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Abstract

Background: Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging
threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely
performed on clinical isolates to explore their value as epidemiological markers.

Methodology/Principal Findings: Microbiology laboratory results from January 2009 through December 2011 from a 793-
bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47
biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were
particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results
with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of
discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed
model variance component analysis. Results: 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of
whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as ‘‘nuisance’’
biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had
relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed
the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within
patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-
resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness
and specificity of outbreak detection algorithms.

Conclusions: The statistical approaches explored can improve the robust recognition of microbial subpopulations with
routinely available biochemical test results, of value in the timely detection of outbreak clones and evolutionarily important
genetic events.
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Introduction

Clinical and public health microbiology laboratories worldwide

constitute an invaluable resource for monitoring spread of

antimicrobial resistance and other emerging microbial threats

[1,2]. Yet findings from these laboratories are underutilized for the

systematic monitoring of evolving microbial populations including

the early recognition, crucial for effective containment interven-

tions, of new mutation events, emergent strains, and outbreaks

[3,4].

Although surveillance is a major part of infection control

programs, the processes of surveillance activities in most hospitals

are largely unstudied [5], and available microbiology results

ineffectively utilized. In public health agencies and healthcare

facilities, outbreak detection depends primarily on incidental

observations of unexpected morbidity/mortality or monitoring

increased frequencies of a few organisms or organism subtypes of

interest (e.g. methicillin-resistant Staphylococcus aureus, carbapenem-

resistant Enterobacteriaceae). This requires the sustained efforts of

infection control staff with limited time and data management

tools, misses events meriting investigation, and exhibits delays in

detection when compared to a statistical approach [1,6]. Previous

work suggests that the use of routinely available antimicrobial

resistance phenotypes can improve the sensitivity and specificity of

outbreak detection algorithms through more refined definition of

microbial subpopulations [1,6,7].

In this work, we explore the utility of biochemical phenotypes

[8] to the same end – improved recognition of microbial clones on

the basis of biochemical tests such as glucose and urease used by

clinical laboratories for the routine identification of microorgan-

isms. While most biochemical tests are relatively consistent across

all isolates of a given bacterial species (either .95% positive or

.95% negative) and thus useful for species identification, others

exhibit greater variability across the species [9] and thus are
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potentially valuable for strain identification below the species level.

A well-characterized example is the finding that strains of

Escherichia coli O157:H7, often associated with foodborne disease

outbreaks and hemolytic uremic syndrome, typically do not

ferment sorbitol (‘‘sorbitol-negative E. coli’’) in contrast to most E.

coli [10,11]. As a result of this observation, sorbitol fermentation

has become a practical test useful for the routine screening of these

enterohemorrhagic strains. Some specialized commercial pheno-

typing systems, such as PhPlate AB’s PhenePlate system or Biolog’s

Phenotype MicroArray exploit this variation within a species for

epidemiological and research purposes, in contrast to the much

more widespread bioMérieux’s Vitek product or Siemens Micro-

Scan instrument which focus on microbial identification at the

species level.

Variability in biochemical results within a species can be due to

one of two factors: 1. true reproducible differences between

distinct strains; and 2. inconsistent test findings due to variability in

test performance factors (inoculum, test conditions, etc.) or in

biological expression of the phenotype. In this study we apply

statistical approaches for the analysis of biochemical phenotypes of

Klebsiella pneumoniae for the recognition of specific biochemicals of

greatest and least value in defining phenotypically distinct strains,

and explore as a practical application of the conclusions how this

information could be utilized to study the evolution of carbapenem

resistance in a tertiary care hospital and to improve outbreak

detection.

Methods

Ethics Statement
This study was approved by the Brigham and Women’s

Hospital (BWH) Human Research Committee and no informed

consent was required.

Study Population and Datasets
Microbial identification and antimicrobial susceptibility test

results for K. pneumoniae from January 2009 through December

2011 of a 793-bed academic center were imported from the

VitekH 2 system (bioMérieux, Marcy l’Etoile, France) into

WHONET [12–15], a free software used in over 110 countries

developed by our group, the WHO Collaborating Centre for

Surveillance of Antimicrobial Resistance. Variables evaluated

included patient identifier, location, collection date, organism, and

biochemical and antimicrobial susceptibility test results.

The Vitek 2 ID-GNB Panel uses a set of 47 biochemical tests

plus a negative control for the identification of Gram-negative

bacteria (Table 1). Results are recorded as 0 for negative results

and 1 for positive results. These 48 values are compacted by the

Vitek by combining triplets of positive/negative binary results into

a 16-digit Vitek ‘‘bionumber’’. In order to analyze the individual

biochemical results, this compaction process was reversed in

Microsoft Excel to extract the bionumber into the 48 individual

component results. Statistical analyses were performed using

WHONET 5.6, SaTScan 9.0, SAS version 9.2 and SPSS 15.0..

Variance Analyses
To identify biochemical tests that were particularly valuable

(stable with repeat testing, but good variability across the species)

or problematic (inconsistent results with repeat testing), three types

of variance analyses were performed: 1. Same-day isolates

discordance analysis; 2. Average within-patient variance index;

and 3. Generalized linear mixed model variance component

analysis. Patients with only a single isolate of K. pneumoniae during

the study period were excluded from these variance analyses.

Same-day isolates discordance analysis. Since the focus

of this work is the characterization of variability with repeat testing

(and not strain acquisition or mutation over time), a relevant

exploratory analysis is the comparison of biochemical results of

patient isolates which were collected on the same day. In this

analysis, a data subset was created with two isolates from any

patient with two or more K. pneumoniae isolates on the first day that

this organism was found. For each biochemical, it was ascertained

for each patient whether the two results were concordant (both

positive or both negative) or discordant (one positive and one

negative). For each biochemical, the proportion of patients with

discordant results was tabulated.

Average within-patient variance index. To more fully

utilize results from all isolates, an average within-patient variance

index was calculated for each biochemical in the following way.

Within-patient variance for each biochemical was calculated

separately for each patient with 2 or more isolates using the

binomial variance formula p(12p)/n, were p = proportion of

positive results for this patient, and n = number of isolates for this

patient. For example, if a patient has 4 isolates of K. pneumoniae and

three of these are dTAG-positive and one negative, then the

dTAG within-patient variance for this patient would be 0.75 *

0.25/4 = 0.046875. These patient-specific variances were then

averaged across all patients and weighted by the number of isolates

for each patient to generate a weighted average within-patient

variance for each biochemical across the patient population.

Between patient variance component. To be useful as an

epidemiological marker, it is not only important to have

concordance within patients, but there must also be variability

between patients. In statistical terms, we want the within patient

variance component to be small and the between patient variance

component to be large. For continuous variables, simple and

multiple linear regression can be used to estimate the variance of

test results, but for the dichotomous biochemical test results

studied here, generalized linear mixed models are more appro-

priate. As implemented within the SAS GLIMMIX procedure for

binomial data, we calculated the covariance parameter estimate

(CPE) for the between patient variance component. A large CPE

indicates more variance between patients with is an important

indicator if the biomedical test is to be useful as an epidemiological

marker. If biochemical tests results are as similar between patients

as within patients, the CPE is zero, indicating that it does not

provide any information to differentiate between patients. This

would happen if, for example, a test is positive with probability p

independent of all other tests and regardless of the patient it comes

from. Calculations were done using SAS PROC GLIMMIX

[16,17]. For biomedical tests with small within and small between

patient variance, GLIMMIX did not converge, but these are

situations when the biomedical tests provides little discriminatory

information as it is almost always positive or almost always

negative. Note that, when we consider between patient variance it

is between patients that all have K. pneumoniae. Our results are not

relevant to the ability to differentiate between patients with

different pathogens.

Cluster Detection
The value of a reduced subset of biochemicals for improving

outbreak detection was evaluated with the use of WHONET-

SaTScan. SaTScanTM [18] is a free software used for the detection

of statistical clusters in space, in time, or in space and time.

Previous work has demonstrated the value of the SaTScan

prospective space-time permutation scan statistic for detecting

clusters in routine laboratory data using collection date as the time

variable and one of the following as the ‘‘spatial’’ variable: latitude

Klebsiella pneumoniae Biochemical Phenotypes
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Table 1. Frequency of positive test results for patient first isolates of Klebsiella pneumoniae considering the 47 biochemical tests
and negative control included in the Vitek 2 ID-GNB Panel.

Biochemical test Biochemical code
Positive percentage
(95% CI1)

Weighted Average
Within-Patient Variance GLIMMIX CPE2

Negative control N_CON 0 (0.0000–0.0015) 0.0000 n/c

Lipase LIP 0 (0.0000–0.0015) 0.0000 n/c

L-Arabitol lARL 0 (0–0.2) 0.0000 n/c

D-Glucose dGLU 100 (99.8–100) 0.0000 n/c

Glu-Gly-Arg-Arylamidase GGAA 0 (0.0000–0.0015) 0.0001 0.2208

Ala-Phe-Pro-Arylamidase APPA 0 (0.0000–0.0015) 0.0001 n/c

Glutamyl Arylamidase pNa AGLTp 0 (0–0.2) 0.0001 n/c

Beta-Alanine Arylamidase pNa BAlap 0.2 (0.1–0.5) 0.0002 0.0000

D-Manitol dMAN 99.7 (99.4–99.9) 0.0002 n/c

Beta-N-Acetyl-Galactosaminidase NAGA 0.2 (0.1–0.5) 0.0003 n/c

Alpha-Galactosidase AGAL 99.9 (99.6–100) 0.0003 0.4315

Beta-Glucosidase BGLU 99.6 (99.2–99.8) 0.0003 n/c

D-Mannose dMNE 99.9 (99.6–1) 0.0004 0.1536

Phosphatase PHOS 99.6 (99.3–99.8) 0.0004 3.9521

D-Cellobiose dCEL 99.8 (99.5–99.9) 0.0005 n/c

D-Trehalose dTRE 99.8 (99.6–100) 0.0006 n/c

Saccharose/Sucrose SAC 99.5 (99.1–99.7) 0.0007 n/c

Alpha-Glucosidase AGLU 0.9 (0.5–1.3) 0.0007 n/c

H2S Production H2S 0.4 (0.2–0.7) 0.0009 n/c

Beta-Galactosidase BGAL 99.2 (98.8–99.5) 0.0012 n/c

ELLMAN ELLM 1.2 (0.8–1.7) 0.0012 n/c

Fermentation/Glucose OFF 99.5 (99.1–99.7) 0.0013 n/c

D-Sorbitol dSOR 97.4 (96.7–98.0) 0.0014 n/c

Citrate-sodium CIT 98 (97.4–98.5) 0.0015 3.4833

Palatinose PLE 98.9 (98.4–99.2) 0.0015 3.4942

Ornithine Decarboxylase ODC 1.6 (1.1–2.2) 0.0017 n/c

D-Maltose dMAL 98.1 (97.4–98.6) 0.0020 3.4748

Malonate MNT 93.7 (92.6–94.6) 0.0022 4.4685

Beta-Glucuronidase BGUR 1.8 (1.3–2.4) 0.0022 n/c

Beta-N-Acetyl-Glucosaminidase BNAG 2 (1.5–2.6) 0.0023 n/c

Beta-Xylosidase BXYL 95.5 (94.6–96.2) 0.0026 n/c

Urease URE 94.7 (93.7–95.5) 0.0032 3.8876

Lysine Decarboxylase LDC 94.7 (93.8–95.6) 0.0034 3.7809

5-Keto-D-Gluconate 5KG 12.8 (11.5–14.2) 0.0039 4.4121

Adonitol ADO 86.5 (85.1–87.8 0.0050 4.4025

L-Lactate Assimilation ILATa 6.3 (5.4–7.3) 0.0052 3.1058

L-Pyrrolydonyl-Arylamidase PyrA 96 (95.1–96.7) 0.0054 1.9750

Coumarate CMT 11.8 (10.5–13.1) 0.0063 3.5695

L-Histidine Assimilation lHISa 9.1 (8.0–10.3) 0.0066 3.1588

L-Lactate Alkalinisation lLATk 95.4 (94.5–96.2) 0.0067 1.8028

2,4-Diamino-6,7-Diisopropylpteridine
Resistance

O129R 87.9 (86.5–89.1) 0.0075 2.7097

L-Malate Assimilation IMLTa 11.6 (10.4–12.9) 0.0076 3.3123

D-Tagatose dTAG 36.5 (34.6–38.4) 0.0082 4.7684

L-Proline Arylamidase ProA 17.3 (15.8–18.8) 0.0084 3.5177

Gamma-Glutamyl-Tranferase GGT 87.6 (86.2–88.8) 0.0122 2.5210

Glyicine Arylamidase GlyA 31.8 (29.9–33.6) 0.0195 2.5966

Tyrosine Arylamidase TyrA 52.3 (50.3–54.2) 0.0217 2.7779

Klebsiella pneumoniae Biochemical Phenotypes
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and longitude [19], medical ward and service [6], resistance

phenotype [1], and serotype [19]. For this analysis, patients’ first

isolates of K. pneumoniae in a 365-day window were studied in a

simulated prospective analysis run from 1 January 2010 through

31 December 2011 using biochemical phenotype as the ‘‘spatial’’

variable, collection date as the temporal variable, maximum

cluster length of 60 days, 365 days of baseline data, and 9,999

Monte Carlo simulations. Signals with a recurrence interval

(roughly the inverse of the p-value) of 365 days or greater were

considered significant for alert purposes, which means that under

the null hypothesis of no outbreaks the expected number of signals

would be one during a one year period.

Results

4,200 isolates of K. pneumoniae were identified from 1 January

2009 to 31 December 2011 from 2,485 patients. While the

majority of patients (67.5%) had only a single isolate of K.

pneumoniae during the study period, 32.5% of patients had two or

more isolates, and this portion was further studied for biochemical

test variability. Most of these patients (478 patients) had precisely 2

isolates, while 19 patients had 10 or more (up to 24) isolates of K.

pneumoniae during the three-year study period.

Biochemical Phenotype Descriptive Analysis
The initial K. pneumoniae isolates from the 2,485 patients were

used to calculate the frequency of positive results for the 48 tests

(Table 1). While the majority of the tests (32 out of 48) had a

percentage of positive results above 95% or below 5% (and thus

valuable for species identification), some were highly variable, such

as TyrA (52.3% positive) and SUCT (43.5% positive).

In total, there were 900 distinct biochemical phenotypes when

all 48 tests are considered, with the 10 most frequent phenotypes

displayed in Table 2. The most frequent phenotype was seen in

10.8% of patients, and the top 10 phenotypes constituted 35.9% of

all isolates. 551 patients (22.2%) had unique phenotypes seen in no

other patient.

Variance Analyses
Same-day isolates discordance analysis. 361 patients

were studied who had at least two isolates on the first date of K.

pneumoniae isolation. In 248 (68.7%) patients, the two same-day

isolates exhibited identical results across all 48 tests. One or two

differences were seen in 79 (21.9%) of the patients, in most

instances presumably representing two occurrences of the same

microbial strain. Six or more discrepancies were uncommon (10

patients, 2.8%), and would likely represent in most cases co-

colonization or co-infection with genetically distinct strains of K.

pneumoniae.

Among the 79 patients with one or two discrepancies,

differences were seen (in order of decreasing frequency) in: GlyA

(24), TyrA (21), SUCT (17), GGT (9), CMT (6), O129R (6),

lLATk (5), lMLTa (5), PryA (3), ProA (3), and dTAG (2) and single

discrepancies in dMAL, CIT, LHIS, ADO, BGUR and ILATa.

The remaining [31] tests were completely concordant between the

two isolates.

Table 2. Frequency of bionumbers of Klebsiella pneumoniae isolated from specimens collected January 2009-December 2011
considering the full biochemical phenotype.

Full biochemical phenotype Discordance Frequency Percentage

011011000111111110001011101110100011001000100000 None 510 12.1

011011000111111110001111101110100011001000100000 TyrA 208 5.0

011011000111111110001011111110100011001000100000 dTag 148 3.5

011011000101111110001011101110100011001000100000 GGT 129 3.1

011011000111111110001011101110101011001000100000 SUCT 100 2.4

011011000111111110001111101110101011001000100000 TyrA, SUCT 92 2.2

011011000111111110001011111110101011001000100000 dTag, SUCT 89 2.1

011011000111111110001111101110100011101000100000 TyrA, GlyA 77 1.8

011011000111111110001111111110101011001000100000 TyrA, dTag, SUCT 75 1.8

011011000111111110001111101110101011101000100000 TyrA, SUCT, GlyA 68 1.6

Unique phenotypes 551 13.1

Other phenotypes 2153 51.3

Total 4200 100.0

The column Discordance indicates the biochemical tests which distinguish each phenotype from the most common phenotype observed.
doi:10.1371/journal.pone.0084313.t002

Table 1. Cont.

Biochemical test Biochemical code
Positive percentage
(95% CI1)

Weighted Average
Within-Patient Variance GLIMMIX CPE2

Succinate Alkalisation SUCT 43.5 (41.5–45.4) 0.0219 2.6267

1Clopper-Pearson 95% Confidence Interval calculated with SAS.
2Covariance Parameter Estimates (CPE), n/c = not convergence.
doi:10.1371/journal.pone.0084313.t001

Klebsiella pneumoniae Biochemical Phenotypes
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Average within-patient variance index. Results of the

average within-patient variance index are displayed in Table 1 and

Figure 1. A high value indicates that there is relatively poor

reproducibility of test results. Of note, the 4 biochemicals with the

highest within-patient variance (and thus not very useful for

reliable strain phenotyping) were precisely the same top four

highlighted above in the same-day isolates discordance analysis:

GlyA, TyrA, SUCT and GGT.

Conversely, a low index indicates good overall reproducibility of

the test, but one cannot conclude from a low index that both

positive and negative results are equally reproducible. When the

proportion of minority findings is very small, the index is so heavily

weighted towards the zero variance of the consistent majority

results that one cannot reliably quantify how reproducible the

minority result is.

Using the proportion of positive and negative results tabulated

in Table 1, the dotted line in Figure 1 is a theoretical curve

calculated in Microsoft Excel under the assumption that there is

no relationship between the results of a patient’s first and second

isolates. All of the observed values are far below the theoretical

curve demonstrating that all biochemicals are much more

consistent with repeat testing than one would expect by random

chance, a reassuring finding with regards to the overall reproduc-

ibility of test results. For a given proportion of minority findings,

biochemicals tests below the depicted regression line are relatively

more reproducible than those above.

Between patient variance component. The between pa-

tient variance component results are displayed in Table 1 and a

comparison with the average within-patient variance index is

shown in Figure 2. A high Covariant Parameter Estimate (CPE)

suggests a high variance between patients, indicating good ability

to differentiate between patients.

Of note, the four biochemicals highlighted earlier (GlyA, TyrA,

SUCT, and GGT) do not stand out as remarkable in this analysis,

suggesting that the observed reproducibility of these test results is

consistent with their overall proportion of positive and negative

results in the population. dTAG (appearing below the line in

Figure 1) is noteworthy in that it displays the highest CPE (4.77)

among all biochemicals.

PHOS is noteworthy in that despite the rarity of negative results

(0.4%), the CPE was one of the highest observed (3.95). PHOS-

negative strains thus are rare but seem to be distinctive and

reproducible, a scenario similar to sorbitol example described in

the Introduction. Similarly, minority results from CIT, PLE, and

dMAL were rare (,2%), yet had CPEs over 3.0. In contrast,

GGAA, BAlap, dMNE, and AGAL had low CPEs (,0.4)

suggesting that these tests have limited ability to differentiate

between K. pneumoniae patients.

The GLIMMIX procedure did not converge for several

biochemicals because of insufficient data. With a larger data set,

one would anticipate that convergence would be feasible for most

biochemicals with the exception of those which are uniformly

positive or uniformly negative.

Reduced Biochemical Phenotype
The first two variance analyses presented suggest that four

biochemical tests are particularly problematic, impacting a large

number of patient isolates – TyrA, SUCT, GlyA, and GGT. For

the first three of these, the proportion of minority results was high

(47.7%, 43.5%, and 31.8% respectively) and the within-patient

variance was also high (Figure 1). For GGT, the proportion of

minority results (12.4%) was similar to that of several other

biochemicals, but the within-patient variance was 45% higher

than the next highest variance.

Figure 1. Linear regression (solid line) comparing the observed weighted average within-patient variance by proportion of
minority results for 48 biochemical test results. The dashed line represents the theoretical curve that would be expected if there were no
correlation between the results of a patient’s first and second isolates of Klebsiella pneumoniae.
doi:10.1371/journal.pone.0084313.g001

Klebsiella pneumoniae Biochemical Phenotypes
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It would thus be useful to explore phenotype distributions in our

study population results of these four biochemicals excluded from

consideration. These results are depicted in Table 3, and

demonstrate significant collapsing of biochemical phenotypes into

fewer categories. The number of distinct phenotypes is now 522

(previously 900), while the proportion of isolates with the most

common bionumber increases from 10.8% to 30.8% and the

proportion of isolates with one of the ten top phenotypes increases

from 35.9% to 61.2%. The number of patients with unique

phenotypes decreases from 551 (13.1% of patients) to 283 (6.7%).

Table 4 illustrates the impact of selective biochemical suppres-

sion using results from two patients, each of whom had 10 isolates

of K. pneumoniae. If all biochemical tests are considered equivalent-

ly, Patient 1 would appear to have six distinct phenotypes with a

total of 7 discordant results (out of 480 tests), and Patient 2 three

phenotypes with 17 discordant results. However, if one discounts

the discrepancies seen in the four gray columns, then Patient 1 has

only two distinct phenotypes with a single discordant result (ProA)

(out of 440 tests), while Patient 2 has three phenotypes with 11

discordant results (multiple biochemicals). The reduced biochem-

Figure 2. Covariance Parameter Estimate compared with observed weighted average within-patient variance.
doi:10.1371/journal.pone.0084313.g002

Table 3. Frequency of bionumbers of Klebsiella pneumoniae isolated from specimens collected January 2009–December 2011,
considering the biochemical phenotype without 4 biochemical tests (GGT, TyrA, SUCT and GlyA).

Reduced biochemical phenotype Discordance Frequency Percentage

0110110001_1111110001_1110111010_011_01000100000 None 1293 30.8

0110110001_1111110001_1111111010_011_01000100000 dTag 544 12.9

0110110001_1111110001_1110111010_011_01000000000 0129R 171 4.1

0110110001_1111110001_0110111010_011_01000100000 Ure 121 2.9

0110110001_1111110001_1110110010_011_01000100000 MNT 108 2.6

0110110001_1111110001_1111111010_011_01000000000 dTag, 0129R 89 2.1

0110110001_1111110001_1111110010_011_01000100000 dTag, MNT 78 1.9

0110110001_1111110001_1110111010_011_00000100000 LDC 71 1.7

0110110001_1111110001_1111111010_011_01010100000 dTag, CMT 48 1.1

0110110001_1111110101_0110111010_011_01000100000 ProA, Ure 47 1.1

Unique phenotypes 283 6.7

Other phenotypes 1347 32.1

Total 4200 100.0

The column Discordance indicates the biochemical tests which distinguish each phenotype from the most common phenotype observed.
doi:10.1371/journal.pone.0084313.t003
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ical phenotype thus suggests that Patient 1 in fact has multiple

isolates of a single strain which exhibited a single variant result

(ProA), while Patient 2 appears to have two distinct strains with a

single discordant result observed in the second strain (ILATa).

Carbapenem-resistant Enterobacteriaceae
CRE are a rapidly growing threat worldwide with significant

morbidity and mortality with few or no treatment alternatives [20–

25], and the emergence and spread of these strains is a public

health priority. During the study period, 24 isolates of imipenem-

resistant K. pneumoniae were isolated from 13 patients. Four of these

patients had multiple isolates (15 in total), while the remaining 9

patients had a single isolate.

With the reduced biochemical set, 10 strain phenotypes could

be distinguished, shown in Table 5. Resistance phenotypes within

each reduced biochemical phenotype were identical, suggestive

that indeed these were multiple isolates of a single clone.

Of note, Strain 6 is amikacin-resistant yet gentamicin-suscep-

tible, a rare resistance phenotype suggestive of the enzyme aac6’1b

[26], infrequently seen in the United States, but seen recently in

increasing numbers in this facility.

Cluster Detection
A comparison of the WHONET-SaTScan cluster findings when

utilizing full (‘‘F’’, 2 clusters detected) and reduced (‘‘R’’, 3 clusters

detected) biochemical phenotypes is shown in Table 6. Resistance

phenotypes within each of these clusters were concordant. One

event was detected by both methods - Clusters F1 (4 patients) and

R2 (8 patients, including all 4 patients in Cluster F1). In this event,

the reduced biochemical phenotype identified four additional

patients missed with the full biochemical profile. The clinical and

epidemiological significance of Clusters F2, R1, and R3 (as well as

Clusters F1 and R2) cannot be ascertained with certainty without

additional epidemiological and perhaps molecular investigation,

but the statistical findings themselves if found in real-time could

have prompted such investigation.

Discussion

Early detection of emergent threats is critical to effective

containment efforts, but the data management and analytical tools

available to microbiologists, infection control staff, and public

health authorities are limited [27,28]. In this study, we explored

how the use of routinely available biochemical test result details,

typically ignored by microbiologists, can enrich the delineation of

microbial strains within a species and how this information can be

Table 5. Biochemical and resistance phenotypes of imipenem-resistant K. pneumoniae.

Strain
Biochemical discrepancies from the
most common phenotype

Number of
patients
with CRE

Number of
isolates
with CRE

Number of patients
with same reduced
phenotype Profile

1 PyrA, H2S, TyrA, ILATk, SUCT, ODC, CMT,
O129R, ELLM

1 2 1 AMP IPM

2 TyrA, dTag, SUCT 1 1 403 AMP CAZ ETP IPM SXT

3 dTag, SUCT, CMT 1 1 25 AMP CAZ CRO IPM CIP

4 PLE, TyrA 1 1 8 AMP CAZ CRO ETP IPM GEN CIP

5 GGT, dMAL 2 2 14 AMP CAZ CRO ETP IPM GEN CIP SXT

6 GGT 1 1 827 AMP CAZ CRO ETP IPM AMK CIP SXT

7 GGT, dMal, URE, SUCT, GlyA 1 4 1 AMP CAZ CRO ETP IPM GEN CIP SXT

8 BXYL, SAC, LDC 2 3 30 AMP CAZ CRO ETP IPM GEN AMK CIP

9 ProA, TyrA, URE 2 8 80 AMP CAZ CRO ETP IPM GEN AMK CIP SXT

10 GGT, SAC, ILATk 1 1 3 AMP CAZ CRO ETP IPM GEN AMK CIP SXT

Number of patients = 13, Number of isolates = 24. The antibiotic code indicates that the organism is non-susceptible to the indicated agent. AMP = Ampicillin,
CAZ = Ceftazidime, CRO = Ceftriaxone, ETP = Ertapanem, IPM = Imipenem, GEN = Gentamicin, AMK = Amikacin, CIP = Ciprofloxacin, SXT = Trimethoprim/
Sulfamethoxazole.
doi:10.1371/journal.pone.0084313.t005

Table 6. Comparison of the WHONET-SaTScan cluster findings when utilizing full (F) and reduced (R) biochemical phenotypes of
Klebsiella pneumoniae.

Cluster Cluster biochemical phenotype Start date First signal End date RI - Highest
Number of
patients

F1 001011000111111110101111111111101011101100101010 8/23/2010 8/26/2010 8/26/2010 3842 4

F2 011011000111111110001111111110100011001000100000 5/5/2011 5/13/2011 5/13/2011 1168 6

R1 0010110001_1111110101_1110111110_011_01000100000 7/14/2010 7/25/2010 7/25/2010 385 4

R2 0010110001_1111110101_1111111110_011_01100101010 8/13/2010 8/26/2010 9/17/2010 5165 8

R3 0110110001_1111110001_1110111010_011_11000100000 7/9/2011 7/9/2011 7/9/2011 2342 2

RI = Recurrence Interval in days.
doi:10.1371/journal.pone.0084313.t006
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used to monitor evolving populations and improve detection of

outbreaks [29,30].

The heterogeneity of biochemical phenotypes is evident in

product inserts [9] and in our observed results (Table 1). However,

such presentations do not distinguish between stable characteristics

which vary between distinct strains and ‘‘micro-variability’’ seen

with repeat testing of a specific strain due to issues of test

performance or in the biological expression of phenotypes.

Consequently, we explored algorithms that could be applied to

any organism and to many types of microbiological tests to

facilitate the application of routine microbiological data to the

study of evolving microbial populations. The first two variance

analysis approaches are conceptually similar, focusing on an

empiric description of within-patient discrepant findings. The most

frequent reason for test discordance in same-day isolates is

limitations of the test method, though in some instances,

discordance could be due to mutations or co-infection/coloniza-

tion with distinct strains of the same bacterial species.

An advantage of the same-day isolates approach is that the

calculations are simple to perform and communicate. A limitation

of the same-day approach is the relatively limited number of

patients, isolates, and rare test findings included in the analysis.

The average within-patient analysis more effectively utilizes the

complete database to quantify variance estimates. As depicted in

Figure 1, this approach permits a general appreciation as to how

much the observed variability can be attributed to the relative

proportion of minority findings in the population (one would

expect biochemicals to the right of the figure to have higher

variances because of the frequency of both positive and negative

results) versus how much can be attributed to intrinsic biological

and test performance variability (at a given proportion of minority

findings, biochemicals above the regression line are more variable

than biochemicals below the line).

These two variances highlighted four biochemicals as ‘‘nui-

sance’’ tests impacting a large number of patients. While these tests

are of limited value in the identification of K. pneumoniae, the Vitek

Product Information manual [9] confirms that their results are

valuable for other Gram-negative rods justifying the vendor’s

inclusion of these biochemicals in the Gram-negative test panel.

For example, the Vitek product manual indicates that TyrA is

generally consistent (95–100%) for S. sonnei and A. baumannii, while

SUCT is consistent for E. meningoseptica and A. baumannii. In this

context it is important to note that our evaluation of the different

biochemical tests are valid for epidemiological distinction between

different patients that all have K. pneumoniae; and for a different

pathogen, we would expect that a completely different set of the 48

biochemical tests would be useful. Hence the variance component

analyses must be repeated for each pathogen of interest.

The between patient variance component estimates provide a

different type of insight into the results than offered by the

previous two approaches. For a biochemical test to be a useful

epidemiological marker, it is not enough to have a small within

patient variance, a large between patient variance component is

also needed. For rare minority results (e.g. sorbitol-negative results

in E. coli) to serve as reliable strain markers, stability is critical, yet

cannot be assessed by the previous variance analyses. Our between

patient variance component findings would suggest that PHOS,

CIT, PLE, and dMAL could potentially prove useful as strain

markers for K. pneumoniae, whereas minority findings in GGAA,

BAlap, dMNE, and AGAL are too similar across patients to be of

great use as epidemiological markers. In short, the first two

variance analysis approaches described seem to be particularly

well-suited for identifying ‘‘nuisance’’ biochemicals which exhibit

significant within-patient test variability, while between patient

variance component is particularly valuable for characterizing the

utility of biochemical tests with rare phenotypes. dTAG was

noteworthy in that results were relatively consistent within a strain

despite the high proportion of both positive and negative results.

By excluding the four most problematic biochemicals from

consideration, results suggest that strain recognition from pheno-

type results becomes more robust (CRE K. pneumoniae example) and

can improve the timeliness and specificity of cluster detection

(WHONET-SaTScan example). In both examples, the relevance

of the phenotypic designations was supported by the consistency of

resistance phenotypes among strains. In the CRE example, it is

noteworthy that Strains 1 and 7 had reduced biochemical

phenotypes previously unrecognized at this healthcare facility.

To explore whether the carbapenem resistance gene in these two

strains evolved were imported into the facility from an external

origin, it would be relevant to compare the biochemical results of

these two isolates (as well as the others) to the biochemical

phenotypes of CRE identified elsewhere.

Biochemical phenotypes often reflect stable, ancient chromo-

somal strain characteristics, while antimicrobial resistance pheno-

types frequently reflect relatively recent mutations and gene

acquisitions. The use of both types of these microbiological test

results together could thus perhaps offer something close to a

phenotypic ‘‘fingerprinting’’ for strain tracking which could be

confirmed further with more time-consuming and expensive

molecular typing techniques. Microbial phenotypes are generated

daily worldwide to support routine clinical care, but are generally

ignored by clinicians and epidemiologists. Through application of

the approaches described in this work, it should be possible to

improve the timely identification of and response to evolving

microbial threats.
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