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Abstract
Peripheral mechanisms preventing autoimmunity and maintaining tolerance to commensal
microbiota involve CD4+Foxp3+ regulatory T cells1,2 generated in the thymus (tTregs) or
extrathymically by induction of naive CD4+Foxp3− T cells (iTregs). Prior studies suggested that
the T cell receptor (TCR) repertoires of tTregs and iTregs are biased towards self and non-self
antigens, respectively 3–6 but their relative contribution in controlling immunopathology, e.g.
colitis and other untoward inflammatory responses triggered by different types of antigens,
remains unresolved 7. The intestine, and especially the colon, is a particularly suitable organ to
study this question, given the variety of self-, microbiota- and food-derived antigens to which
Tregs and other T cell populations are exposed. Intestinal environments can enhance conversion to
a regulatory lineage 8,9 and favor tolerogenic presentation of antigens to naive CD4+ T cells 10,11,
suggesting that intestinal homeostasis depends on microbiota-specific iTregs 12–15. Here, to
identify the origin and antigen-specificity of intestinal Tregs, we performed single cell as well as
high-throughput (HT) sequencing of the TCR repertoires of CD4+Foxp3+ and CD4+Foxp3− T
cells and analyzed their reactivity against specific commensal species. We show that tTregs
constitute the majority of Tregs in all lymphoid and intestinal organs, including colon, where their
repertoire is heavily influenced by the composition of the microbiota. Our results suggest that
tTregs, and not iTregs, dominantly mediate tolerance to antigens produced by intestinal
commensals.
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We used the TCRmini mice whose limited but diversified repertoire allows for a
comprehensive comparison of TCRs in various organs and subpopulations 16. In these mice,
thymocytes differentiate naturally as CD4+Foxp3+ and CD4+Foxp3− T cells, and efficiently
repopulate peripheral lymphoid organs 16. Furthermore, the TCRβ chain is identical in all
TCRmini T cells, enabling detection of TCR diversity through specific analysis of the TCRα
chain 16. To identify Foxp3+ cells, we crossed TCRmini mice with Foxp3GFP reporter
mice 17. The TCRminiFoxp3GFP and B6Foxp3GFP mice had very similar numbers of
Foxp3GFP+ cells in different intestinal organs (Fig. S1) and CD4+ cells in both types of mice
expressed comparable levels of α4β7 and CCR9 molecules that regulate homing to the
intestine (Fig. S2). We also found that adoptive transfer of naive CD4+ T cells from
TCRminiFoxp3GFP mice to lymphopenic, RAG-deficient mice caused inflammation in the
colon and wasting disease. The disease could be prevented by co-transfer of
TCRminiCD4+Foxp3+ thymocytes without affecting the colonization of the colon by
CD4+Foxp3− T cells, indicating that tTregs can control intestinal inflammation at least in
these experimental settings (Fig. S3).

tTregs and iTregs have similar phenotypes, and overlapping but distinct TCR repertoires
relative to their thymic or peripheral origin 16,18,19. To compare dominant TCRs on
CD4+Foxp3− and Treg cells in lymphoid organs and in the intestine, we sorted individual
cells, amplified the TCRα chains by RT-PCR and sequenced their CDR3 regions (the
numbers of sequences analyzed by single-cell and HT sequencing, pertaining to Figs. 1-3,
are shown in Tables S1-S3). As shown in Fig. 1a, the distribution of dominant TCRs from
CD4+Foxp3− and Treg cells in all analyzed organs was asymmetrically skewed, and only a
few TCRs were overrepresented in both CD4+ populations. Dissimilar allocation of
abundant TCRs was previously observed in lymphoid organs and was attributed to separate
thymic differentiation pathway for tTregs and limited conversion of CD4+Foxp3− cells 20. In
addition, approximately half of the dominant TCRs found on intestinal Tregs (including
colonic Tregs) were also found on CD4+Foxp3+ thymocytes, suggesting that the intestinal
Treg repertoire includes a significant proportion of dominant clones of thymic origin (Fig.
1a).

To comprehensively compare TCR repertoires on thymic, peripheral and intestinal
CD4+Foxp3− and Treg clones we used HT sequencing (Fig. 1b, c), which also minimized
the proportion of unique TCRs identified, i.e. found only in one organ. In the colon, unique
Treg TCRs comprised just 9% of all TCR sequences retrieved from this organ, with overall
5% of TCRs found on CD4+Foxp3− T cells but not on CD4+Foxp3+ thymocytes, suggesting
that the colonic population of iTregs expressing TCRs specific for the CD4+Foxp3− lineage
is limited (data not shown). Accordingly, the remaining 86% of TCRs from colonic Tregs
were expressed on CD4+Foxp3+ thymocytes, and Fig. 1b shows that a vast majority of
dominant TCRs from colonic Tregs (found at least 10 times), were shared between both
populations. These TCRs accounted for approximately half of all TCRs retrieved from
CD4+Foxp3+ thymocytes, indicating that these thymocytes are not rare, recirculating mature
iTregs (Fig. 1c and data not shown). As shown in Fig. 1c, the similarity indices (MII,
depicted by the distance between branches of the dendrogram) calculated for the TCR
repertoires from various intestinal Tregs and CD4+Foxp3− populations did not reveal higher
similarity, which would be expected if a dominant portion of intestinal Tregs, including
those from the colon, was represented by iTregs. In fact, not a single repertoire of Tregs
clustered on the same branch of the dendrogram with CD4+Foxp3− repertoire(s), suggesting
that these repertoires remained mostly dissimilar (as also shown for dominant TCRs in Fig.
1a and S4). Limited conversion in the mesenteric lymph nodes or colon of
TCRminiFoxp3GFP mice was not a result of impaired recruitment of CD4+Foxp3− cells in
this model because the conversion was apparent in the tumor environment, upon adoptive
transfer of CD4+Foxp3− cells to lymphopenic hosts and in vitro (21 and data not shown).
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In view of reports analyzing mice with broader repertoire of TCRs than that of TCRmini

mice 14, which suggested that iTregs are overwhelmingly abundant in the colon, we also
examined if the extent of TCR diversity could play a role in determining the relative
involvement of tTregs and iTregs in maintaining tolerance to colonic antigens. To address
this question we analyzed TCRβFoxp3GFP transgenic mice in which the repertoire of TCRs
is much larger than that of TCRmini mice due to the natural diversity of the TCRα chain.
The HT sequencing of the TCRVα2+ chains of thymic, peripheral and colonic CD4+Foxp3+

and CD4+Foxp3− subpopulations from TCRβ transgenic mice revealed a pattern similar
with the respective repertoires collected from TCRmini mice. Approximately 75% of all
Vα2+ TCRs retrieved from colonic Tregs from TCRβFoxp3GFP transgenics were also
expressed by CD4+Foxp3+ thymocytes, including many abundant colonic TCRs (found in
the colonic Treg repertoire more than 20 times Fig. 2a), which accounted for approximately
20% of all TCRs retrieved from CD4+Foxp3+ thymocytes (data not shown). Furthermore,
the MII indices calculated for the TCR repertoires from colonic, mesenteric and thymic
CD4+Foxp3+ and CD4+Foxp3− cells retained the same hierarchical clustering as originally
observed in TCRmini mice (Fig. 2b). Thus, we concluded that the extent of TCR diversity
does not have significant influence on the predominance of tTregs in the colon.

To investigate whether changes in the composition of colonic microflora influence the
repertoire of tTregs we treated the TCRminiFoxp3GFP mice with a cocktail of antibiotics.
This treatment significantly altered the composition of the colonic microbiota and reduced
the proportion of intestinal Tregs, particularly in the colon (Fig. 3a). As shown in Fig. S5, 6
out of 10 dominant commensal species cultured from the cecum of untreated mice, including
members of Clostridiales, an abundant anaerobe known to induce colonic iTregs13, fell to
undetectable levels in cultures from treated mice. Of the remaining 4 species cultured from
the cecum, 2 significantly increased in biomass with antibiotic treatment and 2 remained
unaffected. Antibiotic treatment also significantly altered the frequency of dominant TCRs
identified in colonic Tregs, as some clones became undetectable, whereas others expanded,
likely in response to the rebound growth of more antibiotic-resistant species (Fig. 3b). Most
TCRs expressed by dominant Treg clones that contracted or expanded in antibiotic-treated
mice were also found on CD4+Foxp3+ thymocytes, indicating that changes in the intestinal
flora influence the repertoire of colonic tTregs (Fig. 3b). As shown in Fig. 3c, the diversity
of the TCRs on colonic Tregs from antibiotic-treated and untreated mice (calculated from
HT sequencing) was not significantly affected, despite their strong numerical reduction (Fig.
3a). Calculation of the MII index between Tregs and CD4+Foxp3− populations from
different organs of antibiotic-treated mice (Fig. 3d) showed that the repertoire of colonic
Tregs remained similar (see Fig. 1c) to the rest of CD4+Foxp3+ repertoires, which argues
against the significant recruitment of iTregs in response to the changing composition of
bacterial antigens.

To identify Treg clones specific to antigens produced by commensal species, we created
hybridomas from colonic Tregs 22, and sorted hybridomas that responded to sterile filtrates
of cecal contents from untreated TCRminiFoxp3GFP mice (Fig. S6). Of these sub-cloned
hybridomas, majority that responded to cecal filtrates from untreated mice did not respond
to filtrates from antibiotic-treated mice, suggesting that most responding hybridomas
expressed TCRs specific for microbial antigens present in untreated mice (Fig. 4a). We then
identified 26 TCRs from hybridomas that responded to cecal filtrates from untreated mice
and examined their expression on CD4+Foxp3+ thymocytes. Fig. 4b shows that over 90% of
sequenced TCRs derived from colonic Tregs were also expressed by CD4+Foxp3+

thymocytes. Next, we tested the reactivity of hybridomas, against bacterial sonicates
prepared from thirteen cultures of individual species identified in the ceca of
TCRminiFoxp3GFP mice (Fig. 4c). Fig. 4d, (left column) shows that four hybridomas
responded to isolates from Clostridiales (one of these also responded to phylogenetically
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related Falvonifractor), and other four hybridomas (Fig. 4d, right column) responded to
sonicates from Bacteroides or Lactobacillus, suggesting that these responses were elicited by
unidentified bacterial antigen(s). Overall, these results demonstrated that colonic Tregs and
CD4+Foxp3+ thymocytes share multiple TCRs that recognize microbial antigens.

Our study provides evidence for interactions between the host tTreg population and the
complex communities of microbes present in the gut lumen. In-depth analysis of the TCR
repertoire of colonic tTregs demonstrated that it is sufficiently broad to recognize
microflora-derived antigens and that conversion of naive CD4+Foxp3− cells does not
appreciably modify its diversity. These conclusions challenge the recent report suggesting
that iTregs constitute the vast majority of colonic Tregs 14. In that study, the authors
sampled TCR repertoires of colonic and peripheral CD4+ cells from a TCRβ transgenic line
and used retrogenic mice to determine if TCRs derived from dominant colonic Treg clones
support thymic selection of tTregs. None of the colonic TCRs examined supported tTreg
development, but constitutive expression of TCR in retrogenic mice can compromise tTregs
selection and skew thymocyte commitment to the Foxp3− lineage, irrespective of TCR
origin 23. The number of TCRs examined in that study was about one order of magnitude
smaller than that sequenced here, which would preclude detection of colonic TCRs on low-
abundant clones in other organs. Nevertheless, half of the most abundant colonic TCRs were
found on Tregs in lymphoid organs 14, where 93% of these clones were estimated to
represent tTregs 20. Therefore, in both TCRβ transgenic lines 14,16, a large proportion of
colonic Tregs can be of thymic origin.

The results of our study are consistent with the findings that tTregs recognize non-self
antigens 22,24, become activated upon colonization of germ-free mice with standardized
microbial flora (Schaedler flora)25, and prevent colitis in CNS1- deficient mice exclusively
lacking iTregs 26 or in lymphopenic mice that received wild- type, naïve CD4+ cells 27. We
conclude that iTregs can participate in maintaining tolerance to intestinal antigens, but that
tTregs play the dominant role in this process.

Methods
Mice

TCRminiFoxp3GFP and TCRβFoxp3GFP (Vβ14Dβ2Jβ2.6) mice were obtained by mating
B6Foxp3GFP 17 with TCRmini 16 and TCRβ 16 mice, respectively. The progeny was screened
for the co-expression of Foxp3GFP reporter and TCRmini Vα2Vβ14+ dimer or TCRβ Vβ14+

chain, respectively. To eliminate expression of endogenous TCRα chains, all TCRmini mice
were crossed with mice deficient in endogenous TCRα loci and were heterozygous for
TCRα Vα2Jα26Jα2 minilocus to ensure expression of a single TCRα chain per T cell. All
animals were housed in GRU animal facility in accordance to the Institutional regulations.

Purification of intestinal lamina propria T cells
Intestinal regions were opened longitudinally and contents were flushed with ice-cold Hanks
balanced-salt solution (HBSS, Cellgro). Each region was cut into small pieces and washed
with HBSS supplemented with 5% FCS (HyClone) and 2mM EDTA at 37°C. A single-cell
suspension was obtained after treatment with Collagenase D (1.0 mg/ml) and DNase I (0.1
mg/ml) (both from Roche). A purified and concentrated suspension of lamina propria
lymphocytes was obtained after centrifugation on Percoll (GE Healthcare) gradient (45%
and 70%). The interface, enriched in leukocytes, was collected and used for experiments.
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Isolation of thymocytes and T cells from lymphoid organs
Single-cell suspensions were prepared from the thymus, inguinal and mesenteric LNs by
mechanical disruption. Peyer's patches were excised from the small intestine wall, and
lymphocytes were isolated by enzymatic digestion for 20 min, using Collagenase D (1.0 mg/
ml) and DNase I (0.1 mg/ml) at 37°C.

Flow cytometry, single-cell sorting and single cell RT PCR
Thymocytes and T cells were stained with antibodies against CD4, CD8, Vα2, Vβ14, CCR9
and α4β7 (BD Biosciences or eBioscience) and analyzed using BD FACS Canto (BD
Biosciences). Single cells were sorted (MoFlo cell sorter, Beckman Coulter) into 96-well
plates from a sorted (purity >99%) populations of CD4+Foxp3GFP+ and CD4+Foxp3GFP− T
cells. cDNA was synthesized using MMLV reverse transcriptase (Promega) and random
hexamers (IDT) followed by two rounds of PCR via Perfect Taq Polymerase (5 PRIME) 16.
Products of CDR3 Vα chain obtained in the second PCR reaction were sequenced in the
Genomic Core Facility at the University of Illinois (Urbana, IL). All necessary precautions
were taken to prevent PCR contamination as previously described 16

High-throughput CDR3 sequencing
Cα specific primer used for cDNA synthesis: (5′-TCGGCACATTGATTTGGGAGTC-3′).

Primers with incorporated tags for Ion Torrent high-throughput sequencer (Vα2IT: 5′-
CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTCAGCCTGGAGACTCAGC-3′ and
CαIT: 5′-CCTCTCTATGGGCAGTCGGTGATTGGTACACAGCAGGTTCTGGGT-3′).

CDR3 regions sequenced on the same chip and derived from different subsets were
discriminated based on barcodes, which were validated for optimal performance with the Ion
Torrent PGM. Data was analyzed using PACE (Parallel Algorithm for CDR3 Extraction)
program and evaluated with statistical methods as described below and in ref 28.

Hybridoma assays
Colonic CD4+Foxp3GFP+ T cells were expanded in vitro for 7 days as described 29 and fused
with BW thymoma stably transfected with the NFATGFP. It should be noted that as a result
of fusion, Tregs lose expression of Foxp3GFP, and therefore expression of NFATGFP in
hybridomas can be used as a marker of their activation. After 10 days, the heterogeneous
pool of hybrids was incubated overnight with splenocytes or bone marrow derived dendritic
cells from TCRα deficient mice preincubated overnight with sterile lysate obtained from
cecum of TCRminiFoxp3GFP mice. Responding hybridomas were sorted based on the
NFATGFP expression (Fig.S6,) cloned into 96-well plates, and two weeks later were
restimulated with sterile cecum lysates from untreated or antibiotic-treated
TCRminiFoxp3GFP mice in the presence of autologous APCs.

Response of cloned hybridomas toward cecal lysates and microbial sonicates was measured
using HT-2 assay 22. In brief, 105 hybridoma cells were incubated with 105 bone marrow-
derived dendritic cells (or splenocytes from TCRα deficient mice) alone (no antigen control)
and lysate or the indicated bacterial sonicates each in the non-toxic range of different
concentrations. After 24 hr, the amount of secreted IL-2 was measured with the detector
HT-2 cell line and compared to values from a standard curve derived from recombinant IL-2
(Peprotech). The proliferation of HT-2 cells in response to IL-2 was measured with MTT
(Sigma) assay 22 and the response at optimal concentration of bacterial sonicate is shown in
Fig. 4. The TCRα CDR3 regions from responding hybridomas were amplified, sequenced
and cross-referenced to our database of TCRα CDR3 collected from various subpopulations
of CD4+ T cells.
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Adoptive transfer
RAG-2 deficient mice were injected i.v. with sorted CD4+ subpopulations from
TCRminiFoxp3GFP mice. Recipients received either naive, pLN CD4+ cells, or in addition
thymic or peripheral CD4+Foxp3GFP+ cells. After adoptive transfer, mice weight was
monitored on a weekly basis. After 5 weeks all recipients were sacrificed and their colons
were examined for the signs of inflammation. The proportions of Foxp3GFP− to Foxp3GFP+

of CD4+ T cells in the colon were similar in all recipients (data not shown).

Parallel Algorithm for CDR3 Extraction (PACE)
Parallel Algorithm for CDR3 Extraction (PACE) is an application to obtain sequences of
TCR CDR3 regions generated by high-throughput sequencers. This algorithm employs
BLAST as a core component for sequence comparison to locate known V and J regions in
high volumes of sequencing data. Extracted sequences were managed in a centralized SQL
database and reported in FASTA format.

Accuracy of CDR3 sequencing
To control for possible contaminations during sorting or PCR, cells from multiple sorts from
different CD4+ cell subsets were individually processed, sequenced and data from respective
subsets were compared. In addition, it was verified that TCR repertoires obtained from the
same cell populations by single-cell and high-throughput TCR sequencing were similar,
demonstrating that both sequencing approaches yield comparable data (Fig. 1c and Fig.
S4a,b). To ensure that dominant CDR3 regions are not contaminants, it was checked
whether in each dataset these regions were encoded by multiple different nucleotide
sequences (indicative of selection at the protein level and not the amplification of a single
clonotype due to artificial contamination). Examples of this analysis are shown in Fig. S7
and Table S5).

The accuracy of the high-throughput CDR3 sequencing was ensured by the use of high
fidelity DNA polymerase with a low intrinsic error rate (AccuPrime Taq DNA Polymerase
High Fidelity (Invitrogen). In addition, Ion Torrent Suite software filters were used during
data processing to exclude low quality reads and erroneous sequences derived from mixed
DNA templates. Most common Ion Torrent sequencer errors are base insertions and
deletions occurring in homopolymers, which result in frame shifts and stop codons. To
identify errors within Vα2 and Jα2 (or Jα26) segments, all sequences were aligned to
constant regions. To estimate the application-specific error within the CDR3 region, two
monoclonal CDR3 regions from TCRmini mice were amplified (approximately 1×105 reads
were collected) and the reads that differed from the original template were counted. This
approach estimated that less than 3% of CDR3 regions may contain errors (Table S6), which
is significantly below the threshold adversely affecting the statistical similarity and overlap
analysis 28.

Microbiology
Ceca with content were dissected under sterile conditions, placed in cryovials and
immediately snap frozen in liquid nitrogen. Samples were further processed and analyzed in
the Harvard Digestive Disease Center's (HDDC) Microbiome Core facility. Phylogenetic
identification and subtyping was based on 16S rRNA classification. Molecular speciation of
bacteria was performed with 16S rRNA gene analyses. Assembled sequences were loaded
into the Ribosomal Database Project's (RDP) SEQMATCH tool to identify the taxonomic
assignment (http://rdp.cme.msu.edu/).
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Statistical analysis
The comparison of various TCR repertoires was conducted by means of the assessment of
their respective diversities as well as overlap between populations (Fig. 1c, 2b, 3c, d and
S4a). In the current context, under the term ‘diversity’ we understand both the richness as
well as the abundance patterns of the repertoires.

For the sake of quantifying the TCR diversity for a single repertoire, we have adopted the
information-theoretic approach based on the notion of the Renyi entropy function of order α
denoted Hα

30. This function quantifies diversity by means of the formula

(1)

where the pi is the observed frequency of the i-th species, and the order α is a nonnegative
exponential weight parameter. The value of α below unity gives more weight to the less
abundant (and thus possibly under-sampled) species, whereas the values above unity give
more weight to the more abundant species. For α=1 the above formula is not well-defined
but may be obtained by taking the limiting expression as α approaches unity. In this case

(2)

is the usual Shannon entropy function known in the information theory, which weights
equally the contributions of all observed species to the repertoire diversity.

By plotting the values of the Renyi entropy Hα against its index, we are able to analyze
diversity of TCR populations graphically in terms of their diversity, weighted towards rare
(α less than one) and abundant (α greater than one) species (Fig. 3c). Since the quantities pi
are the empirical counts of the observed species, for the sake of obtaining bounds on the
sampling error in the values Hα we apply the computational methods based on the non-
parametric bootstrap as described e.g., 28. In order to improve the robustness of Hα against
unseen species (i.e., the possible under–sampling of the species richness) we have also
considered a version of the analysis where the so-called Chao-Shen correction was applied
to compute the Shannon entropy, as described 28. In our particular case, it turned out that the
results of this alternative analysis differed only marginally from the original ones.

The pairwise overlap analysis as described in Figure 1c, 2b, 3d and S4a was conducted on
the basis of the hierarchical clustering of the repertoires with an appropriately chosen
dissimilarity function. Similarly as for the analysis of the single repertoire diversity, we have
adopted an information- theoretical approach in order to pairwise compare TCR repertoires.
Since the pairs of observed frequencies of different TCR species may be arranged in a two-
way contingency table, the entropy based index known as the mutual information index
(MII) can be applied to measure the association between observed TCR frequencies and the
corresponding class (repertoire) labels. If MI is the usual mutual information statistic in two-
way contingency table and n1, n2are the proportions of species observed in different TCR
populations (i.e., n1+n2 =1), the MII is given by the formula

(3)
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The MII may be shown to take values between zero and unity, with the zero value admitted
only for repertoires with linearly dependent vectors of TCR frequencies. This property
makes MII an appropriate measure of dissimilarity for the current purpose of TCR
populations clustering. For the practical purpose of computing the sampling errors in values
of MII for all pairs of repertoires, the statistical computational bootstrap methods were
applied as explained above. With the MII as the dissimilarity measure we used a canonical
clustering procedure based on agglomerative clustering with Ward linkage method. The
outcome of the algorithm is presented as a dendrogram or a tree diagram with its leaves
representing TCR populations. The leaves are located at the tree-distances from each other
computed according to their MII values.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported by basic research grants from NIH (AI 5R01AI079277 to L.I., and DMS1106485 and
R01CA152158 to G.A.R.). The HDDC Microbiome core is supported by P30-DK034854 and Brigham & Women's
Hospital in Boston, MA. Microbiological analyses were performed by M. Delaney, A. Dubois and Q. Liu in the
HDDC Microbiome Core, with additional review of findings by Dr. A.B. Onderdonk. We thank J. Pihkala and H.
Ignatowicz for technical assistance, M. Kuczma, L. Wojciech, E. Szurek, A. Miazek and P. Muranski for the
discussion and R. Markowitz for editing the manuscript.

Reference List
1. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005; 6(4):

353. [PubMed: 15785761]

2. Sakaguchi S, Powrie F, Ransohoff RM. Re-establishing immunological self-tolerance in
autoimmune disease. Nat Med. 2012; 18(1):54. [PubMed: 22227673]

3. Jordan MS, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-
peptide. Nat Immunol. 2001; 2(4):301. [PubMed: 11276200]

4. Ribot J, Romagnoli P, van Meerwijk JP. Agonist ligands expressed by thymic epithelium enhance
positive selection of regulatory T lymphocytes from precursors with a normally diverse TCR
repertoire. J Immunol. 2006; 177(2):1101. [PubMed: 16818767]

5. Coutinho A, et al. Thymic commitment of regulatory T cells is a pathway of TCR-dependent
selection that isolates repertoires undergoing positive or negative selection. Curr Top Microbiol
Immunol. 2005; 293:43. [PubMed: 15981475]

6. Hsieh CS, et al. An intersection between the self-reactive regulatory and nonregulatory T cell
receptor repertoires. Nat Immunol. 2006; 7(4):401. [PubMed: 16532000]

7. Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive Foxp3+ regulatory T cells: more of the
same or a division of labor? Immunity. 2009; 30(5):626. [PubMed: 19464985]

8. Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity. 2009; 31(3):
401. [PubMed: 19766083]

9. Mucida D, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid.
Science. 2007; 317(5835):256. [PubMed: 17569825]

10. Coombes JL, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+

regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;
204(8):1757. [PubMed: 17620361]

11. Denning TL, et al. Lamina propria macrophages and dendritic cells differentially induce regulatory
and interleukin 17-producing T cell responses. Nat Immunol. 2007; 8(10):1086. [PubMed:
17873879]

12. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal
bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010; 107(27):12204. [PubMed:
20566854]

Cebula et al. Page 8

Nature. Author manuscript; available in PMC 2013 November 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Atarashi K, et al. Induction of colonic regulatory T cells by indigenous Clostridium species.
Science. 2011; 331(6015):337. [PubMed: 21205640]

14. Lathrop SK, et al. Peripheral education of the immune system by colonic commensal microbiota.
Nature. 2011; 478(7368):250. [PubMed: 21937990]

15. Haribhai D, et al. A Requisite Role for Induced Regulatory T Cells in Tolerance Based on
Expanding Antigen Receptor Diversity. Immunity. 2011; 35(1):109. [PubMed: 21723159]

16. Pacholczyk R, et al. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity.
2006; 25(2):249. [PubMed: 16879995]

17. Kuczma M. Foxp3-deficient regulatory T cells do not revert into conventional effector CD4+ T
cells but constitute a unique cell subset. J Immunol. 2009; 183(6):3731. [PubMed: 19710455]

18. Hsieh CS, et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell
receptors. Immunity. 2004; 21(2):267. [PubMed: 15308106]

19. Wong J, Mathis D, Benoist C. TCR-based lineage tracing: no evidence for conversion of
conventional into regulatory T cells in response to a natural self-antigen in pancreatic islets. J Exp
Med. 2007; 204(9):2039. [PubMed: 17724131]

20. Lathrop SK, et al. Antigen-specific peripheral shaping of the natural regulatory T cell population. J
Exp Med. 2008; 205(13):3105. [PubMed: 19064700]

21. Kuczma M, et al. Intratumoral convergence of the TCR repertoires of effector and Foxp3+ CD4+ T
cells. PLoS One. 2010; 5(10):e13623. [PubMed: 21049016]

22. Pacholczyk R, et al. Nonself-antigens are the cognate specificities of Foxp3+ regulatory T cells.
Immunity. 2007; 27(3):493. [PubMed: 17869133]

23. Bautista JL, et al. Intraclonal competition limits the fate determination of regulatory T cells in the
thymus. Nat Immunol. 2009; 10(6):610. [PubMed: 19430476]

24. Suffia IJ, et al. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial
antigens. J Exp Med. 2006; 203(3):777. [PubMed: 16533885]

25. Geuking MB, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell
responses. Immunity. 2011; 34(5):794. [PubMed: 21596591]

26. Josefowicz SZ, et al. Extrathymically generated regulatory T cells control mucosal TH2
inflammation. Nature. 2012; 482(7385):395. [PubMed: 22318520]

27. Fahlen L, et al. T cells that cannot respond to TGF-beta escape control by CD4+CD25+ regulatory
T cells. J Exp Med. 2005; 201(5):737. [PubMed: 15753207]

28. Rempala GA, Seweryn M. Methods for diversity and overlap analysis in T-cell receptor
populations. J Math Biol. 201210.1007/s00285-012-0589-7

29. Singh N, et al. Generation of T cell hybridomas from naturally occurring FoxP3+ regulatory T
cells. Meth Mol Biol. 2011; 707:39.

30. Renyi A. On Measures of Information and Entropy. Proceedingds of the 4th Berkley Symposium
on Mathematics, Statistics and Probability. 1961:547–561.

Cebula et al. Page 9

Nature. Author manuscript; available in PMC 2013 November 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1. TCR repertoires of intestinal Tregs are similar to the TCR repertoire of
CD4+Foxp3+thymocytes
a, The frequencies of fifteen dominant TCRs selected for each population from indicated
organs in all organs (based on single cell TCR sequencing, see Table S1 for the number of
TCR CDR3 sequences analysed). Color shades reflect the relative frequency with which a
given TCR was found in each organ. b, The frequencies of dominant TCRs from colonic
Tregs in the population of CD4+Foxp3+ thymocytes. c, The hierarchical diagrams depict
similarity indices (MII) for TCR repertoires from CD4+Foxp3− and CD4+Foxp3+

populations ((b and c are based on HT sequencing, see Table S1 for the number of TCR
CDR3 sequences analysed).
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Fig. 2. In TCRβFoxp3GFP transgenic mice the majority of colonic CD4+Foxp3+ T cells share
TCRs with CD4+Foxp3+ thymocytes
a, Dominant TCRs from colonic Tregs and their frequencies on CD4+Foxp3+ thymocytes b,
The hierarchical dendrogram depicts MII indices between TCR repertoires from
CD4+Foxp3− and CD4+Foxp3+ populations from the indicated organs. For calculation of
MII, the dataset from CD4+Foxp3+ thymocytes was limited as described in Methods
Summary.
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Fig. 3. Antibiotic-induced changes in colonic flora have profound influence on the TCR
repertoire of colonic tTregs
a, The effect of antibiotic treatment on the proportion of Tregs in indicated organs. Three
mice per group were analyzed. b, Fifty dominant TCRs (Table S4) of colonic Tregs from
untreated (red bars) or antibiotic-treated (black bars) mice and their frequencies in analyzed
repertoires. TCRs not found on CD4+Foxp3+ thymocytes are star-marked. c, Diversity index
(Renyi Entropy Function) of Tregs from indicated organs of untreated and antibiotic-treated
mice. REF close to “0” corresponds to diversity of low abundant TCRs and close to “2” for
high abundant TCRs. d, MII indices for TCR repertoires of CD4+Foxp3− and Treg
populations from antibiotic-treated mice.
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Fig. 4. TCRs from colonic tTregs recognize microbial antigens
a. The response (± s.e.m from three experiments) of cloned colonic Treg hybridomas, which
responded to cecal lysate from untreated TCRminiFoxp3GFP mice (Fig. S6), to re-stimulation
with cecal lysate from untreated or antibiotic-treated mice. b, The abundance of Treg TCRs
from hybridomas that responded to cecal lysates from untreated mice (shown in a) on
CD4+Foxp3+ thymocytes. Hybridomas marked by asterisk also responded to cecal lysate
from antibiotic-treated mice. c, Phylogenetic distance of bacterial strains tested here. d. The
response of hybridomas highlighted in panel 4b to indicated bacterial sonicates.
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