
Application of change point analysis to daily 
influenza-like illness emergency department visits

Citation
Kass-Hout, Taha A, Zhiheng Xu, Paul McMurray, Soyoun Park, David L Buckeridge, John S 
Brownstein, Lyn Finelli, and Samuel L Groseclose. 2012. “Application of change point analysis 
to daily influenza-like illness emergency department visits.” Journal of the American Medical 
Informatics Association : JAMIA 19 (6): 1075-1081. doi:10.1136/amiajnl-2011-000793. http://
dx.doi.org/10.1136/amiajnl-2011-000793.

Published Version
doi:10.1136/amiajnl-2011-000793

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879071

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879071
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Application%20of%20change%20point%20analysis%20to%20daily%20influenza-like%20illness%20emergency%20department%20visits&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=e2ec2b7b041b9e26c1a87b1e876b3306&department
https://dash.harvard.edu/pages/accessibility


Application of change point analysis to daily
influenza-like illness emergency department visits

Taha A Kass-Hout,1 Zhiheng Xu,2 Paul McMurray,1 Soyoun Park,3

David L Buckeridge,4,5,6 John S Brownstein,4,7 Lyn Finelli,8 Samuel L Groseclose1

ABSTRACT
Background The utility of healthcare utilization data from
US emergency departments (EDs) for rapid monitoring of
changes in influenza-like illness (ILI) activity was
highlighted during the recent influenza A (H1N1)
pandemic. Monitoring has tended to rely on
detection algorithms, such as the Early Aberration
Reporting System (EARS), which are limited in their
ability to detect subtle changes and identify disease
trends.
Objective To evaluate a complementary approach,
change point analysis (CPA), for detecting changes in the
incidence of ED visits due to ILI.
Methodology and principal findings Data collected
through the Distribute project (isdsdistribute.org), which
aggregates data on ED visits for ILI from over 50
syndromic surveillance systems operated by state or
local public health departments were used. The
performance was compared of the cumulative sum
(CUSUM) CPA method in combination with EARS and
the performance of three CPA methods (CUSUM,
structural change model and Bayesian) in detecting
change points in daily time-series data from four
contiguous US states participating in the Distribute
network. Simulation data were generated to assess the
impact of autocorrelation inherent in these time-series
data on CPA performance. The CUSUM CPA method was
robust in detecting change points with respect to
autocorrelation in time-series data (coverage rates at
90% when �0.2#r#0.2 and 80% when
�0.5#r#0.5). During the 2008e9 season, 21 change
points were detected and ILI trends increased
significantly after 12 of these change points and
decreased nine times. In the 2009e10 flu season, we
detected 11 change points and ILI trends increased
significantly after two of these change points and
decreased nine times. Using CPA combined with EARS
to analyze automatically daily ED-based ILI data,
a significant increase was detected of 3% in ILI on April
27, 2009, followed by multiple anomalies in the ensuing
days, suggesting the onset of the H1N1 pandemic in the
four contiguous states.
Conclusions and significance As a complementary
approach to EARS and other aberration detection
methods, the CPA method can be used as a tool to
detect subtle changes in time-series data more
effectively and determine the moving direction (ie, up,
down, or stable) in ILI trends between change points.
The combined use of EARS and CPA might greatly
improve the accuracy of outbreak detection in syndromic
surveillance systems.

BACKGROUND
Public health agencies are increasingly using
syndromic surveillance to monitor population
health.1e3 Most systems draw data from emer-
gency department (ED) visits and use influenza-like
illness (ILI) syndromes to supplement information
from other systems for monitoring the impact of
seasonal influenza.1 These ED-based syndromic
systems typically provide health departments and
Centers for Disease Control and Prevention (CDC)
with more timely data on ILI than existing
networks of sentinel healthcare providers.4

The Distribute system accepts aggregate data
submitted daily from over 50 state or local health
departments. The data submitted include total
counts of ED visits and counts of ED visits for ILI,
both of which are stratified by age group.
Submitted data are processed automatically and
transmitted to a centralized repository maintained
by CDC and ISDS.5 The Distribute system accepts
aggregate data submitted daily from over 50 state
or local health departments. The data submitted
include total counts of ED visits and counts of ED
visits for ILI, both of which are stratified by age
group. Submitted data are processed automatically
and transmitted to a centralized repository main-
tained by CDC and ISDS.
Automated surveillance data are typically

analyzed using aberration detection algorithms.6

Different algorithms have been proposed and eval-
uated in syndromic surveillance systems.7e9 Tech-
niques include regression methods, time-series
analysis, statistical process control, spatial-
temporal clustering analysis, and multivariate
outbreak detection.9 The sensitivity, specificity, and
timeliness of outbreak detection for different algo-
rithms vary significantly.7 The algorithms encoded
in the Early Aberration Reporting System (EARS)
have been used widely to analyze automated
syndromic surveillance data in public health owing
to their simple format, implicit correction for
seasonal trends, and ease of implementation.10

Modifications have been made to the EARS C2
algorithm such as using a longer baseline period,
restricting a minimum SD of one, and accounting
for total visits, which have resulted in improve-
ments in the performance of the EARS algorithm
for aberration detection.11 Consequently, the EARS
algorithm is effective for detecting sudden major
changes in automated surveillance data. However,
these algorithms, especially the modified C2 algo-
rithm used by BioSense, have a limited ability to
identify subtle and potentially important changes
in surveillance time series. Subtle changes in disease
trends are expected to occur before the onset of
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major increases or decreases in communicable disease incidence.
Detecting these subtle changes could be critical for public health
decision-making in the early emergency response. The cost of
failure to detect such changes could have significant impact on
the control and prevention of emerging diseases.10 In addition,
the EARS algorithm detects only changes in static disease
activity at a given time when the outbreak threshold is met and
only signals the direction (ie, upward, downward, or stable) of
changes in disease trends at a single time point.

The limitations of aberration detection algorithms such as
those in the EARS system can be addressed by the use of other
analytical methods, such as methods for change point analysis
(CPA), which are designed expressly to detect subtle changes in
incidence and characterize changing trends in time series. Over
the past 50 years, CPA methods have been applied to problems
in statistics, economics, medicine, agriculture, intelligence (Al
Qaeda network), and, more recently, to microarray data12 13 For
example, Finney14 used this tool to detect significant changes in
the insect population within fields, Hansen15 studied dating
structural changes in the USA laboring productivity, Erdman
and Emerson16 developed a fast Bayesian CPA for the segmen-
tation of microarray data. Even though CPA has been widely
used in many different fields, to the best our knowledge, the
application of CPA in detecting disease outbreaks from public
health surveillance system, especially in syndromic surveillance,
has not been used. CPA methods can be used to investigate
whether (1) one or more changes occur in a series of data points,
and (2) the direction of the change in the time series between
change points. During the 2009e10 influenza A (H1N1)
pandemic, public health officials were especially interested in
identifying in ‘real time’ whether the proportion of ED visits due
to ILI was rising, decreasing, or stable, and the likely trend for
the near future.

In this paper, we consider the use of CPA methods as
a complementary approach to aberration detection to address
the limitation of EARS algorithm in detecting subtle changes
and determining the direction of changes in disease trends. We
compared three different CPA methods in detecting change
points in the daily proportion of ED visits due to ILI reported to
the Distribute system. We present the results of simulation
studies designed to assess the impact of autocorrelation inherent
in time-series data on the performance of CPA. We also discuss
the application of CPA methods in real-time epidemic fore-
casting, which might enhance public health decision-making.

METHODS
Study overview
In this paper, we evaluate the benefits of combining CPA with
the EARS algorithm in detecting disease outbreaks in syndromic
surveillance. We compare Taylor ’s CPA methoddcumulative
sum (CUSUM) in detecting change points from the real
surveillance data, with two other CPA methods, structural
change model (SCM) and Bayesian CPA (programs available in
the open-source R packages). We used the daily syndromic
surveillance data reported to the Distribute system and CDC as
our real data example. The outcome measure is the daily
proportion of ED visits due to ILI. Simulated time-series data
were also generated to test the robustness of CPA methods with
respect to autocorrelation in time-series data.

Data source
Daily proportions of ED visits due to ILI reported to the
Distribute system from four contiguous US states during the

period October 4, 2008 through October 9, 2010 (2008e9 and
2009e10 flu seasons) were analyzed. Proportions by age group
(all ages, <5 years, 5e17 years, 18e44 years, 45e64 years, and
>65 years) were calculated. Figure 1 illustrates daily proportions
of ED visits due to ILI by age group during the study period. The
daily ED visits due to ILI data at each age group were analyzed
by CPA methods separately.

CPA methods
Taylor developed a CPA method through the iterative applica-
tion of CUSUM charts and bootstrapping methods to detect
changes in time series and their inferences.17 This approach is
based on the mean-shift model and assumes that residuals are
independent and identically distributed (iid) with a mean of
zero. Inferences such as CIs and p values on the change points
were obtained through bootstrap analysis. For each of the 1000
random bootstrap samples generated, we obtained information
on change points and the difference between maximum and
minimum CUSUM of residuals as Sdiff ¼ Smax � Smin where
Smax ¼ maxiSi and Smin ¼ miniSi. Several bootstrap techniques
(centile, bias-corrected and accelerated, and jackknife) were used
to compute CIs for the change points.18 19 The distribution of
1000 Sdiff was used to determine the p value for the change point
as the percentage of Sdiff values which are less than S0diff from
original time-series data.17

Two other popular CPA methods, SCM and Bayesian CPA,
were compared with CUSUM. An intercept-only regression
model is used in SCM CPA and the minimum of the sum of
squared residuals is defined as the change point.20 21 The SCM
can be used with autoregressive data and can incorporate inde-
pendent covariates; however, it assumes a stationary process and
surveillance data often have temporal trends or seasonal effects.
Before using the SCM, surveillance data must be transformed
from non-stationary to stationary data through differencing or
other approaches. Similar to CUSUM, the SCM is based on
a mean-shift model. The significance level we used in CUSUM
and SCM was taken as 0.001. An alternative to CPA methods
based on a mean-shift model is the Bayesian CPA.22 With the
Bayesian CPA, the posterior distribution of the change points is
obtained from the combination of prior distributions and the
likelihood is derived from the time-series data. The default prior
distribution in the Bayesian CPA is chosen as normal. Other
non-informative prior distributions, such as uniform, can be
defined in the model as well. The posterior probability of

Figure 1 Proportion of emergency department visits due to influenza-
like illness by age group for the period, October 4, 2008eOctober 9,
2010, in one U.S. Department of Health and Human Services region.
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a change point at each position can be ordered from largest to
smallest and plotted against the time scale. The open-source R
packages, strucchange and bcp, were used for the SCM and
Bayesian CPA, respectively. Our CUSUM programs have been
developed in R, SAS 9.2, and Stata 11 and can be downloaded
from our open-access collaboration website for CPA at: https://
sites.google.com/site/changepointanalysis. Technical summaries
of SCM, Bayesian CPA and EARS are included in the online
supplementary appendix.

Autocorrelation simulation
Autocorrelation is often present in time-series data and it can
affect the robustness and accuracy of CPA. We tested our CPA
methods on simulated data based on a first-order autoregressive
model as follows:

Y1 ¼ m;

Yi ¼ rYi�1 þ 3i;

where 3iwNf0;s2g and m and s are the mean and SD we esti-
mated from the Distribute ED ILI surveillance data (m¼0.02,
s¼0.03), and r is the autocorrelation coefficient which ranges
from �1 to 1. r was chosen at �1, �0.8, �0.5, �0.2, 0, 0.2, 0.5,
0.8, and 1 in this study. At each r level, we generated one time-
series dataset with 100 observations and computed the single
change point. The simulated dataset with r¼0 was taken as
reference data and its change point was taken as a reference
point. Then, we detected change points in other simulated
datasets with rs0 and determined whether they fell into
acceptance regions. The acceptance regions are defined as either
zero or three time points (ie, 0 day or 3 days) away from the
reference change points. We repeated the simulation 1000 times
at each r level and then computed the percentage of change
points falling in the acceptance region. A high percentage indi-
cated the strong robustness of CPA methods in detecting change
points in autocorrelated data.

ILI trend determination
The ILI trend (upward, downward, or stable) was calculated as
the difference in the mean of the %ILI between the interval after
the change point and the interval before the change point. For
example, the difference (D) of 3.0% at change point April 27,
2009 indicates that the percentage of ED visits due to ILI
increased significantly (3.0%) after April 27, 2009 (table 1). In
addition, change points were used to divide an entire time series
into four types of segments based on disease trend: moderately
up (D>1%), slightly up (0<D#1%), slightly down (�1%<D#0),
and moderately down (D#�1%).

RESULTS
Change points detected using CUSUM for influenza seasons
2008e9 and 2009e10 and statistical inferences (ie, 95% CI) are
provided for each change point (table 1). Additionally, the %ILI
differences before and after the change point are also provided in
table 1 to show the flu trend. During the 2008e9 season
(October 4, 2008 to October 3, 2009), 21 change points were
detected and flu trends increased significantly after 12 of these
change points and decreased nine times. Eleven change points
were detected during the 2009e10 flu season; flu trends
increased significantly after two of these change points and
decreased nine times. Figure 2 shows the pattern of change point
intensity on daily ED visits due to ILI across the 2008e10 flu
seasons for all age groups in one health and human services
region in the USA.

To illustrate the association between signals generated by
CUSUM CPA and EARS methods, we insert the aberration
points detected by EARS in table 1 rows closest to the nearest
change point dates. Owing to the unusual temporal distribution
of the H1N1 pandemic in 2009, most EARS anomalies were
detected among change point intervals 4/27/2009e5/2/2009 and
8/16/2009e9/7/2009 in the four states. Subtle changes detected
by CPA at 5/26/2009 (down 0.75%) and 7/25/2009 (up 0.26%)
might give public health authorities more lead time to prepare
for emergency and response activities as compared with
responding to the multiple anomalies detected by EARS in the
late August and early September of 2009. Since the modified C2
EARS algorithm used in BioSense does not have a function to
capture decreasing trend, we can use CPA as a complementary
approach to determine the direction of the ILI trend as upward,
downward, or stable. For example, change points detected by
CPA after mid-September, 2009 consecutively illustrate the
decreasing trend of H1N1 influenza activity in the four states.
Figure 3 displays anomalies detected by EARS (red crosses)

and CUSUM change points (vertical lines). The largest spike in
%ILI during the H1N1 event was in April/May 2009 and was
detected by both methods (figure 3). Table 1 indicates a signifi-
cant change point on April 27, 2009 where ILI activity increased
by 3.0% in the period after (April 27, 2009eMay 6, 2009)
compared with period before (April 6, 2009eApril 26, 2009). The
detection of the 3.0% increase in %ILI by CUSUM CPA and the
multiple EARS anomalies detected during this period indicate
the beginning of the H1N1 event in the four states. CUSUM
CPA also detected four consecutive change points with signifi-
cant increasing trends (August 14, 22, 30, 2009 and September 4,
2009) that illustrate the arrival of the fall 2009 H1N1 season in
the four states. Simultaneously, a cluster of anomalies was
detected by EARS in the August/September of 2009 (figure 3). In
summary, figure 3 demonstrates the complementary use of
CUSUM CPA and EARS in enhancing the precision of aberration
detection and determination of disease trend in the ILI
syndromic surveillance system.
In addition to CUSUM CPA, we also assessed the perfor-

mance of the SCM and Bayesian CPA using the same Distribute
ILI data. CUSUM and SCM are both based on a mean-shift
model, while Bayesian CPA uses a prior probability assumption
and data likelihood function to calculate the posterior proba-
bility of the actual change point occurring at each location. A
threshold value (ie, 0.5) was chosen to filter out non-significant
change points. Table 2 lists change points detected by three
different CPA methods during the 2009 H1N1 pandemic in the
four states (March, 2009 to July, 2010). Given that each of the
three methods uses different algorithms in finding change
points, we still observed a high degree of consistency in the
location of change points across the three CPA methods.
Approximately 90% of change points detected by SCM and
Bayesian CPA exactly agreed with those found by CUSUM. The
performance of the three CPA methods was similar, but Taylor ’s
CUSUM approach has the advantages of a simpler mathemat-
ical format and is more conservative in detecting change points.
Autocorrelation is often seen in time-series data, such as

public health surveillance data. To demonstrate the sensitivity of
CPA performance to the degree of autocorrelation in the data,
we generated random autoregressive time-series data at different
correlation levels and tested the robustness of CUSUM and
SCM methods in detecting change points. Table 3 lists the
coverage statistics from the two CPA methods (CUSUM and
SCM) at each r level. The coverage statistics are computed as
the probability of change points falling in the acceptance
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regions. The acceptance regions are defined as either zero (ie, the
same time point) or within three time points (ie, 0 day or
3 days) away from the reference change points. The change
point at r¼0 is taken as a reference point. For CUSUM, more
than 80% of change points detected at r level (�0.2#r#0.2)
match the change point for iid time-series data where r¼0.
Moreover, the coverage rate at r level (�0.2#r#0.2) increased to
>90% when we defined the acceptance region as three time
points (ie, 3 days) away from the change point for iid data, and
80% coverage was achieved at a larger r level (�0.5#r#0.5). For
the SCM, the coverage was not as good as CUSUM. Figure 4
shows the scatter plot of coverage probability between these
two methods at day 0 and day 3. In the Distribute ILI time-

series data, we observed moderate autocorrelation
(�0.5#r#0.5). Therefore, results from the autocorrelation
simulation conducted in this study support the robustness of
CUSUM CPA in detecting change points for timely syndromic
surveillance data.

DISCUSSION
In this paper, we assessed the utility of CPA as a complementary
analytic method to the EARS algorithm when analyzing auto-
mated disease surveillance datadfor example, ED visits due to
ILI. Even though the EARS Shewhart variant method is very
effective for detecting sudden major changes in time-series data,
it has limited ability to identify subtle changes in the time series.

Table 1 Change points detected using Taylor’s cumulative sum method when analyzing influenza-like-illness emergency department visit data
reported from four states, October 4, 2008 through October 9, 2010

Influenza
season

Change point
date Level*

99% CI %ILI
differencey

EARS outbreak
time pointzLower bound Upper bound

2009e10 9/4/2010 5 9/3/2010 9/5/2010 0.39 9/5/2010
9/6/2010

2009e10 8/14/2010 7 8/13/2010 8/15/2010 0.31

2009e10 6/21/2010 6 6/14/2010 6/22/2010 �0.73

2009e10 5/3/2010 4 5/2/2010 5/4/2010 �0.29

2009e10 4/5/2010 5 4/4/2010 4/6/2010 �0.77

2009e10 1/4/2010 2 1/3/2010 1/5/2010 �0.88

2009e10 12/2/2009 6 12/1/2009 12/3/2009 �0.53

2009e10 11/19/2009 5 11/18/2009 11/20/2009 �0.74

2009e10 11/9/2009 6 11/6/2009 11/10/2009 �0.57

2009e10 11/3/2009 7 11/2/2009 11/4/2009 �0.41

2009e10 10/29/2009 4 10/28/2009 11/3/2009 �0.75

2008e9 10/2/2009 5 10/1/2009 10/3/2009 �1.79

2008e9 9/17/2009 7 9/16/2009 9/18/2009 �1.48

2008e9 9/4/2009 6 9/3/2009 9/5/2009 2.27 9/6/2009
9/7/2009

2008e9 8/30/2009 7 8/29/2009 8/31/2009 2.69 8/29/2009
8/30/2009
8/31/2009
9/1/2009

2008e9 8/22/2009 3 8/21/2009 8/23/2009 1.89 8/22/2009
8/23/2009
8/24/2009
8/25/2009

2008e9 8/14/2009 7 8/13/2009 8/15/2009 0.80 8/16/2009

2008e9 7/25/2009 6 7/24/2009 7/26/2009 0.26

2008e9 5/26/2009 5 5/25/2009 5/27/2009 �0.75

2008e9 5/11/2009 7 5/7/2009 5/12/2009 �1.08

2008e9 5/6/2009 8 5/5/2009 5/7/2009 �1.07 5/2/2009
5/1/2009

2008e9 4/27/2009 6 4/26/2009 4/28/2009 3.00 4/27/2009
4/28/2009
4/29/2009
4/30/2009

2008e9 4/6/2009 7 4/2/2009 4/7/2009 �0.56

2008e9 3/23/2009 4 3/22/2009 3/24/2009 �0.97

2008e9 3/11/2009 6 3/10/2009 3/12/2009 �1.55

2008e9 2/21/2009 7 2/20/2009 2/22/2009 0.68

2008e9 2/7/2009 5 2/6/2009 2/8/2009 1.15 2/8/2009
2/9/2009

2008e9 1/24/2009 7 1/23/2009 1/25/2009 0.59

2008e9 12/29/2008 6 12/28/2008 1/24/2009 �0.57 12/26/2008
12/27/2008
12/28/2008

2008e9 12/13/2008 1 12/12/2008 12/14/2008 0.69

2008e9 11/22/2008 6 11/21/2008 11/23/2008 0.44 11/30/2008

2008e9 11/8/2008 5 11/7/2008 11/9/2008 0.49 11/2/2008

*Level indicates the number of iterations in the CUSUM computation procedure, where level n means the CUSUM run on each segment after splitting the total time series from change points at
previous levels. The level values show the order of change points detected since CUSUM is an iterative procedure.
y%ILI difference is computed as the difference in mean %ILI between the interval after the change point and the interval before the change point.
zEARS outbreak time points are captured using BioSense C2 algorithm with recurrence interval ($100).
CUSUM, cumulative sum; EARS, Early Aberration Reporting System; ILI, influenza-like illness.
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Therefore, we assessed the performance of CPA as a comple-
mentary method to EARS since CPA can detect subtle changes
in time-series data more effectively. Furthermore, CPA results
show the direction of change in the ILI ED visit time series while
EARS only detects isolated ILI visit trend anomalies. In most
situations, anomalies are detected when ILI visits are increasing
and identification of increasing disease incidence is of most
interest for public health response. However, understanding
when the disease trend goes up, down, or is stable could help
public health agencies to allocate limited resources to the much-
needed places in a timely manner. In public health surveillance,
the intent of developing outbreak detection algorithms is to
identify incidents that matter. In analyzing Distribute data
during a flu season, we might examine over 500 time-series
charts of ILI activity daily to determine whether the trend is
stable, increasing, or decreasing and whether the detected
change merits a public health response. With the use of CPA in

addition to EARS methods, we were able to focus our time-series
review on a more limited number of signals in the ILI time series
to investigate further. This makes it a lot easier to prioritize the
detected time-series changes that require investigation. The
more limited set of time-series anomalies and related change
points identified by complementary use of CUSUM CPA and
EARS methods can help analysts focus their surveillance data
review and decide whether further investigation is needed, such
as subanalyses of those time series or even examinations of other
data sources. During the 2008e9 and 2009e10 flu seasons, we
continually shared the CPA results and the associated time series
with influenza experts at CDC.
We also assessed the performance of three CPA methods

applied to timely ED-based ILI surveillance data: CUSUM, SCM,

Figure 2 Proportion of emergency department visits due to influenza-
like illness (ILI) for all ages, October 4, 2008 through October 4, 2010 in
four states (change points marked in different color representing the
trend of ILI activity). Note: moderately up (D>1%), slightly up
(0<D#1%), slightly down (�1%<D#0), and moderately down
(D#�1%), where D is the difference in the mean of %ILI between the
interval after the change point and the interval before the change point.

Figure 3 Modified Early Aberration Reporting System (EARS) C2
anomalies and Taylor cumulative sum change point analysis (CPA)
change points detected in analysis of influenza-like illness emergency
department visit data, four states, October 4, 2008eOctober 9, 2010
(red cross, EARS C2 anomaly; vertical line, CPA change point).

Table 2 Comparison of the location of change points detected by CPA
method during the 2009e10 H1N1 pandemic (March, 2009eJuly, 2010)
in four states

Change points by analysis method

CUSUM SCM Bayesian CPA

6/21/2010 6/13/2010

5/3/2010

4/5/2010 4/4/2010 4/4/2010

1/4/2010 1/3/2010 1/3/2010

12/2/009 12/1/2009

11/19/2009 11/17/2009

11/3/2009

10/29/2009 10/28/2009 10/28/2009

10/2/2009 10/1/2009 10/1/2009

9/17/2009 9/16/2009 9/16/2009

9/4/2009 9/4/2009 9/4/2009

8/30/2009 8/29/2009 8/29/2009

8/22/2009 8/21/2009 8/21/2009

8/14/2009 8/13/2009

7/25/2009

5/26/2009 5/25/2009 5/25/2009

5/10/2009 5/10/2009

5/6/2009 5/5/2009 5/5/2009

4/27/2009 4/27/2009

4/6/2009

3/23/2009

3/11/2009 3/10/2009

CPA, change point analysis; CUSUM, cumulative sum; SCM, structural change model.

Table 3 Comparisons of the coverage probability in testing the
robustness of CUSUM and SCM CPA methods using simulated
autocorrelated data

r* CUSUMy CUSUMz SCMy SCMz
�1 7.4 22.9 7.2 17.9

�0.8 36.3 60.2 27.7 41.1

�0.5 60.6 80 51.5 64.4

�0.2 82.3 94.1 80 86.8

0 100 100 100 100

0.2 80 94.1 75.6 86.3

0.5 45.8 85.8 35.9 71.6

0.8 9.5 56.5 5.6 41.2

1 0.1 2.9 0.1 2

Results are shown as percentages.
*r is the autocorrelation coefficient in the simulated data.
yChange points are exactly the same as those detected from iid samples.
zChange points are within 63 time points away from those detected from iid samples.
CPA, change point analysis; CUSUM, cumulative sum; independent and identically
distributed; SCM, structural change model.
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and Bayesian CPA. Significant change points (p value <0.001) in
ILI activity were detected by each method and ILI trends were
further characterized (increasing, decreasing, or stable). SCM is
ideal for detecting change points in multiple linear regression
settings where vectors of covariates are added to the regression
model to estimate the dependent variable in multiple time-series
segments. However, our study only focuses on the outcomed
the proportion of ED visits due to ILI, and no covariates are
considered. Therefore, SCM is simplified to the Taylor ’s mean
squared error (MSE) method.17 CUSUM is more sensitive than
SCM (Taylor ’s MSE) in detecting change points as shown in
table 2 where CUSUM detects more change points than either
SCM or Bayesian CPA. Unlike CUSUM and SCM, Bayesian CPA
is not based on the mean-shift model assumption. Bayesian CPA
makes a normal distribution assumption for the time-series data
and adopts noninformative priors on the model parameters.
Given the nature of uncertainty in public health surveillance
data, the normality assumption may interfere with the esti-
mation of the posterior distribution obtained by Bayesian CPA.
Therefore, the nonparametric methods (Taylor ’s CUSUM and
MSE) are more favorable than Bayesian CPA in our study.
Among the three methods, we selected CUSUM as the preferred
method for use in the routine analysis of timely ED ILI
surveillance data in Distribute owing to its simple mathematical
formula and model robustness (performed well with auto-
correlated time-series data). Results of CUSUM analysis in
combination with EARS methods may be a valuable resource for
policy makers who, for example, must direct emergency
preparedness and response resources based upon their
understanding of emerging disease trends.

In addition to detecting subtle time-series data changes more
effectively, CPA can be used to determine the trend (ie, upward,
downward, or stable) in ILI activity between change points,
while the modified C2 EARS algorithm used by CDC BioSense
only flags time points when disease activity is significantly high.
Common feedbacks from surveillance epidemiologists suggest
that it is difficult to review and adequately investigate large
numbers of surveillance data anomalies, especially during
a public health event. Since the CPA can transform time-series

data into multiple segments between change points, it aids
interpretation of the time-series’ EARS-generated anomalies in
each CPA-generated segment. To aid interpretation, the change
points can divide the whole time series into, for example, four
types of segments based on the direction and magnitude of the
disease trend: moderately up, slightly up, slightly down, and
moderately down. When the disease trend goes moderately
down, it is unlikely to detect any anomalies in those segments.
However, possible anomalies could be detected in the part of the
segment where disease trend is slightly down. Knowing that the
trend of disease activity is downward may help epidemiologists
focus on exploring unexpected factors which could contribute to
the occurrence of this individual anomaly point instead of being
overwhelmed with a multitude of false alerts. When the disease
trend goes slightly upwards, the anomalies in those areas could
help epidemiologists closely monitor the situation for emergency
preparedness and response to a potential event. Many more
anomalies are detected using EARS methods when the trend of
the disease is moderately upwards (figure 3) and are commonly
interpreted as all part of the same finding.

CONCLUSION
As a complementary approach to EARS and other aberration
detection methods, the CUSUM CPA method can be used as
a tool to detect subtle changes in time-series data more effec-
tively and determine the moving direction (ie, up, down, or
stable) in ILI trends between change points more appropriately.
The combined use of EARS and CPA can greatly improve the
accuracy of outbreak detection in syndromic surveillance
systems.
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