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The p53 response in single cells is linearly
correlated to the number of DNA breaks
without a distinct threshold
Alexander Loewer1,2*, Ketki Karanam1, Caroline Mock1 and Galit Lahav1*
Abstract

Background: The tumor suppressor protein p53 is activated by cellular stress. DNA double strand breaks (DSBs)
induce the activation of the kinase ATM, which stabilizes p53 and activates its transcriptional activity. Single cell
analysis revealed that DSBs induced by gamma irradiation trigger p53 accumulation in a series of pulses that vary in
number from cell to cell. Higher levels of irradiation increase the number of p53 pulses suggesting that they arise
from periodic examination of the damage by ATM. If damage persists, additional pulses of p53 are triggered. The
threshold of damage required for activating a p53 pulse is unclear. Previous studies that averaged the response
across cell populations suggested that one or two DNA breaks are sufficient for activating ATM and p53. However,
it is possible that by averaging over a population of cells important features of the dependency between DNA
breaks and p53 dynamics are missed.

Results: Using fluorescent reporters we developed a system for following in individual cells the number of DSBs, the
kinetics of repair and the p53 response. We found a large variation in the initial number of DSBs and the rate of repair
between individual cells. Cells with higher number of DSBs had higher probability of showing a p53 pulse. However,
there was no distinct threshold number of breaks for inducing a p53 pulse. We present evidence that the decision to
activate p53 given a specific number of breaks is not entirely stochastic, but instead is influenced by both cell-intrinsic
factors and previous exposure to DNA damage. We also show that the natural variations in the initial amount of p53,
rate of DSB repair and cell cycle phase do not affect the probability of activating p53 in response to DNA damage.

Conclusions: The use of fluorescent reporters to quantify DNA damage and p53 levels in live cells provided a
quantitative analysis of the complex interrelationships between both processes. Our study shows that p53 activation
differs even between cells that have a similar number of DNA breaks. Understanding the origin and consequences of
such variability in normal and cancerous cells is crucial for developing efficient and selective therapeutic interventions.

Keywords: Double strand breaks, p53, Live imaging, Single cells, Pulses
Background
The tumor suppressor p53 mediates the cellular re-
sponse to DNA damage by triggering cell cycle arrest
and DNA repair or by evoking cellular senescence and
apoptosis [1]. These functions of p53 are essential for
preserving genomic integrity and preventing neoplastic
transformation. Loss of p53 activity, either by functional
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reproduction in any medium, provided the or
inactivation of its pathway or by gene mutation, is a fre-
quent event in the onset and progression of many
human malignancies [2,3]. p53 function is also critical
to the efficacy of cancer therapies that generate DNA
damage, such as radiation and chemotherapy, and
defects in p53 are often associated with therapy resist-
ance [1,4].
Within cells, levels of p53 protein are tightly con-

trolled by several regulatory feedback loops that direct
its stability and degradation. One major regulator of p53
is the E3 ubiquitin ligase Mdm2. p53 transcriptionally
activates Mdm2 expression and Mdm2 targets p53 for
degradation by the proteasome [5-8]. This interaction
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ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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keeps p53 levels low under unstressed conditions. In re-
sponse to cellular stress, p53 is activated through upstream
kinases that induce post-translational modifications and
disrupt the p53-Mdm2 interaction, allowing p53 to accu-
mulate in the nucleus and induce the expression of target
genes that mediate the cellular stress response [9].
DNA double strand breaks (DSBs) are particularly dan-

gerous lesions for metazoan cells, as they can promote
tumorigenesis by inducing chromosomal translocations
and genomic instability upon misrepair [10]. A complex
molecular machinery recognizes the presence of free DNA
ends and induces the rapid activation of the kinase ataxia-
telangiectasia mutated (ATM) [11-13] (reviewed in [14]).
Among the substrates of ATM is the histone variant
H2AX, which is phosphorylated around the break site and
serves as a binding platform for mediator proteins that
propagate the DNA damage signal.
Activated ATM subsequently phosphorylates and sta-

bilizes p53, which shows a series of highly regulated, un-
damped pulses in single cells upon induction of DSBs.
The amplitude and duration of p53 pulses is independ-
ent of the damage dose, whereas the number of pulses
increases with higher damage [15]. These dynamics are a
consequence of the feedback architecture of the p53 net-
work. In addition to the p53-Mdm2 feedback, a second
feedback mediated by the phosphatase Wip1 leads to
periodic inactivation of ATM after a pulse of p53 accu-
mulation [16]. This allows cells to evaluate the state of
their genome and re-initiate the response if damage per-
sists [17]. Moreover, p53 pulses after DSB induction are
excitable: a complete p53 pulse of uniform amplitude and
duration is induced independent of the strength of the
damage signal [18,19]. Several theoretical studies have sug-
gested potential physiological roles for p53 pulses [20-22].
Recently we have shown that, indeed, the dynamical be-
havior of p53 carries information that controls cell fate.
Cells that experience p53 pulses undergo temporary cell
cycle arrest and recover from the damage, while cells in
which p53 shows a non-oscillatory, sustained response
undergo apoptosis or senescence [23].
Although much insight has been gained into the mo-

lecular mechanisms that regulate p53 pulses in response
to DSBs [16] and their functional role [23], little is known
about the quantitative relationship of DNA damage and
p53 induction. Specifically, is there a fixed threshold of
damage that is necessary for activating a p53 response?
Western blot analysis of ATM phosphorylation in irradi-
ated cells suggested that ATM is activated in a highly sen-
sitive manner. Damage doses estimated to generate one or
two DSBs were sufficient for a partial activation of ATM,
and doses that generated more than twenty DSBs evoked
a complete ATM response [12,24]. Similarly, it was shown
that cells are released from an ATM-mediated G2 check-
point when less than approximately 20 DSBs remain [25].
The sensitivity of the p53 pathway was measured by intro-
ducing serial dilutions of restriction enzymes or linearized
double-stranded DNA molecules into cells that were sub-
sequently assayed for p53 function. From these studies, it
was estimated that a solitary DSB might suffice to activate
a p53 response [26].
However, measurements in previous studies averaged

over populations of cells or estimated dynamics from
fixed cells. Remarkably, identical cells in a uniformly dam-
aged population exhibit a large heterogeneity in their p53
response, with cells showing a variable number of pulses
[15,27]. It is conceivable that this variation arises from dif-
ferences in the cells’ number of breaks or rates of repair.
To gain a quantitative understanding of the relationship
between the number of DSBs and p53 activation and to in-
vestigate the cause of heterogeneity in the p53 response,
we established a cellular system that expresses fluorescent
reporters to quantify both DNA damage and p53 dynamics
in the same living cell.

Results
Quantification of DSBs and their rate of repair in individual
living cells
To quantify DNA DSBs in single cells, we used a fluor-
escent reporter system based on the mediator protein
53BP1 (Figure 1A). 53BP1 localizes to chromatin regions
adjacent to DSBs within minutes after damage and forms
foci that are discernable by light microscopy. These foci
can serve as markers for the number and location of DSBs
[28-32]. We established a clonal human MCF7 breast car-
cinoma cell line that stably expresses mouse 53BP1 fused
to the fluorescent protein mCherry and verified that 53BP1
foci co-localize with the canonical marker for DSBs, γ-
H2AX (Figure 1B, C and [32]). To follow the dynamics of
DSBs over time, we performed live-cell time-lapse micros-
copy of reporter cells after treatment with ionizing radi-
ation (Figure 1D). Using optical sectioning, deconvolution
and automated image analysis, we quantified the number
of 53BP1 foci at regular intervals (40 minutes) for a period
of 24 hours post-irradiation (Figure 1E, F, see Methods sec-
tion for details). Our analysis showed that the number of
53BP1-mCherry foci in a cell decreases with time. The
decay in the number of foci was fitted to an exponential
model (Figure 1G) and the half-life of 53BP1 foci was cal-
culated for each cell [32-34]. We found that individual cells
in a uniformly irradiated population acquire different ini-
tial numbers of 53BP1 foci (Figure 1H) and vary in their
kinetics of repair (Figure 1I). Note that the main cellular
outcome following DSBs is G1 and G2 arrest and not
apoptosis, even in response to high levels of damage
(Figure 1J, K and [23]).
To validate that the decay in the number of foci repre-

sents repair (and not loss of signal due to photobleaching),
we confirmed that the distribution of the number of foci at
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Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 Experimental system for quantifying DSBs in single, living cells. (A) Schematic drawing of the 53BP1 reporter. (B-C) Cells
expressing 53BP1-mCherry were fixed and stained with anti γ-H2AX antibody 30 minutes and 2 hours after 5Gy γ-irradiation. The overlaid image,
and the measured intensities of both 53BP1-mCherry and γ-H2AX staining across a line in the nucleus (C) show co-localization between 53BP1
and γ-H2AX foci. (D) Time-lapse images of a cell expressing 53BP1-mCherry after 5Gy γ-irradiation. Images are maximum projections of z-stacks
through the nucleus (see Methods section) in the mCherry channel. (E) Example of the automated segmentation for the enumeration of
53BP1-mCherry foci in a cell. Segmented foci are indicated as red circles. Image processing was performed using custom written Matlab based
software (see Methods section for algorithmic details). (F) Enumerated 53BP1-mCherry foci for three cells using five different thresholds for foci
detection. Except for very low levels, the quantification of foci is robust to changes in the threshold. (G) Enumerated 53BP1-mCherry foci (dots)
and exponential fits to the raw data (dashed lines) for two cells. (H-I) Distribution of the initial number (H) and half-life (I) of 53BP1 foci in a
population of cells treated with 5Gy γ-irradiation. The analysis was performed using a range of 0.6 to 1.3 times the optimal threshold level. Error
bars indicate the standard deviation of the analyses performed at different threshold levels. Number of cells = 97. (J-K) Cell cycle distributions
of untreated cells (0Gy) and irradiated cells (10Gy) showing a strong cell cycle arrest post irradiation with minimal death (sub G1 fraction). DSBs
double strand breaks.
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18 hours post irradiation is similar between cells that were
imaged frequently (every hour) and cells that were imaged
only at 18 hours post irradiation (Figure 2A, P-value
0.41, Kolmogorov-Smirnov test). In addition, we treated
cells with a specific small molecule inhibitor of DNA-PK
(NU7026) [35]. This abrogated DNA repair by non-
homologous end joining and led to a slower disappear-
ance of foci, as DNA damage can be repaired only by
homologous recombination in the presence of this drug
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(Figure 2B, C). Taken together, our results show a large
heterogeneity in the induction and repair of DNA dam-
age in identical cells exposed to the same damage dose.

Determining the quantitative relationship between DSBs
and activation of p53
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(p53-Venus). In previous studies, we have shown that
the p53-Venus fusion protein faithfully reports the dy-
namics of endogenous p53 in MCF7 cells [16,18]: high
doses of ionizing radiation induce a series of uniform
p53 pulses (Figure 3A). MCF7 cells harbor an amplifi-
cation of the PPM1D/Wip1 gene locus and express rela-
tively high levels of the phosphatase Wip1, potentially
affecting p53 dynamics [36,37]. To ensure that p53 pulses
are not limited to cells with high levels of Wip1, we estab-
lished our fluorescent p53 reporter system in A549 lung
cancer cells and immortalized non-cancerous RPE1 cells
and followed p53 dynamics post-damage (Figure 3B, C). In
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number of p53 pulses. As previously reported, higher levels
of damage led on average to higher numbers of p53 pulses.
However, even at high damage doses, cells showed a large
variability in the p53 response (Figure 3D and [15,18]).
We, therefore, asked whether the variability in the p53

response can be explained by the heterogeneity in the
induction and repair of DBSs. To quantify the rela-
tionship between p53 pulses and DSBs we added the
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(Figure 4B). We found that all cells show active repair.
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However, many cells still had residual breaks even 24 hours
after irradiation. As expected, these cells show a continu-
ous series of p53 pulses (Figure 4C, left panel). We also ob-
served cells that apparently repaired all damage by 24
hours post irradiation. Surprisingly, these cells showed a
heterogeneous p53 response: some cells continued to show
p53 pulses (Figure 4C, middle panel), while in others,
p53 returned to its basal level once repair was complete
(Figure 4C, right panel). The variability in the number of
p53 pulses was only poorly correlated with the initial num-
ber of breaks post damage (Figure 4D).
To analyze in more detail the relationship between

DNA damage and the induction of a new p53 pulse dur-
ing the repair process, we quantified the number of DSBs
after a p53 pulse in each individual cell and correlated it
with the presence or absence of a subsequent pulse in the
expected time frame (Figure 4E). We found that cells
showing a subsequent p53 pulse tended to have higher
levels of DNA damage (Figure 4F). However, the dis-
tributions of retained damage between cells that showed a
subsequent p53 pulse and cells that did not were broadly
overlapping, and we were unable to observe a fixed
threshold number of DSBs that determine whether p53
will pulse or not.
As we were unable to determine a fixed threshold of

DSBs for the induction of p53 pulses during repair, we
used an alternative approach: we generated a distribu-
tion of induced DSBs by treating cells with a range of
low NCS doses and correlated the amount of damage to
the induction of a p53 response (Figure 5A). Using NCS
instead of ionizing radiation allowed us to treat cells dir-
ectly on the microscope and quantify DSBs before and im-
mediately after damage without a significant time delay in
image acquisition. Moreover, we were able to finely titrate
the amount of damaging agent to preferentially generate
low numbers of DSBs, close to the previously suggested
threshold levels [25,26]. We have previously shown that
the kinetics of DSB repair following NCS treatment are
similar to those observed after γ-irradiation [32].
NCS
(low dose)

# foci

A

Figure 5 The number of DNA double strand breaks determines the p
experimental approach. Cells treated with low doses of NCS (0 to 100 n
were quantified. (B) On the resulting data, we performed a robust linear re
interval (α = 0.05, shaded blue area). For visualization, cells were binned ac
fraction of cells inducing a p53 pulse was plotted for each bin (blue dots).
number of cells = approximately 350). DSBs, couble strand breaks; NCS, neo
To analyze the relationship between DNA breaks and
the induction of p53, we measured the number of DSBs
and p53 pulses in more than 350 cells post DNA damage.
Cells were binned according to the number of DSBs, and
the fraction of cells that induced a p53 pulse in each bin
was plotted (Figure 5B). We expected to see a clear dis-
tinction between non-responding and responding cells at
a defined threshold level of DSBs. Surprisingly, what we
observed instead was a linear relationship between DNA
damage and the p53 response: with higher amounts of
damage, the fraction of cells responding with a p53 pulse
increased continuously. This observation suggested that
the amount of DNA damage in each cell determines the
probability of activating a p53 response. For intermediate
levels of breaks the p53 response is heterogeneous be-
tween cells; for example, only about 50% of cells with 20
breaks show a p53 pulse.

The decision to activate a p53 pulse depends on previous
exposure to DNA damage and additional cell-intrinsic
factors
Previous single cell studies have shown that heterogeneity
in cellular behavior can be based on different phenomena
[41]; some cellular processes behave as stochastic systems
based on the random fluctuations of their molecular com-
ponents (for example, induction of apoptosis, [42]). Other
processes are influenced by the cellular state, for example
cell cycle phase [32]. To test whether the decision to acti-
vate a p53 pulse at intermediate amounts of DSBs is en-
tirely stochastic, we treated cells with an initial low dose of
damage and after six hours re-damaged them with the
same damage dose (Figure 6A). We first compared the
fraction of cells showing a p53 pulse (pulse I) in re-
sponse to the first NCS treatment with the fraction
of cells showing a pulse (pulse II) after the second NCS
treatment (double stimulus). Surprisingly, we found fewer
cells showing a pulse in response to the second treatment
(Figure 6B, C). Moreover, the fraction of cells showing a
pulse after the second treatment (double stimulus, pulse II)
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did not exceed the fraction of cells showing a second p53
pulse in response to only one treatment (single stimulus,
pulse II), although the DNA damage was largely repaired
at this point (Figure 6D). This suggests that during the first
phase of the response (six hours) the p53 pathway does not
reset and becomes desensitized to a second treatment. A
similar behavior was recently reported for the activation of
NFκB in response to repeated treatments of TNFα [43].
We next asked whether the cells that do show a pulse after
the second treatment are also the ones that showed a pulse
after the first treatment. Our analysis revealed that the
probability of showing a second pulse was higher in cells
that reacted upon the first stimulus (Figure 6E). Taken
together our analysis shows that the generation of a p53
pulse in response to a distinct number of DSBs is not
entirely stochastic; it is affected by previous exposure to
stress and may be influenced by additional internal cell-
specific factors.



Loewer et al. BMC Biology 2013, 11:114 Page 9 of 13
http://www.biomedcentral.com/1741-7007/11/114
Which internal cellular factors may affect the decision
to pulse or not?
We tested three cellular processes that could potentially
influence the sensitivity of the p53 response: rate of
DNA repair, the level of p53 itself and the cell cycle
phase. First, we tested if the induction of p53 pulses is
influenced by the activity of the cellular DNA repair ma-
chinery, which is reflected in the kinetics of repair. Cells
that achieve rapid recognition and repair of DSBs may
not initiate a p53 pulse in response to damage, while
cells that are slower in their response to DNA DSBs may
activate p53 to induce cell-cycle arrest and allow add-
itional time for repair. To test this hypothesis, we plot-
ted the fraction of cells inducing a p53 pulse binned
according to their half-lives of DSBs (Figure 7A). The
lack of correlation between the rates of repair and the
probability of activating p53 post damage indicates inde-
pendence of the p53 response from the efficiency of the
repair machinery.
We previously showed that p53 is frequently activated

in proliferating cells [18]. As these spontaneous pulses
of p53 activate negative feedback mechanisms, the
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sensitivity of the p53 network may depend on its previ-
ous activation state. Indeed, we saw here that previous
exposure to DNA damage desensitizes the p53 response
(Figure 6C). We, therefore, analyzed whether p53 abso-
lute levels pre-damage influence the activation of p53
pulses post-damage. We found that cells with high initial
p53 levels prior to NCS tended to have a lower probabil-
ity of inducing a p53 pulse post-damage (Figure 7B).
However, the limited correlation between both parame-
ters indicates that basal p53 levels per se are not a good
predictor for the subsequent p53 response. Note that
since p53 initial levels were determined by measuring a
single time point prior to NCS, cells with low levels of
p53 might have just completed a p53 pulse and may still
be in a desensitized state.
Finally, we tested if activation of p53 post-damage is

determined by the cell cycle phase [44]. It is possible
that cells in different cell cycle phases vary in their sensi-
tivity to DNA damage and have distinct thresholds of
DSBs necessary for activating p53. To investigate this, we
imaged damaged cells to quantify the dynamics of their
DSB repair and p53 activation. We then calculated the
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cell cycle phase of the imaged cells by measuring their
DNA content using diamidino-2-phenylindole (DAPI)
staining (see Methods section for details). We found that
cells that induce a p53 pulse and cells that do not ac-
tivate a p53 response had similar cell cycle distributions
(P-value 0.6337, Kolmogorov-Smirnov test, Figure 7C).
To explore if different cell cycle phases vary in the
threshold number of DSBs required to induce p53, we
binned cells according to their initial numbers of DSBs
and plotted both the fraction of cells inducing a p53 pulse
and the proportion of S/G2 cells for each bin (Figure 7D).
We found a uniform proportion of S/G2 cells across all
bins indicating that cells in different cell cycle phases do
not differ in their thresholds for activating a p53 pulse.

Discussion
Our data indicate a linear relationship between the amount
of DSBs in a cell and the probability that p53 will pulse.
However, even for a fixed number of breaks, some cells
show a pulse and others do not. Such heterogeneity in the
response of individual cells has been frequently observed
in other biological systems. For example, in response to
low doses of the tumor necrosis factor, TNFα, nuclear
localization of the transcription factor NFκB is only
observed in a few cells. With higher doses of TNFα,
more and more cells respond to the input [45]. While the
factors responsible for cell-cell variability were successfully
identified for some biological systems [46,47], in many
cases the origin of heterogeneous cellular responses
remains elusive.
One potential cause of heterogeneity between cells in

the cellular response is that cells receive varying amounts
of input, for example, ligands or drugs. Here, we directly
measure the input each cell receives by enumerating the
number of DSB. However, we found large variations in the
induction of p53 even between cells that have similar
numbers of DSBs, suggesting that it is not the level of
DSB per se that explains the cell-cell variability in the de-
cision to activate a p53 pulse.
By looking at the same cell in response to two rounds

of DNA damage we showed that the p53 pathway does
not reset after the response to the first stimulus, even
when most of the damage is repaired. This indicates that
the decision to activate a p53 pulse is affected by previ-
ous exposure to damage. In addition, the probability to
show a second pulse was higher in cells that also had a
pulse in response to the first stimulus suggesting that
the decision whether to activate p53 in response to low
amounts of DSBs is not entirely stochastic, but is likely
affected by the internal state of individual cells. Although
our analysis of the three cellular processes most likely to
affect the sensitivity of the p53 network (rate of DNA re-
pair, cell cycle phase and initial levels of p53) did not reveal
a major influence, there are other factors that may
contribute to setting individual thresholds for p53 activa-
tion. Such factors might include the expression of key pro-
teins that regulate p53, such as the negative regulator
Mdm2. The stimulus provided by DSBs may not be suffi-
cient to initiate a p53 pulse in cells that express high levels
of Mdm2. Interestingly, it was recently reported that tumor
growth factor β (TGFβ) signaling attenuates the p53-
mediated stress response [48]. Other signaling pathways
may interact with p53 as well. Using our experimental sys-
tem, it would now be feasible to alter the signal state of
cells systematically and determine the sensitivity of the p53
response.
Our analyses showed that some cells do not activate

p53 even at high levels of DNA damage. One possibility
for this observation is that the induction of p53 in response
to DSBs is highly deregulated in cancer cells. It will be im-
portant to determine if normal, non-transformed cells are
more uniform in their p53 response and show activation of
p53 at a low number of DSBs. Similar investigations carried
out in multiple tumor cell lines will enable an understand-
ing of their potential to uniformly induce p53 in response
to DNA damage and will provide insights into their sensi-
tivity to radiation and chemotherapeutic treatments.
In this work we looked at the relationship between

DSB and p53 induction, and the variation between cells,
in an unperturbed system. One question that arises from
our study is whether this relationship can be altered
when DNA repair is inhibited. This is especially import-
ant as major pharmaceutical companies have begun sig-
nificant projects attempting to inhibit specific proteins
in DNA repair pathways, with the goal of using DNA re-
pair inhibitors in combination with DNA-damaging treat-
ments to prevent repair and trigger death or cell cycle
arrest. The same question can be asked in the opposite
direction – how does perturbation of p53 dynamics affect
the rate of repair? Recent studies from our group and
others have shown that the dynamical behavior of p53
encodes critical cell-fate decisions [23,39]; hence, under-
standing how perturbations of p53 and key repair pro-
teins will provide new and important insights for the
treatment of tumors with different genetic profiles and
repair deficiencies.

Conclusions
In this study we combined a reporter for DSBs with a
fluorescent reporter for p53 and quantified the level of
damage and the dynamics of p53 in the same, living cell.
We found a linear correlation between the number of
DSBs and the probability for activating a p53 pulse;
more DSBs increase the probability that a cell will have
a p53 pulse. However, there was no distinct threshold of
damage for inducing a p53 response. By re-damaging cells
we showed that the decision to activate p53 is not
entirely stochastic but is determined by both previous
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exposure to DNA damage and additional internal cell-
specific factors. However, cell cycle phase, the initial
levels of p53 and the rate of repair are not major determi-
nants of this decision. The use of fluorescent reporters to
quantify DNA damage and p53 levels in live cells now
presents powerful tools for providing an integrated quan-
titative understanding of their complex interrelationships
in normal and cancerous cells.
Methods
Cell culture
Human breast cancer epithelial MCF7 and A549 cells were
grown in RPMI 1640 medium supplemented with 10%
fetal calf serum, 100 U/mL penicillin, 100 μg/mL strepto-
mycin and 250 ng/mL fungizone (Gemini Bio-Products,
West Sacramento, CA, USA). RPE1-hTERT cells were
grown in (D)MEM/F12 medium supplemented with 10%
fetal calf serum, penicillin, streptomycin and fungizone.
When required, the medium was supplemented with se-
lective antibiotics (400 μg/mL G418, 5 μg/mL blasticidin,
50 μg/mL hygromycin). When indicated, medium was re-
placed with fresh medium supplemented with neocarzinos-
tatin (National Cancer Institute, Bethesda, MD, USA) or
with the DNA-PK inhibitor NU7026 (used at 10 μM,
Sigma-Aldrich, St. Louis, MO, USA) during experiments.
Irradiation treatments were carried out in a 60Co irradiator.
Cell cycle distributions were analyzed by DAPI staining.
Cell line construction
The original pCMV-EGFP-53BP1 construct was kindly
provided by Prof. Yasuhisa Adachi (Jullien et al. [30]).
We generated our pEF1α-mCherry-53BP1 plasmid by
replacing GFP with mCherry and combining this fluor-
escent protein-cDNA fragment with the EF1α promoter
in a vector harboring a blasticidin resistance cassette using
standard molecular biology techniques. This plasmid
was stably transfected into MCF7 cells using FuGENE6
(Hoffmann-La Roche, USA), which were maintained in se-
lective media and sorted into single cells using fluorescence
activated cell sorting to generate a clonal population. Our
pMT-p53-Venus plasmid has been previously reported [16].
Stable, clonal cell lines were established as described above.
For constructing the pUbC-H2B-CFP vector, the H2B

coding sequence was amplified by PCR from the vector
pBOS-H2BGFP (BD Bioscience, San Jose, CA, USA). Using
Multiside Gateway technology (Invitrogen, Eugene, OR,
USA), the PCR product was combined with the Ubiquitin
C promoter and CFP tag in a lentiviral vector harboring a
hygromycin resistance cassette. This plasmid was trans-
fected into 293T cells together with the corresponding
packaging plasmids to generate replication-defective viral
particles using standard protocols, which were used to sta-
bly infect the engineered MCF7 cell line.
Time-lapse microscopy
Cells were plated in RMPI lacking riboflavin and phenol
red in poly-D-lysine coated glass-bottom plates (MatTek
Corporation, Ashland, MA, USA) 24 hours prior to mi-
croscopy}. The medium was supplemented with 10% fetal
calf serum, 100 U/mL penicillin, 100 μg/mL streptomycin,
250 ng/mL fungizone (Gemini Bio-Products) and 10 mM
HEPES. Cells were imaged on a Nikon Eclipse Ti inverted
microscope with a Plan Apo 60X oil objective (NA 1.4),
Hamamatsu Orca ER camera and a Perfect Focus System.
The microscope was surrounded by a custom enclosure to
maintain constant temperature and atmosphere. The filter
sets used were CFP: 436/20 nm; 455 nm; 480/40 nm (exci-
tation; beam splitter; emission filter, respectively), YFP:
500/20 nm; 515 nm; 535/30 nm; and mCherry: 560/40
nm; 585 nm; 630/75 nm (Chroma, Bellows Falls, VT,
USA). Images were acquired every 15 to 20 minutes in the
phase, YFP and CFP channels and every 15 to 40 minutes
in the mCherry channel for 8 to 12 hours. We acquired
seven z-sections with a step size of 1 μm in the mCherry
channel. Image acquisition was controlled by MetaMorph
software (Molecular Devices, Sunnyvale, CA, USA).
For analyzing cell cycle distribution, cells were imaged

for six hours post-damage as described above, fixed with
2% paraformaldehyde, permeabilized with 0.2% Triton/
PBS and stained with Hoechst (Molecular Probes,
Eugene, OR, USA). We imaged thousands of cells and
quantified the integrated fluorescence intensity of the
Hoechst signal by image analysis using automated
thresholding and watershed algorithms to segment indi-
vidual nuclei. Using the nuclear intensity of the DNA
dye, we established a histogram of the distribution of
DNA content that allowed assigning a cell cycle phase to
each cell. We identified cells analyzed in the preceding
time-lapse experiment using gridded cover slips.
Image analysis
Custom written algorithms in Matlab (Mathworks) were
used to analyze 53BP1 foci. In brief, image stacks were
first enhanced using blind deconvolution (AutoQuant)
and were then converted to two-dimensional maximum
projections. Nuclei were segmented using the H2B-
CFP signal. For each nucleus, the background signal
was first reduced by a Tophat transformation, follow-
ing which the edges were detected using the Canny
method. Foci were determined from the edges using
morphological transformations and optimal threshold-
ing. To determine the effect of thresholding on our foci
measurements, we increased and decreased the thresh-
old by a factor of up to 0.3 and 1.6, respectively, and
determined the effect on foci quantification. Touching
foci were separated by a marker-directed watershed algo-
rithm. We analyzed p53 trajectories in single cells using
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previously described algorithms [18]. The raw data are
available on request.

Immunofluorescence
Cells were grown on number 1.5 glass coverslips coated
with poly-L-lysine (Sigma-Aldrich, St. Louis, MO, USA).
They were fixed with 2% paraformaldehyde, perme-
abilized with 0.2% Triton/PBS and blocked with 5% goat
serum supplemented with 1% bovine serum albumin.
Cells were treated with primary antibody to detect γ-
H2AX (mouse monoclonal JBW301, Upstate Millipore,
Billerica, MA, USA, 1:700 dilution), washed and treated
with secondary antibody conjugated with Alexa Fluor
647 (Molecular Probes). After washing, cells were stained
with Hoechst (Molecular Probes) and embedded in Pro-
long Antifade (Invitrogen). Immunofluorescence prepa-
rations were imaged on the microscope described for
live cell imaging and automated segmentation was per-
formed in Matlab (MathWorks) with algorithms from
CellProfiler [49].
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