Identification and function of long non-coding RNA

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.3389/fncel.2013.00168

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11878958

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Identification and function of long non-coding RNA

Long non-coding (lnc) RNAs are defined as non-protein coding RNAs distinct from housekeeping RNAs such as tRNAs, rRNAs, and snRNAs, and independent from small RNAs with specific molecular processing machinery such as micro- or pixi-RNAs. Recent studies of IncRNAs across different species have revealed a diverse population of RNA molecules of differing size and function. RNA sequencing studies suggest transcription throughout the genome, so there is a need to understand how sequence relates to functional and structural relationships amongst RNA molecules. Our synthesis of recent studies suggests that neither size, presence of a poly-A tail, splicing, direction of transcription, nor strand specificity are of importance to IncRNA function. Rather, relative genomic position in relation to a target is fundamentally important. In this review, we describe issues of key importance in functional assessment of IncRNA and how this might apply to IncRNAs important in neurodevelopment.

Keywords: non-coding RNA, epigenetics, gene regulation, neurodevelopment

THERE IS A WIDE VARIETY OF NON-CODING RNA IN MANY SPECIES

The co-occurrence of massively parallel sequencing technology applied to RNA and the recognition that non-coding, functional RNA species may not be restricted to X-chromosome inactivation (Irons et al., 2012; Batista and Chang, 2013) or to protein synthesis machinery, have revealed an RNA universe of remarkable diversity in plant and animal cells. Non-coding (nc) RNAs, those RNA molecules that are not templates for protein synthesis, make up a large portion of the total RNA in the cell suggesting a profound functional importance. Despite their abundance, few ncRNAs have been studied and even fewer have been functionally characterized. These ncRNAs come in many forms: they can be very small or several hundred kilobases long; they may be spliced or unspliced; they can form linear or tertiary structures; they may or may not have a poly-A tail, and some interact with DNA, protein, or other RNA molecules (Novikova et al., 2013). As is described in this review, among various roles, Long non-coding (Inc) RNAs participate in guidance of large protein complexes to DNA leading to influence over locus-specific gene expression, and in the modification of expression or abundance of complementary messenger RNA strands. The wide diversity of function and form of ncRNA, combined with the explosive growth in newly identified ncRNA molecules, has lead to a need to understand better potential relationships of function between ncRNA and to consider a more categorical approach to classification.

Non-protein coding RNA has long been recognized in cells. Transfer RNAs and ribosomal RNAs were identified over 50 years ago; neither encodes a peptide chain, though they are integral components of the machinery for protein synthesis. Identification of these RNAs demonstrated that ncRNAs interact with proteins, perform specific cell functions, and operate autonomously from information transfer. Francis Crick’s central dogma (1955) described information transfer amongst DNA, mRNA, and protein, and even at that time was recognized as an oversimplification. Crick himself subsequently built substantial flexibility into the model in 1970 such as the idea that RNA may be prone to “special” and “unknown” transfers of information (Crick, 1970). While he may not have imagined the diversity of RNA (Nakamura et al., 1990), there was a tacit acknowledgment that there was likely more to RNA than was known. Subsequent identification of ncRNAs unrelated to protein synthesis over 25 years ago, specifically, the catalytic ribozymes that formed secondary and tertiary structures thought to be important to early life on earth, reinforced the diversity of RNA species (Sharp, 1985; Lamond and Gibson, 1990).

Several recent papers have identified new ncRNA species of particular function, and mechanistic insight into some of these different varieties of RNA reveal overlapping features, both in plant and animal cells. This diversity of RNA has been extensively reviewed with respect to small RNA-induced silencing complex (RISC)-related RNAs (e.g., Czech and Hannon, 2011) and lncRNAs (e.g., Rinn and Chang, 2012), with particular emphasis on disease specificity (Qureshi and Mehler, 2012; Sana et al., 2012) and epigenetic function (Lee, 2012). While there are several recent reviews that categorically describe different studies on RNA (Esteller, 2011; Wan et al., 2011), a more critical analysis of what defines a long mRNA is lacking and the methods used for this, as well as a synthesis of lncRNA function across cell types. The purpose of the current review is to contextualize lncRNAs more generally, and review their effects in cellular function with respect to mechanism. This information will then be used to frame some of the preliminary studies emerging from studies of neurodevelopment.
CHARACTERIZATION OF lncRNAs

Several recent reviews have delineated ncRNA species into subcategories based on size (less or greater than 200 bases—often used as the definition of long versus short ncRNA), position (e.g., RNA species generated from the 3′UTRs or 5′UTRs), molecular interactions (e.g., Drosha- or Dicer-dependent), and molecular function, a good example of which is competitive antisense (AS) RNA that binds to microRNA and acts as a sponge to inhibit competitively microRNA from binding to a sense mRNA transcript (Cesana et al., 2011). It is unclear whether these categories are empirically determined, or whether they will prove relevant to categorization as future ncRNAs are discovered; indeed, the identification of such a wide diversity of RNA is consistent with what might be expected from an ancient, flexible molecule, capable of forming 3D structures and interacting with DNA, protein, or other RNAs.

What makes a lncRNA a lncRNA rather than some other RNA species? Are they a functionally distinct RNA product or are they a small part of the transcriptome that has been suggested to occur from large portions of the genome, mostly from recent ENCODE data (Carninci et al., 2005; Birney et al., 2007)? Certainly, a recent report (Guttman et al., 2013) suggests that intergenic lncRNAs are indeed non-coding, an issue that has been previously determined using algorithms (Lin et al., 2011) to assess whether different combinations of potential codons are similar to any other previously identified amino acid molecule. Most studies of lncRNA also attempt to determine whether an RNA species is localized to the nucleus, usually using RNA fluorescence in situ hybridization (FISH). Because translation occurs in the cytoplasm this might be evidence for the lack of coding potential. This analysis is somewhat arbitrary though, because ncRNA might be identified in the nuclear, chromatin, or cytoplasmic fraction of cells. Compartamentalization of lncRNAs in one of these fractions may be a defining feature of different lncRNA and may help to guide future classification schemes. Functional studies of lncRNA have also led to a proliferation of potential future categories for lncRNA, some of which are listed in Table 1, but this categorization creates its own problems in that many lncRNAs have overlapping features. This is a major issue at the moment and one likely to increase in complexity given the number of RNAs that can be detected from so many regions of the genome.

The current classification system will likely evolve as more RNA species are discovered, and classification of each ncRNA might follow a similar trajectory to that of protein coding gene classification. Genes that lead to an mRNA product are not divided up by length, genomic position, whether they are spliced or not for example, and numerous coding genes fit into different classification categories. Instead they are classified by function or conserved domains. Likely it is the novelty of the RNA field, facilitated by the detection of so many transcripts by massively parallel sequencing that is leading to the classification conundrum, but this may diminish as individual RNAs are functionally analyzed.

Several recent reports have carefully documented lncRNAs over a very unique range of function. To understand how lncRNAs are similar or different in both structure and function, we synthesize this information from recent papers to determine if there are any patterns or consistencies across RNA species. We focus on currently defined long RNA (>200 bp) and omit discussion of small RNAs such as microRNA, piwiRNA, or imprinting-related RNAs.

FUNCTIONAL STUDIES OF lncRNAs

The recognition of HOTAIR (Birru et al., 2007) as a lncRNA that regulates gene expression in cis and trans (it is transcribed on chromosome 12 from the HoxC cluster and can regulate the chromosome 2 HoxD gene cluster) opened a new chapter for RNA molecules. HOTAIR defined a class of molecules distinct from housekeeping RNAs, microRNAs, and others, and which were not involved in fundamental imprinting processes. It hinted at the existence of RNA in the genome with regulatory functions directly related to their particular sequence and

Table 1 | Some examples of categorization of non-coding RNA.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Example</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intronic</td>
<td>Expressed from the intron of target</td>
<td>DMD IncRNA</td>
<td>Boosienta et al. (2012)</td>
</tr>
<tr>
<td>H3K4me3</td>
<td>Has a methylated H3K4 promoter</td>
<td>IncRNA-p21</td>
<td>Hauerte et al. (2010)</td>
</tr>
<tr>
<td>Antisense</td>
<td>Expressed from the non-coding strand and acts on the complementary target</td>
<td>BACE1-AS</td>
<td>Faghihi et al. (2009)</td>
</tr>
<tr>
<td>Enhancer</td>
<td>Expressed to enhance expression at a locus at some distance from target</td>
<td>p53 eRNAs</td>
<td>Melo et al. (2013)</td>
</tr>
<tr>
<td>Promoter</td>
<td>Acting on and expressed from the promoter of target</td>
<td>DBE-T</td>
<td>Cabianca et al. (2012)</td>
</tr>
<tr>
<td>Intergenic</td>
<td>Expressed at some distance from coding genes</td>
<td>IncRNA400299</td>
<td>Takowskii et al. (2012)</td>
</tr>
<tr>
<td>Trans-acting</td>
<td>Acting at some distance from target</td>
<td>Ev2</td>
<td>Bond et al. (2009)</td>
</tr>
<tr>
<td>cis-acting</td>
<td>Acting on an adjacent target</td>
<td>AIRN</td>
<td>Santoro et al. (2013)</td>
</tr>
<tr>
<td>Small</td>
<td>Less than 200 bp in size</td>
<td>microRNA 137</td>
<td>Ripke et al. (2011)</td>
</tr>
<tr>
<td>Long</td>
<td>Greater than 200 bp in size</td>
<td>Fendr</td>
<td>Grote et al. (2013)</td>
</tr>
<tr>
<td>5′UTR</td>
<td>Expressed near the 5′UTR of target</td>
<td>5′UTR ELK-1</td>
<td>Rahim et al. (2012)</td>
</tr>
</tbody>
</table>
provided an explanation for the targeting specificity required by ubiquitous binding molecules such as large chromatin modifying complexes. Since HOTAIR’s description, the function of many other lncRNAs has been revealed. Shown below is the large diversity of these molecules, from their genomic position in relation to the genes they regulate, their size, processing, and mechanism of action. While this diversity is large, there are also similarities, especially in reference to function. To demonstrate differences and similarities, we have selected all reports from the last 2 years (2011–2013) that have characterized positional, processing, and functional information of specific lncRNAs. Table 2 lists structural information from lncRNAs that have been characterized functionally and this information is synthesized with the functional characteristics in the concluding remarks.

The lncRNA COLDAIR presents a series of themes for lncRNAs with respect to function. COLDAIR recruits polycomb repressive complex 2 (PRC2), a complex of proteins that can alter histone chemical groups to decrease gene expression, through an intermediate protein (homolog of Enhancer of zeste, Drosophila) and the binding of COLDAIR occurs through a CXC domain of this intermediate protein (see Table 3 for a discussion of RNA:protein interaction domains). COLDAIR is expressed at equal ratios over time, despite an increasing repression of the target, suggesting increased affinity for the PRC2 interaction. COLDAIR reveals several potential areas of diversity/similarity amongst lncRNAs. What determines expression of the lncRNA itself? Is the lncRNA regulated in conjunction with the target or independently from it? Is the lncRNA action direct on the target or indirect? Is the lncRNA repressive or activating? Does it act on a single target or a cluster of targets at a locus?

The lncRNA IRIT1 differs significantly from the mechanistic action of COLDAIR, but also functions in a repressive manner to block expression of the target gene IME1. IRIT1 can respond within hours to a cell stressor to aid in the inhibition of gametogenesis, which means the repressive mechanism used by IRIT1 may be specific to fast-acting effects. IRIT1 completely covers the 2 kb promoter of the target gene and functions to block transcription factors from binding and promoting transcription and acts in cis, similar to COLDAIR. Because IRIT1 is transcribed over the promoter of the target gene in the sense direction, it has an identical specificity to the DNA of the IME1 promoter. The blocking of transcription factors in combination with aiding in the establishment of a repressive chromatin state through histone methyltransferases

Table 2 | Processing and positional diversity of lncRNA (in order described in text).

<table>
<thead>
<tr>
<th>lncRNA</th>
<th>Ref</th>
<th>Species</th>
<th>Description of all structural properties reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLDAIR</td>
<td>Heo and Sung, 2011</td>
<td>A. thaliana</td>
<td>1100 base RNA expressed from the sense strand relative to target, has no poly-A tail, expressed from an intron of the target gene</td>
</tr>
<tr>
<td>IRIT1</td>
<td>van Werven et al., 2012</td>
<td>S. cerevisiae</td>
<td>Expressed from promoter of target, 1.4 kb in length, not spliced and is transcribed from the same strand as the gene it regulates</td>
</tr>
<tr>
<td>NeST</td>
<td>Gomez et al., 2013</td>
<td>M. musculus</td>
<td>Encoded on the antisense strand, contains six exons spread over a 45 kb region, transcript is 914 bases</td>
</tr>
<tr>
<td>Braveheart</td>
<td>Klattenhoff et al., 2013</td>
<td>M. musculus</td>
<td>590 base RNA with three exons, 33% confined to the nucleus</td>
</tr>
<tr>
<td>NeST</td>
<td>Gomez et al., 2013</td>
<td>M. musculus</td>
<td>Encoded on antisense strand, contains six exons spread over a 45 kb region, primary transcript is 914 bases</td>
</tr>
<tr>
<td>DBE-T</td>
<td>Cabianca et al., 2012</td>
<td>H. sapiens</td>
<td>9.5 kb is one major product, transcribed from same strand as target genes, transcript contains one of many targets, nuclear and chromatin associated</td>
</tr>
<tr>
<td>HOTTIP</td>
<td>Wang et al., 2011</td>
<td>H. sapiens</td>
<td>3,764-nucleotide, spliced and polyadenylated intergenic RNA, ~330 base product, regulates gene cluster</td>
</tr>
<tr>
<td>ANRIL</td>
<td>Mian et al., 2012</td>
<td>H. sapiens</td>
<td>~126 kb transcript, spliced, 19 exons with an ~1.1 kb transcript, 13 isoforms transcribed in the antisense orientation of gene cluster, overlaps one target gene</td>
</tr>
<tr>
<td>IncMD1</td>
<td>Caliana et al., 2013</td>
<td>M. musculus</td>
<td>Three exons and two introns in 14 kb of genomic space, spliced product of 521 bases, accumulates as cytoplasmic poly-A+ RNA, transcribed on same strand in same orientation as microRNAs for which it acts as a decoy</td>
</tr>
<tr>
<td>TINCR</td>
<td>Kretz et al., 2013</td>
<td>H. sapiens</td>
<td>Three exons, 3.7 kb transcript predominantly cytoplasmically expressed, over 100 different targets dispersed through genome</td>
</tr>
<tr>
<td>UCHL1-AS</td>
<td>Cerri et al., 2012</td>
<td>M. musculus</td>
<td>Four exons spanning 70 kb, overlaps the first 73 bases of UCHL1, including the AUS start codon, transcribed in reverse orientation in a head-to-head fashion, second intron of UCHL1 contains the TSS for UCHL1-AS, enriched in the nucleus</td>
</tr>
<tr>
<td>1/2sbsRNA1</td>
<td>Gong and Maquat, 2011</td>
<td>H. sapiens</td>
<td>Present in cytoplasm, poly-A+, two alternative transcripts consist of 688 nucleotides, multiple targets throughout genome</td>
</tr>
</tbody>
</table>
Table 3 | Protein:RNA interacting domains.

| Cysteine domains | WD domains refer to peptide domains with rich repeats of tryptophan (W); cis targets often trigger expression of many other genes. DBE-T is bvht, which appear to regulate a single target, although these chromosomal region, in contrast to COLDAIR, IRT1, NeST, or large range of proteins. WD domains are non-catalytic and are thought to form a platform for the interaction of different cellular partners. |
| CXC (redox-like), CX3C (redox), or C-X6-H-X (zinc finger or ring finger) motifs refer to the cysteine residue (C) with any amino acid (X) in between. These Cys residues may be active, meaning they can use their highly active sulfhydryl (SH) group to form a covalent bond with the OH group on the RNA sugar ring. These motifs can also interact with Ser, Thr, or Tyr amino acid residues to form S-S or S-O bonds on other proteins. An example of the cysteine RNA interacting domain are the Enhancer of zeste-related proteins with conserved Xb1-C-A-D-C-C-C motifs. |

WD domains refer to peptide domains with rich repeats of tryptophan (W); hydrophobic and aspartic acid (D); negatively charged that are present in a large range of proteins. WD domains are non-catalytic and are thought to form a platform for the interaction of different cellular partners.

[82x1085]...
involvement in oocytes of Drosophila. All lncRNA described to date provide locus specificity for activating or repressive complexes to neighboring target genes, or interact directly with a target through sequence complementarity. TINCR on the other hand, appears to target specific RNA transcripts actively through an RNA sequence motif. lincMD1 also diverges drastically in that it is a by-product of pri-microRNA processing and acts to sponge the microRNAs from which it was initially processed. There may be many other pri-microRNA by-products that function similarly.

Another lncRNA that reportedly does not use large histone modifying complexes to alter a target, but instead operates through binding of a primary target, is AS-UCHL1. AS-UCHL1 has been shown recently to be important for proper targeting of sense transcript to polysomes, suggesting a stabilizing function for this lncRNA, demonstrated by a strong increase in UCHL1 protein with no difference in UCHL1 transcript on over-expression of AS-UCHL1. This principle of RNA stabilization to affect protein levels of targets may be a continuing theme for lncRNAs (e.g., Yoon et al., 2012). This lncRNA has a single target, binds it directly, and functions to increase protein of the primary target by stabilizing the mRNA. The idea of repeat elements in the genome, acting through lncRNAs, has also been described with respect to Alu repeats, one of the most common repeats in the human genome. The description of overlapping Alu repeats, one in an AS strand and one in the 3’UTR of the sense strand, can lead to formation of a STAU1 binding site, which allows for STAU1 to stabilize base pairing and target the RNA duplex for degradation. Similar to all lncRNAs described here, these Alu-containing lncRNAs can regulate the levels of a transcript through an mRNA decay pathway. This was specifically demonstrated for SERPINE1 and FLI1 mRNA between their 3’ UTR Alu element and the Alu element in a single lncRNA (see Figure 1B).

SYNTHESIS OF lncRNA FEATURES FROM DIFFERENT SPECIES

These examples support an important role for lncRNAs in the genome, and highlight the diverse function of lncRNAs, but also some similarities. First, there appears to be no relationship between the particular function of a lncRNA, its size, or how it is processed. This suggests that lncRNAs will represent a diverse range of characteristics. Second, neither transcriptional direction nor strand specificity appears to have an effect on function. The key element is that lncRNAs are produced either within their target gene or in the vicinity of target genes. Those lncRNAs produced from overlapping regions of their target gene are more likely to bind to the target, however, due to direct complementarity with the target. Whether these lncRNAs come from the same or the AS strand as a target appears not to have functional impact. Future experiments should document this for all newly described
Incorporating IncRNAs to determine whether this remains the case. These ideas may help guide issues of categorization of IncRNAs, and we propose a system that anchors IncRNAs in the target molecule. This may not prove useful for those IncRNAs, like the intergenic IncRNAs, that do not appear to have nearby targets. Their function may prove to be completely different and independent from those IncRNAs expressed in relationship to mRNAs.

Most IncRNAs are modulators of a primary transcript suggesting that, evolutionarily, they arose after the primary transcript. For example, HOTTIP either evolved with or after the HOX gene cluster that it regulates. There is little evidence for IncRNAs that operate in isolation (although the IncRNAs may be an exception, reflected by their distinct locations and conservation across species (Managadze et al., 2013), but rather form part of a transcriptional regulation complex of a specific target or a cluster of targets. This suggests that characterizing lncRNA might best be done grounded in the primary target rather than through effector status.

Many IncRNAs act through histone modifying complexes and appear to affect either a single target gene or a cluster of genes in a local region. They may require an intermediate binding partner for recruitment of the histone complex or interact directly with one of the proteins in these complexes. Determining whether IncRNAs bind directly to the target, interact directly with a histone modifying complex, or require a partner to bind histone modifying complex, will be important information as new IncRNAs are uncovered. Most IncRNAs do not share any sequence similarity (i.e., no indication yet of any conserved domain within IncRNAs) and it seems the position of IncRNAs in relation to the target(s) are of fundamental importance to their function. While there are many remarkable functions attributed to lncRNAs, we strongly suspect that the function of even these lncRNA will prove more diverse as they undergo further investigation.

lncRNAs IN CNS DEVELOPMENT

Functional and mechanistic data generated by studying IncRNAs in different molecular systems and species suggests IncRNAs likely play an important role in all cellular systems. As evidenced in the previous sections, IncRNAs most likely act as modifiers of a complementary RNA, interact with large histone complexes, interact with complementary DNA sequences, or act completely independently in the nucleus with no obvious partners required. Given this diverse potential, the complexity of the nervous system in any species might be partially due to the additional level of control over the cellular machinery by IncRNAs. IncRNAs may provide a means to tweak a cellular system at many levels and to operate rapidly in response to external signals whether axon guidance cues or environmental. Exposure. In line with these ideas, we synthesize recent reports of lncRNAs in the developing nervous system.

lncRNA IN NEURAL STEM CELLS

Some of the first experiments to underscore the importance of IncRNAs were done in mouse or human stem cells from. Stem cells used for research are either derived from the inner cell mass of a fertilized embryo (Thomson et al., 1998) or induced pluripotent by the experimental increase of transcription factors normally present in early embryonic stages (Takahashi and Yamanaka, 2006) in terminally differentiated cells. These stem cells can be differentiated to a neural stem cell (NSC) fate and these NSCs can then give way to glia and neurons (Hu et al., 2010). In a wide ranging, exploratory analysis, Ng and colleagues (Ng et al., 2012) examined neuronal differentiation from human embryonic stem cells (hESCs). They used a two-step differentiation protocol from radial glial-like cells to largely dopaminergic cells, and then assessed global gene expression levels of pre-selected IncRNAs in radial-glial cells compared to dopaminergic-like cells. They identified 35 IncRNAs that were differentially expressed between progenitor and mature states, and then tested some of these for functionality. Following similar designs of non-neuronal studies of IncRNA, they assessed the association of differentially expressed IncRNA with SUZ12 and the neurogenesis repressor complex REST/NRSF (neural restrictive silencer factor; Naruse et al., 1999). In a study using just three IncRNAs, their data supported interaction of one IncRNA with REST and another IncRNA with SUZ12. While the SUZ12 interaction is consistent with previous IncRNA studies, the interaction with REST/NRSF is novel for IncRNAs in neurons, although it does associate with HOTAIR in non-neuronal cell types to repress expression of neuronal genes. This suggests that the IncRNA in the Ng et al. (2012) study may interact with REST to regulate neuronal gene expression.

While ES (embryonic stem cells)- and iPSC (induced pluripotent stem cell)-derived NSCs may not perfectly capture the developmental progression of the human brain, they provide an excellent model with which to screen for important factors as the cells develop from stem cells to electrically active neurons. A study monitoring (PSC-NSC) differentiation accompanied by RNA sampling at different timepoints, contrasted with brain temporal lobe brain tissue RNA levels from the same donor has revealed a gradual increase in the expression of different IncRNAs as NSCs differentiate (Hjelm et al., 2013). This is supported by our own study, where we observed an increase in the neurodevelopmentally important intergenic IncRNA00299 as iPSC-NSCs differentiated (Takahashi et al., 2012). A recent report using adult NSCs in mice has further confirmed that IncRNAs increase as cells differentiate. Ramos et al. (2013) sorted stem cells of the sub-ventricular zone of mice and screened these cells for expression levels of different IncRNAs creating publishable accessible expression maps for IncRNAs that may be relevant to glial-neuron specification in adult brain.

IncRNA IN DEVELOPING BRAIN

In the mammalian brain, IncRNAs have long been recognized as important in neurodevelopment, although they were traditionally referred to as AS transcripts. An example of this is the AS transcripts near the Sst and Sost loci produced during development of the mouse cerebral cortex (Ling et al., 2009). Sst proteins contain a high mobility group, and this refers to the ability of these proteins to bind and bend DNA. Using global gene expression analysis tools, Ling et al. (2011) showed that AS SstAS and SostAS transcripts are produced during proliferating and differentiating states, suggesting that the regulation of these important genes is by complementary IncRNAs. Recently, this same group documented a similar effect with respect to Ngrx and Gm212 gene product in mouse cerebral corticogenesis. A recent study in adult brain also suggests that electrical activity in neurons stimulates IncRNA...
References

Barry, G., Briggs, J. A., Vanichkina, D. P., Poth, E. M., Beveridge, N. J., Ratnu, V., et al. (2013). The DMD locus harbours multiple long non-coding RNAs which orchestrate and control transcription and splicing in this region are complex. Recently, Powell et al. (2013) reported the first experiments to determine the function of lncRNA 116HG. They found that 116HG forms RNA “clouds” specific to nuclei in mouse brain, and that these 116HG clouds change size and shape in predictable ways as the brain develops. Using RNA and DNA FISH mapping, they show that 116HG likely interacts with the paternal UBE3A locus, a gene found immediately upstream of the 116HG locus and known to be important in neurodevelopment. Their data further suggest that 116HG interacts with RBBP5, a subunit of the MLL complex, which acts as a transcriptional activator by methylation of H3K4. This model conforms nicely to what is known of lncRNA functions in other species; 116HG might associate with MLL complex and interact with histones at the UBE3A locus. How 116HG itself is regulated is unknown, but this will be clearly important to understand better the neurobiology of PWS.

lncRNAs likely have a role in many aspects of the cell, and brain development might be an area where their structure and function is particularly suited. This may suggest that many more lncRNAs await discovery in novel systems as well as in added layers of control for well known processes of neurodevelopment.

Acknowledgments

Carl Ernst is supported by a Canada Research Chair and holds funding from the Banffing Foundation of Toronto and the Natural Science and Engineering Research Council of Canada. Cynthia C. Morton acknowledges support from the NIH (GM061354).

Ernst and Morton

Identification and function of long non-coding RNA

Frontiers in Cellular Neuroscience www.frontiersin.org

October 2013 | Volume 7 | Article 168 | 7

“fnce-07-00168” — 2013/9/30 — 16:47 — page 7 — #7

(Barry et al., 2013). Given the importance of initial synaptic contacts and communication between cells, it stands to reason that there may be lncRNAs that respond to activity and independent lncRNAs that increase expression as differentiation proceeds, similar to data from in vitro NSC models. Of intense interest as well are the loci of the genome where AS transcripts are transcribed from the same genomic loci as exons of genes, and how some of these may be specific to human. For example, BENDF is transcribed from chromosome 11 and an AS transcript is produced from the opposite strand in humans but not in mouse (Aid et al., 2007; Pruunsild et al., 2007). The discovery of an ever increasing number of AS transcripts that may assist in regulation of genes fundamental to brain development will likely be forthcoming. Determining the exact role of these AS transcripts, their size, and binding dynamics will be important.

Recent data from our group suggest that lncRNAs may be important in neurodevelopmental disease (TALKOWSKI et al., 2012); the size, and binding dynamics will be important. Coming. Determining the exact role of these AS transcripts, their size, and binding dynamics will be important.

The minimal required locus within causes by deletion of 15q11-13 on the paternal chromosome. Intellectual disability, sleep disorders, and psychosis, and can be causing certain neurological problems, the best example of which may be Prader-Willi syndrome (PWS). PWS is characterized by intellectual disability, sleep disorders, and psychosis, and can be caused by deletion of 15q11-13 on the paternal chromosome.

Genes in this region are suppressed on the paternal chromosome, meaning that paternally expressed genes likely provide the optimal dosage of expression. The minimal required locus within this ~15 Mb region implicates 16HG, a lncRNA retained in the nucleus, as well as the small nuclear RNA SNORD116 (Sahoo et al., 2008). Both lncRNAs are the control of the imprinting control region, involving multiple overlap of genes – suggesting that transcription and splicing in this region are complex. Recently, Powell et al. (2013) reported the first experiments to determine the function of lncRNA 116HG. They found that 116HG forms RNA “clouds” specific to nuclei in mouse brain, and that these 116HG clouds change size and shape in predictable ways as the brain develops. Using RNA and DNA FISH mapping, they show that 116HG likely interacts with the paternal UBE3A locus, a gene found immediately upstream of the 116HG locus and known to be important in neurodevelopment. Their data further suggest that 116HG interacts with RBBP5, a subunit of the MLL complex, which acts as a transcriptional activator by methylation of H3K4. This model conforms nicely to what is known of lncRNA functions in other species; 116HG might associate with MLL complex and interact with histones at the UBE3A locus. How 116HG itself is regulated is unknown, but this will be clearly important to understand better the neurobiology of PWS.

lncRNAs likely have a role in many aspects of the cell, and brain development might be an area where their structure and function is particularly suited. This may suggest that many more lncRNAs await discovery in novel systems as well as in added layers of control for well known processes of neurodevelopment.

Acknowledgments

Carl Ernst is supported by a Canada Research Chair and holds funding from the Banffing Foundation of Toronto and the Natural Science and Engineering Research Council of Canada. Cynthia C. Morton acknowledges support from the NIH (GM061354).

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

This article was submitted to the journal Frontiers in Cellular Neuroscience. Copyright © 2013 Ernst and Morton. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.