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Abstract

Immunosenescence predisposes the elderly to infectious and autoimmune diseases and impairs the response to
vaccination. We recently demonstrated that ageing also impedes development of transplantation tolerance. Unlike
their young counterparts (8-12 weeks of age) aged male recipients (greater than 12 months of age) transplanted with
a full MHC-mismatched heart are resistant to tolerance mediated by anti-CD45RB antibody. Surprisingly, either
chemical or surgical castration restored tolerance induction to levels observed using young recipients. Based on the
strong impact of endocrine modulation on transplant tolerance, we explored the impact of ageing and castration on
the immune system. Here we report a significant increase in the percentage of T cells that produce interferon-γ (IFN-
γ) in aged male versus young male animals and that the overall increase in IFN-γ production was due to an
expansion of IFN-γ-producing memory T cells in aged animals. In contrast to IFN-γ production, we did not observe
differences in IL-10 expression in young versus old male mice. We hypothesized that endocrine modulation would
diminish the elevated levels of IFN-γ production in aged recipients, however, we observed no significant reduction in
the percentage of IFN-γ+ T cells upon castration. Furthermore, we neutralized interferon-γ by antibody and did not
observe an effect on graft survival. We conclude that while elevated levels of interferon-γ serves as a marker of
tolerance resistance in aged mice, other as yet to be identified factors are responsible for its cause. Defining these
factors may be relevant to design of tolerogenic strategies for aged recipients.
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Introduction

The elderly are the fastest growing segment of the
population with end-stage organ disorders, and their numbers
on the transplant waiting list continue to rise [1–4]. By 2020, for
the first time in human history, the number of people older than
65 will outnumber the number of children under 5 [5]. Induction
of durable donor specific tolerance could allow successful
transplantation without the morbidity of immunosuppression
[6,7]. To be broadly applicable, it will need to succeed in
recipients of all ages, yet clinical and laboratory transplant
tolerance induction protocols almost exclusively rely on young
recipients. Furthermore, the majority of basic science research
in tolerance takes place in young animals. Thus, in order for
tolerance to become a reality for the majority of transplant

patients, it is essential to understand the effects of ageing on
transplant tolerance.

Due to a decline in immune function, the elderly are more
susceptible to infectious disease and malignancy, while
exhibiting an impaired response to vaccination [8–10]. At the
cellular level, ageing is associated with a decrease in the
number of naive lymphocytes, a decreased proliferation of
CD4+CD25- T cells, and a decreased response to mixed
lymphocyte reaction [11,12]. This would suggest that tolerance
might be more easily achievable in the elderly, but
immunosenescence is also accompanied with increased
autoimmune disease and cardiovascular disease, in which an
over-reactive immune response is thought to play a role
perhaps suggesting some loss of regulation [13–15]. In
addition, an increase in the ratio of memory to naive T cells
(Tnaive) is seen in observed in older humans and mice
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[16],and memory T cells (Tmem) have a decreased threshold
of activation and are resistant to costimulatory blockade [17].
IFN-γ production by memory T cells is also associated with
acute renal rejection [18,19].

Donor age, recipient age, and donor-recipient age difference
all influence graft survival [20–25]. In a study of nearly 49,000
kidney transplant recipients, graft loss associated with acute
rejection episodes was considerably higher in elderly
recipients; five-year death censored kidney graft survival was
59.9% for recipients over age 65 versus 82% for recipients
under age 35 [25]. This suggests that the elderly may require
more intense conditioning protocols for tolerance induction,
which is complicated by the fact that immunosuppressive
therapy also carries higher morbidity for elderly patients
[24,26].

We have observed that a short course of anti-CD45RB
reliably induces stable, robust tolerance to various allogeneic
grafts in young mice but never in aged mice [27–29]. In a
cardiac transplant model, over half of heart grafts survived
long-term in young male recipients, while in old male recipients,
all grafts were rejected quickly. Recently, T cell interferon-γ
production has been reported to play a key role in age-
dependent tolerance resistance [30]. We hypothesized that the
increased proportion of IFN-γ producing memory T cells
impairs tolerance induction in aged mice, and that castration
returns IFN-γ production to normal levels.

Materials and Methods

Mice
Male C3H/HeJ and C57BL/6, aged 8 to 10 weeks, were

purchased from Jackson Labs (Bar Harbor, Maine). All mice
were housed under specific pathogen-free conditions in
approved plastic cages in the animal facility of Massachusetts
General Hospital. Mice were randomized to control and
experimental groups. Mice were housed 4 per cage under
standard conditions at constant temperature, humidity, and
light/dark cycles, and provided with food and water ad libitum.

All protocols detailed below were performed following the
principles of laboratory animal care and approved by the MGH
Institutional Animal Care and Use Committee (#2007N000023).
The protocol conforms to the USDA Animal Welfare Act, PHS
Policy on Humane Care and Use of Laboratory Animals, the
“ILAR Guide for the Care and Use of Laboratory Animals” and
other applicable laws and regulations. All efforts were made to
minimize suffering.

Transplantation
Skin grafts were transplanted to mice according to the

technique of Billingham and Medawar [31] as previously
described. 100 ug of anti-CD45RB (HB220) and 250 ug of anti-
CD40L (MR1) was administered on days 0, 1, 3, 5, and 7 post-
transplant; both antibodies were from BioXCell (Lebanon, NH).
Anti-interferon-γ (XMG1.2, BioXCell) was administered on days
0, 1, 3, 5, and 7 post-transplant either at 200 ug or 600 ug per
dose. Euthanasia was by cervical dislocation under Avertin
anesthesia (125-250 mg/kg IP).

For pain management, animals designated for transplant
were administered pre-emptive analgesia for post-operative
pain control. The first dose of analgesic was given 30 minutes
prior to the initiation of the surgical procedure. Buprenex 0.05
to 0.1 mg/kg sc q 8-12 hrs was administered for the first 3 days
post-procedure. In addition, the animals were kept warm and
monitored for one hour post-transplant, then at least daily for
the first week to assess the general health status of the mouse
as well as look for signs of distress. After the first week, the
animals were examined 2-3 times per week until graft rejection.

A skin graft is not a life-threatening procedure, and transplant
recipients recover quickly and generally do not die. Any animal
in the study that exhibited lethargy, weight loss, ruffled fur, an
abnormal appearance, or any other serious health condition
was euthanized humanely.

Cell preparation and flow cytometry
Single cell suspensions were generated from spleens and

peripheral lymph nodes by passage through a 70μM nylon cell
strainer followed by RBC lysis buffer (Sigma-Aldrich). Cells
were stimulated in Complete Medium (RPMI 1640 containing
10% fetal bovine serum (HyClone FetalClone III, Thermo
Scientific), 50 μM 2-mercaptoethanol (ACROS Organics), 1
mM sodium pyruvate, NEAA, 2 mM L-glutamine, 100 IU mL-1

Penicillin, and 100 μg mL-1 Streptomycin, all from MP
Biomedicals) with PMA (50 ng mL-1, Sigma), ionomycin (1 μg
mL-1, Sigma), monensin (GolgiStop; 4 μg mL-1, BD), and either
with or without LPS (10 μg mL-1 Escherichia coli serotype 0111:
B4, Sigma) in 6 well tissue culture treated plates for 5 hours in
a 37° C / 5% CO2 incubator.

Cells were surface stained at 4°C in FACS buffer (PBS
containing 2% FBS and 0.1% sodium azide) in 96 well plates,
with 2 x 106 cells per well. Fc receptors were blocked with
purified anti-Mouse CD16/CD32 (2.4G2, BD Pharmingen) prior
to cell surface staining. Fluorescently labeled mAbs were used
for the following markers: CD4 (GK1.5, Biolegend), B220
(RA3-6B2, Biolegend), CD8 (53-6.7, eBioscience), CD62L
(MEL-14, eBioscience), and CD44 (IM7, BD).

Intracellular staining was performed using the Intracellular
Staining Buffer Set (eBioscience) according to the
manufacturer’s instructions. Cells were stained with
fluorescently labeled mAbs or non-specific isotypes for the
following markers: IFN-γ (XMG1.2), IL-10 (JES5-16E3), all from
eBioscience. Samples were run on a LSRII flow cytometer (BD
Biosciences) and analyzed using FlowJo software (Tree Star,
Inc.).

Statistical analysis
Data were analyzed using GraphPad Prism (version 5,

GraphPad Software). Graft survival between experimental
groups was compared using Kaplan-Meier survival curves and
Wilcoxon statistics. Other differences between experimental
groups were analyzed using the Student’s t test. P values less
than 0.05 were considered statistically significant.

IFN-g Levels in Transplant Tolerance Resistance
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Results

Ageing impairs tolerance induction to skin grafts
As previously reported, aged recipients are resistant to anti-

CD45RB antibody-mediated transplant tolerance to heart
allografts. In young anti-CD45RB-treated C57BL/6 recipients,
roughly 60% of C3H/H3J heart grafts survive long-term (>100
days), while C3H/HeJ heart grafts are rapidly rejected in aged
recipients (greater than one year-old [29]) receiving the same
antibody treatment. Using the same strain combination, we
examined whether age-dependent tolerance resistance could
also be extended to skin grafts. Both untreated young and old
C57BL/6 skin graft recipients reject C3H/HeJ skin grafts at the
same tempo (Figure 1). C3H/HeJ donors are less than three
months old. When treated with anti-CD45RB plus anti-CD40L,
50% of young C57BL/6 recipients grafted with C3H/HeJ skin
survive greater than 80 days, however, median survival time for
antibody-treated aged recipients is 16.5 days (Figure 1).
Neither antibody extends graft survival in young recipients
(data not shown). Thus, as with heart grafts, aged recipients
are also resistant to prolongation of skin graft survival.

Elevated production of IFN-γ in aged animals
To understand the basis for this resistance to tolerance

induction in old mice, we examined whether their T cell
cytokine profile differed from that of T cells from young mice.
We compared interferon-γ production by CD4+ and CD8+ T
cells in spleen and lymph node (LNC) of young versus old
mice. IFN-γ production by memory T cells has correlated with
acute renal rejection [18,19], and we hypothesized that IFN-γ
production in aged animals would be higher than in young.
Overall, the percentages of lymphocytes comprising the spleen
were not significantly altered, but we did observe a decrease in
the percentage of CD4+ T cells in aged naive male mice
(Figure S1). In naive male animals, a significantly higher
percentage of CD4+ and CD8+ T cells from aged mice
produced IFN-γ than from young mice (Figure 2) suggesting a
possible mechanism of tolerance resistance in aged recipients.

Memory T cell expansion results in elevated IFN-γ
production by aged animals

We next examined which subset of T cells - Tnaive or Tmem
- produced the elevated levels of IFN-γ. Tmem have a
decreased threshold of activation and are resistant to
costimulatory blockade [17], thus, an increased percentage of
Tmem would play a significant contribution to transplant
tolerance resistance. Spleens from naive aged mice, despite
being housed in germ-free conditions, exhibited a significant
increase in the percentage of both CD4+ and CD8+ memory T
cells (Figure 3A) compared to naive young mice. Lymph nodes
were not examined.

We next examined whether the frequency of IFN-γ-producing
Tmem or Tnaive was higher in aged animals versus naive
animals. By gating on naive CD4+ and CD8+ T cells in
unchallenged young and old animals we found a higher
percentage of naive T cells produce IFN-γ in aged animals
compared to young animals, yet overall fewer than 2% of the
naive T cell populations produced IFN-γ (Figure 3B). When we
examined IFN-γ production by memory T cells, we observed a
significantly higher percentage of IFN-γ+ memory CD4+ and
CD8+ T cells in aged mice compared to those in young mice.
These data suggest that IFN-γ production by Tmem may be
involved in age-dependent transplant tolerance resistance.

Next we examined the impact of transplantation on the
percentage of Tmem. We hypothesized that memory T cells in
transplanted aged recipients would exhibit more robust
expansion than memory T cells in young recipients. Male mice
received a skin graft, and spleens were analyzed at two weeks
post-transplantation. In young recipients, there is an increase in
both CD4+ and CD8+ Tmem after skin graft transplantation
which was not statistically significant. In contrast, in aged
recipients, there is a statistically significant increase in both
CD4+ and CD8+ Tmem after transplantation (Figure 3A). Most
importantly, IFN-γ production by CD4+ T cells of transplanted
aged recipients rises with antibody treatment, while young
recipients' CD4+IFN-γ production decreases back to baseline
levels (Figure 2). These data suggest that the increase in
tolerance resistance in aged mice may be related to the failure
of antibody treatment to control IFN-γ production by Tmem.

Figure 1.  In contrast to young recipients, aged recipients are resistant to transplant tolerance induction.  Young C57BL/6
recipients (less than 3-months of age) and aged C57BL/6 recipients (over 12-months of age) reject C3H/HeJ skin graft at same
tempo. When treated with anti-CD45RB and anti-CD154 antibodies, 50% of skin grafts survive over 80 days. In contrast, antibody-
treated aged recipients reject quickly (aged MST = 16.5 days versus young MST = 87.5 days, p>0.001**).
doi: 10.1371/journal.pone.0082856.g001
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We next examined whether IL-10 levels were altered in
young male mice versus aged male mice. IL-10 is also a critical
cytokine in Th1/Th2 development, and elevated levels of IL-10

and Th2 cytokines correlates with prolonged graft survival
[32–34]. We hypothesized that IL-10 production would be
significantly lower in aged mice as a result of elevated IFN-γ

Figure 2.  A higher percentage of both CD4 and CD8 T cells from aged animals produce IFN-γ relative to those from young
animals.  Spleen and lymph node (LNC) from naive animals, grafted animals, and grafted, anti-CD45RB / anti-CD154-treated
animals were examined 14 days after transplant, p<0.05*. Representative FACS plots are shown, bottom. 2 to 3 animals were
examined independently in each group.
doi: 10.1371/journal.pone.0082856.g002
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production. IL-10 levels by B cells and CD4+ and CD8+ T cells
were unchanged in young male versus aged male mice (Figure
4).

Castration does not significantly modulate percentage
of IFN-γ-producing T cells

We have previously demonstrated that castration restores
tolerance to aged, tolerance-resistant recipients [29]. We
examined whether modulation of IFN-γ production correlated
with the restoration of tolerance. Grafted and non-grafted aged
animals were castrated, and spleen and draining lymph node
were examined two weeks post-transplant. Castration was
performed 30 days prior to transplant. Grafted C57BL/6 mice
were transplanted with C3H skin grafts and treated with anti-
CD40L / anti-CD45RB antibodies for one week. In the absence
of a skin graft, castration did reduce the percentage of IFN-γ+ T
cells in the draining lymph node, however, overall, and
especially in the transplant setting, there was no significant
difference in castrated versus non-castrated groups (Figure 5).

When we specifically examining activated CD4+ CD44+ T
cells, still we did not observe any significant difference between
castrated and non-castrated groups (data not shown). Thus,
these data suggest the elevated levels of IFN-γ-producing T
cells may not be the cause of tolerance resistance in aged
transplant recipients.

Neutralization of IFN-γ does not restore antibody-
mediated tolerance induction

To further define the role of increased IFN-γ secretion, we
neutralized this cytokine in the aged animals by anti-interferon-
γ neutralizing antibody. We used two different doses of anti-
IFN-γ antibody (clone XMG1.2) to see if we could prolong graft
survival as well as to see if there was a dosage effect. We
utilized a previously reported regimen [35], and the high dose
of anti-IFN-γ antibody was sufficient to accelerate graft
rejection in a young recipient (Figure S2). C57BL/6 mice were
transplanted with C3H skin grafts and treated with anti-CD40L /
anti-CD45RB antibodies with or without co-injection of anti-

Figure 3.  Memory T, not naive T, exhibit elevated production of IFN-γ, in young and old animals.  (A) CD4 and CD8 memory
T cells expand in aged animals. Young and aged animals, with and without skin graft, were examined for memory T cells 14 days
post-transplant. At least two to three animals were examined independently per group. (B) Splenocytes were examined for CD4,
CD8, CD44, and IFN-γ expression. Tnaive cells were gated as CD4+ CD44low or CD8+ CD44low, while Tmem were gated as
CD44hi. The percentage of IFN-γ+ cells is plotted on the y-axis. At least two to three animals were examined independently per
group.
doi: 10.1371/journal.pone.0082856.g003
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interferon-γ neutralizing antibody (Figure 6). While we
observed a modest prolongation in median survival time,
neither dose of anti-interferon-γ resulted in a statistically
significant prolongation of skin graft survival.

Discussion

Our work and the work of others suggest that anti-CD45RB
treatment promotes the differentiation of Th2 cells and that this

Figure 4.  Young and aged animals exhibit similar levels of IL-10 production.  Spleen was examined for B220, CD4, CD8, and
IL-10. Y-axis indicates percentage of B220+, CD4+, or CD8+ cells that were IL-10+. At least two to three animals were examined
independently per group.
doi: 10.1371/journal.pone.0082856.g004

Figure 5.  Castration does not significantly modulate levels of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells.  The effect of castration
was examined on CD4+ and CD8+ T cells from spleen and lymph node of ungrafted and grafted, antibody-treated animals.
Intracellular IFN-γ was examined two weeks after skin graft. Castration was performed 30 days before skin graft. In the absence of a
skin graft, castration reduced the % of IFN-γ+ T cells in the lymph node, however, overall, castration did not significantly affect the
percentages of IFN-γ production.
doi: 10.1371/journal.pone.0082856.g005

IFN-g Levels in Transplant Tolerance Resistance
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Th1/Th2 shift is critical to the tolerogenic effect of anti-CD45RB
Ab [36]. Both in human and in mouse, ageing has been
demonstrated to be associated with a Th1-Th2 imbalance or a
diminished Th1-Th2 response [37], but the data are conflicting.
Aged humans have been reported to have increased Th1
[37,38], decreased Th1 [39], increased Th2 [37,38], and
decreased Th2 [39]. Similar conflicting reports exist for mice,
but such tendencies also result from mouse strain and
experimental model differences [40–44]. The effects of ageing
on Th1/Th2 in an allograft response remain unclear. Our data
suggest that anti-CD45RB antibody maintains low levels of
CD4 IFN-γ, a hallmark Th1 cytokine, in grafted young
recipients (Figure 2). However, upon antibody treatment, aged,
grafted animals produce significantly elevated levels of IFN-γ
relative to young, grafted, antibody treated animals (**p<0.01)
[19,30]. The molecular mechanism underlying this elevated
IFN-γ expression remains unknown.

Interferon-γ is a potent inducer of cellular immunity. IFN-γ
may act directly to promote CD8 T cell responses, and it may
act indirectly by skewing CD4 Th cells towards Th1 [45]. In
young recipients treated with anti-IFN-γ neutralizing antibody or
in IFN-γ-deficient recipients, T cell costimulatory blockade
resulted in decreased survival of allografts relative to wild-type
or untreated recipients. It was hypothesized that the absence of
interferon-γ resulted in uncontrolled proliferation of activated T
cells and subsequent accelerated rejection [46–48]. Interferon-
γ may also act on the graft to promote its survival [49].
Consistent with this, we found that treatment of young C57BL/6
recipients with high dose anti-interferon-γ resulted in more
rapid rejection.

Memory CD8 T cells have been demonstrated to secrete
high levels of IL-2 and IFN-γ in both mouse and in human
[8,50,51]. Our in vitro data demonstrate that CD4 and CD8
Tmem, particularly Tmem of aged animals, are skewed
towards the production of IFN-γ. While both Tmem and Tnaive
may differentiate into IFN-γ-producing cells in vivo, because
Tmem respond more quickly, they are likely to skew the overall
response. However, this high proportion of IFN-γ-producing T
cells may be due to the genetic propensity of B6 to skew
towards Th1. In humans, the frequency of pre-transplant

Tmem, as measure by in vitro IFN-γ production, correlated with
risk of acute renal allograft rejection [18,19].

Despite housing in a germ-free facility, Tmem in aged
animals are likely to arise either through heterologous
activation to an infectious agent or by bystander proliferation
[52–55]. Yet since these Tmem were not generated by
sensitization to a previous transplant, it is surprising that these
cells would still pose such a formidable barrier to transplant
tolerance [56]. The barrier is unlikely due simply to precursor
frequency of alloreactive cells. By ELISpot, Du et al.
demonstrated that the frequency of alloreactive cells in aged
mice pre-transplant was no greater than that in young animals.
Consistent with survival data, only after transplant and Ab
treatment was there a significant difference in the frequency of
alloreactive cells between young and aged animals.

We hypothesized that the increased IFN-γ production that we
observed in aged mice was responsible for tolerance
resistance, and that the IFN-γ production might in turn be
controlled by hormones. However, neither dose of anti-IFN-γ
prolonged survival in aged recipients (Figure 6). Most skin
grafts survived beyond 15 days, and potentially a dosing
regimen in which anti-IFN-γ antibody was administered beyond
just the first week might have significantly prolonged graft
survival. Castration also had no effect on IFN-γ production in
aged mice, further suggesting IFN-γ alone does not mediate
tolerance resistance in aged mice, since castrated, aged mice
are no longer resistant to tolerance induction.

Based on our data and the work of others in the effects of
ageing on allograft transplantation outcome, we hypothesized
that elevated T cell interferon-γ production interfered with
tolerance induction. However, our data suggest that this
elevated IFN-γ production may not contribute to the tolerance
resistance observed with age, and perhaps interferon-γ is but a
marker of memory T cells which accumulate with age. Indeed,
IFN-γ neutralization did prolong graft survival in aged mice.
More potent therapies involving T cell depletion and
costimulatory blockade of ICOS and CD28/B7 have
demonstrated significant graft survival prolongation in young
recipients and should be examined in old recipients [57,58].

At the time of puberty and linked with an increase in sex
steroid levels, the thymus atrophies [59,60]. This dramatic age-

Figure 6.  Neutralizing anti-interferon-γ antibody does not prolong graft survival in aged recipients.  C57BL/6 mice received
C3H skin grafts and were treated with anti-CD40L/anti-CD45RB antibodies with or without anti-interferon-γ antibodies (low dose at
200 ug or high dose at 600 ug). All antibodies were injected every other day for one week starting on the day of transplant.
doi: 10.1371/journal.pone.0082856.g006
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related change results in a significant reduction in thymic size,
overall thymocyte cell number, and the absolute number of
single-positive CD4+ and CD8+ T cells that leave the thymus
[61,62]. Castration has been demonstrated to restore thymic
architecture, improve adaptive immunity in both sexes, alter
lymphocyte cytokine profile, and in some cases, reverse the
Th1/Th2 differences [49,60,63–66]. We previously reported that
castration did restore thymic architecture. Our current finding
that neutralization of IFN-γ does not affect tolerance resistance
and that castration does not change IFN-γ levels would tend to
favor the importance of thymic rejuvenation and output in the
immunological alterations seen in aged mice.

Supporting Information

Figure S1.  The percentages of lymphocytes in the spleen
of an old mouse are not significantly different from that of
a young mouse. Antibodies to CD4, CD8, and B220 were
used to stain splenocytes of young and old mice, and cells
were analyzed by flow cytometry. Percentage of CD4+ cells

decreased with age (20.7%+/-1.1 versus 14.5%+/-0.9, p<0.01).
Data represent two independent experiments and 5 mice.
Young mice were 2 months of age, and old mice were over 12
months of age.
(TIF)

Figure S2.  High dose anti-IFN-gamma accelerates graft
rejection. Young C57BL/6 mice were grafted with C3H/HeJ
skin and treated with anti-CD40L plus anti-CD45RB antibodies
with or without anti-IFN-gamma antibody. Recipients receiving
additional IFN-gamma antibody exhibited accelerated graft
rejection.
(TIF)
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