Impact of Atrial Fibrillation on Stroke#Related Healthcare Costs

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1161/JAHA.113.000479</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879588</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Impact of Atrial Fibrillation on Stroke-Related Healthcare Costs
Matthew Sussman, MA; Joseph Menzin, PhD; Iris Lin, PhD; Winghan J. Kwong, PharmD, PhD; Michael Munsell, BA; Mark Friedman, MD; Magdy Selim, MD

Background—Limited data exist on the economic implications of stroke among patients with atrial fibrillation (AF). This study assesses the impact of AF on healthcare costs associated with ischemic stroke (IS), hemorrhagic stroke (HS), or transient ischemic attack (TIA).

Methods and Results—A retrospective analysis of MarketScan claims data (2005-2011) for AF patients ≥18 years old with ≥1 inpatient claim for stroke, or ≥1 ED or inpatient claim for TIA as identified by ICD-9-CM codes who had ≥12 months continuous enrollment prior to initial stroke. Initial event- and stroke-related costs 12 months post-index were compared among patients with AF and without AF. Adjusted costs were estimated, controlling for demographics, comorbidities, anticoagulant use, and baseline resource use. Data from 23,807 AF patients and 136,649 patients without AF were analyzed. Unadjusted mean cost of the index event was $20,933 for IS, $59,054 for HS, $8,616 for TIA hospitalization, and $3,395 for TIA ED visit. After controlling for potential confounders, adjusted mean incremental costs (index plus 12-month post-index) for AF patients were higher than those for non-AF patients by: $4,726, $7,824, and $1,890 for index IS, HS, TIA (identified by hospitalization), respectively, and $1,700 for TIA (identified by ED) (all P<0.01). In multivariate regression analysis, AF was associated with a 20% (IS), 13% (HS), and 18% (TIA) increase in total stroke-related costs.

Conclusion—Stroke-related care for IS, HS, and TIA is costly, especially among individuals with AF. Reducing the risk of AF-related stroke is important from both clinical and economic standpoints. (J Am Heart Assoc. 2013;2:e000479 doi: 10.1161/JAHA.113.000479)

Key Words: economics • hemorrhage • ischemic stroke • outcomes research • transient ischemic attack

Methods
Data Source
This study used administrative claims data from the Truven Health Analytics MarketScan® Research Databases (Commercial and Medicare Supplemental), 2005-2011. The commercial database includes data from 150 contributing large self-insured employers. The Medicare Supplemental database contains the healthcare experience of individuals with Medicare supplemental insurance paid by employers. Approximately 40 million lives were analyzed, allowing for a nationally representative sample of Americans with employer-provided health insurance.

Patient Selection
We identified adult patients (≥18 years of age) with at least 1 inpatient administrative diagnosis of stroke or TIA (International Classification Modification [ICD-9-CM]: 430.xx, 431.xx, 432.xx for hemorrhagic; 433.01, 433.11, 433.31, 434.xx for ischemic; 435.8, 435.9 for TIA)2-6 or at least 1 emergency department diagnosis of TIA between January 1, 2006 and November 1, 2011. The date of the first identified stroke or
TIA diagnosis constituted the index date. Patients could not have had a stroke or TIA diagnosis in the 12 months prior to the index stroke (ie, to ensure a “baseline period” without stroke or TIA) and were required to be continuously eligible for 12 months prior to the index stroke event. Presence of AF was based on ≥1 inpatient or ≥2 outpatient claims (separated by <1 year) associated with an AF diagnosis (ICD-9-CM: 427.31)7,8 in the baseline period and up to 3 months after index stroke event to allow inclusion of patients who were identified to have AF after stroke occurrence.

Study Measures

The following baseline demographic and clinical characteristics were evaluated—age, sex, geographic region, metropolitan statistical area, year of index stroke diagnosis, type of stroke or TIA, comorbidities, use of oral anticoagulants (ie,
Table 2. Index Hospitalization and Post-Index Stroke-related Costs Among AF and Non-AF Patients

<table>
<thead>
<tr>
<th>Stroke Type/Measure</th>
<th>Overall N</th>
<th>AF Cohort</th>
<th>Non-AF Cohort</th>
<th>Difference (AF vs Non-AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index event LOS, days</td>
<td>80 083</td>
<td>14 251</td>
<td>65 832</td>
<td>0.4 1.1 0.0005</td>
</tr>
<tr>
<td>Index mortality, %</td>
<td>3.4</td>
<td>5.6</td>
<td>2.9</td>
<td>2.7 1.1 0.0011</td>
</tr>
<tr>
<td>Patients surviving index hospitalization</td>
<td>77 376</td>
<td>13 453</td>
<td>63 923</td>
<td></td>
</tr>
<tr>
<td>Hospitalization within 30 days, %</td>
<td>6.5</td>
<td>6.9</td>
<td>6.4</td>
<td>0.5 1.4 <0.0001</td>
</tr>
<tr>
<td>Patients with continuous enrollment 12 months post-index</td>
<td>46 071</td>
<td>7072</td>
<td>38 999</td>
<td></td>
</tr>
<tr>
<td>Stroke-related hospitalization within 12 months*, %</td>
<td>11.6</td>
<td>12.3</td>
<td>11.5</td>
<td>0.8 0.7 0.1325</td>
</tr>
<tr>
<td>Mean cost index event</td>
<td>80 083</td>
<td>14 251</td>
<td>65 832</td>
<td>($24 356) $2799 0.0214</td>
</tr>
<tr>
<td>Mean 12-month total stroke-related cost*</td>
<td>46 071</td>
<td>7072</td>
<td>38 999</td>
<td>($22 845) $7824 0.0019</td>
</tr>
</tbody>
</table>

Hemorrhagic Stroke

Index event LOS, days	22 275	3052	19 223	14.1 (±20.6) -3.4 1.0 <0.0001
Index mortality, %	18.3	23.1	17.6	5.5 -1.3 0.1436
Patients surviving index hospitalization	18 185	2346	15 839	
Hospitalization within 30 days, %	9.7	10.0	9.6	0.4 2.8 0.0001
Patients with continuous enrollment 12 months post-index	10 010	1162	8848	
Stroke-related hospitalization within 12 months*, %	14.9	16.5	14.7	1.8 1.4 0.3179
Mean cost index event	22 275	3052	19 223	($62 384 ($103 371) $24 356 $2799 0.0214
Mean 12-month total stroke-related cost*	10 010	1162	8848	($77 113 ($117 479) $22 845 $7824 0.0019

TIA

Index event LOS, days	38 585	4759	33 826	3.4 (±4.1) 0.7 0.3 <0.0001
Index mortality, %	0.1	0.2	0.1	0.1 N/A N/A
Patients surviving index hospitalization	38 541	4749	33 792	
Hospitalization within 30 days, %	3.2	5.0	2.9	2.1 1.2 <0.0001
Patients with continuous enrollment 12 months post-index	26 604	3047	23 557	
Stroke-related hospitalization within 12 months*, %	8.0	10.2	7.7	2.5 1.1 0.0520

Continued
warfarin, dabigatran, and rivaroxaban), inpatient and ED resource use, and duration of follow-up.

Outcomes included index hospitalization length of stay (LOS), index event costs (all costs occurring throughout the timeframe of the index hospitalization or ED visit), hospitalization rates within 30 days of index event, stroke-related hospitalization rates 12 months post-index, and stroke-related costs 12 months post-index for all components of medical care. Stroke-related costs and hospitalizations were required to list a stroke/TIA ICD-9-CM code.

Costs data reflect the total gross payments to all providers associated with a given medical event. Total stroke-related costs were derived by summing all payments associated with a stroke/TIA admission (based on primary or any ICD-9-CM diagnosis code) over the 12-month follow-up period for all places of service (eg, inpatient, outpatient, emergency department, skilled nursing facility, home health care, durable medical equipment). Stroke-related laboratory and pharmacy costs (ie, the presence of select medications, including anticoagulants such as warfarin, dabigatran, and rivaroxaban, as well as antiplatelets and rate/rhythm control medications) were included in the calculation of total costs.

Follow-up analysis included those patients who were continuously enrolled for 12 months following the index event.

Statistical Analyses

We compared adjusted index event LOS and stroke-related cost between patients with and without AF using a generalized linear model with a negative binomial distribution and a log link, controlling for age, sex, geography, year of index diagnosis, selected comorbidities (based on >5% frequency), oral anticoagulant (OAC) use, and baseline hospital and ED use. Given common characteristics observed in healthcare cost data, such as a highly skewed distribution from the small percentage of patients with extremely high expense rates, the generalized linear model is highly recommended for models using administrative claims data. Regression coefficients from the generalized linear model help to quantify the relationship between 12-month stroke-related costs and the selected patient characteristics (eg, when exponentiated using a base of e, the coefficient represents a percentage increase/decrease in costs compared to patients without the characteristic). Adjusted stroke-related hospitalization rates were estimated using a logistic regression controlling for the same covariates included in the generalized linear model.

Results

We identified 160,456 patients with stroke or TIA, 23,807 (14.8%) of whom had AF (Table 1). Of the AF patients, 43.5% were on an oral-anticoagulant in the baseline period. There

Table 2.

<table>
<thead>
<tr>
<th>Stroke Type/Measure</th>
<th>Overall AF Cohort</th>
<th>Non-AF Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean cost index event</td>
<td>$36,955</td>
<td>$26,604</td>
</tr>
<tr>
<td>Mean 12-month total stroke-related cost*</td>
<td>$26,604</td>
<td>$23,557</td>
</tr>
<tr>
<td>Patients with continuous enrollment</td>
<td>19,513</td>
<td>12,956</td>
</tr>
<tr>
<td>Stroke-related hospitalization within 12 months*, %</td>
<td>8.9</td>
<td>8.4</td>
</tr>
<tr>
<td>Mean cost index event</td>
<td>$19,513</td>
<td>$12,956</td>
</tr>
<tr>
<td>Mean 12-month total stroke-related cost*</td>
<td>$19,513</td>
<td>$12,956</td>
</tr>
</tbody>
</table>

AF indicates atrial fibrillation; ED, emergency department; TIA, transient ischemic attack; LOS, length of stay.

*Only patients with 12 months continuous enrollment post-index include in the calculation of total costs.

Source: Truven MarketScan Research Databases January 1, 2005 to December 31, 2011.

DOI: 10.1161/JAHA.113.000479
Table 3. Generalized Linear Model Predicting Stroke-Related Costs in the 12 Months Following the Index Event, by Stroke Type

<table>
<thead>
<tr>
<th>Stroke Type</th>
<th>Ischemic Stroke*</th>
<th>Hemorrhagic Stroke†</th>
<th>TIA‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor Variable</td>
<td>Coefficient</td>
<td>Standard Error</td>
<td>P Value</td>
</tr>
<tr>
<td>Intercept</td>
<td>10.392</td>
<td>0.0209</td>
<td><0.0001</td>
</tr>
<tr>
<td>AF cohort</td>
<td>0.1847</td>
<td>0.0125</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Hemorrhage Subtype (vs Other and unspecified intracranial hemorrhage)

- **Subarachnoid hemorrhage**
 - Coefficient: —
 - Standard Error: —
 - P Value: 0.7295

- **Intracerebral hemorrhage**
 - Coefficient: —
 - Standard Error: —
 - P Value: 0.1843

Age Group (vs <55)

- **55 to 64**
 - Coefficient: -0.0955
 - Standard Error: 0.0132
 - P Value: <0.0001

- **65+**
 - Coefficient: -0.5977
 - Standard Error: 0.012
 - P Value: <0.0001

Metropolitan Statistical Area

- Coefficient: 0.0586
 - Standard Error: 0.0111
 - P Value: <0.0001

Female

- Coefficient: 0.0132
 - Standard Error: 0.0082
 - P Value: 0.0014

Geographic Region (vs Northeast)

- **North Central**
 - Coefficient: -0.2087
 - Standard Error: 0.0134
 - P Value: <0.0001

- **West**
 - Coefficient: 0.1261
 - Standard Error: 0.0153
 - P Value: 0.0014

- **South**
 - Coefficient: -0.0824
 - Standard Error: 0.0136
 - P Value: <0.0001

Year of Stroke Diagnosis (vs 2006)

- **2007**
 - Coefficient: 0.0274
 - Standard Error: 0.0134
 - P Value: <0.0001

- **2008**
 - Coefficient: 0.0665
 - Standard Error: 0.0134
 - P Value: <0.0001

- **2009**
 - Coefficient: 0.0825
 - Standard Error: 0.013
 - P Value: <0.0001

- **2010**
 - Coefficient: 0.0396
 - Standard Error: 0.0131
 - P Value: <0.0001

- **2011**
 - Coefficient: 0.0682
 - Standard Error: 0.029
 - P Value: <0.0001

- **OAC use**
 - Coefficient: -0.0016
 - Standard Error: 0.0158
 - P Value: <0.0001

Selected Comorbidities

- **Acute MI**
 - Coefficient: 0.1037
 - Standard Error: 0.0343
 - P Value: <0.0001

- **CHF**
 - Coefficient: 0.0027
 - Standard Error: 0.0158
 - P Value: <0.0001

- **CKD**
 - Coefficient: 0.0646
 - Standard Error: 0.0231
 - P Value: <0.0001

- **COPD**
 - Coefficient: -0.0216
 - Standard Error: 0.0145
 - P Value: <0.0001

- **Diabetes mellitus**
 - Coefficient: 0.036
 - Standard Error: 0.0094
 - P Value: <0.0001

Continued
Table 3. Continued

<table>
<thead>
<tr>
<th>Stroke Type</th>
<th>Ischemic Stroke*</th>
<th>Hemorrhagic Stroke†</th>
<th>TIA‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor Variable</td>
<td>Coefficient</td>
<td>Standard Error</td>
<td>P Value</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.0115</td>
<td>0.0016</td>
<td>0.0089</td>
</tr>
<tr>
<td>Liver disease</td>
<td>0.0061</td>
<td>0.0014</td>
<td>0.0062</td>
</tr>
<tr>
<td>Malignancy</td>
<td>-0.0263</td>
<td>0.0011</td>
<td>0.0033</td>
</tr>
<tr>
<td>Peripheral vascular</td>
<td>0.0367</td>
<td>0.0012</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

*Note: Bolded parameters are significant (P < 0.01). AF indicates atrial fibrillation; CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; MI, myocardial infarction; OAC, oral anticoagulant.

* N = 46,071; ratio of deviance to degrees of freedom = 1.1185.
† N = 10,010; ratio of deviance to degrees of freedom = 1.1574.
‡ N = 39,560; ratio of deviance to degrees of freedom = 1.0977.

Source: Truven MarketScan Research Databases January 1, 2005 to December 31, 2011.

Discussion

In this study, we estimate the direct cost of stroke-related medical care among patients with AF versus those without AF using a large payer database. After controlling for potential confounders, adjusted mean incremental costs (index plus 12-month post-index) for AF patients were significantly higher than those for non-AF patients. AF patients were significantly more common among IS patients, and AF patients were significantly more common among HS patients, regardless of index stroke type (OR is 3.8 for IS; 4.1 for TIA). Among IS-TIA patients, the AF cohort had longer index hospitalization LOS than the non-AF cohort (8.3 for IS, 6.4 for TIA). Compared to the non-AF cohort, the AF cohort had higher rates of IS, intracerebral hemorrhage, and other intracranial hemorrhage. Among IS and TIA patients, the AF cohort had longer index hospitalization LOS than the non-AF cohort (8.3 versus 7.9 for IS, 6.4 versus 5.7 for TIA). Among IS patients, the AF cohort had shorter index hospitalization LOS than the non-AF cohort (8.3 for IS, 6.4 for TIA). Among TIA patients, the AF cohort had longer index hospitalization LOS than the non-AF cohort (6.4 for TIA). Among HS patients, the AF cohort had longer index hospitalization LOS than the non-AF cohort (8.3 for IS, 6.4 for TIA). Among TIA patients, the AF cohort had longer index hospitalization LOS than the non-AF cohort (6.4 for TIA).
However, our index hospitalization and post-index stroke-related cost findings are consistent with estimates reported from previous studies using various sources of data.\(^3,10\)

While limited data exist on the relationship between AF and stroke-related costs from a US perspective, multiple published studies have attempted to evaluate this relationship with non-US data sources. For instance, a 2008 article published by Ghatnekar and colleagues evaluated the impact of AF on stroke-related inpatient costs over a 3-year follow-up period in Sweden.\(^11\) Due to a higher observed mortality rate during the index stroke hospitalization, patients with AF had a shorter mean follow-up period than those without the disease, resulting in a non-significant difference in costs between the 2 cohorts over the full follow-up period. The effect of AF on stroke-related inpatient costs became statistically significant once only patients surviving the index event were included in the regression analysis (€2982 higher, \(P<0.01\)), a criterion also employed in our study. An analysis of data from the Berlin Acute Stroke Study also established a significant relationship between the presence of AF and higher total direct costs within 1 year of an index stroke event (€2760 higher, \(P<0.001\)), with resource use and cost data obtained from a patient self-report survey.\(^12\) In addition to providing data from a US perspective, our study adds to this body literature by providing estimates on stroke-related costs for all components of medical care (eg, inpatient, outpatient, rehabilitation) to third-party payers stratified by stroke type.

Our findings provide current estimates of the cost of various stroke types, including ischemic stroke, hemorrhagic stroke, and TIA. These results demonstrate the high economic burden of stroke to payers, especially in persons with AF. Therefore, reducing the risk of AF-related stroke may be important from both a clinical and economic standpoint. Professional guidelines recommend oral anticoagulant therapy for the prevention of stroke in patients with AF.\(^13\) Data from this analysis will be useful when evaluating the cost-effectiveness of clinical interventions designed to prevent stroke among those with AF, such as new developments in anticoagulant therapy.

Acknowledgments

The authors thank Lauren Lee for her contribution to study design and review of results.

Sources of Funding

This study was funded by Daiichi Sankyo, Inc.

Disclosures

Dr Kwong is an employee of the study sponsor. All other authors have no financial disclosures to report.

References