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Large-scale evaluation of automated clinical note
de-identification and its impact on
information extraction

Louise Deleger,1 Katalin Molnar,1 Guergana Savova,2 Fei Xia,3 Todd Lingren,1 Qi Li,1

Keith Marsolo,1 Anil Jegga,1 Megan Kaiser,1 Laura Stoutenborough,1 Imre Solti1

ABSTRACT
Objective (1) To evaluate a state-of-the-art natural
language processing (NLP)-based approach to
automatically de-identify a large set of diverse clinical
notes. (2) To measure the impact of de-identification on
the performance of information extraction algorithms on
the de-identified documents.
Material and methods A cross-sectional study that
included 3503 stratified, randomly selected clinical notes
(over 22 note types) from five million documents
produced at one of the largest US pediatric hospitals.
Sensitivity, precision, F value of two automated de-
identification systems for removing all 18 HIPAA-defined
protected health information elements were computed.
Performance was assessed against a manually
generated ‘gold standard’. Statistical significance was
tested. The automated de-identification performance
was also compared with that of two humans on a 10%
subsample of the gold standard. The effect of de-
identification on the performance of subsequent
medication extraction was measured.
Results The gold standard included 30 815 protected
health information elements and more than one million
tokens. The most accurate NLP method had 91.92%
sensitivity (R) and 95.08% precision (P) overall. The
performance of the system was indistinguishable from
that of human annotators (annotators’ performance was
92.15%(R)/93.95%(P) and 94.55%(R)/88.45%(P) overall
while the best system obtained 92.91%(R)/95.73%(P) on
same text). The impact of automated de-identification
was minimal on the utility of the narrative notes for
subsequent information extraction as measured by the
sensitivity and precision of medication name extraction.
Discussion and conclusion NLP-based de-
identification shows excellent performance that rivals the
performance of human annotators. Furthermore, unlike
manual de-identification, the automated approach scales
up to millions of documents quickly and inexpensively.

This paper studied automated de-identification of
clinical narrative text using natural language
processing (NLP)-based methods. The specific aims
were (1) to evaluate a state-of-the-art NLP-based
approach to automatically de-identify a large set of
diverse clinical notes for all HIPAA (Health Insur-
ance Portability and Accountability Act)-defined
protected health information (PHI) elements
and (2) to measure the impact of de-identification
on the performance of information extraction (IE)
algorithms executed on the de-identified docu-
ments. In addition, we hope that our studydby

contrasting the performance of human and
automated de-identificationdwill shape policy
expectations.

BACKGROUND AND SIGNIFICANCE
The importance of information included in narra-
tive clinical text of the electronic health record
(EHR) is gaining increasing recognition as a critical
component of computerized decision support,
quality improvement, and patient safety.1 2 In an
August, 2011 JAMA editorial, Jha discusses the
promises of the EHR, emphasizing the importance
of NLP as an enabling tool for accessing the vast
information residing in EHR notes.3 NLP could
extract information from clinical free-text to
fashion decision rules or represent clinical knowl-
edge in a standardized format.4e6 Patient safety and
clinical research could also benefit from informa-
tion stored in text that is not available in either
structured EHR entries or administrative data.7e9

However, the 1996 HIPAA privacy rule requires
that before clinical text can be used for research,
either (1) all PHI should be removed through
a process of de-identification, (2) a patient’s consent
must be obtained, or (3) the institutional review
board should grant a waiver of consent.10 Studies
have shown that requesting consent reduces
participation rate, and is often infeasible when
dealing with large populations.11 12 Even if a waiver
is granted, documents that include PHI should be
tracked to prevent unauthorized disclosure. On the
other hand, de-identification removes the require-
ments for consent, waiver, and tracking and facili-
tates clinical NLP research, and consequently, the
use of information stored in narrative EHR notes.
Several studies have used NLP for removing

PHI from medical documents.13 Rule-based
methods14e23 make use of dictionaries and manu-
ally designed rules to match PHI patterns in the
texts. They often lack generalizability and require
both time and skill for creating rules, but perform
better for rare PHI elements. Machine-learning-
based methods,24e34 on the other hand, automati-
cally learn to detect PHI patterns based on a set of
examples and are more generalizable, but require
a large set of manually annotated examples.
Systems using a combination of both approaches
usually tend to obtain the best results.13 35 Overall,
the best systems report high recall and precision,
often >90%, and sometimes as high as 99%.
Nevertheless, no study has evaluated the perfor-
mance of automated de-identification for all PHI
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classes.13 Important items are often ignoreddin particular, ages
>89,15 16 18 24 25 geographic locations,15 16 24 26 institution and
contact information,16 24 26 dates, and IDs.16 24 Furthermore,
systems should ideally be evaluated on a large scale, including
the diverse document types of the EHRs, to have a good idea of
their accuracy and generalizability. However, most systems use
only one or two document types for evaluation, such as
pathology reports,16 17 19 20 26 discharge summaries,23 25 27e30 34

nursing progress notes,23 34 outpatient follow-up notes,22 or
medical message boards.33 Some of them were only evaluated on
documents with synthetic patient PHI (manually de-identified
documents re-identified with fake PHI).27e30 Very few systems
have been evaluated on more than two note types.14 15 24 32

Only a handful of studies provide details on over-scrubbing
(non-PHI wrongly identified as PHI) and none of them investi-
gate the effect of de-identification on subsequent IE tasks.13 It is
indeed possible that de-identification has an adverse effect on IE
accuracy.13 Over-scrubbing errors could overlap with useful
informationdfor example, if a disease name is erroneously
recognized as a person name it will be removed and lost to
subsequent IE application. Second, NLP techniques such as part-
of-speech tagging and parsing may be less effective on modified
text.

In this paper, we examine some of the gaps of the literature
and conduct de-identification experiments on a large set and
wide variety of clinical notes (over 22 different types), using real
PHI data (as opposed to resynthesized data), studying all classes
of PHI and measuring the impact of de-identification on
a subsequent IE task. We also illustrate the strength of auto-
matic de-identification by comparing human and system
performances.

MATERIAL AND METHODS
Data
Three thousand five hundred and three clinical notes were
selected by stratified random sampling from five million notes
composed by Cincinnati Children’s Hospital Medical Center
clinicians during 2010. The study was conducted under an
approved institutional review board protocol. The notes (see
descriptive statistics in figure 1) belong to three broad categories

(with the same proportional distribution as the five million
notes):
< Labeled (created within the EHR system and includes division

origin (eg, emergency department, operating room))
< Unlabeled (created within the EHR but no division)
< External (written outside the EHR (eg, on a radiology system

and transferred into the EHR through an interface)).
Within the labeled category, we included 22 note types in

a randomly stratified sample. We selected a type only if the
number of notes exceeded the subjective limit of 800 during the
previous 12 months. We oversampled discharge summaries
because of their richness in de-identification information,32 and
some of the less common notes to have at least 20 notes for each
type. Figure 1 shows the distribution of note types in our corpus.
Including the unlabeled and external notes, the total number of
note types was above 22.
All 18 HIPAA-defined PHI categories were included in the

study.10 Some of them were collapsed into one category. In total
we defined 12 classes:
< NAME
< DATE (eg, “12/29/2005”, “September 15th”)
< AGE (any age, not only age >89)
< EMAIL
< INITIALS: person’s initials
< INSTITUTION: hospitals and other organizations
< IP: internet provider addresses and URLs
< LOCATION: geographic locations
< PHONE: phone and fax numbers
< SSN: social security number
< ID: any identification number (medical record numbers, etc)
< OTHER: all remaining identifiers.

To create a ‘gold standard’ for building and evaluating
systems, clinical notes were manually annotated by two
annotators (native English speakers with Bachelor degrees). All
notes were double annotated and the final gold standard
resulted from consensus seeking adjudication led by the
annotators’ supervisor. Before production annotation, the
annotators were trained and the annotation guideline was
iteratively developed. Double annotation is a standard method
in NLP because it assures a strong gold standard. We will refer

Figure 1 Descriptive statistics of the corpus. DC, discharge; ED, emergency department; H&P, history and physical; OR, operating room.
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to the two annotators who created the gold standard as
annotator 1 and annotator 2.

Additionally, the 1655 ‘labeled’ notes from the corpus were
also double-annotated for medication names to test the impact
of de-identification on the subsequent extraction of medication
names.

De-identification systems
We studied the characteristics of two de-identification systems.
One, MIST (MITRE Identification Scrubber Toolkit), is a proto-
type from MITRE.32 The other system was designed in-house
based on the MALLET machine-learning package.36 Both
systems are based on conditional random fields (CRFs),37 but
implement the algorithm slightly differently. Using the
MALLET package to build our system gave us access to the
algorithm’s source code (necessary to obtain probability scores
for recall-bias experiments), while MIST’s source code was not
available.

We tested the MIST system in its default configuration, and
with customizations (preprocessing and postprocessing steps
and additional features for the CRF model). We also tested two
configurations of the in-house system, one equivalent to the
“out-of-the-box” MIST (ie, same feature generation process), and
one with customizations.

Before training the customized systems, we performed two
preprocessing steps: tokenization with an in-house tokenizer
and part-of-speech tagging with the TreeTagger POS tagger (used
with its downloadable English model).38 Features for the CRF
models consisted of the default features generated by MIST:
token-level properties (capitalization, punctuation, etc) and
contextual features (token before, token after, etc). Additional
features we used were token parts-of-speech and presence (or
absence) of the tokens in a name lexicon (built using the US
Census Bureau’s dataset and the hospital’s physician (employee)
database).

We also added three postprocessing rules to the machine-
learning algorithms, consisting of regular expressions to (1)
identify EMAIL; (2) match strings to the entries of our name
lexicon, with a match resulting in the assignment of a NAME

label; and (3) label any string as a NAME if the algorithm tagged
a matching string NAME in the document but missed the
particular string somewhere else in the same document. Step (1)
was necessary because of the rare frequency of EMAILs, which
made it difficult for the system to learn their patterns. The
presence of a word in a name lexicon was also used as a feature
for machine learning, but adding step (2) as a postprocessing rule
statistically significantly improved the performance.
Figure 2 depicts the main steps of the de-identification process

(identical for both customized systems).
For convenience, we will refer to the four system versions as

follows:
< MIST1: original, “out-of-the-box” MIST system;
< MIST2: customized MIST system (preprocessing, additional

features and postprocessing);
< MCRF1: in-house system with a configuration equivalent to

MIST1;
< MCRF2: configuration equivalent to MIST2.

Experiments
Evaluation metrics
We used three standard NLP metrics to measure performance:
recall (sensitivity), precision (positive predictive value) and
F value, which is the harmonic mean of recall (R) and
precision (P) (F¼(2*P*R)/(P+R)).39 40 We computed those
metrics at span level (complete phrase is identified as PHI),
token level (individual tokens are identified as PHI) and tag-blind
token level (without taking into account the specific PHI tags).
Span-level performance was computed for all performance tests.
Token-level and tag-bling evaluations are provided only for the
best performing system.
To rule out the possibility that the performance difference

between two systems’ outputs was due to chance, we also
tested the statistical significance of the difference, using
approximate randomization.41 42

Interannotator agreement (IAA)
IAAwas calculated for the two annotators to define the strength
of the gold standard,43 using the F value, after an initial 2-week

Figure 2 De-identification process.
CRF, conditional random field; PHI,
protected health information.

Research and applications

86 J Am Med Inform Assoc 2013;20:84–94. doi:10.1136/amiajnl-2012-001012



training period. We required both span and tag to be the same for
an annotated element to be counted as a match.

De-identification performance tests
We evaluated overall performance (all tags considered) and tag-
based performance of the MISTand MCRF systems in a 10-fold
cross-validation setting (the corpus was divided at the document
level). In addition to the corpus-level test, we also measured the
de-identification performance for document types.

A separate subset of 250 annotated documents (not part of
either the training or testing) was manually examined during
error analyses (development set).

Additionally, we also measured the performance of MCRF2i

on two publicly available datasets: the i2b2 corpus,35 which
consists of de-identified discharge summaries (669 reports
for training and 220 reports for testing) that have been re-
synthetized with fake PHI; and the PhysioNet corpus,23 44

which consists of 2483 nursing notes, with very sparse PHI
elements (1779 in total). We report performance using a cross-
validation setting for this corpus.

Humans versus systems performance tests
We conducted an experiment to compare the performance of the
automated systems with that of humans. Two native English
speakers (with Masters and Bachelor degrees) who had not
previously taken part in the project annotated (independently)
a random subset of 10% of the corpus (350 documents). We
evaluated their individual performance against our gold stan-
dard. We will refer to the two additional annotators as annotator
3 and annotator 4.

Recall bias
In de-identification processes, recall is usually more important
than precision, so we experimented with infusing recall bias into
both systems.45 For MIST, we used the built-in command line
parameter that implements Minkov’s algorithm.45 For the
MCRF system, we increased recall by selecting tokens labeled
non-PHI and changing their label to the PHI label with the next
highest probability suggested by the system. We selected non-
PHI labels only if their system-generated probability score was
less than or equal to a given threshold (eg, if we set the proba-
bility threshold at 0.95, every non-PHI label with a score >0.95
retained the original label). The threshold was varied between
0.85 and 0.99. In general, the higher we set the threshold, the
more non-PHI tokens we selected and replaced, leading to higher
recall.

Impact of de-identification on subsequent IE
The impact was tested by measuring the performance of auto-
mated IE on medication names (a subset of the corpus was
annotated for medication names, as mentioned in the ‘Data’
subsection). We extracted medication names from clinical notes
(1) before removing PHI (system trained and tested on original
corpus), (2) after removing and replacing PHI with asterisks
(system trained and tested on the corpus with asterisks), and (3)
after removing and replacing PHI with synthetically generated
PHI surrogates (system trained and tested on corpus with
synthetic PHI). In the evaluation of medication IEdfor example,
if the medication name “aspirin” was erroneously tagged as

NAME and removed from the corpus, then it was counted as
false negative for IE.
We used MIST’s built-in functionality to replace the original

PHI with synthetic PHI. For medication name extraction, we
used an automated system being developed in-house.46 47

RESULTS
Corpus descriptive statistics
The corpus included at least 22 different note types, and more
than one million tokens (see figure 1). Figure 3 shows the
number of annotated PHI elements. Almost 50% are located in
discharge summaries and progress notes. This lopsided distri-
bution is due to the fact that these note types generally are the
longest. More than 30% of all PHI was found in discharge
summaries, confirming findings of Aberdeen et al.32

DATE comprised more than one-third of all PHI, and NAME
about a quarter. The third largest category was the mixed group
of OTHER. Not shown in the figures are categories with
extremely low frequencies: EMAIL (frequency: 14), INITIALS
(16), IP (10), and SSN (1).

Interannotator agreement
The overall F value of IAA was 91.76 for manual
de-identification between annotators 1 and 2 (see top part of
figure 4). The IAA for manual medication name annotation
was 93.51 (1655 “Labeled” notes were annotated for medica-
tions). These values indicate good agreement for both the
de-identification and the subsequent medication name
extraction annotations.

Automated de-identification performance
Table 1 (upper section) presents the performance of the de-
identification systems for each tag type and overall, for the “out-
of-the box” systems (MIST1 and MCRF1) and customized
systems (MIST2 and MCRF2). In five cases, of the eight PHI
tags shown, and for overall F value, MCRF2 achieved the highest
performance. The difference between the two customized
systems was found to be statistically significant for AGE,
OTHER, ID, NAME, and overall F values (see lower section of
table 1). For each tag level and overall F value, the custom-
izations increased performance of both systems. This increase
was statistically significant for NAME and overall F values for
MCRF2 and for AGE, PHONE, DATE, NAME, and overall
F values for MIST2.
Table 1 also shows token-level performance for the best

system (MCRF2). Compared with span level, the token-level
performance gains range from <0.1% (DATE) to approximately
18% (LOCATION). Tag-blind token-level performance is even
higher, with an overall F value of 95.93.
Table 2 gives the F values obtained by MCRF2 for each

document type. Performance varies between the different note
types, although high performance (>90%) is achieved for the
majority of notes.
Overall token-level performance of MCRF2 on the i2b2

corpus was 96.68% F value (99.18% precision, 94.26% recall)
with our default configuration and 97.44% F value (97.89%
precision, 97.01% recall) using our recall bias method
(threshold of 0.91). These results are similar to those obtained
by the top systems in the i2b2 challenge and slightly lower
than the performance of MIST (98.1% F value, 98.7% precision,
97.5% recall, as reported in Uzuner et al35; however, our system
was not customized for the i2b2 dataset). Performance on the
PhysioNet corpus was much lower: 70.60 F value

iWe did not evaluate MIST on those corpora because (1) the two systems are very
similar and (2) MIST was already evaluated on the i2b2 corpus (its F value ranked
first in the i2b2 challenge).
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Figure 3 Number of annotated protected health information (PHI) elements for each document type. DC, discharge; ED, emergency department; H&P,
history and physical; OR, operating room.
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(89.02 precision, 58.49 recall) with our regular MCRF2 set-up
and 74.61 F value (74.93 precision, 74.28 recall) using the recall
bias method (0.97 threshold). This is explained by the very low
frequency of PHI (1779) in the PhysioNet corpus, which makes
this corpus ill-suited for machine-learning methods (there are
not enough training instances). In that case, a rule-based
method such as the one used by the providers of the corpus23

will have higher performance (74.9% precision, 96.7% recall
and 84.41% F value). Gardner et al34 also evaluated their CRF
algorithm on the PhysioNet corpus and observed a large
performance drop: they obtained a 25.5% precision for a 97.2%
recall (40.04 F value) and a 70% precision for an 80% recall
(74.66 F value).

Human de-identification performance
Table 3 shows the performance of the humans compared
with that of the customized systems on the 10% random
subset. Both humans performed worst when identifying PHI
in the OTHER category. Performance of humans and systems
are close, especially for AGE, DATE, and ID, where statistical
tests found no significant difference (lower part of table 3).
Both systems performed significantly better than the two
humans on OTHER and better than annotator 3 on INSTI-
TUTION. They both performed worse on LOCATION.
Humans achieved better performance than the systems on
NAME and better than MIST2 on PHONE. Both humans
obtained a lower overall F value than the systems, but the
highest recall was obtained by annotator 4. Figure 5 visualizes
the F values obtained by the four systems and the two
annotators.

For each tag level and overall F value, the difference between
each human and the gold standard was statistically significant
(lower section of table 1), as was the difference between each
system and the gold standard.

We also computed IAA between the four humans on the 350
documents they all annotated (bottom part of figure 4). IAA is
high between all annotator pairs for AGE, DATE, NAME,
PHONE categories, and overall. It is low for OTHER, and fluc-
tuates between the various pairs for IDNUM, INSTITUTION,
and LOCATION.

Recall bias
Changing the command line value parameter (MIST)ii and the
threshold of non-PHI labels (in-house system) resulted in
varying levels of recall changes. Figure 6 shows the results of the
experiments for overall performance. The recall variation is
rather limited on both systems. After a certain point, it reaches
its maximum and then even decreases slightly, owing to the
increasing number of non-PHI elements that are erroneously
collapsed with true PHI. The maximum recall is 93.58 for
MIST2 (bias parameter value of �3) and 93.66 for MCRF2 (0.93
threshold).

Impact of de-identification on subsequent IE
The impact of de-identification on the subsequent extraction of
medication names is negligible. Results are shown in table 4,
with statistical significance tests. The performance is slightly
higher on de-identified text (including manually de-identified),
but the difference is significant on the p<0.05 level only for two
de-identified corpora. If Bonferroni correction is considered
(because of the multiple comparisons), then none of the differ-
ences are significant.

DISCUSSION
We performed error analysis for the best system on the devel-
opment set (350 documents with 3845 PHI). The system made
476 errors. Of these, 13% (62) were boundary detection errors
(partially tagged PHI (eg, only “5/12” in “Monday 5/12”) or PHI
including extra tokens (eg, in “Fax 513-555-6666” Fax was also
tagged)), 24.2% (115) were false positives, although 26.1% (30)
of them were actually PHI but were labeled as the wrong
category (eg, “Rochester NY” tagged as NAME instead of
LOCATION). Ten of the false-positive results were true posi-
tives missing from the gold standard (missed by annotators 1
and 2). This happened for the NAME, ID, DATE, and OTHER
categories. For NAME, a majority of false positives were device
names (eg, “Sheehy” in “Sheehy tube”) or capitalized words (eg,
“Status Asthmaticus”). For DATE, scores and measurements that

Figure 4 Inter-annotator agreement
(IAA; F value) for each protected health
information (PHI) class on the entire
gold standard (annotators 1 and 2) and
on the 10% common sample
(annotators 1, 2, 3, and 4).

iiMIST is set to have a slight recall bias (�1) out-of-the-box.
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looked like dates (eg, pain scores such as “2/10”) were
often wrongly tagged. Finally, 62.82% (299) of the errors
were missing PHI, although 9% (27) of those had been tagged
but with the wrong category. Not counting the mislabeled
elements, the system missed 38 NAMEs (out of 952), 3 of
124 IDs, 32 of 1744 DATEs, 8 of 164 PHONEs, 27 of 209 AGEs,
23 of 186 INSTITUTIONs, 3 of 56 LOCATIONs, and 138
of 410 OTHERs. The majority of false negatives (58.9%)
were single-token elements (eg, single first names were more
often missed by the system than first names followed by last
names).

There are many take-home messages in our experiments that
we believe should influence the decisions of institutional
review boards about whether to accept the output of auto-
mated de-identification systems as comparable to manual de-
identification. First, no single manual de-identification is 100%
accurate. Even the results of double manual de-identification
are not perfect. We found statistically significant differences
between the gold standard that was the result of an adjudi-
cated double de-identification and the output of the individual
annotators. Consequently, evaluations that are based on single-
annotated standard could misjudge the automated system’s

performance. Second, different note types have a different
density of PHI (and potentially different context of the same
PHI), and a de-identification system that is trained on a mix of
note types will show varying performance on these note types.
As a result, the de-identification performance of machine-
learning systems will depend on the frequency of PHI types in
the training data. High performance was achieved for most
note types in our corpus, so we believe a single system can
work for multiple note types if the training corpus includes the
particular note type in sufficient number or if the PHI elements
of a note type are expressed in similar ways as in other note
types. Finally, installing a high-performance MIST-based
prototype automated de-identification system is straightfor-
ward. It involves a few hours setup. Annotating the gold
standard requires additional effort and its extent depends on
multiple factors (eg, frequency of PHI in notes). The amount of
annotations required to achieve high performance varies
among the different PHI classes, depending on the variability
of their form and context. For instance, we observed that
PHONEs (which have regular patterns) and IDs (which
occurred in easily identifiable contexts, eg, following “MRN:”)
only required a couple of hundred annotations to achieve good

Table 1 Performance of systems (per-tag and overall precision (P), recall (R) and F value (F)) and statistical significance tests

Performance of systems (10-fold cross-validation)

MIST1 MCRF1 MIST2 MCRF2

P R F P R F P R F P R F

AGE 94.47 92.31 93.38 96.7 90.42 93.45 95.87 92.46 94.13 96.69 90 93.22

DATE 95.77 97.12 96.44 97.97 96.61 97.29 97.25 97.76 97.5 97.95 96.98 97.46

ID 90.58 92.64 91.6 97.23 95.64 96.43 91.17 93.38 92.26 97.27 95.7 96.48

INST 90.59 86.41 88.45 93.18 85.01 88.91 90.61 87.06 88.8 93.25 85.26 89.08

LOC 79.82 67.93 73.4 86.12 68.94 76.58 78.92 69.95 74.16 87.38 69.95 77.7

NAME 93.19 88.64 90.86 95.62 86.99 91.1 92.48 94.16 93.31 94.47 94.56 94.52

OTH 77.21 77.39 77.3 83.94 74.17 78.76 78.17 77.13 77.65 84.68 73.87 78.91

PH 90.06 93.04 91.52 94.08 90.64 92.33 91.44 93.95 92.68 94.42 90.87 92.61

All 92.05 91.02 91.54 95.25 89.86 92.48 92.79 92.81 92.8 95.08 91.92 93.48

Token-level performance for best system (MCRF2)

Token-level Token-level + tag-blind

P R F P R F

AGE 98.21 93.40 95.75 93.42

DATE 98.17 96.87 97.52 96.98

ID 97.57 95.49 96.52 96.43

INST 97.48 92.74 95.05 94.79

LOC 97.95 93.92 95.89 96.03

NAME 97.26 97.38 97.32 97.53

OTH 86.81 76.45 81.30 78.31

PH 97.13 93.40 95.23 94.85

All 96.68 93.77 95.20 97.42 94.49 95.93

Statistical significance tests between F values obtained by systems (cross-validation evaluation)

MCRF1 vs MIST1 MCRF2 vs MIST2 MIST1 vs MIST2 MCRF2 vs MCRF1 MCRF2 vs gold standard
p Value p Value p Value p Value p Value

AGE 0.8490 *0.0087 *0.0389 0.4922 *0.0001

DATE *0.0001 0.7650 *0.0001 0.2470 *0.0001

ID *0.0001 *0.0001 0.0996 0.8856 *0.0001

INST 0.3572 0.6087 0.2738 0.6623 *0.0001

LOC 0.0777 0.0553 0.5897 0.3812 *0.0001

NAME 0.4897 *0.0001 *0.0001 *0.0001 *0.0001

OTH *0.0071 *0.0180 0.3676 0.6118 *0.0001

PH 0.2936 0.9248 *0.0458 0.6208 *0.0001

All *0.0001 *0.0001 *0.0001 *0.0001 *0.0001

*Indicates statistical significance (p<0.05).
INST, institution; LOC, location; OTH, other; PH, phone.
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performance ($90% F values), while the mixed category of
OTHER could not reach such high performance even with
a couple of thousand annotations.

In addition, of interest for the translational research
community, we found that automated de-identification did not
reduce the accuracy of subsequent IE. The performances of the

Table 2 Best system (MCRF2) performance (F values) per document type

AGE DATE ID INST LOC NAME OTH PH All PHI

Asthma action plan 100 96.59 80 96.47 100 95.17 98.11 69.72 92.19

Brief OpNote 100 99.12 98.51 80 100 94.56 35.29 100 95.17

Communication body 95.24 93.07 75 82.35 80 97.02 80.99 50 92.11

Consult note 92.96 98.5 80 93.62 75 98.35 90 80 95.94

DC summaries 92.89 98.12 98.26 94.54 77.27 96.37 75.62 97.96 94.55

ED medical student 96.77 69.23 100 66.67 0 95.45 96.7 100 92.13

ED notes 85.71 80 100 72.73 100 72.73 45.83 50 65.84

ED provider notes 96.71 90.48 100 76.19 0 80 92.35 50 92.47

ED provider reassess. 100 100 100 100 100 85.71 92.31 100 92.86

H&P 92.75 97.31 80 87.1 0 94.51 83.72 50 92.55

Med student 88.1 98.22 0 69.44 50 95.87 76.06 100 92.93

Operative report 90.91 98.68 100 100 100 93.94 94.31 100 96.48

OR nursing 100 100 100 100 100 88.89 0 100 81.82

Patient instructions 100 94.74 100 62.5 66.67 87.91 55 90.62 81.51

Pharmacy note 50 91.2 100 100 100 72 65.31 100 88.01

Plan of care note 100 96.97 100 50 0 91.09 78.12 66.67 87.35

Pre-Op_evaluation 100 99.37 100 100 100 94.49 100 100 98.6

Procedure note 100 98.06 100 96.3 0 93.51 91.36 100 94.96

Progress notes Outp 88.08 95.53 94.12 73.3 71.79 93.8 70.29 81.25 90.9

Progress notes Inp 93.23 98.19 93.88 87.91 54.55 93.32 76.64 98.41 94.75

Referral 100 100 100 90.91 0 100 100 100 93.75

Telephone encounter 100 91.94 100 56.25 40 88.21 47.62 76.36 82.16

All labeled notes 92.9 97.51 97.04 90.17 73.02 94.75 78.68 91.54 93.54

Unlabeled notes 92.44 97.44 97.07 87.68 83.65 94.68 80.09 95.92 93.58

External notes 94.87 96.79 69.57 63.89 70.59 85.31 60.71 82.22 91.88

All notes 93.22 97.46 96.48 89.08 77.7 94.52 78.91 92.61 93.48

Zero F value is the consequence of insufficient representation of a particular PHI type in that particular note category (eg, if there was one Location PHI element in 20 notes and it was missed
then the F value was zero).
DC, discharge; ED, emergency department; H&P, history and physical; OR, operating room; PHI, protected health information.

Table 3 Performance of humans versus automated systems (per-tag and overall precision (P), recall (R) and F value (F))

Performance of humans versus automated systems

Annotator 3 Annotator 4 MIST2 MCRF2

P R F P R F P R F P R F

AGE 99.51 91.93 95.57 94.59 94.17 94.38 95.50 95.07 95.28 97.21 93.72 95.43

DATE 98.17 97.78 97.97 98.56 97.62 98.09 96.73 98.57 97.65 97.86 97.78 97.82

ID 93.67 85.06 89.16 88.37 87.36 87.86 88.89 88.89 88.89 95.45 93.33 94.38

INST 78.33 85.98 81.98 84.52 86.59 85.54 90.12 89.02 89.57 93.33 85.37 89.17

LOC 97.78 93.62 95.65 86.67 82.98 84.78 66.67 55.32 60.47 82.86 61.70 70.73

NAME 98.92 94.93 96.88 99.08 97.92 98.50 93.52 95.71 94.60 95.49 96.36 95.92

OTH 68.77 65.55 67.12 47.28 81.27 59.78 83.27 76.59 79.79 87.70 71.57 78.82

PH 96.92 98.44 97.67 96.92 98.44 97.67 88.41 95.31 91.73 95.31 95.31 95.31

All 93.95 92.15 93.04 88.45 94.55 91.40 93.31 93.66 93.49 95.73 92.91 94.30

Anno3 vs
Anno4

Anno3 vs
MCRF2

Anno4 vs
MCRF2

Anno3 vs
MIST2

Anno4 vs
MIST2

Anno3 vs gold
standard

Anno4 vs gold
standard

MCRF2 vs gold
standard

MIST2 vs gold
standard

p Value p Value p Value p Value p Value p Value p Value p Value p Value

AGE 0.5226 0.9628 0.6493 0.9368 0.6516 *0.0001 *0.0001 *0.0001 *0.0001

DATE 0.881 0.7514 0.7 0.4288 0.555 *0.0001 *0.0001 *0.0001 *0.0001

ID 0.7526 0.1885 0.1428 0.9377 0.8021 *0.0001 *0.0001 *0.0001 *0.0001

INST 0.2785 *0.0107 0.3347 *0.0078 0.2949 *0.0001 *0.0001 *0.0001 *0.0001

LOC 0.1579 *0.0078 0.1891 *0.0001 *0.021 *0.0001 *0.0001 *0.0001 *0.0001

NAME *0.0221 0.2246 *0.0026 *0.0093 *0.0002 *0.0001 *0.0001 *0.0001 *0.0001

OTH 0.0506 *0.0029 *0.0001 *0.0006 *0.0001 *0.0001 *0.0001 *0.0001 *0.0001

PH 1 0.1299 0.1231 *0.0414 *0.0492 *0.0001 *0.0001 *0.0001 *0.0001

All *0.0169 0.054 *0.0002 0.5088 *0.0105 *0.0001 *0.0001 *0.0001 *0.0001

Statistical significance tests between F values obtained by humans versus systems (*indicates statistical significance (p<0.05), Anno3¼annotator 3, Anno4¼annotator 4).
INST, institution; LOC, location; OTH, other; PH, phone.
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automated de-identification systems were sufficiently high that
over-scrubbing errors did not affect the value of the de-identified
corpus for extracting medical information.

Some of the limitations of our results are the de-identification
performance for the LOCATION and OTHER categories, which
should be improved; for proper performance evaluation, a larger
sample size is necessary for EMAIL, IP, SSN, INITIALS; the
corpus was obtained from only one institution, though it did
include over 22 different note types selected from more than five
million notes; we should experiment with at least one more
subsequent NLP task to measure the impact of de-identification
as results might be different with another task. Finally, the
prototype needs to be transferred to a production environment

to adequately estimate the cost of setting up a hospital’s auto-
mated de-identification system.

CONCLUSION
In this paper, we presented a large-scale study on automated de-
identification of clinical text, including over 3500 notes from
a variety of types (>22). We showed that two automated
systems, an existing system (MIST)32 and an in-house system,
could obtain high performance (93.48% span-level and 95.20%
token-level overall F values for the best system). We also
compared results of the systems with those obtained by two
human annotators and found that the performance of the
systems rivaled that of the humans, with the humans even

Figure 5 F values obtained by the
systems and the humans. MCRF, Mallet
conditional random field; MIST, MITRE
Identification Scrubber Toolkit.

Figure 6 Recall variations obtained by
adjusting MIST’s bias parameter and
using thresholds for Mallet CRF
probability scores (customized
systems). CRF, conditional random
field; MIST, MITRE Identification
Scrubber Toolkit.
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performing slightly worse on a couple of PHI categories and
overall. Furthermore, unlike manual de-identification, the auto-
mated approach scales up to millions of documents quickly and
inexpensively. Finally, this study also goes beyond de-identifi-
cation performance testing by looking at the effect of de-iden-
tification on a subsequent IE task (medication extraction), for
which no decrease in performance was seen.
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