Low-Molecular Weight Heparin Increases Circulating sFlt-1 Levels and Enhances Urinary Elimination

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1371/journal.pone.0085258

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879629

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Low-Molecular Weight Heparin Increases Circulating sFlt-1 Levels and Enhances Urinary Elimination

Henning Hagmann1*, Verena Bossung2*, Abdel Ali Belaidi3, Alexander Fridman2, S. Ananth Karumanchi4, Ravi Thadhani5, Bernhard Schermer1, Peter Mallmann2, Guenter Schwarz3, Thomas Benzing1, Paul T. Brinkkoetter1

1 Division of Nephrology, Department of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany, 2 Department of Obstetrics and Gynecology, University of Cologne, Cologne, Germany, 3 Department of Biochemistry, University of Cologne, Cologne, Germany, 4 Howard Hughes Medical Institute and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America, 5 Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

Rationale: Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1), an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo.

Objective: We systematically determined serum and urine levels of angiogenic factors in preeclamptic women before and after administration of low molecular weight heparin and further characterized the interaction with heparin in biochemical studies.

Methods and Results: Serum and urine samples were used to measure sFlt-1 levels before and after heparin administration. Serum levels of sFlt-1 increased by 25% after heparin administration in pregnant women. The magnitude of the increase in circulating sFlt-1 correlated with initial sFlt-1 serum levels. Urinary sFlt-1 levels were also elevated following heparin administration and levels of elimination were dependent on the underlying integrity of the glomerular filtration barrier. Biochemical binding studies employing cation exchange chromatography revealed that heparin bound sFlt-1 had decreased affinity to negatively charged surfaces when compared to sFlt-1 alone.

Conclusion: Low molecular weight heparin administration increased circulating sFlt1 levels and enhanced renal elimination. We provide evidence that both effects may be due to heparin binding to sFlt1 and masking the positive charges on sFlt1 protein.

Introduction

In preeclampsia, generalized endothelial dysfunction leads to a severe disorder resulting in proteinuria, hypertension, progressive edema, headaches, seizures and severe neurologic and hepatic complications [1]. Proteinuria and hypertension after the 20th week of gestation are the clinical hallmarks of the condition and used for making the clinical diagnosis of preeclampsia. Recent studies suggest, that circulating anti-angiogenic substances such as a soluble splice variant of the VEGF-receptor Flt-1 (sFlt-1) and a soluble form of the TGF-β-receptor Endoglin, soluble endoglin (sEng) act in concert to induce endothelial dysfunction and the maternal syndrome of preeclampsia [2-4]. Importantly, serum levels of these anti-angiogenic substances precede the clinical signs of preeclampsia by 5-6 weeks [4,5] suggesting that targeting these pathways may be useful for treating or preventing this disorder.

During the last five years, several studies have used commercially available ELISA assays to evaluate the plasma or serum levels of pro- and anti-angiogenic factors for both diagnosis and prediction of preeclampsia [6]. In particular, determination of sFlt-
sFlt-1 and PlGF measurements

Serum levels of sFlt-1 and PlGF were determined by using the Elecsys® assays (Roche) as previously described [12]. To determine urinary sFlt-1, we employed the Quantikine® human sFlt-1 ELISA (R&D) as described elsewhere [27]. For in vitro experiments enoxaparin was spiked into pre-treatment serum samples at a final concentration of 10 mg/l. The samples were then analyzed with the Elecsys® assays.

Velocity gradient centrifugation

A 2 ml discontinuous sucrose gradient (40–5%) was layered on top of a 60% sucrose cushion in an ultracentrifuge tube (Beckman, Fullerton, CA). Serum was diluted to equal parts with TBS buffer, added on top of the gradient, and subjected to centrifugation for 22 h at 215,000 × g at 4°C in a Beckman SW-60Ti rotor. After centrifugation 22 fractions (200 µl each) were collected, and analyzed by SDS/PAGE. F1t-1 specific monoclonal antibody (R&D) was used for immunoblot.

Affinity purification of serum samples

Serum purification consisted of a cation exchange chromatography step and was performed using the Mono S HR 5/5 column (Amersham Bioscience). Gradient separation was performed on an FPLC system (Akta, GE Healthcare) using a buffer A (50 mmol/l Tris, pH 7.3) and a buffer B (50 mmol/l Tris, pH 7.3, 1 mol/l NaCl). Serum samples were diluted 1:1 with buffer A and loaded in a total volume of 1 ml on the pre-equilibrated column (Flow rate: 2 ml/min, 11% B). Serum fractions were separated using an increasing gradient of buffer B (11 to 100% over 30 ml). Fractions were collected during all purification steps and stored at −20°C upon analysis. All chromatography steps were performed at 4°C and all different serum samples were analyzed using the same buffers and an automated chromatography method allowing identical separation conditions.

Statistical analysis

Continuous variables were analyzed by Student’s t-test and regression analysis was performed using logistic regression techniques using GraphPad Prism version 4.00 (GraphPad Software, San Diego, CA). All P values were two-tailed, and a P value<0.05 was considered statistically significant.

Results

We studied 11 patients admitted with suspected or established preeclampsia between 27 to 38 weeks of gestation, who were receiving low molecular weight heparin. Patient characteristics and laboratory values upon admission are outlined in Table 1. In the study blood and urine samples were drawn 2 hrs before administration of LMWH (enoxaparin-sodium), at the time of subcutaneous LMWH injection and 2 hrs, as well as 12 hrs after LMWH (Figure S1). The heparin dose was adapted to patient weight ranging from 40 mg to 100 mg enoxaparin subcutaneously according to standard recommendations.

Serum sFlt-1 levels increase after heparin administration

sFlt-1 serum levels at baseline and at the time of heparin administration were within the detectable range (median 6501 pg/ml; 5029 pg/ml–8605.5 pg/ml, 25th–75th centile) and positively correlated with the clinical diagnosis of preterm preeclampsia and HELLP syndrome [5,8,9]. To assess alterations of sFlt-1 and PlGF serum levels following LMWH administration we determined relative changes in the interval “before enoxaparin”, i.e. sFlt-1 and PlGF serum values 2 hrs before treatment, at the time of
treatment, and 2 hrs after enoxaparin treatment. sFlt-1 serum levels 2 hrs before and at the time of treatment revealed no significant changes. Hence the difference between the first two readings in any individual patient may serve as a valid internal control. 2 hrs after the administration of LMWH sFlt-1 serum levels increased by 26.0% on average (mean 1.26; p = 0.0045) (Fig. 1A). PlGF serum levels showed a more moderate increase of 15.4% (mean 1.154; p = 0.0126) (Fig. 1B). Consequently, the sFlt-1/PlGF ratio appeared decreased. These findings ruled out heparin interfered with the PlGF assay. We therefore chose to further pursue the in vivo effects of heparin on sFlt-1 levels.

The magnitude of sFlt-1 increase correlates positively with initial sFlt-1 serum levels

The study population was quite diverse with regard to disease severity and sFlt-1 levels. Some of the patients enrolled showed low sFlt-1 serum levels of 3,000–4,000 pg/ml which were considered borderline normal levels at their gestational age, while other patients enrolled suffered from severe preeclampsia with sFlt-1 serum levels above 20,000 pg/ml. Interestingly, the magnitude of sFlt-1 increase following LMWH administration seemed to depend on the initial sFlt-1 serum level (Figure S2A). To determine a potential correlation between baseline sFlt-1 levels and the amount of increase after heparin we performed regression analysis using the Spearman coefficient. The rate of increase correlated with initial sFlt-1 levels with a Spearman correlation coefficient of 0.8273 (95%CI = 0.4348 to 0.9556; p = 0.0014) (Fig. 3).

Table 1. Patient characteristics on admission.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Pat_1</th>
<th>Pat_2</th>
<th>Pat_3</th>
<th>Pat_4</th>
<th>Pat_5</th>
<th>Pat_6</th>
<th>Pat_7</th>
<th>Pat_8</th>
<th>Pat_9</th>
<th>Pat_10</th>
<th>Pat_11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal Age (yrs)</td>
<td>35</td>
<td>29</td>
<td>34</td>
<td>34</td>
<td>29</td>
<td>28</td>
<td>24</td>
<td>38</td>
<td>44</td>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td>Gestational Age (weeks+days)</td>
<td>32+6</td>
<td>27+1</td>
<td>38+3</td>
<td>33+4</td>
<td>35+5</td>
<td>35+2</td>
<td>32+0</td>
<td>35+1</td>
<td>37+4</td>
<td>30+4</td>
<td>31+1</td>
</tr>
<tr>
<td>Systolic Blood Pressure (mmHg)</td>
<td>145</td>
<td>149</td>
<td>142</td>
<td>151</td>
<td>142</td>
<td>160</td>
<td>156</td>
<td>148</td>
<td>165</td>
<td>162</td>
<td>148</td>
</tr>
<tr>
<td>Diastolic Blood Pressure (mmHg)</td>
<td>97</td>
<td>102</td>
<td>95</td>
<td>92</td>
<td>92</td>
<td>102</td>
<td>101</td>
<td>97</td>
<td>101</td>
<td>92</td>
<td>101</td>
</tr>
<tr>
<td>Urine protein/creatinine ratio (mg/g)</td>
<td>234</td>
<td><0.04</td>
<td>741</td>
<td>632</td>
<td>241</td>
<td>1758</td>
<td>606</td>
<td>1889</td>
<td>196</td>
<td>338</td>
<td>15812</td>
</tr>
<tr>
<td>sFlt-1 plasma level (pg/ml)</td>
<td>8932</td>
<td>6501</td>
<td>3179</td>
<td>6427</td>
<td>2790</td>
<td>5339</td>
<td>24250</td>
<td>20514</td>
<td>6319</td>
<td>6596</td>
<td>8279</td>
</tr>
<tr>
<td>PlGF plasma level (pg/ml)</td>
<td>29.8</td>
<td>31.6</td>
<td>155.8</td>
<td>306.1</td>
<td>184.8</td>
<td>156.7</td>
<td>134.7</td>
<td>129.0</td>
<td>76.3</td>
<td>83.3</td>
<td>48.6</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>11.5</td>
<td>13.0</td>
<td>10.7</td>
<td>10.1</td>
<td>11.0</td>
<td>11.0</td>
<td>11.4</td>
<td>12.6</td>
<td>13.3</td>
<td>13.4</td>
<td>12.1</td>
</tr>
<tr>
<td>Platelets (×10⁹/L)</td>
<td>69</td>
<td>209</td>
<td>203</td>
<td>286</td>
<td>184</td>
<td>185</td>
<td>150</td>
<td>148</td>
<td>237</td>
<td>300</td>
<td>263</td>
</tr>
<tr>
<td>Creatinine (µmol/L)</td>
<td>0.77</td>
<td>0.56</td>
<td>1.02</td>
<td>0.67</td>
<td>0.49</td>
<td>0.66</td>
<td>0.90</td>
<td>0.99</td>
<td>0.66</td>
<td>0.80</td>
<td>0.64</td>
</tr>
<tr>
<td>SGOT (U/L)</td>
<td>128</td>
<td>24</td>
<td>17</td>
<td>17</td>
<td>27</td>
<td>22</td>
<td>175</td>
<td>24</td>
<td>19</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>SGPT (U/L)</td>
<td>107</td>
<td>21</td>
<td>11</td>
<td>11</td>
<td>24</td>
<td>19</td>
<td>131</td>
<td>17</td>
<td>11</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>327</td>
<td>182</td>
<td>203</td>
<td>179</td>
<td>177</td>
<td>268</td>
<td>260</td>
<td>223</td>
<td>184</td>
<td>178</td>
<td>226</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>HELLP</td>
<td>IUGR, PIH, DM1+late PE</td>
<td>twins, PE</td>
<td>PIH</td>
<td>PE</td>
<td>HELLP</td>
<td>twins, PE</td>
<td>PIH</td>
<td>PE</td>
<td>PE</td>
<td></td>
</tr>
</tbody>
</table>

Physical parameters and laboratory values were assessed upon admission in all patients. DM1 = diabetes mellitus type 1; IUGR = intra uterine growth restriction; PE = preeclampsia; PIH = pregnancy induced hypertension.

doi:10.1371/journal.pone.0085258.t001

Urinary sFlt-1 levels increase after heparin administration

sFlt-1 is detectable in the urine of preeclamptic patients [27]. Yet, the mechanism of renal sFlt-1 excretion has not been explored. To test whether heparin affects the elimination of sFlt-1 from the circulation, we assessed renal excretion of sFlt-1 in response to heparin treatment. Urine samples from before and after LMWH administration were analysed using a sFlt-1 specific ELISA. Patient #3 was lacking a timed urine sample two hours after treatment and therefore excluded from this analysis.

Baseline levels of urinary sFlt-1 did not correlate with the extent of proteinuria in individual patients (data not shown). After heparin administration urinary levels of sFlt-1 increased in 7 out of 10 patients (Fig. 4A) compared to initial urinary sFlt-1 levels. Since sFlt-1 is a positively charged protein with isoelectric point of approximately 9.5 [28] and glomerular filtration largely depends on the intact charge selectivity of the glomerular filter, we asked whether urinary excretion of sFlt-1 in response to heparin is dependent on the integrity of the glomerular filter. We then performed subgroup analysis dividing the study population into
two groups according to the grade of proteinuria using 300 mg protein/g creatinine as a cut-off. Patients with relatively lower proteinuria (Pat. #1, 2, 5, 9) and presumably preserved glomerular filter showed a significant increase of urinary sFlt-1 excretion following heparin administration (mean 6.59; SEM 2.63). In striking contrast, the subgroup with a proteinuria ≥300 mg/g only experienced a small increase in urinary sFlt-1 after heparin (mean 1.30; SEM 0.29) (Fig. 4B). No correlation between urinary sFlt-1 excretion and initial sFlt-1 serum levels was found (Figure S4B). Addition of LMWH to serum and urine samples did not affect measurements in the R&D assay (Figure S5).

Heparin alters charge-dependent binding properties of sFlt-1 without affecting complex size

Knowing that renal elimination of sFlt-1 can be increased after heparin therapy in patients with intact glomerular barrier, we set out to further characterize the molecular basis of this effect in biochemical studies. We tested the hypothesis that due to their opposite charges, heparin liberates sFlt-1 from larger multimeric complexes by charge dependent interaction. Monomeric sFlt-1 could then potentially be filtered via glomerular barrier or be secreted into the proximal tubule. In order to experimentally substantiate changes in complex size we employed velocity gradient ultra-centrifugation on serum samples to separate native complexes of serum proteins according to their density before and after administration of heparin (Fig. 5A). After separation of up to 22 fractions on SDS-PAGE and immunoblot analysis using anti-Flt-1 specific antibody, sFlt-1 was detected in the fractions 4–17 in samples of both before and after treatment. This led us to infer that sFlt-1 complex size is not affected by heparin administration.

In addition to size selectivity, selective exclusion of proteins from the glomerular filtration is highly dependent on the molecular charge [29–33]. As sFlt-1 is highly positively charged at physiologic pH, it is likely to bind to the negative charge of the glomerular basement membrane. LMWH may mask the positive charge in the sFlt-1 molecule and, may facilitate glomerular passage. To analyse changes in complex charge of sFlt-1 we subjected serum samples before and after addition of 10 mg/l enoxaparin to cation exchange chromatography. To compare binding properties of sFlt-1 before and after the administration of heparin we allowed binding of sFlt-1 to the resin at a concentration of 110 mmol/L NaCl. Following elution with increasing salt concentrations sFlt-1 was quantified in the flow through and in the bound fractions using the Quantikine ELISA. In untreated serum samples on average 70.14% of sFlt-1 bound to the cation exchange matrix. After addition of enoxaparin at a concentration 10 mg/l mimicking the in vivo situation after LMWH treatment only 56.88% of the total sFlt-1 in the sample bound to the column. These results were well complemented by analysis of the sFlt-1 concentration in the flow through (Fig. 5B).

Discussion

Measurements of circulating angiogenic factors such as sFlt-1 and PlGF are rapidly evolving as tests for aid in diagnosis of preeclampsia [6]. There is a large body of evidence that these biomarkers may help not only in the early diagnosis of preeclampsia, but also help with prediction of adverse maternal and fetal outcomes [4,5,9,34–39]. Yet much has to be learned with regard to influencing variables and characteristics of different testing platforms. In addition, understanding the biochemical properties and kinetics of sFlt-1 may allow us to identify novel therapeutic targets for preeclampsia.

In this study, we sequentially measured blood and urine sFlt-1 levels before and after administration of LMWH for DVT-prophylaxis in preeclamptic patients. Blood samples drawn 2 hrs
prior and at the time of heparin injection in each patient served as control. We show that circulating sFlt-1 levels are increased following administration of LMWH. Our findings not only support previous reports by other groups in [25] but also reveal a positive correlation between the initial sFlt-1 levels and the sFlt-1 increase following LMWH. As has been reported previously, we also observed that sFlt-1 concentrations declined to the baseline value within 12 hrs after administration of LMWH suggesting that these effects are temporally related to heparin therapy [15]. To exclude the possibility that the changes in sFlt-1 levels may be due to assay interference with heparin, we spiked low molecular weight heparin ex vivo and found no interference. However, PlGF levels were elevated two fold following ex vivo heparin treatment suggesting, that PlGF levels may not be reliably used in patients receiving heparin therapy due to interference with the assay. Taken together, we conclude that the effect of heparin on sFlt-1 serum levels is highly dependent on the initial sFlt-1 levels and the timing of heparin use. Our data has important implication for using sFlt1 and PlGF assays in patients receiving heparin and would advise against testing any sFlt-1 and PlGF levels until heparin has completely cleared from the blood circulation.

We speculate that upon heparin treatment sFlt-1 bound to heparan sulfate proteoglycans of the extracellular matrix is mobilized into the circulation, as suggested by others [16]. Patients with high sFlt-1 levels at baseline bear a higher overall sFlt-1 load, i.e. besides higher serum levels also the extracellular matrix is highly saturated with sFlt-1 molecules. Administration of exogenous heparin with its almost exclusive intravascular distri-

Figure 2. Addition of low molecular weight heparin in vitro affects PlGF measurements in the Elecsys Assay. Assessment of serum levels after the administration of enoxaparin or vehicle in vitro shows only marginal differences for sFlt-1 (A+B). In contrast PlGF levels appear falsely high after enoxaparin (C+D). Consequently the sFlt-1/PlGF ratio appears decreased (E+F).

doi:10.1371/journal.pone.0085258.g002

Figure 3. The rate of increase in serum sFlt-1 shows positive correlation with the initial serum sFlt-1 levels. Regression analysis of the alteration in serum sFlt-1 levels following enoxaparin (fold change) and initial sFlt-1 serum levels yields positive correlation with the Spearman correlation coefficient r = 0.8273 (95%CI = 0.4348 to 0.9556; p = 0.0014).

doi:10.1371/journal.pone.0085258.g003

Due to its high molecular weight and positive charge, sFlt-1 is expected to be excluded from glomerular filtration. sFlt-1 has been
shown to accumulate in close proximity to the glomerular endothelium with the negatively charged constituents of the glomerular basement membrane where it may interfere with the VEGF-dependent cross-talk between podocytes and endothelial cells. This may very well explain the early and pronounced renal phenotype of the multi-systemic disease of preeclampsia. Nevertheless, there are reports that sFlt-1 can be detected in the urine during active preeclampsia and may serve as diagnostic marker [27,41]. In our study, we could confirm the previously published range of sFlt-1 levels in urine samples of patients with preeclampsia and HELLP syndrome. However, we did not find any correlation between serum and urine levels of sFlt-1. Surprisingly, we found a heterogeneous response of urinary sFlt-1 levels to heparin treatment. Subgroup analysis revealed that patients with lower or absent proteinuria and presumably intact glomerular filter responded with more dramatic urinary excretion of sFlt-1 following heparin administration. In patients with significant glomerular damage and proteinuria this effect is lost. In the latter patients, serum sFlt-1 is detected at much higher levels. Although we cannot rule out de novo synthesis of sFlt-1 in tubular or glomerular cells or tubular secretion, this data strongly suggests that urinary excretion of sFlt-1 is dependent on molecular charge. sFlt-1 filtration is enhanced after heparin in those patients with an intact glomerular filter. In patients with a compromised glomerular filtration barrier charge selectivity is lost and heparin administration will not lead to an increment of filtered sFlt-1. Interestingly, sFlt-1 excretion and the response to LMWH did not correlate with initial serum sFlt-1 levels. To understand the underlying mechanism of increased serum levels and altered renal elimination of sFlt-1 following heparin we addressed the question whether heparin could influence size and/or molecular charge of the sFlt-1 protein complex.

Our biochemical experiments showed that heparin treatment did not affect the size of the sFlt-1 protein complex. This excluded the possibility that heparin treatment led to the disassembly of larger multi-molecular sFlt-1 complexes. Employing cation exchange chromatography on serum samples before and after addition of LMWH we could show that heparin reduces the affinity of sFlt-1 to negatively charged surfaces. This suggests that LMWH treatment in vivo weakens the binding of sFlt-1 to fixed negative charges of the glomerular basement membrane and thus potentially facilitates glomerular filtration of sFlt-1.

![Figure 4](image_url)

Figure 4. Administration of low molecular weight heparin results in elevated urinary sFlt-1 levels. Urinary sFlt-1 levels (pg/mg Crea) are increased 2 hours after administration of enoxaparin in 7 out of 10 patients (A). Subgroup analysis according to proteinuria at presentation (cut-off of 300 mg protein/g creatinine) reveals that patients with a proteinuria <300 mg/g respond with a significantly higher increase of urinary sFlt-1 after heparin treatment ($p = 0.0365$) (B).

doi:10.1371/journal.pone.0085258.g004

![Figure 5](image_url)

Figure 5. Heparin does not affect sFlt-1 protein complex size but interferes with sFlt-1 binding to negatively charged surfaces. Serum samples before and after low molecular weight heparin treatment were subjected to velocity gradient centrifugation. Western blotting of fractions 5–18 was performed using Flt-1 specific antibody (A). Serum samples before and after addition of 10 mg/l enoxaparin were subjected to cation exchange chromatography. In non-treated serum samples 70.14% of sFlt-1 binds to the column, whereas the remaining 29.86% are found in the flow through. After enoxaparin treatment only 56.88% of sFlt-1 is bound and 43.11% appear in the flow through ($p = 0.0386$) (B).

doi:10.1371/journal.pone.0085258.g005
Our study has certain limitations. The sample size is small. This is a general problem in studies on preeclamptic patients recruited during in-patient setting. Once these patients require hospital admission, rapid deterioration in the medical condition or imminent delivery impedes enrolment into clinical studies. Therefore cooperation of multiple centers and out-patient clinics with similar treatment protocols is warranted when studying patients with preeclampsia. In addition our biochemical studies can only provide indirect proof of an alteration of sFlt-1 complex charge. Further biochemical and in vivo studies are warranted to establish that renal elimination of sFlt-1 indeed depends on protein-charge. Different modifications of recombinant sFlt-1 with alterations of charged residues should be generated to study sFlt-1 biodistribution and renal excretion e.g. in a mouse model. Employing angiogenic factors like sFlt-1 and PlGF for clinical use for the prediction and diagnosis of preeclampsia as well as validating therapeutic approaches warrants complete understanding of the characteristics and influencing variables of those factors in vivo and in vitro.

In summary, we conclude from our observations that (i) acute administration of low molecular weight heparrin leads to increased sFlt-1 serum levels (ii) Heparin bound sFlt-1 may be more easily eliminated during the urine by the kidney. The source of increased circulating sFlt1 following low molecular weight heparrin therapy is unknown. Whether enhanced urinary excretion of sFlt-1 following heparin therapy is a result of glomerular filtration or tubular secretion is also yet to be determined.

Supporting Information

Figure S1 Study scheme. Blood samples (red triangles) were drawn 2 hours prior and directly before sub cutaneous injection of low molecular weight heparin (enoxaparin-sodium). In succession we determined with all main blood draws.

Figure S2 Alterations of serum sFlt-1, serum PlGF and sFlt-1/PlGF ratio in individual patients. sFlt-1, PlGF and sFlt-1/PlGF was determined in the serum of the study patients 2 hours prior, directly before and 2 hours after enoxaparin treatment. The figures shows fold change of sFlt-1 (A), PlGF (B) and sFlt-1/PlGF (C) in the interval before and after treatment.

Acknowledgments

We would like to thank the patients that agreed to participate in this study. We would also like to thank Angelika Kooser for technical support.

Author Contributions

Conceived and designed the experiments: HH VB AAB SAK RT BS PM GS TB PTB. Performed the experiments: HH VB AAB AF. Analyzed the data: HH VB TB PTB. Contributed reagents/materials/analysis tools: HH AAB SAK RT BS PM GS TB PTB. Wrote the paper: HH SAK TB PTB.

