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Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond
resolution is a challenge beyond the limits of existing techniques in neuroscience.
Entirely new approaches may be required, motivating an analysis of the fundamental
physical constraints on the problem. We outline the physical principles governing brain
activity mapping using optical, electrical, magnetic resonance, and molecular modalities
of neural recording. Focusing on the mouse brain, we analyze the scalability of each
method, concentrating on the limitations imposed by spatiotemporal resolution, energy
dissipation, and volume displacement. Based on this analysis, all existing approaches
require orders of magnitude improvement in key parameters. Electrical recording is
limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial
resolution, optical methods are constrained by the scattering of visible light in brain
tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of
water protons, and the implementation of molecular recording is complicated by the
stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping
may provide insight into opportunities for novel solutions. For example, unconventional
methods for delivering electrodes may enable unprecedented numbers of recording
sites, embedded optical devices could allow optical detectors to be placed within a few
scattering lengths of the measured neurons, and new classes of molecularly engineered
sensors might obviate cumbersome hardware architectures. We also study the physics
of powering and communicating with microscale devices embedded in brain tissue and
find that, while radio-frequency electromagnetic data transmission suffers from a severe
power–bandwidth tradeoff, communication via infrared light or ultrasound may allow high
data rates due to the possibility of spatial multiplexing. The use of embedded local
recording and wireless data transmission would only be viable, however, given major
improvements to the power efficiency of microelectronic devices.

Keywords: neural recording, brain activity mapping, electrical recording, optical methods, magnetic resonance

imaging, molecular recording, embedded electronics

“To understand in depth what is going on in a brain, we need
tools that can fit inside or between neurons and transmit reports
of neural events to receivers outside. We need observing instru-
ments that are local, non-destructive and non-invasive, with rapid
response, high band-width and high spatial resolution. . . There is
no law of physics that declares such an observational tool to be
impossible.”

Freeman Dyson, Imagined Worlds, 1997

1. INTRODUCTION
Neuroscience depends on monitoring the electrical activities of
neurons within functioning brains (Alivisatos et al., 2012; Bansal
et al., 2012; Gerhard et al., 2013) and has advanced through
steady improvements in the underlying observational tools. The
number of neurons simultaneously recorded using wired elec-
trodes, for example, has doubled every 7 years since the 1950s,

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2013.00137/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AdamMarblestone&UID=101076
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ThaddeusCybulski&UID=106168
http://community.frontiersin.org/people/JoshuaGlaser/116742
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DarioAmodei&UID=110896
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RezaKalhor&UID=101193
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DongjinSeo&UID=101188
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=EladAlon&UID=106169
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MichelMaharbiz&UID=5669
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JoseCarmena&UID=453
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JanRabaey&UID=106167
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=EdwardBoyden_1&UID=5939
http://community.frontiersin.org/people/GeorgeChurch/116767
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KonradKoerding&UID=231
mailto:adam.h.marblestone@gmail.com
mailto:adam.h.marblestone@gmail.com
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
http://community.frontiersin.org/people/BradleyZamft/106423
http://community.frontiersin.org/people/MikhailShapiro/106166


Marblestone et al. Physical principles for scalable neural recording

currently allowing electrical observation of hundreds of neurons
at sub-millisecond timescales (Stevenson and Kording, 2011).
Recording techniques have also diversified: activity-dependent
optical signals from neurons endowed with fluorescent indica-
tors can be measured by photodetectors, and radio-frequency
emissions from excited nuclear spins allow the construction of
magnetic resonance images modulated by activity-dependent
contrast mechanisms. Ideas for alternative methods have been
proposed, including the direct recording of neural activities into
information-bearing biopolymers (Kording, 2011; Zamft et al.,
2012; Glaser et al., 2013).

Each modality of neural recording has characteristic advan-
tages and disadvantages. Multi-electrode arrays enable the record-
ing of ∼250 neurons at sub-millisecond temporal resolutions.
Optical microscopy can currently record ∼100,000 neurons at
a 1.25 s timescale in behaving larval zebrafish using light-sheet
illumination (Ahrens et al., 2013), or hundreds to thousands
of neurons at a ∼100 ms timescale in behaving mice using a
1-photon fiber scope (Ziv et al., 2013). Magnetic resonance imag-
ing (MRI) allows non-invasive whole brain recordings at a 1 s
timescale, but is far from single neuron spatial resolution, in
part due to the use of hemodynamic contrast. Finally, molecular
recording devices have been proposed for scalable physiological
signal recording but have not yet been demonstrated in neurons
(Kording, 2011; Zamft et al., 2012; Glaser et al., 2013).

Figure 1 illustrates the recording modalities studied here.
While further development of these methods promises to be a
crucial driver for future neuroscience research (Kandel et al.,
2013), their fundamental scaling limits are not immediately obvi-
ous. Furthermore, inventing new technologies for scalable neural
recording requires a quantitative understanding of the engineer-
ing problems that such technologies must solve, a landscape of
constraints which should inform design decisions.

Our analysis is predicated on assumptions that enable us to
estimate scaling limits. These include assumptions about basic
properties of the brain, which are treated in Section 2, as well
as those pertaining to the required measurement resolution and
the limits to which a neural recording method may perturb brain
tissue, which are treated in Section 3. Together, these considera-
tions form the basis for our estimates of the prospects for scaling
of neural recording technologies. We analyze four modalities of
brain activity mapping—electrical, optical, magnetic resonance
and molecular—in light of these assumptions, and conclude with
a discussion on opportunities for new developments.

Importantly, our assumptions, analyses and the conclusions
thereof are intended as first approximations and are subject to
debate. We anticipate that as much can be learned from where our
logic breaks down as from where it succeeds, and from methods
to work around the limits imposed by our assumptions.

2. BASIC CONSTRAINTS
2.1. MOUSE BRAIN
The mouse brain contains ∼7.5 × 107 neurons in a volume of
∼420 mm3 (Vincent et al., 2010) and weighs about 0.5 g. The
packing density of neurons varies widely between brain regions.
In the below, we will use a cell density of ρneurons ≈ 92, 000/mm3,
as measured for mouse cortex (Braitenberg and Schüz, 1991).

FIGURE 1 | Four generalized neural recording modalities.

(A) Extracellular electrical recording probes the voltage due to nearby
neurons. (B) Optical microscopy detects light emission from
activity-dependent indicators. In two-photon laser scanning microscopy,
shown here, an excitation beam at 2× the peak excitation wavelength of
the fluorescent indicator is scanned across the sample, while an integrating
detector captures the emitted fluorescence. (C) Magnetic resonance
imaging detects radio-frequency magnetic induction signals from aqueous
protons, after weak thermal alignment of the proton spins by a static
magnetic field. A resonant radio-frequency pulse tips the spins into a plane
perpendicular to the static field, causing the net magnetization to precess.
The resulting signals are affected by the local chemical and magnetic
environment, which can be altered dynamically by imaging agents in
response to neural activity. Activity-dependent contrast agents are
necessary to transduce neural activity into an MRI readout, whereas
current functional MRI methods rely on blood oxygenation signals which
cannot reach single-neuron resolution. (D) Molecular recording devices
have been proposed, in which a “ticker tape” - record of neural activity is
encoded in the monomer sequence of a biomolecular polymer - a form of
nano-scale local data storage. This could be achieved by coupling correlates
of neural activity to the nucleotide misincorporation probabilities of a DNA
or RNA polymerase as it replicates or transcribes a known DNA strand.

This corresponds roughly to one neuron per 22 μm voxel. The
density of cortical synapses, on the other hand, approaches
109/ mm3, i.e., one synapse per 1 μm3 voxel. For comparison, the
human brain has roughly 8 × 1010 neurons (Azevedo et al., 2009)
in a volume of 1200 cm3 (Allen et al., 2002).

The human brain consumes ∼15 W of power (performing, at
synapses, a rough equivalent of at least 1017 floating point compu-
tational operations per second on that power budget, according
to one definition (Sarpeshkar, 2010), although the analogy with
digital computers should not be taken literally). Because power
consumption scales approximately linearly with the number of
neurons (Herculano-Houzel, 2011), the mouse brain is expected
to utilize ∼15 mW. For comparison, the metabolic rate of the
∼20–30 g mouse is ∼200–600 mW depending on its degree of
physical activity (Speakman, 2013).

2.2. NEURAL ACTIVITIES
Action potentials (spikes) last ∼2 ms. The rate of neuronal spik-
ing is highly variable. Some authors have assumed an average rate
of 5 Hz (Sarpeshkar, 2010; Harris et al., 2012), but certain neu-
rons spike at 500 Hz or faster (Gittis et al., 2010), while many
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neurons spike much more slowly. For example, cerebellar gran-
ule cells, which make up half of the neurons in the brain, have
spontaneous firing rates of ∼0.5 Hz (Chadderton et al., 2004). In
neocortex, one analysis estimated 0.16 spikes per second per neu-
ron (in primate) as energetically sustainable (Lennie, 2003). There
may be as much as a two-fold change in metabolism and hence
firing rate across brain states (Howarth et al., 2012). Certain neu-
rons (possibly up to 90% for some neuron types in some brain
areas) may be effectively silent (Shoham et al., 2006; Barth and
Poulet, 2012), e.g., spiking less than once every 10 s. Some stud-
ies have attempted to measure the distribution of neural firing
rates in various cortical areas (as opposed to just the average rate),
and have observed that these distributions are often long-tailed: a
small minority of the neurons fires a majority of the spikes (Shafi
et al., 2007; Hromádka et al., 2008; O’Connor et al., 2010; Roxin
et al., 2011).

While these estimates of typical firing rates are useful num-
bers to have in mind, in the below we aim to sample all neurons
at 1 kHz rates (or higher for techniques requiring observation
of detailed spike waveforms). This choice is informed by several
factors. First, measuring spike timing with millisecond preci-
sion is relevant for understanding network function, due to the
possibilities for timing codes, spike-timing dependent plasticity
mechanisms, and other effects relying on temporally-precise spik-
ing patterns (Markram et al., 2011; Babadi and Abbott, 2013;
Gire et al., 2013; Taillefumier and Magnasco, 2013). In this
regard, it is also important for a recording method to main-
tain precise temporal phasing between measurements at differ-
ent brain locations: activity measurements should be locked to
precise global clocks, perhaps with a tolerable phase impreci-
sion between any two measurements in the range of 1

2π
× 1 ms ≈

100–200 ms. Furthermore, the activities of neurons can be highly
correlated locally or across large networks (Schneidman et al.,
2006), suggesting that local activity sensors may be subjected to
high instantaneous total firing rates due to simultaneously-active
neurons.

2.3. ABSORPTION AND SCATTERING OF RADIATION
All existing methods of neural recording utilize electromagnetic
waves, from the near-DC frequencies of wired electrical record-
ings (∼1 kHz) to the radio-frequencies of wireless electronics
and fMRI (MHz–GHz) to visible light in optical approaches
(∼500 THz). These electromagnetic waves are attenuated in brain
tissue by absorption and scattering. As an approximation to the
electromagnetic absorption by brain tissue, we treat the absorp-
tion by water, the brain’s main constituent (68–80% by mass
in humans Dobbing and Sands, 1973; Fatouros and Marmarou,
1999). At visible and near-IR wavelengths, scattering dominates
absorption: absorption lengths are in the ∼1 mm range, while
scattering lengths are ∼25–200 μm (Wilt et al., 2009). The com-
bined effect of absorption and scattering is measured by the
attenuation length, the distance over which the signal strength
is reduced by a factor of 1/e along a path. Figure 2 shows the
absorption length of water (Kou et al., 1993), and the atten-
uation length in a Mie scattering model from Horton et al.
(2013) intended to approximate the scattering properties of cor-
tical tissue [and see (Gabriel et al., 1996) for tissue skin depth

FIGURE 2 | Penetration depth (attenuation length) of electromagnetic

radiation in water vs. wavelength [data from Jonasz (2007)]. The
approximate diameter of the mouse brain is shown as a black dashed line.
Inset: approximate tissue model based on Mie scattering theory and water
absorption. Absorption length of water (Kou et al., 1993) (blue), approximate
tissue scattering length in a simple Mie scattering model (red) and the
resulting attenuation length (green) of infrared light [inset reproduced from
Horton et al. (2013), with permission].

measurements in the 10 Hz to 100 GHz range]. This gives a
preliminary indication of which wavelengths can be used to mea-
sure deep-brain signals with external detectors. Note that the
attenuation length is only one of several relevant metrics: for
example, scattering not only causes signal attenuation, but also
causes noise and impairs signal separation, so the magnitude of
the scattering is a key figure of merit.

3. CHALLENGES FOR BRAIN ACTIVITY MAPPING
Any activity mapping technology must extract the required infor-
mation without disrupting normal neuronal activity. As such,
we consider three primary challenges: spatiotemporal resolution
and informational throughput, energy dissipation and volume
displacement.

3.1. SPATIOTEMPORAL RESOLUTION AND INFORMATIONAL
THROUGHPUT

A sampling rate of 1 kHz is necessary to capture the fastest trains
of action potentials at single-spike resolution. A minimal data rate
of 7.5 × 1010 bits processed per second is then required to record
1 bit per mouse neuron at 1 kHz.

In electrical recording, higher sampling rates (e.g., 10–40 kHz)
are often necessary to distinguish neurons based on spike shapes
when each electrode monitors multiple neurons. More funda-
mentally, one bit per neuron sampling at 1 kHz would likely not
be sufficient to reliably distinguish spikes above noise: transmit-
ting ∼10 bit samples at ∼10 kHz (full waveform) or ∼10–20 bit
time-stamps upon spike detection would be more realistic.

Conversely, it may be possible to locally compress mea-
surements of a spike train before transmission. The degree of
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compressibility of neural activity data is related to the variability
in the distribution of neural responses (e.g., such a distribution
may be defined across time bins or repeated stimulus presenta-
tions) (Strong et al., 1998). In the blowfly Calliphora vicina, the
entropy of spike trains has been measured to be up to ∼180 bit/s,
and the information about a stimulus encoded by a spike train
was as high as ∼90 bit/s (Strong et al., 1998). Extrapolating from
fly to mouse, this would suggest that a compression factor of
5× − 10× should be possible, relative to a 1000 bit/s raw binary
sampling.

As a naïve estimate of the entropy as a function of firing rate,
one can write the entropy H in bit/s, assuming 1 ms long spikes
and f = 1000 Hz sampling rate, as

H ≈ (−Pspike · log2

(
Pspike

)− (
1 − Pspike

) · log2

(
1 − Pspike

)) · f

where Pspike is the probability of spiking during the sampling
interval (average firing rate/f ). For an average firing rate of 5 Hz,
Pspike = 0.005 and H = 45 bit/s, corresponding to a compres-
sion factor of ∼20×. However, at 500 Hz average firing rate,
Pspike = 0.5 with H ≈ 1000 bit/s, i.e., there is no compressibility.
Therefore, compression could conceivably reduce the data trans-
mission burden for activity mapping by 1–2 orders of magnitude,
depending on the neurons and activity regimes under consider-
ation. Note that these compressibility calculations have assumed
that firing patterns are independent across cells; they represent
the temporal compressibility of the spike train from each cell,
treated individually. Patterns across cells could conceivably be
compressed by a much larger amount, to the extent that there is
redundancy between cells. Nevertheless, we use 1 bit/neuron/ms
or 100 Gbit/s as a “minimal whole brain data rate” in what fol-
lows. In many cases, this likely constitutes a lower bound on what
is feasible in practice.

3.2. ENERGY DISSIPATION
Brain tissue can sustain local temperature increases (�T) of
∼2◦C without severe damage over a timescale of hours. Indeed,
changes of this magnitude may occur naturally in rats in response
to varying activity levels (Wolf, 2008). Assuming that the brain
is receiving a constant power influx Pdelivered and that the local
thermal transport properties of mouse brains are similar to those
of humans, we can approximate the temperature change in deep-
brain tissue as a function of the applied power (Lazzi, 2005; Sotero
and Iturria-Medina, 2011):

dT

dt
= (

Pdelivered + Pmetabolic − ρbloodCbloodfblood�T
)
/Ctissue

where Pmetabolic = 0.0116 W/g is the power per unit mass of
basal metabolism, Ctissue ≈ 3.7 J/(Kg) ≈ 0.88 · Cwater is the spe-
cific heat capacity of brain tissue, ρblood = 1.05 g/cm3 is the
density of blood, Cblood = 3.9 j/(Kg) is the specific heat capac-
ity of blood, fblood = 9.3 × 10−9 m3/g/s is the volume flow rate
of blood, and �T is the temperature difference between the
brain tissue and the blood (at 37◦C). A steady-state tempera-
ture increase (dT/dt = 0) of 2◦ corresponds to dissipation of

∼40 mW per 500 mg mouse brain. Therefore, a recording tech-
nique should not dissipate more than ∼40 mW of power in a
mouse brain at steady state.

This estimate of the power dissipation limit in mouse brains,
based on such a simplified model of the brain’s thermal transport
mechanisms, is likely an under-estimate of the actual maximum
steady-state power dissipation. Radiative heat loss was ignored
here since infrared light emitted by deep-brain tissue is quickly
re-absorbed by nearby tissue. We have also ignored cooling due
to flows in the cerebrospinal ventricles (Smith and Zhu, 2010)
and in the glymphatic system (Iliff et al., 2012). We have further
assumed that conductive heat loss from the brain surface is neg-
ligible compared to the heat extracted volumetrically by blood
flow. While this may hold true locally in deep brain voxels and
over short timescales (e.g., <1 min), further work [e.g., a whole-
head model (Sukstanskii and Yablonskiy, 2004; Lazzi, 2005)] is
needed to define the true limits of sustained volumetric heat pro-
duction by neural recording systems distributed throughout the
mouse brain. Indeed, the characteristic length scale of tempera-
ture inhomogeneities in the brain is on the order of millimeters
(Sukstanskii and Yablonskiy, 2006), whereas heat exchange with
the flowing blood dampens the effects of local perturbations over
longer length scales. For large brains, this means that sources
and sinks of heat exert only local thermal effects; for a mouse
brain on the scale of <10 mm, however, surface and volumetric
effects likely combine to influence temperature changes at any site
in the brain (Sukstanskii and Yablonskiy, 2007). Experimentally,
increasing the temperature gradient at the brain surface, via a
cranial window exposed to ambient air at ∼25◦C (i.e., the com-
mon craniotomy technique used to access mouse neocortex), has
been shown to dis-regulate brain temperature down to a depth of
several millimeters (Kalmbach and Waters, 2012). For the above
reasons, our estimates of the brain’s capacity for heat dissipation
should be treated only as first approximations.

Higher power levels, compared to the maximum steady state
power, may be introduced into brains transiently. According to
the above equation, if a neural recorder dissipates ∼40 mW per
500 mg mouse brain, then the brain approaches the steady-state
temperature in 2–3 min, making shorter experiments potentially
feasible. This is in agreement with the estimate from Sukstanskii
and Yablonskiy (2006) of a ∼1 min time constant for brain tem-
perature changes, as well as with experimental measurements
showing similar time constants for temperature variations result-
ing from sustained neural stimulation (McElligott and Melzack,
1967; Trübel et al., 2005). Increasing convective heat loss from the
brain by increasing blood flow (e.g., via increased heart rate) or
cooling the brain (volumetrically or via its surface Sukstanskii and
Yablonskiy, 2007), the blood, the cerebrospinal fluid (CSF), or
the whole animal (Polderman, 2004), could increase the allowable
transient or steady-state power dissipation.

There are also limits on the power density of radiation applied
to brain tissue. For radio-frequency electromagnetic radiation,
the specific absorption rate (SAR) limit on the power density
exposed to human tissue is ∼10 mW/cm2 (IEEE, 2006), while for
ultrasound (which couples less strongly to dissipative loss mech-
anisms in tissue) the SAR limit is up to 72× higher (FDA, 2008).
The power density limit for visible and near-IR light exposures
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are also in the ∼10–100 mW/cm2 range for ∼1 ms long expo-
sures, decreasing as the exposure time lengthens [based on the
IEC 60825 formulas (IEC, 2007)].

High local power dissipation (transient or steady-state) can
modify the electrical properties of excitable membranes, alter-
ing neuronal activity patterns. For example, heating of cell
membranes and of the surrounding solution by millisecond-
long optical pulses leads to changes in membrane electrical
capacitance mediated by the ionic double layer (Shapiro et al.,
2012). Slower temperature changes (on a scale of seconds)
resulting from RF radiation lead to accelerated ion channel
and transporter kinetics (Shapiro et al., 2013). Both of these
effects are appreciable when the temperature changes are on the
order of 1–10◦C.

For comparison with current practice, common guidelines for
chronic heat exposure from biomedical implants (Wolf, 2008)
use upper limits of 2◦C temperature change, 40 mW/cm2 heat
flux from the surface of implanted brain machine interface (BMI)
hardware, and an SAR limit of

σE2

2ρ
< 1.6 mW/g

for electromagnetic energy absorbed by tissue, where E is the peak
electric field amplitude of the applied radiation, σ ≈ 0.18 S/m
is the electrical conductivity of grey matter and ρ ≈ 1 g/cm3 is
the tissue density (Lazzi, 2005) (this corresponds to an irra-
diance of ε0cE2/2 ≈ 2.4 mW/cm2). A 96-channel BMI system
demonstrated in living brains had dissipated areal power density
approaching 40 mW/cm2 (Rizk et al., 2009).

3.3. SENSITIVITY TO VOLUME DISPLACEMENT
To prevent damage to the brain, we assume that a recording
technique should not displace >1% of the brain’s volume. The
appropriate damage threshold is not yet established, however, so
this constitutes a first guess. It is possible to insert large numbers
of probes throughout multiple brain areas without compromis-
ing function. In rats, 96 electrodes of 50 μm diameter were
simultaneously inserted across four forebrain structures (cortex,
thalamus, hippocampus and putamen) (Ribeiro et al., 2004). In
rhesus macaque, 704 electrodes of diameter 50 μm and average
depth 2.5 mm were chronically implanted in cortex (Nicolelis
et al., 2003). Note, however, that the total volume displacement in
these experiments was below 0.1%, and below 0.01%, respectively.
Furthermore, these studies used a low density of electrodes. Thus,
detailed limits on the amount and density of inserted material are
unknown.

Furthermore, the nature of the volume displacement is
important—sheets of instrumentation that sever long-range con-
nectivity, for example, would disrupt normal brain function
regardless of the degree of volume displacement. Conversely,
higher volume displacement might be possible if introduced
gradually, or during early development, insomuch as the brain
can adapt without disrupting natural computation. One impor-
tant consideration in this regard would be the disruption
of blood circulation by inserted material; a high density of
implanted material in a brain region could cause stroke due

to widespread vascular damage. Recent studies have defined in
microscopic detail the complete vascular network of the mouse
cortex using high-throughput histology (Blinder et al., 2013);
this type of information could be used to enumerate key vas-
cular pathways which could be spared from damage. To apply
this in a particular animal, however, would require a non-
destructive method to image the vasculature at a similar reso-
lution; otherwise, only a broad statistical view can be obtained,
since the detailed vascular geometry will vary from animal to
animal.

Secondary effects like glial scarring may also pose obstacles to
the long-term implantation of large numbers of probes (Polikov
et al., 2005; Ward et al., 2009), although methods are being devel-
oped to alleviate this (Reichert et al., 2008; Reichert, 2010; Taub
et al., 2012). In the context of electrical recording, the impact of
glial scarring may vary depending on geometry. For example, the
recording sites at the tip of a Utah or Duke multi-electrode array
are typically viable in chronic recordings of up to 18 months in
primates (Nicolelis et al., 2003; Suner et al., 2005), whereas in
array formats with multiple electrodes along each shaft, such as
the Michigan array, chronic recordings of up to 4 months have
been reported in rats (Vetter et al., 2004). Differences in record-
ing lifetime may be due to differences in the pattern of glial
encapsulation of the contacts.

4. EVALUATION OF MODALITIES
We next evaluate neural recording technologies with respect to
the above challenges, using the mouse brain as a model system.
Table 1 lists the modalities studied, the assumptions made, the
analysis strategies applied, and the conclusions derived.

4.1. ELECTRICAL RECORDING
In the oldest strategy for neural recording, an electrode is used to
measure the local voltage at a recording site, which conveys infor-
mation about the spiking activity of one or more nearby neurons.
The number of recording sites may be smaller than the number
of neurons recorded since each recording site may detect signals
from multiple neurons. As a note for practitioners, we use the
term “electrode” interchangeably with the terms “recording site”
or “contact”, meaning a point-like voltage sensing node: many
multi-electrode arrays in common use (e.g., the Duke and Utah
arrays) are conductive only at the tip, whereas other designs (such
as the Michigan array) have multiple contacts along the shaft.
Each shaft in a Michigan array would thus constitute multiple
“electrodes” or “recording sites” in our parlance. Traditional elec-
trical recording techniques keep active devices such as amplifiers
outside the skull and therefore do not pose a heat dissipation chal-
lenge; this may change if amplifiers are brought closer to the signal
sources to reduce noise.

Slowly varying (e.g., <300 Hz) extracellular potentials (LFPs)
(Buzsáki et al., 2012; Reimann et al., 2013) on the order of
0.1–1 mV, and fields (Anastassiou et al., 2010) on the order of
1–10 mV/mm, are generated by neural activity. While LFPs can
be filtered from the higher-frequency signals associated with
extracellular voltage spikes, these and other effects necessitate
maintaining precise potential references (i.e., ground levels) for
voltage measurements distributed widely across the brain.

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marblestone et al. Physical principles for scalable neural recording

Table 1 | Summary of modalities, models, assumptions and conclusions.

Modality Analysis Strategy Assumptions Conclusions

Extracellular
electrical recording

Compute minimal number of
recorders based on max distance
from recorder to recorded neuron
Compute channel capacity limits
to spike sorting

Decay profile of extracellular voltage
Approximate noise levels at recording
site

Maximum recording distance rmax ≈ 100–200 μm
from electrode to neuron measured
∼105 recording sites are required per mouse
brain at current noise levels assuming perfect
spike sorting
∼106 recording sites are required at current noise
levels at the physical limits of spike sorting
∼107 recording sites are required using current
spike sorting algorithms

Implanted electrical
recorders

Compute power dissipation of
electronic devices that digitally
sample neuronal activity

Physical limit: kBT ln(2)/bit erased
Practical limit: ∼10kBT/ bit processed
Current CMOS digital circuits:
>105kBT/ bit processed

Requires 2–3 orders of magnitude increase in the
power efficiency of electronics relative to current
devices to scale to whole-brain simultaneous
recordings
Minimalist architectures could be developed to
reduce local data processing overhead

Wireless data
transmission

Compute tradeoff between power
dissipation and channel
bandwidth using information
theory

Transmitter must supply enough
power to overcome noise and path
loss

Transmission at optical or near-optical
frequencies is needed to achieve sufficient
single-channel data rates using electromagnetic
radiation. Radio-frequency (RF) electromagnetic
transmission of whole-brain activity data draws
excessive power due to bandwidth constraints
Bandwidth cannot be split over multiple
independent RF channels, but IR light or
ultrasound may allow spatial multiplexing

Optical imaging Relate the scattering and
absorption lengths of optical
wavelengths in brain tissue to
signal-to-noise ratios for optical
imaging

Approximate values of scattering and
absorption lengths as a function of
wavelength

Light scattering imposes severe constraints, but
strategies exist which could negate the effects of
scattering, such as implantable optics, infrared
indicators, signal modulation, and online inversion
of the scattering matrix

Multi-photon
optical imaging

Compute minimum total
excitation light power to excite
multi-photon transitions from
indicators within each neuron in
every imaging frame

Approximate values of multi-photon
cross-sections
Pulse durations similar to those
currently used in multi-photon imaging

Whole-brain multi-photon excitation will over-heat
the brain except in very short experiments,
unless ultra-high-cross-section indicators are
used

Beam scanning
microscopies

Calculate device and indicator
parameters necessary for fast
beam repositioning and signal
detection

Fast optical phase modulators could
reposition beams at ∼1 GHz switching
rates
Fluorescence lifetimes in the
0.1–1.0 ns range

Beam repositioning time limits the speed of
current systems but these are far from the
physical limits
Fluorescence lifetimes of indicators constrain
design of ultra-fast scanning microscopies

Magnetic
resonance imaging

Calculate spatial and temporal
resolution of MRI based on spin
relaxation times and spin diffusion

Proton MRI using tissue water
Approximate T1 and T2 relaxation
times and self-diffusion times for
tissue water

Proton MRI is limited by the T1 relaxation time of
water to ∼100 ms temporal resolution and by the
self-diffusion of water to spatial resolutions of
∼40 μm. T1 pre-mapping could allow T2 contrast
on a ∼10 ms timescale. Achieving these limits for
functional imaging requires going beyond BOLD
contrast

Ultrasound Calculate spatial resolution, signal
strength and bandwidth limits on
ultrasound imaging

Speed of sound in brain
Attenuation length of ultrasound in
brain

Attenuation of ultrasound by brain tissue and
bone may be prohibitive at the ∼100 mHz
frequencies needed for single-cell resolution
ultrasound imaging
Ultrasound may be viable for spatially multiplexed
data transmission from embedded devices
(Seo et al., 2013)

(Continued)
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Table 1 | Continued

Modality Analysis Strategy Assumptions Conclusions

Molecular
recording

Compute metabolic load and
volume constraint for rapid
synthesis of large nucleic acid
polymers
Evaluate temporal resolution in
simulated experiments using
kinetic models (Glaser et al., 2013)

Polymerase biochemical parameter
ranges
Metabolic requirements of genome
replication

Molecular recording devices appear to fall within
physical limits but their development poses
multiple major challenges in synthetic biology
Synchronization or time-stamping mechanisms
are required for temporal resolution to approach
the millisecond scale

4.1.1. Spatiotemporal resolution
4.1.1.1. Limits assuming perfect spike sorting. We begin with an
idealized estimate of the number of electrodes required to record
from the entire mouse brain, neglecting the difficulty of assigning
observed spikes to specific cells (spike sorting), and focusing only
on what is needed to detect spikes from every neuron on at least
one electrode. The key variable here is the maximum distance
between an extracellular electrical recorder and a neuron from
which it records spikes. In a first approximation, this is deter-
mined by two factors: the decay of the signal with distance from
the spiking neuron and the background noise level at the record-
ing site. We assume that for an electrode to reliably detect the
signal from a given neuron, the magnitude of that neuron’s sig-
nal must be larger than the electrode’s noise level. Note, however,
that knowledge of spike shape distributions could potentially be
used to extract low-amplitude spikes from noise.

The peak signals of spikes from neurons immediately adjacent
to an electrode are in the 0.1–1.0 mV range and scale roughly
as e−r/r0 , where r is the distance from the cell surface and the
1/e falloff distance, r0, has been experimentally measured at
∼28 μm in both salamander retina (Segev et al., 2004) and cat
cortex (Gray et al., 1995), and computed at ∼18 μm in a bio-
physically realistic simulation (Gold et al., 2007; Anastassiou
et al., 2013). However, this decay is strongly influenced by the
detailed geometry of neuronal currents and the properties of the
extracellular space [e.g., its inhomogeneity, which may lead to a
frequency-dependent falloff of the extracellular potential (Bédard
et al., 2004)], making analytical calculation of the decay rate dif-
ficult (at large distances, a much slower 1/r2 dipole falloff is
expected).

Several sources of background noise enter the recordings.
Johnson noise, which arises from thermal fluctuations in the
electrode, is

Vjohnson = (4kBTZBW)1/2

which for physiological temperature, electrodes of impedance
Z = 0.5 m�, and BW = 10 kHz bandwidth is Vjohnson ≈ 9 mv.
The recordings are also affected by interference from other neu-
rons, which has been reported to exceed the Johnson noise,
and is non-stationary due to changes in the cells’ firing prop-
erties (Sahani, 1999). The noise and interference from these
sources realistically produces >10–20 μV of voltage fluctuations
(Camuñas Mesa and Quian Quiroga, 2013). Current recording
setups thus have signal to interference-plus-noise ratios (SINRs)

of <100, where the SINR is defined as the ratio of the peak volt-
age from immediately adjacent neurons to the voltage fluctuation
floor of the electrode.

A limit on the maximum recording distance is the distance at
which the signal from the farthest neuron falls below the noise
floor, rmax ≈ r0 ln(SINR). For SINR ≈ 100, rmax ≈ 130 μm. For
comparison, recent experimental data from multi-site silicon
probes has shown few detectable neurons beyond ∼100 μm and
none detectable beyond 160 μm (Du et al., 2011). Recordings
in the hippocampal CA1 region could not detect spikes from
cells farther than 140 μm from the electrode tip (Henze et al.,
2000), even after averaging over observations triggered on an
intracellularly recorded spike; in hippocampus, this corresponds
to a detection volume containing approximately 1000 neurons
(Buzsáki, 2004). Furthermore, in many studies (in monkeys, rats
and mice) using multi-electrode arrays with 150–300 μm inter-
electrode spacings, no neuron is seen by more than one electrode
(Wessberg et al., 2000; Carmena et al., 2003; Jin and Costa, 2010;
Koralek et al., 2012).

Due to the steep local falloff, even improving the SINR by
a factor of 10 only extends the maximal recording distance to
rmax ≈ 190 μm. Assuming packing of the brain into equal sized

cubes of side length d = 2
√

3
3 rmax ≈ 150 μm gives N > 13, 0000

electrodes for whole brain recording using recording sites with
rmax ≈ 130 μm. Note that N varies as the third power of rmax and
is therefore highly sensitive to variations in the assumed maximal
recording distance; the number of required recorders can range
from 38,000 to 210,000 as rmax varies from 190 to 110 μm.

These calculations, by assuming perfect spike sorting, greatly
underestimate the required number of electrodes in practice.
First, signals from the weakest cells are far weaker than those from
the strongest cells and the signals from some cells decay much
faster than others (Gray et al., 1995). Second, because of neuronal
synchronization, the local noise produced by nearby neurons may
sometimes be large. Third, spike waveforms can vary over the
course of a recording session (Fee et al., 1996; Stratton et al.,
2012). Finally, with many neurons per electrode or at high fir-
ing rates, spikes from detectable neurons will often temporally
overlap, making spike sorting difficult.

4.1.1.2. Limits from spike sorting.The previous calculations have
assumed that any spike which is visible above the noise on at
least one electrode can be detected and correctly assigned to
a particular cell, i.e., that the problem of spike sorting can be
solved perfectly. However, perfect spike sorting is far beyond

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marblestone et al. Physical principles for scalable neural recording

current algorithmic capabilities and in fact may not be possible
in principle.

To achieve the scenario described above, with N = 13, 0000
recording sites per mouse brain, would require each electrode
to sort spikes from all 4

3πr3
maxρneurons neurons in a sphere of

radius rmax ≈ 130 μm surrounding the recording site, where
ρneurons ≈ 92, 000/mm3 is the density of neurons. This assigns
∼800 neurons to a single electrode. Roughly half (i.e., 400) of
these neurons will lie at >100 μm distance from the electrode,
and their signals on the electrode will therefore have voltage

SINRs of <100e−100 μm/28 μm ≈ 2.8, assuming as above that
extracellular spike amplitudes decay exponentially in space.

Electrical recording can be viewed as a data transmission prob-
lem, with the electrode playing the role of a communication
channel (see section 4.4). According to the Shannon Capacity
Theorem (Cover and Thomas, 2006), the information capacity C
of a single analog channel (with additive white Gaussian noise) is

C = BW log2(1 + S/N)

where BW is the bandwidth, S is the signal power (proportional
to the square of the voltage), and N is the noise power. Here the
bandwidth is BW ≈ 10 kHz/s, and the ratio of peak signal power
to noise power of a single spike for the outer 400 cells is no more
than 2.82, or 0.5 × 2.82 using the RMS signal power instead of
the peak. With 400 cells emitting 2 ms spikes at 5 Hz, there will
be an average of 4 cells spiking at a time, for S/N ≈ 0.5 × 4 ×
2.82 ≈ 15.7 counting the signal power from all the spikes. The
channel capacity is then C ≈ 40 kbit/s. This represents the max-
imum amount of information (e.g., about which neuron spiked
when) that the population of spiking neurons can transmit via the
electrode which measures them. To transmit uniquely identifiable
signals from all 400 neurons at millisecond temporal precision,
however, requires 1 kbit/s × 400 = 400 kbit/s, which is >10×
greater than the channel capacity and is therefore not achievable.
Even with optimal temporal compression of ∼5 Hz spikes (see
section 2), we would need to transmit ∼400/20 = 20 kbit/s, which
is strictly less than the channel capacity and thus possible in prin-
ciple, but barely so. Furthermore, the channel capacity given here
is an overestimate, since 2.8 is an upper bound on the SINR of the
outer cells. On the other hand, note that the use of a nominal 5 Hz
average firing rate here (in the estimates of signal to noise ratio
and of temporal compressibility) greatly oversimplifies the dis-
tribution of firing rates across neurons, as discussed in section 2
above, so this analysis can only be treated as a first approximation.

Based on these rough estimates, perfect spike sorting may
not be possible at ∼800 neurons per electrode, in a sphere of
radius 130 μm surrounding a recording site, and at the noise
levels typical of current electrodes. In essence, there may not
be enough room on the electrode’s voltage trace to discrimi-
nate such a large number of weak, noisy signals. Note that these
information-theoretic limits still apply even if it is possible to
resolve temporally overlapping spikes. In fact, the channel capac-
ity is what ultimately limits the ability of a spike sorting algorithm
to resolve such overlapping spikes.

To see the regime in which spike sorting becomes feasible, sup-
pose that each electrode is only responsible for spike sorting from

the population of ∼100 neurons nearest to the electrode, i.e., in a
sphere of radius r ≈ 64 μm, assuming the 92,000/mm3 cell den-
sity from mouse cortex. The outermost 50% of these neurons are
then positioned > 50 μm from the recording site. For these outer-

most 50 neurons, the voltage SINR is <100e−50 μm/28 μm ≈ 17
and S/N < 0.5 × 172 × (2 ms × 5 Hz × 50) ≈ 72.3. The chan-
nel capacity is therefore <62 kbit/s, whereas 50 kbit/s is needed
for signal transmission from 50 neurons without temporal com-
pression versus ∼2.5 kbit/s with temporal compression. Even 100
neurons per electrode may therefore still be close to the limits of
information transmission through the noisy channel correspond-
ing to a single electrode.

In practice these limits are likely to be highly optimistic, since
the set of spikes emerging from a neuronal population is far
from an optimally designed code from the perspective of mul-
tiplexed signal transmission through a voltage-sensing electrode:
the waveforms for different neurons are similarly-shaped rather
than orthogonal, the spikes emitted by a given neuron vary
somewhat in amplitude and exhibit shape fluctuations (signal-
dependent noise), and it is not known in advance what the
characteristic signal from each neuron looks like (or even how
many neurons there are).

Indeed, current practice is far from the above information-
theoretic limits. At present, spike sorting algorithms operating
on data from large-scale (250–500 electrodes), densely spaced
(∼30 μm), 2D multi-electrode arrays can reliably identify and
distinguish spikes from nearly all of the 200–300 retinal gan-
glion cells (Marre et al., 2012; Pillow et al., 2013) in a small
patch of retina, and can also infer approximate cell locations
through spatial triangulation of spike amplitudes. This represents
a roughly 1 : 1 ratio of cells to electrodes. Electrodes with up
to 4 single units can be found in chronically implanted multi-
electrode arrays (in both mouse and primate) (Nicolelis et al.,
2003; Costa et al., 2004), where the electrodes are sparse, although
the average yield of cells per electrode is closer to 1 : 1; if only
electrodes with at least one cell are counted, the average rises to
∼1.5–1.7 cells per electrode. Optimistically, simulations of neural
activity suggest that 5–10 neurons per electrode may be distin-
guishable using current spike sorting algorithms (Sahani, 1999;
Pedreira et al., 2012; Camuñas Mesa and Quian Quiroga, 2013).
A limit of ∼10 neurons per electrode would imply N = 7.5 × 106

electrodes to record from all neurons in the mouse brain, which
could be accomplished by positioning recording sites on a cubic
lattice with ∼40 μm edge length.

Future algorithmic improvements could enable sorting from
more than ∼10 cells per electrode, but this becomes increasingly
challenging. One simple estimate of a reasonable practical limit,
for the regime of many neurons per electrode, would be the largest
number of neurons that can be sorted without requiring the fre-
quent resolving of temporally overlapping spikes: if the average
neuron fires at ∼5 Hz and spikes last ∼2 ms, then at most roughly
100 neurons per electrode can be sorted without requiring over-
laps to be resolved. Note that while some present-day algorithms
can successfully resolve overlapping spikes (Segev et al., 2004; Ge
et al., 2011; Prentice et al., 2011; Marre et al., 2012; Pillow et al.,
2013), they typically do so only in the case where electrodes are
densely spaced and any given spike appears on many electrodes,
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such that spatial information can be used to resolve the over-
lap. Resolving overlaps when spikes appear on only one or a few
channels is more difficult due to noise and spike-shape variation.

Overall, ∼100 cells per electrode may be taken as a rough esti-
mate of the limits of spike sorting, and would imply N = 750, 000
electrodes and an edge spacing of ∼80 μm if a cubic lattice of
recording sites were used. However, we should not exclude the
possibility of game-changers which could alter the nature of the
recorded data to improve the available information. For instance,
CCD cameras could be attached to multi-electrode arrays to aid in
the identification and localization of cells, or directional informa-
tion on the source of spikes could be obtained at each recording
site, for example by measuring the directions of gradients in
voltage. Systems that capture such additional information could
circumvent the above information-theoretic limits and improve
spike sorting.

4.1.2. Volume displacement
We require <1% total volume displacement from N recorders.
Wires from each electrode must make it to the surface of the brain,
which implies an average length l ≈ 4 mm for the mouse brain
(depending on assumptions about the wiring geometry).

As a rough approximation, consider each recorder to produce
a volume displacement associated with a single cylindrical wire,
with length l and radius r. Thus r must satisfy

πr2lNmin,rd < 0.01Vbrain

Using Nmin,rd = 21, 0000 or 38,000 recording sites (lower and
upper limits from the perfect spike sorting case from above)
and l ≈ 4 mm requires wires of radius rmax ≈ 6.0 μm, or 2.5 μm,
respectively. Alternatively, if 7.5 × 106 electrodes must be used
(current spike sorting case from above), the required wire radius
is ∼200 nm. While these dimensions are readily achievable using
lithographic fabrication, there would be a challenge to produce
isolated wires of such dimensions at scale (perhaps suggesting the
use of wire bundles). Still, volume constraints per se are unlikely
to fundamentally limit whole-mouse-brain electrical recording
even in the most pessimistic scenario.

Figure 3 illustrates the above considerations as a function of
the electrode SINR.

4.1.3. Implanting electrodes in the brain
There are several technology options for introducing many elec-
trodes into a brain. For example, flexible nanowire electrodes
could, in theory, be threaded through the capillary network
(Llinás et al., 2005). Capillaries are present in the brain at a
density of 2500–3000/mm3 (Schmidt and Thews, 1989), which
equates to one capillary per 73 μm, with each neuron lying within
∼200 μm of a capillary (Loffredo and Lee, 2008). The minimum
capillary diameter is as small as 3–4 μm, although the average
diameter is ∼8 μm, comparable to the non-deformed size of the
red blood cells (Freitas, 1999). Blocking a significant fraction of
capillaries could lead to stroke or to unacceptable levels of tissue
necrosis/liquifaction.

The cerebrospinal ventricles may also provide a convenient
location for recording hardware. Furthermore, neural tissues

FIGURE 3 | The voltage signal to interference-plus-noise ratio (SINR)

for neurons immediately adjacent to the recording site sets an

approximate upper bound on the distance, rmax, between the

recording site and the farthest neuron it can sense (blue), due to the

exponential falloff of the voltage SINR with distance. Assuming at least
one electrode per cube of edge length 2

√
3

3 rmax in turn limits the number of
neurons per recording site (gold), the total number of recording sites (red)
and the maximal diameter of wiring consistent with <1% total brain
volume displacement (turquoise). SINR values for current recording setups
are <102. In practice, the number of neurons per electrode distinguishable
by current spike sorting algorithms is only ∼10, with an estimated
information theoretic limit of ∼100, so these curves greatly under-estimate
the number of electrodes which would be required based on realistic spike
sorting approaches in a pure voltage-sensing scenario.

could be grown around pre-fabricated electrode arrays (Jadhav
et al., 2012), or silicon probes arrays with many nano-fabricated
recording sites per probe (Du et al., 2011) could be inserted into
the brain.

Mechanical forces during insertion and retraction of silicon
and tungsten microelectrodes from brain tissue have been mea-
sured in rat cortex at ∼1 mN for electrodes of ∼25 μm radius
(Jensen et al., 2003). These forces are comparable to the Euler
buckling force F of a 2 mm long cylindrical tungsten rod of r =
5 μm radius

F = π2EI

(KL)2
≈ 1 mN

where E = 411 GPa is the elastic modulus of tungsten, I =
(π/2)r4 is the moment of inertia of the wire cross-section, L ≈
2 mm is the length of the wire, and K is the column effective
length factor which depends on the boundary conditions and is
set to K = 1 here for simplicity. This suggests that it may be pos-
sible to push structures of <10 μm diameter into brain tissue [see
(Najafi and Hetke, 1990) for related calculations]. It might be
advantageous to pull rather than push wires into the brain [e.g.,
using applied fields, or perhaps even cellular oxen (Weibel et al.,
2005) to carry the wires], since the thinnest wires could with-
stand tension forces much higher than the compressive force at
which they buckle (although there may also be ways to circumvent
buckling, e.g., via rapid vibration).
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4.1.4. Conclusions and Future Directions
Electrical recording has the advantage of high temporal reso-
lution, but the large number of required recording sites poses
challenges for delivery mechanisms. Ongoing innovations in elec-
trical recording that could be leveraged for dramatic scaling
include the development of highly multiplexed probes, mul-
tilayer lithography for routing electrical traces, novel meth-
ods to implant large numbers of electrodes, smaller electrode
impedances to reduce the Johnson noise, amplifiers with lower
input-referred noise levels, spike sorting algorithms capable of
handling temporally overlapping spikes and adaptively modeling
the noise, and hybrid systems integrating electrical recording with
implantable optics or other methods.

One challenge for a purely-electrical recording paradigm per-
tains to the ability to relate the measured electrical signals to
specific cells within a circuit. As the set of neurons recorded by
each electrode grows to encompass a large volume around the
electrode, it will become more difficult to attribute the recorded
spikes to particular neurons. Furthermore, given the complex
geometries of neuronal processes, it is not obvious how to deter-
mine the spatial position or layout of a neuron from its electrical
signature on a nearby electrode. A given electrode will be posi-
tioned near the axons or dendrites of some neurons, and near
the cell bodies of other neurons, complicating data interpreta-
tion. If the spatial density of recording sites is increased such
that many electrodes sample the same neuron, however, this
could enable imaging of neuronal morphology and signal prop-
agation via voltage signals across multiple electrodes (Bakkum
et al., 2013). Currently, extracellular electrical recording also does
not allow extraction of molecular information on the cells being
recorded, although intracellular electrophysiological recording
methods [e.g., (Kodandaramaiah et al., 2012)] might enable this
for a limited number of cells.

4.2. OPTICAL RECORDING
Optical techniques measure activity-dependent light emissions
from neurons, typically generated by fluorescent indicator pro-
teins, although activity-dependent bioluminescent emissions are
an emerging possibility. Current genetically encoded calcium
indicators can only distinguish spikes below ∼50–100 Hz fir-
ing rates without averaging (Smetters et al., 1999) due to slow
intra-molecular kinetics and indicator saturation at high firing
rates, although significant improvements in speed are ongo-
ing (Sun et al., 2013b). Intracellular calcium rises and drops
can occur within 1 ms and 10–100 ms respectively (Higley and
Sabatini, 2008), which sets the ultimate speed limit for calcium
imaging. The field of genetically-encoded high-speed fluorescent
voltage indicators is also advancing quickly (Barnett et al., 2012;
Kralj et al., 2012; Akemann et al., 2013; Cao et al., 2013; Gong
et al., 2013; Storace et al., 2013) and these may find particular
use in monitoring sub-threshold events (Scanziani and Häusser,
2009).

4.2.1. Spatiotemporal resolution
4.2.1.1. Multiplexing strategies. For optical approaches, the light
originating from the activity of each neuron must be separated
from emissions originating from other points in the brain: this

can be accomplished in many ways, leading to a variety of archi-
tectures for 3D imaging. Epi-fluorescence microscopy images a
plane in the specimen (i.e., with depth of field DOF = 2nλ

NA2 , where
n is the refractive index, λ is the wavelength and NA is the numer-
ical aperture of the imaging system Quirin et al., 2013) onto a
spatially-resolved two-dimensional detector (e.g., a CCD cam-
era). The focal plane is then scanned in order to reconstruct 3D
images; because the entire 3D volume is illuminated during image
acquisition, out-of-focus neurons cause background emissions.
Light sheet imaging is similar to epi-flourescence imaging, except
that only neurons near the focal plane are illuminated, reducing
out of focus noise. Unfortunately, this requires transparent brains
(Ahrens et al., 2013). Volumetric imaging can also be performed
in a single snapshot using lightfield microscopes (Levoy et al., 2009;
Broxton et al., 2013), which capture the directions of incom-
ing light rays, trading in-plane resolution for axial resolution,
or by using multi-focus microscopes (Abrahamsson et al., 2012).
In multi-photon microscopy, non-linearities result in fluorescence
excitation occurring only near the focal point of the excitation
laser, which is scanned across the sample. In confocal scanning
microscopy, only photons from a point of interest are measured
due to geometric constraints (e.g., pinholes). Alternatively, 3D
imaging can be performed via wavefront coding, which extends
the depth of field by creating an axially-independent point-spread
function using known optical aberrations, in combination with
computational deconvolution (Dowski and Cathey, 1995). With
a known 3D pattern of excitation light, wavefront coding can be
applied to 3D fluorescence microscopy without scanning using
a 2D detector array (Quirin et al., 2013). Emerging, alterna-
tive strategies rely on tagging emissions from different sources
with distinguishable modulation patterns (Yin, 2006; Wu et al.,
2006; Wang et al., 2012; Diebold et al., 2013; Ducros et al.,
2013), or precisely controlling and tracking the timing of light
emissions (Cheng et al., 2011). Optical techniques thus achieve
signal separation by multiplexing spatially (e.g., direct imaging)
or temporally (e.g., beam scanning), or often by a combination of
the two.

While optics might seem to require a number of photodetec-
tors comparable to the number of neurons (or a similar number
of sampling events in the time domain, e.g., for scanning micro-
scopies), new developments suggest ways of imaging with fewer
elements. For example, compressive sensing or ghost imaging
techniques based on random mask projections (Wakin et al.,
2006; Tian et al., 2011; Studer et al., 2012; Sun et al., 2013a)
might allow a smaller number of photodetectors to be used. In
an illustrative case, an imaging system may be constructed simply
from a single photodetector and a transmissive LCD screen pre-
senting a series of random binary mask patterns (Huang et al.,
2013), where the number of required mask patterns is much
smaller than the number of image pixels due to a compressive
reconstruction.

4.2.1.2. Effects of light scattering. Single-photon techniques
limit imaging to a depth of a few scattering lengths at the
excitation and emission wavelengths of activity indicators: up
to ∼1–2 mm for certain infrared wavelengths (Horton et al.,
2013; Kobat et al., 2009, 2011) vs. a few hundred microns for
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visible wavelengths (Wilt et al., 2009). Activity dependent dyes are
currently available only in the visible spectrum; indicators oper-
ating in the infrared [see (Shcherbo et al., 2009; Filonov et al.,
2011; Shcherbakova and Verkhusha, 2013) for far-red fluorescent
proteins] could improve imaging depth.

Multi-photon excitation takes advantage of the deeper pen-
etration of infrared light. Two or more infrared photons may
together excite a fluorophore with an excitation peak in the vis-
ible range, leading to the emission of a visible photon. If only one
neuron is illuminated with sufficient intensity to generate multi-
photon excitation, all photons captured by the detector originate
from that neuron, regardless of the scattering of the outgoing
light. Hence, the emission pathway is limited less by scattering
than by absorption. This has resulted in imaging at >1 mm depth
(Kobat et al., 2009, 2011; Horton et al., 2013).

There are at least five options for overcoming visible light
scattering to enable signal separation from deep-brain neurons
(Alivisatos et al., 2012, 2013):

1. Infrared light can excite multi-photon fluorescence in an
excitation-scanning architecture.

2. Fluorophores with both excitation and emission wavelengths
in the infrared could be developed.

3. By knowing the precise form of the scattering, it can be pos-
sible to correct for it. Emerging techniques based on beam
shaping allow transmission of focused light through random
scattering media by inverting the scattering matrix (Conkey
et al., 2012). Because the scattering properties change over
time, this must be done quickly, possibly faster than the imag-
ing frame rate, necessitating high-speed wavefront modula-
tion. This can currently be achieved with digital micro-mirror
devices (DMDs), but not with the phase-only spatial light
modulators (SLMs) that are used to prevent power losses in
the excitation pathways for non-linear microscopies, although
GHz switching of phase-only modulators appears feasible in
principle (Alivisatos et al., 2013). High speed focusing through
turbid media is also achievable using all-optical feedback in a
laser cavity (Nixon et al., 2013), and it is even possible to mea-
sure the scattering matrix non-invasively (Chaigne et al., 2013)
using a photo-acoustic technique, or via all-optical approaches
based on speckle correlation (Bertolotti et al., 2012). Similar
techniques are available for incoherent light (Katz et al., 2012).
When using short optical pulses, scattering can lead to tem-
poral distortions that degrade the peak light intensity at a
focal spot. The <100 fs pulse durations used in two-photon
microscopy, for example, are comparable to the time it takes
light to travel 30 μm in vacuum. Fortunately, wavefront shap-
ing techniques can correct for scattering-induced temporal
distortions as well (Katz et al., 2011; McCabe et al., 2011).

4. Light sources and/or detectors could be positioned close to the
measured neurons, necessitating the use of embedded optical
devices. This could be done using optical fiber (Mahalati et al.,
2013) and/or waveguide (Zorzos et al., 2010, 2012) technolo-
gies, which are developing rapidly. For example, single-mode
fiber cables can support >1 TB/s data rates (Ono and Yano,
1998; Bozinovic et al., 2013) with low light loss over hundreds
of kilometers (Miya et al., 1979). It is possible to directly image

through gradient index of refraction (GRIN) lenses (Murray
and Levene, 2012) or optical fibers (Flusberg et al., 2005; Kang
et al., 2010; Mahalati et al., 2013), which provides one way to
multiplex multiple observed neurons per fiber.

5. Light emissions from distinct locations can be tagged with
distinguishable time-domain modulation patterns, and the
emission time-series for each source can later be decoded from
the summed signal resulting from scattering (Wu et al., 2006;
Yin, 2006; Cheng et al., 2011; Wang et al., 2012; Diebold et al.,
2013; Ducros et al., 2013). For example, ultrasound encoding
(Wang et al., 2012; Judkewitz et al., 2013), which frequency-
tags light emissions from a known location via a mechanical
Doppler shift of the emitter (Mahan et al., 1998), provides
a generic mechanism to sidestep problems of elastic optical
scattering, although it requires distinguishing MHz frequency
modulations in THz light waves (part per million frequency
discrimination). Radio-frequency tagging of light emissions
via a digitally synthesized optical approach is also an option
and may be applicable to combatting the problem of emission
scattering in deep-tissue, multi-point, multi-photon imaging
(Diebold et al., 2013).

4.2.1.3. Speed of beam scanning. The speed of scanning micro-
scopes is currently limited by beam repositioning times (∼0.1 μs
for spinning disk (Flusberg et al., 2005; Kang et al., 2010;
Mahalati et al., 2013), ∼3 μs for piezo-controlled linear scan mir-
rors, ∼10 μs for acousto-optic deflectors (Vučinić and Sejnowski,
2007), ∼8 kHz line scans for resonant galvanometer mirrors).
The 10 μs repositioning time for acousto-optic deflectors is set
by the speed of sound in the deflector crystal, while scan-
ning mirrors and spinning disks are limited by inertia. Note
that 0.1 μs repositioning time for current spinning-disk confo-
cal techniques would require 10 s per frame for whole mouse
brain imaging with a single scanned beam (10−7 s/site ×
108 sites/brain). There is therefore a need for a 104 fold improve-
ment in beam repositioning time and/or beam parallelization
in order to achieve 1 kHz imaging frame rates for whole mouse
brains.

One strategy to implement parallelization would exploit (yet
to be developed) fast, high-resolution phase modulator arrays
to arbitrarily re-shape coherent optical wavefronts for multi-
site holographic multi-photon excitation in 3D (Papagiakoumou
et al., 2010; Vaziri and Emiliani, 2012; Alivisatos et al., 2013).
With fast phase modulation (e.g., ∼1 GHz), beating each excita-
tion spot at a different frequency could allow a single detector to
probe multiple sites in parallel, despite arbitrarily-large scattering
of the outgoing light (Alivisatos et al., 2013). Emerging optical
techniques may provide alternative means to implement similar
strategies (Diebold et al., 2013). Temporal multiplexing of excita-
tion pulses at distinct locations (e.g., via few-nanosecond beam
delays) also allows parallelization of the excitation beam while
combatting scattering ambiguity of the emitted light (Cheng et al.,
2011). Furthermore, temporal focusing techniques in two-photon
microscopy (depth-dependent pulse duration) can excite an
entire plane or line within the sample (Oron et al., 2005; Tal et al.,
2005; Sela et al., 2013; Packer et al., 2013), as well as arbitrary pat-
terns of points (Papagiakoumou et al., 2010), potentially allowing
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fast axial scanning (somewhat analog to light-sheet techniques
used with transparent samples). This method intrinsically cor-
rects for scattering of the excitation light (Papagiakoumou et al.,
2013), although not of the emission light. Like other multi-
photon techniques, however, all these methods remain highly
dissipative, as discussed below.

Fluorescence lifetimes in the 0.1–1 ns range (Striker et al.,
1999) ultimately constrain the design of scanning fluorescence
microscopies. A delay of 0.1 ns per mouse neuron per frame
corresponds to only 100 Hz frame rate without parallelization,
implying that parallelization into at least 10 to 100 beams is essen-
tial. The fluorescence lifetime also limits the achievable modu-
lation frequencies in beat-frequency-multiplexed parallelization
strategies (Diebold et al., 2013), bit lengths in encoded strate-
gies (Ducros et al., 2013), and temporal offsets in temporally-
multiplexed strategies (Cheng et al., 2011), suggesting that par-
allelization of detectors may be necessary in a strongly scattering
environment. Depending on the degree of parallelization, which
constrains the achievable dwell times given a fixed frame rate,
photon counts may also become a limiting factor for high-speed
scanning in some approaches.

4.2.1.4. Diffraction. Using the small angle approximation, the
diffraction-limited angular resolution of an aperture is θ ≈ �x

y ≈
λ
D , where �x is the spacing which must be resolved, y is the
imaging depth, λ is the wavelength, and D is the aperture diame-
ter. Thus distinguishing neurons which are 10 μm apart and at
a depth of 10 mm requires a lens aperture D of >1 mm when
λ ≈ 1 μm. Diffraction therefore does not appear to be a limit-
ing factor for cellular resolution imaging, except in the context
of microscale apertures that might find use in embedded optics
approaches.

4.2.2. Energy dissipation
Light that does not leave the brain is ultimately dissipated as
heat. The total light power requirements for optical measurement
of neuronal activity using fluorescent indicators depend on fac-
tors including fluorophore quantum efficiency, absorption cross-
section, activity-dependent change in fluorescence, background
fluorescence, labeling density, activation kinetics, detector noise,
scattering and absorption lengths, and others. Unfortunately,
many of these variables are unknown or highly dependent on
particular experimental parameters.

A statistical analysis of photon count requirements for spike
detection (in the context of calcium imaging) can be found in
(Wilt et al., 2013), which derived a relationship between the num-
ber of background photon counts (Nbg) and the number of signal
photon counts required for high fidelity spike detection given
photon shot noise. This scales roughly as Nsignal > 3

√
2Nbg, even

at low absolute photon count rates. While this analysis governs
the number of detected photons, the number of emitted photons
will be higher due to losses. In one example using two-photon
excitation, 5% of the emitted photons were captured by the pho-
todetector (Kim et al., 1999). One implication of photon shot
noise is that faster-responding indicators (e.g., voltage indica-
tors which respond in near-real-time to the membrane potential)
must be brighter.

4.2.2.1. Multi-photon excitation. Multi-photon experiments
rely on short laser pulses with high peak light intensities at a
focused excitation spot to excite non-linear transitions (Kim et al.,
1999). This imposes an experimentally relevant physical limit: at
least one excitation pulse of sufficient intensity per neuron per
frame is required in order to excite multi-photon fluorescence
during each frame. Assuming 1 kHz frame rate and 0.1 nJ pulses
(Cheng et al., 2011), delivering only one pulse per neuron per
frame would dissipate roughly (108 × 1 kHz × 0.1 nJ) 10 W in the
mouse brain, which is clearly prohibitive. This is a lower bound
because, in general, more than one excitation pulse per neuron
per frame may be required to excite detectable fluorescence [e.g.,
one reference reported 12 pulses per spot (Kim et al., 1999)].
For three-photon excitation, the situation will be even worse as
higher peak light intensities are required to excite three-photon
fluorescence.

Could the single-pulse energy be reduced while maintain-
ing efficient two-photon excitation? The number of two-photon
(2P) transitions excited per fluorophore per pulse is na = F2C/t,
where F is the number of photons per pulse per area in units
of photon/cm2, C is the two-photon cross-section in units of
cm4s/photon, and t is the pulse duration in seconds. This can be
approximated as

na =
⎛
⎜⎝ E

hc/λ(
λ

2(NA)

)2

⎞
⎟⎠

2

C

t
=
(

4E (NA)2

hcλ

)2
C

t

where NA is the numerical aperture of the focusing optics, E is
the pulse energy and λ is the stimulation wavelength. For a 2P
experiment with 100 fs, 0.1 nJ pulses, assuming a 2P cross sec-
tion (Masters, 2006; Drobizhev et al., 2011) of 10−48 cm4s/photon
(i.e., 100 Goeppert-Mayer units Goeppert-Mayer, 1931, compa-
rable to that of DsRed2 Drobizhev et al., 2011), λ = 900 nm and
NA = 1.0, na ≈ 1

2 . Thus, a few pulses are likely necessary and
sufficient to excite 2P fluorescence by each fluorophore within
the focal spot. With a 2P cross section above 10−47 cm4s/photon
(1000 Goeppert-Mayer units, higher than that of any fluorescent
protein that we are aware of Drobizhev et al., 2011), one could
reduce the pulse energy by an order of magnitude (and hence
na by two orders of magnitude) while maintaining na > 1

20 , i.e.,
one in 20 fluorophores excited by each pulse. Reducing the pulse
energy much further might lead to unacceptably low excitation
levels. Alternatively, shorter pulse durations could increase the
light intensity, and hence 2P excitation probability, at fixed pulse
energy.

Quantum dots can have 2P cross sections much higher than
those of fluorescent proteins: water-soluble cadmium selenide–
zinc sulfide quantum dots have been reported with 2P cross
sections of 47000 Goeppert-Mayer units and are compatible with
in vivo imaging (Larson et al., 2003). These would allow excitation
efficiencies of na > 1

20 at pJ pulse energies, bringing whole-brain
2P imaging into the ∼100 mW range. Thus, the use of quan-
tum dots or other ultra-bright multi-photon indicators could be
decisive for supporting the energetic feasibility of multi-photon
methods at whole brain scale; there are also plausible strategies for
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coupling quantum dot fluorescence to neuronal voltage (Marshall
and Schnitzer, 2013). However, some quantum dots have long flu-
orescence lifetimes (Dahan et al., 2001), which may constrain scan
speed.

For comparison to current practice, in a typical multi-photon
experiment on mice, ∼50 mW of time-averaged laser power at
the sample was used with a dwell time of ∼3 μs (Wilson et al.,
2007), corresponding to ∼150 nJ energy dissipation per spot per
frame. This dwell time would allow imaging only ∼300 neurons
at millisecond resolution with a single scanned excitation beam.
The average excitation power here is likely already close both
to whole-brain thermal dissipation limits, and to photo-damage
limits for pulsed two-photon excitation (König et al., 1997; Hopt
and Neher, 2001).

4.2.3. Bioluminescence
To work around the requirement for large amounts of excitation
light, bioluminescent rather than fluorescent activity indicators
could be used (Martin et al., 2007; Martin, 2008; Naumann et al.,
2010). Consider a hypothetical activity-dependent biolumines-
cent indicator emitting at ∼1700 nm (IR), in order to evade
light scattering. As a crude estimate, assuming that 100 photons
must be collected by the detector per neuron per 1 ms frame,
and 1% light collection efficiency by the detector relative to the
emitted photons, ∼100 mW of bioluminescent photons emis-
sions are required for the entire mouse brain (using Ephoton =
hc/λ). This would be feasible from the perspective of heat dis-
sipation. By contrast, in a 1-photon fluorescent scenario, if 100
excitation photons must be delivered into the brain to gener-
ate a single fluorescent emission photon, the power requirement
becomes 10 mW, which is on the threshold of the steady-state
heat dissipation limit. Therefore, bioluminescent indicators could
potentially circumvent problems of heat dissipation even in the
1-photon case.

The widely used bioluminescent protein firefly luciferase
is ∼80% efficient in converting ATP hydrolysis coupled with
luciferin oxidation into photon production, yielding ∼0.8 pho-
tons per ATP-luciferin pair consumed (Seliger and McElroy,
1960), and has ∼90% energetic efficiency in converting free
energy to light production. Heat dissipation associated with the
luciferase biochemistry itself is therefore not a significant over-
head relative to the 100 mW of emitted photons calculated above.
In the same scenario, however, each neuron would consume ∼6 ×
108 additional ATP molecules per minute in order to power the
bioluminescence, which is within the limits of cellular aerobic res-
piration rates (∼1 fmol O2 per minute per cell Molter et al., 2009,
with ∼30 ATP per 6 O2, hence 3 × 109 molecules ATP synthesized
per minute from ADP via glucose oxidation), but not by a large
margin. Transient increases in metabolic rate are possible: energy
dissipation more than doubles in the mouse during high phys-
ical activity (Speakman, 2013). Therefore, whole-brain activity-
dependent bioluminescence, at speeds high enough to achieve
millisecond frame rates, may be metabolically taxing for the cell
but is nevertheless plausible as a light generation strategy. Note
that we have not treated the energy required to bio-synthesize
the luciferin compound, which may create additional overhead
(though conceivably luciferin could be provided exogenously).

4.2.4. Conclusions and future directions
Scattering of visible light in the brain creates a problem of
signal-separation from deep-brain neurons. Multi-photon tech-
niques, which scan an infrared excitation beam, can work around
this scattering problem. However, current multi-photon tech-
niques using fluorescent protein indicators, when applied at
whole brain scale, would dissipate too much power to avoid
thermal damage to brain tissue. Systems [such as plasmonic
nano-antennas (Blanchard et al., 2011) or subwavelength metallic
gratings (Harats et al., 2011)] that could locally excite multi-
photon fluorescence without the need for high-energy laser pulses
could conceivably ameliorate this issue. Importantly, quantum
dots show promise as ultra-bright multi-photon indicators, if
they can be targeted to neurons and optimized in terms of fluo-
rescence lifetime. New methods besides multi-photon techniques
could also work around the scattering of visible light in the brain.
For example, fluorophores or bio-luminescent proteins could be
developed which operate at infrared wavelengths. A compelling
example from nature is the black dragonfish, which generates
far red light (∼705 nm) via a multi-step bioluminescent process
(using this light to see in deep ocean waters) (Widder et al., 1984;
Campbell and Herring, 1987). A large set of activity indicators
with distinguishable colors, generated through a combinatorial
genetic recombination mechanism such as BrainBow (Livet et al.,
2007), could also improve signal separation. Targeting, via protein
tags, of activity indicators to specific locations—such as the axon,
soma, soma and proximal dendrites, distal dendrites, pre-synaptic
terminals, post-synaptic terminals, or intact synapses—could also
aid in signal discrimination (El-Husseini et al., 2001; Jacobs et al.,
2003; Boeckers et al., 2005; Arnold, 2007; Feinberg et al., 2008;
Vacher et al., 2008; Corrêa et al., 2009; Yamagata and Sanes, 2012).
In addition, implanted optical devices, which place emitters and
detectors within a few scattering lengths of the neurons being
probed, could potentially obviate the negative effects of scattering
and allow visible-wavelength indicators to be used without a need
for multi-photon excitation. In principle, excitation and detection
do not need to make use of the same modality. For exam-
ple, photoacoustic microscopy (Filonov et al., 2012) uses pulsed
laser excitation to drive ultrasonic emission, leading to optical
absorption contrast. Such asymmetric techniques impose fun-
damentally different requirements from pure-optical techniques
relative to fluorophore properties, required light intensities and
other parameters.

4.3. EMBEDDED ACTIVE ELECTRONICS
The preceding sections have assumed that electrical or opti-
cal signals from the recorded neurons are shuttled out of the
brain before digitization and storage, but it is also conceivable
to develop embedded electronic systems that locally digitize and
then store or transmit (e.g., wirelessly) measurements of the activ-
ities of nearby neurons. This could allow for shorter wires in
electrical recording approaches, and for shorter light path lengths
in optical recording approaches, as well as for more facile (e.g.,
non-surgical) delivery mechanisms for the recording hardware.

Integrated circuits have shrunk to a remarkable degree: in
about 3 years, following the Moore’s law trajectory, it will
likely be possible to fit the equivalent of Intel’s original 4004
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micro-processor in a 10 × 10 μm chip area. Functional wirelessly
powered radio-frequency identification (RFID) chips as small as
50 μm in diameter have been developed (Usami et al., 2007)
and tags with chip-integrated antennas function at the 400 μm
scale (Impinj, Inc.). Integrated neural sensors including ana-
log front ends are also scaling to unprecedented form factors: a
250 × 450 μm wireless implant—including the antenna, but not
including a ∼1 mm electrode shank used to separate signal from
ground—draws only 2.5 μW per recording channel (Biederman
et al., 2013). The system operates at ∼1 mm range in air, pow-
ered by a transmitter generating ∼50 mW of transmitted power.
Note that for a single such embedded recording device, the heat
dissipation constraint is set not by the device’s own dissipation
(10 μW for four recording channels) but rather by the RF specific
absorption rate limit associated with the 50 mW transmit power.

Possibilities may exist for non-surgical delivery of embedded
electronics to the brain: remarkably, cells such as macrophages
(∼13 μm in size) can engulf structures up to at least 20 μm
in diameter (Cannon and Swanson, 1992) and have been stud-
ied as potential delivery vehicles for nano-particle drugs (Kadiu
et al., 2011), suggesting that they might be used to deliver tiny
microchips. T-cells and other immune cells can trans-migrate
across the blood brain barrier (Engelhardt, 2006) and ghost cells
(membranes purged of their contents) engineered to encapsulate
synthetic cargo (Cinti et al., 2011) can fuse with neurons (Hikawa
et al., 1989). It might even be possible to engineer such cell-based
delivery vehicles to form electrical gap junctions (Spruston, 2001)
with neurons or to act as local biochemical sensors (Nguyen et al.,
2009).

The real-time transmission bandwidth requirements for neu-
ral recording could be significantly reduced if it is only desired to
take a “snapshot” of neural activity patterns over a limited period
of time, but this would require a large amount of local storage.
For example, flash memory can store >10 Mbit of data in a device
100 μm on a side: a 64 giga-byte microSD card with 1.5 cm2 area
corresponds to 34 mega-bits per (100 μm)2 area. Even denser
forms of memory storage are under development and could per-
haps be used in a one-time-write mode in the context of neural
recording long before they become commercially viable for use as
rewritable media in the electronics industry.

Here we consider the power dissipation associated with
embedded electronic recording devices, as well as the constraints
on possible methods to power them. In the next section, we
describe how physics constrains the data transmission rates from
such devices.

4.3.1. Power Requirements for Recording
Any embedded system needs to process data, in preparation for
either local storage or wireless transmission. Physics defines hard
limits on the required power consumption associated with data
processing (neglecting the possibility of reversible logic architec-
tures Bennett, 1973), arising from the entropy cost for erasing a
bit of information (Landauer, 1961):

ELandauer = ln(2) kBT ≈ 3 × 10−21 J/bit (the Landauer limit)

Ambitious yet physically realistic values for beyond-CMOS logic
lie in the tens of kBT per bit processed (Yablonovitch, 2008).

Scaling 40kBT/bit to record raw voltage waveforms at a mini-
mal 1 kbit/s/neuron (e.g., 1 kHz sampling rate, 1 bit processed
per neuron per sample), the total power consumption for whole
mouse brain recording could in principle be as low as ∼16 nW.
While this leaves >106-fold more room (energetically) for
increased data processing (more required bit flips per second),
or energetic inefficiency of the switching device (greater dissi-
pation per bit), realistic devices in the near-term may in fact
require this much overhead, if not more. This necessitates a more
detailed consideration of limiting factors for today’s microelec-
tronic devices.

In the context of electrical recording, the first step that must
be performed by an embedded neural recording device is digiti-
zation of the voltage waveform. Until mV-scale switching devices
are developed (see discussion below), it is necessary to amplify
the ∼10–100 μV spike potential in order to drive digital switching
events in downstream gates. During this sub-threshold amplifi-
cation step, a CMOS (or BJT) device will dissipate static power
(associated with a bias current). Importantly, in order to decrease
the input-referred voltage noise of this amplification process, it
is necessary to increase the bias current and hence the static
power dissipation. For a simple differential transistor amplifier,
the minimal bias current scales as

Id = π

2

4kBT

V2
noise

kBT

q
BW

where Vnoise is the input-referred voltage noise of the ampli-
fier and q is the electron charge. For an extracellular recording
with BW = 10 kHz and Vnoise = 10 μV, this implies a minimal
bias current Id ≈ 60 nA or a minimal static power of (IdVdd) ≈
6 × 10−8 W at Vdd ≈ 1 V operating voltage. Assuming 10 neu-
rons per recording channel, there are then 7.5 million recording
channels for a mouse brain, which gives a power dissipation asso-
ciated with signal amplification of ∼500 mW. Note that realistic
analog front ends (which are subject to 1/f noise and require mul-
tiple gain stages) draw 6×–10× greater bias current, quantified by
the noise efficiency factor (NEF) (Steyaert et al., 1987), to achieve
the same input-referred noise levels.

Local on-chip digital computation also incurs an energy cost.
Current CMOS digital circuits consume 5–6 orders of magnitude
(Yablonovitch, 2008; Koomey et al., 2011; Tucker, 2011; Tucker
and Hinton, 2011) more energy per switching event (∼1 fJ/bit
including charging of the wires Tucker and Hinton, 2011) com-
pared to the Landauer limit (e.g., for a digital CMOS inverter,
and ignoring the static power associated with the leakage cur-
rent). This corresponds to a ∼1 fF total load capacitance at 1 V
operating voltage. For 100 GHz switching rates (108 neurons ×
1 kHz) as above, this corresponds to 0.01–0.1 mW. Realistic archi-
tectures, however, will incur overhead in the number of switching
events required to store, compress and/or transmit neural sig-
nals, likely bringing the power consumption into an unacceptable
range (e.g., 1000 bits processed per sample would be 100 mW
here). To take a concrete example, commercial RFID tags con-
sume ∼10 mW (Fraunhofer Institute for Photonic Microsystems,
2011). At a chip rate of 256 kbit/s (with a Miller encoding of 2),
this yields 7.8 × 10−11 J/bit, which is ∼10 orders of magnitude
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higher than the Landauer limit. Applying current RFID technol-
ogy to whole mouse brain recording at 1 kbit/s/neuron would
thus draw ∼8 W of power. Therefore, at least 2–3 orders of magni-
tude reduction in power consumption will be necessary in order
to apply embedded electronics for whole-brain neural recording.

Until recently, the energy efficiency of digital computing has
scaled on an exponential improvement curve (Koomey et al.,
2011). This was a consequence of Moore’s law and Dennard
scaling, where both the capacitance of each transistor and its asso-
ciated interconnect, as well as the operating voltages, were reduc-
ing with the device dimensions. Unfortunately, issues related
to device variability and the 3D structures needed to maintain
the on-to-off current ratio have largely stopped the reduction
in effective capacitance per device; current devices are stuck
at ∼100–200 aF for a minimum sized transistor. Furthermore, the
exponential increase in leakage current that comes along with the
scaling of the threshold voltage in this scenario has precluded
substantial further decreases in voltage at a given performance
level. Indeed, for the past several technology generations (since
about 2005), CMOS devices have operated at a supply voltage
of ∼1 V.

While neural signal processing does not demand very stringent
transistor speeds and so reductions below ∼1 V are certainly fea-
sible, a fundamental limitation in scaling the supply voltage still
remains. Specifically, CMOS has a well-defined minimum-energy
per bit and an associated minimum-energy operating voltage that
is defined by the tradeoff between static (leakage) and dynamic
(switching) energy: as the operating voltage is decreased, the
capacitive switching energy decreases, but the ratio of currents
in the on and off states, Ioff/Ion, increases exponentially, increas-
ing the energy associated with leakage (this effect is independent
of the threshold voltage in the sub-threshold regime). For practi-
cal circuits, the supply voltage that leads to this minimum energy
is on the order of 300–500 mV, and thus supply voltage scaling
will at most provide 3×–10× improvement in energy over today’s
designs.

Thus, a paradigm shift in microelectronic hardware is needed
to reduce power by several orders of magnitude if we are to
approach the physical limits. Developing a switching device oper-
ating in the mV range, rather than the 1 V range of current
transistors, would allow (1 V/1 mV)2 = 106 fold reduction in
power consumption (Yablonovitch, 2008). Electronic circuits
constructed using analog techniques (Sarpeshkar, 1998), which
sometimes rely on bio-inspired computational architectures,
show promise for reducing energy costs by up to five orders
of magnitude (Sarpeshkar, 1998; Mandal and Sarpeshkar, 2007;
Rapoport et al., 2009), depending on the nature of the computa-
tion and the required level of precision.

Figure 4 shows the power consumption per bit processed
for several technology classes as well as the corresponding total
power consumption required for whole brain readout, assuming
a minimal whole-brain bit rate of 100 Gbit/s.

4.3.2. Powering embedded devices
Embedded systems need power, which could be supplied via elec-
tromagnetic or acoustic energy transfer, or could be harvested
from the local environment in the brain.

FIGURE 4 | Energy cost of elementary operations across a variety of

recording and data transmission modalities, expressed in units of the

thermal energy (left axis) and as a power assuming 100 GHz switching

rate (right axis). The Landauer limit of kBT ln 2 sets the minimum energy
associated with a logically irreversible bit flip. The practical limit will likely lie
in the tens of kBT per bit (Yablonovitch, 2008), comparable to the free
energy release for hydrolysis of a single ATP molecule (or addition of a
single nucleotide to DNA or RNA). The energy of a single infrared photon
is ∼50 kBT . Single gates in current CMOS chips dissipate ∼1 × 105–106kBT
per switching event, including the capacitive charging of the wires
interconnecting the gates (red curve). The switching energy for the gate,
not including wires, is ∼100× lower (blue curve). The power efficiency of
CMOS has been on an exponential improvement trend due to the
miniaturization of components according to Moore’s law [data re-digitized
from Tucker and Hinton (2011)], although power efficiency gains have
slowed recently. Current RFID chips compute and communicate
at ∼1 × 109–1010kBT (>10 pJ) per bit transmitted, while the total energy
cost per floating point operation in a 2010 laptop was ∼1 × 1012kBT . The
power associated with a minimal low-noise CMOS analog front end for
signal amplification corresponds to ∼500 mW at whole mouse brain scale.
A single two-photon laser pulse at 0.1 nJ pulse energy corresponds
to ∼1 × 1010kBT . For comparison, the 40 mW approximate maximal
allowed power dissipation, according to Section 2 above, with its equivalent
per-bit energy of ∼1 × 108kBT at the minimal 100 Gbit/s bit rate.

There are two key regimes for wireless electromagnetic power
transfer: non-linear device rectification and photovoltaics. If the
single-photon energy is sufficient to allow electrons to move from
the valence to the conduction band—that is, band gap < hν/q,
where q is the electron charge, h is Planck’s constant, and ν is
the frequency of the photon—a photovoltaic effect can occur.
Otherwise, electromagnetic energy is converted to voltage by an
antenna and non-linear device rectification may occur.

When photon energies are much lower than the band gap,
power conversion is governed by the total RF power and by the
impedances of the antenna and the rectifier, rather than by the
individual photon energy. For a monochromatic RF source, there
is no thermodynamic or quantum limit to the RF to DC con-
version efficiency, other than the resistive losses and threshold
voltages for a semiconductor process. For rectification, when the
input voltage to the rectifier is much higher than a semiconduc-
tor process threshold, conversion efficiencies of 85% have been
achieved (Sun and Chang, 2002). At low input voltages relative to
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the semiconductor process threshold, efficiencies as high as 25%
and 2 μW load have been achieved [see (Mandal and Sarpeshkar,
2007) for an analysis of power efficiency]. Ultimately, rectifica-
tion improvements are dependent on the same improvements
which will be needed for next-generation low-power comput-
ing: mV scale switching devices (promising research directions
include tunnel FETs (Ionescu and Riel, 2011), electromechanical
relays (Liu et al., 2012) and other options).

While efficient rectification is thus not a fundamental issue,
capturing sufficient RF energy in the first place becomes increas-
ingly challenging as microchips become smaller and more deeply
embedded in tissue. Wireless electromagnetic power transfer
imposes range constraints due to the loss in power density with
distance. For directional power transfer, placing the receiver
at the edge of the transmitter’s near field (the Rayleigh dis-

tance D2

4λ
where D is the transmitter aperture) has advantages

in terms of energy capture efficiency (Ozeri and Shmilovitz,
2010), whereas for omni-directional antennas it is advantageous
to place the receiver as close as possible to the transmitter.
If embedded chips are oriented randomly with respect to the
transmitter, the radiation patterns of their antennas cannot be
highly directional, i.e., their gains Gr (a measure of directionality)
must be close to one. In the far field, this lack of directional-
ity limits power capture by the antenna [due antenna reciprocity
(Gershenfeld, 2000)]: the maximal power PA available to the
chip is

PA = GrPradλ
2

4π

where Prad is the power density of radiation around the antenna,
λ is the wavelength and Gr ≈ 1 for a non-directional antenna
(Mandal and Sarpeshkar, 2007).

It may be possible to power devices with pure magnetic fields
(which are highly penetrant) via near-field (non-radiative) induc-
tive coupling, which is widely used in systems ranging from
biomedical implants to electric toothbrushes, or conceivably by
using magneto-electric materials (Fiebig, 2005; Priya et al., 2009;
Kitagawa et al., 2010; Yue et al., 2012). For the case of simple
inductive coupling, however, the tiny cross-sections of micro-
devices limit the amount of power which can be captured: a
loop of 10 μm diameter in an applied field of 1 T switching at
1000 Hz produces an induced electromotive force of only 0.1 μV.
Assuming a copper loop (∼17 n�m resistivity) with 1 × 1 μm
cross-section and 40 μm length (around the outer edge of the
chip) gives a power (V2/R) of only ∼15 fW associated with the
induced current. In general, the use of coupled high-Q resonators
can increase the range and efficiency of near-field electromag-
netic power transfer by orders of magnitude (Karalis et al., 2008)
compared to non-resonant inductive power transfer and may
be particularly relevant for implanted devices (Ho et al., 2013).
Unfortunately, at the ∼10 μm length scale, the achievable on-
chip inductances and capacitances are severely limited, which
restricts the operating range of any resonant device to high fre-
quencies (fresonant = (2π

√
LC)−1) which will be attenuated by

tissue. Electromagnetic near-field power transfer though tissue
to ultra-miniaturized microchips may thus be inefficient, again

due to low capture efficiency of the applied fields by tiny device
cross-sections.

Alternatively, if the photon energy is above the silicon band gap
(λ < hc

qVth
≈ 3 μm or less for silicon), the chip is essentially act-

ing as a photovoltaic cell. There is no thermodynamic or quantum
limit to the conversion efficiency of light to DC electrical power
for monochromatic sources, other than resistive losses and dark
currents in the material (86% in GaAs for example Bett et al.,
2008). Again, however, capturing sufficient light becomes difficult
for tiny devices. To supply 10 μW (typical of current wirelessly-
powered RFID chips) photovoltaically to a 10 × 10 μm (cell
sized) chip at 34% photovoltaic efficiency requires a light intensity
of ∼300 kW/m2 at the chip, which is prohibitive. Furthermore,
in the use of infrared light for photovoltaics, the penetration
of the photons through tissue is decreased compared to radio
frequencies.

Piezoelectric harvesting of ultrasound energy by micro-devices
is a possibility (Seo et al., 2013). The efficiency of electrical har-
vesting of mechanical strain energy in piezoelectrics can be above
30% for materials with high electromechanical coupling coeffi-
cients (e.g., PZT) (Ahmad and Akdoan, 2008; Xu et al., 2012). The
losses in the piezoelectric transduction process are well described
by models such as the KLM model (Krimholtz et al., 1970; Castillo
et al., 2003).

An alternative to wireless energy transmission is the local
harvesting of biochemical energy carriers. Implanted neural
recording devices could conceivably be powered by free glu-
cose, the main energy source used by the brain itself. The
theoretical maximum thermodynamic efficiency for a fuel cell
in aqueous solution is equal to that of the hydrogen fuel cell:
�G0/�H0 = 83% at 25◦C. Furthermore, if glucose is only oxi-
dized to gluconic acid, the Coulombic (electron extraction) effi-
ciency is at most 8.33% (Rapoport et al., 2012), which bounds
the thermodynamic efficiency. The blood glucose concentra-
tion in rats has been measured at ∼7.6 mM, with an extra-
cellular glucose concentration in the brain of ∼2.4 mM (Silver
and Erecińska, 1994). A hypothetical highly miniaturized neural
recorder with a device area of 25 × 25 μm and efficiency of 80%,
processing a blood flow rate of ∼1 mm/s (Ivanov et al., 1981)
could extract (80%)(7.6 mM)(25 μm)2(1 mm/s)(2880 kJ/mol) ≈
11 μW, which is sufficient for low-power device such as
RFID chips (Cho et al., 2005). Unfortunately, current non-
microbial glucose fuel cells obtain only ∼180 μW/cm2 peak
power and ∼3.4 μW/cm2 steady state power (Rapoport et al.,
2012). Thus there is a need for 104- and 106-fold improve-
ments in peak and steady state power densities, respectively,
for non-microbial glucose fuel cells to power brain-embedded
electronics of the complexity of today’s RFID chips (or for the
corresponding decrease in power requirements, as emphasized
above).

4.3.3. Conclusions and future directions
The power consumption of today’s microelectronic devices is
more than six orders of magnitude higher than the physical
limit for irreversible computing, and 2–3 orders of magni-
tude higher than would be permissible for use in whole brain
millisecond resolution activity mapping, even under favorable
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assumptions on the required switching rates and neglecting both
the power associated with noise rejection in the analog front
end and the CMOS leakage current. Thus, the first priority
is to reduce the power consumption associated with embed-
ded electronics. In principle, methods such as infrared light
photovoltaics, RF harvesting via diode rectification, or glucose
fuel cells, could supply power to embedded neural recorders,
but again, significant improvements in the power efficiency
of electronics are necessary to enable this. Other potential
energy harvesting strategies include materials/enzymes harness-
ing local biological gradients such as in voltage, osmolarity, or
temperature. An analysis of the energy transduction potential
of each of these systems is beyond the scope of this discus-
sion. Fortunately, with many orders of magnitude potential for
improvement before physical limits are reached, we may expect
that embedded nano-electronic devices will emerge as an ener-
getically viable neural interfacing option at some point in the
future.

4.4. EMBEDDED DEVICES: INFORMATION THEORY
Most recording methods envisioned thus far rely on the real-time
transmission of neural activity data out of the brain. Physics and
information theory impose fundamental limits on this process,
including a minimum power consumption required to transmit
data through a medium. The most basic of these results hold irre-
spective of whether the data transmission is wired or wireless, and
regardless of the particular physical medium (optical, electrical,
acoustic) used as the information carrier.

A communication “channel” is a set of transmitters and
receivers that share access to a single physical medium with fixed
bandwidth. The bandwidth is the range of frequencies present in
the time-varying signals used to transmit information. In wire-
less communications, information is transmitted by modulating
a carrier wave. To allow modulation, the frequency of the car-
rier wave must be higher than the bandwidth: for example, a
400 THz visible light wave may be modulated at a 100 GHz rate.
The physical medium underlying a channel could be a wire (with
a bandwidth set by its capacitive RC time constant), an optical
fiber, free space electromagnetic waves over a certain frequency
range, or other media.

As a concrete example, consider a police department with
100 officers, each possessing a hand-held radio. The radios
transmit vocalizations by modulating an 80 MHz carrier wave
at ∼10 kHz. This constitutes a single shared communications
channel with 10 kHz bandwidth. Simultaneously, the fire depart-
ment may communicate via a separate channel, also with a
bandwidth of ∼10 kHz, by modulating a 90 MHz carrier wave.
The channels are separate because modulation introduced into
one does not affect the other. If the neighboring town’s police
department makes the mistake of also operating at 80 MHz
carrier frequency, then they share a channel and conflicts will
arise.

4.4.1. Power requirements for single-channel data transmission
We first treat the case in which there is a single channel for
transmitting data out of the brain. As discussed above in the con-
text of electrical spike sorting, the Shannon Capacity Theorem

(Cover and Thomas, 2006) sets the maximal bit rate for a channel
(assuming additive white Gaussian noise) to

Rmax = BW log2(1 + SNR)

where BW is the channel bandwidth and SNR is the signal-to-
noise ratio. If there is only thermal noise the SNR = P/(N0BW),
where N0 is the thermal noise power spectral density of kBT W/Hz
and P = (PL)P0 is the power of the transmitted signals P0, weak-
ened by path loss PL. Therefore the transmitted power P0 is
lower-bounded:

P0 > kBT BW
2Rmax/BW − 1

PL

as shown in Figure 5 (bottom). In a minimal model of a
transmitter-receiver system, there thus exists a tradeoff between
the required signal power and the bandwidth of the carrier radi-
ation, due to the thermal noise floor, even in the absence of path
loss (PL = 1).

Path loss weakens the proportion of the power that can reach
the detector. Using the above equation, we can calculate, as a
function of bandwidth, the power necessary to transmit a tar-
get whole-brain bit rate of 100 Gbit/s through a medium with
path loss dependent on the carrier wavelength, as shown in
Figure 5 (top).

FIGURE 5 | Power requirements imposed by information theory on

data transmission through a single (additive white Gaussian noise)

channel with carrier frequency ν (an upper bound on the bandwidth),

given thermal noise and path loss. Bottom: absorption length of water
as a function of frequency (blue), minimal power to transmit data at 100,
1000, and 10,000 Gbit/s (green) as a function of frequency, assuming
thermal noise but no path loss. Top: minimal power to transmit data at 100,
1000 and 10,000 Gbit/s as a function of frequency, assuming thermal noise
and a path loss corresponding to the attenuation by water absorption over a
distance of 2 mm. While formulated for a single channel, at certain
wavelengths (e.g., RF) these factors also constrain multiplexed data
transmissions between many transmitters and many receivers, depending
on capacity of the system for spatial multiplexing. Horizontal dashed lines:
40 mW, the approximate maximal whole-brain power dissipation in steady
state.
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For RF wavelengths, the radiation penetrates deeply but the
achievable data rates are low without excessive power consump-
tion, due to the limited bandwidth. For wavelengths intermediate
between RF and infrared, the penetration depth is low and power
must be expended to combat these losses, despite the high car-
rier bandwidth. Only in the infrared and visible ranges do the
tradeoffs between power, bandwidth and penetration depth allow
transmission of >100 Gbit/s out of the brain through a single
channel without unacceptable power consumption.

The analysis above has ignored the effects of noise sources
other than thermal noise, but many additional noise sources will
increase the amount of power needed to transmit data, via a
decrease in the SNR at fixed input power. For optical transmission
in the brain, the noise is dominated by time-correlated “speckle
noise” below 200 kHz, which arises mostly from local blood flow
(Carp et al., 2011). This correlated noise, which cannot be fil-
tered by simple averaging, could be avoided by modulating optical
signals at frequencies above 200 kHz.

4.4.2. Spatially multiplexed data transmission
As discussed above, transmitting information through a single
channel imposes direct limits on bit rate, carrier frequency and
input power. However, it is conceivable to divide the data trans-
mission burden over many independent channels, i.e., over many
pairs of transmitters and receivers, each operating at lower band-
width (e.g., at radio frequencies). Indeed, this would be optimal
in a scenario where many embedded devices measure and then
transmit the activities of nearby neurons. As a concrete exam-
ple of such “spatial multiplexing,” an effective capacity of 1 Tbit/s
could conceivably be obtained by splitting the data over 1000
transmitter-receiver pairs each operating at 1 Gbit/s, with the
transmitters arranged in a 10 × 10 × 10 grid. Importantly, in
order to exceed the above limits for single-channel data trans-
mission, it must be possible for these transmitter receiver pairs
to share the same bandwidth and operate simultaneously with-
out conflicts, for example by modulating distinguishable carrier
waves or by transferring data over separate wires. The conditions
under which this may occur, however, can be counter-intuitive.
For example, for antennas to operate independently, they must
be spaced apart from one another by roughly a wavelength. For
10 GHz microwaves, the wavelength is ∼3 cm, so no more than
a handful of microwave transmitters (e.g., operating at frequen-
cies in the 100 GHz–1 THz range) can co-occupy the mouse brain
while operating independently.

Even with many non-independent transmitters co-occupying
the brain and operating simultaneously over the same frequency
spectrum, it may be possible under some conditions to “factor
out” the effects of the coupling and allow an increase in channel
capacity relative the single-channel result. To treat such scenarios,
a generalization to Shannon’s capacity theorem to multi-input-
multi-output (MIMO) channels has shown that the maximal total
data rate is

Rmax = BW · log2

∣∣I + (SNR)HH∗∣∣
where I is the identity matrix, | · | denotes the matrix deter-
minant, H is the (M × N for N transmitters and M receivers)

channel matrix giving the coupling between the vector of
transmitted signals and the vector of received signals and H∗
denotes the matrix adjoint of H (Tulino and Verdú, 2004).
The vector of received signals is then y = Hx + n where x
is the vector of transmitted signals and n is a noise vec-
tor. Any matrix can be written as H = U�V∗ where U and
V are unitary matrices, and � is a diagonal matrix whose
elements are the singular values λi. One can re-write the above
equation as

Rmax = BW ·
min(M,N)∑

i = 1

log2

(
1 + SNR · λ2

i

)

If the matrix H is of full rank, then the capacity for the multi-
channel system can increase over the single-input-single-output
(SISO) result by min(M, N) times (Shiu et al., 2000). Note that
the rank of the matrix corresponds to the number of non-zero
singular values, so an analysis of the singular values of channel
matrices can inform us about the multiplexing capacity of the
channel. Furthermore, this multiplexing capacity can in principle
be achieved even when the transmitters are not in communication
with each other, which could potentially be important for scenar-
ios involving many brain embedded transmitters (Spencer et al.,
2004).

Transmission through a medium with negligible scattering
is the simplest situation to analyze. In this case, evaluating
the matrix H requires knowledge of the transmitter-transmitter,
transmitter- receiver, and receiver-receiver distances, as well as
the orientations and radiation patterns of the antennas (e.g.,
high gain antennas will have a highly directional radiation pat-
tern). Depending on these factors, the beam from each trans-
mitter will spread to impinge upon multiple receivers and
the effective number of spatially independent beams will be
reduced. With transmitter-transmitter and receiver-receiver dis-
tances larger than the wavelength, and highly directional antennas
with appropriately chosen orientations, it is possible to increase
the channel capacity linearly with min(M, N).

Random scattering, in a coherent disordered medium where
the mean free-path l is much larger than the wavelength λ and
much smaller than the size of the disordered medium, is another
condition where the matrix H is a random scattering matrix of
full rank (Moustakas et al., 2000; Popoff et al., 2010). Intuitively,
for the case of two transmitters and two receivers separated by a
disordered medium larger than the mean free path: if transmitter
1 is at least a mean-free path from transmitter 2 [or potentially
as close as a few wavelengths (Berkovits, 1991)], the path from
transmitter 1 to receiver 1 and the path from transmitter 2 to
receiver 2 would be uncorrelated with respect to one another
(in terms of physical path, phase, amplitude fluctuations, and
other properties). The rank of the matrix H would then be 2.
Devising a code on the transmitter such that the receivers can
distinguish between these two uncorrelated streams results in a
doubling of the capacity, rather than simply averaging the noise
floor, which would provide only a logarithmic capacity gain due
to the increased SNR.
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Thus, contrary to intuition, a high degree of random scatter-
ing can potentially be useful for data transmission, by enabling
spatial multiplexing of channels. This idea has been demon-
strated experimentally in the context of ultrasound transmissions
(Derode et al., 2003). Biological tissue in the infrared range is
well described as such a random scattering medium (e.g., mean
free path ∼200 μm at ∼800 nm in vivo). Therefore infrared light
could be used for spatially multiplexed data transmission out of
the brain. At wavelengths λ comparable to critical brain dimen-
sions in the mouse, however, an insufficient number of scattering
events will occur to create multiple independent pathways for N
transmitters. Mathematically, the matrix H will have one highly
dominant singular value and a number of much smaller remain-
ing terms, such that the signals appearing at a receiver from two
separate transmitters will be highly linearly dependent, differing
by only a small phase angle. Therefore, there will be no capac-
ity gain from multiple transmitters, and distinct transmitters will
effectively share a single channel (reducing to the SISO result).

Little is known about the biological interaction with elec-
tromagnetic fields at wavelengths much shorter than the crit-
ical brain dimensions but beyond the infrared, approximately
100 GHz (∼3 mm) to 100 THz (∼3 μm) in the mouse. If mul-
tiple scattering occurs and the absorption is low, this may also
be a regime conducive to MIMO communications (Bakopoulos
et al., 2009). Efficiently generating and processing radiation in
this regime by embedded devices is an outstanding problem, how-
ever. The so-called “THz-gap” (Tonouchi, 2007) exists because
(moving toward higher frequencies starting from DC electron-
ics), parasitic capacitances and passive losses limit the maximum
frequency at which a field-effect transistor (FET) may oscillate
and on the other hand (moving downward in frequency start-
ing from optics), the band-gaps of opto-electronic devices limit
the minimum frequency at which quantum transitions occur.
Thus there is no high-power, low-cost, portable, room tempera-
ture THz source available. Advances in THz light generation, e.g.
through the use of tunneling transistors, could be enabling.

4.4.3. Ultrasound as a data transmission modality
An important caveat to these conclusions on wireless data transfer
occurs if we consider the use of ultrasound rather than electro-
magnetic radiation. Because the speed of sound is dramatically
slower than that of light, the wavelength of 10 MHz ultrasound
is only ∼150 μm (approximating the speed of sound in brain as
the speed of sound in water, ∼1500 m/s). Thus, many 10 MHz
ultrasound transmitters/receiver could be placed inside a mouse
brain while maintaining their spatial separation above the wave-
length, and a linear scaling of the MIMO channel capacity with
the number of devices is likely possible in this regime, assuming
that appropriate antenna gains and orientations can be achieved
inside brain tissue. Beam orientation could present a challenge if
micro-devices are oriented randomly after implantation. With an
attenuation of 0.5 dB/cm/MHz (Hoskins, 2010), the attenuation
at 10 MHz is only 5 dB/cm. Thus ultrasound-based transmission
of power and data from embedded recording devices may be
viable (Seo et al., 2013).

In contrast, direct imaging of neural activity by ultrasound
(e.g., using contrast agents which create local variations in tissue

elastic modulus or density) may be more difficult. While the the-
oretical (diffraction-limited) and currently practical resolutions
of 100 MHz ultrasound are ∼15 μm, and 15–60 μm (Foster et al.,
2000), respectfully, at these frequencies, power is attenuated by
brain tissue with a coefficient of ∼50 dB/cm (Hoskins, 2010)
(105-fold attenuation per cm), which imposes a penetration limit
[e.g., for measurements with a dynamic range of 80 dB (Foster
et al., 2000)]. Attenuation of ultrasound by bone is stronger still,
at 22 dB/(cm MHz) (Hoskins, 2010). Attenuation could therefore
limit the use of ultrasound as a high-resolution neural recording
modality in direct imaging modes, but multiplexed transmis-
sion of lower-frequency ultrasound from embedded devices could
sidestep this issue.

4.4.4. Conclusions and future directions
Physics and information theory impose a tradeoff between band-
width and power consumption in sending data through any
communication channel. Considering only thermal noise and no
path loss, achieving 100 Gbit/s data rates through a single channel
necessitates either a bandwidth above a few GHz or a transmitted
power above ∼100 mW, the latter of which may be prohibitive
from a heat dissipation perspective if the signals are to be gen-
erated by dissipative microelectronic devices. Researchers have
proposed to use thousands or millions of tiny (Gómez-Martínez
et al., 2010) wireless transmitters embedded in the brain to trans-
mit local neural activity measurements to an external receiver via
microwave radiation (Dyson, 2009). However, based on the above
power-bandwidth tradeoff, this will require a bandwidth above a
few GHz. At the corresponding carrier frequencies, the penetra-
tion depth of the microwave radiation drops significantly, requir-
ing increased power to combat the resulting signal loss. While
one might hope that multiple independent channels could be
multiplexed inside the brain, reducing the bandwidth and power
requirements for each individual channel, the long wavelengths of
microwave radiation compared to the mouse brain diameter sug-
gest that such channels cannot be independent, as is confirmed
by an analysis of the multi-input-multi-output (MIMO) channel
capacity for this scenario. Therefore, radio-frequency electromag-
netic transmission of whole brain activity data from embedded
devices does not appear to be a viable option for brain activity
mapping.

On the other hand, an analysis of the channel capacity for
IR transmissions in a diffusive medium suggests that, because of
its high frequency and decent penetration depth, infrared radi-
ation may provide a viable substrate for transmitting activity
data from embedded devices. For example, data could be trans-
mitted via modulating the multiple-scattering speckle pattern
of infrared light by varying the backscatter from an embedded
optical device, such as an LCD pixel (Komanduri et al., 2008),
in an activity-dependent fashion. Because the speckle pattern is
sensitive to the motion of a single scatterer (Berkovits, 1991;
Pappu et al., 2002), coherent multiple scattering could effectively
act as an optical amplifier and as a means to create indepen-
dent communication pathways. Furthermore, multiplexed data
transmission via ultrasound is likely possible because of its short
wavelength in tissue at reasonable carrier frequencies. It may also
be of interest to explore network architectures (Bush, 2011) in
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which data is transmitted at low transmit power over short dis-
tances via local hops between neighboring nodes capable of signal
restoration.

4.5. MAGNETIC RESONANCE IMAGING
Magnetic resonance imaging (MRI) uses the resonant behavior
of nuclear spins in a magnetic field to non-invasively probe the
spatiotemporally varying chemical and magnetic properties of tis-
sues. Although originally conceived as a means to image anatomy,
MRI can be used to observe neural activity provided that cor-
relates of such activity are reflected in dynamic changes in local
chemistry or magnetism.

In an MRI study, a strong static field (B = 1–15 T) is applied
to polarize nuclear spins (usually 1H), causing them to resonate
at a field-dependent Larmor frequency

f = γ

2π
B

where γ is the gyromagnetic ratio of the nucleus (e.g., 1H has
a gyromagnetic ratio of 267.522 MHz/T (Mohr et al., 2010) and
therefore resonates at 42.577 MHz in a 1 T field). To obtain posi-
tional information, spatial field gradients are applied such that
nuclei at different positions in the sample resonate at slightly dif-
ferent frequencies. Sequences of RF pulses and gradients are then
applied to the sample, eliciting resonant emissions that contain
information about spins’ local chemical environment, magnetic
field anisotropy and various other properties.

Most functional studies rely on dynamic changes in two forms
of relaxation experienced by RF-excited spins. The first form
results from energy dissipation through interactions with other
species (e.g., other spins or unpaired electrons), causing the spins
to recover their lowest energy state on a timescale, T1, of 100–
1000 ms (Rooney et al., 2007). The second form of relaxation
reflects the dephasing of spin signals in a given sampling vol-
ume (voxel) over a timescale, T2, of 10–100 ms (Deichmann et al.,
1995) due to non-uniform Larmor frequencies caused, e.g., by the
presence of local magnetic field inhomogeneities.

In blood-oxygen level dependent (Ogawa et al., 1990) func-
tional MRI (BOLD-fMRI), the most widely used form of neu-
ral MR imaging, increased neural activity in a given brain
region alters the vascular concentration of paramagnetic deoxy-
hemoglobin, which affects local magnetic field homogeneity and
thereby alters T2. Although the existence of this paramagnetic
reporter of oxygen metabolism is fortuitous, the data it provides
is only an indirect readout of neural activity (Logothetis, 2008;
Sirotin and Das, 2009; Jukovskaya et al., 2011), which is limited
in its spatial and temporal resolution to the dynamics of blood
flow in the brain’s capillary network (1–2 s). The spatial point-
spread function of the hemodynamic BOLD response is in the
1 mm range, although sub-millimeter measurements, revealing
cortical laminar and columnar features, have been obtained by fil-
tering out the signals from larger blood vessels (Bandettini, 2009).
A significant area of current and future work is aimed at develop-
ing new molecular reporters that can be introduced into the brain
to transduce aspects of neural signaling such as calcium spikes
and neurotransmitter release into MRI- detectable magnetic or

chemical signals (Shapiro et al., 2010; Hsieh and Jasanoff, 2012;
Koretsky, 2012), as described in section 4.5.3, below.

4.5.1. Spatiotemporal Resolution
The temporal resolution of MRI is limited by the dynamics of
spin relaxation. For sequential MR signal acquisitions to be fully
independent, spins must be allowed to recover their equilibrium
magnetization on the timescale of T1 (100–1000 ms). However, if
local T1 is static its pre-mapping could enable temporally variant
T2 effects to be observed at refresh rates on the faster T2 timescale
(10–100 ms) (Deichmann et al., 1995). It may also be possible to
detect events that occur on a timescale shorter than T1 and T2,
if the magnitude of the resulting change in spin dynamics over-
comes the lack of independence between acquisitions. Note that
these limitations on the repetition time of the underlying pulse
sequence are not eliminated by “fast” pulse sequences such as
echo-planar imaging (EPI) (Stehling et al., 1991) and fast low-
angle shot (FLASH) (Haase et al., 1986) or by the use of multiple
detector coils (Wiesinger et al., 2006). These techniques accelerate
the acquisition of 2D and 3D images, but still require spins to be
prepared for readout.

The spatial resolution of current MRI techniques is limited
by the diffusion of water molecules during the acquisition time
(Glover and Mansfield, 2002), since contrast at scales above the
diffusion length will be attenuated by diffusion. The RMS dis-
tance of a water molecule from its origin, after diffusing in 3D
for a time Tacq, is

drms =
√

6DwaterTacq

where Dwater = 2300 μm2/s is the self-diffusion coefficient of
water. For Tacq ≈ 100 ms, drms ≈ 37 μm, which sets the approx-
imate spatial resolution. For ultra-short acquisitions at Tacq ≈
10 ms, drms ≈ 12 μm.

More technically, as described above, MRI uses field gradients
to encode spatial positions in the RF frequency (wavenumber)
components of the emitted radiation. The quality of the recon-
struction of frequency space thus limits the achievable spatial
resolution. The sampling interval of the detector �t, and the field
gradient G, determine the wavenumber increment as

�k = γG�t

The spatial resolution (here considering only one dimension) is
then given by (Glover and Mansfield, 2002):

�xk-space = π

Tacq

�t �k
= π

TacqγG

Note that it is the gradient field, not the polarizing field B0, which
determines the resolution. For a gradient field of 100 mT/m and
an acquisition time of 100 ms

�xk-space = π

(100 ms)(267 MHz/T)(100 mT/m)
≈ 1.17 μm

Due to relaxation, however, the emissions from a spin at a
given position do not constitute a pure tone with a well-defined
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frequency. Instead, each spin exhibits a frequency spread, which
gives rise to another limit on the spatial resolution (Glover and
Mansfield, 2002):

�xrelaxation = 2

γGT∗
2

where T∗
2 is the shortest relaxation time. Assuming T∗

2 = 5 ms
and G = 100 mT/m, gives

�xrelaxation ≈ 14 μm

Therefore, for water protons, the resolution limit is set by diffu-
sion over ∼100 ms acquisition timescales, rather than by k-space
sampling or relaxation. For other spin species (e.g., with lower
diffusion rate), it may be possible to achieve resolutions limited
by frequency discrimination.

Notably, there exists a practical trade-off between spatial res-
olution, temporal resolution, and sensitivity (SNR). In particu-
lar, to achieve high spatial resolution, it is necessary to densely
sample k-space. Fast sampling sequences such as FLASH and
EPI achieve speed by sampling each point of k-space using
less signal and often at a lower resolution. Even at high field
strengths (11.7 T), this tradeoff results in practical EPI-fMRI
with a spatial resolution of 150 × 150 × 500 μm and a tempo-
ral resolution of 200 ms (Yu et al., 2012). Achieving much higher
spatial resolutions requires longer acquisitions and/or lower tem-
poral sampling. For example, achieving a 20 μm anatomical
resolution in MRI of Drosophila embryos required 54 min for
a small field of view of 2.5 × 2.5 × 5 mm (Null et al., 2008).
Furthermore, the flies were administered paramagnetic gadolin-
ium chelates to shorten T1 and thereby the acquisition time.
Separately, frame rates of 50 ms have been obtained for dynamic
imaging of the human heart, but required the use of strong
priors to reduce data collection requirements (Zhang et al.,
2010).

4.5.2. Energy dissipation
Energy is dissipated into the brain when the excited spins relax to
their equilibrium magnetization in the applied field. The energy
associated with this relaxation is of order the Zeeman energy:

�EZeeman = γ

2π
hB0

To obtain an upper bound on the heat dissipation of MRI, we first
assume that the brain is entirely water, that every proton spin is
initially aligned by the field and then excited by the RF pulse, and
that all spins relax during a T1 relaxation time of ∼600 ms. In this
scenario, even an applied field of as high as ∼200 T would gen-
erate dissipation within the ∼50 mW energy dissipation limit. In
reality, the energy dissipation is 4–5 orders of magnitude smaller,
because only a tiny fractional excess of the spins are initially
aligned by the field (∼1 × 10−5 for fields on the order of 1 T).
Therefore, thermal dissipation associated with spin excitation in
MRI is unlikely to cause problems unless field strengths much
greater than the largest currently used fields (∼20 T) are invoked,
or spins with much higher gyromagnetic ratios are used.

Practically, the main energy consideration in MRI is the
absorption by tissues of RF energy applied during imaging pulse
sequences and the switching of magnetic field gradients. Such
absorption is often calculated through numerical solutions of
the Maxwell Equations taking into account the precise geometry,
tissue properties and applied fields for a particular experimen-
tal setup (Collins et al., 2004). The typical specific absorption
rate (SAR) is well under 10 W/kg (or 5 mW per 500 mg), and is
restricted by the FDA to less than 3 W/kg for human studies.

4.5.3. Imaging agents
All the preceding discussion about spatiotemporal resolution pre-
sumes the existence of local time-varying signals (e.g., changes
in T1 or T2) corresponding to the dynamics of neural activ-
ity. The hemodynamic BOLD response is the most prominent
such signal, the limitations of which are discussed above. There
have been studies working toward direct detection of minute
(e.g., ∼0.2 nT) magnetic fields associated with action poten-
tials through their effects on MRI phase or magnitude contrast
(Bodurka and Bandettini, 2002; Petridou et al., 2006), but reli-
ably detecting these fields above the physiological noise will likely
require novel strategies (Witzel et al., 2008; Halpern-Manners
et al., 2010) and estimates of the feasibility of these methods
have been complicated by the lack of a realistic model for the
local distribution of neuronal currents. MRI detection of the
mechanical displacement of active neurons due to the Lorentz
force in an applied magnetic field (Roth and Basser, 2009) has
also been explored, as has the detection of activity-dependent
changes in the diffusion of tissue water (Le Bihan et al., 2006;
Tsurugizawa et al., 2013), possibly due to neuronal or glial
(Kitaura et al., 2009) cell swelling (Holthoff and Witte, 1996;
Isokawa, 2005), although strongly diffusion-weighted scans may
have disadvantages in terms of SNR (Jasanoff, 2007). Manganese
influx through voltage-gated calcium channels (Lin and Koretsky,
1997; Van der Linden et al., 2002) generates MRI contrast, but
exhibits slow uptake kinetics and even slower efflux, such that
manganese monotonically accumulates in the neurons over time.
Conceivably, over-expression of manganese efflux pumps such as
the iron transporter ferroportin (Madejczyk and Ballatori, 2012)
could allow time-dependent activity imaging using manganese
contrast.

In the past 15 years, efforts have been undertaken to develop
chemical and biomolecular imaging agents that can be introduced
into the brain to produce MRI detectable signals corresponding
to specific aspects of neural function (analogously to fluorescent
dyes and proteins). One critical advantage of using genetically
encoded indicators would be the ability to target these indica-
tors to specific cell types (Luo et al., 2008; Madisen et al., 2009)
and/or cellular compartments (El-Husseini et al., 2001; Jacobs
et al., 2003; Boeckers et al., 2005; Arnold, 2007; Feinberg et al.,
2008; Vacher et al., 2008; Corrêa et al., 2009; Yamagata and
Sanes, 2012). Notable examples of engineered molecular MRI
contrast agents include T1 and T2 sensors of calcium (Li et al.,
1999; Atanasijevic et al., 2006) and a T1 sensor of neurotrans-
mitter release (Shapiro et al., 2010). Depending on their mode
of action, these imaging agents can provide temporal resolutions
ranging from 10 ms to 10 s (Shapiro et al., 2006). However, a
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major current limitation for fast agents is the requirement that
they be present in tissues at μM concentrations, posing major
challenges for delivery and genetic expression. Model organisms
lacking hemoglobin (e.g., the blowfly), and hence lacking a hemo-
dynamic BOLD response (as is also the case for ex vivo brain
slices), may be particularly useful for in vivo testing of novel
activity-dependent contrast mechanisms, and specialized setups
have been constructed to perform MRI at near-cellular spatial
resolution in this context (though still requiring several hours
to generate whole-brain anatomical images at this resolution)
(Jasanoff and Sun, 2002).

Figure 6 shows the achievable temporal resolution for various
classes of activity-dependent MRI contrast agents as well as the
spatial resolution limit due to water proton diffusion.

4.5.4. Conclusions and future directions
Moving beyond hemodynamic contrast is crucial for improving
the spatiotemporal resolution of fMRI, and several avenues may
be available for doing so, especially through the use of novel
molecular contrast agents and/or genetic engineering. More fun-
damentally, current MRI techniques rely on the excitation of
proton spins in water: this limits imaging to >100 ms timescales,
unless SNR is severely compromised, due to the low polarizabil-
ity and long T1 relaxation times of proton spins. There is also a
spatial resolution limit of tens of microns over these timescales
due to water’s fast diffusion. Methods which couple neural activ-
ity to non-diffusible, highly polarized spins could, in principle,
ameliorate this situation.

4.6. MOLECULAR RECORDING
An alternative to electrical, optical or MRI recording is the local
storage of data in molecular substrates. Each neuron could be
engineered to write a record of its own time-varying electri-
cal activities onto a biological macromolecule, allowing off-line
extraction of data after the experiment. Such systems could, in
principle, be genetically encoded, and would thus naturally record
from all neurons at the same time.

One proposed implementation of such a “molecular ticker
tape” would utilize an engineered DNA polymerase with a Ca2+-
sensitive or membrane-voltage-sensitive error-rate (Zamft et al.,

FIGURE 6 | Key factors determining the spatiotemporal resolution of

dynamic MRI imaging. (A) Temporal resolution and contrast agent
concentration allowing >5% contrast, for different classes of dynamic MRI
contrast agent [reproduced from Shapiro et al. (2006), with permission].
(B) Diffusion limited spatial resolution for water proton MRI as a function of
temporal resolution.

2012) to record time-varying neural activities onto DNA (Glaser
et al., 2013) as patterns of nucleotide misincorporations relative
to a known template DNA strand [for alternative local recording
techniques see (Friedland et al., 2009; Bonnet et al., 2013)]. The
time-varying signal would later be recovered by DNA sequenc-
ing and subsequent statistical analysis (Glaser et al., 2013). DNA
polymerases found in nature can add up to ∼1000 nucleotides/s
(Kelman and O’Donnell, 1995), and certain non-replicative
polymerases such as DNA polymerase iota have error rates
of >70% on template T bases (Frank and Woodgate, 2007).
Similar strategies could be implemented using RNA poly-
merases or potentially using other enzyme/hetero-polymer
systems.

4.6.1. Spatiotemporal resolution
Polymerases proceed along their template DNA strands in a
stochastic, thermally driven fashion; thus, polymerases that are
initially synchronized will de-phase with respect to one another
over time, occupying a range of positions on their respective tem-
plates at the time when a neural impulse occurs. The rate of this
de-phasing is a key parameter governing the temporal resolution
of molecular recording. By averaging over many simultaneously
replicated templates, it is theoretically possible to associate vari-
ations in nucleotide misincorporation rate with the times at
which these variations occurred, and thus to obtain temporally
resolved recordings of the cation concentration (Glaser et al.,
2013).

An analysis of the projected temporal resolution of molecular
ticker tapes as a function of polymerase biochemical param-
eters can be found in (Glaser et al., 2013). This work sug-
gests that molecular ticker tapes require synchronization mech-
anisms if they are to record at <10 ms temporal resolution
for durations longer than seconds, even when 10,000 templates
per cell are recorded simultaneously, unless engineered poly-
merases with kinetic parameters beyond the limits of those
found in nature can be developed. Recording at lower tem-
poral resolutions, however, appears feasible using naturalistic
biochemical parameters, even in the absence of synchronization
mechanisms.

The development of mechanisms to improve synchronization
of the ensemble of polymerases within each cell, or to encode
time-stamps into the synthesized DNA (e.g., molecular clocks),
could improve temporal resolution and decrease the number of
required template strands per neuron. Mutation-based molec-
ular clocks over evolutionary timescales are widely used in the
field of phylogenetics (Ochman and Wilson, 1987), and new tools
from synthetic biology (Elowitz and Leibler, 2000) and opto-
genetics or thermogenetics (Bernstein et al., 2012) also suggest
strategies for building molecular clocks on faster timescales. As an
example sketch of a possible synchronization mechanism, optoge-
netic methods [e.g., similar to (Konermann et al., 2013)] could
be used to halt, and thus re-phase, a sub-population of poly-
merases at a light-dependent pause site in the template DNA,
while another sub-population of polymerases reads through this
pause site to maintain temporal continuity of recording; then
the second population could be re-synchronized at an orthog-
onal light-dependent pause site while the first population reads
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through. Alternatively, some form of optogenetics could be used
to directly write bit strings encoding time stamps into the synthe-
sized DNA. These strategies would require one or two, sufficiently
strong global clock signals to be optically broadcast to all neurons.
The optics involved would be comparatively simple: this could
be done using far fewer optical fibers than would be required
for fiber-based activity readout, for instance. Alternatively, if the
brain could be flash-frozen at a precisely known time, this could
serve as a global time-stamp corresponding to the termination of
DNA synthesis (e.g., the DNA 3′ end).

Spatial resolution for molecular recording would naturally
reach the single cell level. To determine which nucleic acid tape
originated from which neuron, static cell-specific DNA barcod-
ing could be used (Zador et al., 2012) to associate the syn-
thesized DNA strands with nodes in a topological connectome
map obtained via DNA sequencing. Fluorescence in-situ DNA
sequencing (FISSEQ) (Lee et al., submitted) on serially-sectioned
or intact tissue (fixed post-mortem) (Chung et al., 2013) could be
used to obtain explicit geometric information.

4.6.2. Energy Dissipation
4.6.2.1. Nucleotide metabolism. DNA polymerization imposes a
metabolic load on the cell. Replication of the 3 billion bp human
genome takes approximately 8 h in normally dividing cells,
which equates to a nucleotide incorporation rate of ∼100 kHz.
Therefore, in order not to exceed the metabolic rates associated
with normal genome replication, molecular ticker tapes operat-
ing at 1 kHz polymerization speed (Kelman and O’Donnell, 1995)
would be limited to approximately 100 simultaneously replicated
templates per cell. Even more recordings would be possible for
RNA ticker tapes. The mammalian cell polymerizes at least 1011

NTPs per 16-h cell cycle (Jackson et al., 2000). Therefore, ∼1,700
RNA tickertapes, each operating at 1 kHz, could be placed in a cell
before generating a metabolic impact equal to that of the cell’s
baseline transcription rate. While these comparisons to baseline
physiological levels are reasonable guidelines, it is likely that a
neuron can support higher metabolic loads associated with larger
numbers of templates. The maximal rate of neuronal aerobic res-
piration is ∼5 fmol of ATP minute via oxidative respiration (see
the section on bio-luminescence). Assuming ∼1 ATP equivalent
consumed per nucleotide incorporation, if neuronal metabolism
were entirely dedicated to polymerization, it could support the
incorporation of up to 6 × 109 nucleotides per minute, or 105

simultaneously replicated DNA templates at 1 kHz.

4.6.2.2. Power dissipation. Normal DNA and RNA synthesis
do not produce problematic energy dissipation and molec-
ular tickertapes will likewise not be highly dissipative, at
least in the regime where nucleic acid polymerization rates
do not exceed those associated with genome replication or
transcription.

4.6.3. Volume displacement
The nucleus of a neuron occupies ∼6% of a neuron’s vol-
ume ((4μm)3/(10μm)3). Ticker tapes operating at 1 kHz with
10,000 simultaneously replicated templates could record for 300 s
before the total length of DNA synthesized equals the human

genome length. In the case of RNA polymerase II-based tran-
scription, 2.75 h of recording by 10000 recorders is required to
reach the net transcript length in the cell. Therefore, with appro-
priate mechanisms to fold/pack the nucleic acids generated by
molecular ticker tapes, they would not impose unreasonable
requirements on cellular volume displacement over minutes to
hours.

4.6.4. Conclusions and Future Directions
Molecular recording of neural activity has the advantages of
inherent scalability, single-cell precision, and low energy and vol-
ume footprints. Making molecular recording work at temporal
resolutions approaching 1 kHz, however, will require multi-
ple new developments in synthetic biology, including pro-
tein engineering to create a fast polymerase (>1 kHz) that
strongly couples proxies for neural activity to nucleotide
incorporation probabilities. Synchronization mechanisms would
likely be required to perform molecular recording at single-
spike temporal resolution. An attractive potential payoff for
molecular approaches to activity mapping is the prospect
of seamlessly combining—within a single brain—the readout
of activity patterns with the readout of structural connec-
tome barcodes (Mishchenko, 2010; Zador et al., 2012), tran-
scriptional profiles (Lee et al., submitted) (e.g., to determine
cell type) or other (epi-)genetic signatures (Sanjana et al.,
2012) which are accessible via high-throughput nucleic acid
sequencing.

5. DISCUSSION
We have analyzed the physical constraints on scalable neural
recording for selected modalities of measurement, data stor-
age, data transmission and power harvesting. Each analysis is
based on assumptions—about the brain, device physics, or sys-
tem architecture—which may be violated. Understanding these
assumptions can point toward strategies to work around them,
and in some cases we have suggested possible directions for
such workarounds. Even valid assumptions about natural brains
may be subject to modification through synthetic biology or
external perturbation. For example, methods for rapidly remov-
ing heat from the brain could work around our assump-
tions about its natural cooling capacity, supporting a range of
highly dissipative recording modalities. Likewise, assumptions
about the necessary bandwidth for data transmission could be
relaxed if some information is stored locally and read out after
the fact.

In some cases, theoretical extensions of our first-order analyses
could reveal important insights. The power-bandwidth tradeoffs
identified in section 4.4 for electromagnetic data transmission
may place limits on the informational throughput of fMRI, for
example, or a realistic simulation of heat fluxes in the brain could
reveal the true limits of power dissipation. In many other cases,
new experiments will be required to move beyond crude estimates
of feasibility.

The analysis of physical limits illustrates challenges and oppor-
tunities for technology development. While the opportunities can
only be touched upon here, and some directions have been treated
elsewhere (Alivisatos et al., 2012, 2013; Dean et al., 2013), we
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anticipate further analyses which could explore design spaces in
detail. Here we briefly summarize a sampling of new directions
suggested by our analysis.

5.1. ELECTRICAL RECORDING
The signal to noise ratio for a voltage sensing electrode imposes
limits on the number of neurons per electrode from which sig-
nals can be detected and spike-sorted, likely requiring roughly one
electrode per 100 neurons. To go beyond this, pure voltage sens-
ing nodes could be augmented with the ability to directionally
resolve distinct sources. For example, the 3D motion of a charged
nanoparticle in an electric field, or of a dielectric nanoparticle in
an electric field gradient, could be monitored at each recording
site (Wood, 2013).

5.2. OPTICAL RECORDING
While light scattering creates severe limitations on optical imag-
ing, embedded optical microscopies could overcome these limits.
Embedded optical imaging systems with high signal multiplex-
ing capacity would be desirable, to minimize the required number
and size of implanted optical probes.

One option might be to use time-of-flight information to
multiplex many sensor readouts into a single optical fiber: this
could potentially be realized using time-domain reflectometry
techniques, commonly used to determine the positions of defects
in optical fibers, coupled to neural activity sensors arranged
along the fiber, which would modulate the fiber’s local absorp-
tion or backscatter (Wood, 2013). Time-domain reflectometry
techniques have already reached 40 μm resolution (Lamy and
Fontaine, 1981).

Alternatively, novel fluorescent or bio-luminescent activity
indicators could in principle relax the limits associated with
light scattering, either by enabling efficient two-photon exci-
tation at lower light dosages, or through all-infrared imaging
schemes. Infrared bio-luminescence may be a particularly high-
value target.

5.3. DELIVERY
For both embedded optical and electrical recording strategies,
new delivery mechanisms will be needed to scale to whole mam-
malian brains. Many of the basic parameters for scalable delivery
mechanisms are still unknown. For example, can a large number
of ultra-thin nano-wire electrodes or optical fibers be delivered
via the capillary network? Can cells such as macrophages engulf
ultra-miniaturized microchips and transport them into brain tis-
sue? Can the blood brain barrier be locally opened [e.g., using
ultrasonic stimulation (Hynynen et al., 2005)] to allow targeted
delivery of recording probes?

5.4. INTRINSIC SIGNALS
The ideal technique would not require exogenous contrast agents
or genetically encoded indicators, instead relying on signals
intrinsic to neurophysiology. Neurons exhibit few-nano-meter
scale (Iwasa et al., 1980) membrane displacements (e.g., in
response to Maxwell stresses from large local electric field vari-
ations) during the action potential (Oh et al., 2012). These can
be measured using optical interferometry (Fang-Yen et al., 2004),
but in principle they could also be monitored acoustically [and

related activity-associated membrane swellings have been directly
observed by atomic force microscopy (Kim et al., 2007) in cul-
tured neurons]. Sensors could be embedded in or around tissue
to transduce the resulting acoustic vibrations into an electri-
cal or optical readout. This could potentially allow recording at
larger distances than the ∼130 μm maximum recording radius
for a voltage sensing node. Other intrinsic signals include changes
in refractive index associated with neural activity, which will
modulate the reflection and scattering of light (Stepnoski et al.,
1991). These intrinsic changes in optical properties can be mea-
sured with optical coherence tomography (OCT) (Lazebnik et al.,
2003). Local metabolic and hemodynamic signatures are also
detectable optically, such as hemoglobin oxygenation [e.g., via
functional near-infrared spectroscopy (Hoshi, 2003)] and the
partial pressure of oxygen (Lecoq et al., 2011; Parpaleix et al.,
2013). For minimal invasiveness, diffuse optical tomography
uses near-infrared light (600–950 nm), which passes sufficiently-
readily through the skin and skull to allow imaging of hemody-
namics in cortex (Joseph et al., 2006; Hillman, 2007; Huppert
et al., 2009), although currently with limited spatial and temporal
resolution.

5.5. DATA TRANSMISSION THROUGH DIFFUSIVE MEDIA
Unlike radio-frequency electromagnetics, infrared wavelengths
may allow spatially multiplexed data transmissions from embed-
ded recording devices, creating multiple independent chan-
nels by taking advantage of the stochasticity of light paths in
strongly-scattering tissue. Alternatively, techniques are emerg-
ing to dynamically measure and invert the optical scatter-
ing matrix of a turbid medium, using pure-optical or hybrid
techniques.

5.6. ULTRASOUND
Certain wavelengths of ultrasound exhibit potentially-favorable
combinations of wavelength (spatial resolution), bandwidth (fre-
quency) and attenuation compared to radio-frequency electro-
magnetics. Ultrasound could be used as a mechanism for pow-
ering and communicating with embedded local recording chips
(Seo et al., 2013). Novel indicators (Shapiro, In revision) would
likely need to be developed to perform neural activity imaging
using pure ultrasound. Hybrid techniques such as photo-acoustic
(Filonov et al., 2012) or ultrasound-encoded optical (Wang et al.,
2012) microscopies are also of interest.

5.7. MOLECULAR RECORDING
For local recording, molecular recording devices could sidestep
power constraints on embedded electronics, at the cost of
increased engineering complexity. For molecular recording to
become practical at temporal resolutions approaching the mil-
lisecond scale, sophisticated protein and viral engineering would
likely be required to create a high-speed polymerase-based
recorder operating in the neuronal cytoplasm. This would also
necessitate molecular synchronization or time-stamping mecha-
nisms to maintain phasing between multiple polymerases within
a single cell, as well as between different cells.

On the other hand, molecular recording devices operating at
slower timescales (e.g., seconds) could perhaps be engineered
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via more conservative combinations of known mechanisms, such
as CREB-mediated signaling to the nucleus (Deisseroth, 2012)
or nuclear-localized calcium sensing (Schrödel et al., 2013). In
either case, the nucleic acid strands resulting from such molecular
recorders could be space-stamped with cell-specific viral con-
nectome barcodes (Zador et al., 2012) for later readout by bulk
sequencing. Alternatively, the ticker tapes could be read within
their anatomical contexts by in-situ sequencing, i.e., nucleic acid
sequencing performed inside intact tissue (Lee et al., submitted).

5.8. COMBINING STATIC AND DYNAMIC DATASETS
Combining dynamic activity information with static structural or
molecular information could allow these datasets to disambiguate
one another. For example, a diversity of colors for fluorescent
activity indicators (i.e., a form of BrainBow (Livet et al., 2007) cal-
cium imaging) could ease requirements on spatial separation of
optical signals, and the color pattern across cells could be mapped
post-mortem at single-cell resolution using in-situ microscopy.
Generalizing further, in-situ sequencing enables the extraction
of vast quantities of molecular data from fixed tissue, in effect
allowing observations with a palette of 4N colors, where N is the
length of the nucleic acid polymer. It may be possible to harness
this exponential informational resource to enhance the readout
of dynamic activity information as well, e.g., through molecular
recording.

5.9. MRI
Current MRI is limited by its reliance on intrinsic hemody-
namic contrast mechanisms and on rapidly diffusing aqueous
protons. Indicators coupling neural activity to spin relaxation
rates are being developed to move beyond hemodynamic con-
trast. Novel excitation and detection schemes that could sensitize
MRI to fast, local, intrinsically activity-dependent mechanisms
(e.g., cell swelling, neuronal magnetic fields), while filtering out
the slower BOLD response, are also of interest and should initially
be tested in organisms or slice preparations lacking hemodynamic
responses. Detailed computational models of neuronal currents
within a tissue voxel [e.g., in the spirit of (Reimann et al., 2013)],
and of the resulting mechanical and chemical changes, could be
useful for evaluating potential new methods. In principle, MRI
could also abandon the use of water protons as the signal sources,
although this would pose significant implementation challenges.

5.10. READOUT METHODS
New signal processing frameworks such as compressive sens-
ing could reduce bandwidth requirements and inspire new
microscope designs exploiting computational imaging princi-
ples (Raskar and Tumblin, 2009; Kim, 2010; Velten et al., 2012;
Pnevmatikakis and Paninski, 2013). Fast readout mechanisms
(Lauxtermann et al., 2001) applied to giga-pixel arrays (e.g.,
the 3.2 giga-pixel CCD camera planned for the Large Synoptic
Survey Telescope, which will have ∼1 s readout time) might
be adapted to large-scale electrical or optical recording meth-
ods. Linear photodiode arrays can achieve 70 kHz line readout
rates (Reticon Inc., 2013), and many such linear arrays could
be read out in parallel. Optoelectronic methods that convert
between time, space and frequency representations of signals

(Goda et al., 2008, 2009b,a, 2012; Tsia et al., 2010; Mahjoubfar
et al., 2011; Goda and Jalali, 2013) could inspire designs for even
faster readouts (e.g., ∼10 MHz frame rates have been demon-
strated in brightfield imaging). Although these methods are
not directly compatible with fluorescence measurements due to
their use of spectral dispersion, related ideas (e.g., beat fre-
quency multiplexing) may enable fluorescence microscopy at
rates above that of CCD-based imaging (Diebold et al., 2013;
Ducros et al., 2013), limited ultimately by fluorescence life-
times, while also exhibiting favorable properties with respect to
scattering.

5.11. ALTERNATIVE MODALITIES
X-ray imaging has been used on live cells (Moosmann et al.,
2013) and might find use in neural recording if suitable contrast
agents could be devised. X-rays interact with electron shells via
photoelectric absorption and Compton scattering and with band
structure in materials. X-ray phosphors utilize substitutions in
an ionic lattice to generate visible or UV light emission upon X-
ray absorption (Issler and Torardi, 1995). In principle, some of
these mechanisms could be engineered as neural activity sensors,
e.g., in an absorption-contrast mode suitable for tomographic
reconstruction (Larabell and Le Gros, 2004). While tissue damage
due to ionizing radiation would ultimately be prohibitive [e.g.,
on a timescale of minutes (Wood, 2013)], very brief experiments
might still be possible.

Likewise, electron spin resonance (ESR) operates at ∼100×
higher Larmor frequency compared to proton MRI, which
improves polarizability of the spins. Due to Pauli exclusion, use
of this technique requires an indicator with unpaired electrons.
These can be found in nitrogen vacancy diamond nano-crystals
(Horowitz et al., 2012) (nano-diamonds), which are also sensi-
tive to voltage (Dolde et al., 2011) and to magnetic fields (Hall
et al., 2012), and are amenable to optical control and fluorescent
readout of the spin state [although the 2P cross-section of the
(N − V)− center appears to be relatively low (Wee et al., 2007)].

5.12. HYBRID SYSTEMS
New mergers of input, sensing, and readout modalities can work
around complex engineering constraints. Electrical or acoustic
sensors could be used with optical (Sadek et al., 2010) (e.g., fiber)
or ultrasonic readouts and power supplies. An MRI machine
could interact with embedded electrical circuits powered by neu-
ral activity (Jasanoff, 0000). Linking electrical recording with
embedded optical microscopies or other spatially-resolved meth-
ods could circumvent the limits of purely electrical spike sort-
ing. Optical techniques such as holography or 4D light fields
could generalize to ultrasound or microwave implementations.
Consideration of analogies and synergies between fields suggests
a combinatorial space of possibilities.

Our goal here has not been to pick winning technologies
(which may not yet have been conceived), but to aid a multi-
disciplinary community of researchers in analyzing the problem.
The challenge of observing the real-time operation of entire
mammalian brains requires a return to first principles, and a fun-
damental reconsideration of the architectures of neural recording
systems. We hope that knowledge of the constraints governing
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scalable neural recording will enable the invention of entirely new,
transformative approaches.
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