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Object Ensemble Processing in Human Anterior-Medial

Ventral Visual Cortex

Jonathan S. Cant and Yaoda Xu

Vision Sciences Laboratory, Department of Psychology, Harvard University, Cambridge, Massachusetts 02138

Our visual system can extract summary statistics from large collections of similar objects without forming detailed representations of the
individual objects in the ensemble. Such object ensemble representation is adaptive and allows us to overcome the capacity limitation
associated with representing specific objects. Surprisingly, little is known about the neural mechanisms supporting such object ensemble
representation. Here we showed human observers identical photographs of the same object ensemble, different photographs depicting
the same ensemble, or different photographs depicting different ensembles. We observed fMRI adaptation in anterior-medial ventral
visual cortex whenever object ensemble statistics repeated, even when local image features differed across photographs. Interestingly,
such object ensemble processing is closely related to texture and scene processing in the brain. In contrast, the lateral occipital area, a
region involved in object-shape processing, showed adaptation only when identical photographs were repeated. These results provide
the first step toward understanding the neural underpinnings of real-world object ensemble representation.

Introduction

Many everyday visual tasks require the encoding of single objects.
Such object-specific processing has been the core of past neuro-
scientific research. For example, it has been shown that the lateral
occipital area (LO), together with the posterior fusiform gyrus
(pFs), processes the shapes of single objects (Malach et al., 1995;
Grill-Spector et al., 1998; Kourtzi and Kanwisher, 2001) and that
the parietal cortex is involved in individuating and selecting mul-
tiple objects for detailed processing (Xu and Chun, 2006, 2009).
There are also many occasions when our visual system extracts
summary statistics from a collection (ensemble) of objects with-
out representing any specific object in great detail. Such object
ensemble representation can aid rapid scene segmentation and
guide object-specific processing. Yet despite their common oc-
currence, the neural mechanisms underlying ensemble process-
ing remain poorly understood.

Here we investigated the neural representation for a simple yet
omnipresent form of real-world object ensemble, namely, en-
sembles containing homogeneous and repeating objects such as
leaves on a tree. Behavioral research has shown that observers can
quickly extract average features of a homogeneous ensemble,
such as its mean size, direction of motion, speed, orientation, and
center location without encoding details of the individual objects
composing the ensemble (Williams and Sekuler, 1984; Watamaniuk
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and Duchon, 1992; Ariely, 2001; Parkes et al., 2001; Chong and
Treisman, 2003; Alvarez and Oliva, 2008). Despite these ad-
vances, the neural underpinnings of object ensemble representa-
tion remain largely unknown. Moreover, behavioral studies have
used displays containing simple geometric drawings (e.g., black
dots) and have not directly investigated how real-world object
ensembles are represented. Here we used photographs of real-
world object ensembles and investigated where in the brain they
may be represented.

Neuropsychological studies have documented a dissociation
between shape and texture processing, such that, after bilateral
LO damage, impaired shape processing but largely intact texture
perception were observed (Humphrey et al., 1994; Goodale and
Milner, 2004). Consistent with this finding, fMRI studies have
shown that attention to an object’s shape activates LO, whereas
attention to texture activates the collateral sulcus (Peuskens et al.,
2004; Cant and Goodale, 2007). Interestingly, this texture-
sensitive collateral sulcus region overlaps to a large extent with
the parahippocampal place area (PPA), aregion involved in scene
perception (Epstein and Kanwisher, 1998).

Although object ensembles contain individuated objects
with closed contours and surface textures may not, ensembles
and textures nonetheless both contain repeating structures
with slight variations in features such as size, orientation, and
color (Portilla and Simoncelli, 2000). Thus, although little is
known about the neural representation of object ensembles,
the similarity between ensembles and textures and the ob-
served PPA activation during texture perception prompted us
to choose PPA as the candidate region of interest (ROI) in
which to investigate object ensemble processing in the brain.
In four experiments, we used fMRI adaptation (Grill-Spector
et al., 2006) to examine PPA’s response to real-world homo-
geneous object ensembles. We also examined LO’s response to
object ensembles and included surface textures as stimuli in
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Example stimuli and results (V = 12) from experiment 1. a, Example stimuli used in the experiment. Based on common occurrence and ease of availability, 20 different living object

ensemble images and 20 different nonliving texture images were used. In each trial, observers saw a sequential presentation of three images that were all identical (gray boxes), all different (red
boxes), or shared object ensemble or surface texture statistics (blue boxes). To ensure attention to the images, observers were required to press a button on the disappearance of the third image in
the sequence. b, Results from experiment 1. fMRI responses were extracted from independently localized object- (LO) and scene-sensitive (PPA) areas of cortex. PPA exhibited similar response
patterns to both object ensembles and surface textures and showed equivalent levels of adaptation (i.e., a reduction in activation compared with the different condition) in the identical and the
shared conditions when either object ensemble or surface texture statistics were repeated. In contrast, LO response patterns differed between object ensembles and surface textures, exhibiting an
equivalent release from adaptation in the shared and different object ensemble conditions, where changes to local shape information are evident, but exhibited insensitivity to changes in surface
textures due to a lack of closed contours in those images. Error bars represent within-subject SEs. ns, Not significant. ¢, Additional examples of stimuli used in experiment 1. *p << 0.05.

the first three experiments. Finally, we performed whole-brain
analyses to validate our results.

Materials and Methods

Observers

Twelve paid observers (six women, six men; mean age, 25.75 years; range,
19-32 years) took part in experiment 1, 14 paid observers (two of whom
took part in experiment 1; eight women, six men; mean age, 25.43 years;
range, 20—33 years) took part in both experiments 2 and 3 (which were
run during the same session), and 11 paid observers (1 of whom partic-
ipated in experiment 1 and 4 of whom participated in experiments 2 and
3; four women, seven men; mean age, 28.45 years; range, 20-34 years)
took part in experiment 4. Observers were recruited from the Harvard
University community, and all were right handed, reported normal color
vision and normal or corrected-to-normal visual acuity, had no history
of neurological disorder, and gave their informed consent to participate
in the study in accordance with the Declaration of Helsinki. The experi-
ments were approved by the Committee on the Use of Human Subjects at
Harvard University.

An additional female observer was tested in experiment 1, but the
study was terminated halfway due to observer discomfort. An additional
male observer was tested in experiments 2 and 3, but his data were ex-
cluded due to excessive head motion (>8 mm of translation). Finally,
two additional female observers were tested but excluded from experi-
ment 4 due to below chance level behavioral performance in the scanner
(i.e., they performed below the chance level of 50% on multiple runs of a
task where the group average was 95%).

Stimuli

Adaptation experiments. In experiment 1, based on common occurrence
and ease of availability, we collected through the web full-color photo-
graphs of 20 different living object ensemble images and 20 different
nonliving texture images (Fig. 1). All images subtended 12.5° X 12.5° of
visual angle (this applies to all images used in all subsequent experiments
except where noted). In experiment 2, we removed the living and the
nonliving distinction and collected through the web 20 new grayscale
object ensemble images and 20 new grayscale texture images, each con-

taining 10 living and 10 nonliving images (see Fig. 3). Experiment 3 used
the same stimuli as were used in experiment 2, but the images were
presented in full color and the second image in each trial was approxi-
mately two-thirds the size of the first image (subtending 10.0° X 10.0° of
visual angle; see Fig. 4). Experiment 4 used object ensemble images only,
created by photographing (using a D3000 digital SLR camera; Nikon) 10
different collections of black wooden beads (ordered on-line from Fire
Mountain Gems, www.firemountaingems.com). The beads in each col-
lection had the same shape, but the shape differed between collections.
All beads were made of black painted wood, resulting in different object
ensembles containing objects sharing the same texture/material (see Fig.
6). We ensured that the background of each bead image was uniformly
white using Photoshop CS3 software (Adobe).

Object/scene localizer. Stimuli used to localize object- and scene-
sensitive areas of cortex consisted of photographs of common objects
(e.g., cars, chairs, food, and tools), various indoor and outdoor scenes
(e.g., furnished rooms, buildings, city landscapes, and natural land-
scapes), male and female faces, and phase-scrambled versions of the
common objects.

Ensemble/texture localizer. In addition to using the object/scene local-
izer, in experiments 2 and 3 we constructed a second localizer to directly
identify ventral and lateral visual regions sensitive to the viewing of object
ensembles and surface textures. We included both intact and phase-
scrambled images. The intact images were the same as those used in the
adaptation runs and consisted of full-color object ensembles and surface
textures, with each category containing equal numbers of living and
nonliving stimuli.

Apparatus

Stimulus presentation and the collection of behavioral responses
(through a response pad placed in the observer’s right hand) were con-
trolled with a MacBook Pro (Apple) running MatLab (MathWorks) with
Psychtoolbox extensions (Brainard, 1997; Pelli, 1997). Each image was
rear projected with an LCD projector (Notevision XG-C465X, Sharp;
resolution, 1024 X 768 pixels) onto a screen mounted behind the ob-
server as he or she lay in the scanner bore. The observer viewed the images
through a mirror mounted to the head coil directly above the eyes.
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Examples of ROIsinindividual observers. The scene-selective PPA (Talairach coordinates for the specific ROl examples shown x, y, zfor right/left; +24/—24, —40/—41, —3/—6),RSC

(+15/—16, —53/—56, +14/+9), and TOS (+31/—38, —79/—77, +23/+22) were defined by contrasting the activation for scenes against the activation for both faces and objects. The
object-selective LO (+31/—32, —77/—84, —3/—7) and pFs (+32/—29, —63/—61, —13/—16) were defined by contrasting the activation for objects against the activation for scrambled

objects. R, Right; L, left.

Imaging procedures

Adaptation experiments. In all experiments, we used a fast, event-related
fMRI adaptation paradigm. In experiment 1, each trial lasted 6 s and
contained a 500 ms fixation, three sequentially presented images (each
consisting of a 200 ms image presentation and an 800 ms blank fixation),
and a 2500 ms blank screen. Observers were asked to press a button as
soon as the third image in the trial disappeared. The three images pre-
sented in each trial could be identical, could share object ensemble or
texture features (i.e., different images of the same ensemble or texture)
(Fig. 1), or could be completely different. Thus, there were six different
experimental conditions (“identical,” “shared,” and “different” condi-
tions for both the object ensemble and texture images). There were also
6 s blank fixation trials in which no images were presented. Trial order
was pseudorandom and balanced for trial history (e.g., trials from all
conditions, including fixation, were preceded and followed equally as
often by trials from all other conditions, for one trial back and forward)
(Kourtzi and Kanwisher, 2001; Xu and Chun, 2006). To further balance
trial history, trial order was rotated among the conditions in different
runs and among different observers. Each observer took part in five
adaptation runs, each lasting 5 min 12 s with seven trials for each
condition.

In experiments 2 and 3, each trial lasted 6 s and contained a 500 ms
fixation, two sequentially presented images (each consisting of a 200 ms
image presentation and an 800 ms blank fixation), and a 3500 ms blank
screen. Observers were asked to categorize each trial as identical, shared,
or different by pressing the appropriate button on the response pad. All
other aspects of these experiments were identical to those of experiment
1. Experiment 4 was identical to experiments 2 and 3, except that only
object ensemble images were used (see Fig. 6). Each observer took part in
two adaptation runs in experiment 4, each lasting 6 min 42 s, with 16
trials for each condition.

Object/scene localizer. This localizer was used to identify the main ROIs
in each observer, namely, LO and PPA, as well as three additional ROIs,
the retrosplenial complex (RSC), the transverse occipital sulcus (TOS),

and pFs (Fig. 2 shows examples of these ROIs in single observers). As
described by Kanwisher et al. (1997) and Epstein and Kanwisher (1998),
a single run consisted of presenting four blocks each of scenes, faces,
intact objects, and phase-scrambled objects with periods of fixation pre-
sented at the beginning, middle, and end of a run. Each stimulus block
was 16 s long and contained 20 different images, each lasting 750 ms, and
was followed by a 50 ms blank period. Each fixation block was 8 s long.
There were two unique run orders, and no images were repeated in a
given run. To ensure attention to the displays, observers fixated at the
center and detected a slight spatial jitter, occurring randomly in 1 out of
every 10 images. Each run lasted 4 min 40 s.

In experiment 1, all observers took part in four runs of this localizer,
and in experiments 2 to 4, observers took part in three runs. Because the
fMRI data analysis software we used allowed us to align functional data
acquired across different sessions, when observers took part in two or
more of the experiments, we were able to use the object/scene localizer
from their earlier session for all subsequent sessions.

Ensemble/texture localizer. This localizer was used in experiments 2 and
3 to identify, in each observer, areas in the visual cortex that are selectively
activated by object ensemble and surface texture images. The stimuli
used in experiments 2 and 3 were used here. A single run consisted of
presenting four blocks each of intact object ensembles, intact surface
textures, and their phase-scrambled counterparts. All other aspects of
this localizer were identical to those of the object/scene localizer, with the
exception that each image in a block was presented for 500 ms and was
followed by a 300 ms blank period. No images were repeated within any
single block, but there were repetitions of images across blocks in a given
run. All observers took part in three runs of this localizer.

Imaging parameters

This study was conducted on a 3.0 tesla Siemens MAGNETOM Tim Trio
whole-body imaging MRI system at the Center for Brain Science, Har-
vard University (Cambridge, MA). A Siemens radiofrequency 32-
channel head coil was used to collect BOLD weighted images (Ogawa et
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al., 1992). For high-resolution anatomical images, T1-weighted 3D mag-
netization prepared rapid acquisition gradient echo sagittal slices cover-
ing the whole brain were collected [inversion time 1100 ms, echo time
(TE) 1.54 ms, repetition time (TR) 2200 ms, flip angle 7°, 256 X 256
matrix size, 144 slices, 1.0 X 1.0 X 1.0 mm voxel size]. For the functional
runs, a T2*-weighted echo-planar gradient echo pulse sequence (72 X 72
matrix size, field of view 21.6 cm) with TR of 1.5 s was used in experi-
ments 1 to 4 (TE 29 ms, flip angle 90°, 208 volumes for experiments 1-3,
268 volumes for experiment 4). Another pulse sequence with TR of 2 s
was used for the localizer runs (TE 30 ms, flip angle 85°, 140 volumes).
Twenty-four 5 mm-thick (3 X 3 mm in-plane, 0 mm skip) slices parallel
to the anterior and posterior commissure line were collected in all the
functional runs.

Data analysis

fMRI data analysis. fMRI data were analyzed with Brain Voyager QX
(Brain Innovation). Data preprocessing included slice acquisition time
correction, 3D motion correction, linear trend removal, and Talairach
space transformation (Talairach and Tournoux, 1988).

Data from both the object/scene and ensemble/texture localizers were
analyzed using a general linear model (GLM), accounting for hemody-
namic response lag (Friston et al., 1994). In the object/scene localizer, in
accordance with Epstein and Kanwisher (1998), the PPA ROI was de-
fined as a region in the collateral sulcus and parahippocampal gyrus
whose activation was higher for scenes than for faces and objects (false
discovery rate, g < 0.05; this threshold applies to all functional regions
localized in individual observers). In addition, in accordance with Ep-
stein and Higgins (2007), the RSC and TOS ROIs were defined as regions
in restrosplenial cortex—posterior cingulate—medial parietal cortex and
transverse occipital cortex, respectively, whose activations were higher
for scenes than for faces and objects (Fig. 2). In accordance with Grill-
Spector et al. (2000), the LO and pFs ROIs were defined as regions in the
lateral occipital cortex near the posterior inferotemporal sulcus and the
posterior fusiform gyrus-occipitotemporal sulcus, respectively, whose
activations were higher for objects than for phase-scrambled objects. In
the ensemble/texture localizer, areas sensitive to processing object en-
sembles and surface textures were identified as regions in collateral sulcus
and parahippocampal gyrus as well as lateral occipital cortex, whose
activations were higher for ensembles and textures than for phase-
scrambled versions of these images.

Following the standard ROI-based analysis approach (Saxe et al.,
2006), we overlaid the ROIs onto the data from our main adaptation
experiments and extracted time courses from each observer. The activa-
tion levels for all conditions were then converted to the percentage of
BOLD signal change from baseline by subtracting the corresponding
activation from the fixation trials and then dividing by this value. Peak
responses for each condition were obtained by collapsing the time
courses for all of the conditions and then identifying the time point of
greatest signal amplitude in the average response (Xu and Chun, 2006;
Xu, 2010). This was done separately for each observer in each ROI, and
the resultant peak responses were then averaged across all observers.
Finally, the average levels of activation for each condition were subjected
to a repeated-measures ANOVA, performed separately on each ROI in
each experiment (SPSS).

Behavioral data analysis. Behavioral performance measures of reaction
time and accuracy were recorded by MatLab (MathWorks) (running the
Psychtoolbox) and were analyzed with SPSS. Repeated-measures ANOVAs
were conducted to assess differences across the conditions in the adaptation
and the localizer runs in each experiment.

Results

PPA adaptation to real world object ensemble and surface
texture repetition

As our first step to investigate how real-world object ensembles
are represented in the brain, in experiment 1, we used photo-
graphs of real-world object ensembles and evaluated the role of
PPA and LO (the posterior-dorsal aspect of the lateral occipital
complex that is distinct from pFs) in object ensemble represen-
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tation. We presented observers with a sequence of either three
object ensemble or three surface texture images. The images were
all identical, all different, or shared object ensemble or surface
texture statistics (e.g., different photographs of the same object
ensemble or surface texture) (Fig. 1 A). Each image was presented
for 200 ms with an 800 ms interstimulus interval. Based on com-
mon occurrence and availability, for object ensembles we used
images of living objects (e.g., fruits and vegetables), and for tex-
tures we used images of nonliving items (e.g., marble surfaces).
Observers were asked to press a key when the third image disap-
peared from view. Each trial lasted 6 s. We used a counterbal-
anced trial history design and calculated percentage signal change
compared with fixation directly from the raw MRI signal
(Kourtzi and Kanwisher, 2001; Xu and Chun, 2006; Xu, 2010;
Dilks et al., 2011; Todd et al., 2011).

We examined the effect of image type (ensemble vs texture)
and condition (identical vs shared vs different) and their interac-
tions in independently localized LO and PPA ROIs. Left and right
hemisphere ROIs were combined in this and all subsequent ex-
periments because no differences in activation were observed be-
tween the hemispheres. On the one hand, if PPA represents
ensemble and texture statistics, then as long as the same ensemble
or texture is perceived, regardless of whether identical or different
images are shown, PPA will exhibit fMRI adaptation to both the
identical and the shared conditions and will exhibit a release from
adaptation in the different condition (when different ensembles
or textures are presented). On the other hand, because LO has
been shown to encode specific shape contours (for review, see
Grill-Spector, 2009), for object ensembles we predict LO will
show a release from fMRI adaptation whenever local shape con-
tours change, which occurs in both the shared and different con-
ditions, compared to the identical condition. Due to a lack of
closed shape contours in the surface texture images, LO may not
show sensitivity to differences in our texture images.

In PPA, the main effect of image type was not significant
(Fa1y = 2.21, p = 0.165), but the main effect of condition did
reach significance (F, ,,) = 11.19, p = 0.001), with no significant
image-by-condition interaction (F, ,,, = 0.79, p = 0.467), indi-
cating that PPA exhibited similar response patterns to both object
ensembles and surface textures. Based on the specific predictions
for object ensembles and surface textures we have outlined, we
conducted planned pairwise comparisons to investigate this in-
teraction in greater detail. For object ensembles, the identical and
the shared conditions did not differ from each other (¢, ,, = 1.00,
p = 0.49, one tailed, and Bonferroni corrected for multiple com-
parisons; this applies to all subsequent planned comparisons ex-
cept where noted), and each had a lower response than the
different condition (different vs identical: £, ,, = 3.95, p = 0.004;
different vs shared: t,,, = 3.10, p = 0.02; Fig. 1B). The same
response pattern was observed for surface textures; there was no
difference between shared and identical (t,,, = 0.04, p = 0.50),
and both exhibited a lower response than different (different vs
identical: t, ;) = 2.93, p = 0.024; different vs shared: ¢, = 2.25,
which approached significance at p = 0.065). Taken together,
PPA showed equivalent levels of adaptation when either ensem-
ble or texture statistics repeated.

A different response pattern was obtained in LO, such that
both main effects and the interaction either were significant or
approached significance (F, ;,) = 11.57, p = 0.045 for image
type; F(o 00y = 2.82, p = 0.081 for condition; F, ,,) = 3.57,p =
0.045 for the interaction between the two). This indicates that LO
responded differently to object ensembles and textures. Planned
comparisons revealed that, for object ensembles, the shared and
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Figure3. Example stimuliand results (V = 14) from experiment 2. a, Example stimuli used in the experiment. A new set of images, different from that used in experiment 1, was used in this
experiment. This new set contained 20 object ensemble and 20 texture images, each containing 10 living and 10 nonliving examples. All stimuli were presented in grayscale to remove the repetition
of colors when ensemble statistics were repeated. In each trial, observers saw a sequence of two images that were identical (gray boxes), different (red boxes), or shared object ensemble or surface
texture statistics (blue boxes). Observers were asked to categorize each trial as identical, shared, or different. b, Results from experiment 2. Replicating results from experiment 1, PPA again showed

equivalent levels of adaptation when object ensemble or texture features were repeated, and LO s
images but showed no sensitivity to surface texture manipulations. Error bars represent within-subj
*%

p <0.01.

different conditions did not differ from each other (¢,,, = 1.27,
p = 0.348), but both were higher than the identical condition
(shared vs identical: t,,, = 2.35, which approached significance
at p = 0.063; different vs identical: ¢, = 2.79, p = 0.025). For
textures, none of the three conditions differed from each other
(£ < 0.85 for all). Thus, LO exhibited an equivalent release from
adaptation in the shared and different object ensemble condi-
tions but exhibited insensitivity to changes in surface textures.
Although object ensemble and texture images differ in a number
of features (e.g., spatial frequency, contrast, color, semantic con-
tent), based on the well established functional properties of LO
(Atlmann et al., 2003; Kourtzi and Kanwisher, 2001) (for a recent
review, see Grill-Spector, 2009), we believe these adaptation find-
ings can be explained by the role of LO in extracting shape infor-
mation from closed contours. That is, because object ensembles
contained well defined shape contours, changes to local shape
contour were evident in both the shared and the different condi-
tions, resulting in a release from fMRI adaptation in both condi-
tions compared with the identical condition; meanwhile, because
surface textures in general lacked closed contours, changes in
texture images were ineffective in driving LO responses. Finally,
although our results are consistent with these regions being in-
volved in different types of visual processing, the differences in
the patterns of adaptation between PPA and LO for processing
object ensembles and surface textures did not reach significance
(region-by-condition interaction for ensembles: F, ,,) = 2.54,
p = 0.102; region-by-condition interaction for textures: F(, 5, =
1.18, p = 0.327).

To assess the reliability of these results, we also fitted a stan-
dard GLM to the data to derive B weights for each condition.
Adaptation responses obtained from these 3 weight measures
were identical to those obtained from the percent-signal change
analysis in both PPA and LO. This confirms the validity of the
counterbalanced trial history design and the use of the percent-

howed adaptation only when the local shape/contours were identical in the object ensemble
ect SEs. ns, Not significant. ¢, Additional examples of stimuli used in experiment 2. *p << 0.05;

signal change analysis. As such, in all subsequent experiments, we
report results using this analysis.

Although results from experiment 1 by and large followed our
predictions, a few of the relevant comparisons fell short of reach-
ing statistical significance. This was likely due to the passive view-
ing procedure used in experiment 1, which might not have fully
engaged ensemble and texture processing in the relevant brain
regions. In addition, because colored images were used in exper-
iment 1, it is possible that PPA adaptation results were driven
entirely by the repetition of color in the same and the shared
conditions. To address these issues, we conducted a second ex-
periment in which we made the task more engaging by presenting
only two images sequentially, and we asked observers to process
ensembles and textures more directly by categorizing whether the
two images were identical, shared (ensemble or texture statistics),
or different. In addition, we removed color information and used
grayscale images (Fig. 3A). We also included both living and non-
living object ensemble images (e.g., paper clips and screws) as
well as living surface textures (e.g., fruit and animal skins) in
addition to the nonliving ones.

Despite these changes, we obtained similar response patterns
in PPA and LO, as in experiment 1. Specifically, in PPA, the main
effect of image type approached significance (F(, ;5) = 3.68, p =
0.077), and the main effect of condition was significant (F, ¢ =
21.05, p = 0.001); there was no significant image-by-condition
interaction (F, ,5) = 0.41, p = 0.667). Planned comparisons re-
vealed that PPA showed equivalent levels of adaptation when
either object ensembles or surface textures were repeated (for
object ensembles: shared vs identical: 5, = 1.64, p = 0.186;
different vs identical: ¢ ,5) = 4.86, p = 0.001; different vs shared:
tas) = 2.56, p = 0.041; for surface textures: shared vs identical:
tas = 0.68, p = 0.50; different vs identical: ;) = 4.71, p =
0.001; different vs shared: ¢, 5, = 3.72, p = 0.004; Fig. 3B). In LO,
the main effects of image type (F, ;5 = 53.83, p = 0.0001) and
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Stimuliand results (N = 14) from experiment 3. a, Example stimuli used in the experiment. The same stimuli, conditions, and tasks from experiment 2 were used here except the images

were shown in full color, and, to investigate how image size changes affect brain responses, the second image in each trial was approximately two-thirds the size of the firstimage. b, Results from
experiment 3. Replicating results from experiments 1and 2, PPA again showed equivalent levels of adaptation when object ensemble or surface texture statistics were repeated, and LO showed
adaptation only when the local shape/contours were identical in the object ensemble images but showed no sensitivity to surface texture manipulations. Error bars represent within-subject SEs. ns,

Not significant. ¢, Additional examples of stimuli used in experiment 2. *p << 0.05; **p < 0.01.

condition (F, ,s = 6.71, p = 0.004) were both significant, and
the image-by-condition interaction approached significance
(F226) = 3.07,p = 0.063). As in experiment 1, LO again showed
a release from adaptation for object ensembles when local shape
or contours changed in the shared and the different conditions,
but it was insensitive to any changes in surface textures (for object
ensembles, shared vs different: ¢,5, = 0.29, p = 0.50; shared vs
identical: 5, = 2.93, p = 0.017; different vs identical: t,5, =
3.16, p = 0.011; for surface textures, none of the three conditions
differed from each other: t < 0.50 for all). Importantly, differ-
ences in adaptation between PPA and LO reached significance for
processing both object ensembles and surface textures, showing
that these two brain areas do indeed extract different types of
information from the same visual input (region-by-condition
interaction for ensembles: F(, ,5) = 4.28, p = 0.025; and region-
by-condition interaction for textures: F, ,¢) = 4.94, p = 0.015).
Thus, it appears that focusing participants’ attention directly on
object ensemble and surface texture processing replicated and
strengthened the results we observed in experiment 1. These re-
sults also indicate that the repetition of color information alone
cannot entirely account for the PPA ensemble and texture adap-
tation effects obtained in experiment 1 because similar results
were obtained when we removed color from the images in exper-
iment 2. Further study is needed to understand whether color is
part of the object ensemble representation in anterior-medial
ventral visual cortex. It may well be. Importantly, however, what
this experiment shows is that visual features, aside from color,
also contribute to ensemble and texture representation in
anterior-medial ventral visual cortex.

Can the PPA object ensemble adaptation effect obtained thus
far be driven by the repetition of lower level image statistics
present in the images, such as spatial frequency? Because PPA
is situated at a relatively later stage of visual processing, its repre-
sentation for object ensembles and surface textures is likely to be
higher level and invariant to lower level image changes such as
size (i.e., spatial frequency) because an image size change usually

corresponds to a change in viewing distance rather than to a
qualitative change to an object ensemble or surface texture.

To address this issue, in experiment 3, as in experiment 2, we
presented pairs of object ensemble and surface texture images but
made the size of the second image approximately two-thirds the
size of the first image (Fig. 4A). Because color did not impact the
adaptation effect in experiment 2, all images were presented in
color to make the task more engaging. We again replicated our
basic findings. Namely, in PPA, the main effect of image type was
not significant (F, ;3 = 2.41, p = 0.145), but the main effect of
condition was (F, ¢ = 16.48, p = 0.001), with no significant
image-by-condition interaction (F, ,5) = 1.25, p = 0.302). Rep-
licating results from experiments 1 and 2, PPA exhibited equiva-
lent levels of adaptation when either object ensemble or surface
texture statistics were repeated (for object ensembles: shared vs
identical, £,3, = 0.17, p = 0.50; different vs identical, ¢, 5, = 3.68,
p = 0.004; different vs shared, t(,5, = 3.96, p = 0.002; for surface
textures: shared vs identical, #.,5, = 0.27, p = 0.50; different vs
identical, £,y = 2.90, p = 0.017; different vs shared, ¢,5, = 3.00,
p =0.017) (Fig. 4B). In LO, significant results were found for the
main effects of image type (F, ;35, = 61.60, p = 0.001), condition
(F2.26) = 3.69, p = 0.039), and the image-by-condition interac-
tion (F, 55, = 4.50, p = 0.021). LO again showed a release from
adaptation for object ensembles when local shape information
changed in the shared and the different conditions (relative to the
identical condition) but was insensitive to any changes in surface
textures (for object ensembles: shared vs identical, #,5, = 3.50,
p = 0.006; different vs identical, ¢,y = 2.68, p = 0.028; different
vs shared, t(,5, = 0.83, p = 0.50; for surface textures, none of the
three conditions differed from each other, t < 1.71 for all). Fi-
nally, differences in adaptation between PPA and LO reached
significance for processing both object ensembles and surface
textures, again showing that different types of visual informa-
tion from object ensembles and surface textures are extracted
by these two brain areas (region-by-condition interaction for
ensembles: F(, ,¢) = 12.27, p = 0.0001; region-by-condition inter-
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Figure 5.  PPA and LO results for the four conditions in the ensemble/texture localizer. In

PPA, the two intact image conditions did not differ from each other, nor did the two scrambled
image conditions differ from each other. Although spatial frequency and other low-levelimage
information (such as contrast and luminance) were equated between intact and scrambled
images, intact images elicited significantly higher responses than scrambled images. For com-
parison, activations for scenes and single objects from the object/scene localizer are also plotted
(computed in individual observers by defining PPA using the first run of the object/scene local-
izerand then extracting independent data from this region using the last run of the object/scene
localizer). Scenes elicit the highest activation in PPA compared with objects, ensembles, and
textures. Thus, although we show in this study that PPA is the key brain region mediating the
representation of ensemble and texture statistics, scenes still seem to be the most effective
stimuli in driving PPA response. For completeness, responses in LO, computed using the same
method described for PPA, were included as well. ***p << 0.001.

action for textures: F, ,) = 9.05, p = 0.001). Taken together, these
results indicate that the adaptation effects obtained thus far are rel-
atively higher level and are not affected by a change in image size.
This is similar to the size invariance effect previously reported in PPA
for scene processing and the lateral occipital complex, of which LO is
a subregion, for object processing (Grill-Spector et al., 1999; An-
drews and Ewbank, 2004; Ewbank et al., 2005; Lee et al., 2006).

To directly localize regions involved in ensemble and texture
processing, we included an ensemble/texture localizer that con-
tained object ensembles, textures, and their phase-scrambled
counterparts (matched in overall spatial frequency, luminance,
and contrast). Although the main results obtained from this lo-
calizer are described in detail in the next section, here we used the
stimulus conditions included in this localizer to further examine
whether PPA adaptation for object ensembles and surface tex-
tures was driven by the repetition of low-level image features such
as spatial frequency, luminance, and contrast. To do so, we ex-
tracted averaged responses for the four conditions in this ensem-
ble/texture localizer from individual observers’ PPA (defined
using the object/scene localizer). We obtained a significant main
effect of image conditions (F; ¢, = 27.77, p = 0.001) (Fig. 5)
such that the intact images elicited higher responses than the
scrambled images (ensembles vs scrambled ensembles: 7,5, =
6.56, p = 0.001; ensembles vs scrambled textures: t,5) = 6.25,p =
0.001; textures vs scrambled textures: t,3) = 7.64, p = 0.001;
textures vs scrambled ensembles: ¢,5) = 5.07, p = 0.001; all two
tailed and Bonferroni corrected). The two intact image condi-
tions did not differ from each other (5, = 1.88, p = 0.472), and
the two phase-scrambled image conditions also did not differ
from each other (¢(,5, = 1.11, p = 1.00). Thus, although the intact
and the scrambled images shared the same overall spatial fre-
quency, luminance, and contrast, they elicited different amounts
of PPA activation. This further suggests that PPA adaptation to
the repetition of object ensemble and surface texture statistics
cannot be solely attributed to the repetition of low-level visual
information (such as spatial frequency, luminance and contrast)
across images.
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Although we have examined responses from PPA as a whole, it
is possible that PPA may contain heterogeneous regions, with
more posterior parts of PPA (i.e., within the collateral sulcus)
more involved in object ensemble and surface texture processing
than anterior parts (i.e., closer to the anterior aspect of the para-
hippocampal gyrus). To examine this possibility, we divided ev-
ery observer’s PPA ROI into anterior and posterior parts. This
was done by constructing a line through the center of activation
in each observer’s PPA and then assigning all voxels extending in
front of this line to the anterior part and all voxels extending
behind this line to the posterior part. In all three experiments, we
found virtually identical adaptation results in both the anterior
and the posterior parts of PPA for object ensembles and surface
textures (region-by-image-by-condition interaction: for experi-
ment 1, F, ,,, = 0.57, p = 0.58; for experiment 2, F, ,,, = 1.68,
p = 0.21; for experiment 3, F(, ,,, = 0.42, p = 0.66), suggesting
that the anterior and the posterior parts of PPA do not differ in
how they process object ensembles and surface textures.

Taken together, results from experiments 1 to 3 demonstrate
that the processing of object ensembles in PPA is remarkably
similar to the processing of surface textures. In light of this, one
might question whether or not object ensemble processing in
PPA simply reflects the processing of the surface texture of the
individual objects in the ensemble rather than ensemble features
per se. To address this question, in experiment 4 we used black
wooden beads of different shapes as stimuli (Fig. 6 A). We showed
observers two images that were either identical, shared object
ensemble features (i.e., different photographs of the same beads),
or different (i.e., photographs of beads with different shapes).
Here, in all three conditions, the surface texture of the individual
objects in the ensembles was identical (i.e., painted black wood).
Despite this surface texture repetition, PPA again exhibited dif-
ferent patterns of adaptation across the three conditions (main
effect of condition: F(, ,,, = 5.37, p = 0.014), with planned pair-
wise comparisons revealing that the identical and the shared con-
ditions did not differ from each other (t,,) = 1.05, p = 0.486),
but both showed a lower response compared to the different
condition (different vs identical: £, = 2.56, p = 0.038; different
vs shared: ¢,y = 2.77, p = 0.027) (Fig. 6 B).

Interestingly, in experiment 4, there was no response differ-
ence in LO (main effect of condition: F, ,5) = 0.07, p = 0.930; t <
0.39 for all planned pairwise comparisons). This null result might
be attributed to the shape of the beads used in this experiment.
Because half the beads used were circular or very close to circular
(Fig. 6C), in a lot of the trials there were likely minimum contour
changes between different photographs depicting the same en-
semble. This may explain why we failed to observe a release from
adaptation in LO between the shared and the identical condi-
tions. This might also have resulted in minimum contour
changes in photographs depicting different ensembles, resulting
in our failure to observe a release from adaptation in LO between
the identical and the different conditions. Despite this null result,
however, differences in response patterns between PPA and LO
reached significance (region-by-condition interaction: F, o), =
5.27,p = 0.015), replicating the results from experiments 2 and 3
and again demonstrating that these regions process object en-
sembles in significantly different ways. Overall, results of experi-
ment 4 indicate that the processing of object ensembles in PPA
does not simply reflect the processing of the surface texture of the
individual objects composing an ensemble. Texture processing
can certainly play a role in ensemble representation, but these
results show that the shapes of the individual objects making up
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an ensemble are also an important part of
ensemble representation in anterior-
medial ventral visual cortex.

Directly localizing ventral brain areas
involved in real-world object ensemble
and surface texture processing

To localize visual areas that would be nat-
urally activated when object ensembles
and surface textures are processed, we
contrasted brain responses obtained when
observers viewed blocks of object ensem-
ble and surface texture images used in our
adaptation experiments with responses
obtained when they viewed blocks of
phase-scrambled versions of these same
images. Using a random-effects group
analysis (p < 0.001, uncorrected), we
identified two main regions of activation
in the occipitotemporal cortex, with one
located laterally in the vicinity of LO and
the other located ventrally along the col-
lateral sulcus/parahippocampal gyrus in
the vicinity of PPA and extending posteri-
orly along the collateral sulcus. (Other re-
gions of the brain also became active using
this contrast, such as regions along the in-
traparietal sulcus in parietal cortex [one
bilateral activation in the inferior intrapa-
rietal sulcus (Talairach x, y, z coordinates
for right/left are +26/—28, —80/—385,
+19/+16) and another bilateral activa-
tion in the superior intraparietal sulcus
(Talairach x, y, z coordinates for right/left
are +25/—24, —61/—64, +39/+40)],and
one region in the right frontal cortex [x =
48,y = 22,z = 28]. These activations were
likely driven by differences in attention as
the intact ensemble and texture images
were more attentionally engaging than the
phase-scrambled versions of these same
images.) In fact, PPA overlapped 61%
with the ventral ensemble/texture area
(calculated as the number of overlapping
voxels divided by the total number of vox-
els in PPA; all other overlap values re-
ported below were similarly calculated
except where noted), and LO overlapped
55% with the lateral ensemble/texture
area (Fig. 7A). When we relaxed the statis-
tical threshold, the amount of overlap in-
creased. At p < 0.01, uncorrected, PPA
overlap increased to 80% and LO overlap
increased to 70%. Similar results were ob-
tained when ensemble and texture images
were analyzed separately with their phase-
scrambled counterparts, with the excep-
tion that LO overlap was greater for object
ensembles than for surface textures, likely
due to the lack of closed contours in the
latter images (at p < 0.001 and p < 0.01,
both uncorrected, object ensemble activa-
tion overlapped with PPA 45% and 63%,
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Figure 6.  Stimuli and results (N = 11) from experiment 4. a, Example stimuli used in the experiment. Only object ensembles
made of black wooden beads were used here. In each trial, observers saw two images that were identical (gray boxes), shared
object ensemble features (i.e., different photographs of the same type of beads; blue boxes), or different (i.e., photographs of
beads that differed in the shape of the individual ensemble elements; red boxes). The surface texture and the material properties
of the individual objects in the ensembles were thus identical in all conditions. The same image categorization task used in
experiments 2 and 3 was used here. b, Results from experiment 4. Despite texture/material repetition of the ensembles across the
three conditions, PPA again showed adaptation when ensemble statistics were repeated but a release from adaptation when the
shape of the beads changed between ensembles. Unlike the previous three experiments, LO did not show any sensitivity to our
manipulations, possibly because half of the beads used in the experiment were approximately circular, resulting in minimal
contour changes between different images depicting either the same or different ensembles. Error bars represent within-subject
SEs. ns, Not significant. ¢, Additional stimuli used in experiment 4. *p << 0.05.
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Figure 7.  a, Group overlap of the object ensemble/surface texture regions and PPA and LO. To localize visual areas naturally

activated when object ensemble and surface textures are processed, brain responses for viewing object ensembles and surface
textures were contrasted with those for viewing phase-scrambled versions of these same images. Two main regions of activation
were located (shown in purple), with one located laterally and the other located ventrally originating from the parahippocampal
gyrus and extending posteriorly along the collateral sulcus. Although the anterior-medial ventral region (Talairach coordinates, x,
y, z for right/left: +21/—23, — 50/—52, —6/—9) overlapped greatly with PPA (yellow; + 21/—21, —39/—40, —7/—7,
defined by contrasting scenes with faces and everyday objects), the lateral region (+33/—37, — 77/—74, —1/—6) overlapped
greatly with LO (green; 36/ —36, —75/—75, —3/—4, defined by contrasting everyday objects with phase-scrambled versions of
these same images). The large overlap between the different brain regions justifies our selection of PPA and L0 as the main ROls in
investigating the neural underpinnings of object ensemble processing. All regions are displayed at p << 0.001, uncorrected. b,
Regions differentially activated for object ensembles or surface textures. The only regions that were more active (group data,
displayed at p << 0.001, uncorrected) in the visual occipitotemporal cortex for object ensembles than for surface textures were
locatedin LO (+33/—35, —80/—78, —1/—4) and early visual cortex (8, —86, 0). No regions were more active for textures than
for ensembles. ¢, Common region of overlap between PPA (defined using the scenes vs faces and objects contrast) and the ventral
ensemble/texture region (defined using the intact vs scrambled ensembles and textures contrast), both at the group level and
displayed atp << 0.001(+21/—22, —41/—44, —7/—6) and p < 0.01 (+ 20/—21, —44/—41, —6/—6), both uncorrected.
As the statistical threshold is relaxed, the common region of activation extends more posteriorly. R, Right.
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Top, Common regions of overlap for PPA (defined using the object/scene localizer) and the ventral ensemble/texture region (defined using the ensemble/texture localizer), shown in

five representative ohservers. Bottom, Common regions of overlap for LO (defined using the object/scene localizer) and the lateral ensemble/texture region (defined using the ensemble/texture
localizer), shown in the same five observers. All regions are displayed at p << 0.001, uncorrected. Talairach coordinates are given under each brain. R, Right; S, subject.

respectively, and with LO 58% and 72%, respectively; surface
texture activation overlapped with PPA 50% and 76%, respec-
tively, and with LO 22% and 41%, respectively).

We also assessed the amount of overlap between ventral regions
activated by object ensembles and by surface textures (by contrasting
intact vs scrambled images to first localize these regions). At the
group level, the overlap between the two was 69% and 82% at p <
0.001 and at p < 0.01, both uncorrected, respectively.

To better interpret the meaning of the overlap in these analy-
ses, we calculated the amount of overlap between PPA regions
defined by the first and the last run of the same object/scene
localizer. Because the same stimuli and the same observers were
used, an ideal result would be near 100% overlap between the two
PPA regions at the group level. In reality, however, the overlap
was only 56% at p < 0.01, uncorrected (overlap at p < 0.001
could not be calculated due to insufficient power because fewer
runs were included in this analysis). The failure to observe a near
100% overlap was likely due to random factors such as head
motion, breathing rate, attention, and scanner noise (among oth-
ers). This demonstrates that a very high degree of spatial corre-
spondence between regions is difficult to achieve with fMRI at the
group level, even when defining the same region using the same
stimuli and observers. Importantly, these overlap values are sim-
ilar to those reported above when the overlap between PPA, LO,
and the ensemble/texture regions were compared, indicating that
the values reported above reflect a high degree of overlap between
the different brain regions compared.

Calculating overlap values between regions on group data can
potentially overestimate the degree of overlap because averaging

individual activations together would result in spatial smoothing
and would blur the boundaries between functionally distinctive
regions. To address this concern, we recalculated the overlap be-
tween our functional regions in individual observers at our most
conservative threshold (p < 0.001) and then averaged these val-
ues from individual observers to derive a group average overlap
value. With this procedure, PPA overlapped 46% with the ventral
ensemble/texture area, and LO overlapped 61% with the lateral
ensemble/texture area (Fig. 8; illustrations of the overlap regions
in individual observers). Compared with the overlap values ob-
tained directly from the group data (61% and 55%, respectively,
for the two overlaps; see above), it seems that calculating overlap
based on group data does not necessarily overestimate the
amount of functional overlap between regions. To better evaluate
the degree of overlap between brain regions, we also recalculated
the amount of overlap between PPA regions defined using the
first and last runs of the same object/scene localizer using data
from individual observers. At p < 0.001 (uncorrected), the over-
lap between these areas was 60%, a value comparable to the values
reported above using the group data (which was 56%). Together,
the similarity between the individual and group overlap analyses
justifies our initial use of group statistics to report overlap be-
tween functional regions. To further validate how we calculated
overlap, we compared our method, which uses a single ROI in the
denominator, with that proposed by Kung et al. (2007), which
uses the average of the two ROIs in comparison in the denom-
inator. We did not find any significant differences between
these two methods: overlap between PPA and ventral ensem-
ble/texture area was 46% (our method) and 41% (Kung et al.,
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2007), ty3y = 1.11, p = 0.276; overlap between LO and lateral
ensemble/texture area was 61% (our method) and 66% (Kung et al.,
2007), t(,3) = 1.07, p = 0.296; and overlap between first and last run
defined PPA was 60% (our method) and 62% (Kung et al., 2007),
tas) = 0.14, p = 0.887. All comparisons were two tailed.

In addition to examining the overlap between regions, we also
localized the ventral and the lateral ensemble/texture regions di-
rectly in each observer and used them as ROIs to reanalyze the
results from our grayscale (experiment 2) and size-change (ex-
periment 3) adaptation experiments. Results from these two en-
semble/texture regions were very similar to those obtained from
the PPA and LO ROIs. Specifically, the ventral region (which was
in the vicinity of PPA) exhibited similar response patterns to both
object ensembles and surface textures (image-by-condition in-
teraction: in experiment 2, F(, 55, = 0.01, p = 0.99; in experiment
3, F06 = 1.01, p = 0.378) and showed equivalent levels of
adaptation when either object ensembles or surface textures were
repeated (planned pairwise comparisons in experiment 2 for ob-
ject ensembles: shared vs identical, ¢, = 2.16, p = 0.084; differ-
entvsidentical, ¢,y = 3.87, p = 0.003; different vs shared, ¢, 3, =
2.72, p = 0.027; planned pairwise comparisons in experiment 2
for surface textures: shared vs identical, #,5) = 1.79, p = 0.137;
different vs identical, ¢,5) = 5.36, p = 0.001; different vs shared,
tas) = 3.00, p = 0.017; planned pairwise comparisons for exper-
iment 3 for object ensembles: shared vs identical, ¢, 5, = 1.66, p =
0.178; different vs identical, t,5) = 3.36, p = 0.008; different vs
shared, t,5, = 4.40, p = 0.001; planned pairwise comparisons for
experiment 3 for surface textures: shared vsidentical, #,5) = 1.11,
p = 0.425; different vs identical, t,5) = 2.93, p = 0.016; different
vs shared, t,5) = 2.48, p = 0.046). The lateral region, which was
in the vicinity of LO, showed a release from adaptation for object
ensembles when local shape or contours changed in the shared
and the different conditions but was insensitive to any changes in
surface textures (overall difference between object ensembles and
surface textures, from the image-by-condition interaction: in ex-
periment 2, F(, 54y = 0.87, p = 0.43; in experiment 3, F, 5¢) =
1.81, p = 0.183; planned pairwise comparisons in experiment 2
for object ensembles: shared vs different, ¢,5, = 0.94, p = 0.50;
shared vs identical, 3, = 3.26, p = 0.01; different vs identical,
t3) = 3.43, p = 0.007; planned pairwise comparisons in experi-
ment 2 for surface textures: none of the three conditions differed
from each other, all # < 2.15, NS; planned pairwise comparisons
in experiment 3 for object ensembles, shared vs different: ¢ 5, =
0.13, p = 0.50; shared vs identical, t,5) = 2.93, p = 0.018; differ-
ent vs identical, t,3, = 2.26, which approached significance at
p = 0.066; for surface textures: none of the three conditions
differed from each other, all t < 0.38, NS). Finally, differences in
adaptation between the ventral and lateral ensemble/texture re-
gions reached significance for processing both object ensembles
(region-by-condition interaction for ensembles: in experiment 2,
Fop6) = 5.94, p = 0.008; in experiment 3, F(, 55y = 4.53, p =
0.021) and surface textures (region-by-condition interaction for
textures: in experiment 2, F(, ,5) = 4.53, p = 0.02; in experiment
3, F5.26) = 15.50, p = 0.001), showing that these two brain areas
extract different types of information from the same visual input.

Finally, to directly compare the processing of object ensem-
bles and surface textures, we used the group ensemble/texture
localizer data and contrasted the activations for ensembles with
surface textures (Fig. 7B). At p < 0.001 (uncorrected), the only
regions more active for object ensembles than surface textures
were in the vicinity of LO and early visual cortex. The preference
of LO for processing object ensembles over surface textures is
consistent with our adaptation data from individual observers
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and with the blocked localizer results shown in Figure 5, as well as
with previous reports showing preferential processing of shapes
with closed contours in LO (Kourtzi and Kanwisher, 2001; Alt-
mann et al., 2003). Greater activation in early visual cortex for
ensembles than for textures may reflect the presence of more high
spatial frequency information in the ensemble than in the texture
images. Meanwhile, no region showed higher activation for sur-
face textures than for object ensembles. These findings lend fur-
ther support to the notion that object ensembles and surface
textures share similar neural and computational mechanisms in
anterior-medial ventral visual cortex.

Taken together, these results independently show that visual
processing of object ensembles naturally activates two distinctive
regions in ventral and lateral visual cortex, corresponding well to
the location of PPA and LO, respectively. Moreover, they also
show that the processing of object ensembles and surface textures
activates a common region in anterior-medial ventral visual cor-
tex. These results are consistent with our adaptation results and
justify our selection of PPA as the candidate ROI to target in
investigating the neural underpinnings of object ensemble
processing.

Whole-brain analysis of real-world object ensemble and
texture adaptation

To further assess whether additional visual areas are involved in
object ensemble and surface texture processing, we performed a
whole-brain group random-effects analysis on the adaptation
data separately for each experiment. Specifically, we looked for
regions that showed a higher response for the different compared
with the identical or the shared conditions for both object ensem-
bles and surface textures. Despite weaker effects typically associ-
ated with event-related adaptation paradigms and variability in
observers’ responses, at p < 0.01, uncorrected, we observed bilat-
eral activation in anterior-medial ventral visual cortex in all four
experiments (Fig. 9), corresponding well to the location of our
PPA ROI and the ventral region activated in our ensemble/tex-
ture localizer (Fig. 7A). We want to emphasize that the medial
location of this activation, although independently obtained
from the four adaptation experiments involving different stimuli,
tasks, and observers, was remarkably consistent and replicable
across experiments. Moreover, these were the only regions acti-
vated in the ventral posterior part of the brain. (Additional re-
gions were activated along the anterior inferior temporal sulcus,
superior and inferior frontal gyrus, and medial and lateral partial
cortex, likely reflecting task- and attention-related processing dif-
ferences among the conditions; see Table 1.) Similar activation in
anterior-medial ventral visual cortex was observed when object
ensemble and surface texture data were analyzed separately and
when the identical condition was excluded from the analysis.
These results provide converging evidence that object ensembles
and surface textures share a common neural substrate in the ven-
tral visual cortex and confirm the involvement of PPA (which is
located in anterior-medial ventral visual cortex) in object ensem-
ble processing.

Interestingly, the continuous ventral activation that we saw in
our ensemble/texture localizer (Fig. 7A) broke into two separate
patches of activations in the right hemisphere in this whole-brain
analysis (Fig. 9). On the one hand, this suggests that the ventral
ensemble/texture processing region may be further divided into
two separate regions. Indeed, a number of recent studies have
reported activation of the right posterior collateral sulcus region
in low-level visual texture and material property processing
(Cavina-Pratesi et al., 2010a,b; Cant and Goodale, 2011). It is also
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Figure9.

texture processing in the visual cortex. R, Right.

Table 1. Additional regions uncovered in the group random effects whole-brain
analyses conducted in experiments 1 through 4

Experiment 1 Experiment 2 Experiment 3 Experiment 4
RMPL 2, —62,36 6, —53,26 7,—53,29 8, —52,27
L MPL —11,—63,36  —6, —54,29 —7,—54,30  —7,—54,20
RLPL 47, —68, 21 48, —63, 25 40, —67, 35
LLPL —53,—57,23 —49,—60,22  —43,—61,26 —38,—70,32
R anterior ITS 52, =9, —6 51,1, =17 54, —3,—6 4, —7,-5
L anterior ITS —=51,—2,—14 —60,—9,—6 —52,—3,—12
R SFG 20,25, 39 23,23,49 23,17, 41 21,18,49
L SFG —21,24,37 —21,24,47 —18,25,43 —23,21,44
RIFG 37,32,4 19,29,9 17,34,22 14,31,10
LIFG —39,31,5 —35,26, —11 —42,27,8 —37,33, -7

In each experiment, we looked for regions that showed a higher response for the different compared with the
identical and the shared conditions for both object ensembles and surface textures (only object ensembles were used
inexperiment4). Talairach coordinates (x, y, z) are given for each region, and all regions were uncovered atp < 0.01,
uncorrected. IFG, Inferior frontal gyrus; ITS, inferior temporal sulcus; L, left; LPL, lateral parietal lobe; MPL, medial
parietal lobe; R, right; SFG, superior frontal gyrus.

possible that the posterior collateral sulcus, along with regions in
the fusiform gyrus, represent a transition zone (Cant et al., 2009)
whose function evolves from the prominence of visual shape pro-
cessing more laterally to the prominence of ensemble statistical
and textural processing more medially and anteriorly. On the
other hand, however, these two potentially separate regions in the
right ventral visual cortex could also be part of one larger func-
tional region involved in object ensemble and texture processing.
In support of this idea, when we plotted the overlap between PPA
defined by the object/scene localizer and the ventral region de-
fined by the ensemble/texture localizer, we observed that the
overlap extended more posteriorly, partially encompassing both
right hemisphere regions identified in our adaptation experi-
ments, as the statistical threshold was relaxed from p < 0.001 to
p <0.01 (Fig. 7C). Further research is needed to fully understand
whether the anterior and posterior regions of the right collateral
sulcus represent common or distinct regions for processing ob-
ject ensemble and texture features.

[]-Experiment 1,N =12
(ensembles and textures)

- Experiment 2, N = 14
(ensembles and textures)

- Experiment 3, N = 14
(ensembles and textures)

[1-Experiment 4,N = 11
(ensembles)

Regions that exhibit adaptation for repetitions of object ensemble and surface texture statistics (i.e., lower response
for the identical and the shared conditions than for the different condition), plotted separately for each of the four adaptation
experiments and shown as outlines to illustrate the overlap across experiments. The locations of the regions are consistent across
the four experiments and reside in the anterior-medial part of ventral visual cortex, extending along the collateral sulcus and the
parahippocampal gyrus (Talairach coordinates for experiment 1, anterior collateral sulcus/parahippocampal gyrus [aCoS/PG], X, y,
Z for right/left: +24/—25, —49/—56, —5/—11; right posterior collateral sulcus [pCoS]: 21, —76, —12; for experiment 2,
aCoS/PG: +21/—26, —37/—46, —15/—8; right pCoS: +21, —69, —12; for experiment 3, aCoS/PG: +22/—20, —41/—49,
—14/—12; right pCoS: 24, — 66, —13; for experiment 4, aCoS/PG: +28/—30, —40/—53, —16/—11; right pCoS: 22, — 63,
—9). These results provide additional support for our choice of PPA as the main ROI for examining object ensemble and surface
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Response to ensembles and textures in
the broader scene-processing and
object-processing networks
To examine whether or not all scene-
processing regions in the brain participate
in object ensemble and visual texture pro-
cessing in a similar manner, we examined
adaptation responses to ensembles and
textures in two additional scene-selective
regions, namely RSC (for review, see Ep-
stein, 2008) and TOS (Epstein et al,
2005). Both regions were defined in indi-
vidual observers using the same statistical
contrast and threshold as PPA. The main
results within each region are reported in
Table 2 and Figure 10. Although PPA and
RSC showed similar response patterns in
some experiments (region-by-condition in-
teraction for ensembles: in experiment 1,
F(55) = 0.45, p = 0.641; in experiment 3,
F04) = 1.28,p = 0.297; in experiment 4,
Fi18 1.18, p = 0.331; region-by-
condition interaction for textures: in ex-
periment 1, F,,; = 1.67, p = 0.212; in
experiment 2, F,,,) = 116, p = 0.331),
they differed in other experiments (region-
by-condition interaction for ensembles in experiment 2: F, ,,, =
4.77, p = 0.018; region-by-condition interaction for textures in ex-
periment 3: F(, ,,) = 10.65, p = 0.001). This lack of consistency in
RSC response patterns, together with the overall low RSC responses
in all four experiments (compared with those obtained from PPA
and TOS), suggests that RSC is unlikely to play as important a role in
ensemble and texture processing as PPA does. With the exception of
experiment 1, response patterns differed consistently between PPA
and TOS in experiments 2 through 4 (region-by-condition interac-
tion for ensembles in experiment 1: F(, 5,y = 0.38, p = 0.686; in
experiment 2: F, 5) = 14.57, p = 0.001; in experiment 3: F(, 5¢) =
37.55, p = 0.001; in experiment 4: F, 5oy = 9.95, p = 0.001; region-
by-condition interaction for textures in experiment 1: F, ,,) = 1.40,
p = 0.268; in experiment 2: F, ,5) = 4.71, p = 0.018; in experiment
3: F(556) = 12.84,p = 0.001). This indicates that PPA and TOS differ
in how they process object ensembles and surface textures (see also
the main results within each region presented in Table 2 and Fig. 10).
To compare response amplitude for ensembles, textures, and
scenes in PPA, we defined PPA in each individual using the first
run of their object/scene localizer and then extracted the activa-
tions for scenes and objects using the last run of their object/scene
localizer. We also extracted PPA responses for ensembles and
textures in the ensemble/texture localizer. Although scenes, ob-
jects, ensembles, and textures were not included in the same run
and could not be directly compared with statistical tests, it is
evident that the PPA response to scenes was much greater than
the response to ensembles, textures, or objects (Fig. 5; for com-
pleteness, responses in LO, computed using the same method
described for PPA above, were also included). Thus, although we
show in this study that PPA is the key brain region mediating the
representation of ensemble and texture statistics, scenes still seem
to be the most effective stimuli in driving the response in PPA.
Taken together, our results indicate that there appears to be a
functional dissociation in the human scene-processing network.
Specifically, while PPA is involved in both the spatial (e.g., spatial
expanse) (Kravitz et al., 2011) and the nonspatial aspects of visual
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Table 2. Effects of object ensemble and surface texture adaptation in RSC, TOS, and pFs for all four experiments

Planned comparisons
Main effect Object ensembles Textures
Image Condition Identical vs shared Identical vs different  Shared vs different Identical vs shared Identical vs different  Shared vs different
RSC
Experiment 1 Foa=391p=10035 tayy = 3.83p =0.005 t,=271p =003
Experiment 2 Fo20 = 386 p = 0.035 tay = 276 p = 0.025
Experiment 3 Fo,2 = 6.03 p = 0.008
Experiment4 N/A Foag = 511p =10.017 tg =3.53p=0011 N/A N/A N/A
T0S
Experiment 1 tgny = 2.95p = 0.02
Experiment 2 Fioe = 5-85p =0.008 .5 =3.05p = 0013
Experiment 3
Experiment4 N/A N/A N/A N/A
pFs
Experiment 1 Fia22 = 20.90p = 0.001 tayy =3.88p = 0.004 f,,)=255p =0.042 tqyy = 3.95p = 0.004
Experiment2 F, 15 = 66.77p = 0.001 F,, = 12.17p = 0.001 t,5 = 2.76p = 0.027 t,5 =3.05p =0.013
Experiment3 £, ;5 = 30.88 p = 0.001
Experiment4 N/A N/A N/A N/A

Image indicates ensemble and texture. Condition indicates identical, shared, and different. Image-by-condition interaction was not significant in any of the experiments. Main effects, interactions, and planned pairwise comparisons were
assessed (one tailed, Bonferroni corrected). Left and right hemispheres were combined because no difference in activation was observed between the hemispheres. Only significant results are shown. N/A, Not applicable.
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Adaptation resultsin RSC, TOS, and pFs, shown for all four adaptation experiments. Responses to object ensembles and textures in RSCand TOS were not as consistent as those observed

in PPA, suggesting that RSC and TOS are unlikely to play significant roles in ensemble and texture processing. This suggests that PPA is involved in both spatial and nonspatial aspects of visual
processing, but RSCand TOS may only participate in spatial aspects of visual processing. Depending on the experiment and the stimulus condition, pFs responses were either similar to LO (ensembles
in experiments 1and 2) or PPA (ensembles in experiment 1, and basic adaptation effect for textures in experiment 1). This suggests that pFs, which is anterior to LO but posterior to PPA, may be a
“transition zone” whose function is transitioning from processing shapes to processing the statistical information contained in ensembles and textures. Exp, Experiment; ns, not significant. Error bars

represent within-subject SEs. *p << 0.05; **p < 0.01.

processing (e.g., object ensembles and textures), RSC and TOS
may participate in only the spatial aspects of visual processing.
The broader object-processing network in the human brain
consists of two connected regions, LO and pFs, which together
constitute the lateral occipital complex (Grill-Spector et al., 1999;
for review, see Grill-Spector, 2009). Both pFs and LO are known
to respond to high-level shape information (Vinberg and Grill-
Spector, 2008); however, compared with LO, pFS is more resis-
tant to various image transformations such as size and position

(Grill-Spector et al., 1999; Kourtzi and Huberle, 2005; for review,
see Grill-Spector, 2009). To investigate the role of pFs in object
ensemble and surface texture processing, we extracted adaptation
responses from pFs (defined in individual observers using the
same statistical contrast and threshold as LO). The detailed re-
sults are reported in Table 2 and Figure 10. Overall, LO and pFs
share some functional similarities in the processing of ensembles
and textures (nonsignificant region-by-condition interaction for
ensembles: in experiment 1, F(, ,,) = 3.24, p = 0.058; in experi-
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Table 3. Accuracy (percent correct) for the localizer runs
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Scrambled Object Scrambled Scrambled
Objects Scenes Faces objects ensembles ensembles Textures textures

Object/scene localizer

Experiment 1 92.19 = 2.39 93.49 * 1.82 9271+ 212 91.67 = 2.96

Experiments 2 and 3 94.94 = 1.25 97.32 = 0.83 96.73 = 0.9 97.02 = 1.1

Experiment 4 94.01 = 2.41 93.75 = 3.05 94.27 = 1.56 94.27 =272
Ensemble/texture localizer

Experiments 2 and 3 92.62 = 1.90 93.16 = 1.42 90.18 = 1.55 93.16 = 1.55
All reported values represent mean == SE for percent correct. No difference across conditions reached significance in any of the localizer runs.
Table 4. Accuracy (percent correct) and response latency (milliseconds) of correct trials for experiments 2 through 4

Object ensembles Textures
Identical Shared Different Identical Shared Different

Accuracy (% correct)

Experiment 2 95.96 = 1.57 93.70 = 2.62 97.39 £ 0.63 90.37 = 3.17 88.20 = 2.32 95.97 = 1.30

Experiment 3 96.77 = 0.65 91.46 = 2.18 97.77 = 1.24 89.60 = 3.10 86.79 == 2.42 97.39 = 0.63

Experiment 4 95.46 = 1.06 93.18 = 2.10 97.73 = 0.85
Response latency (ms)

Experiment 2 786 = 45 891 * 49 836 = 50 808 = 39 938 = 63 858 = 59

Experiment 3 812 = 45 930 = 58 821 * 46 858 = 49 954 + 65 827 £ 55

Experiment 4 915 + 38 1021 = 43 885 + 28

All values represent mean + SE. Significant pairwise comparisons (all two tailed and Bonferroni corrected) for accuracy are as follows: textures in experiment 2, shared vs different, t ,5) = 3.83, p = 0.006; textures in experiment 3, shared
vs different, 43, = 4.53, p = 0.002. Significant pairwise comparisons for response latency are as follows: object ensembles in experiment 2, shared vs identical, t;3) = 5.05, p = 0.001; textures in experiment 2, shared vs identical,
taz) = 4.06, p = 0.004; shared vs different, t,5, = 2.86, p = 0.036; object ensembles in experiment 3, shared vs identical, t.;3) = 5.36, p = 0.001; shared vs different, .,3) = 3.52, p = 0.011; textures in experiment 3, shared vs

identical, t;3) = 3.01, p = 0.03; shared vs different, ,3) = 3.34, p = 0.017; object ensembles in experiment 4, shared vs identical, t ;) = 3.89, p = 0.01; shared vs different, t ;o) = 3.49, p = 0.017.

ment 2, F, 55 = 1.53, p = 0.236; in experiment 3, F, »5) = 2.36,
p = 0.114; in experiment 4, F, ,,) = 1.25, p = 0.308; nonsignif-
icant region-by-condition interaction for textures: in experiment
2, F(556) = 2.41, p = 0.110; in experiment 3, F, 54y = 1.29, p =
0.293), but pFs also demonstrates some sensitivity to processing
texture [significant region-by-condition interaction for textures
in experiment 1: F(, ,,, = 4.51, p = 0.023; and a basic adaptation
effect for textures was observed in experiment 1 (i.e., greater
activation in the different compared with the identical condition;
see Table 2 and Fig. 10)], a property found in PPA but not in LO.
Given that pFs is located between LO and PPA, its role in visual
processing may be in the transition from shape-specific process-
ing to ensemble and textural statistic-specific processing. This
echoes our discussion (at the end of the Results section titled
“Whole-brain analysis of real world object ensemble and texture
adaptation”) and is reminiscent of the proposal from a recent
study arguing that the region in posterior to mid fusiform gyrus
can be thought of as a transition zone between the processing of
shapes in LO to the processing of surface properties (i.e., texture
and color) in collateral sulcus and parahippocampal gyrus (Cant
et al., 2009).

Behavioral results

In both the object/scene and the ensemble/texture localizer runs,
observers were asked to detect an occasional spatial jitter of the
images. Behavioral results and statistical comparisons among the
conditions for the localizer runs are reported in Table 3. In ex-
periment 1, observers were asked to press a response key when the
third image in each trial disappeared from view. The overall
response accuracy was 97.76% (range, 91.91-100%). Response
accuracies were not recorded separately for each stimulus condi-
tion, nor were response latencies recorded. In experiments 2
through 4, observers were asked to categorize the pair of images
in each trial as identical, shared (ensemble or texture statistics), or
different. Behavioral results and statistical comparisons for these
experiments are reported in Table 4. Some of the statistical com-

parisons reached significance in the main adaptation experi-
ments; notably, the shared condition in experiments 2 to 4 was
often harder than the identical or the different condition. How-
ever, behavioral response patterns in the main adaptation exper-
iments did not match the fMRI response patterns, making it
unlikely that behavioral responses directly contributed to the ob-
served fMRI results. This is consistent with the findings by Xu et
al. (2007), who also showed that fMRI adaptation responses in
PPA are dissociable from behavioral responses. Further support
of this conclusion is provided by the finding that although differ-
ent tasks were used in experiment 1 and in experiments 2 to 4, the
same fMRI response patterns in PPA and LO were obtained in all
of the experiments.

Discussion

Object ensemble perception is an important and adaptive aspect
of visual perception that can guide and complement the individ-
uation and encoding of specific objects in a complex visual scene.
Yet presently it has largely been unexplored by the neuroimaging
community. Here we investigated the neural underpinnings of
real-world object ensemble perception. We found that regions in
anterior-medial ventral visual cortex, including the collateral sul-
cus and parahippocampal gyrus, which overlap to a large extent
with the scene-sensitive PPA, show fMRI adaptation when en-
semble statistics are repeated. This adaptation effect still holds
with the removal of color information from the image and with
changes in the size of the image. We also found similar adaptation
effects for surface textures in this brain region, consistent with
previous neuropsychological and fMRI studies on texture pro-
cessing (Humphrey et al., 1994; Goodale and Milner, 2004; Cant
and Goodale, 2007; Cant et al., 2009). Importantly, the object
ensemble adaptation observed in this brain region was not driven
entirely by the repetition of the surface texture of the individual
objects in an ensemble because this region was still sensitive to
object ensemble changes when objects in two ensembles had the
same texture but differed in shape.
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In contrast, regions in the lateral occipital cortex, which over-
lap with area LO (an object shape-selective area), show a release
from fMRI adaptation when local contour changes regardless of
whether object ensemble statistics repeat or not and does not
show sensitivity to changes in surface texture. This is consistent
with previous studies showing this brain region’s involvement in
shape/contour processing (Malach et al., 1995; Grill-Spector et
al., 1998; Kourtzi and Kanwisher, 2001). Although previous stud-
ies have largely focused on single objects, here we show that this
brain region is also sensitive to changes in the local shape/contour
of multiple objects in an ensemble.

Our results are replicated across four different experiments,
with both independently localized PPA and LO ROIs and ROIs
localized by contrasting ensemble and texture images directly
with their phase-scrambled images. Our results are further con-
firmed by post hoc whole-brain analyses.

Contribution of lower-level image statistics and semantic
information

Our object ensemble adaptation in anterior-medial ventral visual
cortex is unlikely driven by lower-level image statistics such as
spatial frequency. First, in experiment 3, we used images that
varied in size and obtained virtually the same adaptation results
(Fig. 4). Second, in a post hoc analysis, using PPA as our ROI, we
examined responses to intact object ensembles, intact textures,
and their phase-scrambled counterparts from the ensemble/tex-
ture localizer. Although spatial frequency and other lower-level
image statistics (i.e., luminance and contrast) were preserved be-
tween intact and phase-scrambled images, intact images showed
significantly greater fMRI responses in PPA than their phase-
scrambled counterparts (Fig. 5). Thus, preserving the lower-level
image statistic profiles by itself is not sufficient to drive responses
in this brain region. Third, although ensembles likely have higher
spatial frequency content than textures, they exhibited identical
adaptation patterns in PPA and contrasting the two types of im-
ages did not activate any region in anterior-medial ventral visual
cortex (Fig. 7B). These results further suggest that ensemble/tex-
ture representation in anterior-medial ventral visual cortex is not
particularly sensitive to differences in spatial frequency. Finally,
Hiramatsu et al. (2011) recently demonstrated that the process-
ing of material properties in anterior-medial ventral visual cortex
(which is similar to the processing of surface texture; Cant and
Goodale, 2011) is based on high-level perceptual information
rather than low-level, imaged-based information. Taken to-
gether, the processing of ensembles and textures in our study is
likely based more on high-level (e.g., object shape and texture
statistics) than low-level visual information.

When object ensemble statistics repeat, the semantic label
(i.e., its name and semantic category) also repeats. Nonetheless, it
is unlikely that the repetition of such semantic labels can account
for our adaptation results. First, although object ensembles have
more salient semantic information (i.e., nameable identities)
than surface textures, identical adaptation results were obtained
for both image types. Second, in our final experiment, in which
we used black wooden beads that varied only in shape and thus
had similar semantic labels, we still obtained robust sensitivity to
object ensemble changes in PPA. Third, Epstein et al. (2003) have
demonstrated that PPA is sensitive to viewpoint changes of a
scene, even though the semantic content of the scene remains the
same.

Cantand Xu e Object Ensemble Processing in Human Visual Cortex

Object ensemble, surface texture, and scene processing

in PPA

As we discussed earlier, real-world homogeneous object ensem-
bles and surface textures both contain multiple repeating ele-
ments (Portilla and Simoncelli, 2000), and the processing of both
requires the extraction of summary statistics without encoding
each repeating element in great detail. This may explain why both
types of images share a common neural processing mechanism in
anterior-medial ventral visual cortex, as we observed in our
study.

PPA is well known to represent scenes by processing their 3D
spatial layouts (Epstein and Kanwisher, 1998; Kravitz et al.,
2011). Given that surface textures and object ensembles contain
minimal 3D spatial layouts and in general do not invoke scene
imagery, why would these stimuli share a common processing
mechanism with visual scenes? In addition to encoding 3D space,
scene perception often involves processing the gist of a scene by
extracting abstract information without representing in great de-
tail the individual objects composing the scene (Oliva and
Schyns, 2000; Oliva and Torralba, 2001). In this regard, scene
perception also involves the extraction of ensemble statistical in-
formation. This may explain why the processing of object ensem-
bles, surface textures, and scenes all activate this common region.
Thus, studying the neural underpinnings of object ensemble rep-
resentation holds the possibility of bridging distinct lines of re-
search and allows better understanding of the role of anterior-
medial ventral visual cortex in visual perception. This approach is
especially promising given that object ensembles are relatively
easier to create and manipulate than either surface textures or
visual scenes.

Although it is possible that the processing of the 3D scene
structure and the processing of visual statistics may be two dis-
tinctive forms of visual processing that both involve PPA, their
colocalization within PPA may not be accidental. The 3D struc-
ture of a scene may just be another form of high-order ensemble
statistic (e.g., one may be able to extract the global 3D structure of
a city scene containing many buildings without processing the
details of each specific building in the scene) such that anterior-
medial ventral visual cortex (where PPA is located) may play a
more general role of extracting higher-order statistical informa-
tion from any visual display. Further research is needed to fully
understand the connection between the processing of a 3D scene
structure and that of visual statistics in anterior-medial ventral
visual cortex.

What may be represented during object ensemble processing?
A growing body of behavioral research has shown that observers
can quickly extract useful ensemble statistics, such as mean size,
speed, and orientation, from a display without encoding specific
details of the objects composing the display (Williams and
Sekuler, 1984; Watamaniuk and Duchon, 1992; Ariely, 2001;
Parkes et al., 2001; Chong and Treisman, 2003, 2005a,b; Alvarez
and Oliva, 2008, 2009; Alvarez, 2011). It is very possible that
anterior-medial ventral visual cortex participates in such compu-
tations, although further experiments are needed to verify this.
It is also possible that anterior-medial ventral visual cortex is
sensitive to second-order image statistics, such as changes in the
luminance or geometric properties of the elements composing
the object ensemble or surface texture. Other features such as
element density, the arrangement of the elements, and the homo-
geneity of the elements may also be diagnostic and essential to the
representation of object ensembles and surface textures in this
brain region. Our findings thus provide exciting opportunities
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for future research to systematically explore the various factors
that contribute to the neural computations performed in this
brain region.

Two independent and complementary pathways for visual
object processing

Together with previous neuropsychological and neuroimaging
studies, our results indicate that there are two independent and
complementary visual object processing mechanisms in the
brain. One such mechanism involves anterior-medial ventral vi-
sual cortex (encompassing the collateral sulcus and parahip-
pocampal gyrus) and is specialized in extracting summary
statistics from both object ensembles and surface textures with-
out encoding the detailed features of each element composing the
ensemble or texture. The other mechanism involves the lateral
occipital cortex, which, together with regions in the parietal cor-
tex (Xu and Chun, 2009), enables us to attend, individuate, and
encode the detailed shape features of the individual objects in an
ensemble. Together, these two object processing mechanisms al-
low an observer to perceive both the “individual trees” and the
“entire forest” from a visual scene.

To conclude, our study showed that anterior-medial ventral
visual cortex is involved in real-world object ensemble percep-
tion, an important butlargely unexplored aspect of visual percep-
tion that complements object-specific representation. Moreover,
object ensemble representation is closely related to surface tex-
ture and visual scene representation. Understanding object en-
semble representation in the brain is thus both important and
necessary if we want to fully comprehend how object perception
from natural scenes is accomplished.
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