis (Figure 3c, top panel) and white
blood cell (WBC) counts taken at death were elevated (350,000/ml).
At death, all animals had splenomegaly with disruption of both
the white and red pulp (Figure 3c, second panel). In the liver,
granulocytes infiltrated both sinusoids and portal tracts (Figure 3c,
third panel). As previously seen in other studies,34–36 large
numbers of granulocytes were present in pulmonary capillaries
together with extensive focal hemorrhage and consolidated
regions (Figure 3c, fourth panel).

Mice transplanted with p210 BCR/ABL1(D674–695) showed
fewer signs of overt illness at the early stages of disease
progression. Overall, mice had significantly longer lifespans
(mean¼ 78.8 days, Figure 3b), which was confirmed in two
independent experiments (n¼ 5 for each experiment). Weekly
peripheral blood smears revealed that myeloproliferation was
occurring (Figure 3c, top panel) and WBC counts taken at death
(415,000/ml) were comparable to those seen in the p210 BCR/ABL1
mice. Although splenic tissue architecture was similarly destroyed,
liver architecture was better preserved in the mutant mice.

Lung capillaries in the mutant mice contained numerous
granulocytes, but there was considerably less hemorrhage than
in the p210 BCR/ABL1 mice.

Vector-transplanted mice (n¼ 20 total) had normal WBC counts
(E13 000/ml) and remained disease free through 6 months post
BMT (not shown).

Immunophenotyping at different points after transplantation
reveal differences in disease progression
To directly compare disease progression, three mice from each
group (including vector) were killed at days 16 and 30 post BMT
and immunophenotyping was performed (Figure 4). At day 16
post BMT, over 50% of WBCs in the p210 BCR/ABL1 mice were
GFP-positive compared with B25% for vector and mutant
expressing mice (Figure 4a). Both the p210 BCR/ABL1 and mutant
mice exhibited an approximately twofold increase in WBCs
expressing the myeloid-specific marker, CD11b, relative to vector
mice. Surprisingly, however, over 30% of the WBCs in the p210
BCR/ABL1-transplanted mice expressed a B-cell marker (B220),
whereas the B-cell counts in the mutant-transplanted mice did not
exceed 3%. It is likely that this expansion of B cells in the p210
BCR/ABL1-transplanted mice accounts for the difference in total
number of GFPþ cells. Histologic examination performed at day
16 post BMT revealed the beginning of disease progression with
little significant difference between the mice (Supplementary
Figure 1).

Comparison of mice on day 30 post BMT revealed more
dramatic differences in disease progression. Greater than 95% of
the WBCs from the p210 BCR/ABL1 mice were GFP-positive and
70–80% of the cells stained positive for myeloid markers
(Figure 4b). In comparison, only 50% of the WBCs from mutant
mice were GFP-positive and only 35% stained positive for myeloid
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markers. Expansion of the B-cell population was less apparent in
the p210 BCR/ABL1-transplanted mice at day 30. Organ histology
at day 30 also revealed differences between the groups, with
mutant-transplanted mice having better preservation of liver and
lung architecture than p210 BCR/ABL1-transplanted mice
(Supplementary Figure 1).

Mice were also subject to immunophenotyping when they
became moribund (Table 1). In order to determine whether there
is a qualitative difference in myeloid expansion, cells were also
examined for the expression of a granulocyte-specific marker
(Gr1þ ). At death, all of the mice have predominantly myelopro-
liferative disease, although most still have slightly elevated B-cell
counts. Although the percentage of GFPþCD11bþ cells is
equivalent in all tissues examined, the percentage of cells that
are GFPþGr1þ is significantly higher in mice transplanted with
the mutant than in mice transplanted with p210 BCR/ABL1. This
suggests that myeloid expansion in the mutant-transplanted mice
is primarily restricted to neutrophils.

Loss of XPB binding alters progenitor expansion
In order to determine whether the impairment in disease
progression and myeloid expansion could be attributed to
differences in progenitor expansion, GFP-positive cells were
examined from the bone marrow of p210 BCR/ABL1 and p210
BCR/ABL1(D674–695)-transplanted mice at death (Figures 5a and b).
Surprisingly, the total number of progenitors is significantly
increased in the mutant-transplanted mice, which is attributable
to a large increase in GMP. Cell cycle analysis performed on the

GMs, CMPs and MEPs revealed no significant difference in either
proliferative potential or sensitivity to apoptosis (Figure 5c).

XPB-binding supports B-cell proliferation in a BMT model for B-ALL
As mice transplanted with the XPB-binding mutant did not show
the early B-cell proliferation seen in p210 BCR/ABL1-transplanted
mice, we determined whether the mutant could drive lympho-
proliferation in a murine model for B-ALL.34 Consistent with
previous reports, mice transplanted with p210 BCR/ABL1 exhibited
B-cell lymphocytosis when killed at day 20 and 38 post BMT
(Table 2, p210 BCR/ABL1 mice 1–6).34 Between days 37 and 75, 10
of 13 mice succumbed to disease (Figure 6a), and necropsies
performed at death revealed characteristic signs of lymphadeno-
pathy and moderate splenomegaly (spleen weight¼ 0.2–0.5 g).
Flow cytometry performed on tissues from randomly selected
mice showed a predominance of GFPþ /B220þ cells (Table 2, p210
BCR/ABL1 mice 7–10), a large proportion of which were IgM� /BP-1þ ,
suggesting immaturity (data not shown). On day 76, the
survival study was terminated and the three remaining p210
BCR/ABL1 mice were killed and analyzed. One mouse showed
clear signs of B-ALL (Figure 6b, Table 2, p210 BCR/ABL1 mouse 11),
one showed no evidence of disease (not shown) and one showed
expansion of CD11bþ , B220þ and CD3þ cells (not shown). In
summary, out of 13 mice examined, 11 had immunophenotypes
consistent with B-ALL.

In comparison with the p210 BCR/ABL1-transplanted mice,
those transplanted with the XPB-binding mutant showed a
significant increase in lifespan, with only one mouse dying within
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the time period covered by the survival study (Figure 6a, Table 2,
p210 BCR/ABL1(D674–695) mouse 7). This mouse developed a
large cervical tumor, which stained negative for CD11b, B220 and
CD3 (not shown). Mice that were killed and examined at day 20
and 38 exhibited no signs of lymphocytosis (Table 2, p210 BCR/
ABL1(D674–695) mice 1–6). Between days 75 and 89 post BMT,
seven of the remaining mutant-transplanted mice were killed and
necropsies were performed. Five of these mice showed no
obvious signs of disease, having normal WBC counts and spleen
weights, and no observable lymphadenopathy (Figure 6b,
Table 2, p210 BCR/ABL1(D674–695) mice 8–10, 12 and 13).

GFPþ cells comprised less than 2% of the bone marrow, spleen
and peripheral blood, which is equivalent to what we observed for
vector-transplanted mice (Table 2). Although two of the killed
mice showed evidence of disease progression (mice 11 and 14),
their phenotype was consistent with T-cell leukemia. These
mice presented with significant ascites and one had a large
abdominal tumor (mouse 14). Flow cytometry performed on the
peripheral blood, spleen, ascitic fluid and tumor of this mouse
demonstrated an expansion of GFPþ cells (Figure 6c). Although all
of these cells were negative for CD11b and B220 expression,
a proportion did express the T-cell marker CD3. Two additional
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Table 1. Immunophenotyping of disease progression in a BMT assay for CML

GFPþ GFPþ /CD11bþ GFPþ /Gr1þ GFPþ /CD3þ GFPþ /B220þ

Peripheral blood
Vector 8.69±6.51 4.78±1.44 1.81±0.07 0.046±0.04 0.002±0.005
BCR/ABL 82.12±8.53 69.20±16.69 16.78±2.63 0.51±0.22 6.72±6.35
D674–695 67.00±4.69 57.50±5.97 37.70±2.08** 0.75±0.14 4.38±1.01

Bone marrow
Vector 9.80±9.09 7.41±3.97 4.11±1.96 0.64±0.30 0.003±0.002
BCR/ABL 69.19±17.23 55.38±16.17 16.3±3.58 0.82±0.60 3.61±3.58
D674–695 72.56±21.26 62.86±24.86 40.34±15.68* 0.70±0.29 3.58±0.85

Spleen
Vector 5.67±3.74 4.74±1.73 2.37±0.88 1.85±0.59 0.005±0.003
BCR/ABL 65.12±9.07 39.97±17.11 15.95±2.36 2.94±1.44 4.61±2.29
D674–695 55.00±15.36 47.05±14.56 33.55±6.89* 1.08±0.52 3.97±0.82

Abbreviations: BMT, bone marrow transplantation; CML, chronic myelogenous leukemia. Immunophenotyping was performed at death as described in
Materials and Methods. Vector mice were electively killed on day 30 post BMT. Data shown are an average of a minimum of five mice with s.d. (*Po0.05,
**Po0.01, relative to BCR/ABL).
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mutant-transplanted mice were killed at day 106, and neither
exhibited any signs of disease progression (Table 2, p210 BCR/
ABL1(D674–695) mice 15 and 16). To summarize, in all of the 16
mutant-transplanted mice that were killed and immunopheno-
typed, there was no evidence of B-cell proliferation in any organ
that was examined.

Recipients receiving marrow infected with vector (n¼ 20 total)
exhibited no sign of disease throughout the survival study
(Table 2).

DISCUSSION
In the current study, we have demonstrated that disruption of
the XPB interaction results in disease attenuation in BMT
models of CML and B-ALL. In the model for CML, mice
transplanted with the XPB-binding mutant exhibit increased
survival. Myeloid expansion is primarily restricted to Gr1þ cells,
which, in turn, is driving the disease phenotype. Although the
number of GMPs at death in the mutant-transplanted mice is
elevated, they show no increase in their proliferative potential.

This is consistent with the ex-vivo clonogenicity assays wherein
the mutant is actually more limited in its ability to support the
growth of GMP. As the disease phenotype appears to be
restricted to a sub-lineage of GMPs, a larger number of GMPs
may need to accumulate in order to achieve a tumor burden,
resulting in morbidity. This would account for the substantially
increased lifespan.

At day 16 post BMT, we observed an expansion of the B220þ

cells in the p210 BCR/ABL1-transplanted mice but not in the
mutant. This expansion suggests that transformed lymphoid
progenitors are engrafting earlier than myeloid progenitors and
may be enjoying an early proliferative advantage. However, as the
myeloid lineages expand, they may limit further expansion of the
lymphoid progenitors. The failure of the mutant to drive
lymphoproliferation was confirmed in a BMT model for B-ALL.
Whereas the p210 BCR/ABL1-transplanted mice develop and
succumb to a disease resembling human B-ALL, the mutant-
transplanted mice either remained disease free or developed
T-cell leukemias with long latencies. The ability of p210 BCR/ABL1
to drive T-cell leukemias has not been previously observed in the
BMT model and suggests that it may be transforming a common
lymphoid progenitor. Whereas the interaction with XPB in these
cells supports lymphoid expansion, loss of the interaction may
favor T-cell expansion.

As cells that express the XPB-binding mutant show lower levels
of XPB phosphorylation on tyrosine, it is possible that p210 BCR/
ABL1 transformation is influenced directly by XPB-associated
activities, which may be altered by phosphorylation. It has been
shown that tyrosine phosphorylation of XPB by p210 BCR/ABL1
reduces its ATPase and helicase activities in vitro,19 which is likely
to result in both transcriptional and repair defects. Several studies
indicate that the rate of NER is influenced by p210 BCR/ABL1,
although opposing effects have been observed in lymphoid and
myeloid cells.15,16 Although we observe similar effects of p210
BCR/ABL1 on NER in Ba/F3 cells and primary murine myeloid cells,
these effects do not appear to be dependent upon the interaction
with XPB.

p210 BCR/ABL1 expression may also interfere with the
transcriptional functions of TFIIH. A number of studies have
documented altered transcription of specific target genes in
response to p210 BCR/ABL1 expression, including c-MYC,37,
Bcl-Xl,38 PKC,39 and TRAIL.40 In addition, global changes in gene
expression have been observed in 32Dcl3 myeloid cells that
stably express p210 BCR/ABL1.41 Although some of these
transcriptional changes can be attributed to alterations in
STAT-regulated pathways,38 the interaction with XPB may
represent a separate mechanism through which p210 BCR/
ABL1 can regulate transcriptional events. For example, recent
studies suggest that expression of the c-myc gene, which is
frequently upregulated in CML, is controlled by a transcriptional
complex that contains components of TFIIH, including XPB.32,33,42

We have previously shown that BCR is a nuclear protein that
binds directly to c-MYC and inhibits its expression, thus
suggesting that BCR may serve a regulatory function in this
transcriptional complex.24 Our current observation that loss of
XPB binding leads to reduced c-MYC expression suggests that
p210 BCR/ABL1 may increase c-MYC expression by aberrantly
regulating this complex. The reduction in c-MYC expression may
also account for the reduced transforming activity of the mutant
in both ex-vivo and in-vivo assays.

Collectively, our observations suggest that the interaction
between XPB and p210 BCR/ABL1 supports disease progression
in the murine model by influencing the differentiation potential of
leukemic progenitors. The construction of a mutant that lacks the
XPB-binding site may provide a unique opportunity to identify the
factors present in these progenitors whose XPB-mediated expres-
sion supports leukemic expansion. This in turn may provide
unique opportunities for therapeutic intervention.

Table 2. Immunophenotyping of disease progression in a BMT model
for ALL

Mouse
(day at death or killing)

GFPþ Peripheral blood (% of total cells)

GFPþ /
CD11bþ

GFPþ /
B220þ

GFPþ /
CD3þ

Vector
No. 1 (day 20) 13 12 1 1
No. 2 (day 38) 8 6 1 2
No. 3 (day 93) 8 1 1 6

p210 BCR/ABL1
No. 1(day 20) 34 5 31 o1
No. 2(day 20) 21 15 15 o1
No. 3(day 20) 76 5 72 1
No. 4 (day 38) 51 15 35 4
No. 5 (day 38) 6 3 4 1
No. 6 (day 38) 69 2 69 2
No. 7 (day 45)a 15 4 13 1
No. 8 (day 47)a 42 5 40 2
No. 9 (day 54)a 71 2 65 o1
No. 10 (day 64)a 96 5 89 1
No. 11 (day 76) 85 o1 85 o1

p210 BCR/ABL(D674–695)
No. 1(day 20) 15 15 4 5
No. 2(day 20) 6 6 1 1
No. 3(day 20) 3 1 1 2
No. 4 (day 38) 2 2 1 1
No. 5 (day 38) o1 o1 o1 o1
No. 6 (day 38) o1 o1 o1 1
No. 7 (day 60)a 2 o1 o1 o1
No. 8 (day 76) 1 1 o1 o1
No. 9 (day 77) 1 1 o1 o1
No. 10 (day 77) o1 o1 o1 o1
No. 11 (day 80) 33 3 4 23
No. 12 (day 80) 2 o1 o1 1
No. 13 (day 89) o1 o1 o1 o1
No. 14 (day 89) 11 2 1 3
No. 15 (day 106) 3 2 1 1
No. 16 (day 106) o1 o1 o1 1

Abbreviations: ALL, acute lymphoblastic leukemia; BMT, bone marrow
transplantation. Immunophenotyping was performed as described in
Materials and Methods. aMice that succumbed due to disease. All other
mice were electively killed.
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