Is Plasma Pentadecanoic Acid a Reasonable Biomarker of Dairy Consumption?

Citation

Published Version
doi:10.1161/JAHA.113.000393

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879103

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Is Plasma Pentadecanoic Acid a Reasonable Biomarker of Dairy Consumption?
Luc Djoussé, MD, ScD

Despite advances in biomedical research and clinical medicine, the burden of cardiovascular disease (CVD) remains extremely high. This underscores the importance of primary prevention and the search for novel therapeutic strategies. Modifiable lifestyle factors, including dietary habits, play a critical role in the primary and secondary prevention of CVD. Among food groups, dairy products have been studied for many years partly due to concerns that saturated fat contained in dairy foods may raise low-density lipoprotein cholesterol, a major risk factor for CVD. However, reported effects of saturated fats and dairy products including milk, butter, cheese, yoghurt, etc, on CVD risk have been inconsistent.

Such inconsistency could be partly attributable to the type of fatty acids in dairy products, the amount of fat per fixed quantity in dairy products (ie, fat-free milk versus reduced-fat/whole milk), and difficulties in accurate assessment of dairy consumption in population science. Of note is that in large epidemiologic studies and randomized trials, dietary assessment is mostly completed via food frequency questionnaires, food diary for a short-term period, or 24-hour dietary recall to minimize costs. More importantly, several food groups lack reliable and valid biomarkers that can be used to assess their intake. These limitations could introduce bias in studies assessing the relation or effects of dairy products with CVD (due to exposure misclassification, erroneous or missing values).

In this issue of JAMA, Otto et al address one of the above gaps by examining whether plasma phospholipid fatty acids such as pentadecanoic acid (15:0), myristic acid (14:0), and trans-palmitoleic acid (t16:1n7) could serve as biomarkers for dairy intake and the association of those fatty acids with CVD risk in about 2800 US adult men and women from the Multi-Ethnic Study of Atherosclerosis (MESA). The authors found that plasma phospholipid pentadecanoic acid was positively correlated with self-reported total dairy intake (Spearman correlation coefficient of 0.22), regular cheese (r=0.20), whole-fat dairy (r=0.16), low-fat dairy (r=0.17), and butter (r=0.13). Each standard deviation of pentadecanoic acid was associated with 19% lower risk of CVD (95% CI: 2% to 32%) and 26% lower risk of coronary heart disease (95% CI: 8% to 40%) in multivariable adjusted models. Plasma phospholipid myristic acid was weakly correlated with self-reported total dairy (r=0.14), whereas trans-palmitoleic acid was not correlated with self-reported total dairy (r=0.07). Lastly, in multivariable analyses, there was no meaningful association of either plasma phospholipid myristic acid or trans-palmitoleic acid with CVD risk. These data suggest that plasma phospholipid pentadecanoic acid could be a reasonable biomarker of dairy intake. In addition, current data raise the following question: What implications do current findings underscore for the scientific community and translational medicine?

It is important to acknowledge some weaknesses inherent to the current study. Although plasma levels of 15:0 were measured using a reproducible and valid method, self-reported dairy intake used to estimate Spearman correlation coefficients is far from optimal due to potential recall bias. A long-term intervention with known quantity and quality of dairy product(s) would be ideal to estimate the true correlation between plasma 15:0 and consumed dairy product(s). Concentration of plasma 15:0 is relatively low (median below 1% of total fatty acids), suggesting that small measurement errors could have a larger impact on reported values. A large coefficient of variation (14.5%) for pentadecanoic acid is consistent with the above conjecture. In addition, a wide range of Spearman correlation of plasma 15:0 with various dairy products (ranging from 0.05 for 2% milk to 0.20 for regular cheese) suggests that content of 15:0 may vary across individual dairy products. Alternatively, reporting error may vary by types of dairy products. Given a diversity of individual dietary patterns, it is important to recognize that...
plasma phospholipid 15:0 would then vary according to the
type of dairy foods consumed. Lastly, despite an observed
association of plasma 15:0 with CVD risk, it is important to
emphasize that 15:0 cannot be singled out as a causal
nutrient responsible for the overall effect of dairy products.
Dairy products are a good source of other nutrients known to
exert CVD benefits including vitamin D and calcium.13,14
Furthermore, people consume dairy products as part of
overall dietary patterns, underscoring the importance of
nutrient/nutrient, nutrient/drug, or nutrient/other lifestyle
interactions on CVD risk. The contribution of such interaction
cannot be estimated from current results.

Nonetheless, current findings are consistent with previous
data supporting the role of plasma 15:0 as a biomarker of dairy
intake.5,15–17 In older men aged >70 years, phospholipid 15:0
was positively correlated with total dairy assessed by 7-day
records (r=0.34).17 A similar correlation was observed in the
Nurses’ Health Study (r=0.29).5 Inverse relation of plasma
15:0 with CVD is consistent with the notion that dairy products
may confer cardiovascular benefits.9,11,18,19 However, it
remains important for consumers to consider their overall
dietary patterns, which should favor a healthy diet that is rich
in fruits, vegetables, and whole grains, but low in sodium, red
meats, sugar sweetened beverages, trans fat, etc.20

Future endeavors are necessary to confirm the utility of
plasma 15:0 as a biomarker of dairy intake using better
designs to assess dairy intake. Ideal biomarkers should be
quantifiable with a reasonable coefficient of variation and their
blood levels should not be influenced by endogenous bio-
synthesis. Lastly, ideal biomarkers should be cost-effective to
allow for usage in large epidemiologic studies or trials and their
blood levels should increase upon external supplementation.

In summary, there is a growing body of evidence in support of
potential biomarkers for dairy intake, especially penta-
decanoic acid. However, additional work from randomized
trials where subjects are fed specific amounts and types of
dairy products is needed before making general recommenda-
tions for the use of pentadecanoic acid as valid biomarker of
dairy intake.

Disclosures
None.

References
1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata
DM, Dai S,Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hallpern SM,
Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT,
Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB,
McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP,
Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner
MB; American Heart Association Statistics Committee and Stroke Statistics
2. Djoussé L, Driver JA, Gaziano JM. Relation between modifiable lifestyle factors
3. van den Brandt PA. The impact of a Mediterranean diet and healthy lifestyle on
4. Haskell WL. Cardiovascular disease prevention and lifestyle interventions:
5. Sun Q, Ma J, Campos H, Hu FB. Plasma and erythrocyte biomarkers of dairy fat
Dontas AS, Fidanza F, Giaquaglì S, Jansen A. Dietary saturated and trans fatty
acids and cholesterol and 25-year mortality from coronary heart disease: the
7. Huth PJ, Park KM. Influence of dairy product and milk fat consumption on
285.
8. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and
WC, Geleijns JM. Milk and dairy consumption and incidence of cardiovascular
diseases and all-cause mortality: dose-response meta-analysis of prospective
10. Soedamah-Muthu SS, Verberne LD, Ding EL, Engberink MF, Geleijns JM. Dairy
consumption and incidence of hypertension: a dose-response meta-analysis of
Dairy products and its association with incidence of cardiovascular disease: the
Kromhout D, Rich SS, Tsai MY, Jacobs DR, Mozaffarian D. Biomarkers of dairy
fatty acids and risk of cardiovascular disease in the multi-ethnic study of
000092
Genest J, Morin SN, Hodsman A. Calcium and vitamin D intake and mortality: results
from the Canadian multicentre osteoporosis study (CaMos). J Clin
14. Wang L, Manson JE, Song Y, Sesso HD. Systematic review: vitamin D and
calcium supplementation in prevention of cardiovascular events. Ann Intern
15. Aslibekyan S, Campos H, Baylin A. Biomarkers of dairy intake and the risk of
15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and
17. Smedman AE, Gustafsson I, Berglund LG, Vesby BO. Pentadecanoic acid in
serum as a marker for intake of milk fat: relations between intake of milk fat and
18. Larsson SC, Virtamo J, Wolk A. Dairy consumption and risk of stroke in
approaches to stop hypertension (DASH)-style diet on fatal or nonfatal
cardiovascular diseases—Incidence: a systematic review and meta-analysis on
20. Britten P, Cleveland LE, Koegel KL, Kuczynski KJ, Nickols-Richardson SM.
Updated US department of agriculture food patterns meet goals of the 2010

Key Words: Editorial • epidemiology • dairy intake • cardio-
vascular disease • biomarkers