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Abstract
Recent molecular studies have revealed that, even when derived from a seemingly homogenous
population, individual cells can exhibit substantial differences in gene expression, protein levels,
and phenotypic output1–5, with important functional consequences4,5. Existing studies of cellular
heterogeneity, however, have typically measured only a few pre-selected RNAs1,2 or proteins5,6

simultaneously because genomic profiling methods3 could not be applied to single cells until very
recently7–10. Here, we use single-cell RNA-Seq to investigate heterogeneity in the response of
bone marrow derived dendritic cells (BMDCs) to lipopolysaccharide (LPS). We find extensive,
and previously unobserved, bimodal variation in mRNA abundance and splicing patterns, which
we validate by RNA-fluorescence in situ hybridization (RNA-FISH) for select transcripts. In
particular, hundreds of key immune genes are bimodally expressed across cells, surprisingly even
for genes that are very highly expressed at the population average. Moreover, splicing patterns
demonstrate previously unobserved levels of heterogeneity between cells. Some of the observed
bimodality can be attributed to closely related, yet distinct, known maturity states of BMDCs;
other portions reflect differences in the usage of key regulatory circuits. For example, we identify
a module of 137 highly variable, yet co-regulated, antiviral response genes. Using cells from
knockout mice, we show that variability in this module may be propagated through an interferon
feedback circuit involving the transcriptional regulators Stat2 and Irf7. Our study demonstrates the
power and promise of single-cell genomics in uncovering functional diversity between cells and in
deciphering cell states and circuits.
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To characterize the extent of expression variability on a genomic scale and decipher its
functional implications, we used single-cell RNA-Seq to profile a temporal snapshot of the
BMDC response to LPS. This is an attractive model system for single-cell analyses for
several reasons. First, LPS, a component of gram-negative bacteria and a ligand of Toll-like
receptor 4, strongly synchronizes cellular responses and mitigates temporal phasing11.
Second, LPS activation evokes a robust transcriptional program that has been extensively
investigated at the population level12. Third, LPS stimulation should increase the correlation
between mRNA and protein levels for induced genes, thus reducing a potentially
confounding factor13. Lastly, differentiated BMDCs are post-mitotic, largely removing cell
cycle-dependent transcriptional variation3.

We stimulated BMDCs with LPS and harvested single cells after four hours12

(Supplementary Information (SI)). Using SMART-Seq9, we constructed cDNA libraries
from 18 single BMDCs (S1–S18), three replicate populations of 10,000 cells, and two
negative controls (empty wells), and sequenced each to an average depth of 27-million read-
pairs. Negative control libraries failed to align (<0.25%) to the mouse genome, and were
discarded from all further analyses. Library quality metrics, such as genomic alignment
rates, rRNA contamination, and 3′ or 5′ coverage bias, were similar across all libraries
(Supplementary Table 1). We estimated expression levels for all UCSC-annotated genes
using RSEM14 (Supplementary Table 2, SI) and discarded genes that were not appreciably
expressed (transcripts per million (TPM) > 1) in at least three individual cells, retaining
6,313 genes for further analysis.

While the gene expression levels of population replicates were tightly correlated with one
another (Pearson r > 0.98, log-scale, Fig. 1a), there were substantial differences in
expression between individual cells (0.29 < r < 0.62, mean: 0.48, Fig. 1b, Supplementary
Fig. 1). Despite this extensive cell-to-cell variation, expression levels for an “average” single
cell correlated well with the population samples (0.79 < r < 0.81, Fig. 1c, Supplementary
Fig. 1).

We used RNA-FISH, an amplification-free imaging technique2, to verify that heterogeneity
in our single-cell expression data reflected true biological differences, rather than technical
noise associated with the amplification of small amounts of cellular RNA. For 25 genes,
selected to cover a wide range of expression levels, the variation in gene expression detected
by RNA-FISH closely mirrored the heterogeneity observed in our sequencing data (Fig. 1d–
g, Supplementary Fig. 2). For example, expression of housekeeping genes (e.g., Beta-Actin
(Actb), Beta-2-microglobulin (B2m)) matched a log-normal distribution in both single-cell
RNA-Seq and RNA-FISH measurements, consistent with previous studies1. In contrast,
many genes involved in the LPS response, although highly expressed on average, showed
significantly greater levels of heterogeneity, with expression levels deviating ~1,000 fold
between individual cells in extreme cases (Fig. 1e–g).

More generally, we observed that single cell variability existed across a wide range of
population expression levels (Fig. 2a). Of the 522 most highly expressed genes (single-cell
average TPM > 250, Fig. 2a: unshaded region, Supplementary Table 3), 281 had low cell-to-
cell variability (coefficient of variation (CV) < 0.25, SI) and were well described by log-
normal distributions (RNA-Seq: Fig. 2b,c top, RNA-FISH (Actb, B2m): Supplementary Fig.
2). These 281 genes were enriched for housekeeping genes, encoding ribosomal and other
structural proteins (Supplementary Table 2 & 3, Bonferroni-corrected p=1.5×10−6),
consistent with previous findings in yeast15 and mammalian cells1.

Surprisingly, however, 185 of the remaining 241 (coefficient of variation (CV) > 0.25, SI)
highly expressed genes had bimodal expression patterns (Fig. 2b,c bottom): mRNA levels
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for these genes were high in many of the cells, but were at least an order of magnitude lower
(often very low or undetectable) than the single-cell average in three or more cells. We
independently verified this disparity by RNA-FISH (e.g., Cxcl1, Cxcl10, Ifit1, and others:
Fig. 1f,g & Supplementary Fig. 2), confirming that it was not a result of technical noise.
This variable set included both antiviral and inflammatory response genes, and was highly
enriched for genes whose expression was increased by at least two-fold upon LPS
stimulation at the population level16 (p = 2.7×10−7; hypergeometric test; Supplementary
Table 2). Still, bimodal expression was not a universal feature of immune response
transcripts; some key chemokines and chemokine receptors (Ccl3, Ccl4, Ccrl2), cytokines
(Cxcl2), and signaling molecules (Tank) were highly expressed in every cell
(Supplementary Fig. 3), indicating that all cells were indeed activated by LPS.

This degree of variation in expression for highly expressed (on average) transcripts has not
been observed in previous reports7–10. For example, examination of published single-cell
RNA-Seq datasets of human embryonic stem cells9 (Fig. 2a), mouse embryonic stem cells,
and terminally differentiated fibroblasts10 (Supplementary Fig. 4) revealed far less
heterogeneity in expression for highly abundant (population average) genes. Similarly,
studies of protein expression in mid-log yeast cells and dividing human cell lines15,17 did
not find such bimodality in (on average) highly expressed genes. We thus hypothesized that
widespread variability in single-cell gene expression may reflect functionally important
differences in the stimulated BMDC population.

Furthermore, we found that splicing patterns also showed previously unobserved levels of
heterogeneity across single cells. Specifically, for genes that have multiple splice isoforms at
the population level, individual cells predominantly expressed one particular isoform. We
calculated the frequency (percent spliced in, PSI) of previously annotated splicing events in
each of our samples using MISO18, a Bayesian framework for calculating isoform ratios
(Supplementary Table 4). Although the population-derived estimates were highly
reproducible, single cells exhibited significant variability in their exon-inclusion frequencies
(Fig. 3a,b).

We considered the possibility that PCR amplification (intrinsic to the library preparation
process) could potentially produce an overestimation of isoform regulation variability,
particularly for weakly expressed transcripts19. However, even when we limited our analysis
to 89 alternatively spliced exons (0.2 < population PSI < 0.8) that were very highly
expressed within a single cell (single cell TPM > 250, SI), we still observed the same
variability in splicing patterns amongst individual cells, with highly skewed expression
towards a single splice variant (Fig. 3b). We obtained similar results when we generated
three additional single-cell cDNA libraries using a slightly modified SMART-Seq protocol
(SI) in which a four nucleotide barcode was introduced onto each RNA molecule during
reverse transcription19, enabling us to estimate the number of unique RNA transcripts that
existed prior to PCR (Supplementary Fig. 5 & 6 and SI).

To the best of our knowledge, single-cell variation in splicing patterns has rarely been
studied for individual genes, and never been analyzed on a genomic scale. One recent
report20 used RNA-FISH to study variation in alternative isoforms in two genes, and
observed lower levels of isoform variability across single cells (the levels of heterogeneity
differed in different cell types). Another study that used fluorescent reporters to quantify
single-cell exon inclusion levels for one gene discovered highly variable and bimodal
splicing patterns21.

To independently verify the existence of extensive differences in isoform ratios between
cells, we designed RNA-FISH probes targeting constitutive and isoform-specific exons in
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two genes (Irf7 and Acpp, Fig. 3c and Supplementary Fig. 7 & 8)20. We found substantial
expression variability in overall Irf7 levels between individual cells (as reflected by the
‘constitutive’ probes, Fig. 3c, bottom and top panels), mirroring our single-cell sequencing
results (and further explored below). Additionally, within each Irf7-expressing cell, we
observed a bias towards either the inclusion or exclusion of the cassette exon (Fig. 3c,
Supplementary Fig. 7, middle panel, e.g., compare ‘high’ and ‘low’ marked cells). We
obtained comparable results for Acpp using two probes designed to detect mutually
exclusive alternative final exons (Supplementary Fig. 8).

We next explored the sources and functional implications of expression variability.
Bimodality amongst highly expressed immune response genes may reflect either the
presence of distinct cellular subtypes or stochastic differences in the activation of signaling
circuits11. We performed a principal components analysis (PCA, Fig. 4a) on our single-cell
expression profiles, focusing on the 632 genes that were induced at least twofold in the
population-wide response to LPS16 (Supplementary Table 5). We found two distinct
subpopulations, clearly distinguishable by the first principal component (PC1, 15% of the
total variation, Fig. 4a). One group of fifteen cells expressed a core set of antiviral and
inflammatory defense cytokines (including: Tnf, Il1a, Il1b, and Cxcl10) at extremely high
levels (TPM > 1,000), while the remaining three cells expressed them at far weaker levels
(TPM < 50). Some cell surface proteins (Ccr7, Cd83) and chemokines (Ccl22), which are
known markers of BMDC maturation, showed the opposite expression pattern (Fig. 4b,
Supplementary Fig. 9).

During maturation, BMDCs switch from antigen-capturing to antigen-presenting cells that
prime the adaptive immune system22. Maturation can occur either in response to pathogen-
derived ligands (pathogen-dependent maturation), such as LPS, or when clusters of BMDCs
are disrupted in culture22 (pathogen-independent maturation). Both processes lead to
induction of maturation markers, but only pathogen-dependent maturation results in co-
expression of defense cytokines.

Examining the expression of maturation markers and defense cytokines (Supplementary Fig.
9) suggested that our 18 cells represent two distinct maturity states: (1) fifteen cells that
were in the early stages of pathogen-dependent maturation (Fig. 4a, ‘maturing’, triangles;
grey triangles, the two cells furthest along in this process); and, (2) three cells that likely
matured during the culturing process (Fig. 4a, ‘mature’, squares; pathogen-independent). We
further verified the existence of these sub-populations via RNA-FISH (Supplementary Fig.
10), single-cell quantitative reverse transcription polymerase chain reaction (qRT-PCR;
Supplementary Fig. 11, SI, Supplementary Table 6), and cell sorting based on surface
markers identified from the RNA-Seq data (Supplementary Fig. 12, SI). These results
highlight that single-cell RNA-Seq can sensitively distinguish between closely related, yet
distinct, developmental states, even within the same cell type.

Since differences in cell state explain only a small portion of the observed heterogeneity, we
next examined the variation that might arise from the differential activity of regulatory
circuits. We reasoned that co-variation across single cells between the mRNA levels of a
transcription factor and its targets would represent a potential regulatory interaction, and,
furthermore, would suggest that heterogeneity in the regulator’s expression may underlie the
variability of its targets. Such a correlative approach has successfully identified regulatory
connections from population-level transcription profiles measured in different
conditions12,23. Here, we attempted to apply it to multiple single cells in the same condition.

To this end, we calculated the correlation in expression profiles between every pair of
induced genes across all single cells, and identified a cluster of 137 genes that varied in a
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correlated way and were strongly discriminated by the second principal component (PC2,
8% of the variation, Fig. 4a,b). The cluster’s genes included the known antiviral master
regulators Irf7 and Stat2, and were highly enriched for members of the antiviral response12

(60 of 137 genes, p = 2.5×10−3, hypergeometric test, Supplementary Table 5), as well as
STAT2 targets16 (73/137 genes, p = 4.5×10−5, hypergeometric test). Most (100/137) of the
cluster’s genes were bimodally expressed across single cells (Fig. 2c, bottom) despite being
strongly expressed at the population level (13 genes TPM > 250; 53 genes TPM > 50). We
independently validated a subset of these correlations using single-cell qRT-PCR and RNA-
FISH (Fig. 4c,d). Moreover, single-cell qRT-PCR analysis of additional time points
demonstrated that these correlations persisted at 6h as well (Supplementary Discussion in SI,
Supplementary Fig. 13).

We hypothesized that bimodal variation in the expression of the cluster’s genes may be
related to differences in the levels and activities of Stat2 and Irf7. To test this hypothesis, we
measured expression of a set of antiviral genes by single-cell qRT-PCR in LPS-stimulated
BMDCs from Irf7 knockout (Irf7 −/−) mice (SI). As expected, this perturbation ablated
expression of most of the variable antiviral transcripts in our signature, while leaving non-
variable antiviral transcripts relatively unaffected (Fig. 4e). However, Stat2 expression and
variability levels were unaffected by the Irf7 knockout, implying that Stat2 may act either
upstream or in parallel to Irf7 during the response24 (Supplementary Fig. 14). As both Stat2
and Irf7 are targets of the interferon-signaling pathway, we stimulated and profiled BMDCs
from interferon receptor knockout (Ifnr −/−) mice. In these cells, we found drastically
reduced expression for both Stat2 and Irf7, as well as all other measured cluster genes (Fig.
4f).

Our analysis provides a proof-of-concept demonstrating how co-variation between
transcripts across seemingly homogeneous single cells can help to identify and assemble
regulatory circuits. Specifically, in our variable circuit (Supplementary Fig. 14) interferon
signaling is required for induction of Stat2 and Irf7, which, in turn, act to induce our variable
antiviral cluster genes. Our experiments do not definitively determine, however, which
component of the circuit causes the observed heterogeneity per se. One compelling
possibility is that upstream noise is propagated from the interferon-signaling pathway first to
Stat2 and Irf7 and then to the target genes25,26. This hypothesis is supported by the variation
we observed in STAT protein levels and nuclear localization (Supplementary Discussion in
SI, Supplementary Fig. 15 & 16). However, since temporal snapshots of RNA and protein
are not always directly comparable (Supplementary Discussion in SI, Supplementary Fig. 15
& 16), new strategies for tracing the spatiotemporal dynamics of both proteins and RNA in
single living cells are needed to fully test this hypothesis11.

A similar approach could potentially be used to explore the consequences of bimodality in
splicing. Even looking at just 18 cells, we witnessed interesting examples of bimodal
splicing patterns for genes whose isoforms have distinct functional consequences. For
example, the splicing regulators Srsf3 and Srsf7 are each known to contain a “poison
cassette exon” that, when included, targets the RNA for degradation via nonsense-mediated
decay27 (Supplementary Fig. 17). Meanwhile, splicing differences in other regulatory genes
may further enhance expression diversity: for example, proteins encoded by different
isoforms of Irf7 (Fig. 3c) differentially activate interferon-responsive genes in vitro24. These
examples suggest that heterogeneity in splicing may represent another layer of response
encoding.

In conclusion, our study reveals extensive bimodality in the transcriptional response of
BMDCs to LPS, reflected in gene expression, alternative splicing, and regulatory circuit
activity. While some variation in expression reflects differences in developmental state,
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other bimodal patterns reflect the differential activity of an antiviral regulatory circuit in this
temporal snapshot. These phenomena allowed us to treat each cell as a “perturbation
system” for reconstructing cell circuits28, even with relatively few cells.

Moreover, our results demonstrate how co-variation across single cells can help dissect and
refine gene modules that may be indistinguishable in population-scale measurements. For
instance, in a recent population-scale study16, we identified a large cluster of 808 “late-
induced” LPS genes that was enriched for both maturation genes and STAT-regulated
antiviral genes. These two subsets could not be separated by population-level expression
profiles alone16, but our single-cell data from a single timepoint clearly distinguishes them.
Similarly, the unexpected and prevalent skewing we discovered in alternative splicing
between single cells revises our molecular view of this process.

Finally, although many of our analyses focused on highly expressed genes to reduce the
potential influence of amplification noise, our data also revealed substantial bimodality
amongst more moderately expressed transcripts, such as large non-coding RNAs (lincRNAs,
Supplementary Fig. 18). This suggests that the low population-level expression of these
transcripts29 may sometimes reflect high expression in a small subset of cells as opposed to
uniform levels of low expression. While further technical improvements will be necessary to
disentangle these two hypotheses (Supplementary Fig. 5), single-cell measurements should
help facilitate the discovery and annotation of lincRNAs.

Comparing our results to other single-cell RNA-Seq data sets (e.g., Fig. 2a, Supplementary
Fig. 4) indicates that the source of the analyzed tissue (in vitro vs. ex vivo), the biological
condition of the individual cells (steady state vs. dynamically responding), and the cellular
microenvironment all likely influence the extent of single-cell heterogeneity within a
system. When applied to complex tissues – such as unsorted bone marrow, developing
embryos, tumors, and other rare clinical samples – the variability seen through single-cell
genomics may help determine new cell classification schemes, identify transitional states,
discover previously unrecognized biological distinctions, and map markers that differentiate
them. Fulfilling this potential would require novel strategies to address the high levels of
noise inherent in single-cell genomics – both technical, due to minute amounts of input
material, and biological, e.g., due to short bursts of RNA transcription30. Future studies that
couple technological advances in experimental preparation with novel computational
approaches would enable analyses, based on hundreds or thousands of single cells, to
reconstruct intracellular circuits, enumerate and redefine cell states and types, and transform
our understanding of cellular decision-making on a genomic scale.

Methods Summary
BMDCs, prepared as previously described12, were stimulated with LPS for 4h and then
sorted as single cells or populations (10,000 cells) directly into TCL lysis buffer (Qiagen)
supplemented with 1% v/v 2-mercaptoethanol. After performing an 2.2x clean up with
Agencourt RNAClean XP Beads (Beckman Coulter), whole transcriptome-amplified cDNA
products were generated using the SMARTer Ultra-low RNA Kit (Clontech), and
conventional Illumina libraries were made and sequenced to an average depth of 27 million
read pairs (HiSeq 2000, Illumina). Expression levels and splicing ratios were quantified
using RSEM14 and MISO18, respectively. Additional experiments were performed using
RNA-FISH (Panomics), Immunofluorescence, FACS, and single-cell qRT-PCR (Single
Cell-to-CT (Invitrogen) and BioMark (Fludigm)). Full Methods and any associated
references are provided in SI.
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Figure 1. Single-cell RNA-Seq of LPS-stimulated BMDCs reveals extensive transcriptome
heterogeneity
a–c, Correlations of transcript expression levels (x & y-axes: log-scale TPM+1) between
two 10,000-cell population replicates (a), two single cells (b), and the ‘average’ single cell
and a population (c). d,e, RNA-Seq read densities in single cells (blue) and population
replicates (grey) for three non-variable genes (d) and four variable ones (e). f–g, RNA-FISH
of representative transcripts. Optical micrographs (cell boundaries; grey outlines) and
maximum-normalized distributions of expression levels from a RNA-FISH co-staining (n =
3,193 cells) for Il6 (yellow) and Cxcl1 (magenta).

Shalek et al. Page 9

Nature. Author manuscript; available in PMC 2013 December 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Bimodal variation in expression levels across single cells
a, Relationship between average expression level in single cells (μ, X axis) and standard
deviation (σ, Y axis) for 6,313 genes (Supplementary Table 2). Blue dashed line: maximum
theoretical σ for an average expression level (SI); Grey dashed line: constant Fano factor (σ/
μ = 0.25). Magenta: immune response genes; Green: housekeeping genes; light blue shaded
region: single-cell average TPM < 250. b, Cellular heterogeneity for the 522 most highly
expressed genes (single cell average; Supplementary Table 3). Each row represents a
discretized histogram for a single gene (sorted by the Fano factor from low to high (top to
bottom)). Color represents the number of cells (yellow: 18 cells; black: 0) that express the
gene at the noted level. Grey dashed line denotes the constant Fano factor (0.25) highlighted
in (a). c, Averaged expression density distributions for the 281 low-variability genes (top)
and the 241 highly variable genes (bottom).
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Figure 3. Variation in isoform usage between single cells
a, RNA-Seq read densities in single cells (blue) and population replicates (grey) for two
illustrative loci, each with two different isoforms (bottom). b, Distributions of exon
inclusion (PSI scores, X axis) for alternatively spliced exons of highly expressed genes
(single-cell TPM > 250) in individual cells (blue histogram, top) and populations (grey
histogram, bottom). c, Left: RNA-Seq read densities for Irf7 (only cells where the transcript
is expressed are shown). Colored boxes mark exons analyzed by RNA-FISH. Right: RNA-
FISH images from simultaneous hybridization with probes for two constitutive (‘Con’)
regions of the transcript (A: cyan (C); B: magenta (M)) and one alternatively spliced exon
(‘Specific’: orange (O)). White arrows (middle panel) highlight two cells with high levels of
Irf7, but opposite preferences for the alternatively spliced exon. Histograms showing global
abundance ratios for isoform-specific and constitutive probes (cells with less than 5
constitutive counts have been excluded; n = 490 cells; bottom histogram deviates from 0.5
due to probe design, see SI).
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Figure 4. Analysis of co-variation in single-cell mRNA expression levels reveals distinct maturity
states and an antiviral cell circuit
a, PCA of 632 LPS-induced genes. Contributions of each cell (points) to the first two
principal components. b, Clustered correlation matrix of induced genes. Left: the Pearson
correlation coefficients (r) between single-cell expression profiles of every pair of 632 LPS-
induced genes (rows, columns). Right: the projection score (green: high; blue: low) for each
gene (row) onto PC1 (left) and PC2 (right). c, Confirmation of correlations for Irf7-Stat2 (n
= 655 cells) and Irf7-Ifit1 (n = 934 cells) by RNA-FISH. d–f, Expression levels for 16 genes
in single BMDCs (columns), measured using single-cell qRT-PCR, in wild type (WT) (n =
36) (d), Irf7 −/− (n = 47) (e), and Ifnr −/− (n = 18) (f) at 4h after LPS stimulation (SI).
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